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MaxEnt grammar is a probabilistic version of Harmonic Grammar in which the harmony scores 
of candidates are mapped onto probabilities. It has become the tool of choice for analyzing 
phonological phenomena involving probabilistic variation or gradient acceptability, but there is 
a competing proposal for making Harmonic Grammar probabilistic, Noisy Harmonic Grammar, 
in which variation is derived by adding random ‘noise’ to constraint weights. In this paper these 
grammar frameworks, and variants of them, are analyzed by reformulating them all in a format 
where noise is added to candidate harmonies, and the differences between frameworks lie in the 
distribution of this noise. This analysis reveals a basic difference between the models: in MaxEnt 
the relative probabilities of two candidates depend only on the difference in their harmony 
scores, whereas in Noisy Harmonic Grammar it also depends on the differences in the constraint 
violations incurred by the two candidates. This difference leads to testable predictions which 
are evaluated against data on variable realization of schwa in French (Smith & Pater 2020). The 
results support MaxEnt over Noisy Harmonic Grammar. 
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1. Introduction
Stochastic phonological grammars assign probabilities to outputs, making it possible to analyze 
variation and gradient acceptability in phonology. While phonological variation has long been a 
central concern in sociolinguistics (e.g. Labov 1969), it has only received sustained attention in 
phonological theory in the last twenty years. The goal of this paper is to compare and empirically 
evaluate two proposals concerning the proper framework for formulating stochastic grammar: 
Maximum Entropy (MaxEnt) grammar (Goldwater & Johnson 2003; Hayes & Wilson 2008), and 
Noisy Harmonic Grammar (NHG) (Boersma & Pater 2016). 

MaxEnt grammar is currently the most widely used framework for stochastic phonological 
grammars. It is based on Harmonic Grammar (Smolensky & Legendre 2006), which is similar to 
Optimality Theory (Prince & Smolensky 2004), but uses numerical constraint weights in place of 
constraint rankings. There is a range of evidence that MaxEnt grammar is empirically superior to 
a probabilistic version of standard Optimality Theory, Stochastic OT (e.g. Zuraw & Hayes 2017; 
Hayes 2020; Smith & Pater 2020), but there is much less evidence concerning the relative merits 
of the different varieties of stochastic Harmonic Grammar, MaxEnt and NHG. 

Maxent grammar and NHG at least superficially involve very different approaches to making 
Harmonic Grammar stochastic: MaxEnt takes the harmony scores assigned by a Harmonic 
Grammar and maps them onto probabilities, while NHG derives variation by adding random 
‘noise’ to constraint weights. Given this difference we would expect these frameworks to be 
empirically distinguishable, but while previous work has demonstrated distinct predictions of the 
two frameworks (Jesney 2007; Hayes 2017), these have not led to clear empirical tests. 

The approach adopted here is to identify a uniform framework for analyzing and comparing 
stochastic Harmonic Grammars. We then use analysis based on this uniform framework to draw 
out distinct predictions of MaxEnt and NHG, and test these predictions against data on variable 
realization of schwa in French (Smith & Pater 2020). 

In the uniform framework for stochastic Harmonic Grammars proposed here, Harmonic 
Grammar is made stochastic by adding random noise to the harmony scores of candidates, 
then selecting the candidate with the highest harmony. We will see that the difference between 
MaxEnt and NHG lies in the distribution of the noise: independent Gumbel noise in MaxEnt 
grammar, and normal noise that can be correlated between candidates in NHG. Variants of these 
grammar formalisms can easily be accommodated in the same framework, such as a variant of 
MaxEnt grammar with independent normal noise.

Given this formulation of stochastic Harmonic Grammars, the probability of a candidate 
being selected is the probability that its harmony is higher than that of any other candidate. 
This probability depends on the distribution of the noise added to candidate harmonies, so the 
relationship between harmony and candidate probabilities differs between stochastic Harmonic 
Grammar frameworks. Specifically, it will be shown that in MaxEnt the relative probabilities 
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of two candidates depends only on the difference in their harmonies, whereas in NHG it also 
depends on the pattern of their constraint violations. This difference leads to testable predictions 
concerning the effects on the probabilities of candidates of adding or subtracting constraint 
violations from a tableau. We will see that testing these predictions against data from Smith 
& Pater’s (2020) study of variable realization of schwa in French ultimately supports the 
predictions of MaxEnt over NHG, but development of the methods for comparing these models 
are as important as a comparison with respect to a single data set. 

In the next section we review Harmonic Grammar, and the two dominant proposals for 
making Harmonic Grammar stochastic, MaxEnt and NHG. 

2. Harmonic Grammar
Harmonic Grammar (Smolensky & Legendre 2006) has the same basic structure as Optimality 
Theory: the output for a given input is the form that best satisfies a set of constraints, but whereas 
in Optimality Theory conflicts between constraints are resolved by reference to a ranking of 
the constraints, with the higher-ranked constraint prevailing, in Harmonic Grammar constraints 
have numerical weights. 

The mechanics of Harmonic Grammar are illustrated by the tableau in (1). The constraint 
weights are shown in the top row of the tableau. Constraints assign violations, as in OT, 
but the violations are negative integers, representing the number of times that the relevant 
candidate violates the constraint. Candidates are compared in terms of the sum of their 
weighted constraint violations, or harmony score. The harmony score of a candidate i, hi, is 
calculated according to the formula in (2), where N is the number of constraints, wk is the 
weight of constraint k, and cik is the violation score assigned to candidate i by constraint 
k. That is, each constraint violation is multiplied by the weight of that constraint, and the 
results are summed to yield the harmony score of that candidate. These harmony scores are 
recorded in the last column of (1). For example, candidate (c) violates constraints C2 and C3 
once each. Each constraint has a weight of 8, so the harmony of candidate (c) is (8 × –1) 
+ (8 × –1) = –16. The winning candidate is the one with the highest harmony, which is 
candidate a in (1).

(1)	 Harmonic Grammar tableau

weights: 15 8 8

/input/ C1 C2 C3 hi

a –1 –15

b –2 –16

c –1 –1 –16
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(2)

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N
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As can be seen from this example, Harmonic Grammar is deterministic, like standard Optimality 
Theory. That is, each input is mapped onto a single output, the optimal candidate for that input, 
so Harmonic Grammar must be modified to be able to assign probabilities to candidates. We turn 
now to the two main proposals for making Harmonic Grammar probabilistic.

3. Stochastic Harmonic Grammars
As observed in the introduction, the two main approaches to making Harmonic Grammar 
probabilistic are Noisy Harmonic Grammar and Maximum Entropy Grammar.

3.1 Noisy Harmonic Grammar
In Noisy Harmonic Grammar (NHG), Harmonic Grammar is made stochastic by adding random 
‘noise’ to each constraint weight at each evaluation. As a result, even with a fixed input, the 
harmony of a given candidate varies each time we derive an output, so different candidates can 
win on different occasions. 

In Boersma & Pater (2016), the noise that is added to each constraint weight, nk, is drawn from 
a normal distribution with mean of 0 and standard deviation of 1. The result is that constraint 
weights are random variables rather than fixed quantities, as indicated in (3), the NHG version of 
the tableau from (1). So, for example, the weight on constraint C1 is 15 + n1, where n1 receives a 
different value on each evaluation. Since the harmony of a candidate is the weighted sum of its 
constraint violations, it is affected by the noise added to the weights of each of the constraints 
that it violates. For example, the harmony of candidate (c) is ((8 + n2) × –1) + ((8 + n3) × –1) 
= –16 – n1 – n2. In the tableau in (3), the harmonies of each candidate are split into their fixed 
component, hi, and their random component, which is recorded in the column labelled 𝜀i. 

The probability of a candidate being selected as the output is the probability that it has 
higher harmony than all the other candidates. These probabilities are recorded in the last column 
of (3), headed Pi. We will discuss how to calculate these probabilities below. 

(3)	 Noisy Harmonic Grammar tableau

weights: 15 + n1 8 + n2 8 + n3 NHG

/input/ C1 C2 C3 hi 𝜀i Pi

a –1 –15 –n1 0.6

b –2 –16 –2n2 0.26

c –1 –1 –16 –n2 – n3 0.14
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3.2 Maximum Entropy Grammar
Maximum Entropy Grammar is also a stochastic form of Harmonic Grammar, but adopts what 
appears to be a very different mechanism from Noisy Harmonic Grammar, directly mapping 
candidate harmonies onto probabilities (Goldwater & Johnson 2003; Hayes & Wilson 2008). 
Specifically, the probability of a candidate is given by the formula in (4), where Pi is the probability 
of candidate i, hi is the harmony of candidate i, and j ranges over the set of candidates. For 
example, the probability of candidate (a) in (5), Pa, is e–15 divided by e–15 + e–16 + e–16, which is 
0.58.

(4) Probability of candidate i in MaxEnt Grammar:




i

j

h
i h

j

eP
e

The formula in (4) can be understood as asserting that the probability of a candidate is proportional 
to the exponential of its harmony, ehi. To ensure that the probabilities of the candidates jointly 
sum to 1, the exponentiated harmony of each candidate must be divided by the sum of the 
exponentiated harmonies of all of the candidates.

(5)	 Maximum Entropy Grammar tableau

weights: 15 8 8

/input/ C1 C2 C3 hi Pi

a –1 –15 0.58

b –2 –16 0.21

c –1 –1 –16 0.21

Comparing the tableaux in (4) and (5) it can be seen that NHG and MaxEnt can yield different 
probabilities when applied to the same HG tableau. Of course, both assign the highest probability 
to the candidate with the highest harmony, candidate (a), but MaxEnt assigns equal probability 
to candidates (b) and (c) because they have equal harmony, while tableau (3) shows that 
relationship between harmony and probability is less straightforward in NHG, because it assigns 
a higher probability to candidate (b) than to candidate (c).

This comparison shows that these two proposals for stochastic versions of Harmonic Grammar 
make different predictions. The goal of the paper is to draw out these differences so they can 
be tested against data. The strategy we adopt in comparing and contrasting these models is to 
reformulate them in a common framework. This helps to clarify their similarities and differences, 
and situates then within a broader space of Stochastic Harmonic Grammar models. The common 
framework we use to characterize these models is that of Random Utility Models, a type of 
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model that is widely used to model choice between discrete alternatives in economics (e.g. Train 
2009). In the next section, we show that, in spite of their superficial differences NHG and MaxEnt 
grammar can both be formulated as Random Utility Models.

