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Abstract

An important aspect of distributed control is the role of communication between the dif-
ferent components in the system. Traditional information theory is asymptotic, has delays,
and does not completely deal with feedback. Since feedback is an essential element of
control in the presence of uncertainty and since delays have to be taken into account in
control problems, especially for unstable systems, it is natural to look for a unification of
information theory and stochastic control.

We present a unified view of control and communication which clarifies many of the
conceptual issues underlying the distributed control problem. This view consists of consid-
ering a distributed system as an interconnection of different probabilistic systems: be they
channels, plants, etc. We discuss the importance of centralized design for this distributed
implementation and the conceptual role of dynamic programming,.

We provide a very general coding theorem for channels with feedback. We show that
the directed mutual information, as introduced by Massey, is the correct notion of capacity
for channels with and without feedback. For Markov channels we show that one can solve
the capacity optimization problem via dynamic programming.

We formulate the sequential rate distortion problem and provide a coding theorem.
For Markov sources we show that one can solve the sequential rate distortion infimization
problem via dynamic programming. Finally we show that the successive refinement problem
is a special case of the sequential rate distortion problem.

For the general problem of control under communication constraints we examine a dis-
tributed system with a plant, a channel encoder, a channel, a channel decoder, and a
controller. We give conditions on the capacity of the channel to ensure different control
objectives: observability, stability, controllability, and performance. For deterministic sys-
tems we introduce the notion of covering number. For the LQG problem we give suitable
assumptions on the information pattern to ensure the optimality of the certainty equivalent
controller.

Thesis Supervisor: Sanjoy K. Mitter
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

The Internet, wireless networks, and the like are making it possible to have many remote
plants linked together via communication channels. Thus a substantive theory of distributed
control is increasingly becoming important in today’s control systems.

An important aspect of distributed control is the role of communication between the
different components in the system. In this setting traditional information theory, which
codifies the fundamental limitations to reliable communication over noisy channels, is not
directly applicable. The reason is because traditional information theory is asymptotic,
has delays, and does not completely deal with feedback. Since feedback is an essential
element of control in the presence of uncertainty and since delays have to be taken into
account in control problems, especially for unstable systems, it is natural to look for a
unification of information theory and stochastic control when components of control systems
are interconnected through communication channels.

In this thesis we present a unified view of control and communication which clarifies
many of the conceptual issues underlying the distributed control problem. We discuss the
interaction between information and control. Our main goal is to understand the funda-
mental limits of control performance in distributed systems when there are communication
constraints.

This introduction is divided into three parts. Section 1.1 reviews the issues involved in
distributed control over communication channels. Section 1.2 discusses our general frame-
work for dealing with these problems. And section 1.3 gives a summary of the chapters that
follow. Within each chapter summary is a review of the relevant existing literature.

1.1 Control Under Communication Constraints

What is a distributed system? Qualitatively it consists of a set of plants and controllers
linked by communication channels. See figure 1-1. There the boxes can be plants or
controllers. The arrows represent different communication channels. A line from a plant
to a controller represents a sensor signal. A line from a controller to a plant represents an
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Figure 1-1: Distributed System

actuation signal. And a line from a controller to another controller represents a coordination
signal.

1.1.1 Complexity and Communication

If all the communication links in figure 1-1 are of infinite bandwidth and zero delay then
there is no reason to treat the problem as a distributed problem. We can easily construct
a new centralized controller with links to all the plants.

There are two main reasons for studying distributed systems. One is the issue of com-
plexity in the design of the controllers. We will not treat this issue in this thesis. The
second is the issue of communication. If the channels are finite bandwidth then thought has
to be put into what signals we want to send across them. Thus, for us, distributed control
arises because we have information bottlenecks due to the finite bandwidth communication
links connecting the different components of the system.

These communication links can be noisy, have delays, and drop signals. Furthermore
they may have memory. Thus these communication channels can be considered to be plants



themselves. The channel encoders and channel decoders can be considered to be controllers.
By viewing channels as plants and encoders and decoders as controllers we are able to unify
the different components of the distributed system.

1.1.2 Signifier versus Signified

Given a signal source and a channel we have to decide what part of that signal we want to
transmit across the channel. Furthermore we need to decide how we want to represent that
signal over the channel. This dichotomy is essentially captured in Saussure’s distinction
between the “signifier” and the “signified.” [Sau] We need to determine first what part of
the source signal we want to transmit across the channel. This is the “signified” part. Then
we need to decide how we are going to represent that signal. This is the “signifier” part.

Information theory has addressed this problem in its two major founding results. Shan-
non’s channel coding theorem tells us how many signifiers we can transmit across a channel
reliably. And Shannon’s rate distortion theorem tells us how well we can approximate the
signified part of the source signal. [Shal] The issue can be restated as follows. Data with-
out knowledge of what is being signified is not useful information. Similarly connectivity
without knowledge of the signifiers does not lead to useful coordination.

1.1.3 Centralized versus Decentralized Design

As stated before the systems we are interested in studying are distributed. There are two
options though for the design of the controllers: centralized design and decentralized design.

In this thesis we focus on the centralized design. (Though in parts of chapter two we
treat some aspects of decentralized design.) The idea is that although the system, when
running, is distributed, the design of the policies at each controller can be done with common
knowledge of the other controller’s policies. In the decentralized design case some of the
controllers do not know the other controller’s policies. Thus there is an inherent game-
theoretic aspect to the decentralized design that makes it much more difficult to analyze.
The design problem becomes more tractable if we assume that there is coordination between
the design of the controllers. Furthermore many distributed systems are centrally designed
even though the real-time functioning of the system is distributed.

10



1.2 General Framework

We now present an overview of our general framework. Plants and channels can be described
by stochastic kernels. They can be thought of as a partial specification of a joint probability
measure on the variables of interest. Optimal control has to do with optimizing, over the
allowed controllers, some performance objective. To compute this performance we require
a complete probability measure on the variables of interest. The maps defined by the
controllers allows us to “complete” this joint measure from the partial specification given
by the plants and the channels. In fact controllers are nothing more than stochastic kernels
themselves. We are most familiar with control polices that are functions. But this is just a
stochastic kernel that maps inputs to Dirac measures.

The view taken throughout this thesis is that we interconnect controller stochastic ker-
nels with the plant and channel stochastic kernels to form a joint measure.

An important issue that has caused a lot of confusion in the literature in both infor-
mation theory and control theory is the role of causality in control systems when feedback
is present. We treat this by explicitly putting a time ordering on the random variables of
interest. Causality is then defined by this ordering. An example will help elucidate this
point.

Consider a traditional control problem with time horizon 7" and state transition maps:
{P(dX¢s1]me,ut)} ;. The random variables of interest are the state variables Xi,..., X7
and the control variables Uy, ..., Ur. The natural time ordering is

X1,U1, ..., X7, Ur.

Any joint measure P(dXT,dUT) can be factored according to this causal ordering as follows

T
PXT,dU") = Q) P(dUs|",u"™") @ P(dXy|z " ui ).
t=1

We already know P(dX;|z'~!,u'=') = P(dXz; 1,us 1) for t = 1,...,T. The controller
is described by the sequence of stochastic kernels: {P(dU;|z?,u'"1)}]_ ;. We design these
controller kernels. Note that we can incorporate differing dependencies of the control on
the past data. For example we may want U; to only depend on the current state X;. These
sorts of restrictions are called the information pattern of the decision variable U;.

A model of a system is defined to be the set of all joint measures on the variables of
interest that satisfy:

(1) A time ordering on the random variables of interest.

(2) A specification of the stochastic kernels representing the plants and channels in the
system.

(3) A specification of the information patterns for the different decision variables.

We ‘can ‘complete” this joint measure by specifying a sequence of stochastic kernels repre-
senting controllers.

11



We show that within this framework and the assumption of a centralized designer we can
formulate a broad class of distributed control problems as dynamic programming problems.
The next section summarizes the key results in the chapters to follow.

12



1.3 Summary of Thesis

Figure 1-2 lists the main results and logical flow of the chapters in this thesis.

1.3.1 Chapter 2

In this chapter we present the aforementioned general framework for the distributed control
problem. The field of distributed control is quite large and we could never do it justice
by summarizing it here. The work in this chapter, though, is heavily influenced by the
work of Witsenhausen. He wrote an important paper in 1971 where he defines the notion
of information pattern and discusses conditions for the separation of estimation and con-
trol. [Wit] Later he showed general conditions for the policy independence of conditional
expectations. [Wit2] We expand on his idea of information patterns by discussing system
and policy knowledge. In the resulting dynamic program we show that for nontraditional
information patterns we no longer have the policy independence of conditional expectations.
We make appropriate assumptions on centralized design to deal with this problem.

1.3.2 Chapter 3

In this chapter we examine the control of deterministic plants with a noiseless digital channel
of finite rate connecting a sensor, measuring system variables at the plant, to the controller.
We are interested in computing the minimum rate needed to achieve different control objec-
tives: observability, stability, controllability, and performance. For these different control
objectives we provide a lower bound on the required channel rate. This bound is indepen-
dent of the information patterns of the encoder, decoder, and controller. We give conditions
on the information pattern so that this rate is achievable. Finally we introduce the notion of
covering number. The covering number counts the minimal number of control trajectories
needed to achieve some given performance objective. This in turn is used to compute the
required channel rate.

The original impetus for the work in this chapter came from two papers written by Wong
and Brockett. [WB1], [WB2] They introduced the “systems with finite communication
bandwidth constraints” problem. They give sufficient conditions, in the form of explicit
schemes, for state estimation and stability. We extend their preliminary results in many
directions. Nair and Evans’ work has evolved in parallel with the work in this chapter.
[NE1], [NE2] They examine state estimation for a more general class of processes over a
bit-rate constrained channel. They also provide sufficient conditions in the form of explicit
schemes. Elia and Mitter have treated the problem of stability where the quantizer has
fixed levels. [EM] See also Liberzon and Brockett. [LB]

1.3.3 Chapter 4

In this chapter we examine the problem of channel coding for channels with different kinds
of memory and feedback. Shannon was the first to consider the feedback channel. [Sha2]

13
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Dobrushin and Wolfowitz extended Shannon’s results. [Dob1] [Wol] We prove a very general
coding theorem for finite alphabet channels with different forms of feedback. This feedback
coding theorem is a generalization of the non-feedback coding theorem presented by Verdu
and Han. [VH] We prove the coding theorem by using Dobrushin’s idea of defining an
interconnection between a source and a channel. [Dob2] See also Gallager’s book. [Gal]

We show that the directed mutual information, as introduced by Massey, is the correct
notion of capacity for channels with and without feedback. [Mas] We also extend the work
of Kramer on determining the properties of directed mutual information for the single-user
channel with feedback. [Kra] Kramer treats the memoryless multiple access channel and the
memoryless two-way channel but does not treat the single user case with channel memory
and feedback.

For Markov channels we show that one can solve the capacity optimization problem
via dynamic programming. We treat channels with ISI and differing side information at
the transmitter and receiver. This dynamic programming formulation allows us to capture
many existing coding theorems for different channels within one framework. Furthermore,
by using this framework, we provide coding theorems for new channels. Extensions to the
Gaussian channel are provided. For related work see [CS], [CP], [GV1], [GV2], [SK], [Sha3],
and [Vis]. We discuss our work in relation to these works in the chapter.

Finally we discuss channel realizations and provide a causal generalization of the data
processing inequality.

1.3.4 Chapter 5

In this chapter we formulate the sequential rate distortion problem. The sequential rate
distortion problem is a generalization of the traditional rate distortion problem to processes
over time with the added restriction that the reconstructions be computed causally and
without delay. We define the sequential rate distortion function to be the infimum over
all causal channels of the directed mutual information under a constraint on the distortion.
This optimization problem was first formulated by Gorbunov and Pinsker. [GP] We, though,
formulated the problem independently of them. They provide many structural results.
We give an operational meaning to the sequential rate distortion function. Specifically we
provide a coding theorem for the digital noiseless channel. For Markov sources we show that
the underlying optimization problem can be solved via dynamic programming. We show
that the successive refinement problem is a special case of the sequential rate distortion
problem. [EC], [Rim]

We treat the joint-source channel coding problem. [VVS] We show that if the source
and channel are matched then one can achieve the sequential rate distortion bound.

1.3.5 Chapter 6

In this chapter we examine the stochastic control problem under a communication con-
straint. There is one communication channel connecting the sensor to the controller. We

15



first formulate the problem using the framework of chapter two. For the LQG problem we
then provide sufficient conditions on the information pattern of the encoder and decoder
to ensure the optimality of the certainty equivalent controller. This result generalizes the
separation result proved by Borkar and Mitter. [BM] This separation property allows us to
design the controller and the encoder and decoder separately. The optimal cost separates
into two pieces: a full observation cost and a sequential rate distortion cost. Bansal and
Basar showed that one could lower bound the performance by using information theoretic
quantities. [BB] We provide a more general lower bound using the directed data processing
inequality proved in chapter three. The idea of using the directed data processing inequality
here comes from a more general lower bounding technique discussed by Mitter. [Mit] We
show that this bound can be achieved if the channel is matched to the source.

16



Chapter 2

A General Framework for the
Distributed Control Problem

2.1 Introduction

In this chapter we provide a general framework for modeling distributed control problems.
The framework we present allows us to treat plants and communication channels on an
equal footing. We can also treat controllers, channel encoders, and channel decoders on
an equal footing. As a result we are able to present a conceptual view of the design of
a large class of distributed control problems where sensors, controller, and actuators are
interconnected through communication channels.

In general a model of a system consists of a set of stochastic kernels, an information pat-
tern, and causality constraints codified by a time-ordering on the variables of interest. These
stochastic kernels can represent plant transitions or channel transmissions. These different
kernels provide a partial specification of a joint measure over all the random variables of
interest. The job of a designer then is to “complete” this joint measure by providing appro-
priate interconnections between the given plants and channels. Note that this completion
must respect the information pattern and causality constraints imposed by the model. In
practice these interconnections will be provided through the design of a controller, encoder,
or decoder.

The design of the optimal controller for the distributed system can be done in many
ways. We distinguish between centralized design and decentralized design. Centralized
design occurs when the design of a given controller is done with full knowledge of the other
controllers. In decentralized design we do not assume this knowledge. We will show that
centrally designed systems can be solved via dynamic programming.

In section 2.2 we provide our general framework. In section 2.3 we show that centrally
designed control problem can be formulated as a dynamic programming problem. We
conclude in section 2.4.

17



2.2 General Framework

We now give our general framework. We assume, through some sort of modeling process,
that we are given partial knowledge of the system variables. This partial knowledge comes
in the form of a set of stochastic kernels on the variables of interest. From this partial
knowledge we want to complete a joint measure on these variables. There are many ways
to complete this measure. We define a model of a system to be the set of all joint measures
consistent with the given stochastic kernels. Thus a model is a subset of the set of all
measures on the variables of interest. (See section A.1 of the appendix for a summary of
stochastic kernels, Markov chains, and factoring joint measures.) We now give the formal
definition of a model.

Given a sequence of variables z1, ...,z we use the notation z” 2 (z, ..., z1).

2.2.1 Main Definition

Let (22, F) be a measure space. For ¢t = 1,...,T let Z; be a measurable function from (2, F)
to the Polish space (Z;,B(2;)). (Note that 7" may equal infinity.) These variables, {Z;},
represent different objects in the model. An object, for example, may be the state of a
system at a given time, the control at a given time, the channel input at a given time,
etcetera. We call them “variables” as opposed to “random variables” because we have not
defined a measure on them. Specifically the Z;’s will be random variables only after we
define a measure on (€2, F). We now define a model:

Definition 2.2.1 A model, M, is a subset of the set of all measures on the variables
Z1y .y Zy. This subset, M C P(Z1,...,Z1), is defined by a three-tuple: causal ordering,
system specification, and information pattern.

(1) Causal Ordering: This is a specification of a time-ordering on the variables Z1, ..., Zr.
Note that any measure P(dZT) can be factored with respect to this ordering:

P(dZ") = éP(dZt | 207h).

We need to specify these factors. There are two kinds of factors P(dZ; | 2t~ '). Those that
are specified by the system and those that are specified by the designer. (For example state
versus control.) Separate the set {1,...,T} into these two disjoint sets:

(a) The system set: I = {i1,...,ix} with1<i; <,...,.<ig <T

(b) The decision set: J = {j1,....,50} = {1, ..., T} \ T with 1 < j; <,...,< jr <T.

(2) System specification: This is a set of stochastic kernels of the form {Q(dZ;, | 2 1)}K ;.
For all iy, € I the measure P € M must satisfy

P(dZ;, | Z% ' = 2% = Q(dZ;, | 27"  P(dZ"%7') — a.s.

|

(Where P(dZ;, | Z%~') is the conditional probability under P.)
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(8) Information pattern: The information pattern defines what each decision maker j; € J
can base his decision on. Specifically for each j; € J the information pattern of
decision maker j; is a subset J;, C {1,...,ji — 1}. The decision kernel Q(dZ;, | 2/~ 1)
can only be a function of {z :t € Jj,}. In other words,

Q(dZj, | 21 = Q(dZ;, | #7Y) V2 L 20 such that 2 = 3 Vit € Jj,.
For all 5; € J the measure P € M must satisfy

P(dZ;, | Zi7t =2 = Q(dZ), | Y P(dZPY) —as.

The stochastic kernels chosen in part (3) allow us to interconnect the stochastic kernels
given in part (2). This interconnection specifies a joint measure. The stochastic kernels
chosen in part (3) are called policies. Note that an element in M is uniquely specified,
almost surely, once we specify the policies.

Our definition of a model closely parallels Witsenhausen’s model. [Wit] In our model,
though, we emphasize the two different kinds of stochastic kernels that make up the joint
measure: those specified by the system and those that are policies.

Lemma 2.2.1 Under any measure P € M and Vj, € J the following forms a Markov
chain:

Zjl_{Zt : tEle}—{Zt : tE{l,...,jl—l}\le}

Proof: Note that P(dZ%) = P(dZj, | 2"~') ® P(dZ%~'). By the information pattern
constraint we know P(dZ; | Z% ! = 271 = Q(dZ;, | 2*1) P(dZ% ') — a.s. Thus
P(dZ%) = P(dZj, | {# : t € J;,})® P(dZ/~1). By definition A.1.2 this is a Markov chain.
a

The following example will elucidate the previous definition. It is an abstract description
of the models used in partially observed Markov decision problems.

Example 2.2.1 The variables of interest are X1, ..., X1, Y1,....,Yr and Uy, ...,Up. The X’s
are state variables, the Y ’s are observation variables, and the U’s are control variables. The
causal ordering is

X, Y1,Uq,.... X0, Yy, Ur.

The system specification is given by
{Q(dXt|$t_17 yt_la ut_l)}rle and {Q(dYth, yt_la ut_l)};{zl'

Where Xy — (X3 1,U; 1) — (X2, Y71 U2) and YV; — Xy — (X1, Y=L UPL) are Markov
chains. These are descriptions of the plant and the observation mechanism.

The information pattern specifies Uy — (Y',U'™1) — X' to be a Markov chain. That is
the control U is allowed to observe only the past observations and controls and not the past
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states. A policy, then, is a sequence of stochastic kernels {Q(dU|zt, yt, u! 1)}, such that

QdUy|zt, v, u'™ ") = Q(dU|Et, ot u!™")  Val, &

2.2.2 The Finite Horizon Control Problem

So far we have defined a model. The model, though, only tells us what policies are accept-
able. It does not tell us how to choose a policy. To do that we need an objective. Here we
define the control objective in terms of minimizing an objective function.

Definition 2.2.2 A cost is an integrable function f : Hle Z; — IR™. The control problem
consists of computing the cost

nf Bp (f(Z1,., 71)) (2.1)

and finding the infimizing P.

Example 2.2.1 continued For the partially observed Markov decision problem the cost is

usually of the form
T

FXTYT0T) =3 (X, Uy)
t=1

for some “running cost” c.

We are left now with the question of how to compute the optimal solution to the control
problem. The solution depends on whether we allow centralized or decentralized design.
Roughly speaking centralized design occurs if decision maker j; can decide Q(dZ;, | 27*71)
based on the policies of all the other decision makers and complete knowledge of the system
specifications. In decentralized design decision maker j; does not have access to all of the
other decision maker’s policies or all of the system specifications.

In the next subsection we discuss system and policy knowledge. Then we define central-
ized and decentralized design.

2.2.3 System and Policy Knowledge

One component of our model is the information pattern of each decision maker. This infor-
mation pattern specifies who knows what and when. But that “what” refers to knowledge of
the actual signals in the system and not to the knowledge of the different stochastic kernels
that make up the joint measure. In computing the solution to (2.1) we need to determine
whether the design of the system, i.e. the specification of the decision kernels, can be done
in a centralized manner or a decentralized manner. To get a handle on this we first define
what we mean by system and policy knowledge:
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Definition 2.2.3 The system knowledge, K;, of decision maker j is a subset of
K; €{Q(dZ;, | z*7"), k=1,..,K}.

The policy knowledge, L;, of decision maker j is a subset of the policies
L£; C{Qdz; | 7Y, 1=1,..,L}.

We further insist that decision maker j knows its own policy: Q(dZ; | 271 € Lj.

Definition 2.2.4 We say decision maker j has complete system knowledge if
K; ={QdZ;, | z*71), k=1,..,K}.
And we say decision maker j has complete policy knowledge if

L; ={Q(dZ; | 2*71), 1=1,..,L}.

Definition 2.2.5 We say a system is centrally designed if every decision maker j, € J
has complete system knowledge and complete policy knowledge. Otherwise call the system

decentrally designed.

In section 2.3 we will show that the centrally designed control problem can be formulated

as a dynamic programming problem.

2.2.4 Partial Orderings on the Signal and System Knowledge

We have defined the information pattern and the system and policy knowledge. We now
show that there exists a natural partial ordering on the information patterns and the system

and policy knowledge.

Recall that an information pattern is defined by the set of sets: {J;, : [ =1,..

Denote this by J 2{J;, : I =1,...,L}.

Definition 2.2.6 We say that J <1 J if

Jj, € jjl Vi=1,..,L.

(The “I” in <y stands for “information pattern.”)
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It is straightforward to show that <j is a partial order:
1) J=xJ
2) J =1 J and J <; J imply J = J
(3) J %1 J and J <; J imply J <1 J
Furthermore there is a a unique maximal element in this partial ordering. Specifically
J*={J; + 1=1,..,L }. Where each J; = {1,...,5; — 1}.

It should be clear that when computing an optimal policy more information cannot
increase the optimal cost (recall that an “optimal policy” is a policy that minimizes a given
cost.) If 7 <; J then the optimal cost associated with informa:tion pattern J can be no
less than the optimal cost associated with information pattern /. Thus an optimal policy
for the maximal information pattern will lead to the minimal cost. It may be the case,
though, that there is a smaller, in the sense of <j, information pattern that leads to the

same cost. This is an interesting, though, difficult, question. We discuss this in chapter
three.

