
 
 
 
The following paper was published and presented at the 3rd Annual IEEE Systems 
Conference in Vancouver, Canada, 23-26 March, 2009. 
 
The copyright of the final version manuscript has been transferred to the Institute of 
Electrical and Electronics Engineers, Incorporated (the “IEEE”), not excluding the 
retained rights of the manuscript authors. Reproduction, reuse, and distribution of the 
final manuscript is not permitted without permission. 



 SysCon2009 – IEEE International Systems Conference Pre-print Version 
 Vancouver, Canada, March 23-26, 2009 

Quantitative Analysis of Group Decision Making for 
Complex Engineered Systems 

David Andre Broniatowski, Joseph Coughlin 
Engineering Systems Division 

Massachusetts Institute of Technology 
Cambridge, MA 02141 

david@mit.edu 

Christopher L. Magee, Maria Yang 
Engineering Systems and Department of Mechanical 

Engineering 
Massachusetts Institute of Technology 

Cambridge, MA 02141 
 
 

Abstract—Understanding group decision-making processes is 
crucial for design or operation of a complex system. 
Unfortunately, there are few experimental tools that might 
contribute to the development of a theory of group decision-
making by committees of technical experts. This research aims to 
fills this gap by providing tools based on computational 
linguistics algorithms that can analyze transcripts of multi-
stakeholder decision-making entities. The U.S. Food and Drug 
Administration medical device approval committee panel 
meetings are used as a data source. Preliminary results show that 
unsupervised linguistic analyses can be used to produce a formal 
network representation of stakeholder interactions. 
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I. INTRODUCTION  

The design of a sufficiently complex engineered system is 
beyond the capacity of a single human mind to understand. 
This is especially true for complex integrated systems and 
systems-of-systems (SoS), which Maier distinguishes by their 
stakeholder diversity, and requisite need for collaboration [1]. 
In general, any engineering system requires expert specialists 
who can comprehend the inner workings of specific systems 
and their components. As complexity grows, the cognitive 
capacity of a single system architect becomes insufficient, 
requiring that domain experts and system architects be able to 
pool their knowledge and learn from one another. Different 
experts, having been trained in different areas or components, 
will tend to pay attention to those elements of the system that 
they find consistent with their professional training – i.e., 
cognitively salient [2]. The mechanisms by which this training 
is achieved include acculturation within specific professional 
societies. Necessary to this process is the learning of that 
professional institution’s language and jargon [3]. This leads to 
a situation wherein individual experts develop different views 
of the system. Without successful integration of these disparate 
views, important interactions between system components may 
not be captured. In such cases, the system becomes a boundary 
object, knowledge about which must be properly constructed 
by the experts in question, whereas institutions that support 
multi-stakeholder decision-making become integrating devices 
[4]. If such integration devices are to be effective, they must 
take into account the social dynamics that such decision-
making bodies are likely to exhibit. 

This problem is exacerbated by the fact that complex 
technical systems are often commissioned by multiple policy 
actors. Many of these actors have their own agendas and may 
selectively interpret, or “deconstruct and reconstruct” technical 
results to advance their individual policy goals [5]. The 
existence of different sources of expertise and institutional 
backgrounds among different types of engineers enables 
policy-makers to select technical biases that will support their 
final goals. This reflects a fundamental disconnect between the 
decision-making paradigms of the policy and engineering 
communities [6]. One could conceive of a scenario wherein 
policy can be made that is incongruent with the technical 
capabilities of the system, such as in the case of the 
International Space Station – whose original policy 
requirements were mutually technically inconsistent from 
scientific experimental, and orbital dynamics perspectives [7].  