4. NHG and MaxEnt as Random Utility Models
The common format we will use to analyze and compare stochastic Harmonic Grammars in one 
in which the harmony of candidate i is composed of hi + 𝜀i, where 𝜀i is a random variable, or 
‘noise’. The addition of noise to candidate harmonies makes the grammar probabilistic because 
the identity of the candidate with the highest harmony depends on the values of the random 
variables, 𝜀i. This type of model is referred to as a Random Utility Model in economics (e.g. Train 
2009). 

It is straightforward to map NHG onto this structure: Although we described the random 
noise as being added to the constraint weights rather than to the harmonies of each candidate, the 
resulting harmony expression can be separated into fixed and random parts, hi and 𝜀i, where 𝜀i is 
a function of the noise variables, nk, that are added to the constraint weights. This decomposition 
is illustrated in (3). These noise terms, 𝜀i, are sums of normal random variables, and sums and 
differences of normal random variables are also normally distributed. As will be discussed in 
detail below, the variance of the 𝜀i depends on the number of nk variables that are summed 
together to make up that 𝜀i.

It is less obvious that MaxEnt Grammar can be reformulated as a Random Utility Model, but 
it is a basic result in the analysis of these models that the MaxEnt equation (4) follows from a 
Random Utility Model where the 𝜀i noise terms are independent and all drawn from the same 
Gumbel distribution (Train 2009: 74f.). The Gumbel distribution, also known as the Extreme 
Value Type I distribution, is shown in Figure 1. 
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Figure 1: Probability density functions of the Gumbel (solid) and normal (dashed) 
distributions.
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Thus NHG and MaxEnt can be analyzed as adopting the same basic strategy for making 
Harmonic Grammar stochastic: add random noise to the harmony of each candidate. The 
difference between the models lies in the nature of the noise that is added to candidate harmonies: 
In MaxEnt the noise terms are drawn from identical Gumbel distributions, whereas in NHG, the 
noise terms are drawn from normal distributions whose variance depends on the number of 
constraint violations. 

This analysis suggests a space of possibilities for stochastic Harmonic Grammars differentiated 
by the nature of the noise that is added to candidates’ harmonies. An obvious third candidate 
to consider is one which is like MaxEnt in that the noise terms are independent and drawn from 
identical distributions, but the distribution is the more familiar normal distribution, in place of 
the Gumbel distribution (Figure 1). We will see that this model is similar to MaxEnt, but exhibits 
some significant differences. In addition, it is commonly proposed that NHG should include a 
restriction against noise making a constraint weight negative (e.g. Boersma & Pater 2016), so 
noise is drawn from sums of censored normal distributions, as discussed in Section 7.3, so we 
will consider this variant also.

The Random Utility Model formulation of stochastic Harmonic Grammars provides the basis 
for a general analysis of the relationship between harmony and candidate probabilities in these 
frameworks. We will see that the testable differences between stochastic Harmonic Grammar 
frameworks follow from differences in this relationship. Specifically, in MaxEnt the relative 
probabilities of two candidates depends only on the difference in their harmonies, whereas 
in NHG the relative probabilities of candidates also depend on the pattern of their constraint 
violations. We turn to this analysis next.

5. The relationship between harmony and probability in Stochastic 
HGs
The building block for a general analysis of the relationship between the harmonies and 
probabilities of candidates is an analysis of the competition between two candidates. Given two 
candidates, a and b, with harmonies ha + 𝜀a and hb + 𝜀b, respectively, the probability of candidate 
a winning, Pa, is the probability that ha + 𝜀a > hb + 𝜀b. This is the same as the probability that 
𝜀b – 𝜀a < ha – hb, so the probability of candidate a winning is given by the expression in (6).

(6)     a b a a bP P h hε ε

This situation is illustrated in Figure 2. We will refer to the difference in candidate noise terms, 
𝜀b – 𝜀a, as d, a random variable with some probability density, plotted for illustrative purposes 
as a normal distribution in the figure. The probability of candidate a being chosen, Pa, is the 
probability that d falls below the difference in candidate harmonies, ha – hb. This probability 
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corresponds to the area under the density function of d that falls below that threshold, i.e. the 
shaded region in the figure. 

The probability of a random variable having a value below some threshold is given by 
the cumulative distribution function of that variable, so Pa is given by (7), where Fd is the 
cumulative distribution function of d. From (7) we can see that the probability of candidate 
a being preferred over candidate b depends on the difference in their harmonies and on the 
distribution of the noise difference d. The absolute values of candidate harmonies are irrelevant, 
and it is the distribution of differences between noise terms, d, that is relevant, not the individual 
distributions of 𝜀a and 𝜀b.

(7)   a d a bP F h h

We will see that it is also useful to be able to express the harmony difference between candidates 
as a function of candidate probabilities. This is achieved by applying the inverse of Fd to both 
sides of (7), deriving (8).

(8)    1
d a a bF P h h

5.1 Harmony and probability in MaxEnt
The differences between varieties of stochastic HG lie in the nature of the cumulative distribution 
function, Fd. In MaxEnt, the 𝜀i are drawn from identical Gumbel distributions. The difference 
between two standard Gumbel random variables follows a standard logistic distribution, so d 

Figure 2: The probability density function of the noise difference d. The probability of 
candidate a being selected is equal to the area under the function below d = ha – hb (the shaded 
region).

d

ha − hb 0

Pa



9

follows this distribution. The logistic distribution is symmetrical and bell-shaped, very similar to 
the normal distribution, but with slightly fatter tails (Figure 3). 

The logistic cumulative distribution function Fd(x) = 1/(1 + e–x), so the probability of 
candidate a in MaxEnt is given by (9). The inverse cumulative distribution function, 1

dF , is the 
logit function, log(x/(1 – x)), so logit(Pa) is equal to the difference in candidate harmonies (10). 
Logit(Pa) is log(Pa/(1 – Pa)), but where there are only two candidates, a and b, 1 – Pa = Pb, so 
logit(Pa) equals log(Pa/Pb). Thus in MaxEnt there is a simple and direct relationship between the 
harmonies of candidates and their relative probabilities. 

(9)
  




1
1 a b

a h hP
e

(10)    logit a a bP h h

Note that expression in (9) looks different from the formula we derive by applying the usual 
MaxEnt probability formula in (4) to the case of two candidates (11), but the two are in fact 
equivalent: (11) is derived from (9) by multiplying its numerator and denominator by eha.

(11)




a

a b

h
a h h

eP
e e

5.2 Harmony and probability in NHG
The relationship between harmony and probability is more complicated in NHG. As discussed 
above, in NHG noise is added to constraint weights, so the 𝜀i are sums of these noise terms, nk 
(cf. 12). The nk are independent normal random variables, each with variance 𝜎2. Sums and 

Figure 3: Density functions of the normal (solid) and logistic (dashed) distributions.
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differences of normal random variables are also normal random variables, so the 𝜀i and the noise 
difference d = 𝜀b – 𝜀a are all normal.

(12)	 Noisy Harmonic Grammar tableau

weights: w1 + n1 w2 + n2 w3 + n3

/input/ C1 C2 C3 hi 𝜀i

a –1 –1 ha –n1 – n3

b –1 –1 hb –n2 – n3

The variance of the 𝜀i depends on the number of noise variables, nk, that are summed together and 
that depends in turn on the number of constraint violations incurred by that candidate, because 
each constraint violation introduces another nk component, as can be seen in (12). The noise 
term for a given constraint, nk, is multiplied by the number of violations of that constraint, cik. 
If an individual noise term, nk, has variance 𝜎2, then multiplying it by the number of violations 
cik increases its variance to cik

2𝜎2 because multiplying a normal random variable by a constant 
increases its standard deviation by the same multiplicative factor, and thus increases its variance 
by the square of the multiplicative factor. This generalizes to the case where a candidate does not 
violate constraint k, because in that case cik = 0, so the variance of the noise term is 0, i.e. the noise 
term is canceled out. So the noise added to candidate i by constraint k has variance cik

2𝜎2, and the 
variance of 𝜀i is the sum of these variances over all N constraints (13). Note that the noise variance 
is only affected by the number of constraint violations, not by the weights on the constraints.

(13) 
2 2
1

N
ikk c

The variance of the difference between 𝜀a and 𝜀b would be the sum of their variances, but shared 
violations cancel out because they involve the same value of nk for the shared constraint. For 
example, in (12) 𝜀a = –n1– n3, and 𝜀a = –n2 – n3, so 𝜀b – 𝜀a = –n1 – n2 because the n3 terms 
cancel out. So the variance of this difference d is 2𝜎2, and its standard deviation is √2𝜎. Thus 
the variance of d is equal to the sum of the squared differences in constraint violations between 
candidates a and b, multiplied by 𝜎2, as in (14). As a result, the variance of d differs between 
candidate pairs, unlike in MaxEnt. For example, if we remove the violation of C2 from candidate 
b in (12) then the variance of d drops to 𝜎2, and if we remove the violation of C3 from the same 
candidate, then the variance of d increases to 3𝜎2. 

(14) Variance of d in NHG

  


 
22 2

1

N

d ak bk
k

c c
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Since the noise difference d follows a normal distribution in NHG, Fd is the normal cumulative 
distribution function, Φ, but to map the distribution of d onto the standard normal distribution 
with standard deviation of 1, it is necessary to divide by 𝜎d, the standard deviation of d, so the 
probability of candidate a being selected depends on the harmony difference divided by 𝜎d (15). 
That is, the greater the noise that is added to the harmony difference between two candidates, 
the greater the probability that the noise reverses that harmony difference. So the measure of 
harmony difference that determines candidate probabilities is the number standard deviations of 
the noise difference, 𝜎d, that separate the harmony scores of the two candidates.

(15)



 

   
 

a b
a

d

h hP

The inverse of the normal cumulative distribution, Φ–1, is called the probit function. If we apply 
this function to both sides of (15), we obtain (16). 

(16)
  


probit a b

a
d

h hP

Comparing (10) and (16), the expressions relating candidate probabilities to candidate harmonies 
in MaxEnt and NHG, respectively, we can see that in both cases the relative probabilities of two 
candidates depends on the difference in their harmonies, ha – hb, as established by the general 
analysis in (8). However, there are two differences that follow from differences in the distribution 
of d in the two frameworks: First, the harmony difference is related to Pa by different functions, 
logit in MaxEnt and probit in NHG. Second, Pa depends only on the harmony difference in 
MaxEnt, but in NHG it also depends on 𝜎d , which in turn depends on the sum of the squared 
violation differences of the two candidates (14). 