We can also define a partial ordering on the system and policy knowledge. Recall that
the system knowledge and policy knowledge are defined by the two sets of sets: {K;, : | =
1,..,L} and {L; : I =1,..., L} respectively. Define S 2 {K;,, £, : | =1,...,L}.

Definition 2.2.7 We say that S <x S if
Kj CKj and £;; CL; Vi=1,..,L.
(The “K7” in <k stands for “system and policy knowledge.”)

It is straightforward to show that < is a partial order. Note that the case where each deci-
sion maker has complete system knowledge and complete policy knowledge is the maximal
element in this partial ordering. (See definition 2.2.4.)

2.2.5 Extensions

In this section we describe two extensions to our main formulation. The first extension
involves conditions on when one can exchange variables in the given causal ordering. The
second extension describes a specialization of the causal ordering on the variables of interest
to a partial ordering on the variables of interest.

Conditions for Changing the Causal Ordering

Often there is flexibility in the choice of order in our causal ordering of variables.

Definition 2.2.8 Let 7 be any permutation of {1,...,T}. Let Z; = Zr@y- Then the models

M with ordering (Z1, ..., ZT) and M with ordering (Z1, ..., Z7) are said to be equivalent if
M = M. (Recall a model is a subset of the set of all measures on Z*.)

22



Proposition 2.2.1 Assume we are given a model M with causal ordering
(Zl_la Zt7 Zt+17 Zgji—Z)

Furthermore assume that either the system specification or the information pattern satisfies
the constraint P(dZsy1 | Z') = P(dZi1 | Z'"). Then there ezists an equivalent model M
with causal ordering

(Z1Y, Zugr, Zy, Ziyy)

Proof: Using the same idea as in lemma 2.2.1 one can show that for any measure P € M the
following Z; 1 — Z!=1 — Z; forms a Markov chain. Thus P(Z; | Z'~,Z; 1) = P(Z; | Zt71).
We can construct a new model M with causal ordering (Z1y ey Zp1y Zpy1y Zigy Zigyoeeey Z).
The system specification and information pattern stay the same. O

The following diagram uses the notation of directed graphical models to show the result
in proposition 2.2.1. [Pea] It shows that Z; and Z;;; can be interchanged in time since
neither influences the other when conditioned on Z*~.

Zy
/! N
z! — Zi,
¢ a
Zi1

Corollary 2.2.1 Let 7 be a positive integer. Assume we are given a model M with causal

ordering
t—1  gt+r T
(Zl ’ Zt ’ Zt+7+1)

Furthermore assume that either the system specification or the information pattern satisfies
the constraints

P(dZ; | Z9Y = P(dZyy | 207 Vi=1,.,7.
Then there exists an equivalent model M with causal ordering
(Z17 25, Ziirin)
where (Zo, ..., Z7) is any permutation of (Zg, ..., Zepr)-
Proof: This follows from repeated use of proposition 2.2.1. O

Proposition 2.2.1 and corollary 2.2.1 show that our model can treat systems where cer-
tain objects occur simultaneously. For example proposition 2.2.1 shows there is no difference
in assuming Z; or Z;;1 occurred first. And in fact they may occur simultaneously. Thus our
model of a system can treat simultaneous events if appropriate conditional independencies
are assumed. These results, though, are more naturally stated if we specialize our causal
ordering to a partial ordering. We do that now.
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Causal Ordering Versus Partial Ordering of Z7

We mention one last extension to our model before presenting the dynamic programming
formulation. Recall that our model is defined by a three-tuple: a causal order, a system
specification, and an information pattern. We can specialize the causal order on (Z1, ..., Z1)
to a partial order. A partial order, as we will see, incorporates added information about
different conditional independencies.

We say a partial order is a specialization of a linear order because for any given partial
order we can “force” a linear order. Let N be an at most countable index set with partial
order <. If n < 7 then we say Z, occurs before Zj;.

Lemma 2.2.2 Given a partial order, <, on N we can define a linear order on N that
preserves the time ordering of the partial order.

Proof: Let A= {n €N : nis a minimal element}. Label the elements of A by 1,...,|A4|.
Let B={n € N : the shortest path from n to a minimal element is of length one}. La-
bel the elements of B by |A|+1, ..., |A|+|B|. Define C = {n € N' : the shortest path from n
to a minimal element is of length two}. Label the elements of C by |A| + |B| + 1,..., |A| +
|B| + |C|. Now continue in this manner. We have constructed a linear order that preserves
the time-ordering of the original partial order. O

A picture may help elucidate the construction. Here a — b means a < b:

VARSI

Ly —> Ze — 4y Zy = Zy
\,1 /‘ Z3 = Z¢

Zqg — Zg can be linearly ordered as 7y = Zyg

N Zs = Zy

Zy Zyg Zg = Ze
Zp =24

Note that the linear order we have constructed introduces many new order relations between
the elements of N. But it still preserves the original ordering of the partial order.
We now specialize definition 2.2.1.

Definition 2.2.9 Let N be an at most countable index set. Let {Z, : n € N'} be the set
of variables of interest. A model, M, is a subset of the set of all measures on the variables
{Z, : n € N}. The model is defined by a three-tuple: partial ordering, system specification,
and information pattern.

(1) Partial Ordering: This is a specification of a partial-order, <, on N. If n < 7 then
we say Zy occurs before Zj.

We further assume that our measure P({dZ, : n € N'}) can be factored with respect to
this partial ordering:

P({dZ, : neN}) = (X/\)fp(dzn | {zz : A <n}).
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As before there are two kinds of factors P(dZ, | {zi : © Xn andn # n}). Separate the
set N into these two disjoint sets:

(a) The system set: I C N
(b) The decision set: J =N\ T

(2) System specification: For each n € I we are given a stochastic kernel of the form
Q(dZy, | {#z» : 7 <n}). For alln € I the measure P € M must satisfy

PdZ, |{Zh=2 : n<n})=Q(dZ, | {zz : n<n}) PHdZ; : i <n})—a.s.

(8) Information pattern: For each n € J the information pattern of decision maker n is
a subset J, C{n : n < n}. The decision kernel Q(dZ, | {zz : 7 < n}) can only be
a function of the information contained in {z; : 1 € Jy}. For all n € J the measure
P € M must satisfy

PdZ, |{Zh=21 : n<n})=Q(dZ, | {zz : n<n}) P{dZ; : n<n})—a.s.

Summary

In this section we have defined a general model for treating distributed systems. We have
defined the concepts of information pattern and system and policy knowledge. We showed
that systems defined on partial orders are special cases of our formulation. We now discuss
the dynamic programming formulation for centrally designed systems.
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2.3 Dynamic Programming Formulation

In this section we describe the dynamic programming formulation for centrally designed
systems. For the rest of this section we will assume that all the random variables {Z;} are
finite valued random variables. This allows the interchange of infimizations and expectations
in the Bellman recursion to be well-defined. See [BS] for more general conditions that allow
this interchange.

By Bellman’s principle of optimality we may write the optimization in equation (2.1) as

Piga Ep (f(Zy,...,Z7))

= Ep inf Ep . inf
{Q(Zj1|z]1—1)} {Q(ZjL71|Z]L_1_1)}
E inf Ep |f(Z1, . Zr) | 2777 ZjL_l_l] . zjl_lu .
PLQ(Zlezfrl)} P 1715 71) | ] ‘ ‘

Let us examine the j;th infimization. The decision maker at time 7; needs to compute

inf Ep [ .. inf Ep [f(Zl""’ZT) ‘ sz—l] o ‘ Zj;—l] ]
{Q(z;,|27t=1)} {Q(Z; |27~1)}

Recall the information pattern for decision maker j; is specified by the set J;. The
decision maker has knowledge only of the signals in {#; : ¢t € Jj, }. The jith infimization can
be rewritten as

inf EP{EP l .. inf  Ep [f(Zl,...,ZT) |sz*1] . |zj’1] ‘ {zt:terl}}.
{Q(z;,1z—1)} {Q(2;,|772-1)}

In order to compute the inside expectations we need to know the conditional measure
P (ZT | zjl_l) and in order to compute the outside expectation we need to know the con-

ditional measure P (Z7=1 | {2 :t € J;,}) . We treat each case now:

(1) P(27]2701) = QZ; | #Y) @ (®1_j+1 P (2] 2°1)). This product consists
of system kernels and decision kernels. The decision maker has complete system
knowledge. Furthermore since dynamic programming is a backward recursion the
decision maker knows what the future polices will be also. Thus the decision maker
knows the conditional probability P (ZT | zjl_l).

(2) In order to compute P (Z/~! | {2 :t € J;,}) we will first compute P (Z/~!). Now
P (Zi7Y) = ®{’:EIP (Z¢ | 2471). This product consists of past system kernels and
past decision kernels. The decision maker has complete system knowledge. But unlike
the case of future decision kernels it cannot compute the past decision kernels. To
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get around this problem we assume that the decision maker has access to the past
decision kernels. Specifically we assume that the state of the dynamic programming
recursion at time j; consists of the pair

({zt 1t e J;t, {Q (Zj \ ijl) D)= ---aj(l—l)}) .

Now the decision maker can compute P (Zj’ _1) . Consequently it can compute
Pz | {z:t € J;}).

Note that at the end of the dynamic programming recursion decision maker j; will have
chosen a policy kernel Q*(Z;, | 2/27!). (Where * means optimal.) The optimal policy for
decision maker jo depends on Q*(Zj, | 2/'='). But this is part of jo’s information. Thus
we see that at the end of the backward dynamic programming recursion we need to make
a forward pass to substitute in the past optimal policies.

We have just shown that centrally designed systems with arbitrary information patterns
can be solved via dynamic programming. Conceptually the dynamic program is straightfor-
ward. In practice though it may be very complicated to implement. Furthermore even if the
objective function is convex the intermediate optimizations in the above dynamic program
may be non-convex. See for example Witsenhausen’s counterexample paper. [Wit3]

If the information pattern of decision maker j; contains the whole past, i.e. J; =
{1,...,51 — 1}, then the decision maker does not need to know the past decision kernels.
This follows because P(Z%~! | 2/t~1) is just a Dirac measure. This is a special case of
Witsenhausen’s work on policy independence of conditional expectations. [Wit2] This is
also the traditional case, i.e. full state observation, dealt with in dynamic programming.

At the other extreme we can imagine a case where the information pattern for decision
maker j; is empty: Jj, = (. This means that there is no signal feedback to the decision
maker. In this case the decision maker needs to know all of the past decision kernels.

There are many cases in between these two extreme cases. Clearly there is a tradeoff
between signal knowledge, as captured by the information pattern, and system and policy
knowledge. We have already shown that there exist natural partial orders on the information
pattern, system knowledge, and policy knowledge. We discuss some of the interactions
between differing signal and system knowledge in chapter 3.

We now continue example 5.2.1 of the partially observed Markov decision problem.
Example 5.2.1 continued In this case the information pattern for decision maker Uy is
(Y, U'"1Y). Thus the infimization in the Bellman recursion requires us to compute

PXLYLUT |yt uf ™),

As is well known, if the system dynamics are Markov and the cost additive then the proba-
bility of the current state given the past information is a sufficient statistic for the problem.
Thus we need only compute P(X; | y*,u™ ). But this is the usual filter for estimating the
state:
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To compute this recursion the decision maker needs to know the values of the past controls,
{us}, and the system kernels: {P(Y; | )} and {P(Xi+1 | z¢,ur)}. In this case we do not
need to augment the state of the dynamic programming recursion with information about
the past policies. This is because the decision maker at time t has access to all the past
controls u!~' and hence does not need to integrate them out.

2.3.1 Difficulties with Decentralized Design

We have shown that dynamic programming can be used to design systems in a centralized
way. Designing systems decentrally is much harder. This is due in part because there is no
obvious analog of dynamic programming to apply here. In the centrally designed case the
decision makers are coordinated in their design effort. There is an inherent game-theoretic
issue when the decision makers don’t have complete system or policy knowledge. We address
a particular aspect of this issue in chapter three. It is our belief, though, that the above
formulation may help in the characterization and solution of certain classes of decentrally
designed distributed systems. But we leave this for future work.

There is the possibility that the different decision makers can learn the other decision
makers’ policies over time . This can occur, for example, if each decision maker knows the
objective function and has the proper information pattern. The proper information pattern
allows the decision maker the opportunity to learn another decision maker’s policy through
input/output data. The knowledge of the objective function and an assumption of rational
design can also help the decision maker learn the other decision makers’ policies. We leave
the possibility of learning to future work.

There are three different kinds of knowledge in distributed systems. They are the
information pattern, the system and policy knowledge, and the knowledge of the objective.
Said succinctly they are knowledge of the signals, the system, and the goal. Each type of
knowledge or lack of knowledge can contribute a different kind of complexity to the design.

Many distributed systems are designed in a centralized manner. Most of the systems
in this thesis are centrally designed. We have shown that the issue of nontraditional in-
formation pattern has been, at least conceptually, taken care of provided one is allowed
to centrally design the system. Thus one may choose to rethink our popular notion of a
distributed system to not be one with nontraditional information pattern but to be one that
is designed decentrally. That is a system where the decision makers do not have complete
system or policy knowledge.

The third sort of complexity occurs if one assumes that each decision maker has different
knowledge about the control objective or have different control objectives altogether. This
added complexity will not be dealt with here.

In summary there are three kinds of knowledge: signal knowledge in the form of an
information pattern, system and policy knowledge, and control objective knowledge.
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2.4 Summary

In this chapter we introduced a general formulation for modeling distributed control prob-
lems. We examined the roles that information patterns and system and policy knowledge
play in this framework. We showed that centrally designed systems with arbitrary informa-
tion pattern can be solved, in principle, via dynamic programming.

We view a model as the set of all measures that complete a partially specified joint
measure. And we view control as a selection of one of these consistent joint measures.
Another way to view control is as the interconnection, under differing information patterns,
of different stochastic kernels representing the system.

In this thesis we will apply this formulation to the problems of channel coding with feed-
back, sequential rate distortion, and control when there is a communication link connecting
the sensor to the controller. For all these problems we examine the situation where central-
ized design is allowed. For the control problem we also examine some issues of decentralized
design.
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Chapter 3

Control of Deterministic Systems
Under Communication Constraints

3.1 Introduction

In this chapter we examine the deterministic control problem under communication con-
straints. The reason we first examine the deterministic case instead of considering the
stochastic case, covered in chapter 6, is that many salient issues can be brought out in this
“simpler” setting. We examine traditional control properties, e.g. observability, stability,
controllability, as well as some performance issues for this class of problems. We almost ex-
clusively study the discrete time case. A discrete time model is more consistent with today’s
digital communication links. The communication constraint we analyze in this chapter is a
discrete time noiseless digital channel capable of transmitting R bits per time step.

In section 3.2 we discuss the problem setup in the context of a control problem where
the information pattern as defined in the previous chapter can be quite general. In section
3.3 we provide lower bounds on the rate required to achieve observability, stability, and
controllability. These bounds are independent of the information pattern chosen and the
system and policy knowledge chosen.

In section 3.4 we provide necessary background for discussing schemes that upper bound
the rate required to achieve the given control objectives. Here we describe the different
encoder classes of interest to us and the primitive quantizer. We also provide the key
technical lemma which relates a measure of the system’s growth to the channel rate. In
section 3.5 we discuss encoder class one. Encoder class one, as we will show, has the
“best” information pattern and system and policy knowledge. We will show that many of
the lower bounds of section 3.3 are achievable under encoder class one. In section 3.6 we
discuss encoder class two. This encoder class has a more realistic information pattern and
system and policy knowledge. The rates, though, required to achieve the control objectives
are larger than those in encoder class one.

In section 3.7 we discuss the case where there are multiple sensors. We relate this
problem to the Slepian-Wolf coding problem. In section 3.8 we comment on the sampling
of continuous time systems. In section 3.9 we discuss some performance criterion most
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notably the linear quadratic cost criterion. We also introduce the concept of covering
numbers. Finally we end with a discussion in section 3.10.

In summary there are two main contributions in this chapter. First we compute a lower
bound on the rate required to achieve different control objectives. This lower bound is
independent of the information patterns in place and depends only the plant. Second we
give conditions on the information pattern for achieving this lower bound. We examine the
rate in cases where we have different information patterns.

We end this introduction with three observations that will motivate our analysis. They
are not meant to be rigorous statements but rather they are meant to guide our thinking.

Observation 1: Why feedback If there is no uncertainty in the initial position, no
uncertainty in the plant dynamics, and there are no process disturbances then one can
achieve most control objectives using an open loop controller. A closed loop controller for
the same problem is often less complex to realize. Furthermore a closed loop controller can
more robustly deal with the aforementioned uncertainties in initial position, plant dynamics
and process disturbances. Thus the point of feedback, if we bar complexity considerations,
is to transmit from the plant to the controller information about the state of the plant
and the plant itself that the controller does not know. The question then becomes what
information is relevant and what communication scheme should be used to transmit that
information.

Observation 2: Full observation performance If the observation mechanism is in-
stantaneous and lossless then we call the observation a full observation. We assume the
control objective of interest is achievable under full observation. Clearly if an objective
cannot be achieved under full observation it cannot be achieved under the rate constrained
observation. Conversely if a control objective can be achieved under a rate constrained
observation then it can be achieved under full observation.

Observation 3: Number of control sequences In a time horizon T' the decoder will
receive one of at most 27 % channel symbol sequences. If the encoder, decoder, and controller
are all deterministic then the number of different possible control sequences in this time
must be smaller than or equal to 272, Intuitively then a control objective under rate R can
be achieved only if we can approximate well the control sequences for the full observation
problem by one of only 2% control sequences. Thus in terms of the underlying quantization
problem one may think of quantization as living in the control sequence space.
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Figure 3-1: System

3.2 Problem Setup

Throughout this chapter we consider the following linear time-invariant system:
Xo€ ANy, Xy1=AXy+BU+W,;,, Y, =CX; Vt>0 (31)

where {X;} is a IR%valued state process, {U;} is a IR™-valued control process, and {Y;} is a
IR'-valued observation process. The sequence {W;} is a IR%valued disturbance process with
|[Will2 < D Vt. We see that A € R4, B € R>™ , and C € IR'*?. The initial position is
X € Ay where Ag C IR%. If C = I, where I is the identity matrix, then we have full state
observation. See Figure 3-1.

In this chapter we consider a noiseless digital channel that can transmit at each time
step one of 2f symbols o € . Note this is a hard rate constraint and not a time average
rate constraint.

Convention 3.2.1 Throughout this thesis we will allow R to take on real values.

This convention allows for an easier analysis. To determine the rate in practice one can
take the ceiling of R to get an integer.
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3.2.1 Information Pattern and System Knowledge

The control problems we look at involve the design of the encoder, decoder, and controller.
We must specify the information pattern of each component. Each component will im-
plement a “policy.” Thus we further need to specify the system and policy knowledge of
each component. These were discussed in chapter two. The information pattern can be
considered “online information.” The a priori description of the policies can be considered
“offline information.”

Endow IR with the usual Borel o—field and ¥ with the power set o—field 2. Assume
throughout this chapter that all maps between these measurable spaces are measurable.

We now provide a general description of the encoder, decoder, and controller.

Encoder:
The encoder at time ¢ is a map
& : R x 5t x R™ — 5

that takes
(Yt,o,t—l’ Ut_l)—V ot

Note that we may restrict the inputs to the encoder. For example the encoder may not
have access to the past controls. We will be more specific when we discuss the different
encoder/decoder setups in section 3.4.

Decoder:

Let Q; C IR®. The decoder at time ¢ is a map
D, : S x R™ — 2T

that takes
(o', U1 Q.

The output of the decoder is a measurable set representing the uncertainty in the state esti-
mate. In the parlance of partially observed control problems this is called the “information
state.” We will formally define information state in the sequel. But for now it is sufficient
to just consider it a set. Before we can describe how the information state is calculated we
must specify what knowledge the decoder has of the encoder and controller. We will be
more specific when we discuss the different encoder/decoder setups in section 3.4.

One may question why €, an information state, is the appropriate output for the
decoder. Throughout this chapter we will assume that a separation structure between
controller and decoder exists. This is a reasonable assumption as many partially observed
control problems lend themselves to a separation theorem. (Note this separation theorem
does not refer to the separation between source and channel coding but instead refers to the
separation between the state estimator and controller.) We will show that for encoders in
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encoder class one, to be defined in section 3.4, that there is no loss of generality in making
this separation assumption.

Controller:

The controller at time ¢ is a map
Ct : 2]Rd - R™

that takes
& U,.

System and Policy Knowledge:

We assume that for all £ the encoder, decoder, and controller at time ¢ have knowledge
of the dynamics of the plant. This knowledge is denoted F 2 {A, B,C}. Similarly the
knowledge of the other maps are denoted £ 2 {&},D & {D;}, and C 2 {C;}. We say, for
example, that the encoder at time ¢ has full decoder knowledge if it knows D.

In this chapter one of our main interests will be in deciding whether the encoder should
have knowledge of the controller or not. In fact this is one of the major distinctions between
the two encoder classes that we define in section 3.4.

Control Objective Knowledge

The final piece of knowledge is the “control objective.” This knowledge becomes important
when trying to optimize the design of the encoder, decoder, and controller. We assume that
the encoder, decoder, and controller all have the same knowledge of the control objective.
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3.3 Lower Bounds that are Independent of the Information
Pattern

We now examine the control properties of observability, stability, and controllability under
a rate constraint. Note that the usual algebraic conditions, e.g. certain Grammians having
full rank, are necessary but no longer sufficient. Furthermore we will have to deal with
asymptotic versions of observability and controllability.

In this subsection we provide lower bounds on the rate required to achieve the differ-
ent control objectives. These lower bounds will be “universal” in the sense that they hold
independently of the actual encoder, decoder, and controller used. That is they hold inde-
pendently of the information pattern and system and policy knowledge chosen. One should
note the analogy with Fano’s inequality used in converse theorems in information theory.
Fano’s inequality holds independently of the actual encoder and decoder used. (For Fano’s
inequality see the comments after lemma 4.4.6.)

We will show in section 3.5 that there exists an information pattern such that an encoder,
decoder, and controller exist for which these lower bounds can be achieved. Thus the lower
bounds are tight.

3.3.1 Observability

The purpose of any good observer is to distinguish points in the state space. In a time
horizon of T' we have at most 27% possible symbols arriving into the decoder. Thus we
must be able to approximate the state by one of 27% points.

There are many examples of systems where the choice of control can effect the estimation
error of a given observer. This is sometimes called the “dual effect” of control on state
estimation. In other examples the ability to observe the state is independent of the control
signal used.

First some definitions. Recall the information state 2; is the decoder output at time ¢.