Understanding the social dynamics that underlie multi-
stakeholder decision-making for complex engineered systems 
is therefore a crucial aspect of the design process. The 
committee is a common means by which experts pool their 
knowledge in an attempt to reach a consensus decision about a 
complex system or process [8]. A successful committee will be 
able to integrate the disparate knowledge and viewpoints of its 
members so as to make a decision that solves the problem at 
hand. For example, successful committees routinely employ 
technical experts from multiple, potentially conflicting, 
organizations in order to resolve interoperability problems. On 
the other hand, an unsuccessful committee can fail for many 
reasons – these include, but are not limited to, the absence of 
relevant technical expertise; the inability of committee 
members to communicate across disciplinary boundaries; and 
personality conflicts (see, e.g., [9] for an example of these 
challenges in the early FDA drug and medical device approval 
committees). Evaluating committee decision processes requires 
a means of understanding the social dynamics among members, 
and how they interact with the technical specifics of the system 
in question.  

This line of research is aimed at tracing how the topics of 
interest to individual committee members are integrated into a 
group decision. Application of the results of these analyses can 
aid in the design and development of a concordance between 
social structure and technical architecture that is aimed at 
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ensuring the continued value delivery of the technical system in 
question despite its complexity. 

 

II. LITERATURE REVIEW 

Much work has been focused on understanding how diverse 
teams of technical experts combine information [10-16]. The 
construct of a “mental model” has been used to describe how 
each expert views the object under analysis, with the overall 
understanding that the convergence of mental models may be 
necessary for an informed consensus decision to reached [15]. 
This research has made important contributions to our 
understanding of group decision-making dynamics. 
Nevertheless, there is currently no standard basis by which the 
different theories of group decision-making might be compared 
so as to determine which theories fit which empirical situations. 
This lack of a unifying theoretical base makes comparison 
across experiments and generalizations beyond laboratory 
settings difficult, since it is not clear which experimental 
phenomena map to which real-world situations. The analysis of 
decision-making by committees of technical experts in real-
world scenarios has not been studied. Within the domain of 
economics, some studies have focused on generating theories 
of committee decision-making based on rational-choice [8, 17]. 
These theories make the simplifying assumption that all experts 
are the same. Furthermore, these theories have not been 
empirically validated. This research aims to fill a hole in the 
literature by providing a quantitative, repeatable methodology 
for the analysis of committees of technical experts in real-
world settings. 

Linguistic cues can provide insight into a particular expert’s 
interests in a committee setting. For example, an expert’s 
choice to define a problem a certain way (a “safety issue” vs. a 
“lack of confidence in the data”) implicitly suggests a 
particular solution concept. Furthermore, group membership 
may affect perception of data, and each institution or specialty 
possesses its own unique language and jargon [2]. This is 
particularly true in technical disciplines, where conceptual 
precision is required to communicate within the specialty. 
Nelson notes the importance of written and oral language as a 
means of encapsulating and transferring tacit knowledge [18]. 
On the other hand, an outsider to the institution may be unable 
to understand the implications of that particular framing of the 
problem. Casting “organization [as] the mobilization of bias”, 
Cobb and Elder recognizes institution-specific symbolism in 
language, noting that the choice of terminology in defining a 
problem may be seen as a means of mobilizing support [19]. 
Choosing to use specialized technical words serves to narrow 
the range of subjective meaning of otherwise ambiguous 
terminology (such as “safety” or “efficacy” in FDA’s context) 
thereby implicitly redefining the problem according to a given 
speaker’s particular interest and domain of expertise. 
Determining the speaker’s intention in using both precise and 
“symbolic” language can allow insight into their preferences on 
the committee, as well as which institutional background might 
be driving their decision. This research aims to take advantage 
of these linguistic regularities in its construction of an analysis 
methodology. 

III. METHODOLOGICAL APPROACH 

Linguistic analysis based on a sufficiently large number of 
transcripts to generate robust results requires an automated 
approach. The first steps in this direction have been taken by 
Dong, who studied engineering teams’ convergence on a 
shared design through a computational analysis of transcripts of 
their verbal exchanges [20]. Dong’s computational approach, 
based on the Latent Semantic Analysis (LSA) algorithm [21], 
uses a metric semantic coherence as a proxy for team 
agreement [22-23]. Latent Semantic Analysis performs singular 
value decomposition on a matrix of word counts within each 
utterance in a meeting. The resulting singular vectors are rough 
approximations of the “concepts” of which each utterance is 
constructed. More details about LSA may be found in 
Broniatowski et al., which extended this approach to the 
analysis of expert panels in the Food and Drug Administration 
[24].  

