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Abstract 

One of the challenges in accurately applying metrics for life 
cycle assessment lies in accounting for both irreducible and 
inherent uncertainties in how a design will perform under 
real world conditions. This paper presents a preliminary 
study that compares two strategies, one simulation-based 
and one set-based, for propagating uncertainty in a system. 
These strategies for uncertainty propagation are then 
aggregated.  This work is conducted in the context of an 
amorphous photovoltaic (PV) panel, using data gathered 
from the National Solar Radiation Database, as well as 
realistic data collected from an experimental hardware setup 
specifically for this study. Results show that the influence of 
various sources of uncertainty can vary widely, and in 
particular that solar radiation intensity is a more significant 
source of uncertainty than the efficiency of a PV panel. This 
work also shows both set-based and simulation-based 
approaches have limitations and must be applied 
thoughtfully to prevent unrealistic results. Finally, it was 
found that aggregation of the two uncertainty propagation 
methods provided faster results than either method alone. 

Introduction   

A key aim of sustainable design for both the engineering 

design and AI communities is to develop design methods 

and tools that can aid cradle-to-cradle design, thereby 

minimizing environmental impact throughout the entire 

product life cycle. To this end, a number of research efforts 

have been made to quantify the environmental impact of 

the product over its life cycle, from design to retirement. 

Some of these metrics include Life Cycle Assessment 
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(LCA) (Curran 1993; Pennington et al. 2004; Rebitzer et 

al. 2004; White and Shapiro 1993), Life Cycle 

Sustainability Assessment (LCSA) (Heijungs et al. 2010) 

and Life Cycle Commonality Metric (LCCM) (Wang and 

Tseng 2009).  

Among these metrics, LCA has become a standard, but 

there continues to be research on developing it further 

(Cooper and Fava 2006; Pennington et al. 2004; Rebitzer et 

al. 2004). In particular, Pennington, et al (2004) considers 

the role of uncertainty in a life cycle model. Typically, the 

actual usage and disposal/recycle of a product cannot be 

predicted by a product’s designers, which means that there 

can be a considerable degree of uncertainty associated with 

any sustainability metric. Furthermore, creating a 

traditional LCA model is a data intensive process which 

requires considerable additional effort for new products, 

though there have been attempts to develop learning 

surrogate models to reduce building time (Eisenhard et al. 

2000). Ideally, the fidelity (accuracy) and building time for 

such a learning surrogate LCA model should be balanced 

with irreducible uncertainties associated with sustainability 

metrics. An example of an irreducible uncertainty might be 

using a product under unanticipated weather conditions. In 

comparison, a better understanding of the inherited 

unavoidable uncertainties in a model will shorten the time 

to build it as there is limited benefit to improving the 

accuracy of a model if its irreducible uncertainty is very 

high. 

This paper is a preliminary study of ways to propagate 

uncertainty into overall system performance to support 

sustainable design, with a focus on high uncertainty 

products. It compares set-based and simulation-based 

approaches, and aims to help design teams to evaluate the 



benefits and limitations of sustainable design applications 

in AI.  This work is conducted on a case study of an 

amorphous photovoltaic (PV) solar panel cell. 

Background 

There are many different uncertainties associated with 

engineering design. One type of irreducible uncertainty is 

uncontrollable variation that occurs during the 

manufacturing and usage stage. Designers cannot control 

or remove this type of uncertainty, and so must focus on 

managing it. The management of this type of variation is 

crucial for the development of sustainable design. Another 

type of uncertainty associated with engineering design is 

modeling uncertainty. This is directly related to fidelity of 

the model. Furthermore, the engineer can sometimes 

reduce this type of uncertainty. Work in understanding 

uncertainty has focused on classifying (Klir and Folger 

1988; Thunnissen 2003), quantifying (Capaldi et al. 2010; 

Giunta et al. 2004; Russi 2010; Wojtkiewicz et al. 2001), 

propagating uncertainty into system performance (Feeley 

2008; Frenklach et al. 2002; Phillips 2003; Thunnissen 

2005), and optimizing design under these uncertainties 

(Allaire and Willcox 2010; Du and Chen 2001; Enevoldsen 

1994; Lee et al. 2002; Liang et al. 2008; Rajnarayan et al. 