The second difference is the more important – we will show that it leads to testable predictions 
regarding the effects on the relative probabilities of a pair of candidates of changing some of 
their constraint violations. The first difference is relatively minor because the logit and probit 
functions are very similar (Figure 4), but we can investigate the contribution of this difference 
by adding to our comparison a variant of MaxEnt in which normal noise is added to candidate 
harmonies rather than Gumbel noise (cf. Hayes 2017).

In MaxEnt with normal noise the 𝜀i are drawn from identical normal distributions with 
variance 𝜎2. Since the difference between two normal random variables is also normal, the noise 
difference d also follows a normal distribution, but the variance of this distribution, 𝜎d

2, is 2𝜎2, 
because the variance of the difference between two normal random variables is equal to the sum 
of their individual variances. Since d follows a normal distribution, Fd is the normal cumulative 
distribution function, Φ, but to map the distribution of d onto the standard normal distribution 
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with standard deviation of 1, it is necessary to divide by 𝜎d, i.e. 2 , so the probability of 
candidate a being selected is given by (17), and harmony is related to candidate probabilities 
via the probit function (18), as in NHG. So, comparing (18) to (16), we can see that the only 
difference from NHG lies in the fact that 𝜎d is the same for all pairs of candidates, whereas 𝜎d 
depends on the pattern of constraint violations in NHG. We will refer to this model as ‘normal 
MaxEnt’.1

(17)




 
   

 2
a b

a
h hP

(18)
 




probit

2
a b

a
h hP

We will see that normal MaxEnt is similar to MaxEnt, as expected, but the difference between the 
logit and probit functions at probabilities close to 0 and 1 is large enough to result in significant 
differences in fits to data. We will also see in section 9 that there are further differences that 
become apparent in cases where there are three or more variant realizations for a given input, 
but those predictions will not be tested here since we do not have relevant data.

	 1	 This is a somewhat misleading label, since the Maximum Entropy principle that gives Maxent grammar its name actu-
ally yields the logistic model. A more appropriate label for the normal variant might be ‘HG with normal candidate 
noise’, but ‘normal Maxent’ is shorter and makes explicit the similarity to Maxent grammar. 

Figure 4: The logit (dashed line) and probit (solid line) functions.
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Before we draw out the predictions that follow from this analysis of MaxEnt and NHG, 
it is important to clarify that we have only analyzed the relationship between harmony and 
probability for a pair of candidates. We will see in section 9 that this analysis provides the 
building blocks for calculating the probability of a candidate winning over any number of 
competitors, but we defer that discussion because the current analysis is sufficient for tableaux 
in which only two candidates have probabilities significantly greater than zero, and that is true 
of our test case, which concerns the probabilities of forms with and without a schwa. Even if a 
tableau contains many candidates, if all but two of those have sufficient constraint violations 
that their probability is effectively zero, then all of the probability mass is divided between the 
two remaining candidates, and the other candidates are irrelevant to the calculation of their 
probabilities.

6. Variable realization of schwa in French
At this point it is useful to introduce the data that will be used to test the distinct predictions 
made by MaxEnt and NHG so we can use those data to exemplify the predictions. The data are 
from an experiment reported in Smith & Pater (2020), studying variable realization of schwa in 
French. Specifically, they investigated the probability of pronouncing the parenthesized schwa 
in the eight contexts in (19). These materials cross three factors that have been reported to 
affect the probability of schwa realization: (i) whether the schwa site is final in a clitic (e.g. 
[t(ə)]) or word (e.g. [bɔt(ə)]), (ii) whether the schwa site is preceded by one or two consonants, 
and (iii) whether the schwa site is followed by a stressed syllable or an unstressed syllable. 
Subjects were asked to identify their preferred pronunciation for orthographically presented 
phrases: with or without schwa. Previous research on French schwa indicates that this kind of 
judgment accurately reflects production patterns (Racine 2008). 27 subjects rated 6 items for 
each context. 

(19)	 Environments for schwa realization studied by Smith & Pater (2020)

Context: clitic-final /ə/ word-final /∅/

C–s ́ eva t(ə) ˈʃɔk
‘Eva shocks you’

yn bɔt(ə) ˈʒon
‘a yellow boot’

CC–s ́ mɔʁiz t(ə) ˈsit
‘Maurice cites you’

yn vɛst(ə) ˈʒon
‘a yellow jacket’

C–ss ́ eva t(ə) ʃɔˈkɛ
‘Eva shocked you’

yn bɔt(ə) ʃinˈwaz
‘a Chinese boot’

CC–ss ́ mɔʁiz t(ə) siˈtɛ
‘Maurice cited you’

yn vɛst(ə) ʃinˈwaz
‘a Chinese jacket’
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Smith & Pater’s analysis of schwa realization in these contexts involves the constraints in (20)–
(23), together with Max and Dep, as illustrated by the tableaux in (24)–(28).

(20) NoSchwa: Assign one violation for every [ə] in the output.

(21) *CCC: Assign one violation for every sequence of three consonants.

(22) *Cluster: Assign one violation for every sequence of two or more consonants.

(23) *Clash: Assign one violation for every two adjacent stressed syllables.

The most general constraints in Smith & Pater’s analysis are *Cluster, which penalizes the 
consonant clusters that result in all items in (19) if schwa is not realized, and NoSchwa, which 
penalizes all instances of schwa. Additional constraints are required to account for differences in 
the probability of schwa realization across contexts.

Final schwa is realized more frequently in clitics than in full words. Smith & Pater analyze 
this difference as following from the schwa being underlying in the clitic, whereas it is epenthetic 
in word-final position, consequently Max favors realization of schwa in clitics, but not word-
finally, whereas Dep penalizes realization of word-final schwa, but not clitic-final schwa (e.g. 
(24) vs. (25)). 

Schwa is realized more frequently in the context CC–C, where it is preceded by two consonants, 
than in C–C, where it is preceded by only one. This is attributed to a constraint *CCC, which 
penalizes the triconsonantal cluster that results from non-realization of schwa in the former 
context ((28) [vɛstʒon]), but not the latter ((26) [bɔtʒon]).

Schwa is also realized more frequently when the following word is a monosyllable rather 
than a disyllable (bɔtəˈʒon > bɔtəʃinˈwaz). Smith & Pater attribute this to clash avoidance: since 
stress falls on the last non-schwa vowel in a word, non-realization of schwa results in adjacent 
stressed syllables when the following word is a monosyllable ([ˈbɔtˈʒon]), but not if it is a 
disyllable (or longer) ([ˈbɔtʃinˈwaz]), e.g. (26) vs. (25). Adjacent stressed syllables are penalized 
by *Clash.

(24)	 /ə/, C–ss ́

/eva tə ʃɔˈkɛ/ NoSchwa *CCC *Clash Max Dep *Cluster

a. eˈvatəʃɔˈkɛ –1

b. eˈvatʃɔˈkɛ –1 –1
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(25)	 /∅/, C–ss ́

/bɔt ʃinwaz / NoSchwa *CCC *Clash Max Dep *Cluster

a. ˈbɔtəʃinˈwaz –1 –1

b. ˈbɔtʃinˈwaz –1

(26)	 /∅/, C–s ́

/bɔt ʒon/ NoSchwa *CCC *Clash Max Dep *Cluster

a. ˈbɔtəˈʒon –1 –1

b. ˈbɔtˈʒon –1 –1

(27)	 /∅/, CC–ss ́

/vɛst ʃinwaz / NoSchwa *CCC *Clash Max Dep *Cluster

a. ˈvɛstəʃinˈwaz –1 –1 –1

b. ˈvɛstʃinˈwaz –1 –1

(28)	 /∅/, CC–s ́

/vɛst ʒon/ NoSchwa *CCC *Clash Max Dep *Cluster

a. ˈvɛstəˈʒon –1 –1 –1

b. ˈvɛstˈʒon –1 –1 –1

Smith & Pater’s data set provides a good testing ground for distinguishing MaxEnt from NHG 
because the factorial design of the experiment allows us to compare many pairs of tableaux that 
differ minimally in their constraint violations, and these frameworks make distinct predictions 
concerning the relationship between candidate probabilities across such pairs of tableaux, as is 
shown in the next section.

Our starting point for analysis follows Smith & Pater, but we will also consider variants 
of their analysis. In particular we consider analyses that eliminate redundancies from their 
constraint set. For example, Smith & Pater follow standard practice in positing separate Dep 
and Max constraints, so clitics and words are always differentiated by both of these constraints 
(clitics without schwa violate Max while words without schwa do not, and words with schwa 
violate Dep while clitics with schwa do not, e.g. (24) vs. (25)). This redundancy can be eliminated 



16

by replacing these two constraints by a single constraint that penalizes correspondence between 
schwa and zero, whether that correspondence results from epenthesis or deletion. We will also 
consider an expanded constraint set, motivated by the failure of the initial constraint set to 
account for all of the patterns observed in the data. 

These alternative constraint sets encompass some competing analyses of the distribution of 
schwa in French. For example, it has been argued that schwa at clitic boundaries is epenthetic 
just like schwa at word boundaries (e.g. Côté 2000), in which case Max cannot be used to 
account for the higher rate of realization of schwa at clitic boundaries. Côté proposes that this 
effect is instead due to a constraint requiring ‘every morpheme to conform to a minimal CV 
form’ (p.108). This constraint would take the place of Max in the tableaux presented here, with 
exactly the same pattern of violations, but Dep violations would no longer differentiate words 
from clitics, so these contexts are distinguished by violations of a single constraint under this 
analysis. For the data under consideration here, this analysis makes exactly the same predictions 
as the variant of Smith & Pater’s analysis that collapses Max and Dep into a single constraint.

We will now use Smith & Pater’s data and analysis to illustrate the implications of the 
difference between MaxEnt and NHG demonstrated in section 5. 

7. The effect on candidate probabilities of adding constraint 
violations
The implications of the difference between MaxEnt and NHG can be seen by considering the 
effect of adding or subtracting constraint violations from a tableau. We will see that in MaxEnt 
a given change in constraint violations always has the same effect on logit(Pcand), regardless 
of what other constraint violations are present in the tableau, whereas in NHG the effect of a 
change in constraint violations on probit(Pcand) depends on the violation pattern in the whole 
tableau. 