The LSA approach is limited by the assumptions 
underlying its model of discourse [25]. Approaches based on 
Bayesian inference, such as Latent Dirichlet Allocation (LDA), 
avoid these problems by modeling each utterance as made up 
of a set of topics, each of which is a multinomial probability 
distribution over the full set of words within a particular 
meeting [26]. A variant of LDA, the Author-Topic (AT) model, 
can been used to generate a distribution over topics for each 
participant in a meeting [27]. Application of the AT model 
proceeds as follows: 

A. Construction of a word-document matrix 

Consider a corpus of documents, D, containing n 
documents d1…dn. Consider, as well, the union of all words 
over all documents, W. Suppose there are m<n words, w1…wm. 
We may therefore construct a “word-document matrix”, X, 
with dimensions m x n, where each element in the matrix, xjk, 
consists of a frequency count of the number of times word j 
appears in document k. For the analyses reported in this paper, 
a word-document matrix was constructed using the Python 2.5 
programming language. Non-content-bearing “function 
words”, such as “is”, “a”, “the”, etc., were pre-identified and 
removed automatically. In addition, words were reduced to 
their roots using the PyStemmer algorithm. 

B. AT Model Structure and Implementation 

Whereas LSA performs singular value decomposition on X, 
the Author-Topic model provides a more structured analysis. In 
particular, each author (in this case, a speaker in the discourse) 
is modelled as a distribution over topics, where each topic is, in 
turn modelled as a distribution over words. A plate-notation 
representation of the generative process underlying the Author-
Topic model is found in Figure 1. The Author-Topic model is 
populated by a Markov-Chain Monte Carlo Algorithm that is 
designed to converge to the distribution of words over topics 
and authors that best matches the data. Details of the MCMC 
algorithm implementation are given in [27]. The AT model was 
implemented in MATLAB using the Topic Modelling Toolbox 
algorithm [25].  
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Legend:

 
Figure 1.  A plate notation representation of the Author-Topic model from 

[27]. Authors are represented by a multinomial distribution over topics, which 
are in turn represented by a multinomial distribution over all words in the 

corpus. 

C. AT Model Output 

When applied to a transcript, we treat each utterance as a 
document. Thus, the meeting transcript may be viewed as a 
corpus. Words within each utterance are grouped into topics 
with probability proportional to the number of times that word 
has been previously used in that topic, and the number of times 
that word’s “author” (i.e., speaker) has previously used that 
topic. Speakers who speak often, and focus on one aspect of 
discourse will be more likely to have their words assigned to a 
topic focused on that speaker. If they focus on several aspects 
of the discourse in concert with other speakers (e.g., if they 
engage in a discussion), they will tend to have their words 
assigned to a number of topics related to their areas of focus. If 
they do not speak often, but are focused in their area of 
discourse, their words will likely be assigned to topics defined 
by other speakers. Finally, if they speak rarely, and are 
unfocused, their words will be assigned uniformly at random to 
all topics. These different types of speakers are summarized in 
Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I.  DIFFERENT TYPES OF SPEAKERS IDENTIFIED BY THE AT 
MODEL. A FREQUENT, FOCUSED SPEAKER TENDS TO DRIVE TOPIC FORMATION, 

WHEREAS A RARE, UNFOCUSED SPEAKER TENDS TO BE ASSIGNED TO TOPICS 
DEFINED BY OTHERS. MULTI-FOCUS SPEAKERS MAY SERVE AS MEDIATORS. 

 Frequent Speaker Rare Speaker 
Focused 
Speaker 

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

 
Multi-Focus 
Speaker 

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120
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0
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Unfocused 
Speaker 
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In practice, application of the AT model tends to group all 
committee voting members into the same topic. This occurs 
because the intra-committee variance in word usage is low 
compared to the word usage between the committee and the 
device sponsors, FDA representatives, etc. The AT model 
provides a convenient solution to this problem through the 
creation of a “false author” that is assigned to all committee 
members’ documents. Thus, all words that are common to 
committee members are assigned to this false author, whereas 
those words that are unique to each member are preserved in 
their final topic distribution. 