2008; Tu et al. 1999). 

 In the early stages of design, subsystem and system 

models can vary widely in their levels of fidelity. Two 

contrasting perspectives on managing the fidelity of 

subsystem models (Klatt and Marquardtb 2009) include a) 

simply creating the highest fidelity model possible (Kahrs 

and Marquardt 2008; Mogk et al. 2002; Tan and Li 2002; 

Tulleken 1993) and b) building approximate models to 

estimate the output of the high fidelity model by balancing 

computational cost with fidelity (DeLaurentis and Mavris 

2000; Sasena et al. 2002; Wang 2003). These subsystem 

models may be approximated to ensure they match the 

fidelity of the rest of the system. However, such 

approximation must be balanced against the potential loss 

of accuracy of having a system level model with the 

highest fidelity for its subsystems (Prusha 2005).  

 This paper takes the view that creating a model that 

considers accuracy of system performance will reduce cost 

and effort. Therefore, it presents a method for creating 

models, that takes into account system-level fidelity. This 

method quantifies the impact of fidelity on system 

performance by estimating overall uncertainty, and in 

future work will also consider the role of subsystems in 

overall system performance. The goal of this work is to 

provide a method to aid design teams in allocating time 

and effort in improving critical subsystem models. 

Methods 

The steps for this experiment include propagating 

uncertainty in estimating solar radiation intensity using two 

different methods, comparing the PV power output (system 

performance), and combing the two methods to create a 

new approach. 

 Step 1 – Quantify uncertainty in estimating solar 

radiation intensity. An uncertainty distribution for solar 

radiation intensity was determined for each hour and 

month for the Dane County Airport in Wisconsin, USA 

using data from the National Solar Radiation Database 

(NSRDB) (National Renewable Energy Laboratory). This 

data source was chosen because it is a high uncertainty 

region with unpredictable weather in winter. This weather 

uncertainty was estimated using an empirical cumulative 

density function (CDF) and probability density function 

(PDF).  

 Step 2 – Create an initial PV efficiency model. Physical 

experiments was performed on an amorphous silicon 

photovoltaic cell to capture its efficiency as a function of 

solar radiation intensity.   

 Step 3 - Propagate uncertainties from the solar 

radiation intensity and experimental PV models. To 

determine the required fidelity of the PV model, 

uncertainties from the solar radiation intensity model and 

the current PV model were propagated using both a set-

based approach (Agarwal et al. 2004; Salehghaffari and 

Rais-Rohani 2010; Thunnissen 2005; Ward et al. 1994; 

Ward et al. 1990) and a simulation-based approach using 

Monte Carlo Simulation. 

 Step 4 – Assess the benefits and limitations of the two 

methods. The aim is to determine a good method for 

obtaining the uncertainty bound. 

Models 

This study examines ways of decreasing uncertainty in the 

two key models: the solar radiation intensity model and the 

photovoltaic model.  

Solar Radiation Intensity Model. Because weather for 

one year may vary drastically from one year to the next, 

even for same location, the uncertainties in solar radiation 

intensity data can be considered irreducible. More 

importantly, the inherent inaccuracy of weather prediction 

models may dictate the overall accuracy of the entire solar 

energy system. If the error of the weather and solar 

radiation intensity model is too large, minimizing errors for 

a photovoltaic model may be cost-ineffective and 

unnecessary.  

 The measured solar radiation intensity data for this study 

comes from Madison, WI via the NSRDB. Historical data 

has shown that for any given hour of any given day, there 

is more than a 25% chance that it is too dark to produce 



any useful power output. This is a good location to test 

how various types of uncertainties propagate through 

system performance, such as power output from a PV 

system. 