Definition 3.3.1 Let the state estimate at time t be X; = centroid($}). (Where “centroid”
refers to the center of mass with respect to the uniform distribution.)

Definition 3.3.2 Let the error be e = X; — X't where X't is the state estimate.

Definition 3.3.3 System (3.1) is asymptotically observable if there exists a control se-
quence {ut} and an encoder and decoder such that

1 Stability: Y e >0 3 6(€) such that | Xol|2 < d(€) implies ||et]|o < e Vt > 0.

2 Uniform attractivity: Y e >0, ¥V 6 >0 3 T(e,0) such that || Xol|l2 < & implies
lledle <€ t>T.

Point one states that the error cannot grow without bound for bounded Xy. The second

point states that the error decreases to zero uniformly in X3. Note also that uniform
attractivity is defined for all 4. Thus our definition of asymptotic observability is global.
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Definition 3.3.4 Systemn (3.1) is uniform in control asymptotically observable if there
exists an encoder and decoder independent of the control sequence applied such that the
system is asymptotically observable.

Note that these definitions differ from the usual definition of observability. The usual
definition for deterministic systems without disturbances states that given enough time one
can identify the initial condition exactly. The usual prescription is that once you know the
initial condition and the controls one can compute the state at any time. In our case we
can only distinguish between 2'% initial positions in time ¢. It is for this reason that we
introduce the definition of asymptotic observability.

In the proofs that follow we will provide conditions for diam(€;) — 0. Clearly the
diameter of €); going to zero implies the error goes to zero. We choose to work with the
information state because it is a natural object to work with in our approach to analyzing
observability.

Now we are prepared to give a necessary condition on the rate required to achieve
asymptotic observability.

Proposition 3.3.1 Given system (3.1) a necessary condition on the rate required so that
the system is uniform in control asymptotically observable is R > 354y max{0, log [A(4)l}.

Proof: Assume without loss of generality that the initial uncertainty contains the bounded
set Ag = {X : | X|loo < L}, that A = diag[)1,.., Ag] is a diagonal matrix, and that there
are no disturbances. We will provide a lower bound on the rate required for asymptotic
observability.

Fix an arbitrary control sequence Uy, ...,U;_1. The set of points that X; can take
contains the following set

L L L L
Athg — oy = {X P X —ag € [N F AT x e x [ E\Adﬁ]}

where a; = ;-;%) AtflijUj.

To say that the system is uniform in control asymptotically observable means that for
every € > 0 there is a T'(e, L) such that for t > T'(e, L) we have ||es||2 <€ VXy € Ay, V {U;}.

A lower bound on the rate can be computed by counting the number of regions it takes
to cover A*Ag — ay by regions of diameter less than 2e. If the diameter of the uncertainty
set ; goes to zero then the volume of €); goes to zero. The converse, though, is not
necessarily true. However the converse is true if we restrict ourselves to computing the
volume of the projection of the uncertainty set onto the unstable subspace. The diameter
of the uncertainty set goes to zero if and only if the volume of the uncertainty set projected
on the unstable subspace goes to zero.

Let Aq,..., Ay, be the unstable eigenvalues. Given a region with diameter 2¢ project it
onto the unstable subspace. The largest volume this projected region can have is that given
by a wu-dimensional sphere of diameter 2¢. Specifically the projected volume is < K, e*
where K, is the constant in the formula for the volume of a sphere.
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Thus to cover A'Ag — oy by regions of diameter 2¢ we require at least

1 L% A p.. |t
> log
t+1 Kyet

= ilo |X|+Llo L
= 2 8 [Ad P g€

R

. log(A1...Au) Ky

U L 1

= > max{0,logA(4)} + t—l—llng_ P

A(A)

log [A1.. A | Ky

the second term is positive and for ¢ large the third term becomes negligible thus

R> Z max{0,log |A(4)|}.
A(4)

Note that if €(¢) is allowed to shrink sub-exponentially with ¢ then the second term goes to
zero. O

3.3.2 Stability

In this section we discuss stability under a rate constraint. The lower bound uses a counting
argument similar to that given in proposition 3.3.1. Assume that in system (3.1) the pair
(4, B) is stabilizable.

First though some definitions. We combine both the traditional notions of stability and
attractiveness in the following definition.

Definition 3.3.5 System (3.1) is asymptotically stabilizable if there exists an encoder,
decoder, and controller such that

1 Stability: Y € >0 3 6(€) such that || Xo||2 < d(e) implies || X]|2 < e VE > 0.

2 Uniform attractivity: ¥V e >0, § >0 3 T(e,06) such that | Xol|2 < 0 implies
| X¢tllo <€ VE>T.

Point one states that the state cannot grow unbounded for bounded X,. The second point
states that the state decreases to zero uniformly in Xy. Note also that uniform attractivity
is defined for all 4. Thus our definition of asymptotic stability is global.

Proposition 3.3.2 We are given system (3.1). A necessary condition on the rate for
asymptotic stability is R > 35 4) max{0, log |A(4)[}.

Proof: Without loss of generality assume that A is a diagonal matrix with real eigenvalues
A; and that there are no disturbances. We will provide a lower bound on the rate required
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for uniform asymptotically stability in this case. Let {X : || X||oc < L} C Ap. For a given
control sequence Uy, Uy, ...,U;—1 we have

t—1
X, =A'Xo+ Y A"''BU;.
=0

The condition for uniform stability states that for € > 0 there exists a T'(¢) such that
Vt > T'(e) we have || X¢||oo < € for all initial conditions X € Ay.
For € > 0 define the balls I', parameterized by the control sequences Uy, ...,U;_1, to be

Py = {Xo ¢ [[Xilloo < €}

A lower bound on the rate can be computed by counting how many I'-boxes it takes to

cover Ag. Note that the dimensions of any I' ;t-1 = {Xp : || X¢[|oc < €} box are |/\2f‘t,..., ‘fjp-
0

Ignoring the stable subspace we get

2L)

1
R Z —IOg 2¢ ( 2¢
t ™ X oo X pWi
v U L
= D" log(Il) + 7 log(2)
j=1 ¢

(Where Ag, ..., A, are the unstable eigenvalues.) If €(¢) is growing sub-exponentially with ¢
then the second addend above goes to zero. If we want to converge exponentially we require
asymptotically an extra lim; o ¥ log(%) bits. O

3.3.3 Controllability

In this section we discuss controllability under a rate constraint. Assume that in system
(3.1) the pair (A, B) is controllable.

There are differences in the definitions of reachability, controllability, null controllabil-
ity, etcetera. Furthermore under a rate constraint one can only hope for an approximate
controllability type result. The usual definition of controllability to a point P is that for
any initial point X there exists a control sequence such that one can drive Xy to P. The
usual definition of reachability from Xj is that given any point P there exists a control
sequence that drives Xy to P. Neither is satisfactory for us since we cannot assume exact
knowledge of Xy. Thus we make the following definitions:

Definition 3.3.6 System (3.1) is controllable under a rate constraint if for all Xy, P € IR,
Ve > 0 there exists a controller, encoder and decoder and a t(e, Xo) such that || X: — P|| < e.

Definition 3.3.7 System (3.1) with bounded Aq is uniform in initial state controllable
under a rate constraint if for all P € IR%, X, € Ag, Ve > 0 there exists a controller, encoder
and decoder and a t(e,Ag) such that | Xy — P|| <e.
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Proposition 3.3.3 For system (3.1) with bounded Ay a necessary condition on the rate for
uniform in initial state controllability under a rate constraint is R > 375 4) max{0, log [A(4)|}.

Proof: By proposition 3.3.2, the rate condition is necessary to drive the system to the

origin. (Driving the system to the origin is sometimes called null-controllability.) Thus the
rate condition is necessary for the more general controllability problem. O
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3.4 Encoder Classes, Primitive Quantizers, and the Key Tech-
nical Lemma

In this section we provide background material for discussing schemes that upper bound the
rate required to achieve the given control objectives. We first define the different encoder
classes of interest to us. We then discuss the role of equi-memory. Next we define a primitive
quantizer. We end with a statement of the key technical lemma.

3.4.1 Encoder Classes

Recall that the encoder at time ¢ is a map & that takes (Y?,0'~1, U'"!) - 0y. In this case
the encoder knows the past states, past channel symbols, and past controls. It may seem
unreasonable to allow the encoder access to the past controls. For example the encoder
may be geographically separated from the plant. It may even seem unreasonable to allow
the encoder any memory whatsoever.

We can imagine a continuum where on one end we have an encoder with access to all
the past information (Y?,o!=!,U~!). On the other end we have an encoder with access to
only Y;. Of course there are many cases in between. In fact, from chapter 2, we know there
is a partial order on the information patterns of the encoders. Our goal is to treat these
two encoders plus another encoder that is in between the two.

We first make explicit the partial ordering on the set of all information patterns. We
then describe the different encoders that we will examine in this chapter.

Partial Ordering of the Information Patterns
Recall our discussion in chapter two.

Definition 3.4.1 The information pattern is defined as T = {{I¢,}_,,{Ip,}1_1}. Where
Ig, C R+ % 3t x R™ s the information available to the encoder at time t. Similarly
Ip, C T x R™ s the information available to the decoder at time t.

We define a partial ordering on information patterns.
Definition 3.4.2 We say T <X J if for all t we have Ig, C Jg, and Ip, C Jp,.

The unique maximal element in this partial ordering is 7* = {{I3 }{_;,{Ip, }{=1}. Where
I3 = RUHD x 5 x R™ and I}, = S x R™.

As stated in chapter two when computing an optimal policy more information cannot
increase the optimal cost (assume here that “optimal” means a policy that minimizes a
given cost.) Thus an optimal policy for the maximal information pattern will lead to the
minimal cost.

We now describe four encoder structures with nested, with respect to the partial order,
information patterns. We distinguish between encoders that observe, and/or can compute,
the control signals and one that does not. This distinction is important. While the encoder
with access to the controls has lower rate requirements it is less practical in distributed
settings. Among the encoders that do not observe the control we make a further distinction
between those that have memory and those that do not.
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Encoder class 1

In this class the encoder is a map, &, that takes (Y?, o'=!,U'"!) s o;. The decoder at time
t is a map, Dy, that takes (of,U'"!) i ;. We assume that both the encoder and decoder
have knowledge of the dynamics F. Furthermore we assume that the encoder knows D and
the decoder knows £. We do not assume that the encoder or decoder knows C. Also we do
not assume that the controller knows &£ or D.

Encoder class la

Encoder 1a is not allowed to observe the control signals. Thus it is a map, &, that takes
(Yt,0t1) — o04. The decoder at time t is a map, D;, that takes (of,U'"!) — ;. We
assume that the encoder knows D and the decoder knows £. Furthermore we assume that
the encoder knows C. Since the channel is noiseless the encoder can simulate the actions of
the decoder and controller and thus compute the control signals. Note because the encoder
has policy knowledge it can reconstruct signal knowledge not directly available to it.

For the noiseless channel, encoder 1 and encoder 1a both effectively observe the control
signal. In chapter six, where we discuss noisy channels, this will no longer be the case. The
point of the distinction between encoder 1 and encoder 1a is that, though both encoders can
observe/produce the same values (Y, 0!~ U'"!), the “physical” realizations are different.
In the former case we have a physical link connecting the previous Uy’s to the encoder. In
the latter case the encoder has knowledge of the map that produces the Uy’s. There is an
engineering tradeoff between signaling over a physical link versus incorporating knowledge
and computation at a given component.

In both encoder 1 and 1a the optimal action for the encoder is to compute the optimal
control signal, quantize it appropriately, and then treat the decoder and controller as table
lookups. (In this case the “optimal control signal” is that control signal we would compute
under full observation.) By assumption the control law will be a deterministic function of
the state. Thus any partition of the control space induces a partition on the state space.
In this chapter we choose to quantize the state space.

Encoder class 2 with memory

In this class the encoder is a map, &, that takes (Y!,0'"!) oy We assume that the
encoder does not know the control law C. (Thus this is not an encoder in encoder class 1a.)
The decoder at time ¢ is a map that takes (o, U"!) — Q. Furthermore we assume that the
encoder knows D and the decoder knows £. Note that this is an example of decentralized
design. The encoder is not allowed to know the control policy.

In this case it is less obvious what the encoder should transmit. Though the encoder
does not know the control signal or law we allow it to know the objective. For example if
the objective is stability then the encoder knows that under a good control law the state
will be converging to the origin. Thus the encoder can choose quantizers centered at the
origin with shrinking dynamic range. The issue then is to determine at what rate should
the dynamic range shrink. This will be discussed in section 3.6. Generally speaking, even
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if the encoder does not observe the control signal, knowledge of the control objective will
restrict the set of control signals available.

Encoder class 2 without memory

In this class the encoder is memoryless. It is a map, &, taking Y; — oy. This is the simplest
encoder that we consider. In this class we assume that the encoder does not know the
control law C but we assume that it knows the control objective. The decoder at time ¢ is
a map that takes (of,U"!) — . Finally we assume that the encoder knows D and the
decoder knows £. Once again this is an example of decentralized design. This encoder is
very simple and make the least demands on signal and system knowledge.

We summarize the properties of the different encoder classes in the following table:

‘ Encoder Class ‘ Observations ‘ Encoder’s System Knowledge ‘
1 Yt o=l Ut-t F.E,D
la Yt ot-! F.E,D,C
2 with memory Yt ottt F,E,D
2 without memory Y; F,E,D

We assume that all the encoders know the control objective. One could also envision a
setup where the encoder does not know the control objective. In this case the encoder will
have to learn the objective. We leave this scenario to future research.

For all the different encoder structures above we assume that the decoder, D, is a map
that takes (of, U'~!) = €;. We also assume that the decoder knows £ and F. The encoder
and decoder need to work together. Informally, the job of the decoder upon receiving o; is
to invert the encoder operation. To do this it needs to know what the encoder operation is.
Knowledge of £ is not enough to insure this. Thus we introduce the notion of equi-memory.

With the assumption of equi-memory and the definition of information state we can give
a specification of how 2; is computed.

3.4.2 Equi-memory

We can define a state for the encoder and decoder at each time step. Specifically for encoder
1 let
II = v e R x £ x R™ vt > 0.

For encoder 2 with memory let
e — (vl ot e R x Bt i > 0.
For encoder 2 without memory let

RO — 9w > .
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For all the decoders let
Jy= (71U e ot x R™ vt >0.

Replace Y; by X; when the encoder can observe the state.

Use I} to denote any of I}, I7™™ or 12M° ™™ Gimilarly let £ represent any of
the encoders. For a fixed I} define g}‘t* (Y2) £ & (Y, I}) (where the latter is an abuse
of notation.) Define wvalid (I}, J;) to mean any pair (I}, J;) capable of being produced
by the system (i.e. the encoder, decoder, controller, and plant) at time ¢. Finally let

ELT(@ LY, : (Y1) =0).

Definition 3.4.3 An encoder/decoder pair are said to be equi-memory if for all valid (I}, J;)
and oy € X the information (Jy,01) is sufficient to determine the set E_t*l,é*(at). Specifically
there exists a map

DEM . o1 x B™ 5 2R

taking
(0T = & (o)

The superscript “em” represents “equi-memory.”

Implicit in this definition is that the information in J; is sufficient for the decoder to invert
the encoder map.

Assumption 3.4.1 Throughout this chapter we will assume that the encoder and decoder
are equi-memory.

Definition 3.4.4 An information state € is any set that contains X; at time t.

Note that €; can be unbounded. This definition is different than the traditional definition
of information state for deterministic systems. In the traditional definition £2; contains all
X; consistent with the observations of the decoder. Our weaker definition is sufficient for
our purposes here.

We need to show that a nontrivial €; can be computed (i.e. an ; # IR?). By equi-
memory the decoder can invert the encoder map. Thus at time ¢ upon receipt of o; the
decoder can determine that Y; € £ _:1,5* (0t). Furthermore the decoder knows the observation

matrix C. Thus it knows that X; € {X : CX € E_}%g*(at)}. Of course one can compute a
smaller set €2; by incorporating the other information the decoder has. We will discuss this
when describing specific schemes.

3.4.3 Primitive Quantizer

The space of encoders defined so far is still quite large. We will further restrict the encoders
to use a primitive quantizer at each time step.
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L,

Figure 3-2: Primitive Quantizer

Definition 3.4.5 A primitive quantizer is a four-tuple (C, R, L, ®) with C € IR® represent-
ing the centroid, R = (R1,...,Ry) € R%" representing the rate vector, L = (L1, ...,Lg) €
Rt representing the side-lengths of the dynamic range, and ® an invertible matriz repre-
senting a coordinate transformation. This quantizer partitions the region

L, L Ly Ld]}}

_ d . _ - =
A_{XefR L B(X =) € (= P x X [,

into bozes with side lengths 2LRZ . Let R = E;j:l R; be the total rate. Each of the 2 bozes is
represented by an element o € 3. Upon observing X the (C, R, L, ®)-quantizer subtracts off
C, applies the coordinate transform ®, determines which box it falls into, and then transmits
the o representing that boz. If X falls outside the region A then the quantizer transmits a
special symbol representing an overflow. Thus we have 2% 4+ 1 symbols. The set A is called
the dynamic range of the quantizer.

Figure 3-2 shows a two-dimensional primitive quantizer with R; = 3 and Re = 2.

The encoder based on its information I selects a (C, R, L, ®)-quantizer. Upon observing
Y; it computes the appropriate o; and transmits it across the channel. Note that the decoder
needs to know which quantizer was selected so that it may decode the received symbol oy
appropriately. This is assured by equi-memory. The equi-memory condition forces the
encoder and decoder to make decisions based on the same information.

Assumption 3.4.2 All the encoders in this chapter are restricted to using primitive quan-
tizers.
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One may ask why we have chosen boxes instead of more general polytopes to partition A.
Clearly if one uses general polytopes one should achieve a lower rate than the rate one gets
when restricting oneself to boxes. However the analysis for the boxes case is much easier.
We postpone discussion of more general partitions to chapter five where we introduce the
sequential rate distortion problem. In certain cases though we will show that schemes using
boxes are sufficient to achieve the information theoretic lower bounds provided in section
3.3. A further reason for using boxes is their simplicity in practice.

3.4.4 Key Technical Lemma

Here we provide some notation and results that will be used throughout this chapter. In
general the growth of the uncertainty in the state estimate can be characterized by the
eigenvalues of a certain matrix. In order to understand this characterization we put forth
the following definitions and lemmas.

We are interested in systems of the form X;; = AX; (ignore the control and disturbance

terms for now.) Assume X; € { —L LIx..x[-L, %]} We would like a way to calculate
the box that X; i lives in. This subsection provides a way to upper bound that box.

Let A € IR%? Then A has a real Jordan canonical form.

Theorem 3.4.1 For any real A there exists a real valued nonsingular matriz ® and a real
valued matriz Y such that ®A®~ = Y = diag[Jy, ..., J;m]. Where each Jj, j = 1,...,m,
is a Jordan block of dimension (geometric multiplicity) d;. Clearly di + ... + dp = d. The
Jordan block associated with a real eigenvalue \ takes the form

Al
Al

A

The Jordan block associated with the complex conjugate pair of eigenvalues A\ = p(cos +
isin@) takes the form

D I
D I
D
where D = p’[‘(e) Where 7'(0) = l _C(;fnge (831022 ]

Proof: See theorem 2 of section 6.4 in [HS]. (Note p >0.) O

We now define a matrix H that serves to undo the rotation caused by each of the
complex conjugate eigenvalue pairs.
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Definition 3.4.6 Define H = diag[H,, ..., Hy,). Where each Hj is associated with one of
the Jordan blocks J;. Specifically H; = I if J; is the Jordan block with real eigenvalue
Nj. And H; = diag[r(0)~",...,r(0)™"] if J; is the Jordan block associated with the complex
conjugate eigenvalues p(cos @ £ isin®).

Note that if A has all real eigenvalues then H = I.
The following lemma shows that Y and any power of the matrix H commute.

Lemma 3.4.1 HIYH t=17

Proof: See section A.2 in the appendix. O

We want a way to bound the growth of the operator HY. Note that this is a block
diagonal matrix: HY = diag[K\, ..., K4]. With K; = J; if J; is the Jordan block associated
with a real eigenvalue. Otherwise

K; = H;J,
pl r(0)!
pl  r(6)~

pl

if J; is the Jordan block associated with a complex conjugate eigenvalue pair.. Note that
the eigenvalues of the upper triangular matrix K are all equal to p. (See page 39 of [HJo].)

We will bound the growth of HY by introducing a new matrix T that bounds HY.
Then we will bound Y. To define T we first need to define the following K versions of the
K matrices. For each Jordan block J; associated with a real eigenvalue \; define

Al 1
K — Al 1

X
|

A

For each Jordan block J; associated with a complex eigenvalue p(cos § + isin@) define

pl O
K, = pl O
pI
where O = [ i i ] . Finally define T = diag[K1, ..., K.;]. Note that the ijth entry of the

matrix T is nonnegative and greater than or equal to the absolute value of the ijth entry
of HY.
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For a given rate vector R define

282

=
I

_1
2Rq

We are now finally in a position to prove the key technical lemma.

Lemma 3.4.2 If for all i we have R; > max{0,log |\;|} then TFg is stable. If there ezists
at least one i such that
R; < max{0,log |\;|}

then TFE is unstable.

Proof: See section A.2 in the appendix. O

We conclude this section with an important application of lemma 3.4.2. Let X; 11 = AX;
and let Z; = H'®X;. Note that if A has real eigenvalues then Z; = ®X;. The H is needed
to undue the rotation caused by the dynamics of the complex conjugate eigenvalue pairs:

Zy1 = HMOX
= HM®AX,
= H1®A 'H 'z
— gitlyg-t 7
= HYZ by lemma 3.4.1

Lemma 3.4.3 If Z; is in the boz determined by L(t) (i.e. Z; € {[—%4L, £]x...x [—LQ—d, %]})
then Zyy1 is in the box determined by YL(t).

Proof: We know Z;;1 = HYZ;. By construction T is a matrix whose ijth entry is
nonnegative and greater than or equal to the absolute value of the 7jth entry of HY. Thus
T bounds the growth of each component of Z;. O

3.4.5 Comments

It is possible to analyze scenarios where we do not impose equi-memory. The decoder,
though, may not know which quantizer the encoder is using. A game-theoretic formulation
would be appropriate here. We leave this possibility for future research. In general though
problems with differing information spaces, often called team problems, are notoriously
difficult to analyze let alone optimize. However it is often the case that when the information
spaces are “nested” the problem becomes tractable. Equi-memory is one way to enforce
the nested information property. See Radner [Rad]. We take the view that part of the role
of information transmission is to maintain a common global state. Of course in a truly
decentralized theory one would have to understand how to deal with a lack of global state.
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Our primitive quantizers have a dynamic range and “saturate” if the state falls outside
this range. There is a large body of literature on control for saturated systems. Our
problem is different in that the saturation bounds can be time-varying and the signals must
be quantized.