IV. CASE STUDY: FDA ADVISORY PANEL 

The U.S. Food and Drug Administration (FDA) advisory 
panel meetings provide a rich data source from which we may 
study technical decision making by committees of experts [28].  

A. Multi-Stakeholder Environment 

As in a decision involving different stakeholders in a 
complex engineered system, the FDA decision-making process 
is embedded in a policy environment. The task of approving 
medical devices for the US market falls to the Food and Drug 
Administration’s Center for Devices and Radiological Health 
(CDRH). Figure 1, sourced from [29], provides an overview of 
the process by which a device is reviewed for approval by 
CDRH.  
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Figure 2.  Medical devices are classified into three categories based upon risk 
to the patient. Diagram sourced from [29] 

The grant of a 510(k) or Pre-Market Approval (PMA) by 
the FDA allows a device to be marketed in the United States. 
These approvals often act as de facto monopolies for the device 
involved because any competitor must demonstrate additional 
safety or efficacy of the new device as compared to the initial 
baseline in order to receive approval. Advisory panels review 
devices “as needed” [30].  Devices brought to committees for 
review are generally those which the FDA does not have the 
“in-house expertise” to evaluate. As such, the devices under 
evaluation by the committees are likely to be the most radical 
innovations facing medical practice, and those facing the most 
uncertainty. Furthermore, advisory panel members are “by 
definition, the world’s experts who are engaged in cutting-edge 
bench science, clinical research and independent consulting 
work” [28]. Advisory panels therefore serve to bring needed 
expert knowledge and political credibility with industry and 
consumer advocate groups to the FDA device approval process. 
Audience members will include representatives of the media, 
consumer advocate groups, the financial community, and 
competitor companies, all of whom are looking for information 
regarding how the medical device might perform on the market 
[31]. Panel recommendations, and the judgments and 
statements of individual members, therefore carry significant 
weight both inside and outside the FDA.  

B. Collaborative Technical Decision-Making in the FDA 

As in a complex engineered system, technical experts in the 
FDA may not have a political aim. Nevertheless, their 
decisions may be perceived as biased by those who would have 
made a different decision in their place. Although FDA 
advisory committees are aimed at producing “evidence-based” 
recommendations, differential interpretation of the evidence 
allows room for debate, and concomitant accusations of bias. 
Panel members’ professional experiences might allow for 
intuition that can seem to go against the indications shown by 
the data. [32] expressed a concern that this constitutes a form of 
“specialty bias,” especially when multiple specialties are 
involved. On the other hand, this view presupposes that a 
reading of the data that is entirely uninformed by past 
experience is best, which seems to obviate the role of expertise 

in advisory panel decision making. Others argue that conflicts 
of interest should be mitigated in advisory panels. On the other 
hand, a prominent study recently found only a minor 
correlation between conflict of interest and voting patterns, 
with no actual effect on device approval [33].  A distinction 
must be drawn between decision-making that is based on 
evidence and decision-making that is driven by one “orthodox” 
reading of the evidence.  

Decisions made by technical expert committees in the FDA 
are analogous to those that must be made by committees of 
technical experts within a complex engineered system. As 
explained above, different experts possess different world-
views, potentially reading to different, and equally legitimate, 
readings of uncertain evidence. Reaching a design decision 
requires that information from these different specialties be 
aggregated in some way. Ideally, the ultimate decision would 
be well-informed by all perspectives in the room.  

C. Data availability  

One of the primary advantages to using the FDA Advisory 
Panels as a case study is the availability of data. There are 20 
different panels whose transcripts are recorded over a period of 
ten years. This leads to the possibility of examining hundreds 
of committee meetings – a sufficiently large number that 
generalizable findings may be inferred. If the study were to 
expand to include the drug-approval committees within the 
FDA, the number of cases upon which we may draw would 
number in the thousands.  

