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The Higgs boson in the Standard Model

The “God” particle

� The minimal way to implement
electroweak symmetry breaking

� Generates masses
� Still missing — one of the main

reasons that we have the Large
Hadron Collider now

CMS simulation of Higgs events



The mass of the Higgs boson
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� Direct search limit:
mH > 114 GeV at 95%CL

� Electroweak global fit:
mH < 154 GeV at 95% CL
or
mH < 185 GeV when combined



Higgs production at hadron colliders
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Cross sections at the Tevatron Run II
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Cross sections at the LHC
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The gluon fusion channel

� Dominant production channel — important at the LHC
� One of the best theoretically studied process

� NLO QCD: [Dawson ’91], [Djouadi, Spira and Zerwas ’91]
large K-factor observed: ∼ 70% increase!

� NNLO QCD: [Harlander and Kilgore ’02], [Anastasiou and Melnikov
’02], [Ravindran, Smith and van Neerven ’03]
correction smaller, but scale uncertainty still large (∼ ±15%)!

� NNLL threshold resummation: [Catani, de Florian, Grazzini and Nason
’03]
reduced scale uncertainty while no improvement on convergence!

� N3LO soft approximation: [Moch and Vogt ’03]
N3LO soft correction turns out to be small (a few percent).

� What we do:
� Threshold resummation from an effective theory point of view
� Momentum space approach to avoid the Landau pole problem
� A new choice of the hard matching scale which significantly

improves convergence
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Fixed-order cross section

The total cross section is given by the convolution (τ = m2
H/s)

σ = σ0 ∑
i,j

Cij(z, mt, mH, μf )⊗ fi/N1(x1, μf )⊗ fj/N2(x2, μf )

= σ0 ∑
i,j

∫ 1

τ

dz
z

∫ 1

τ/z

dx
x

Cij(z, mt, mH, μf ) fi/N1(x, μf ) fj/N2(τ/z/x, μf )

The hard scattering kernel Cij is known to NNLO in the large mt limit
� Cgg contains leading singular terms at partonic threshold

(z = m2
H/ŝ → 1)

Cgg(z, mt, mH , μf ) ≡ C(z, mt, mH , μf ) + regular terms

= δ(1− z)

+
αs

π

⎡⎣6

[
1

1− z
ln

m2
H(1− z)2

μ2
f z

]
+

+ δ(1− z)
(

11
2

+ 2π2
)

+ regular terms

⎤⎦
+
( αs

π

)2
⎡⎣9

[
1

1− z
ln3 m2

H(1− z)2

μ2
f z

]
+

+ · · ·+ regular terms

⎤⎦+O(α3
s )

� Cgq and Cqq̄ only contain regular terms



Fixed-order cross section
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� Corrections are large and dominated by the leading singular
terms in Cgg.



The threshold logarithms

In general, the singular part of Cgg can be written symbolically as

C = 1 [LO]

+ αs(L2 + L + 1) [NLO]

+ α2
s (L4 + L3 + L2 + L + 1) [NNLO]

+ α3
s (L6 + L5 + · · ·+ 1) [N3LO]

+ · · ·
[L ∼ ln(1− z). I treat 1/(1− z) as a log and denote δ(1− z) by 1.]

Convergence bad if L2 large!

However, this is not the only way to do the expansion...



Resummation as a reorganization

Convergence would be better if one could rewrite the perturbative
series as (illustration only)

C = (1 + αsL2 + α2
s L4 + α3

s L6 + · · · ) [LO′]
+ (αsL + α2

s L3 + α3
s L5 + · · · ) [NLO′]

+ (α2
s L2 + α3

s L4 + · · · ) [NNLO′]
+ · · ·

Resummation is a reorganization of the perturbative series in order to
improve the convergence.

The problem is: how to make this kind of reorganization concrete and
how to sum the infinite number of terms at each new order?



Resummation from factorization

Let’s forget about the “reorganization” and “sum to all orders” stuff
at this moment and take a different viewpoint

� The presence of double logs in the threshold region is due to the
presence of two distinct scales:

Qhard ∼ mH 	 Qsoft ∼
√

ŝ(1− z)

The logarithms are actually ln(Q2
hard/Q2

soft).
� Can get rid of the logs by separating these scales: factorization

� Traditional method: diagrammatic approach
[Collins, Soper, Sterman, Korchemsky, Catani and many others]

� We use effective theory method: field and operator approach
SCET: [Bauer, Fleming, Pirjol, Stewart, Rothstein, Beneke, Chapovsky,
Diehl, Feldmann and many others]