In general we will require a time-varying encoder. Take for example a stability problem
where one wants to drive the system to the origin. A time-invariant finite rate encoder will
have a quantization region around the origin of a fixed size. The best we can do is drive the
state to this region. Once inside this region we have no assurances that we are converging
to the origin. We suggest three ways to deal with this. We can allow for an infinite number
of regions. [EM] We can allow for e-accuracy (e.g. notions of practical stability.) [EM].
Or we can allow for time-varying encoders. Roughly speaking the last case leads to the
smallest rate requirements. And since that is what we are most interested in we will spend
most of our time looking at this case.

It should be clear that under a rate constraint if the state estimation error increases
with time in an unbounded fashion there will come a point when we can no longer satisfy
the control objective. In the case where the error is unbounded we essentially have no
information about the state (i.e. this is like having no useful feedback.) Thus unless the
control objective can be achieved via an open loop controller we cannot hope to achieve the
control objective. A guiding principle throughout this chapter is that the state estimation
error should grow at a slower rate than the dynamics. Said another way we are interested
in characterizing the largest tolerable level of state estimation error that still insures the
control objective is satisfied. This will be discussed more extensively in section 3.6.4.
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3.5 Encoder Class One

In this section we provide results on observability, stability, and controllability for encoder
class one. We will show that we can achieve the lower bounds proved in section 3.3 by
explicitly describing the encoder, decoder, and controller.

Since we are dealing with asymptotic versions observability and controllability it is of
interest to determine the rate of convergence. Clearly this rate of convergence will depend
on the channel rate used. The rate of convergence will depend on the difference between the
channel rate used and the lower bound. The larger this difference the faster the convergence.
We can make an analogy with the channel coding theorem in information theory. If the rate
R is greater than the capacity C' then one cannot transmit information reliably. If R < C
then one can. Furthermore the error exponent roughly depends on the difference C — R.

We now treat, in order, observability, stability, and controllability for encoder class one.

3.5.1 Observability

In this subsection we provide schemes that achieve asymptotic observability. In the following
proposition we give a sufficient condition for uniform in control observability of system (3.1)
under encoder class 1 when we observe the state (i.e. ¥; = Xj.)

Proposition 3.5.1 Given system (3.1), encoder in encoder class 1, and C = I. Further-
more assume that the encoder knows a bound on Ag. A sufficient condition on the rate for
uniform in control asymptotic observability is R > 35 4) max{0, log [A(4)[}.

Proof: Assume Ay C {X : | X||2 < L}. Let ® diagonalize A into real Jordan canonical
form: ®A® ! = Y. For X € Ag we have ||®X |2 < ||®]|[|X]|2 < ||®||L- At time zero choose a
(C(0), R, L(0), ®(0))-quantizer where C(0) is the origin and ®(0) = ®. Let L;(0) = ||®|| L Vi
and choose any R; > max{0,log |\;|}. Apply this quantizer to Xy and transmit oy. Note
that oy will not be the overflow symbol.

At time ¢ let the state estimate, X;, be the centroid of the region defined by o;. Equiv-
alently X, is the centroid of the decoder output set ;. This equivalence holds because of
our assumption of equi-memory. We update the quantizer parameters as follows. First the
centroid of the ¢ + 1th quantizer is just the one step ahead state prediction (the encoder
observes the controls):

C(t+1) = AX, + BU,.

Second the coordinate transformation evolves as
d(t+1)=Hd = HO().
Third the size of the dynamic range of the ¢ + 1th quantizer will evolve according to:
L(t+1) = YFgL,.

By lemma 3.4.2 TFpg is a stable matrix. Thus the dimensions of the dynamic range are
decreasing in time.
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The decoder upon receiving o; outputs €2; which is the set represented by o;. This
completes our description of the encoder and decoder. By construction the state X; never
leaves the dynamic range of the tth quantizer A;. See lemma 3.4.2. (One can think of
as containing the instantaneous estimation error of X; and A; as containing the one-step
ahead estimation error of Xj.)

Av={X € R’ : ®(t)(X = C(t)) € {[=L1(£), L1 ()] X ... X [~La(®), La(®)]} }

Thus

leell2 < sup [|X — Xill2
Xe

= sup |B(t) " BE)(X — X))l
XeQ

< ;lelgtllé(t)_lll 12 ()(X — X)l2

< [e@) 7 IFRL®)2

< [e@) M IFRIITER) | I1LO0)]l2
< Vd L] e®) 7 1Fl(TE)I

The decay of ||(TFg)!| is determined by the largest eigenvalue of Y Fg. Specifically there
exists a constant & such that ||(TFg)?|| < x2~Hmini(Ri—log|x:(4))) O

Note that one could optimize the constant in the upper bound by using more general
polytopes than boxes. In systems with large state spaces the constant in front can be large.

In proposition 3.5.1 we used L, as a measure of the uncertainty. Furthermore we showed
that L, decreased to zero. One may ask how this may be related to Lyapunov functions.
We will explore this further in section 3.6.4.

Now we treat the case where the encoder does not know a bound on Ay.

Corollary 3.5.1 We are given system (3.1), an encoder in encoder class 1, and C = 1.
A sufficient condition on the rate for uniform in control asymptotic observability is R >

Yaca) max{0,log [A(A)[}.

Proof: For the case where the initial uncertainty, Ay, is unknown one must first “capture”
the state in the quantizer domain. Specifically let (C(0), R, L(0), ®)-quantizer where C(0)
is the origin, ®(t) = H'®, and L;(0) = L Vi for some arbitrary L. If upon observing X,
the quantizer at time transmits an overflow symbol then update the quantizer as follows:
C(t+1) = AC(t) + BU; and L;(t + 1) = L;(t)2%. Since the L’s are growing faster than
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the state eventually the quantizer will capture the state. At this point proceed as we did
in proposition 3.5.1. O

The idea of growing the quantizer range when the encoder does not know an a prior:
bound on the initial state works on all of the following results in this section. Thus we will
only prove the semi-global statement (i.e. bounded Ay) with the understanding that the
global result also holds.

We now consider the case of bounded additive disturbances.
X1 = AXy + BU; + Wy, Y;=X; t>0 (3.2)
where |[Wy||2 < D.

Proposition 3.5.2 We are given system (3.2) with encoder in encoder class 1. If R >
2oaa) max{0,log [A(A)[} then there exists a scheme such that limy_,o [|etl|2 is bounded.

Proof: Follow the same setup as in proposition 3.5.1 except update the L;’s as follows:

1

L(t+1) = TFRL(t) + D@t + 1) | ~

1
Denote the second addend as h(t). Essentially we are expanding the size of the dynamic
range of the quantizer to take into account the disturbances. Since the disturbances are

bounded we know that the state cannot leave the sets defined by the L(t)’s.
Now we can write

t—1

L(t) = (TFp)'L(0) + Y (TFg)'~'~7h(j)

Jj=0
Now

leddl < 1@() | IFRL)I)

< (@@~ IFR] S ICT ||+||Z r)" 7 )II}

N

A

1)~ | Pl

{iceryy
< (o)~ 1FR] {II Fp)* |+ZDII ") IIHJ“IIII@II}
{II ||+D||<I>||Z|| r)" 1"II}
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Now there exists a constant & such that ||(TFg)?|| < x2~Hmini(R:i—log[Ai(A))) Thus

t—1
. ~ t—1—j K
tl_l)I&j_o H(TFE) H s 1 — 2—min;(R;—log \;)

Therefore limy oo |let|| < T—5=mmirrozxy |2(1) " || @][[| Fr |- Note that ||Fg| = max; 5.
Thus, as we expect, the bound goes to zero if we let the rate go to infinity. O

Example 3.5.1 Take the scalar case: Xiy1 = aXy+bUs+ Wy. In this case the upper bound
.. D
is limy o0 €| < 7R _Ta]"

A tight lower bound on the rate is difficult to find. We do know, though, that for
any finite rate the state estimation error cannot be driven to zero. There will always be
a nonzero state estimation error in transmitting information regarding the new noise term
Wy at time t. In chapter five, where we deal with stochastic disturbances, we will show
that the sequential rate distortion function is a lower bound on the rate as a function of
the estimation error (in a suitable time-average sense to be defined there.) Note that we
could use a technique similar to the one used in proposition 3.3.1 to lower bound the rate.
It turns out that the rate computed there is conservative. The partition induced by the
covering cannot be achieved sequentially. This has to do with the fact that when there are
no disturbances every control sequence and initial position Xy determines a unique path
X1,...., X7. However with disturbances there may be many paths. This is not accounted
for in the counting argument. This will be discussed more extensively in chapter five where
we discuss successive refinement.

We now discuss what happens when the magnitude of the disturbances shrink with time.
First we require a technical lemma.

Lemma 3.5.1 Let A be a stable matriz. Let B; be a set of matrices such that ||B;|| < L
and the limit lim;_,oo By — 0. Let S} = E;(l) A1 By then limy_soo Sp = 0.

Proof: See section A.2 in the appendix. O
In the following proposition we allow the error to decay as D; < o!D where 0 < a < 1.

Proposition 3.5.3 Given system (3.2) with encoder in encoder class 1. The noise satisfies
[Will2 < Dy where Dy < o'D and 0 < a < 1. Then R > o) max{0,log [A(A)[} is
sufficient for uniform in control asymptotic observability.

Proof: Follow the same setup as in proposition 3.5.2 except update the L;’s as follows:

1
L(t+ 1) = YFRL(t) + o' D||®(¢t + 1)||
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Denote the second addend as a’h(t). Then

L(t) = (YFgr)'L(0) + f(TF@)H*jaﬂ'h(a’)

j=0
Since YT Fg is stable the first term goes to zero. Note that lim; ,o @'h(t) = 0. By lemma
3.5.1 the second term goes to zero. This implies lim; ;o |le¢|| = 0. O.

Now we consider the case with general observation equation Y; = C'X;. Assume that
the pair (A, C) is detectable.

Proposition 3.5.4 We are given system (3.1) with encoder in encoder class one. If R >
2oaa) max{0,log [A(A)|} then there exists a scheme that is uniform in control asymptotically
observable.

Proof: At time ¢ the encoder has received Y?,U? ! and needs to make a state estimate
X;. We will run the Luenberger observer. (Which at time ¢ only uses =1, U*~!. This is
sufficient for our purposes.) The observer at time ¢ is

Xt = AXt_l + BU;_1 + L(lft—l - CXt_l).

Where A — LC is stable. Note that the error &, = X; — X; = (A — LC)é&_1. Thus
e: = (A+LC)% and ||&;]| < ||[(A+LC)Y|||eo]| < cAf|eg]| for some constant cand 0 < A < 1.

Now X; = AX;_1 + BU;_, + LCé_;. Use proposition 3.5.3 to show that we can
asymptotically observe X;. Furthermore X; converges to the true state X;. Thus we can
asymptotically observe X;. O

The general prescription for observability in encoder class one is to transmit a finer
and finer description of the zero control input response state trajectory. If there are no
disturbances this is equivalent to successively refining the initial position. Note that if we
allow the encoder “infinite” memory then it need only transmit a finer and finer description
of Xy. Furthermore such an encoder is completely independent of the controls being applied.
If we allow the encoder such infinite memory and there are no disturbances then both
encoder one and encoder two with memory are the same. This is similar to the statement
that open loop and closed loop control are equivalent if the initial position is known exactly.

Assuming that the encoder can have in memory a perfect description of X for all time
n is unrealistic. Furthermore it is not robust to disturbances. For this reason we have
proposed a recursive structure for the encoders in encoder class one. Specifically at time ¢
we choose a primitive quantizer that quantizes X;. The quantizer essentially computes a
state estimation error based on the difference between the current state and the one step
ahead prediction. It is not evolving that estimation error from Xy and the subsequent
channel transmissions. We have shown that we can achieve the rate lower bound with
encoders that use primitive quantizers. Thus there is no loss in generality restricting to
these kinds of encoders. (Note this generality is true up to a constant in the error bound.)
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3.5.2 Stability

For encoder class one we can combine the properties of asymptotic observability and full
state feedback stability to get output feedback stability. Assume that the pair (A4, B) are
stabilizable.

Proposition 3.5.5 Given system (3.1) with encoder in encoder class 1 and C = I. The en-
coder knows a bound on Ag. The rate R > 37,4y max{0,log [A(A)|} is a sufficient condition
for asymptotic stability.

Proof: Let K be a stabilizing controller, i.e. A + BK is stable. Apply the certainty
equivalent controller U; = K X; where X; is the centroid of the decoder output 2;. We need
to show that under this controller the system is stable. Let e, = Xy — X;. Then

t—1
X; = (A+ BK)'Xg— > (A+ BK)"'"BKe,
j=0

By proposition 3.5.1 the system is asymptotically observable under any control sequence.
Furthermore, using the notation in proposition 3.5.1, we have L(t + 1) = TFgL(t) with
T Fy stable. This implies [leg| < [9(&)~] | Fall|(TFg)!] [LL(O)].

Since A + BK is stable the first addend in the above equation goes to zero. By lemma
3.5.1 so does the second. Hence limy_,o, X; = 0. O

We note that this result is related to a general result of Vidyasagar that states if a system
is state feedback stabilizable and output detectable then it is output feedback stabilizable.
[Vid] Furthermore the certainty equivalent controller applied to the state estimate is a
stabilizing controller. The difference here is that the observation equation may depend on
the past states and controls.

We can treat the case when the encoder does not have an a priori bound on Ay.

Corollary 3.5.2 Given system (3.1) with encoder in encoder class 1. The rate
R > 3754y max{0,log [\(A)[} is a sufficient condition for asymptotic stability.

Proof: Apply the zero control until the encoder, using the technique in corollary 3.5.1,
“captures” the state. Then proceed as in proposition 3.5.5. O

The idea of growing the quantizer range when the encoder does not know an a priori
bound on the initial state works on all of the following results in this section. Thus we will
only prove the semi-global statement (i.e. bounded Ag) with the understanding that the
global result also holds.

Example 3.5.1 continued Take the scalar system X;11 = aX; + bU;, a > 1, |Xo| < L.
Choose controller k such that |a + bk| < 1. Then under full state feedback the magnitude
of the state is strictly decreasing to the origin |X;| = |a + bk[t|Xo|. Under a rate R > loga
and the scheme proposed in the last proposition we see that

t—1
IR |
|X¢| < |a+ bk|*| Xo| + Zo|a+bk|t . 7 |bk| 575 L-
]:
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There can exist trajectories that initially are not strictly decreasing to the origin. One can
consider this the price of learning the state under a rate constraint. We describe the case
of trajectories that strictly decrease in section 3.9.3. Also see [EM].

Now we treat the case where there is an observation equation (i.e. ¥; = CX;.) Assume
(4, C) are detectable.

Proposition 3.5.6 Given system (3.1) and encoder class 1. A sufficient condition on the
rate for asymptotic stability is R > 3 5 4) max{0,log [A(4)[}.

Proof: By proposition 3.5.4 we can asymptotically observe the state for any control se-
quence. At the encoder implement a Luenberger observer to obtain the dynamics

Xt—f—l = AXt + BU; + LCeé;.

Using proposition 3.5.3 we can transmit X; with error, e; = X; — X;. Using the notation
there we know this error is bounded by L,, and L(n + 1) = TFrL(n).

Let K be a stabilizing controller, i.e. A+ BK is stable. Apply the certainty equivalent
controller U; = K X't. We need to show that under this controller the system is stable. Let
ét :Xt—Xt:Xt—Xt—i-Xt—Xt = e + e;. Now

el + [lel]

&l <
< N4+ LOY el + 12 I IFRNITER)N L)

Because A+ LC and T Fp are stable there exists a ¢ and a 0 < 3 < 1 such that ||&] < /.

Now
t—1

X; = (A+BK)'Xg— Y (A+ BK)""7BKg;
=0
Since A+ BK is stable the first addend in the above equation goes to zero. By lemma 3.5.1
so does the second. Hence lim;_,o, X; = 0. O

3.5.3 Controllability

In this section we discuss controllability under a rate constraint. Assume that in system
(3.1) the pair (A, B) is controllable.
By controllability we know that for every point P there exists a sequence of controls
Uy, ..., Ug_1 such that:

d—1

P =Y A*7IBU;.

§j=0
The basic idea behind our scheme is to first drive the system to the origin. Once suitably
close to the origin we will apply the appropriate controls to get to the point P.
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Proposition 3.5.7 For system (38.1), encoder in encoder class 1, C = I, and bounded Ay
the rate R > 3754y max{0,log [A\(A)[} is a sufficient condition on the rate for uniform in
initial state controllability under a rate constraint.

Proof: By proposition 3.5.5, given € > 0 there exists a time T'(¢) such that the state can

be driven uniformly in initial state to within || X7|| < ||A—ed||' Once there apply the controls

[70, aeey Ud—l- Then XT—I—d = AdXT + P. Then ||XT—|—d - P” = ||AdXT|| S e. O

Corollary 3.5.3 For system (3.1), C = I, and encoder class 1 a sufficient condition on
the rate for controllability under a rate constraint is R > 35 4) max{0,log|A(A)[}.

Proof: As before apply the zero control until the encoder has captured the state and then
apply proposition 3.5.7. O
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3.6 Encoder Class Two

In this section we examine observability, stability, and controllability for encoders in encoder
class two. Recall that these encoders do not have access to the past controls. There are
two types of encoders in encoder class two: those with memory and those without. Recall
these encoders are also restricted to be equi-memory and to use primitive quantizers.

We also show that traditional Lyapunov synthesis methods can be used to design the
encoder.

3.6.1 Observability

For encoders in encoder class one we were able to show that there exist encoders such that
observability holds independently of the control signals chosen. Here we will show that
observability for encoders in encoder class two will depend on the control signals chosen.

Proposition 3.6.1 Given system (3.1) and encoder in encoder class two with memory. If
we allow for arbitrary control signals then there is no finite rate such that the system is
uniform in control asymptotically observable.

Proof: Assume that at time ¢ the uncertainty set is {2;. The question then becomes how
do we update the quantizer parameters in a way independent of the control such that the
dynamic range contains the next state. Clearly this cannot be done uniformly over all
control signals. O

Note that in the case of encoder class one we could subtract out the effect of the control
and thus could allow for arbitrarily large control signals. Let us restrict the controls.

Proposition 3.6.2 Given system (3.1) with encoder in encoder class two with memory and
C = I. Furthermore let the controls satisfy ||Uilla < D. If R > 354y max{0,log |A(A)[}
then there exists a scheme such that lim,_, ||e:|| is bounded uniformly in control.

Proof: Treat the control as noise and proceed as in proposition 3.5.2. O

Corollary 3.6.1 We are given system (3.1) with encoder in encoder class two with memory
and C = 1. The controls satisfy ||Uylls < D; where Dy < o!D 0 < a < 1. If R >
2oaa) max{0,log [A(A)|} then there exists a scheme that is uniform in control asymptotically
observable.

Proof: Treat the control as noise and proceed as in proposition 3.5.3. O

Corollary 3.6.2 Given system (3.1), unstable A, and encoder in encoder class two without
memory. The controls are set to zero. There is no finite rate such that the error is bounded.

Proof: Let Ty = {X; : X; = A'Xy}. Then for A unstable lim;_, ., diam(T';) = co. To ensure
bounded error for a fixed rate we require a bounded dynamic range. This cannot be done
here. O
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In conclusion, encoders in encoder class two with memory cannot achieve asymptotic
observability without limiting the controls. For encoders in encoder class two without
memory we cannot even achieve bounded state estimation error for the all zero control.

These observations may appear to be bad news. However in most cases we are interested
in observability when the controls being applied are in the loop. The statements so far have
been about observability uniform over some set of controls. We will show in the next section
that we can achieve asymptotic observability if we consider the control objective of stability.

3.6.2 Stability

Here we treat stability under encoder class two. First we discuss encoders in encoder class
two with memory and then encoders in encoder class 2 without memory. Assume (4, B)
are controllable.

Proposition 3.6.3 Given system (3.1) with encoder in encoder class two with memory,
C = 1, and knowledge of a bound on Ay. Then there exists a finite rate such that the system
can be made asymptotically stable.

Proof: We will keep track of two sets. One set will track the error. The other set will
contain the state. We will show that if the rate is suitably large then both sets will decrease
to zero. We use L to represent the sets in which the error lives in and M to represent the
sets in which the state lives in. The encoder does not know the control. But we allow it to
know M. We can allow this because M can be computed offline. (It can be thought of as
knowledge of the objective.)

Choose K such that A+ BK is stable. Let ® 44 px diagonalize A+ BK into real Jordan
canonical form: ® 4, pxr(A + BK)(I)Z-IFBK = T 44+pK. Similarly let ®4 diagonalize A into
real Jordan canonical form: ® AA<I);11 = T 4. Recall from subsection 3.4.4 the definition of
TA and TA—}—BK-

Assume Ay C {X : || X||2 < L}. For X € Ag we have || P4 X]|[2 < ||Pa]l||X]|l2 < ||PallL-
At time zero choose a (C(0), R, L(0), ®(0))-quantizer where C(0) is the origin and ®(0) =
D 4. Let L;j(0) = ||®4|L Vi. R; will be determined shortly. Apply this quantizer to Xy and
transmit oy. Note that oy will not be the overflow symbol.

For X € Ay we have | PayrX|2 < [|ParBrl||X|l2 < || Pat+Br]||L. At time zero let
M;(0) = [[®a+Bx L Vi.

The encoder does not have access to the control value. So we let the encoder treat the
control as noise. The bound on this “noise” can be determined offline. Specifically

Xt—|—1 = AXt + Aet + BKXt

Both the encoder and decoder know AX; and M(t). The encoder further knows Ae; but
does not know BKX;. It does know, though, that X; is in the box determined by M(t)
and thus so is X;. Let the encoder update the primitive quantizer parameters as follows:
C(t+1) = AX; and ®(t+1) = H,®(t). The dimensions of the range of the ¢+ 1th quantizer
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will evolve according to:
L(t+1) = TaFaL(t) + [|®(t + 1) BK D} | M ().

By construction the error does not leave the box determined by L.
The state evolution can also be written as

Xt—I—l == (A + BK)Xt - BKet.
Let M (t) evolve as:
M(t+1) = TarpxM(t) + | @4+ K BK®(t) || FRL(t).