7.1 Maxent grammar
Consider a tableau with two candidates a and b with harmonies ha and hb, and a second tableau 
which is identical except candidate b incurs an additional violation of one constraint. This 
additional violation means that the harmony of candidate b is hb – w, where w is the weight of the 
violated constraint. Given the analysis of MaxEnt grammar in the previous section (10), we know 
that in tableau one, logit(Pa) = ha – hb, and in tableau two, logit(Pa) = ha – (hb – w) = ha – hb + 
w. In other words, adding a constraint violation to candidate b increases the harmony difference 
by the weight of that constraint, w, and thus increases logit(Pa) by the same amount. Crucially 
this result is independent of all of the other constraint violations in the pair of tableaux, as long 
as they are the same in both tableaux. So MaxEnt predicts that adding a constraint violation to a 
tableau will always have the same effect on logit(Pa). 
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We can see how this analysis applies to the French schwa data by considering pairs of 
tableaux such as those in (24)–(28), above. We will refer to the candidates in these tableaux as 
the ə candidate and the ∅ candidate. The pairs of tableaux (25)–(26) and (27)–(28) are identical 
except that in the second tableau of each pair, the ∅ candidate incurs an additional violation of 
*Clash. This increases hə – h∅ by the weight of *Clash, w3, and thus increases logit(Pə) by the 
same amount, so MaxEnt predicts that the difference in logit(Pə) between (25) and (26) should 
be equal to the difference between (27) and (28).

The relevant information in these tableaux is more succinctly represented in a difference tableau, 
which records the constraint violations of the ə candidate minus those of the ∅ candidate. For example, 
the difference tableaux corresponding to (25) and (26) are shown in (29) and (30), with illustrative 
constraint weights. The harmony difference hə – h∅ increases by 0.6, the weight of *Clash, between 
(29) and (30). The harmony difference is the only information needed to calculate Pə in MaxEnt, and 
the differences in constraint violations are the additional information required to calculate Pə in NHG, 
as will be illustrated shortly. A negative harmony difference, hə – h∅, means that the schwa candidate 
has a lower harmony, and thus is less probable than the ∅ candidate, whereas a positive harmony 
difference means that the schwa candidate has a higher harmony, and thus is more probable. 

(29)	 /∅/, C–ss ́

weights: 1.4 3.4 0.6 1 1.2 0.4

/bɔt ʃinwaz / NoSchwa *CCC *Clash Max Dep *Cluster hə – hØ

ˈbɔtəʃinˈwaz-ˈbɔtʃinˈwaz –1 –1 +1 –2.2

(30)	 /∅/, C–s ́

/bɔt ʒon/ NoSchwa *CCC *Clash Max Dep *Cluster hə – hØ

ˈbɔtəˈʒon-ˈbɔtˈʒon –1 +1 –1 +1 –1.6

The same reasoning generalizes to pairs of tableaux that each differ in violations of a set of 
constraints. For example, pairs of tableaux for words and clitics in the same context differ in 
violations of both Max and Dep, as in (31) and (32). With words (31, 33), schwa is epenthetic 
so the schwa candidate violates Dep, while with clitics (32, 34) the schwa is underlying so the 
schwa candidate does not violate Dep, but the schwaless candidate violates Max, so in terms of 
difference tableaux, (32) and (34) add 1 to each of Max and Dep compared to (31) and (33), 
respectively. This increases the harmony difference hə – h∅ by the sum of the weights of these 
two constraints, i.e. 1 + 1.2 = 2.2, and thus increases logit(Pə) by the same amount. So MaxEnt 
predicts that the difference in logit(Pə) between word-final and clitic final positions should be the 
same in each context (C–s ́ and C–ss ́). 
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(31)	 /∅/, C–s ́

weights: 1.4 3.4 0.6 1 1.2 0.4

/bɔt ʒon/ NoSchwa *CCC *Clash Max Dep *Cluster hə – h∅

ˈbɔtəˈʒon-ˈbɔtˈʒon –1 +1 –1 +1 –1.6

(32)	 /ə/, C–s ́

/eva tə ʃɔk/ NoSchwa *CCC *Clash Max Dep *Cluster hə – h∅

eˈvatəˈʃɔk-eˈvatˈʃɔk –1 +1 +1 +1 0.6

(33)	 /∅/, C–ss ́

/bɔt ʃinwaz/ NoSchwa *CCC *Clash Max Dep *Cluster hə – h∅

ˈbɔtəʃinˈwaz-ˈbɔtʃinˈwaz –1 –1 +1 –2.2

(34)	 /ə/, C–ss ́

/eva tə ʃɔkɛ/ NoSchwa *CCC *Clash Max Dep *Cluster hə – h∅

eˈvatəʃɔˈkɛ-eˈvatʃɔˈkɛ –1 +1 +1 0

Smith & Pater’s data set provides several comparisons of these kinds. The table in (35) summarizes 
the difference tableaux for all eight contexts. It can be seen that four pairs differ by adding 1 
to the difference in *Clash violations, 1-2, 3-4, 5-6, 7-8, so MaxEnt predicts that the difference 
in logit(Pə) should be the same for all of those pairs. Four pairs differ by +1 in *CCC and –1 in 
*Cluster, 1-3, 2-4, 5-7, 6-8, and four pairs differ by +1 in Max and Dep, 1-5, 2-6, 3-7, 4-8. 

(35)	 Difference tableaux for all contexts

NoSchwa *CCC *Clash Max Dep *Cluster

1 /∅/, C, –ss ́ –1 0 0 0 –1 +1

2 /∅/, C, –s ́ –1 0 +1 0 –1 +1

3 /∅/, CC, –ss ́ –1 +1 0 0 –1 0

4 /∅/, CC, –s ́ –1 +1 +1 0 –1 0

5 / ə /, C, –ss ́ –1 0 0 +1 0 +1

6 / ə /, C, –s ́ –1 0 +1 +1 0 +1

7 / ə /, CC,–ss ́ –1 +1 0 +1 0 0

8 / ə /, CC, –s ́ –1 +1 +1 +1 0 0
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7.2 Noisy Harmonic Grammar
NHG does not predict that adding or subtracting a constraint violation should always have the 
same effect on candidate probabilities because changing constraint violations alters both the 
harmony difference hə – h∅, and the variance of the noise difference 𝜎d

2, and Pə depends on both, 
as shown above (16, repeated here as 36). The variance 𝜎d

2 depends on the sum of squared 
violation differences (14, repeated here as 37).
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If we start from a tableau where the harmony difference is hə – h∅ and the standard deviation of 
d is 𝜎d, and then change some constraint violations, the harmony difference changes by Dh, and 
the variance of d can change to 𝜎d'. The resulting change in probit(Pə) is given by the expression 
in (38a), which can be rearranged to yield (38b), where the first term represents the effect of 
changing 𝜎d, while the second represents the effect of the change in harmony difference, Dh.

(38) Change in probit(Pə) resulting from changes in hə – h∅ and 𝜎d (NHG)
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For example, consider the tableaux in (29) and (30). The harmony difference in (29) is –2.2 and, 
assuming that the variance of the noise added to constraint weights, 𝜎2, is 1, then 𝜎d

2 is 3 – the 
sum of the squared differences in constraint violations – and 𝜎d is 3 . (30) differs from (29) by 
adding a *Clash violation, increasing the harmony difference by 0.6, the weight on *Clash, so 
Dh = 0.6. However the additional constraint violation also increases 𝜎d' 2 to 4 (𝜎'd = 2). Plugging 
these values into (38) yields an increase in probit(Pə) of 0.47. 

Another pair of tableaux that differ by a single *Clash violation, (39) and (40), show a 
smaller increase in probit(Pə) of 0.23 although the change in harmony is the same (Dh = 0.6) and 
𝜎d and 𝜎'd are the same ( 3  and 2, respectively). This is because the first term in (38b) depends 
on the initial harmony difference, hə – h∅, and this differs across the two pairs: –2.2 in (29), but 
0.8 in (39). So for pairs of tableaux where MaxEnt predicts uniform differences in logit(Pə), NHG 
predicts systematic variation in differences in probit(Pə).
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(39)	 /∅/, CC–ss ́

weights: 1.4 3.4 0.6 1 1.2 0.4

/vɛst ʃinwaz / NoSchwa *CCC *Clash Max Dep *Cluster hə – h∅

ˈvɛstəʃinˈwaz-ˈvɛstʃinˈwaz –1 +1 –1 0.8

(40)	 /∅/, CC–s ́

/vɛst ʒon/ NoSchwa *CCC *Clash Max Dep *Cluster hə – h∅

ˈvɛstəˈʒon-ˈvɛstˈʒon –1 +1 +1 –1 1.4

In summary, we have seen that MaxEnt and NHG make distinct predictions concerning the effect 
on candidate probabilities of adding or subtracting constraint violations. In MaxEnt, the effect 
on logit(Pi) is always the same regardless of what other constraints are violated in the tableau, 
whereas in NHG the effect on probit(Pi) varies depending on the difference in harmony between 
the candidates before constraint violations are added or subtracted and the number of constraint 
violations in the tableaux. 

We will test these predictions against Smith & Pater’s experimental data on the rate of 
realization of schwa in French. However, before turning to these tests we need to add one more 
form of stochastic HG to the comparison because many researchers who have adopted NHG have 
employed a variant of NHG in which the noise added to constraint weights is prevented from 
making those weights negative, so it is important to analyze the properties of this framework as 
well.

7.3 Noisy Harmonic Grammar with censored normal noise
The final stochastic grammar model that we will consider is a variant of NHG with a non-normal 
noise distribution. This variant is motivated by a desire to prevent noise making constraint 
weights negative. Adding normal noise to a low constraint weight can easily result in a negative 
weight, and this effectively reverses the constraint, favoring the configurations that it is supposed 
to penalize. It is also necessary to ensure that noise cannot make constraint weights less than or 
equal to zero for harmonically bounded candidates to be assigned zero probability (Jesney 2007; 
Hayes 2017). Accordingly, a number of researchers have adopted a variant of NHG in which 
negative constraint weights are replaced by 0 (e.g. Smith & Pater 2020). This means that the nk 
noise terms added to constraint weights follow censored normal distributions, in which the noise 
added to a constraint with weight w follows a normal distribution in which values at or below –w 
are replaced by 0. For low constraint weights, this results in a density function with a substantial 
spike at the lower bound of the distribution (Figure 5). 
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Summing censored normal random variables results in 𝜀i and d with complex distributions, 
making the resulting model difficult to analyze mathematically. However, in practice d is 
approximately normal, and, as in normal NHG, its variance depends on the summed squared 
differences in constraint violations between the two candidates, so the model makes qualitatively 
similar predictions to normal NHG. We will refer to this variant of NHG as ‘censored NHG’.