 The main challenge associated with fitting a probability 

distribution over solar radiation intensity data is the fact 

that there is finite probability that the intensity will be 

exactly zero. This is problematic for fitting the distribution 

because the probability density function must either 

contain the Dirac Delta function for continuous 

distributions, or it must mix discrete and continuous 

distributions. Furthermore, for many hours, the shape of 

the distribution is bimodal and asymmetric. Thus, because 

we have over 3000 samples for each hour, the empirical 

cumulative distribution was adequate to represent the 

uncertainty rather than fitting the distribution.  

 

 

Photovoltaic Model. For this study, an experimental PV 

model was used to collect realistic data. A lux probe, lux 

meter, and solar panel were set up on a flat roof (Figure 1). 

The amorphous silicon solar panel used is the Sunforce 

12V Battery Trickle Charger, with an area of 0.09 m2. It 

lies horizontally on the roof, away from obstacles that 

might cast shadows. Output from the PV panel is sent to a 

resistor via a smart meter which converts the data into a 

digital reading of voltage, current, resistance, and power. 

Different resistances were used in the range of 1 to 950 

ohms, and changed every morning so as to obtain a 

spectrum of data points. The experiment was conducted in 

October 2010 in Cambridge, Massachusetts, and again in 

December 2010 – January 2011 in Goleta, California. Only 

data after noon was used for the Cambridge location 

because shadowing from a flagpole caused the morning 

data to suffer from systematic error. The Goleta location 

experienced no such issue, and the full day of data was 

collected.  

 Sample results are shown in Figure 2A and 2B.  Note 

that there is uncertainty associated with the experimental 

results due to naturally occurring factors like the angle of 

the sun, clouds and dust or pollen gathering on the surface 

of the solar panel. These uncertainties are taken into 

account in the analysis, and reflected in the model.    

 The data from both Cambridge and Goleta was 

combined. The fluctuating weather conditions at each 

location resulted in similar levels of uncertainty, and the 

data could be combined without loss of fidelity. 

Illuminance was converted to irradiance at a conversion 

rate of 93 lux to 1 W/m
2
 (Zenith Solar).  

 For a range of irradiance intensities from 200 to 

700W/m
2
, the data points at that radiation intensity 

(±1W/m
2
) were isolated, and plotted on a voltage-current 

graph (Fig 2B). For each resistance, the power from the 5
th

 

to 95
th

 percentile at intervals of 5 was obtained. The set of 

power values for the range of resistances at each percentile 

was then fit using the least squares method to Eqn 1 in 

order to get a curve that represents the voltage-current (v-i) 

relationship (Fig 2C) (Martil and Gonzalez 1992). 
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Where a1, a2 and a3 are constants 

 A least squares fit based on vertical offsets was used to 

fit the v-i curve instead of a fit based on perpendicular 

offsets in order to simplify the problem. As the number of 

noisy data points was reasonably large, the difference 

between vertical and perpendicular fits was small. This 

was checked by swapping the voltage and current for the 

independent and dependent variables and fitting the curve 

via the least squares method again. The two curves were 

plotted on top of each other and found to be similar in the 

maximum power range.     

 From this v-i fit, the maximum experimental power at 

that radiation intensity and percentile, was obtained. 

Combining the power values from the range of intensities 

and percentiles, each percentile was fit with a linear 

polynomial least squares fit. Having derived the trend of 

power with radiation intensity, the power for an extended 

range of intensities from zero to 950W/m
2
 in intervals of 

25 W/m
2
 was then calculated.  

Figure 1: Experimental Set up of solar panel 
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Figure 2: Photovolatic model method: deriving the characteristic mean and standard deviation from the cumulative distribution 

function of power output 

  



 For each interval in the extended range of 

intensity, power values from the percentile curves were

extracted and fit into a normal cumulative distribution 

function (Fig 2E).The characteristic values of mean and

relative standard deviation were found for each curve. 

These were then plotted against radiation intensity

and 2G). The mean values were fit using li

model, and the relative standard deviation to an 

exponential curve, shown in Eqns 2 and 3.  

1 2b I bµ = +     

Where b1 and b2 are constants

   
Where c1, c2 and c3 are constants

Using measured solar radiation intensity

Wisconsin in the winter months from December to 

February from the NSRDB, along with the mean and 

standard deviation fitted curves, a comparison of 

simulation-based and set-based approaches 

propagation was made. 