By construction the state never leaves the box determined by M.
We write the coupled equation

L(t+1)
|®4+Bxk BK®(t)!| Fr Ta+BK

M(t+1)

l TaFg |®(t +1)BKD ! ppe|lT ] l L(t) ]
M(t)

Note that the controller X was chosen in such a way so that A + BK would be stable.
Thus Y 4, gk has real stable eigenvalues. If min; R; = oo then the above coupled equation
is stable. To see this note that Fg = 0 and hence the lefthand column in the matrix
consists of zero entries. Now we know that the eigenvalues of a matrix vary smoothly
with the components of the matrix. By this continuity we see that there exists a finite
rate vector R such that the above coupled equation is stable. Thus lim; ,o L(t) = 0 and
limy oo M (t) = 0. The system is asymptotically stable with finite rate. O

Computing the minimal rate is difficult in general. Furthermore it will depend on the
controller K. Note that for encoder class one we needed only to keep track of where the
error lived. For encoder class two with memory we needed to keep track of both bounds on
the error and the state. The lower bound on the rate for encoder one came from counting
the number of control sequences it takes to drive the state to a certain ball around the
origin. One can think of that control sequence as a codeword representing a region of space
that X lives in. In proposition 3.5.5 we showed how to realize that codeword sequentially.
For encoders in encoder class two we cannot use the same counting argument because we
cannot realize those codewords sequentially. We require a larger rate to stabilize the system.
To carry the analogy further one could call the resulting control sequence a “redundant”
description of the region of space Xy lives in.

Now we treat the case of encoder class two without memory. In this case we need only
keep track of one set. This set will contain both the state and the error.

Proposition 3.6.4 Given system (3.1) with encoder in encoder class two without memory,
C =1, and knowledge of a bound on Ag. Then there exists a finite rate such that the system
18 asymptotically stable.
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Proof: Choose K such that A+ BK is stable. Let ® diagonalize (A+ BK) into real Jordan
canonical form: ®(A + BK)®~! = Y. Assume Ay C {X : || X||2 < L}. For X € Ay we have
|2X |2 < [|@||||X |2 < ||®||L. At time zero choose a (C(0), R, L(0), ®)-quantizer where C(0)
is the origin. Let L;(0) = ||®||L Vi. R; will be determined shortly. Apply this quantizer to
Xo and transmit oy. Note that o9 will not be the overflow symbol.

The encoder does not have access to the controls or the past channel symbols. Thus it
can only evolve according to a schedule. Note that

Xt—I—l == (A + BK)Xt - BKet.

We will find bounds L on the state. Update the quantizer parameters as follows: C(t) = 0.
The dimensions of the range of the ¢t + 1th quantizer will evolve according to:

L(t+1) = {T+ | @BK || Fr} L(t)

Recall that Y is stable. Thus T is stable with real eigenvalues. We can then find a rate
vector R large enough so that T + ||®PBK® !| Fg is stable. Thus lim; ,o, L(t) = 0. The
system is asymptotically stabilizable. O

Example 3.5.1 continued Take the scalar system X;y1 = aX; + bU;. Let k be such that
la + bk| < 1. Then we get

L(t+1) = (|a+ bk| + E—i')L(t)

|b|

Letting R > max{0,log m} is sufficient to ensure asymptotic stability. Furthermore

note that if a + bk = 0 then the rate bound becomes R > max{0,log |a|}.

Because the encoder does not know the control signals we operate with the closed loop
dynamics of A + BK and not the open loop dynamics of A as we did in the encoder class
one case.

Now we treat the case where there is an observation equation. For encoder class 1 we
considered an encoder that applied a Luenberger observer to the observation and computed
an estimate of the state. It then transmitted the state estimate. Here, since we do not have
memory, we consider an encoder that only quantizes the observation Y,,. The decoder will
then apply a Luenberger observer to the quantized observation.

Proposition 3.6.5 Given system (3.1) and encoder class 2 without memory and with knowl-
edge of a bound on Ag. Then there exists a finite rate such that the system is asymptotically
stable.

Proof: By assumption (A, B) are controllable and (A, C) are observable. Choose K such
that A + BK is stable. Let ® 44 px diagonalize A + BK into real Jordan canonical form:
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Dapr(A+ BK)@ATiLBK = Y ay+Br- Choose H such that A+ HC is stable. Let ® 44 ¢
diagonalize A + HC into real Jordan canonical form: ® 4, pc(A+ H C)‘IﬁliL go = YatHC

Let C@Zi gk €qual the matrix C@Zﬁ_ px With all it components set to their absolute
values. Let ® 41 gcH equal the matrix ® 44 goH with all of its components set to their
absolute values.

Assume Ay C {X : || X|[| < L}. For X € Ag we have |[@41pxX|l2 < |Pa+Bk|[| X2 <
@44 Bx L. Let Li(0) = ||®a+BK || L Vi.

If ® 44 px Xy is bounded by the box centered at zero with ranges L(t) then Y, is bounded
by the box centered at zero with ranges CCI>;1_1F srL(t).

At time zero choose a (C(0), R, M(0), I)-quantizer where C(0) is the origin. R; will be
determined shortly. Note that R is [—dimensional. Apply this quantizer to Y and transmit
0. Note that oy will not be the overflow symbol. The decoder receives og and decodes it
as Yy. Where Yy the centroid of the region represented by oy. Further set C(t) = 0 for all
n.

Let e, = Xy — Xt and f; =Yy — 17,5 We apply the following observer at the decoder

Xip1 = AXy+BU+ H(Y; — CXy)
AX; + BU, + H(Y; — f; — CX;)
= AX,+ BU;+ HCe, — Hf,

Thus
etr1 = (A+ HC)e, — Hfy.

We now describe the bounds on the error. Let E(0) = |® 4 pc||L. We want @ 4 gce to
be bounded by the box centered at zero with ranges E(¢). Thus update E(t) as follows:

E(t+1) = Yarmc E(t) + ®arncH Fr C®,L 5 L(t).
Apply the certainty equivalent controller K to the state estimate X. Then
Xiy1 = (A+ BK)X, — BKey.
We will find bounds L on the state:
L(t+1) =TarBrL(t) + |®arsx BK® L ol E(t)

We write the coupled equation

L(t+1) Tat+BK @418k BE® ), ol

E(t+1) S41ncH Fr m Tarnc E(t)

By construction both T A+B x, T A+mC are stable with real eigenvalues. Thus for R large
enough the above coupled equation is stable. Thus the system is asymptotically stable. O.
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We conclude this section with some general comments on stability under rate constraints.
Our schemes involve keeping track of the uncertainty. For encoder class one this involves
keeping track of the state estimation error. For encoder class two with memory this involves
keeping track of both the state and the estimation error. This is also true for encoder class
two without memory. However in this case they are the same regions. These regions
essentially bound the reachable set of states at every time step.

It is natural to work with these regions. The definition of stability, in particular uniform
attractivity, requires their existence. By computing these regions and explicitly stating how
they evolve we are able to determine what rate vectors and primitive quantizers are needed.

3.6.3 Controllability

Here we discuss controllability under encoder class two. Recall that for any P there exist
U, ..., Ug—1 such that P = Y"9-3 A== BU;.

Proposition 3.6.6 For system (3.1) with encoder in encoder class two with memory or
encoder class two without memory and bounded Ay there exists a finite rate scheme such
that the system is uniform in initial state controllable under a rate constraint.

Proof: By propositions 3.6.3 and 3.6.4 we know given e¢ > 0 there exists a time T'(¢) such

that the state can be driven uniformly in initial in initial state to within || X7 || < m. Once

there apply the controls Uy, ...,Ug_1. Then X7 .4 = A%X7 + P. However || X7, 4 — P| =
|A¢Xr| <e O

Corollary 3.6.3 For system (3.1) and encoder class two with or without memory there
exists a finite rate scheme such that the system is controllable under a rate constraint.

Proof: As usual apply the zero control until the encoder has captured the state and then
apply proposition 3.6.6. O

In conclusion the general prescription for controllability is to drive the system to the
origin and then drive it to the point of interest. It would be more reasonable to drive the
initial state to the destination point directly. Since we need to determine where the state
is it is best to drive the system to a known point, in this case, the origin. We drive the
system to the origin until we have “learned” its position sufficiently well.

3.6.4 Lyapunov synthesis

A traditional method for designing controllers is to use Lyapunov theory. The prescription
is here is to find a suitable Lyapunov function V such that along trajectories V is decreasing.
For finite rate it is impossible to ensure V' decreases at every time step. This is because there
is always a region around the origin that is not under the influence of any control. Though
Lyapunov theory is helpful for proving existence of schemes it is difficult to determine
optimal rate vectors.
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Figure 3-3: Lyapunov regions

We will first show that given any quadratic Lyapunov function one can find regions
that contain the state and shrink with time. We then derive from this quadratic Lyapunov
function a stabilizing scheme for encoder class two without memory.

Let X;+1 = AX; with A stable. Then there exist symmetric positive definite matrices
P, @ such that

X' PXp1 — X' PXy = — X/ QX;.

Now assume that X;'PX; < L;. We will compute an L;,; < L; such that X;1'PX; 1 <

Liy1. Fix 0< A< Lt%.

If X,/QX, > A then X, 'PX;,1 < L; — A. Else if X;/QX; < A then X;'X; < —2

Thus Xp41'PXp41 < X' PX; < Xy Xihmax (P) < Aj==0) < L.

Choose Ly11 = max {Lt — A, A Amax(P) } Then L;11 < Ly. Thus the smallest Ly =

2 (P) ’\min(Q)
mljt. See ﬁgure 3-3.

Points, X, between the ellipse defined by L; and L;;; move inside the ellipse defined
by Lyy1. Points, X;, already inside the ellipse defined by L;; stay in that ellipse.

Now we will derive from a given quadratic Lyapunov function a scheme to stabilize the
system (3.1) with encoder in encoder class two without memory and C = I.

Proposition 3.6.7 Given a quadratic Lyapunov function for the full state observation sys-
tem (8.1) one can derive a finite rate asymptotically stable scheme for encoder class two
without memory.
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Proof: Let K be such that A+ BK is stable. Let P, Q satisfy the discrete time Lyapunov
matrix equation

(A+ BK)'P(A+ BK)— P = —Q.

Now X;,1 = (A+ BK)X; — BKe;. Assume that X;'PX; < L;. Then || X4 < —t— Let
the primitive quantizer at time n be tuned to the axis of P and use a uniform num{)er of

levels in each coordinate direction. Then |es]|? < —Lt—z. Thus
Amin(P)2°d

X' PXp1 — X' PX,
—XtIQXt + 2th(A + BK)'PBKet + et'(BK)'PBKet

< —X/QX;+2||(A+ BK)'PBK||| X||llet|| + (BK)' PBK||||e:||”
L 1
< —X/0X;+2|(A+ BK)PBK LA
>~ tQ t+ ||( + ) H)\min(P)Q%
Ly 1
+|(BKY PBK||7 —
IIllIl(P) 2%

Let B(R) = 2||(A + BK)’PBKHm?L% + ||(BK)’PBK||ﬁ(P) #. Choose R large

enough so that B(R) < y—rgial@ . Thenfix0 < A < I, (el — (L@ 1 1) g(R)).

If Xy'QX; — B(R)Ly > A then X;41'PXyyq < Ly — A.
Else if X;/QX; — A(R)L; < A then X,'X, < &H00L

ol C);t Thus

Xi41'PXip1 < X{/PXi+ B(R)Ly
thXtAmax(P) + /B(R)Lt
AnaxlP) (A 4 (R)L) + B(R)L:

< Amin(c«?)
< L.

IN

Choose L;41 = max {Lt — A, ’)\\:‘::((S)) (A+B(R)L:) + ﬂ(R)Lt}. Then Ly; < Ly. In gen-
eral one would want to optimize the rate R over P, (@, and the controller K. O
For related results see Liberzon and Brockett. [LB]

3.6.5 Minimum communication

In our discussion we constructed encoders, decoders, and controllers that would stabilize
the system by incorporating an asymptotic observer. Specifically we showed that if the
system is state feedback stabilizable and the state estimation error goes to zero then one
could stabilize the system via output feedback.

The converse observation is of interest also. If a scheme is output stabilizable then there
exists a state estimator with error going to zero. Clearly if we know the system is converging
to the origin then a good asymptotic observer would also say the origin. Thus if there do
not exist any asymptotic observers then the system cannot be stabilized. This suggests the
question: what is the minimal requirement on the state error to insure stability?
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For all three encoder classes we computed regions defined by the L; vectors. By choosing
the rate suitably large we were able to show that the L; would shrink to zero. Note though
that in these proofs all we required is that these regions shrink. The digital channel is just
one of many ways to realize an “end-to-end” error bound on L,. One could also imagine a
channel Y; = X; + v; where the disturbances v; lie in the region defined by L,. This can be
considered an analog channel with increasing SNR. In chapter five we will discuss in more
detail the relationship between digital channels of a fixed rate and additive noise channels
with fixed SNR.

In our schemes the size of L, depends solely on L and ¢ (and of course A, B, K). Another
approach would be to have L, shrink as X; shrinks. This could be realized, for example,
by a sector bounded nonlinearity. In the scalar case this would be ¢(X;) < X; < ¢(Xy).
Where ¢(-), ¢(-) are class K functions. (A class K function is an increasing, continuous
function that is zero at the origin. [Son]) In this case A; = [¢(X;), ¢(Xy)]. [El]

Finally if we assume that we are going to use a certainty equivalent control scheme then
it can be shown that

n—1
Xn=(A+BK)"Xg— Y (A+ BK)""'"/BKe;.
j=1

By lemma 3.5.1 we know that if e, — 0 then X,, — 0. Thus under the certainty equivalent
controller e, — 0 implies X,, — 0.

As stated before a necessary condition for stability is that there exist a state estimator
such that the state estimation error goes to zero. We just showed that for the certainty
equivalent scheme the error going to zero is also sufficient. Thus the minimal requirement
on the state error to insure stability is that there exists a state estimator such that the state
estimation error go to zero. It does not matter at what rate. Of course to insure a given
rate of convergence one will need to determine a rate of convergence on the error.

Note that in the proof of the lower bound for stability under encoder class one, propo-
sition 3.3.2, no mention was made of how the rate was distributed over time. Thus if we
allow for time-varying rate we have another parameter that we can choose in our encoder
design.

In conclusion the end-to-end error can be realized by many different forms of channels.
For example three are: digital channels, power constrained analog channels, and sector
bounded nonlinearities. The digital channel and the analog channel require coordination
between the encoder and decoder. The example of the sector bounded nonlinearity suggests
that there should be ties to robust control and specifically the theory of stability margins.

Thus in a certain sense we have shown that we can separate the communication part
from the control part in our stability problem. The communication part has the job of
delivering a state estimation error that decreases over time.
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Figure 3-4: Distributed Sensor System

3.7 Systems with Multiple Sensors

In this section we examine a particular control problem with multiple sensors. We first
formulate the problem. Then we relate it’s solution to the Slepian-Wolf coding theorem.
[CT]

3.7.1 Problem setup

Consider the linear system with M distributed observations and one controller:
X1 =AXy+BU;, Y(i)y=CXy i=1,..M (3.3)

where A € R4 B € R*™™, C; € IR%*¢, and Xy € Ag. See figure 3-4.

The encoder, decoder and controller are specified now. These are essentially the same
definitions we have been using with appropriate generalization to the distributed setting.
(Recall the definitions of encoder, decoder, and controller from section 3.2.1.)

Encoder Class: For eachi = 1,..., M encoder &; is a map that takes (Y (i), o(i)!=1, U1)
— o(i);. Note that encoder &; is allowed to depend only on its own past and current
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observations and its own past channel signals. All the encoders are allowed to observe all
the controls. Thus using our previous terminology these encoders are in encoder class one.

Decoder Class: The decoder D is a map that takes (o(1)?,...,a(M)!, U'™) — Q;. This
is a centralized decoder in that it is allowed to observe all the different channel signals
produced by the M encoders.

Controller: The controller C is a map that takes ; — U;. We will assume our usual
certainty equivalent controller.

We will treat the problems of observability and stability. Recall the definitions of asymp-
totic observability and asymptotic stabilizability. (Definitions 3.3.3, 3.3.4, and 3.3.5.)
Let C =[C},...,Ch]"

Assumption 3.7.1 The pair (A, C) is detectable and the pair (A, B) is stabilizable.

Though (A, C) is detectable it is not generally the case that (A, C;) will be detectable.
Define N; to be the unobservable subspace associated with (4, C;). Define O; to be the
subspace orthogonal to NV;. It can be shown that A is indeed a subspace and furthermore
that it is A-invariant. [Son] By assumption 3.7.1 we have N, A; = 0. Also any z € O; can
be observed by encoder 3.

Associate with each 7 the set A; = {A(A) : those eigenvalues of A corresponding to the
subspace O;}. We have UM, A; = {A\(A)}. In general the A; will not be disjoint. Because
they are not disjoint we have freedom in determining what each encoder sends to the
decoder.

We will show that this freedom can be captured by the following “rate region.” For
each encoder &; define its rate vector to be R; = (R; 1, ..., Rigimo;). (Where R; is the rate
vector used in the primitive quantizer by &;.)

Definition 3.7.1 For a given matriz A and observation matrices Cq,...,Cys define
R = {(El,...,EM) : Z Rijya) 2 max{0, log |A(4)|} V)\(A)}
#A(A)EA;
where jya) represents the index of the rate component associated with that eigenvalue.

Proposition 3.7.1 Given system (3.3) a necessary condition on the rate so that the system
is uniform in control asymptotically observable is that (R,,...,Ry) € R.

Proof: Follows directly from proposition 3.3.1. O
We now show that for any rate vector in R there exists an encoder such that the system
is uniform in control asymptotically observable.

Proposition 3.7.2 Given system (3.3) a sufficient condition on the rate so that the system
is uniform in control asymptotically observable is that (Ry,...,Ry;) € R.
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Figure 3-5: Rate region for example 3.7.1

Proof: We prove it for the case when M = 2. The proof for the more general case is
straightforward. In this case there are three sets of interest: A; N Ay, Ay \ (A1 NAg), and
A\ (A1 N Ag). By proposition 3.5.1 we know that the decoder can asymptotically observe
the subspace associated with Aq\ (A1 N A2) with 375\ (a;n4,) max{0, [A|} bits transmitted
only by encoder 1. Similarly the decoder can asymptotically observe the subspace associated
with Ag \ (A1 N A2) with 375ca,\(a;nn,) max{0,[A[} bits transmitted only by encoder two.

This leaves us with A; N Ay. Clearly we don’t need both encoder one and encoder
two sending the same information. Thus any splitting of the rate between encoder 1 and
encoder 2 needed to describe A; N Ay is sufficient for the decoder to asymptotically observe
the subspace associated with A1 N As. We only require that the combined rate used to
describe A1 N Ay be greater than 3,5, 1, max{0,log |A|}. For example encoder one can
send coarse bits while encoder two sends fine bits (i.e. most significant digits and least
significant digits.) O

Example 3.7.1 Let A = diag[A1, A2, A\3] where \; > 1 i =1,2,3. Let C; = [1,1,0] and
Cy =1[0,1,1]. The rate region R is shown in figure 3-5.

Now we provide lower and upper bounds for asymptotic stability.

Proposition 3.7.3 Given system (3.3) a necessary condition on the rate so that the system
is asymptotically stabilizable is that (R, ...,R;;) € R.

Proof: Follows from proposition 3.3.2. O

Proposition 3.7.4 Given system (3.3) a sufficient condition on the rate so that the system
is asymptotically stabilizable is that (R, ..., Ry) € R.
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Proof: Follows from the propositions 3.5.6 and 3.7.2. O

3.7.2 Relationship to Slepian-Wolf Coding

The distributed sensor problem we have set up is really a problem of distributed encoding
for correlated sources. Thus it naturally falls under the purview of Slepian-Wolf coding
theory.

The traditional Slepian-Wolf problem concerns itself with transmitting the random vari-
able (X1, ..., Xps) losslessly. Encoder i observes X; and transmits an encoding at rate R;.
For the case where M = 2 the rates must satisfy the following three inequalities:

(1) Ri1+ Ry > H(Xl,XQ)
(2) Ri > H(X1]X2)
(3) Re > H(X2|X1)

where H(-) and H(-|-) are the discrete entropy and conditional discrete entropy respectively.
See the appendix for definitions of these terms.
Under the correspondence

H(X;) <= > max{0,log |}
AEA;

and
H(X;| X)) = Z max{0, log |A|}
/\EAi—(AiﬂAJ’)

where 4,5 = 1,2 we get that R is indeed the region specified by the Slepian-Wolf region.
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3.8 Sampling of Continuous Time Systems

In this section we discuss some issues of time-sampling. For the duration of section 3.8 we
assume that ¢ represents the continuous time index and that n represents the sampled time
index.

The time-sampling we have in mind is a uniform sampling every 7' time units. That
sample is then quantized by the encoder and transmitted to the decoder/controller. There
the controller instantaneously computes a control signal and applies it. We use a sample
and hold control sequence.

One can imagine many other sampling schemes. One particularly interesting scheme
was proposed by Karl Astrom. He suggests that we should sample the state whenever an
“interesting” event has occurred instead of sampling at regularly spaced time epochs. He
calls uniform sampling “Riemann” sampling and his type of sampling “Lebesgue” sampling.
[Ast] Furthermore this type of sampling can be related to event driven systems. In this
section we restrict attention to uniform sampling.

We consider the following continuous time linear system:

X(t) = AX(t) + BU(t) (3.4)

where X (t) is a IR%valued state process and U(t) is a IR™-valued control process. The
initial position Xy € Ag where Ay C IR%.

Let the sampling period be T'. Define X,, = X(nT). Let U(t) =U, nT <t< (n+1)T
for some control sequence {Uy}. Then for ¢t = nT' + § we have

)
X(t) =X, + / eMABU, dr.
0
We can rewrite this as

Xpi1 = A(T) X + B(T)U,

where A(T) = e and B(T) = [, eT~")4Bdr.

One can ask what is the best sampling period for achieving some control objective.
Where by “best” we mean the minimum number of bits per time unit. Thus if we have a
scheme that samples the system every 7' time units and transmits R bits then the number
of bits per time unit is %. In general the rate R will depend on T

3.8.1 Observability

First we repeat the definitions of asymptotic observability for continuous time systems. Let
e(t) = X(t) — X(2).

Definition 3.8.1 System (8.4) is asymptotically observable if there exists a sampling period
T, a control sequence {uy}, and an encoder and decoder such that

1 Stability: ¥V € >0 3 6(€) such that || X (0)||2 < () implies ||e(t)]|2 <e Vi > 0.
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2 Uniform attractivity: Y € >0, 6 >0 3 M(e,d) such that | X(0)||2 < & implies
lle(t)]|e <eVit>M.

Point one states that the error cannot grow unbounded for bounded Xy. The second point
states that the error decreases to zero uniformly in X,. Note also that uniform attractivity
is defined for all 6. Thus our definition of asymptotic observability is global.

Definition 3.8.2 System (3.4) is uniform in control asymptotically observable if there ex-
ists a sampling period T, and an encoder and decoder independent of the control sequence
applied such that the system is asymptotically observable.