One novel feature of this model that turns out to have considerable importance is that the 
variance of d does not only depend on the number of constraint violations, it also depends on 
the weights of those constraints because the noise added to constraints with lower weights is 
more severely censored, and therefore has lower variance. For example, the distributions in 
Figure 5 are based on a normal distribution with standard deviation of 1, but the censored 
distribution on the left has standard deviation 0.98 and that on the right has standard deviation 
0.74. 

8. Testing the predictions
We test the predictions outlined in the previous section against Smith & Pater’s data on the 
probability of realizing schwa in a variety of contexts in French. First, we ask which predictions 
are best supported by the data, by comparing the overall fit of grammars in each framework, and 
by probing how well the specific predictions are supported. However, this process reveals that 
even the best grammars fail to account for significant patterns observed in the data, motivating 
the addition of a constraint to the analysis. A second round of comparisons using this revised 
constraint set leads to the conclusion that the predictions of MaxEnt are best supported, although 
censored NHG also fits the data well. 

8.1 Fitting the models to the data
We want to test the performance of the various stochastic Harmonic Grammars as grammar 
frameworks, independent of the performance of any learning algorithms that might be proposed 

Figure 5: Smoothed samples from censored normal distributions, censored at –2 (left) and –0.5 
(right).
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to learn constraint weights in that grammar framework, so it is important to compare the 
grammars that provide the best fit to the data. For example, our conclusions differ somewhat 
from Smith & Pater (2020) concerning the relative performance of MaxEnt and censored NHG 
on the schwa data because Smith & Pater relied on a learning algorithm for censored NHG that 
appears not to have arrived at the best-fitting grammar. 

Our criterion for goodness of fit is Maximum Likelihood (ML). That is, we searched for the 
constraint weights that maximize the probability of the data given that grammar model (e.g. 
Myung 2003). This is straightforward for the MaxEnt and normal MaxEnt grammars because, 
where there are only two candidates, MaxEnt is equivalent to a logistic regression model in which 
the probability of pronouncing schwa is predicted based on the differences in the violations of 
each constraint, and normal MaxEnt is equivalent to a probit regression model with the same 
structure, so ML constraint weights for these stochastic HGs were found using the glm function 
in R (R Core Team 2020).2

NHG does not correspond to a standard statistical model, but given constraint weights, it is 
straightforward to calculate candidate probabilities using equations (14) and (15), so standard 
optimization algorithms can be used to search for the ML constraint weights. We used the Nelder-
Mead algorithm, as implemented in the optim function in R. 

Censored NHG is more problematic because it is not possible to calculate candidate 
probabilities – they have to be estimated through simulation. However, with one million 
simulations per grammar it was possible to obtain probability estimates that were sufficiently 
stable to search for ML constraint weights using the Nelder-Mead algorithm. This process was 
slow, but was able to find substantially better constraint weights than those found by Smith 
& Pater using the HG-GLA algorithm (Boersma & Pater 2016) with 400,000 samples from the 
experimentally observed distribution.3 

The results are summarized in Tables 1 and 2. Table 1 shows the ML constraint weights 
for all of the models under consideration. For the MaxEnt and normal MaxEnt grammars the 
standard deviations of the 𝜀i are standard for the relevant distributions (p/√6 for Gumbel, 1 for 
Normal). For NHG and censored NHG the standard deviation of the noise added to constraint 
weights, nk, is set to 1, although in censored NHG this is the standard deviation of the underlying 
normal distribution before censoring.4

	 2	 R code for analyses reported in this paper is included in the supplementary materials.
	 3	 Smith & Pater’s censored NHG grammar has deviance 27.2 compared to 12.8 for the grammar reported here. The 

grammar reported here also performs better on the metrics employed by Smith & Pater: summed absolute errors 
0.247 vs. 0.295, summed squared errors 0.010 vs. 0.015.

	 4	 Smith & Pater use an underlying normal distribution with standard deviation of 0.2 for censored NHG, resulting in 
lower constraint weights.
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The MaxEnt and NHG grammars have 0 weights for two constraints, Dep and *Cluster. 
That is because the full constraint set is redundant given these grammar models. As can be 
seen from (35), the difference score for *Cluster is equal to 1 minus the difference score for 
*CCC in the schwa data, and the difference score for Dep is equal to the difference score for 

MaxEnt Normal 
MaxEnt

NHG Censored 
NHG

NoSchwa 2.08 1.68 2.20 11.23

*CCC 2.84 2.29 2.98 12.02

*Clash 0.48 0.39 0.57 –0.04

Max 2.14 1.69 2.21 1.96

Dep 0 0 0 –1.32

*Cluster 0 0 0 9.43

Table 1: ML constraint weights for the stochastic HGs described in the text.

Fitted probabilities

Context
Pə MaxEnt Normal 

MaxEnt
NHG Censored 

NHG

/∅/, C, –ss ́ 0.09 0.11 0.12 0.10 0.10

/∅/, C, –s ́ 0.12 0.17 0.18 0.21 0.17

/∅/, CC, –ss ́ 0.68 0.68 0.67 0.67 0.70

/∅/, CC, –s ́ 0.83 0.78 0.76 0.75 0.77

/ə/, C, –ss ́ 0.56 0.52 0.50 0.50 0.54

/ə/, C, –s ́ 0.65 0.63 0.61 0.61 0.62

/ə/, CC, –ss ́ 0.91 0.95 0.95 0.96 0.95

/ə/, CC, –s ́ 0.94 0.97 0.97 0.96 0.96

deviance 14.6 21.7 26.0 12.8

Table 2: Observed probabilities of pronouncing schwa in each context, and fitted probabilities 
from each stochastic HG.
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Max minus 1. Since the harmony difference is a linear function of these difference scores, these 
redundancies means that there are an infinite number of ways to derive any particular set of 
harmony differences between candidates. To ensure that there is a unique best-fitting set of 
constraint weights, this redundancy was eliminated by setting the weights of Dep and *Cluster 
to 0. Note that setting these weights to 0 in NHG does not mean that the constraints have no 
effect on the outcome, because they are still perturbed by noise and therefore can be non-zero in 
any particular evaluation.

Dep and *Cluster are not redundant in censored NHG because in that model the weights 
of constraints affect the variance of the noise that they add to candidate harmony, as discussed 
further below. In addition, removing *Cluster would make the realization of schwa harmonically 
bounded word-finally in C–ss ́ (25), which would mean that censored NHG would incorrectly 
assign a zero probability to schwa in this context.

A second point to observe is that the censored NHG grammar has constraints with negative 
weights (*Clash and Dep). These negative weights do not actually reverse the effects of these 
constraints because the constraint weights are not permitted to remain negative after the addition 
of noise. In this model negative weights represent censoring of more than half of the noise 
distribution, so constraint weights are drawn from a narrow distribution with a spike at 0. Some 
implementations of censored NHG also require constraint weights to be non-negative before 
addition of noise, e.g. Smith & Pater (p.25). This restriction would result in a poorer fit to the 
data here.

The performance of the different grammars is summarized in Table 2, which compares the 
observed probability of pronouncing schwa in each context to the fitted probabilities derived 
from each grammar. The overall goodness of fit of each grammar is measured by the deviance, 
which is directly related to log-likelihood (lower deviance indicates better fit).5 Maxent and 
censored NHG perform similarly (deviances 12.8 and 14.6), while normal MaxEnt performs 
worse, and the worst fit is obtained with normal NHG.

8.2 Evaluating the fit of the grammars
A common way to compare models is in terms of their AIC values (Burnham & Anderson 2002), 
which is –2 × log-likelihood plus a penalty equal to twice the number of parameters in the 
model (in this case the number of constraint weights), so lower values are better. If models have 
the same number of parameters then the difference in AIC (DAIC) between two models is equal 
to the difference in their deviances, so DAIC of MaxEnt and Normal MaxEnt is 7.1. According 
to Burnham & Anderson (2002: 70ff.) this indicates that Normal MaxEnt has ‘considerably less 

	 5	 Deviance is –2 times the difference in Log-likelihood between the model and a ‘saturated’ model with one parameter 
for each observation (Agresti 2007: 85).
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support’ than regular MaxEnt, so in spite of the similarity between these models, the difference 
between the logit and probit functions is meaningful here. NHG has an AIC more than 10 higher 
than MaxEnt, which means it has ‘essentially no support’.

Comparisons between MaxEnt and censored NHG are more complicated. As discussed above, 
the MaxEnt models make use of only four of the six constraints in Table 1 because the full 
constraint set is redundant for these models, so in one sense censored NHG has two additional 
parameters compared to the MaxEnt models and normal NHG, and thus its AIC value should 
include a penalty of 2 × 2 = 4. However, the constraints are hypothesized to be universal, 
so it might be argued that censored NHG should not be penalized if it can make use of all 
of the constraint weights while the other grammars cannot. However, we will see below that 
the censored NHG grammar is effectively using the redundant constraints to vary the noise 
variance across conditions, and this would not be possible if other data were added that made 
the additional constraints non-redundant, so this model really does have additional parameters 
compared to the other models.

Whether censored NHG is penalized for additional parameters or not, the conclusions are 
similar. With the complexity penalty, MaxEnt has the lowest AIC, but the AIC of censored NHG 
is only 2.2 higher, and Burnham & Anderson (2002) describe models within 2 of the best model 
as having ‘substantial support’. Without the complexity penalty, censored NHG is the best model, 
but the AIC of MaxEnt is only 1.8 higher. 

So in terms of AIC, MaxEnt and censored NHG are similar. Normal MaxEnt is substantially 
worse than the closely comparable MaxEnt model, and normal NHG is clearly the worst model. 
However, it is revealing to look more closely at the details of the model fits and how they relate 
to the distinct predictions laid out in section 7.

The observed probabilities of pronouncing schwa in each of the eight contexts are compared 
to the fitted probabilities from the models in Figure 6. However, it is more instructive to look at 
logit(Pə) for MaxEnt (Figure 7), and probit(Pə) for stochastic HGs with normal, or approximately 
normal, noise (Figure 8), because the predictions that we seek to test concern these quantities.