Uncertainty Propagation 

The goal is to determine how uncertainty propagates 

the whole system.  In this case, uncertainty is prop

from the solar radiation intensity data into total power 

output over Madison WI for one winter. 

Monte Carlo Simulation. Uncertainty was 

sampling from the distribution obtained for both 

radiation intensity model and the PV model.  

sample size of 10,000, random numbers were 

from a uniform distribution and mapped to 

intensity and power output using the mean and relative 

standard deviation obtained from the cumulative 

distribution functions created in the previous step. One 

sample included power outputs from all the hours of 

daylight for all the days of winter. These were then 

summed to obtain 10,000 samples of total output power 

over the whole winter. From this, the probability density 

function of output power was plotted.  

Set Based Approach Using Percentile

cumulative distribution functions of solar

intensity, different percentile bounds of radiation intensity

were obtained, such as [5 percentile, 95 percentile], and 

[25 percentile, 75 percentile].  Five values of 

intensity at the 5
th

, 25
th

, 50
th

, 75
th

 and 95

bounds were calculated for each hour of daylight. 

power output uncertainty was propagated 

and lower bound with the same percentile bounds, but 

applied to the cumulative distribution functions of power 

output given radiation intensity. The total power over each 
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Figure 3: Monte Carlo Simulation vs Set Based Ap

of output power for 1 day. Note that the 5

percentiles from solar radiation intensity are zero.

Figure 4: Monte Carlo Simulation vs Set Based Approach 

of output power for the winter season. Note tha

25th percentiles from solar radiation intensity are zero.

For each interval in the extended range of radiation 

percentile curves were 

umulative distribution 

The characteristic values of mean and 

relative standard deviation were found for each curve. 

radiation intensity (Fig 2F 

using linear regression 

, and the relative standard deviation to an 
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are constants 

    - Eqn 3 
are constants 

radiation intensity data of 

Wisconsin in the winter months from December to 

ry from the NSRDB, along with the mean and 

standard deviation fitted curves, a comparison of 

based approaches to uncertainty 

propagates over 

uncertainty is propagated 

into total power 

ncertainty was propagated by 

obtained for both the solar 

PV model.  Using a 

random numbers were generated 

uniform distribution and mapped to solar radiation 

and power output using the mean and relative 

standard deviation obtained from the cumulative 

in the previous step. One 

sample included power outputs from all the hours of 

daylight for all the days of winter. These were then 

summed to obtain 10,000 samples of total output power 

over the whole winter. From this, the probability density 

ercentiles. Using the 

solar radiation 

radiation intensity 

s [5 percentile, 95 percentile], and 

values of radiation 

and 95
th

 percentile 

bounds were calculated for each hour of daylight. The 

was propagated for each upper 

and lower bound with the same percentile bounds, but 

applied to the cumulative distribution functions of power 

. The total power over each 

day was summed, and multiplied by the duration of winter 

(89 days).  

Results

By looking at how different lines from

cluster together (Fig 3), we can determine the significance 

of each uncertainty. Because the 

uncertainty are clustered near each other compared to 

percentiles from solar radiation intensity

implies that uncertainty in solar radiation intensity

more significant than the uncertainty in the efficiency of 

the PV panel. This makes sense because

sunny vs. cloudy can make drastic diffe

output. This result shows that by propagating percentiles, 

we can determine dominating uncertainties.

shows that the fidelity of the PV model is accurate enough 

for computing the daily power output.

Figure 3: Monte Carlo Simulation vs Set Based Approach 

of output power for 1 day. Note that the 5th and 25th 

percentiles from solar radiation intensity are zero. 

Figure 4: Monte Carlo Simulation vs Set Based Approach 

tput power for the winter season. Note that the 5th and 

percentiles from solar radiation intensity are zero. 

day was summed, and multiplied by the duration of winter 

 

lines from the percentile result 

, we can determine the significance 

the percentiles for PV 

clustered near each other compared to the 

radiation intensity uncertainty, this 

radiation intensity is much 

uncertainty in the efficiency of 

. This makes sense because the impact of 

drastic differences in the power 

output. This result shows that by propagating percentiles, 

we can determine dominating uncertainties. This also 

PV model is accurate enough 

for computing the daily power output. 