Proposition 3.8.1 Given system (3.4) and encoder in encoder class one. Further assume
that the encoder knows a bound on Ag. Assume the sampling period is T'. A sufficient condi-
tion on the rate for uniform in control asymptotic observability is R > 375 4) {0,log |A(A)|}-

Proof: From proposition 3.5.1 we can show that lim, . e(nT) = 0. We need only show
that the error in any intersample period stays bounded. Specifically let t = nT + ¢

e(t) = X(t)—X()
5 ) ]
= X, + / O ABU, dr — <e<5AXn + / e(“V‘BUndT)
0 0
= eMe(nT)

For finite T we have supy< s« ||€’4| is bounded. O

Proposition 3.8.2 Given system (3.4) and encoder in encoder class one. Assume the
sampling period is T. A necessary condition for uniform in control asymptotic observability

is B> 35{0,log [\(A) )

Proof: By proposition 3.3.1 the rate condition is necessary for e(nT") to go to zero. Clearly
if e(nT) does not go to zero then e(t), for general intersample times ¢, will not go to zero.
O

Let A have eigenvalues Aq, ..., Ag. Then A has eigenvalues \; = e Vi =1..d. Fur-
thermore if )\; is real then JA; is real. If \; = a &+ bi is complex then \; = e*(cos b+ isinb) is
complex. The rate is

R(T) 1 1
ke Sl SO max {0,log |A(A4)[}
r T A%) )
Real(A\(A4))
— max § 0, ————=
)%;) { In2 }

Thus for encoder class one the optimal number of bits per time unit is independent of the
sampling period T. We are assuming, though, that at the start of every epoch we are
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instantaneously transmitting R(T) bits. So though the average rate @ is independent of

T the peak value is very much dependent on T'.

For encoders in encoder class two there is little hope of a general theorem on uniform in
control asymptotic observability. See our discussion of asymptotic observability for discrete
time linear systems. We can find cases for asymptotic observability under feedback. We
discuss this in the next section on stability.

3.8.2 Stability

Here we treat the problem of stability under sampling. Assume that (A, B) are controllable.
Then by theorem 3.4.4 of [Son| we have

Theorem 3.8.1 If (A, B) controllable and T is such that
T\ — ) # 2kmi k= +1,42, ...

for every two eigenvalues of A then (A, B) are controllable.

Note that this condition need not be necessary.

Definition 3.8.3 System (3.4) is asymptotically stabilizable if there exists a sampling pe-
riod T, and an encoder, decoder, and controller such that

1 Stability: ¥ € >0 3 6(€) such that || X (0)||2 < (€) implies || X (t)||2 <€ t>0.

2 Uniform attractivity: Y € >0, 6 >0 3 M(e,d) such that | X(0)||2 < & implies
IX()lle < eVt > M.

Encoder class 1

Proposition 3.8.3 Given system (8.4) with encoder in encoder class one. The encoder
knows a bound on Ag. The rate R > 3, ) max{0,log |A(A)|} is a sufficient condition for
asymptotic stability.

Proof: Assume T satisfies the condition of theorem 2.8.1. Then (4, B) are controllable. By
proposition 3.5.5 there exists a scheme such that both lim,, ., X (nT) = 0 and lim,,_, e(nT") =

0. We need only show that the intersample behavior of X (¢) is bounded. Specifically let
t=NT+9

J A
X() = X, + / O-DABK X, dr
0

4 4
= X, + / O DABK X, dr — / eOABKe,dr
0 0
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Thus | X ()] < |4 + [2 @ DABKdr|||| X, + || [ €¥ DABKdr]||en]|. For finite T this
is bounded. O

Proposition 3.8.4 Given system (3.4) and _encoder class one with knowledge of a bound
on Ag. The rate R > 3,4y max{0,log |[A(A)|} is a necessary condition for asymptotic
stability.

Proof: By proposition 3.3.1 the rate condition is necessary for X (nT') to go to zero. Clearly
if X(nT) does not go to zero then X (¢), for general intersample times ¢, will not go to zero.
O

Encoder class 2

Proposition 3.8.5 Given system (3.4) with encoder in encoder class two without memory.
Assume the encoder knows a bound on Ay. Then there exists a finite rate such that the
system is asymptotically stable.

Proof: Assume T satisfies the condition of theorem 3.8.1. Then (4, B) are controllable. By
proposition 3.6.4 there exists a scheme such that both lim,_,o, X (nT") = 0 and lim,,_, e(nT)
= 0. We need only show that the intersample behavior of X (¢) is bounded. This follows
analogously to the proof of proposition 3.8.3. O

Recall that the rate vector R needs to be large enough so that the matrix
{T+|eBKo | Fp}

where _(fl_—}— BK) = <I>_1T(I>_ is the real canonical Jordan form. R will in general depend on
both A, B, and K. Now A, B, and K in turn depend on T. Thus for encoder class two
without memory % can have a complicated dependence on T'.

Example 3.8.1 Take the scalar system X = aX(t) +bU(t) a>0. Thena=e’® and b=

b(eTa—1) - o [Bk|
==——. Let k be such that |a+bk| < 1. Define o = a +bk. Then R > max{0,log W}

1s sufficient to insure asymptotic stability. Now
R(T) 1 |bE|

- 7 —log ——MmMm————
T ~ T ®1_|a+ 0k

For fized T this lower bound is decreasing in «. For T — oo this lower bound converges

to 5. Thus this suggests that if one wants to minimize the bits per time unit then one

should use a large sampling period. Of course the excursions can be large for large sampling
periods.

In conclusion under encoder class one the rate is essentially independent of the sampling
rate. Whereas for encoder class two the rate is dependent on the sampling rate.
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3.9 Performance

In this section we address two methods for determining the rate needed to achieve a given
performance objective. We first describe a general optimal control setup. We then describe
the LQ problem. We give an upper bound on the rate-cost function for both encoder class
one and encoder class two. We then describe covering numbers. We apply this to a problem
stability where the trajectories are strictly decreasing to the origin.

3.9.1 Problem setup

We assume the linear system (3.1): Xy41 = AX;+BU; and a continuous cost g : (X,U) — IR
with ¢(0,0) = 0. And our goal is to minimize, for each initial position, the infinite horizon

cost
o

> 9(Xe, Uy)

t=0

over all control laws U = k(X).
Let V be the optimal cost function. Then the control law k is optimal if it achieves the
minimum of the Hamilton-Jacobi-Bellman equation: [Son]

V(AX +BK(X)) = V(X) +g(X, k(X)) = min{V(AX + BU) ~ V(X) +9(X,U)} = 0 VX,U.

Under any other stabilizing control law k we have
V(AX + Bk(X)) — V(X) + g(X, k(X)) > 0.

We can use Taylor’s expansion to bound the difference between the cost under & and the
optimal k

= > {Vxalxh k)X - XP)
t=0

+Vug(XF, k(X)) (B(XF) — k(X})) + higher order terms}

Thus we can bound the loss due to a suboptimal controller % by a measuring how much the
trajectories diverge.

Under full state observation we can achieve the optimal cost. Under a rate constraint
we will incur a larger cost. Our goal is to understand the tradeoff between the rate and the
extra incurred cost. In the next section we use the above bound to analyze the extra cost
incurred under a rate constraint for the L(Q problem.
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3.9.2 LQ

For the LQ problem the running cost has the form g(X,U) = X'QX + U'TU where Q is
positive semidefinite and T is positive define. For the infinite horizon problem the optimal
control law is linear and has the form KX = —(B'PB +T) 'B'PAX where P satisfies the
Riccati equation

P=A'"(P-PB(B'PB+T) 'B'P)A+Q.

For a given rate R we can upper bound the extra cost incurred by assuming a certainty
equivalent scheme applied to the state estimate. Let X;, Y; represent the state process
under the optimal scheme and the certainty equivalent scheme respectively. Let Y; be the
state estimate of Y; and e, = Y; — V;. Then

A =YgV KV - V(Xo)

-
=]

o0

= > [YQYi+ (KV)'TKY, — (X{QX, + (KX;)TKX,)]

H_
Il
=)

I
NE

(Y, + X)) (Q + K'TK) (Y, — X;) — 2Y/K'TKe, + e, K'TKe,]

T
[e=)

We can write a dynamics for the term Y; — Xj:

Y1 — Xpy1 = AY,+ BKY,— AX, — BKX,
= (A+ BK)(Y;— X;) — BKe,

with Yy = Xy. Thus
t—1

(Y, — X;) ==Y (A+ BK)"""'BKe;
=0

Proposition 3.9.1 Given system (3.1) with encoder in encoder class one, bounded Ay and
quadratic cost. The difference between the optimal cost for a given rate R and the optimal
cost under full state observation is bounded for R > 3,4y max{0,log |A(4)|}.

Proof: By proposition 3.5.1 we know there exists an encoder/decoder such that |[e:|| <
@) || Frllll(TaFr) ||| L(0)|. Which goes to zero exponentially. Now

1(Y: — X))l < i I(A + BE)~'BE][|2(t) "' | Fell(TFR) IILO)].
1=0

By lemma 3.5.1 this converges to zero exponentially.
Since the original set Ag is bounded we know there must exist a constant C such that
| X¢][, | Yz]| < C for all ¢. Thus, explicitly stating the dependence on the rate R, we have

[ee]
AR) < Y [(Vi+X)(Q+ K'TK)(Y; — X;) — 2Y/K'TKe, + e,K'TKey] |
t=0
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o
D Q+ K'TK| [[Y: + Xell 1Y — Xell + 2| K'TK|| |Yel| lleell + | K"TK]| [ex]|?
t=0

IN

o0
< > 201Q + K'TK| || — Xe|| + 2C|K'TK|| lleel| + | K'TK]| [lez]|?
t=0

Since ||e|| and ||Y; — X¢|| are both converging to zero exponentially we see that this is a
convergent series. Furthermore limg_,,, A(R) = 0. O

Proposition 3.9.2 We are given system (3.1) with encoder in encoder class two, bounded
Ao and quadratic cost. The difference between the optimal cost for a given rate R and the
optimal cost under full state observation is bounded for R large enough.

Proof: By propositions 3.6.3 and 3.6.4 there exists a rate large enough so that the state
estimate error decays exponentially. Thus an argument similar to that of proposition 3.9.1
shows that one can bound the loss in terms of R. O

3.9.3 Covering numbers

The notion of covering number can help us compute the rate for cases where the performance
objective is not the sum of a running cost. One control objective might be to ensure that
the state is in a given region at a given time. Another might be that a given Lyapunov
function V' be strictly decreases along trajectories. First we give some definitions and then
we treat an example.

Given the dynamics X; 1 = f(X3,Up), Xo € Ag. Define the objective set to be

Qr ={(x3, Ul : X1 = f(Xi,U;) and the objective is met}.

One example of an objective might be || Xy|| < eVt > T.
Define for each control sequence Ul ! the T sets L ror = {Xp: (X{, ul e r}.
0

Definition 3.9.1 The covering number is minimum number of T' balls it takes to cover Ag.

Thus a lower bound on the rate to achieve some objective is
. 1 . .
R > limsup T log (the covering number at time T').
T

Note that this is the same technique we used in computing the lower bound in proposi-
tions 3.3.1 and 3.3.2.
The following example treats the objective of strictly decreasing trajectories.

Example 3.9.1 Take the scalar system X1 = aXy+bUy,, Xy € [—L, L]. Assume that we
want the system trajectories to strictly decrease to the origin. Specifically

Qr = {(x$, U™ : X411 = aX; +0U; and X411 < Xy t=0,..,T — 1}
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The corresponding T' sets are
FUg"—l = {XO X1 =aXe + 00U and Xe1 < Xy t=0,...,T — 1}.

Take for example I'y, and assume with loss of generality that a > 1 then

—Uy X —Uo .
Ty, = 4 Xo - 27]}]< 0<E%% ZfU0>0
a—|—1<X0<aT1 1fU()<O

Covering [—L, L] by such sets induces a logarithmic partition. It takes a countable number
of regions to cover this interval. For the general treatment of this problem see [EM].

3.9.4 Discussion

In this section we provided two means for determining the rate requirements for different
control objectives. For running cost problems we showed how to upper bound the loss due
to the rate constraint by computing the loss due to a certainty equivalent scheme. For
more general control objectives we introduced the idea of covering number. We applied this
method to a problem introduced by Elia and Mitter in [EM].
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3.10 Summary

In this chapter we applied the general formulation of chapter two to the deterministic linear
systems control problem with a noiseless digital communication link. We discussed the role
of information patterns and system and policy knowledge in this context.

We first provided lower bounds on the rates required to achieve asymptotic observ-
ability, asymptotic stability, and controllability. These bounds hold independently of the
information pattern chosen.

To compute upper bounds we explicitly described the encoder, decoder, and controller
schemes. We characterized two different encoder structures based on whether the encoder
observed the control signals or not. Under the added structural assumptions of equi-memory
and use of a primitive quantizer we showed that encoders in encoder class one can achieve
these lower bounds. Furthermore the information pattern used in encoder class one is
not the maximal element in the partial ordering of information patterns. For encoders in
encoder class two weaker bounds were provided. These schemes work by keeping track of
the uncertainty set of both the error and the state. These relied heavily on the key technical
lemma 3.4.2.

We extended these results to systems with multiple sensors. We showed that the problem
reduces to a Slepian-Wolf coding problem.

We then analyzed the problem of time sampling under a rate constraint. We showed
that for encoder class one the rate is independent of the sampling period. Whereas for
encoder class two the rate is dependent on the sampling period.

Finally we addressed the problem of performance. We treated the LQ problem. We also
introduced the notion of covering number. This covering number describes the minimum
number of control sequences needed to achieve an objective. It is the basis for the lower
bound results we proved earlier in the chapter.
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Chapter 4

Channel Coding With Feedback

4.1 Introduction

The problem of channel coding goes back to Shannon’s original work. [Shal] In this chapter
we examine the problem of channel coding for channels with feedback. The feedback channel
coding problem goes back to early work by Shannon, Dobrushin, Wolfowitz, and others.
[Sha2], [Dobl], [Wol] See figure 4-1. Due to increased demand for wireless communication
and networked systems there is a renewed interest in this problem. Feedback can increase
the capacity of a noisy channel, decrease the complexity of the encoder and decoder, and
reduce the latency for a given probability of decoding error.

Recently Verdu and Han gave a very general formulation of the channel coding problem
without feedback. [VH] Here we generalize that formulation to the case of channels with
feedback. To that end we need to introduce the notion of code-functions. These are to be
contrasted with codewords. The use of code-functions can be traced back to Shannon’s work
on transmitter side information. [Sha3] We show that we can convert the channel coding
problem with feedback into a new channel coding problem without feedback. In the new
channel, though, the channel inputs are now code-functions. We show how to interconnect
a code-function distribution to the channel. We discuss the relationship between code-
function distributions and channel input distributions. This relationship allows us to convert

W—— Encoder [---—----------- » Decoder —W
Channel

Feedback

Figure 4-1: Channel
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an optimization problem over code-function distributions to an optimization over channel
input distributions. Along the way we introduce the notion of directed mutual information
and argue that it provides the correct measure of capacity. Directed mutual information
was introduced by Massey who attributes it to Marko. [Mas], [Mar]

The Verdu-Han result is quite general. But that generality comes at a cost. It is very
difficult to solve the capacity optimization problem in their formulation. The usual way
to deal with this is to assume some sort of ergodicity in the channel model. Or to be
more specific one makes suitable hypothesis so that the channel is information stable. To
that end we examine the class of Markov channels. We show that the problem of feedback
coding for Markov channels can be cast as a partially observed stochastic control problem.
Consequently we can use the tools of dynamic programming to solve the mutual information
optimization problem underlying the capacity problem.

In summary there are three main contributions in this chapter. First we give a rather
general coding theorem for channels with feedback. Second we argue that directed mutual
information is the appropriate notion of mutual information when calculating the capacity
of a channel with or without feedback. Third for Markov channels we are able to convert
the capacity problem into a stochastic control problem. Thus we can provide a dynamic
programming determination for its solution. Furthermore the Markov formulation allows is
to treat a large class of channel models with memory and different kinds of feedback in a
unified way.

We now summarize each section in this chapter. In section 4.2 we introduce the notion
of directed mutual information. In section 4.3 we formulate the channel coding problem
with feedback.

In section 4.4 we examine channels with finite alphabets. Here we discuss the relationship
between distributions on code-functions and channel input distributions. We provide a
Verdu-Han like theorem for channels with feedback. We then show that the error exponents
for channels with feedback are larger than the exponents for channels without feedback.
In section 4.5 we focus on Markov channels. Here we formulate the equivalent partially
observed stochastic control problem.

In section 4.6 we examine Gaussian channels. We provide a general coding theorem
and error exponents. The finite alphabet channel and Gaussian channel are used most
often in practice. In section 4.7 we list a few examples of these channels. We show how
our formulation captures many existing results in the literature. We also point out new
examples not existing, at least to the author’s knowledge, in the literature.

In section 4.8 we provide a very general data processing inequality for channels with
feedback. We also discuss the notion of channel realization. This section will be especially
important for the results in chapter 5.

Finally in section 4.9 we conclude.
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4.2 Directed Mutual Information

In this section we introduce the directed mutual information and its properties. Massey
first defined directed mutual information in [Mas]. We will motivate its use in section 4.3.4.
Here we just provide a few of its properties. See section A.1 of the appendix for a review
of Polish spaces and stochastic kernels. See section A.3 for a review of divergence, mutual
information, conditional mutual information, and the data processing inequality.

Let {X;}¥ ; and {Y;}{_; be random processes with each X; taking values in the Polish
space (X, B(X)) and each Y; taking values in the Polish space (), B())). We use “log” to
represent logarithm base 2 and “In” to represent logarithm base e. Let X! 2 (X1, ..., X;).

By the chain rule for mutual information, theorem A.3.4 (c), we know that I(X7;YT) =
ST I(XT;Y, | Vi),

Definition 4.2.1 The directed mutual information is defined as

T
IXT5YT) A3 I(XhYy, | YE ).
t=1

(Note that on the right hand side the superscript on X is "t" and not "T".)

We now give an alternative characterization of the directed mutual information in terms
of some “causal” stochastic kernels.

Definition 4.2.2 Assume we are given an ordered set of random variables X1, .., Xp. Fur-
thermore assume we are given the following stochastic kernels: P(dX1), P(dXy | z1), ...,
P(dXr | z771). (By theorem A.1.1 the product of these kernels will give us a joint measure
Pyr.) Let I = {i1,...,ig} C{1,...,T} and i1 < 9 < ... <ig. Let I° ={1,...,T}\ I. Let
X! = (X;,,..., X;,.). Define XI° similarly. Then we define the directed stochastic kernel
to be

K

Pyixre(dX" | 2') 2 @ P(dX;, | #*71).

k=1
Recall our general model in definition 2.2.1. Definition 4.2.2 provides a time-ordering on
the variables of interest and a “causal” factorization.

For the random variables (X7,Y”) representing the input and output of the channel

over a time horizon 7' the natural time-ordering is

X1, Y1, Xo, Yo, ..., X, Y.

Assume we are given the stochastic kernels { P(dX; | z~1,y* 1)}, and {P(dY; | z*,y* 1)} |-
Then the directed stochastic kernels with respect to this time ordering are:

T
ﬁXT|YT(dXT | y") = Q) P(dX; | =,y
t=1
and
_ T
Pyrixr(dYT | 2") = Q P(dY; | «',y" ).
t=1
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Note that in the latter case Y; is allowed to depend on z; as well as (!~ 1, y* 1),
By theorem A.1.1 we can construct the joint measure

PxT,YT(dXT,dYT) — ﬁyT‘XT(dYT | l‘T) ® ﬁxT|yT(dXT | yT) (41)
We can define another measure on X7 x YT as follows
PyrpyrPyr(dXT,dY") & Pyrpyo (dXT | y7) @ Pyr(dY7). (4.2)

The following proposition gives an alternative characterization of the directed mutual

information in terms of the divergence between the measures described in equations (4.1)
and (4.2).

Proposition 4.2.1

(X" > Y") = D(Pxr yr | PyrjyrPyr).

IPxT,yT
Proof:

T
IXT-5Y"h) = Y 1(xhy |y
t=1
T
= Y D(Pxtyt | Pxtjyt-1Py,yt-1Pyi-1)
t=1

= D(PXTny | ﬁXT|YprT)

Where in the last line we have made repeated use of theorem A.3.4 (b). O

Corollary 4.2.1 In the case when X and ) are spaces with a countable number of elements

we have T [ 4T)

PxT YyT\Z Yy

IPXT vT (XT - YT) = Z PXT,YT ('TT, yT) log — | T .T
' ol yT PXT|YT(37 | y")

and .
PYT\XT(yT | ﬁUT)

Ip
Pyr (yT)

XT,yT

(XT - YT) = Z Pxr yr (ﬂ”T,yT) log

wT,yT

Proof: Let E C A and F' C B be measurable sets. If P4(E), Pg(F) > 0 then % =
Pap(E | F) _ Ppa(F | E)

B~ Pe(F) The lemma is a straightforward generalization of this fact. Note
that lim, ,o+ —zlog z = 0. Hence we do not have problems with dividing by zero inside the
log. O

The first characterization shows that the directed mutual information is the ratio be-
tween the posterior distribution and a “causal” prior distribution.
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Corollary 4.2.2 In the case when Pxr yr admits a density p(zT,yT) we have

T T

PXT,yT( - ) XTxyTp( T ,ay ) 0g ﬁ(q}T ‘ yT)

and " | 27)
T Ty _ T 5 T ply z

Irgr e X" Y = [ ol ay")10g 70T

Proof: Follows from repeated application of the following fact. Let p(a,b) be the density

aab — a b _ bl a
of P4 g. Then we have pﬁg)p&) = p(p(l‘l) ) — P(p(l\)) ) O

We now compare the directed mutual information to the usual mutual information.

Proposition 4.2.2 I(X7;Y7T) > [(XT — Y7) with equality if and only if Y;— (X, Y?=1)—
Xg;_l forms a Markov chain.

Proof:

I(XT,)/t | Yt—l) _I(Xtayrt | Yt—l)

M=

IXT YN —1(x"-Y") =

.
Il
—

I(X{3Ye | XY

I
M=

o~
Il
—

Each term in the sum is nonnegative. By proposition A.3.1 (d) each term equals zero if and
only if ¥; — (X', Y*"!) — X, forms a Markov chain for each ¢. O

The following corollary states that if the future X's are not influenced by the past Y's
when conditioned on the past X’s then the directed mutual information equals the regular
mutual information. In the context of channels this states that if there is no feedback then
the two different mutual information measures are equal.