The analysis in section 7 demonstrated that MaxEnt predicts that all pairs of contexts that 
differ in the same constraint violations should show the same difference in logit(Pə). So adjacent 
pairs of points in Figure 7 (1-2, 3-4, 5-6, 7-8) should be separated by the same vertical distance 
because they differ only in one *Clash violation, and the same should apply to pairs 1-3, 2-4, 
5-7, 6-8, which differ only in preceding context (CC vs. C–), and thus in violations of *CCC and 
*Cluster, and to pairs 1-5, 2-6, 3-7, 4-8, which differ in Max and Dep violations. 

Examination of the data in Figure 7 indicates that most of these predictions are quite well 
supported, except for the effect of changing *CCC and *Cluster violations (CC– vs. C–), which 
differs substantially between deletion and epenthesis contexts. That is, the effect is smaller for 
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Figure 6: Observed and fitted probabilities of pronouncing schwa in each context. Fitted 
probabilities for the models have been separated on the x-axis to make it easier to distinguish 
their plotting symbols.
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Figure 7: Observed and fitted logit probabilities of pronouncing schwa in each context. 
Contexts are numbered for ease of reference.

−2
−1

0
1

2
3

4

lo
gi

t(P
(s

ch
w

a)
)

C _σσ C _σ CC _σσCC _σ C_σσ C_σ CC_σσ CC_σ
1 2 3 4 5 6 7 8

word clitic

observed
MaxEnt



27

clitics (the right half of the figure) than for words (the left half of the figure), so the differences 
between 1 and 3, and 2 and 4 are larger than the differences between 5 and 7, and 6 and 8. 

These visual impressions can be confirmed statistically. In a logistic regression model of Pə 
with violation differences as predictors, significant deviations from the predictions of MaxEnt 
correspond to significant interactions between constraints. In a model including all two-way 
interactions between constraints, the only significant interaction is between MAX and *CCC. 
Consequently, the MaxEnt model provides a good fit to most of the data, but overestimates the 
difference between CC– and C– pairs in deletion contexts (5-7, 6-8), and underestimates them in 
epenthesis contexts (1-3, 2-4), because it necessarily predicts the same difference between all of 
these pairs.

Normal MaxEnt makes similar predictions but with regard to probit(Pə). Figure 8 shows 
a similar picture to Figure 7, which is unsurprising given the similarities between the logit 
and probit functions. But it turns out that the predictions hold less well for probit(Pə) than for 
logit(Pə), so the MaxEnt analysis provides a better fit to the schwa data.

NHG predicts systematic variation in differences in probit(Pə) between pairs of contexts that 
differ in the same constraint violations. Specifically, we have seen that the change in probit(Pə) 
that results from adding and subtracting constraint violations in normal NHG is given by (38), 
repeated here as (41), where hə – h∅ is the harmony difference before the change, Dh is the change 

Figure 8: Observed and fitted probit probabilities of pronouncing schwa in each context. 
Contexts are numbered for ease of reference. Fitted probabilities for the models have been 
separated on the x-axis.
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in the harmony difference, and 𝜎d and 𝜎d' are the standard deviations of the noise difference 
before and after the change. 

(41) Change in probit(Pə) resulting from changes in hə – h∅ and 𝜎d in normal NHG

    

  
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Table 3 shows the values required to calculate (41), hə – h∅ and 𝜎d, for each context. The variance 
of the noise difference d is the sum of the squared violation differences (14). Since violation 
differences are all +1 or –1 in the schwa tableaux (35), the variance is equal to the number of 
violation differences in the tableau, i.e. 3 or 4 depending on the context, and 𝜎d is the square root 
of the variance. 

The adjacent contexts in Figure 8 (1-2, 3-4, 5-6, 7-8) differ by a *Clash violation incurred by 
the schwaless candidate, so Dh in each pair is the weight on *Clash, 0.57. Adding the additional 
difference in constraint violations increases 𝜎d from 3  to 2, i.e. 𝜎'd = 2 in each pair, so the second 
term in (41), Dh/𝜎d', is the same in all of these pairs. However hə – h∅ differs across the pairs, 
so the value of the first term in (40) differs too. Specifically, since 𝜎d – 𝜎d' is negative ( 3 2) , 
this term decreases as hə – h∅ increases, so the increases in probit(Pə) in these pairs are predicted 
to be ordered: 1-2 > 5-6 > 3-4 > 7-8. This is not empirically correct. In the experimental 

normal NHG censored NHG

context hə – h∅ 𝜎d hə – h∅ 𝜎d

1 /∅/, C, –ss ́ –2.20 3 –1.84 1.43

2 /∅/, C, –s ́ –1.63 2 –1.46 1.54

3 /∅/, CC, –ss ́ 0.77 3 0.74 1.43

4 /∅/, CC, –s ́ 1.34 2 1.13 1.54

5 / ə /, C, –ss ́ 0.01 3 0.17 1.72

6 / ə /, C, –s ́ 0.58 2 0.56 1.81

7 / ə /, CC,–ss ́ 2.98 3 2.76 1.72

8 / ə /, CC, –s ́ 3.55 2 3.14 1.81

Table 3: hə – h∅ and 𝜎d, for each context in normal and censored NHG. 𝜎d for censored NHG is 
estimated by simulation.
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data, probit(Pə) increases by 0.2 for all of these pairs except 3 vs. 4, for which it increases by 
0.5. Consequently NHG overpredicts the difference between 1 and 2, and underpredicts the 
difference between 7 and 8.

Turning to pairs that differ only in whether their preceding context is CC– or C– (1-3, 2-4, 
5-7, 6-8), the CC– context adds 1 to the difference in *CCC violations while subtracting 1 from 
the difference in *Cluster violations, compared to the C– context. This leaves the summed 
violation differences unchanged, so 𝜎d is the same for both tableaux, i.e. 𝜎d – 𝜎d'. This means that 
the first term of (41) is 0, so the change in probit(Pə) depends only on Dh and 𝜎d. Dh is equal to 
the difference between the weights on *CCC and *Cluster, 3.42 – 0.45 = 2.97, in all pairs, 
while 𝜎d is 2 for –𝜎́ pairs and 3  for –𝜎𝜎́ pairs (Table 3), so the difference in probit(Pə) for these 
pairs is predicted to differ between –𝜎́ vs. –𝜎𝜎́, but to be the same for words and clitics. These 
predictions are also incorrect: We have seen that the experimental results show a significantly 
smaller difference between CC– and C– contexts with clitics than with words where NHG predicts 
no difference, and small and inconsistent differences between –𝜎́ vs. –𝜎𝜎́ contexts, where NHG 
predicts a bigger difference in –𝜎𝜎́. 

In summary, the contextual variation in differences in probit(Pə) due to a change in constraint 
violations predicted by NHG is not supported by the experimental data: This grammar predicts 
variation where the data show uniformity, and fails to predict variation where it is actually 
observed. Consequently the NHG grammar provides the worst fit to the data. 

While the formula for change in probit(Pə) (41) is not exact for censored NHG, it is a good 
approximation, so this model predicts qualitatively similar patterns to normal NHG. Given the 
poor performance of normal NHG, this raises the question why censored NHG is able to achieve 
a lower deviance than MaxEnt. The answer is that censoring the noise distribution means that 
variance of the noise contributed by a constraint decreases as the weight on that constraint 
decreases because more of the distribution is censored (Figure 5). 

This phenomenon has two consequences: First, low-weighted constraints contribute less 
noise, so their effect on 𝜀i is much less than in normal NHG. This reduces the magnitude of some 
of the problematic effects predicted by normal NHG. For example, censored NHG also predicts 
that the effect on probit(Pə) of adding a *Clash violation should depend on hə – h∅, contrary 
to the experimental results. However the magnitude of the predicted variation is much smaller 
than with uncensored normal noise because *Clash is assigned a very low weight, which means 
violations of this constraint contribute relatively little noise. As a result the difference in  
between tableaux with and without a *Clash violation is small, as shown in Table 3, and thus 
the magnitude of the first term of (41) is small.

In addition, the presence of redundant pairs of constraints like Max and Dep mean that 
weight can be allocated between these constraints to manipulate 𝜀i as well as the harmonies of 
candidates. That is, the harmony difference, hə – h∅, for words and clitics in the same environment 
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(e.g. [ˈbɔt(ə)ˈʒon] and [eˈvat(ə)ˈʃɔk]) differ in violations of both Max and Dep: schwa after a 
word is epenthetic and thus violates Dep but not Max, while schwa is underlying in clitics, so 
failure to realize it violates Max but not Dep. So the difference in the probability of schwa in 
words and clitics in the same context is accounted for by the summed weights of Max and Dep. 
So in MaxEnt, any pair of weights that sums to the same value derives the same patterns, hence 
the redundancy. But in censored NHG, the weights of the constraints also determine the variance 
of the noise introduced by a violation of that constraint, so noise variance can be adjusted by 
adjusting the relative weights of Max and Dep. In the best fitting model, Max receives a weight 
of 0.394 while Dep receives a weight of –0.263, so Dep contributes very low-variance noise to 
tableaux that contain Dep violations, i.e. tableaux with underlying /∅/ (words). As a result, 
tableaux for words have lower 𝜎d than clitic tableaux with underlying /ə/ (Table 3), so words 
show a larger effect of differences in *CCC violations on probit(Pə) because the second term in 
(41), Dh/𝜎d', is larger where 𝜎d' is smaller.

In summary, with censored NHG, it is possible to mitigate the bad predictions observed with 
normal NHG, and it is possible to use a redundant constraint to adjust noise variance to partially 
model some observed contextual variation in the effects of differences in constraint violations 
on probit(Pə). The net result is a slightly better fit to the data than can be achieved with MaxEnt. 
We can demonstrate the role played by the redundancy between Max and Dep in censored 
NHG’s performance by removing it: If Max and Dep are replaced by a constraint that penalizes 
correspondence between schwa and ∅ (i.e. a constraint that is violated if either Max or Dep 
would be violated), then the performance of NHG with censored normal constraint noise drops 
to the level of regular NHG, the worst model (deviance = 26). 

It is clear from examination of both varieties of NHG that the distinctive predictions of these 
models about the ways in which the effect of adding or subtracting a constraint should depend 
on the pattern of violations in the rest of the tableau are not confirmed. Censored NHG is only 
able to compete with MaxEnt because it can exploit the redundancy between Max and Dep 
to systematically vary 𝜎d across tableaux, so a better test of the differences between MaxEnt 
and censored NHG would only compare tableaux that differ in a single constraint violation. 
Unfortunately, this is not possible with schwa/zero alternations because every comparison 
between schwa and zero candidates necessarily involves a difference in either Max  or Dep 
violations.