� Resummation is automatically achieved by the evolution factor
between the scales — will be justified later



Factorization using effective theories

� In the threshold region, the relevant energy scales are

2mt 	
√

ŝ ∼ mH 	
√

ŝ(1− z) 	 ΛQCD

� We construct a sequence of effective theories

� The resulting factorization formula reads

σ = σ0 [Ct(m2
t , μ2)]2 H(m2

H, μ2)

× S(ŝ(1− z)2, μ2)⊗ fg/N1(x1, μ)⊗ fg/N2(x2, μ)

� Any single choice of μ2 leads to large logs, especially double logs
in the hard function H and the soft function S

� Solution: choose the appropriate scale for each function and use
RG evolution to connect them



First step: integrating out the top quark

× Ct

Ct(m2
t , μ2) = 1 +

11
4

αs(μ2)
π

+
(

αs(μ2)
4π

)2 [886
9
− 137

3
ln

m2
t

μ2

]
+ · · ·

≈ 1 + 0.094 + 0.007 + · · · for μ = mt

≈ 1 + 0.085 + 0.010 + · · · for μ = 2mt

≈ 1 + 0.103 + 0.003 + · · · for μ = mt/2

Only single log at NNLO, good convergence for natural choice
μ = μt ≈ mt, small scale dependence (and running effect).



Second step: integrating out the hard modes

× CS

collinear gluon

H(m2
H, μ2) = |CS(−m2

H − iε, μ2)|2
= 1 [LO]

+
αs(μ2)

4π

[
−6 ln2 m2

H
μ2 + 7π2

]
[NLO]

+
(

αs(μ2)
4π

)2 [
18 ln4 m2

H
μ2 +

46
3

ln3 m2
H

μ2 + · · ·
]

[NNLO]

Suppose that we want to choose μ ∼ Qsoft � mH to get rid of the logs
in the soft function, then we have large logs in the hard function.

(valid for μ2 > 0)



RG evolution of the hard function

The hard function obeys an evolution equation (valid for μ2 > 0)

d
d ln μ

H(m2
H, μ2) = 2

[
ΓA

cusp(αs) ln
m2

H
μ2 + γS(αs)

]
H(m2

H, μ2)

The solution is

H(m2
H, μ2) = exp

[
4S(μ2

h, μ2)− 2aΓ(μ2
h, μ2) ln

m2
H

μ2
h
− 2aγS (μ2

h, μ2)

]
H(m2

H, μ2
h)

S(ν2, μ2) = −
αs(μ2)∫

αs(ν2)

dα
ΓA

cusp(α)
β(α)

α∫
αs(ν2)

dα′

β(α′)
, aΓ(ν2, μ2) = −

αs(μ2)∫
αs(ν2)

dα
ΓA

cusp(α)
β(α)

Now H can be evaluated at some hard scale μh for good convergence
and then evolved down to some soft scale μ ∼ Qsoft to match the soft
function. This gives what we call
“Renormalization Group Improved (RGI) perturbation theory”



RG-Improved perturbation theory and resummation

RGI Pert. Theory Log Approx. ΓA
cusp γS, ... H, ...

LO NLL 2-loop 1-loop tree-level
NLO NNLL 3-loop 2-loop 1-loop

NNLO NNNLL 4-loop 3-loop 2-loop

Now let’s see what happens when we want to evaluate the hard
function at some soft scale μ ∼ Qsoft in RGI perturbation theory.
We use a “natural” choice μ2

h = m2
H, and re-expand the leading order

expression in RGI perturbation theory in powers of αs(μ2):

H(m2
H, μ2) = exp

[
4S(m2

H, μ2)− 2aγS(m2
H, μ2)

]
LO

= 1− αs(μ2)
4π

6 ln2 m2
H

μ2 +
(

αs(μ2)
4π

)2 [
18 ln4 m2

H
μ2

+
46
3

ln3 m2
H

μ2 +
(
−302

3
+ 6π2

)
ln2 m2

H
μ2

]
+ · · · [RGI-LO]

So indeed the RGI-LO expression sums infinite number of terms in
fixed-order perturbation theory via the evolution factor.
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H
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Is the choice μ2
h = m2

H good enough?
Now the remaining question is whether or not H(m2

H, μ2
h) has good

convergence for μ2
h ∼ m2

H. For mH = 120 GeV,

H(m2
H, m2

H) ≈ 1 + 5.50αs(m2
H) + 17.24α2

s (m2
H) + · · ·

≈ 1 + 0.618 + 0.218 + · · ·
Not so good... But why?