Corollary 4.2.3 If X/, — X! —Y" is a Markov chain then I(XT;YT) = I(XT —» YT)

Proof: Clearly if X/, ; — X' —Y" is a Markov chain then ¥; — (X*,Y*™!) - X[ | is a Markov
chain. Pearl call this the “weak union” property of conditional independence. [Pea] The
result then follows from proposition 4.2.2. O
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4.3 Channel Capacity

In this section we define the channel coding problem for finite alphabet channels. We first
define a channel, encoder, and decoder. Next we describe the interconnection between the
code-functions and the channel. Then we discuss the role of directed mutual information.
Finally we end with two definitions of capacity: operational channel capacity and channel
capacity.

Figure 4-2 shows diagrammatically the order of events that we have in mind for the
channel coding problem. Briefly, at time 0 we choose a message. This message is assigned
a code-function. Then for times 1,...,7 we use the channel sequentially. Note that the
channel input symbol at time ¢ is allowed to depend on the past channel output symbols.
At time T 4 1 we decode the message. Note that this a one-shot scheme. We now give the
details.

4.3.1 Channels

Let A, B be spaces with a finite number of elements. (We use the symbols A, B instead of
X,Y to emphasize that we are working with finite valued random alphabets.) Let Ay, By
be measurable random variables taking values in A, B respectively. The product spaces A’
and BT represent the input and output spaces for the channel for a time horizon 7.

Definition 4.3.1 A channel is a family of stochastic kernels {P(B; | a',b'=1)},. (T may
be infinity.)

Note that the specification of the conditioning includes only A?, B®~1. Thus our channels
are nonanticipative channels.

Before we can compute any of the “information” measures of the last section we need
to determine the joint measure P,r pr. In general any measure, P47 gr, can be factored
3 )
as

T
Par pr(AT,B") = Q) Py, at-1,pt-1(Ar | "' 071 ® Py, ge,pe-1(Be | o', 071). (4.3)
t=1

In order to complete the description of the joint measure we need to specify the kernels
{P(A4]at=1,6=1)}E . These kernels are determined by specifying an encoder. Note that
this is consistent with the formulation presented in chapter two.

In summary a channel is a sequence of stochastic kernels. We can “interconnect” them
and create a joint measure by specifying another sequence of stochastic kernels. This latter
sequence, as we will see, will be determined by the encoder.
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Time T+1 | W= g(b")

Figure 4-2: Interconnection
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4.3.2 Message Set, Encoder, and Decoder

In this subsection we define a message set, an encoder, and a decoder.
Definition 4.3.2 A message set is a set W = {1,..., M }.

Definition 4.3.3 A channel code-function is a sequence of T deterministic measurable
maps {fi}1 | such that f; : B! — A which takes b'! — a;. Let fT 2 {f;}1,. Denote
the set of all code-functions by Fr 2 {fT : fT is a code-function}.

Definition 4.3.4 A channel encoder, or channel code, is a set of M channel code-functions.
Denote them by fT[w], w=1,...,M.

For message w at time ¢ with channel feedback b’ ! the channel encoder outputs f;[w](b'1).
The following is a special case of the channel encoder when there is no feedback to the
encoder:

Definition 4.3.5 A channel codeword is a channel code-function, f', where each f; is
independent of b*=1. Thus any codeword f1 can be associated to a vector a’. The set of all
codewords can be represented by the space AT .

Definition 4.3.6 A channel encoder without feedback, or channel code without feedback,
is a set of M channel codewords. Denote them by a”[w] w=1,..., M.

For message w at time ¢ the channel encoder outputs a¢[w].

Definition 4.3.7 A channel decoder is a map g : BT — W taking bT — w.

Note that the decoder is allowed to wait till it observes all the channel outputs before
reconstructing the input message. We will relax this condition in chapter four when we
discuss transmission of a process, instead of a message set, over a channel.

4.3.3 Interconnection of Code-Functions to the Channel

Now we are in a position to connect the pieces: channel, code-functions, encoder, and
decoder. See figure 4-2.

Let Ppr be a distribution on Fp. For example Prr may be a distribution that places
mass 1/M on each of M different code-functions. (I.e. this could be a uniform distribution
on the code-functions that make up a particular channel code.) But generally we allow Ppr
to be any distribution on Fr.

We are given a distribution on code-functions Ppr, a channel {P(B; | af,b*=1)}L, and
the deterministic relations: a; = f;(b'~!). From these we want to construct a new channel
that connects the random variable F! to the random variable B”. To this end we need to
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define the following set of stochastic kernels {Q(B; | f%, 6" 1)}1_;. We use “Q” to denote the
new joint measure, Q(FT, AT, BT), that we will construct in the course of this subsection.
The kernels {Q(B; | f*,b"=1)}L; need to be defined in such a way so that the following

three properties hold:

(1) There is no feedback to the code-functions in the new channel.
The measure on Fr is chosen at time 0. Thus it cannot causally depend on the By’s.
Specifically we require that F; — F~! — B'~1 be a Markov chain under Q. Thus

QUE | F'h=f1 BT =6 =P(F | /7)) QUEF',B") —as
(2) The channel input is a function of the past outputs: a; = fy(b'=1)
We require that A; = Fy(B'™!) Q — a.s.

(3) The new channel preserves the properties of the underlying channel {P(B; | a*,b'=1)}L ;.
Thus we require

QB | F'=f' A'=d', B"'=b""1) = P(B; | ,0'7)  Q(F', A" B"") —aus.
Definition 4.3.8 We are given a code-function distribution, Pgr, the relations a; = fi(b' 1),

and a channel, {P(By | a’,b" 1)}_,. A measure Q(FT, AT BT) is said to be consistent with
the channel and the code-function distribution if it satisfies the three properties above.

An obvious question to ask is does such a measure Q on Fy x AT x BT exist satisfying
these requirements? We will show that there exists a unique measure Q).

Lemma 4.3.1 Given Ppr, the channel {P(b; | a',b" 1)} |, and the relations a; = f;(b'1)
there exists a unique measure Q(FT, AT, BT) on Fr x AT x BT satisfying the above three
properties. Furthermore the channel from Fr to BT for eacht =1,...,T is

QB | F'=f', B =47 = P(B, | f'(0')), ¥) Q(F',B"")—as.  (44)
Proof: Any measure satisfying properties (1) and (2) must be of the form
T
Q(FT, AT, BT) = {@ QB | f,0 1) ® Q(F | fH,bH)} ® Q(AT | fT,6T)
t=1
T
= {® Q(B: | f0"") @ P(F; | ft_l)} ® dpar—rpT-1))

t=1

where f1(671) 2 (f1, f2(b1), ..., fr(67~1)). Thus we need only identify the “Fr — BT
channel: {Q(B; | f*,b""1)} ;.
QB | F' =", B 1 ="
Q(Bt | Ft _ ft, At _ ft(bt_l), Bt—l — bt—l) Q(Ft,At,Bt_l) — a.s.
= P(Bt | ft(btil)abtil) Q(FtaAt’Btil) — a.s.
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where the first equality follows from property (2) and the second equality follows from
property (3). Thus the new channel can be uniquely defined as

Q(Bt | Ft _ ft, Bt—l — bt—l) — P(Bt | ft(bt_l),bt_l) Q(Ft,Bt_l) — a.s.
a

Corollary 4.3.1 A distribution, P(W), on W, a channel code {fT[w]}}_,, and the chan-
nel {P(By|at, b 1)}, uniquely define a measure Q(W, AT, BT) on W x AT x BT.

Proof: Py induces a measure P(FT) on Fr. Now apply lemma 4.3.1 to get Q(FT, AT, BT).
By the correspondence between the random variables F7 and W we get the measure
QW, AT, BT). O

4.3.4 Directed Mutual Information: The Intuition

It turns out that mutual information is insufficient for computing the channel capacity of
a feedback channel. [Mas] To appreciate this fact we need to distinguish between causal
independence and probabilistic independence. We discuss the role of directed mutual infor-
mation. (Recall the definitions in section 4.2.)

As was shown in corollary 4.2.3 if X/, | — X* — Y is a Markov chain then I(X7;Y7) =
I(XT — YT). Thus when there is no feedback the two measures of mutual information are
the equal.

The traditional mutual information measure is the incorrect one to use when computing
the capacity of channels with feedback. We now give some intuition for why this is the case.
Assume we are given a joint measure P(A”, BT). Then we have via Bayes’ law:

P("’?—l—l ‘ a’tabt)
P(afyy | at, b7t

P@\Jﬁ“ﬂ:( )P@|&H*)

Thus, in general, P(b; | a®,b'"1) # P(b; | a',b'"!). Even though A;y1 occurs after B it
still has a probabilistic influence on it. To quote Massey, “statistical dependence, unlike
causality, has no inherent directivity.” Now I(AT; BT) depends on P(B; | a®,b'~!) whereas
we would like a measure that is only dependent on P(B; | a?,b' ). That measure turns
out to be the directed mutual information.

Assume the ordering A1, By, ..., A7, Br. Figure 4-3 shows two directed graphs, sometimes
called Bayesian networks, for this particular ordering. [Pea] The first graph holds when
there is no feedback. The second holds when there is feedback. One can use the graphical
modeling principle of d-separation to show that under when there is no feedback, AtT+1 and
By are independent given (A?, B'~1).
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No feedback Feedback
Figure 4-3: Graphical Model Representation

We end this subsection with a simple proposition that extends corollary 4.2.3 to the
case of a channel code without feedback.

Proposition 4.3.1 If we are using a channel encoder without feedback or a channel input
distribution without feedback then I(AT; BT) = 1(AT — BT).

Proof: A channel encoder without feedback induces a channel input distribution without
feedback. To see this note that since we are using an encoder without feedback W — A?* — B?
is a Markov chain. Now A7, is just a function of W thus Af, ; — A* — B'. The proposition
then follows from corollary 4.2.3. O

4.3.5 Operational Channel Capacity

We are now ready to define the operational channel capacity. Take the distribution, Py,
on the message set W to be the uniform distribution.

Definition 4.3.9 An (T, M,¢) channel code over time horizon T has a channel encoder
with M code-functions, a channel decoder g, and an error probability

LM Pr(w # g(07)|w) < e

Definition 4.3.10 An (T, M, ¢) channel code without feedback over time horizon T' has a
channel encoder with M codewords, a channel decoder g, and an error probability

B Tl Pr(w # g(b")|w) <e.

In what follows the superscript “o” and “nfb” represent the “operational” and “no

feedback” respectively.
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Definition 4.3.11 R is an e-achievable rate if, for every § > 0 there exists, for sufficiently
large T, an (T, M, €) channel code with rate lggTM > R—4§. The mazimum e—achievable rate
is the called the e—capacity and denoted C°. The operational channel capacity is defined
as the mazimal rate that is achievable for all 0 < € < 1 and is denoted C°.

Definition 4.3.12 R is an e-achievable rate without feedback if, for every 6 > 0 there

exists, for sufficiently large T, an (T, M, €) channel code without feedback with rate IO%M >

R — 6. The mazimum e — achievable rate without feedback is the called the e—capacity
without feedback and is denoted C. f b. The operational channel capacity without feedback

1s defined as the mazimal rate that is achievable for all 0 < € < 1 and is denoted Ccosnfb,

4.3.6 Channel Capacity

For the case when there is no feedback we know that the operational channel capacity can
be characterized by a particular mutual information optimization problem. [Shal] [VH] In
this section we state that optimization problem. We then introduce another optimization
problem for the case of channels with feedback. In section 4.4 we show that this is the
correct optimization problem to solve.

The following two definitions define distributions on the channel input space.

Definition 4.3.13 A channel input distribution is a sequence of stochastic kernels
{P(A; | a5 0N

Definition 4.3.14 A channel input distribution without feedback is a channel input distri-
bution with the further condition that for each t the kernel P(Ay | atjl, bt=1) is independent
of b'=L. (Specifically P(A; | a'=1,b"71) = P(A; | o', 0% 1) Wb~ bi7L)

When computing the capacity of a channel it will turn out that we are most interested

P (AT,BT)

. . : 1 AT BT )

in the convergence properti f the random variables + log = 2

t cO gence prop es O ando ariables T log B | P (AT,BT)

reasonable regularity properties, like information stability, then these random variables will
converge in probability to a deterministic limit. In the absence of any such structure we are
forced to follow Verdu and Han’s lead and define the following “floor” and “ceiling” limits.
[VH]

. If there are

Definition 4.3.15 The limsup in probability of a sequence of random variables {X;} is
defined as the smallest extended real number o such that Ve > 0

lim Pr[X; > a+¢€ =0.
t—00

Denote this number by limsup ,, prob X;.
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Definition 4.3.16 The liminf in probability of a sequence of random wvariables {X;} is
defined as the largest extended real number o such that Ve > 0

lim Pr[X; <a—¢ =0.
t—o00

Denote this number o by liminf ,, prob X;.

- P TpT
Definition 4.3.17 Let i(a”;b") 2 log 3 AT’B;(a(aT ZT)'
AT|BT BT ’

Definition 4.3.18 For a sequence of joint measures {Pyr pr}3% , let

I(A — B) 2 liminf lZ(AT; BT) and T(A — B) 2 limsup lZ(AT; BT).
in prob in prob

Lemma 4.3.2 For any sequence of joint measures {PAT,BT}%OZI we have

I(A — B) < liminf lI(AT — BT) < limsup lI(AT — BT) <T(4 - B)
T—oo T Tooo 1

Proof: See the end of section A.3 in the appendix. O

If I(A — B) = I(A — B) then we say that the process {Pyr pr}2; is information
stable. Note that this is a generalization of Dobrushin’s definition of information stability.
[Dob2] The preceding lemma states that if the process is information stable, I(A — B) =
I(A — B), then limg_, %I(AT — BT exists and equals I(A — B). Thus, in this case, we
can work directly with I(AT — B7).

Definition 4.3.19 Let Sp = {{P(A; | a"=1,b'"1)}]_} be the set of all channel input dis-
tributions.

Definition 4.3.20 Let S;Lfb = {P(4; | a0} } be the set of all channel input

distributions without feedback.

We are now ready to define the mutual information optimization problems. Recall a
channel input distribution and a channel define the joint measure.

Definition 4.3.21 For finite T let

1
Cr = sup —I(AT = BT)

SeSr
and ) )
o = sup —1(AT » BT)= sup —I(AT;B7).
nfb T nfb T
SeSy SeSy

For the infinite horizon case let

C = sup I(A— B)
SESw

91



and
cnfb = sup I(A— B)= sup I(A4;B).
sesl Sesﬂfb

Verdu and Han proved the following theorem.
Theorem 4.3.1 For channels without feedback confo = onfb,

Proof: See theorems 1 and 5 of [VH]. O

In a certain sense we already have the solution to the coding problem for channels with
feedback. Specifically lemma 4.3.1 tells us that the feedback channel problem is equivalent
to a new channel coding problem without feedback. This new channel is from Fr to BT and
has channel kernels defined by equation 4.4. Thus we can directly apply theorem 4.3.1 to
this new channel. It turns out, though, that this is a very complicated problem to solve. We
would have to optimize the mutual information over distributions on code functions. Note
that in definition 4.3.21 the optimization is over channel input distributions. We will show
that we can simplify the optimization problem over distributions on code-functions to that
of an optimization problem over channel input distributions. Specifically we don’t have to
work on Fr x BT space but instead can work on the original A7 x BT space. This next
section proves the analogous result to theorem 4.3.1 for channels with feedback: C° = C.

To see that this might be possible we show that the directed mutual information is the
same for both channels.

Proposition 4.3.2 Assume we are given a joint measure Q(F', AT, BT) consistent with
a channel and a code-function distribution. Then I(FT; BT) = 1(AT — BT).

Proof:
I(FT; BTy = I(FT — B™) property (1) of consistency
T
= Y I(F, B |B"™")
t=1
T
= ZI(Ft,At;Bt |B*=!)  property (2) of consistency
t=1
T
= ZI(At;Bt |Bt=1)  property (3) of consistency
t=1
= 1(AT - BY)
O

In fact, as we will see in section 4.4.1, this proposition is the basis for the converse and
direct parts of the feedback channel coding problem.
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4.4 Coding Theorem for Finite Alphabet Channels

In this section we treat the coding problem for finite alphabet channels with feedback. There
are three main parts to this section. First we provide the necessary technical lemmas to
show the relationship between code-function distributions and channel input distributions.
Second we prove the feedback channel coding theorem. Third we compute error exponents.

Theorem 4.4.1 For channels with feedback C° = C.

Proof: This will be proved in section 4.4.1 and 4.4.2. O

Before starting with the proof we give a high-level summary of the issues involved.
The converse part is rather straightforward. For any channel code and channel we know
by lemma 4.3.1 that there is a unique consistent measure Q(F?, AT, BT). From this mea-
sure we can compute the induced channel input distribution {Q(4; | a®~1,b'"1)}L ;. Now
{Q(A; | a'=1,6""1)}]_, € Sy but it need not be the supremizing channel input distribution.
Thus the directed mutual information under the induced channel input distribution may be
less than the directed mutual information under the supremizing channel input distribution.
This is how we will show C° < C.

The direct part is the interesting part of the theorem 4.4.1. Here we take the optimizing
channel input distribution {P(A; | a’~1,b'"1)}]_, and construct a distribution on code-
functions Prpr. We then prove the direct part of the coding theorem for the channel from Fr
to B by the usual techniques for channels without feedback. By a suitable construction of
Prr it can be shown that the induced channel input distribution equals the original channel
input distribution. Thus a generalization of proposition 4.3.2 shows that the directed mutual
information measures are the same for both the “Fr — BT” channel and the “AT — BT
channel. This is how we will show all rates less than C are achievable.

4.4.1 Main Technical Lemmas

In this subsection we present the main technical lemmas we need for the feedback channel
coding theorem. Given Prr and {P(B; | a',b" 1)}, we know by lemma 4.3.1 that there
exists a unique consistent measure Q(F7, AT, BT). Furthermore the new channel is defined
as Q(B; | fL,o71) = P (B | f1 (1), 671 . (See equation (4.4).)

Equivalence of Ratios

The following lemma allows us to generalize proposition 4.3.2 to the infinite horizon case.

Lemma 4.4.1 We are given P(FT) and {P(B; | a',b" 1)}, and the consistent joint
measure Q(FT, AT, BT). Then with Q-probability one we have

QFT,BT (FTaBT) _ QAT,BT (ATaBT)
QFTQBT (FT’BT) Q.AT‘BTQBT (AT,BT)
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Proof: For every (f7,a”,b") such that a; = f;(b'" ') for t = 1, ..., T we have the following

Qrr pr(fT,07)  Qprpr(®[f7)

QprQpr(fT,07) Qpr (b7)

-, Qp, g1, (b0, f1)
Qpr (bT)

1, @B, |Bt-1,At (be]a®, b 1)
Qpr (bT)

CjBT|AT(bT|aT)Q’AT|BT (CLTV’T)

QBT(bT)@AT\BT (aT]0T)
Qar pr(a”,bh)
Q47 prQpr (a”,b7)

O
Corollary 4.4.1 I(FT; BT) = 1(AT — BT).

Proof: Follows from lemma 4.4.1 and the definition of 1. O

Induced Channel Input Distribution

We now discuss the induced channel input distribution. This is the channel input distribu-
tion induced by a given code-function distribution. First some definitions.

Definition 4.4.1 Define the graph(f;) 2 {(b*"1,a;) : fi(b'!) = a;} C B! x A.
Definition 4.4.2 Let
(b a) 2 {fo: (0", 1) € graph(f) ]

and
DU a!) 2 (£ (0 ag) € graph(f) G =Lt

The following lemma characterizes the induced channel input distribution.

Lemma 4.4.2 We are given Ppr, a channel {P(B; | a',b'"1)}L |, and a consistent joint
measure by Q(FT, AT, BT). The induced channel distribution can be determined as follows.
For every (a®,b""1) such that T* 1 (b"2, a' 1) # 0 we have

Qa¢ | a1, 0"7") = P, pia (Ft(bt_laat) | Ft_l(bt_Zaat_l)) :
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/ N\
{P(Aila" 0D} Y ) =

Figure 4-4: Channel Input Distributions

Proof: Note that (a’~!, b'~!) uniquely specifies (I"*~1(b*=2,a'~1), b'~!) and vice-versa. Thus
it must be the case that

Qas | a1, 0 = Q (at | Pt—l(bt—2’at—1)’bt—1) )

Note that (671, a;) uniquely specifies (I'y(b*™!, a;),b"1) and vice-versa. Thus it must be
the case that

Q (at | Ptfl(bth,atfl)’btfl) -Q (Ft(bt’l,at) | thl(bth’atfl)’btfl) _
Now by property one of consistency we have
Q (Ft(bt_l,at) | Ft—l(bt—Z’at—l)’bt—l) _p (Ft(bt_l,at) | Pt—l(bt—Z’at—l)) _
Combining the above equalities we get

Qlag | a6 1) = P (D61, ay) | T (02,0t71)) .

Note that lemma 4.4.2 implies that the induced channel input distribution depends only
on the code-function distribution. It does not depend on the particular channel given. Also
note that many different code-function distributions may induce the same channel input
distribution.

Conditions for the Induced Channel Input Distribution to Equal the Original
Channel Input Distribution

So far we have shown how a code-function distribution induces a channel input distribution.
As we discussed in the introduction to this section, we would like to start with a channel
input distribution and construct a code-function distribution such that the resulting induced
channel input distribution equals the original channel input distribution. This is shown
pictorially in figure 4-4. In the figure we want the two channel input distributions to be
the same. The first arrow represents the construction of the code-function distribution.
And the second arrow is described by the result in lemma 4.4.2. Corollary 4.4.1 states
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that Io(FT; BT) = Io(AT — BT). If we show that the induced channel input distribution
equals the original channel input distribution then we have Io(A" — BT) = Ip(A” — B”).
Consequently I (F"; BT) = Ip(A” — BT).

Definition 4.4.83 We call a code-function distribution P(FT) good with respect to the
channel input distribution {P(Ag|a’=!, =1} if the following holds for all (b'~!,a;)

Pr e (D01 @) | £71) = Plae | f71(6172),007).

The first question to ask is does such a good code-function distribution exist? And if so is
it unique? We now show that there do exist good code-function distributions but they are
not unique.

Lemma 4.4.3 There exists a code-function distribution P(FT) good with respect to the
channel input distribution {P(A; | a1, 001} .

Proof: For all f! define P(f; | fi=!) as follows
P(fe | f77h = II Pay | fi,ens fr-1 (072),0570).
(b-1,a)€ graph(f:)

It is a tedious but straightforward exercise to show that 3", P(f | firhy=1forall t =
1,...,T. Thus P(FT) is a code-function distribution. Clearly this construction is good with
respect to the channel input distribution {P(4; | a1, 6" 1)} ,. O

A function f; is defined by its graph. In the above construction we have enforced
independence. In the case where (b1, a;) # (b'1,d;) we have

P ({fe: 0" ar), (3" @) € graph(f)} | £'7")
= P({fi: ") egraph(fy)} | 1) x P ({f: (#'~",@) € graph(fs)} | £

We do not need to assume this independence. In fact there are many good code-function
distributions without this independence. Some are simpler than others. A particularly
simple one will be used in section 4.6 where we deal with Gaussian channels.