Besides revealing the unanticipated effect of redundant constraints in censored NHG, this 
examination of the fit of the four stochastic HG’s suggests that none of them capture all of the 
significant patterns in the data. We have already noted that MaxEnt fails to capture a significance 
difference in the effect of *CCC/*Cluster violations on words vs. clitics, and we will see next 
that this true of all of the models under consideration, so the comparison thus far has been 
between incomplete analyses. 
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Given that this interaction effect is not successfully modeled in any of the frameworks, 
the source of the problem presumably lies in the constraint set: an additional constraint is 
required to fit the schwa data. We will see that comparison of the stochastic Harmonic Grammar 
frameworks with respect to this revised constraint set provides a better test of their predictions 
since the best models fit the data well and redundant constraints no longer contribute to the 
fit of the censored NHG model. The results provide support for MaxEnt over censored NHG, 
and the procedure illustrates methods that are generally applicable to the analysis of stochastic 
Harmonic Grammars. 

8.3 Comparisons using a revised constraint set
Evaluating the adequacy of stochastic grammars is tricky. The condition for adequacy cannot be 
a precise match between observed and predicted probabilities because we expect mismatches 
between observed and predicted probabilities in any finite sample of data, even given the true 
grammar. Instead we want to determine when those mismatches are small enough to conclude 
that the grammar accounts for the data. 

Here we adopt a standard statistical method for assessing the fit of a probability model to 
data, a Likelihood Ratio Test of lack of fit (Agresti 2007: 145ff.). In effect, this test assesses 
whether the fit of the grammar could be improved significantly by adding constraints to the 
analysis. Specifically, it compares the grammar to a ‘saturated’ model that has one constraint for 
each of the contexts under analysis and is thus able to fit the observed probabilities perfectly, 
achieving a deviance of 0, and estimates the probability that this reduction in deviance could be 
due to random correlations between the additional constraints and the observed probabilities. 
This analysis is applicable here given that our grammars were fitted by Maximum Likelihood 
Estimation, and the relevant test statistics are the deviance values presented in Table 2, with 
degrees of freedom equal to the number of extra parameters in the saturated model. 

The test reveals that all of the grammars considered show significant lack of fit. For models 
with four constraint weights (and thus four residual degrees of freedom, given that we are 
analyzing eight contexts), the deviance threshold for significant lack of fit at p < 0.05 is 9.5 while 
for censored NHG with six constraint weights, the threshold is 6, and all of the grammars exceed 
these thresholds. In other words, the constraint set proposed by Smith & Pater is insufficient to 
fully account for the data in any of the grammar frameworks. 

The main shortcoming of these grammars is that they fail to capture the fact that the difference 
in the probability of schwa candidates between C– and CC– contexts is smaller in clitics (with 
underlying /ə/) than in words (with underlying /∅/). Given the current constraint set, MaxEnt 
predicts that the difference in logit(Pə) between these contexts should be the same for both clitics 
and words. The only grammar that derives a difference in the right direction is censored NHG, 
but the modeled effect is not large enough to fit the data. 



32

We can verify that this is the source of the problem by adding a constraint whose violation 
depends on both preceding context (CC– vs. C–) and whether the form contains underlying /∅/ or 
/ə/, and showing that this makes it possible to formulate grammars that show no significant lack 
of fit. The additional constraint could take a variety of forms, but one possibility is a constraint 
that penalizes CCC clusters only if the entire cluster falls within the same intermediate phrase 
(iP), inspired by related constraints proposed by Côté (2000: 129ff., 159ff.). 

This analysis posits that the relevant difference is not between clitics and words per se, but 
between the prosodic contexts in which they appear in the experimental materials. In the clitic 
sentences, potential clusters are split over the boundary between the subject and the VP (e.g. 
[mɔʁiz t(ə) siˈtɛ] ‘Maurice cited you’), whereas in the sentences with lexical words, the cluster 
arises between a noun and adjective (e.g. [vɛst(ə) ʒon] ‘yellow vest’). Studies by D’Imperio & 
Michelas (2014) and Michelas & D’Imperio (2015) indicate that the boundary between subject 
and VP is often an iP boundary, whereas DP-internal breaks are marked by Accentual Phrase 
boundaries. Assuming this prosodic difference applies to Smith & Pater’s materials, then a 
constraint *CCC/iP, penalizing triconsonantal clusters that fall within an iP, would only penalize 
CCC clusters in lexical words. This constraint adds to the effect of generic *CCC to derive 
the larger difference between C– and CC– items observed with epenthetic, word-final schwa 
compared to clitic schwa. 

Some support for the hypothesis that the effect is due to prosodic structure comes from Dell’s 
(1977) finding that word-final schwa is epenthesized into CCC clusters formed across Adjective-
Noun boundaries at higher rates than in CCC clusters formed at Subject-VP boundaries.6 These 
data indicate that a similar effect is observed with materials that only involve words, not clitics, 
so the effect must be due to the difference in syntactic structure, or an associated difference in 
prosodic structure, as hypothesized here. 

The ML constraint weights for grammars using this expanded constraint set are shown in 
Table 4, together with their deviance scores. Adding *CCC/iP to the constraint set eliminates the 
significant lack of fit in both MaxEnt and censored NHG, but not in normal NHG. The residual 
deviance of the revised MaxEnt grammar drops to 2.2, which is a significant improvement over 
the grammar without *CCC/iP (c2(1) = 12.4, p < 0.001), and represents no significant lack of 
fit (c2(3) = 2.2, p > 0.05). The deviance of the censored NHG grammar with *CCC/iP added 
drops to 4.6, which is a significant improvement over the original grammar (c2(1) = 8.2, p < 

	 6	 Thanks to Benjamin Storme for bringing this work to my attention and suggesting that the difference in syntactic 
structure might be relevant here. Côté (2000) argues that the requirement that consonants be adjacent to a vowel is 
stronger for consonants adjacent to smaller prosodic boundaries (pp.129ff.). It is not straightforward to employ this 
form of constraint here because it specifically targets the medial consonant in a CCC cluster, and that consonant is 
phrase-final in the items with lexical words ([vɛst]AP[ʒon]), but phrase-initial in clitic items ([mɔʁiz]iP[t siˈtɛ]).
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0.01), but still shows significant lack of fit because it includes two more constraints than the 
MaxEnt grammar, Dep and *Cluster, and thus two fewer degrees of freedom for the goodness 
of fit test (c2(1) = 4.6, p < 0.05). However, with *CCC/iP in the grammar, Max and Dep can be 
replaced by a single constraint that penalizes deletion or insertion of schwa with a slight decrease 
in residual deviance to 4.5, and this grammar shows no significant lack of fit (c2(2) = 4.5, p > 
0.05). This comparison further confirms that the only contribution of the redundant Max and Dep 
constraints in censored NHG did lie in adjusting the variance of the noise difference, 𝜎d

2, to better 
fit the difference in the effect of *CCC in words vs. clitics which is now being better accounted 
for by *CCC/iP. In normal NHG, the enlarged constraint set results in a reduction in deviance to 
6.7, which is unchanged by collapsing Max and Dep, and this is a little below the threshold for 
lack of fit (c2(3) = 6.7, p > 0.05). It is also interesting to note that adding *CCC/iP more or less 
eliminates the difference in deviance between MaxEnt and normal MaxEnt (2.2 vs. 2.5).

The revised grammars provide a better test of the predictions of the different stochastic 
Harmonic Grammar models because the comparison set now includes grammars that fit the data 
well, and because the MaxEnt and NHG grammars are now distinguished by their fundamental 
predictions rather than by their ability to exploit constraints that happen to be redundant in the 
present data set. The revised MaxEnt grammar has lower deviance than the revised censored 
NHG grammar: 2.2 vs. 4.5. Since the NHG grammar still requires one more constraint than 
the MaxEnt grammar, *Cluster, the difference between the grammars in AIC is 4.3, where a 
difference greater than 4 is taken by Burnham & Anderson (2002) to indicate that the model with 
higher AIC has ‘considerably less support’, so this data set supports the predictions of MaxEnt 
over those of NHG, even in its censored normal variant.

MaxEnt Normal 
MaxEnt

NHG Censored 
NHG

NoSchwa 1.10 0.89 1.19 11.31

*CCC 2.12 1.68 2.18 12.25

*CCC/iP 1.18 1.09 1.62 1.55

*Clash 0.50 0.40 0.59 0.16

Max/Dep 1.28 1.07 1.41 1.29

*Cluster 0 0 0 10.24

deviance 2.2 2.5 6.7 4.5

Table 4: ML constraint weights and deviances for grammars using the revised constraint set.
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8.4 Interim summary
In summary, we have tested a basic difference between MaxEnt and NHG against data on 
schwa realization in French: In MaxEnt, a given change in constraint violations always has 
the same effect on logit(Pcand), whereas in NHG, the effect of a change in constraint violations 
depends on the violation pattern in the whole tableau. We tested these predictions against 
Smith & Pater’s data on schwa realization in French, and the results support MaxEnt over 
NHG. 

The predictions are most directly tested by the comparison between MaxEnt and normal 
MaxEnt on the one hand and regular NHG on the other, and NHG gives a substantially poorer fit 
to the data with both Smith & Pater’s original constraint set and with the augmented constraint 
set including *CCC/iP. MaxEnt differs from NHG not only in these basic predictions, but also 
in the function that relates probability to harmony: logit in MaxEnt and probit in NHG. This 
difference is eliminated in the comparison between normal MaxEnt and NHG, and the normal 
MaxEnt grammar still performs substantially better than NHG, especially with the augmented 
constraint set. 

The comparison between MaxEnt and censored NHG introduces a third difference: 
censored NHG predicts that the relative probabilities of candidates should be affected by the 
weights of the constraints that show violation differences, because lower-weighted constraints 
introduce less noise in this framework. This property enables censored NHG to achieve a 
fit comparable to MaxEnt with the original constraint set, but that is only in conjunction 
with redundant constraints that make it possible to use constraint weights purely to adjust 
noise. If that redundancy is eliminated by reducing the constraint set, or made irrelevant 
by augmenting it, then censored NHG performs worse than MaxEnt. Censored NHG only 
achieves a lower deviance than NHG with the augmented constraint set because censoring 
results in more uniform standard deviations for the noise difference (𝜎d) across conditions, 
thus better approximating the fixed standard deviation of MaxEnt, but censored NHG 
requires an additional constraint weight, so the two models are similar with respect to AIC  
(DAIC = 0.2).