V. PRELIMINARY APPLICATIONS AND RESULTS 

A. Identification of Topics of Interest to Each Speaker 

The AT model may be used to identify topics that are 
salient to each speaker. This can be helpful in determining how 
a coalition is built. Consider the meeting of the Circulatory 
Systems Devices Panel held on November 20, 2003. This 
meeting was convened to review a PMA for approval of the 
Taxus ® Paclitaxel Drug-Eluting Stent, designed and marketed 
by Boston Scientific Corporation. Taxus was the second drug-
eluting stent on the market, following the panel’s decision to 
approve Cordis Corporation’s Cypher Sirolimus-Eluting Stent 
one year prior. The ultimate outcome of the meeting was a 
consensus decision to approve the PMA. The vast majority of 
decisions to approve a device come with conditions of approval 
that the panel recommends to the FDA that the sponsor must 
meet before the device can be marketed. This is in some ways 
analogous to requirements recommendations made by 
committees of designers of a SoS. The conditions of approval 
for the Taxus stent were as follows: 

 

1. The labeling should specify that patients should 
receive an antiplatelet regimen of aspirin and 
clopidogrel or ticlopidine for 6 months following 
receipt of the stent. 
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2. The labeling should state that the interaction 
between the TAXUS stent and stents that elute 
other compounds has not been studied. 

3. The labeling should state the maximum 
permissible inflation diameter for the TAXUS 
Express stent. 

4. The numbers in the tables in the instructions for 
use that report on primary effectiveness endpoints 
should be corrected to reflect the appropriate 
denominators. 

5. The labeling should include the comparator term 
“bare metal Express stent’ in the indications. 

 

Each of these conditions may be traced to a particular 
voting member, or set of voting members, on that panel, using 
the AT model. Table II, below, outlines the primary topics for 
each voting member. The top five words, identifying each 
voting member’s preferred topic (out of 10 total), are 
identified, in addition to the topic proportion – the proportion 
of words spoken by that voting member that was assigned to 
that topic. Finally, each topic is assigned to a condition of 
approval as listed above. 

TABLE II.  RESULTS OF  THE AUTHOR-TOPIC MODEL APPLIED TO A 
TRANSCRIPT OF THE CIRCULATORY SYSTEMS DEVICES PANEL MEETING OF 
NOV. 20, 2003. TOPICS CORRESPOND TO CONDITIONS OF APPROVAL FOR THE 

FINAL VOTE. 

Committee 
Member 

Major Topic 
of Interest 
(stemmed) 

Topic 
Proportion 

Correspon-
ding  

Condition # 
DR. HIRSH-

FELD 
'metal bare 

express restenosi 
paclitaxel' 

0.36 5  
 

DR. WHITE  'physician 
stainless ifu steel 

plavix' 

0.42 1 

DR. SOMBERG 'metal bare 
express restenosi 

paclitaxel' 
'materi drug 

interact effect 
potenti' 

0.30 
0.29 

5 
2 

DR. 
NORMAND 

 'tabl detail 
denomin six 

number' 

0.56 4  

DR. 
MORRISON 

'metal bare 
express restenosi 

paclitaxel' 

0.23 5  

DR. YANCY  'drug clinic 
present appear 

event' 

0.23 2 

DR. 
WEINBERGER 

'angiograph 
reduct nine think 

restenosi‘ 

0.12 <None> 

DR. MAISEL 'millimet length 
diamet coronari 

lesion' 

0.34 3  

DR. AZIZ 'know bit littl 
take present' 

0.23 <None > 

B. Generation of Social Networks 

We may use the output of the Author-Topic model to gain 
insight into the social structure of a given committee. Since the 
results of the Author-Topic model assign each word to a topic, 
we may compare topic distributions across speakers. In 
particular, if two speakers’ words are assigned to the same 
topic frequently (i.e., more than 20% of the time, for a model 
with ten topics), we say that they are “linked”. Using authors as 
nodes, and the links derived from their topic distributions as 
edges, we may generate an author-topic graph. We refer to this 
graph as an interpretation of the meeting. One such 
interpretation is shown in Figure 3 below. 