We know H(m2
H, μ2) = |CS(−m2

H − iε, μ2)|2, with

CS(−m2
H, μ2) = 1 [LO]

+
αs(μ2)

4π

[
−3 ln2 −m2

H
μ2 +

π2

2

]
[NLO]

+
(

αs(μ2)
4π

)2 [9
2

ln4 −m2
H

μ2 +
23
3

ln3 −m2
H

μ2 + · · ·
]

[NNLO]

The double logs leave behind π2 terms for the choice μ2 = m2
H

—— maybe a better choice is μ2 = −m2
H − iε?

This requires evaluating the running αs(μ2) at negative argument.
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Running of αs in the complex μ2 plane

μ2

Λ2

m2
H−m2

H − iε

physical cut

unphysical Landau pole

∫ αs(−μ2)

αs(μ2)

dα

β(α)
= − iπ

2

For mH = 120 GeV

αs(m2
H) ≈ 0.112

αs(−m2
H − iε) ≈ 0.107 + 0.024i



The “π2 resummation”
Now we can evaluate

H(m2
H,−m2

H) = |CS(−m2
H,−m2

H)|2 ≈ 1 + 0.0840− 0.0015 + · · ·
Convergence much better!

And we use RG evolution to obtain

H(m2
H, m2

H) = exp
[
2Re

(
2S(−m2

H, m2
H)− aγS (−m2

H, m2
H)
)]

H(m2
H,−m2

H)

Again we re-expand the leading order expression in RGI perturbation
theory in powers of αs(m2

H):

H(m2
H, m2

H) = exp
[
2Re

(
2S(−m2

H, m2
H)− aγS(−m2

H, m2
H)
)]

LO

= 1 +
αs(m2

H)
4π

6π2 +

(
αs(m2

H)
4π

)2 [
12π4 +

302
3

π2
]

+ · · ·

[RGI-LO]

Note that the π2 terms are not chosen arbitrarily, but are generated
automatically from RG evolution.
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Final step: the soft function

The soft function is related to the vacuum expectation value of a
Wilson loop constructed from soft gluon fields

eikonal vertex
soft Wilson line

S(ŝ(1− z)2, μ2) =
√

ŝ WHiggs(
√

ŝ(1− z), μ)

= δ(1− z) +
αs

π

[
6

[
1

1− z
ln

m2
H(1− z)2

μ2z

]
+

+ δ(1− z)

(
3
2

ln2 m2
H

μ2 +
π2

4

)]
+ · · ·



RG evolution of the soft function

� The soft Wilson loop satisfies an evolution equation

dWHiggs(ω, μ)
d ln μ

= −
[

4ΓA
cusp(αs) ln

ω

μ
+ 2γW(αs)

]
WHiggs(ω, μ)

− 4ΓA
cusp(αs)

∫ ω

0
dω′

WHiggs(ω′, μ)−WHiggs(ω, μ)
ω−ω′

� Conventional method is to solve this equation in Mellin moment
space and then numerically transform back to momentum space

� An analytical solution directly in momentum space is given with
the help of an associated soft function s̃ (which is the Laplace
transformation of the soft function) [Becher and Neubert ’06]:

WHiggs(ω, μ) = exp
[
−4S(μ2

s , μ2) + 2aγW (μ2
s , μ2)

]
× s̃Higgs(∂η , μ2

s )
1
ω

(
ω

μs

)2η e−2γEη

Γ(2η)



Choice of the soft scale

� The naive choice μs ∼
√

ŝ(1− z) does not work because z is
integrated over:

σ ∝ S(ŝ(1− z)2, μ2)⊗ fg/N1(x1, μ)⊗ fg/N2(x2, μ)

∝
∫ 1

τ

dz
z

S(ŝ(1− z)2, μ2)
[
fg/N1 ⊗ fg/N2

]
(τ/z, μ)

� Another guess μs ∼ mH(1− τ) (based on the hadronic threshold)
does not take into account the fall-off of the parton luminosity:
the partonic threshold region is important if

1. τ = m2
H/s → 1 (the hadronic threshold region is reached);

or

2. The parton luminosity f ⊗ f is a rapidly decreasing function in the
integration range (dynamical threshold enhancement).
It has been shown to be the case in low energy Drell-Yan process
[Becher, Neubert and Xu ’07]



Choice of the soft scale

τ/z

[f
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� Low energy Drell-Yan (LEDY):
moderate to large τ

σ ∼
∫ 1

τ

dz
z

(
1− τ/z

1− τ

)11
S(1− z)

� Higgs production at Tevatron:
small τ

σ ∼
∫ 1

τ

dz
z

z2.5 S(1− z)

� Higgs production at LHC:
very small τ

σ ∼
∫ 1

τ

dz
z

z1.8 S(1− z)

In the Higgs case, the fall-off of the parton luminosity is not strong
enough — no large threshold logarithms expected.