So (i) MaxEnt’s prediction that a given change in constraint violations should always result 
in the same change in candidate probabilities when those probabilities are measured on the 
appropriate scale is supported over the NHG’s prediction that changes should depend on the 
number of violation differences between the candidates. (ii) Measuring probability changes on 
the logit scale (MaxEnt) seems to yield better results than using the probit scale (normal MaxEnt), 
but the difference is minimal with the augmented constraint set. 

Before concluding, we will briefly address the extension of the analysis of stochastic Harmonic 
Grammars to cases where three or more variant forms have probabilities significantly above zero.  
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9. Calculating candidate probabilities with more than two candidates
As noted in section 5, the analysis of the relationship between candidate harmonies and their 
probabilities developed so far only applies to the analysis of tableaux where two candidates have 
probabilities significantly above zero, as in the French schwa data. In this section we show how 
the analysis can be generalized to tableaux with any number of variants and briefly consider 
further predictions that arise.

The analysis in section 5 considered the case of competition between two candidates, a and 
b, where the probability that a is preferred over b is the probability that ha + 𝜀a > hb + 𝜀b, which 
can be rearranged as in (6), repeated here as (42)

(42)      a b a a bP P h hε ε

For candidate a to be optimal it must have higher harmony than all other candidates, so the 
probability of selecting candidate a is the probability that, for each candidate b other than a, 
the random variable 𝜀b – 𝜀a is less than the difference in harmony scores between the candidates 
ha – hb. In MaxEnt, where the 𝜀i variables follow a Gumbel distribution, it can be shown that this 
probability is given by the familiar expression in (43) (e.g. Train 2009: 74f.).

(43) Candidate probability in MaxEnt
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It is apparent from (43) that it remains true in the general case that the relative probabilities of 
two candidates depends only on the difference in their harmonies (44).

(44) Ratio of probabilities of two candidates in MaxEnt
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If the 𝜀i variables follow a normal distribution, as in normal MaxEnt or NHG, there is no simple 
closed form expression for Pa, but we can calculate it from the joint distribution of the 𝜀b – 𝜀a  
variables, which is a multivariate normal distribution. 

For example, consider tableau (1), repeated here as (45). In normal MaxEnt, where the noise 
added to the harmony of each candidate is drawn from identical normal distributions. Candidate 
(a) is selected if its harmony is higher than the harmonies of candidates (b) and (c), which is the 
case if 𝜀b – 𝜀a is less than ha – hb, which is 1, and 𝜀c – 𝜀a is less than ha – hc, which is also 1. The joint 
distribution of 𝜀b – 𝜀a and 𝜀c – 𝜀a is the bivariate normal distribution illustrated in Figure 9(a). 
The variables 𝜀b – 𝜀a and 𝜀c – 𝜀a are positively correlated because they both contain -𝜀a, so if 𝜀a 
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is high, both are likely to be low, and if 𝜀a is low, both are likely to be high. Accordingly the 
equiprobability contours of the distribution form ellipses with their longer axis running from 
bottom left to top right. The probability of candidate (a) winning is then the probability that both 
variables are less than 1, which corresponds to the proportion of the distribution that is shaded 
in Figure 9(a). This can be calculated by numerical integration methods (Genz & Bretz 2009). If 
the variance of the 𝜀i variables is 1, the probability comes out to 0.634.

The calculation for candidate (b) is represented in Figure 9(b). In this case the random 
variables are 𝜀a – 𝜀b and 𝜀c – 𝜀b, and for candidate (b) to win, these variables must be less than hb 
– ha = –1 and hb – hc = 0 respectively, which corresponds to the shaded area in the figure. The 
probability represented by this area is 0.183. 

(45)	 Tableau with probabilities assigned by Normal MaxEnt and NHG

weights: 15 8 8 Normal 
MaxEnt

NHG

/input/ C1 C2 C3 hi Pi Pi

a –1 –15 0.634 0.599

b –2 –16 0.183 0.260

c –1 –1 –16 0.183 0.141

Figure 9: Contour plots of the joint probability distribution of pairs of noise terms derived 
from tableau (45). The shaded areas are the regions in which candidate (a) (left panel) and 
candidate (b) (right panel) are optimal.
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In general, given a tableau with N candidates, the problem of calculating the probability of 
candidate a reduces to the problem of calculating the probability of N – 1 noise difference 
variables simultaneously falling below the harmony difference from each other candidate, ha – 
hb (where b ≠ a). There are algorithms for calculating this probability if the random variables 
follow a multivariate normal distribution with a known covariance matrix (e.g. Genz & Bretz 
2009; Genz 2020). The covariance matrix specifies the shape of the distribution by specifying 
the covariance between each pair of random variables. So as long as we can determine the 
relevant covariance matrix, we can calculate candidate probabilities. It turns out that this is 
straightforward for both normal MaxEnt and NHG, as shown in detail in the supplementary 
materials, with accompanying R code.

With three or more variants, the predictions of MaxEnt and its normal variant diverge: 
In MaxEnt the relative probabilities of a pair of candidates depends only on the difference in 
their harmonies, as shown above, but in normal MaxEnt, candidate probabilities depend on the 
harmonies of all candidates in the tableau. For example, in (45), if the only candidates were a 
and b, then Pa = 0.76, Pb = 0.24, and Pa/Pb = 3.2, but with candidate c included, Pa/Pb increases 
to 3.5 because competition from candidate c reduces the probability of the candidate with lower 
harmony, i.e. candidate b, more than the candidate with higher harmony, a (cf. Paetz & Steiner 
2018). 

NHG is still distinguished from both varieties of MaxEnt by the fact that candidate probabilities 
depend on the pattern of violations across the whole tableau, not just on the harmony differences 
between candidates. As we have already seen, the variance of the noise difference between a pair 
of candidates is equal to the sum of the squared violation differences between the two candidates 
(14), so in (45) the variance of 𝜀a – 𝜀b is –12 + 22 = 5, whereas the variance of 𝜀c – 𝜀b is 12 + (–1)2 
= 2. The covariance between two noise differences, like 𝜀a – 𝜀b and 𝜀c – 𝜀b, is equal to the sum 
of the products of the violation differences for the two pairs of candidates, i.e. –1 × 0 + 2 × 1 
+ 0 × –1 = 2 (see appendix for details). So the covariance matrix described above depends on 
violation differences across the whole tableau. As a result the covariance matrix can be different 
for each candidate in a tableau, unlike in normal MaxEnt. That is why two candidates with the 
same harmony scores can have different probabilities in NHG, as illustrated by candidates (b) 
and (c) in (45).

Censored NHG has to be analyzed by simulation regardless of the number of candidates, but 
its predictions remain qualitatively similar to NHG, modulated by the effect of constraint weights 
on noise variances and covariances.

10. Conclusion  
We have analyzed stochastic Harmonic Grammars by reformulating them as Random Utility 
Models, in which Harmonic Grammar is made stochastic by adding random noise to the 
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harmonies of each candidate. In this formulation, the differences between varieties of stochastic 
Harmonic Grammar follow from differences in the nature of this added noise. More precisely, it 
is the distribution of differences between these noise terms that is crucial because the relative 
probabilities of two candidates depends on the difference in their harmonies divided by the 
standard deviation of the difference between their noise variables, so the probability of reversing 
a given difference in harmony between two candidates increases as the variance of the noise 
added to the candidate harmonies increases (Section 5). 

The varieties of stochastic Harmonic Grammar that we have considered differ in the shape 
of the distribution of noise differences and whether the variance of the distribution is fixed or 
depends on the pattern of constraint violations. In MaxEnt noise differences follow a logistic 
distribution, while they follow a normal distribution in NHG and normal MaxEnt, and a sum of 
censored normal distributions in censored NHG. The shape of the distribution determines the 
precise function that relates the difference in harmonies of two candidates to their probabilities. 
However, the logistic and normal distributions are similar, so the effects of this difference 
are generally subtle, although it can result in measurably distinct predictions as probabilities 
approach 0 or 1, as seen in Section 8. 

The more important difference between these models concerns the variance of the noise 
differences: In MaxEnt and normal MaxEnt, the noise added to each candidate’s harmony has 
the same variance, so the noise difference also has the same variance for any pair of candidates. 
In NHG and censored NHG, the variance of the noise difference depends on the number of 
violation differences for that pair of candidates, so it differs between pairs. Given that candidate 
probabilities depend on the difference in their harmonies divided by the standard deviation of 
the noise difference, the fixed variance of the noise difference in both varieties of MaxEnt means 
that the relative probabilities of candidates depend only on the differences in their harmonies 
in these frameworks. Where variance of the noise difference depends on violation differences, 
as in both varieties of NHG, candidate probabilities also depend on the differences in constraint 
violations between the candidates.

This basic distinction between the grammar models leads to testable predictions concerning 
the effects of changing constraint violations: In MaxEnt, a given change in constraint violations 
always has the same effect on the logit of candidate probabilities, whereas in NHG, the effect on 
candidate probabilities depends on the violation pattern in the whole tableau. In all frameworks, 
a given change in constraint violations always has the same effect on the harmony difference 
between candidates. Given fixed variance of noise differences, as in MaxEnt, this means the 
change in probabilities is also always the same (when measured in logits), but in NHG, the 
variance of the noise difference can change when constraint violations are changed, so the 
effect on candidate probabilities depends on the differences in constraint violations between the 
candidates. 
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We tested these predictions against Smith & Pater’s (2020) data on schwa realization in 
French, and the results support MaxEnt over NHG. The MaxEnt grammar provided a much better 
fit to these data than NHG because the effects on candidate probabilities did not vary in the ways 
predicted by NHG. Instead, the effect on logit(Pə) of changing constraint violations was generally 
uniform, as predicted by MaxEnt.  

Censored NHG was more competitive with MaxEnt, but that is because in censored NHG noise 
variance is lower on candidates that violate lower-weighted constraints. This makes it possible to 
use the weights of redundant constraints to adjust noise variances to better fit the data. However 
this is not an advantage of the censored NHG framework because the redundancy of constraints 
here is an artifact of the limited data set being studied. In the absence of the effects of redundant 
constraints, censored NHG performed worse than MaxEnt, and comparably to regular NHG.

However, evidence from a single data set is obviously not decisive concerning the relative 
merits of these stochastic Harmonic Grammar frameworks, so the value of this study lies as much 
in the methods developed here for comparing and evaluating stochastic Harmonic Grammars 
that can be applied in further studies.
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