 

Figure 3.  One interpretation of the meeting of the FDA Circulatory Systems 
Devices Advisory Panel Meeting held on March 5, 2002. Node size is 

proportional to the number of words spoken by the corresponding speaker. Dr. 
Simmons is a panel member who left the meeting before the vote occurred. 

Random seed = 3.14. Graphs were generated using UCINET. 

Due to the probabilistic nature of the Author-Topic model’s 
algorithm, we may expect different interpretations of a given 
meeting to occur based upon differing draws from the Author-
Topic model’s distribution over topic assignments for each 
word. A second interpretation for the same meeting as shown 
above is shown in Figure 4. 

 

Figure 4.  A second interpretation of the meeting of the FDA Circulatory 
Systems Devices Advisory Panel Meeting held on March 5, 2002. Node size 
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is proportional to the number of words spoken by the corresponding speaker. 
Random seed = 613. Graphs were generated using UCINET. 

Each interpretation yields a connectivity pattern for each 
meeting. We may average these patters over multiple different 
interpretations, i.e., we average over the presence or absence of 
a link for each possible speaker pair. We may therefore get a 
measure for link strength. If a link occurs frequently across 
different interpretations, we say that it is a strong link. For 
example, a strong link might occur in more than half of the 
interpretations. A weak link is a link which occurs more often 
than average, but less frequently than a strong link. Finally, a 
spurious link is one which occurs less often than the average 
link. The result is displayed in Figure 5 below.  

 

Figure 5.  Average of 200 interpretations for the meeting of the FDA 
Circulatory Systems Devices Advisory Panel Meeting held on March 5, 2002.  
A heavy line indicates a strong link (linked in >100 interpretations). A light 
line indicates that the speakers are linked more than the global average of all 

speakers. Spurious links have been eliminated 

Drawing more samples from this distribution will 
necessarily yield a representation that is more statistically-
robust. Based on the 200-sample draw shown above, we can 
already see the presence of “cliques” – i.e., connected sub-
graphs – that correspond to like-minded voters. It appears that, 
in this particular case, committee-members generally voted 
sincerely. It is interesting that, in this particular case, every vote 
“counted” – i.e., if one committee member were to switch 
sides, the meeting’s outcome would be changed. Such a 
situation has been postulated to support sincere voting over 
strategic voting [34]. 

C. Next Steps 

Future work will focus on analyzing these social networks 
and other derivatives of the analysis of transcripts using 
computational linguistics tools. For example, we might be able 
to identify speaker roles as follows: Speakers who are strongly 
linked to one another are likely to share a topic in common, and 
perhaps have similar jargon. Such a group of strongly-linked 
speakers may form a coalition, or may embody an argument. 
Speakers who are weakly linked to a large number of speakers 

likely do not have very strong topic specificity, most likely due 
to infrequent speech.  These speakers likely do not contribute 
much to the discussion and may vote more on the basis of 
exogenous factors. Speakers who are weakly linked to a small 
number of speakers, or not linked at all, yet who speak often, 
likely discuss a small number of topics that no one else shares. 
These speakers seem linguistically isolated, and therefore 
unlikely to have influenced others with their arguments. 
Finally, speakers who speak infrequently and are sparsely 
linked do not seem to have participated much in the formation 
of a group consensus. 

VI. CONCLUSIONS 

The analysis of multi-stakeholder decision-making is a key 
element in the successful design and fielding of complex 
integrated systems. Nevertheless, we currently do not have any 
computational tools that can enable the creation and testing of a 
theory for how best to construct such committees. This research 
aims to fill this gap by providing a tool based on the 
computational analysis of meeting transcripts. Empirical 
insights from this analysis can yield valuable contributions to 
the theory of group decision-making, ultimately leading to 
decisions that better incorporate the perspectives of different 
participating technical experts while avoiding biased decision-
making. This paper takes the first steps in that direction. 
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