Choice of the soft scale

� Nevertheless, we will follow the Drell-Yan paper and choose an
effective soft scale μs so that the convolution S⊗ f ⊗ f has good
convergence.
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� Two criteria characterizing good convergence: μII
s < μs < μI

s.
� μs ∼ mH/2 not so small — no large threshold logarithms.



Putting things together

Now everything is in place, and different scales are connected by the
evolution factor U:

σresummed = σ0 [Ct(m2
t , μ2

t )]
2 H(m2

H, μ2
h) U(mH, μt, μh, μs, μf )

× z−η

(1− z)1−2η
s̃Higgs

(
ln

m2
H(1− z)2

μ2
s z

+ ∂η , μ2
s

)
e−2γEη

Γ(2η)

⊗ fg/N1(x1, μf )⊗ fg/N2(x2, μf )

We define our final RG improved cross section with matching to
fixed-order result:

σRGI = σresummed
∣∣∣
μt,μh,μs,μf

+
(

σfixed order
∣∣∣
μf
− σresummed

∣∣∣
μt=μh=μs=μf

)



Predictions for the cross section
Comparison of uncertainties and convergence

LHC, MRST2001LO/2004NLO/2004NNLO PDF sets

fixed order

mH (GeV)

σ
(p

b)

200180160140120100

80

70

60

50

40

30

20

10

0

fixed order
mH/2 < μr = μf < 2mH



Predictions for the cross section
Comparison of uncertainties and convergence

LHC, MRST2001LO/2004NLO/2004NNLO PDF sets

fixed order

mH (GeV)

σ
(p

b)

200180160140120100

80

70

60

50

40

30

20

10

0

threshold resummed

mH (GeV)

σ
(p

b)

200180160140120100

80

70

60

50

40

30

20

10

0

threshold resummed
mt/2 < μt < 2mt, μII

s < μs < μI
s

(mH/2)2 < μ2
h < (2mH)2, mH/2 < μf < 2mH



Predictions for the cross section
Comparison of uncertainties and convergence

LHC, MRST2001LO/2004NLO/2004NNLO PDF sets

fixed order

mH (GeV)

σ
(p

b)

200180160140120100

80

70

60

50

40

30

20

10

0

threshold resummed

mH (GeV)

σ
(p

b)

200180160140120100

80

70

60

50

40

30

20

10

0

π
2 resummed

mH (GeV)
σ

(p
b)

200180160140120100

80

70

60

50

40

30

20

10

0

π2 resummed
mH/2 < μt = μs = μf < 2mH

μ2
h = −μ2

f
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� Resumming threshold logs reduces scale dependence, but
does not improve convergence;

� Resumming π2 leads to faster convergence and smaller scale
dependence;

� Both effects increase the cross section.



Predictions for the cross section
MSTW2008 PDF sets
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Predictions for the cross section
Scale and PDF uncertainties

LHC, mH = 120 GeV, MSTW2008NNLO PDF set

fixed order threshold π2 threshold + π2

LO 15.5+2.4+0.4
−2.1−0.5 17.8+3.3+0.4

−2.7−0.6 27.1+4.0+0.6
−3.8−0.8 31.2+5.7+0.8

−4.8−1.0

NLO 35.5+5.9+0.8
−4.6−1.1 37.7+3.6+0.9

−1.2−1.2 45.0+3.0+1.1
−3.3−1.4 46.6+2.5+1.1

−1.1−1.5

NNLO 47.6+4.5+1.1
−4.2−1.5 48.5+2.5+1.2

−0.5−1.5 51.4+1.7+1.2
−1.6−1.6 51.4+1.4+1.2

−0.3−1.6

Tevatron, mH = 120 GeV, MSTW2008NNLO PDF set
fixed order threshold π2 threshold + π2

LO 0.281+0.105+0.018
−0.071−0.019 0.389+0.062+0.023

−0.046−0.024 0.491+0.180+0.031
−0.127−0.033 0.681+0.105+0.040

−0.080−0.042

NLO 0.650+0.172+0.041
−0.131−0.044 0.764+0.077+0.045

−0.026−0.048 0.855+0.125+0.053
−0.130−0.056 0.954+0.046+0.055

−0.022−0.059

NNLO 0.901+0.126+0.056
−0.124−0.060 0.961+0.048+0.058

−0.012−0.062 1.003+0.051+0.061
−0.074−0.065 1.022+0.025+0.061

−0.005−0.065

� Scale uncertainty is smaller than PDF uncertainty after including
both effects.