Figure 5: Hourly cumulative distribution function of solar 

radiation intensity ignoring uncertainty in PV efficiency 

Figure 6: Hourly cumulative distribution function of 

power output 

 Figure 3 shows that blindly applying the Monte Carlo 

approach can give misleading information.  It is shown that 

the probability for zero output from PV system within a 

day is zero.  This result implies that Madison, WI will not 

have day in the winter season during which it snows or 

rains throughout the day. In real life, this is unrealistic, but 

this highly unlikely result is caused by standard 

assumptions for independence of the events. In real life, 

the probability for rain or snow in the next hour is highly 

influenced by current weather conditions.  Thus, there is a 

high degree of coupling between the hourly solar 

intensities that this Monte Carlo model is missing.  

Furthermore, the actual transition probability between 

hourly solar radiation intensity is impractical to obtain. 

On the other hand, when we look at seasonal total 

uncertainty (Fig 4), we see another side of the story.  We 

can observe that the lower bound created by the 5th and 

25th percentiles leads to zero total solar radiation intensity.  

As Madison, WI is not located at a very high latitude, this 

is an unrealistic result.  The cause of this phenomenon is 

that fact that a set based approach assumes perfect 

correlations between worst case scenarios. In other words, 

this means that if it snows on the first day of winter (no 

sunlight), then there will continue to be no sunlight for the 

rest of winter. However, the assumption for independence 

is more realistic when we are considering a longer duration 

like a whole winter.  Thus, this shows that assumptions are 

critical when we propagate the uncertainties.  

Another interesting question is whether we can combine 

these approaches together coherently. It can be shown that 

the set-based approach using percentiles and a simulation- 

based model are not necessary mutually exclusive, and that 

they can work together effectively. In this example, 

because the uncertainty for radiation is more significant 

than the uncertainty of the PV model, we can propagate the 

cumulative distribution of solar radiation intensity into 

power output using a percentile based approach while 

ignoring the uncertainty in PV efficiency (see Fig 5 and 6). 

After obtaining the hourly cumulative distribution, we can 

propagate this information using Monte Carlo Simulation 

to get the power output of PV system performance.  The 

result converges to a distribution similar to a pure Monte 

Carlo Simulation. This is useful as a percentile based 

approach can be more efficient even for just a portion of 

uncertainty propagation. Furthermore, we can remove the 

Monte Carlo Simulation to predict the total power 

distribution from the hourly cumulative distribution of 

power. By utilizing the Central Limit Theorem, we can 

deduce that the distribution will approximate a Gaussian 

distribution. Furthermore, the mean and variance for 

independent and identically distributed events will grow 

proportionally to the number of samples. This result 

implies that rather than blindly applying any one technique 

for propagating uncertainty, the designer should 

understand the nature of uncertainty in order to choose the 

most appropriate techniques. Finally, considering just the 

median or mean value, will be provide the designer with 

misleading information, leading to poor product 

development choices.   

Conclusions 

The results from the study show that designers of high 

uncertainty products and systems should aim to better 

understand the nature of the uncertainty before applying 

set-based or simulation techniques. Simply considering 

percentile, mean or median values will lead to misleading 

results. Dominating uncertainties can be determined by 

first propagating them, and scrutinizing the underlying 

assumptions of the methods. Set-based and simulation 

methods may be effectively combined in order to reduce 



time and cost of propagating uncertainties so as to improve 

critical subsystem models. In the case of sustainable design 

of PV cells, a better knowledge of uncertainty propagation 

will allow designers to better approximate the power 

output, especially for regions with fluctuating weather 

conditions where the current PV use is low. 

 Future work includes adding components such as the 

inverter subsystem model to the PV cell subsystem model, 

then considering the entire fidelity of the system as a 

whole. The impact of subsystem fidelity on system 

performance may then be quantified by estimating overall 

uncertainty in the system.  
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