� Uncertainty from αs not shown here (σ ∝ α2
s ).



Application to other time-like processes

� With Sudakov double logs
� Drell-Yan process near partonic threshold

� Without Sudakov double logs
� Total cross section for e+e− → hadrons
� Hadronic τ decay
� Hadronic Higgs decay



Drell-Yan process

� The π2 terms arising from analytic continuation of Sudakov form
factor was noticed before [Parisi ’80], [Magnea and Sterman ’90]

� The summation of π2 terms in the Drell-Yan case was achieved
via the relation between the form factor for time-like and
space-like momentum transfer evaluated at the same
renormalization scale:∣∣∣∣CV(−Q2, μ2)

CV(Q2, μ2)

∣∣∣∣2 ≈ exp
(

CFαsπ

2

)
� In our approach everything is a proper choice of scale followed

by RG evolution, and the relation is between the form factor for
the same momentum transfer evaluated at time-like and
space-like renormalization scale:∣∣∣∣ CV(−Q2, μ2)

CV(−Q2,−μ2)

∣∣∣∣2 ≈ exp
(

CFαsπ

2

)
Appearance similar, but conceptually different.



Drell-Yan process

� Similar to Higgs production, but with different color factors
(fundamental instead of adjoint representation)

� The hard function for Q = 8 GeV

|CV(−Q2, Q2)|2 = 1 + 0.0845 + 0.0292 + · · ·
|CV(−Q2,−Q2)|2 = 1 − 0.1451 − 0.0012 + · · ·

� Surprisingly small NLO correction for μ2 > 0
� The corrections change sign when go from μ2 > 0 to μ2 < 0

� Compare to the Higgs case

|CV(−Q2, Q2)|2 = 1 +
αs(Q2)

π

[
CFπ2

2
−
(

16
3

− π2

9

)]
+ · · ·

|CS(−m2
H, m2

H)|2 = 1 +
αs(m2

H)
π

[
CAπ2

2
+

π2

4

]
+ · · ·

� The Sudakov π2 terms smaller by CF/CA
� The smallness of NLO correction for μ2 > 0 (and the change of

sign) results from a coincidental cancellation



Hadronic Higgs decay

H

g

g

� Looks similar to Higgs production at first sight, but has intrinsic
difference: no Sudakov double logs, therefore no associated π2

terms!



Hadronic Higgs decay

Γ(H → gg) =
GFm2

H

36π3
√

2
Kt(m2

t ) KH(m2
H)

KH(m2
H) in fixed-order perturbation theory:

KH(m2
H) ≈ α2

s (m2
H)

[
1 +

αs(m2
H)

4π
dH

1 + · · ·
]

KH(m2
H) in RG-improved perturbation theory:

KH(m2
H) ≈ 0.962 α2

s (m2
H)

[
1 +

αs(m2
H)

4π

[
0.962 dH

1 − 0.088
β1

β0

]
+ · · ·

]

� The only effect of choosing μ2 < 0 comes from the running of αs,
which is small at such high energy.

� RG improvement reproduces so-called “contour-improved
perturbation theory”.



Summary

� Higgs production via gluon fusion is an important process at
hadron colliders. However its prediction in perturbative QCD
has poor convergence. Also the scale dependence is still large
even at NNLO.

� We performed an analysis of Higgs production near partonic
threshold using effective field theory:

� All matching scales are chosen properly to ensure the perturbative
convergence of the corresponding quantities;

� Especially a time-like hard scale μ2
h < 0 is chosen to eliminate the

π2 terms associated with Sudakov double logs in the hard function;
� Different scales are connected by renormalization group evolution,

which sums certain terms in fixed-order perturbation theory to all
orders.

� Numerically no large threshold logarithm is found. Threshold
resummation reduces scale dependence but does not improve
convergence of the cross section.

� On the other hand, we find large corrections from Sudakov π2

terms, and the new choice μ2
h < 0 significantly improves

convergence and leads to more reliable predictions.
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Predictions for the cross section
Scale dependence
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Predictions for the cross section
MSTW2008NNLO PDF set
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Traditional threshold resummation

[Figure from arXiv:hep-ph/0306211]