Now we show that we can achieve the program outlined in figure 4-4.

Lemma 4.4.4 We are given a channel input distribution {P(A; | a'=1,b'"1)}_,. The
induced channel input distribution equals the original channel input distribution if and only
if the code-function distribution P(FT) is good with respect to the original channel input
distribution.

Proof: By lemma 4.4.2 we have

Q(at | at—l’bt—l) —p (Ft(bt_l,at) ‘ Ft—l(bt—Q’at—l))
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(QA: | a1 0 DL
/ N\
P(FT) Q(FT)

Figure 4-5: Code-Function Distributions

Now we want

P Dyt ') | TE 102,00 1)) = Plagat 1,5Y).

But this is precisely the definition of Prr being good with respect to the original channel
input distribution. O

We have just shown that any code-function distribution good with respect to the chan-
nel input distribution satisfies figure 4-4. We can also ask if the outline in figure 4-5
possible. That is we start with a code-function distribution P(FT) and compute its in-
duced channel input distribution {Q(4; | a’~!,6*=1)}£ ;. Then we compute a code-function
distribution Q(FT) good with respect to {Q(A; | a* 1,6 1)} ;. Is it possible for Q(FT) =
P(FT)? As stated in the remarks after lemma 4.4.3 there are many ways to go from
{Q(As | a1, 071}, to Q(FT). Thus the answer is no in general. But we can show the
following;:

Lemma 4.4.5 We are given a code-function distribution P(FT). If Q(FT) is a code-function
distribution good with respect to the induced channel input distribution {Q(A; | a*=1, 671},
then for all (b'~1,a;)

Q6" ar) | f171) = P(To(0" Y ) | f171).
Proof:
Qb a) [ £ = Q(ar | SHHE),Y)
= Pt ) | TG E2),007Y)
P (Ty(' 0 | f7)

where the first equality follows from definition 4.4.3 and the second equality follows from
lemma 4.4.2. O

The space of good code-function distributions can be quite large. Thus another reason
for reducing the problem to an optimization of channel input distributions instead of one
over code-function distributions is that we reduce the number of extrema.
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4.4.2 Feedback Channel Coding Theorem

Now we can prove the feedback channel coding theorem 4.4.1. We first prove the converse
part. Then we prove the direct part.

Converse Theorem

Choose a (T, M,¢) channel code {fT[w]}}L,. Place a prior probability i on each code-
function f7(w). By lemma 3.3.1 this defines a consistent measure Q(W, AT, BT). The
following is a generalization of the Verdu-Han converse presented in [VH].

Lemma 4.4.6 Every (T, M,¢) channel code satisfies

1 AT BT 1
€>Qurpr | =log = Qar,pr( ) —logM —v| =277 vy>0
’ T " QuriprQpr(AT,BT) — =7

Proof: Choose a v > 0. Let D,, C B be the decoding region for message w. The only

restriction we place on the decoding regions is that they do not intersect: D, N Dy =

) Vib # w. (This is always true when using a channel decoder: D,, = {w : g(b') = w}.)
The probability of error is

M
Z r(w, DS).

Define ( T)

1 QW BT \W, b 1

Q= by =1 ’ < —logM —
{(w’ ) T Og QWQBT(U), bT) - T Og ,Y}
and ( T)
QWBT w, b ].
={p": < = lo M —~}.
Note that
Qy = (QuNDy,)U(Q,ND;)

C (QunNDy)UD:.

Thus

Pr(w, Dy)

v

Pr(w, Qy) — Pr(w, Qy N Dy,)
Pr(w, Q) — Z Qw,pr (w, b")

b7 €QywNDy,

o (w, b7
= PI‘(’U), Qw) — Z QQWI//'V&;BT(ZU’IU, bfl)v) QWQBT (wa bT)

b €QyNDy

> Pr(w,Qy) — Z M2 QuwQpr (w,bT)
bT €N Dy

> Pr(w,Qu)— Y, M27"7 QwQpr(w,b")
bT €Dy,
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Pr(w, Q) — M2_T7Qw(w) Pr(Dy)
= Pr(w, Q) — 2717 Pr(D,,)

Thus
M M
> Pr(w,Dg) > 3 (Pr(w, Q) — 2777 Pr(Dy))
w=1 w=1

M
> Pr(Q) —2777 Y Pr(Dy)
w=1
> Pr(Q) -2
By lemma 4.4.1 we know that the following holds for all (f7, a”,b") such that a; = f;(b'"!)

Qw,pr(w,b") _ Qar pr(a’,b")
QWPBT (wabT) Q'AT‘BTQBT (aTabT)

From this we can conclude

1 AT, BT 1
> Qe [ L1og _Qur,pr ) 1
; T QAT|BTQBT (AT, BT) T

Note that in the proof of lemma 4.4.6 the only property of the decoder we used is the
restriction that the decoding regions not overlap. Thus the lemma holds independently of
the decoder that one uses. Thus the lemma is quite general.

A weaker form of the converse lemma can be found in [Mas]. Specifically he shows
I(W;BT) < I(AT — BT). This combined with Fano’s inequality, [Gal], gives us

H(e) 4+ elogM > H(W) — I(W; BT)
where H (€) is the entropy of a random coin with bias e. This implies

LI1(AT —» BT
log M

Thus the rate R = %logM < Cr is a necessary condition for the error to go to zero. We
state the more general converse theorem now.

Theorem 4.4.2 The channel capacity C° < C.

Proof: Assume there exists a sequence of (T, My, e7) channel codes with e — 0 as T — oo.
Assume towards a contradiction that lim7_, 4, % log M1 > C + 2. By the previous lemma,
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we know

e > Qurpr (—log Qar g ( ) <

T " @ rprQpr (AT, BT)

AT BT
> Qur gr llog qQAT’BT( 57) <C+y|-27
7 \T " QurprQpr (AT, BT)

1
T log M1 — 'y) — T

But by the definition of C' and for T' large enough the mass below C' + - has nonzero
probability. Therefore the right hand side in the inequality is greater than zero. Thus
contradicting ey — 0. O

The converse for the feedback channel coding theorem is really the easy part. This is
due to the fact that any channel code induces a measure on the A" x BT space. The direct
theorem is harder to prove. We want to use a random coding argument. To that end we
need to first generate a channel code distribution from the channel input distribution. Then
we need to show that at least one of these randomly drawn codes achieves capacity. We
show that this can be done in the next section.

Direct Theorem

We will prove the direct theorem via a random coding argument. The following is a gener-
alization of Feinstein’s lemma [Fei].

Lemma 4.4.7 Fiz a time T and 0 < € < 1. Fiz a channel {P(B; | b*',a’)}_,. Then for
all v > 0 and channel input distributions {P(A; | a'=1,6'=1)} ., there exists an (T, M, ¢)
channel code for the channel that satisfies

1 P AT BT
€< PAT,BT (_ log AT,BT( ) )

1
= < —logM+~|+27.
T " PyrigrPpr(AT,BT) = T )

Proof: Let P(FT) be any code-function distribution good with respect to the channel input
distribution {P(4; | a1, b1} ;. Let Q(FT, AT, BT) be the consistent joint measure
induced by P(F') and the channel. A channel code is selected at random by drawing M
code-functions from P(FT). Choose a y > 0.

Define 0 (T 5T)
rropr(f,0 1
: < =logM +~}.
QrrQpr(f1,0") = T )
Recall the inequality 1 — (1 — z)* < kx Vz € (0,1).

Then via the usual random coding arguments we will compute the average codebook
error averaged over all codebooks. Let Pr(error|f7,b") be the probability of error if we

Q= {(/",8") : 7 log
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have chosen one codeword to be f7 and the received channel output is b7. Then

Ecodebook(r,m) (Error)

= Y Pr(error|fT,b") Qpr pr(f7,0") + Y Pr(error|f7,6") Qpr pr(f7, ")
Q Qc

< Qprpr()+ Z Pr(error|f1, 1) Qpr T (ff, 1)

QC
Q1) V)
' Qur i O71/T)

Qpr)pr (71S7) 1}

= Q)+ Qurpr(fT,07) [1- (1 — Qpr {fT
Qe

IN

" Qurer OTIT)
QBT\ﬁT(bT|fT)
Qpr e (0177

Q) + Z Qprpr(f1,6") (M - 1)Qpr {fT
Qe

= Q) +(M—-1)) Qprpr(fT,0") (Z
Qe fT

QFT(fT))

_ B T ;T QBT(bT)
= Q)+ (M 1)§QFT,BT(J0 ") (QBTFT(bT\fT))
1

< Q)+ M-1)Y 22 T Qprpr(fT,)
Qc

< Q@) +27
By lemma 4.4.1 the following equality holds for all (f7,a”,b") such that a; = f;(b'!)

QFT,BT(fTa bT) QAT,BT(aTa bT)

QFTPBT(fTabT) B QAT|BTQBT(GT,bT)

Thus we have shown
QAT,BT (AT, BT)
Q a7\ prQpr (AT, BT)

1 1 _
Ecodebooks(r, v (Error) < Qur pr (f log < g log M + 7) +277T,

By lemma 4.4.4 and consistency we have
Q(A",BT) = Q(AT | ") @ B(B" | a") = P(A" | b") @ P(B" | a") = P(A", B")
thus

PAT,BT (AT, BT)
P yr|gr Pgr (AT, BT)

1 1 _
Ecodebooks(r,m) (Error) < Pyr pr (f log < T log M + 7) + 2777,
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Since the error averaged over codebooks is less than the right hand side we know there must
exist at least one code with error

PAT,BT(AT,BT) ].

1
€< Pyr gr | =log = < —logM+~|+277.
e (T Pyr prPyr(AT,BT) ~ T

Thus the lemma holds. O
The following follows [VH].

Theorem 4.4.3 All rates less than C are achievable.

Proof: Fix € > 0. We will show that C is an e—achievable rate by demonstrating for every
Té
6 > 0 and large enough T that there exists a (T, M,2" "¢ + §) code with rate

log M 0
C-6< <C--.
- T — 2
If in the previous lemma we choose v = g, then we get
1 PAT BT(AT,BT) 1 (5
P —log = : < —logM + -
AT BT <T g PAT|BTPBT(AT,BT) T g 4
1 P AT BT P
S PATBT —log = AT’BT( ) SC—_
’ T PAT|BTPBT(AT,BT) 4
< &

2

where the second inequality holds by for T' large enough. To see this note that by the
definition of C' and T large enough the mass below C — % has probability zero. O

We have shown that C is the feedback channel capacity. It should be clear that if we
restrict ourselves to channels without feedback then we recover the original coding theorem
in [VH].

The direct theorem is an asymptotic theorem. We now provide error exponents to show
the rate at which the random coding error decreases with 7T'.

4.4.3 FError Exponents

In this section we provide upper bounds on the random coding probability of error. We
show that at least in terms of the random coding error, the feedback coding error exponent
is no smaller than the no feedback coding error exponent.

In the direct part of the coding theorem we constructed a distribution, P(FT), from a
channel input distribution {P(4; | a* 1,6 1)}L,. By lemma 4.3.1 we know the channel
{P(B; | a*,b""1)}L; and the code-function distribution P(FT) uniquely define a channel
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from Fr to BT denoted by {P(B; | f%,b" 1)} ;. Thus we can directly apply Gallager’s
random coding error exponent theorem to the “Fr — BT” channel. [Gal]

Definition 4.4.4 Given a channel {P(B|f!,b"=1)}L | define the error exponent to be
1+p

Er (RP(FT)) & max —pR—%lnszj fZTP(fT){P(bTIfT)}m

Theorem 4.4.4 The average random coding error over (T,el®) channel codes drawn ac-
cording to P(FT) can be upperbounded as

—-TEr(R,P(FT
E COdebooks(T,eTR)(GTTO’r) < e tET (RP(FT))

Proof: This is theorem 5.6.1 in Gallager’s text. [Gal] O

Definition 4.4.5 The optimal error exponent is

Er(R) 2 suwp Ep (R,P(FT)).
P(FT)

The optimization in definition 4.4.5 is rather difficult to compute in general. We now
show that we can simplify the optimization by rewriting it as an optimization over channel
input distributions defined on AT x BT.

Definition 4.4.6 Given a channel {P(B; | a',b'~')}}_, define the directed error exponent
to be

1+p
) - — 1 - . 1
By (RAP(A; | '™ 0¥ L) & max | —pR— Y |3 P(a"p") { P 1a")} ™

T | a7

Definition 4.4.7 The optimal directed error exponent is

Br(R) & sup By (R {P(Ada" "B} )
{P(A¢ | =1 b=}, €87

Where St was defined in definition 4.3.19.

Proposition 4.4.1 Fiz a channel {P(B; | a®,b'"')} ;. Let the code-function distribution
P(FT) be good with respect to the channel input distribution {P(A; | a* 1,0 " 1)},. Then

Br (R {P(4; | o' 6" )},) = Br (R, P(FT)).
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Proof: By lemma 4.3.1 we know the code-function distribution and the channel define
a unique consistent measure Q(F?, AT BT). Note Q(f*,a’,b?) > 0 implies that a; =

fr®1).

1+p . 1+p
> }:1’fT (o)™ | = > };1°fT bTuqd{f%HUde}ﬂ$]
o7 T Lf e
> XT:Q(fT,bT){Q(bTIfT)}m]
’ _f 1
- 2| X eu”, o) { QW1
’ :f : 1:14—9
= 2| X Quiieleh {Q0T1aT)}
b f ,a ) 1+p_
- 33 eeiniduTle )}ﬂ
’ e
> ZQ (a”1B")G(B"|a" ){éwT\aT)}”"]
" Ll
- 2| ZQ op") {3710 }
’ e
=y ZP (@”|p7) { (" |a” )}m
=

where the last line follows from lemma 4.4.4. Thus the proposition follows. O
Corollary 4.4.2 Fiz a channel {P(B; | a',b'~1)}_,. Then
Er(R) = Er (R).

Proof: Denote the channel input distribution that supremizes Er <R, {P(A; | a*7 1, bt_l)}thl)

by {P*(A; | a* 1,68 1)}, Let P(FT) be any code-function distribution good with respect
to this optimal channel input distribution. Then by proposition 4.4.1 must have

Br (R) = Br (R, P(FT)) < Br (R).

Now let P*(FT) supremize Er (R,P(FT)). By lemma 4.4.2 we can compute the in-

duced channel input distribution {Q(4; | a’~1,b'"1)}_,. Clearly P*(FT) is a code-function
distribution good with respect to {Q(A; | a’~1,4=1)}L ;. Thus by proposition 4.4.1 we must
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have
Br (R) = Br (RAQ(A | a0 ") L,) < Br (R).

Thus the corollary is proved. O

We have reduced the calculation of the error exponent from an optimization problem
over Fr x BT to one over AT x BT.

Corollary 4.4.3 If 0 < R < Cr then ET(R) > 0.

Proof: By theorem 5.6.4 in Gallager’s text we know if 0 < R < Cr then Er(R) > 0. [Gal]
By corollary 4.4.2 the result holds. O

We end this subsection by showing that the feedback channel error exponent can be no
worse than the no feedback channel error exponent. The following definition is essentially
definition 4.4.4 rewritten in terms of a” instead of f7.

Definition 4.4.8 The optimal no feedback directed error exponent is

—nfh - - -
Y (r) 2 sup Er (R, {P(A; | a1, 0 1)}tT:1).

{P(At | at‘l,bt‘l)}leesgfb

Where S%lfb was defined in definition 4.3.20.

Proposition 4.4.2 For a given channel {P(B; | a*,b" )}L_| we have Ep(R) > E_';}fb(R)
Proof:
Er(R) = sup Er (R, ({P(4; | a1 0 ))L)))
{P(As | at=1 b=} €S
> sup Br (R, ({P(4; | a0} 0))
(P(A; | at-1,pt-1)}esDib
= Ef®(R)
a

We have shown the feedback random coding error exponent cannot be smaller than
the no feedback random coding error exponent. Thus not only is the feedback capacity
larger than or equal to the no feedback capacity but also the error exponents can be better.
Unfortunately the result does not tell us how much better the exponent can be. This is an
open problem. But we will shed some light on this issue in chapter five where we relate the
successive refinement problem to the feedback channel coding problem.

Finally note that we have defined the exponent for each time horizon 7T'. It is not true
in general that limy_, . Er(R) exists or is bounded away from zero. Suitable regularity
assumptions need to be made in order for this to occur.
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4.5 Markov Channels and the Dynamic Programming For-
mulation

In this section we discuss channels with state. We provide a coding theorem for these chan-
nels. Furthermore we reduce the optimization problem to a partially observed stochastic
control problem.

We have shown that the supremization over channel input distributions of the directed
mutual information is a measure of the channel capacity. This optimization is much easier
than determining the optimal distribution on the space of code-functions. But computing
the optimal channel input distribution is still difficult. There are many approximation ap-
proaches that one can use. For example one could use the Blahut-Arimoto algorithm. Here,
though, we would like to use the tools of dynamic programming to convert the optimization
into a series of “simpler” optimizations.

For a dynamic programming approach to work, though, we require that the objective
function be a summation of costs. This allows us to embed the general optimization prob-
lem into a series of simpler ones. A straightforward computation shows that the directed
information can be written as the sum

T
I(AT — BT) =Y I(A% By|B' ™).
t=1

Thus in principle one could apply dynamic programming ideas here. Unfortunately given
the dependence on both A’ and B? we see that the state space will be growing with ¢. The
usual trick when dealing with a growing state space is to seek out a sufficient statistic. To
that end we examine “Markov” channels.

4.5.1 Setup

In this subsection we define the Markov channel, the code-functions, the interconnection
between channel code and channel, and the channel capacity. This material follows from
section 4.3 Let Z be a finite set representing the space where the state lives. Let Z; € Z
be the state process. See figure 4-6.

Definition 4.5.1 A Markov channel consists of two sequences of stochastic kernels. One
sequence governing the state evolution: {P(Z1), P(Zi41 | zt,a¢), t = 1,...,T — 1} and
one sequence governing the channel output: {P(By | z,as)}_,. If the stochastic kernel
P(Ziy1 | 2t,a¢) is independent of a; fort =1,...,T —1 then we say the channel is a Markov
channel without ISI (Intersymbol Interference.)
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Figure 4-6: Markov Channel

Lemma 4.5.1 For Markov channels the following is a Markov chain:
(Bt, Zuy1) — (As, Zy) — (A1, B 2071
Proof:

P(Btazt-f-l ‘ atabt_lazt) = P(Zt+1 | atabtazt) ®P(Bt ‘ at7bt_1azt)
= P(Zp1 | at, ) @ P(By | at, z1)

Definition 4.5.2 A channel code-function is a sequence of T deterministic measurable
functions {f;}1_, such that f; : Z! x B'=1 — A which takes (z',b'"') — a;. Two special
cases are

1) There is no feedback to the encoder. The code-function, f;, is independent of zt, bt~ 1.
(

(2) The code-function has access only to the channel output. That is f; : B'~' — A which
takes b1 — ay.

As before a channel code is a set of M code-functions. A message set is defined as in
definition 4.3.2.

Definition 4.5.3 A channel decoder is a map g : Z7 x BT — W taking (27,b7) — w.

Note that the decoder is allowed to observe the state. In the literature this is sometimes
called receiver CSI (channel state information.) We discuss relaxing this assumption in
section 4.5.4.

107



Interconnection

The natural time ordering for the random variables involved is
F'.7y,A1,B1, 2, ..., Zy, Ay, By, ..., Zg, A, Br. (4.5)

Given a measure P(FT) we can define an interconnection as we did in in section 4.3.3. We
will define a new Markov channel without feedback. We want to compute a joint measure
Q(FT,ZT, AT BT) such that the following all hold almost surely @

(1) There is no feedback to the code-functions:

Q(Ft | Ft 1 ft 1 Zt 1 _ t—l’ Bt—l :bt—l) — P(Ft | ft—l)
Q(Ft=1,zt71 B! —a.s.

(2) @ preserves the properties of the underlying channel:

Q(Zs | FT = ft, z1 =2 At L=t B =" = P(Z; | z_1,05-1)
or Q(Z| F' = f', 7z~ 1 , AT 1 =a!, BT =" = P(Zy | 1)
Q(Ft,Zt L AL BEY —as.

depending on whether there is ISI or not. And

QB; | FT =ft, 2t =2, At =d', B =b"Y) = P(B| 2, )
Q(Ft, z', A', B"™!) — a.s.

(3) The channel input is a function of the past outputs and/or states:
Ay = Fy(Z',B"™!) Q—a.s.or Ay = F;(B*™') @Q—a.s. depending on whether there is
state feedback or not. More generally F; can be any o(Z?, Bt !)-measurable function.

Definition 4.5.4 We call any measure satisfying the above four properties a consistent
measure for the Markov channel.

Lemma 4.5.2 Given P(FT), a Markov channel {P(Z,), P(Zsy1 | ag, ), t =1,...,T —1}
and {P(B; | at,2)}1_1, and the relations a; = fi(2%,b'~1), there exists a unique consistent
measure Q(FT, ZT AT BT). Similarly, there exists a unique consistent measure for the
case without ISI and the case where the code-functions do not observe the state.

Proof: We prove the case when there is IST and the code-functions observe the state. The
other cases are proved similarly. This lemma is a generalization of lemma 4.3.1.
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Any measure satisfying (1) and (3) must be of the form
QF',Z", A", B")

T
B {® QB | 12507 @Q(Z | 11270 @ QR | £, 2, bt—l)}

t=1
QAT | f1,27,07)

- {@Q(Bt | 5250 @ Q(Z: | £ 27 b)) ® P(Fy | ft—l)} ® G AT (o7 yT-1))

t=1

Where f7(z7,p7-1) & (fl(zl),fz(zz,bl),...,fT(zT,bT_l)). Thus we need only identify:

{Q(Bt | ftaztabt_l)};ZI and {Q(Zt | ftazt_labt_l) ’{:1'
We know that (f?,2?,b'!) uniquely identifies a’. Thus it must be the case that

Q (Bt | Ft = ft, Zt =2, B"=1 = bt—l)
- Q (Bt | Ft =t 7t =5t Al = ft(zt,bt—l)’ Bt-1 — bt—l) Q(Ft’Zt,At’Bt—l) —as.

= P(Bt | zt,ft(zt,btfl)) Q(F, 7!, A*, B"1) — a.s.
and
Q (Zt | Ft = ft, zt-1 =71 1= btfl)
- Q (Zt | Ft = #t, AR R L R T W : Lo bt—l)
Q(Ft, z!71, A7 Bl —as.
- P (Zt | 211, fro1 (277, bH)) Q(Ft, Zt=1, AL B — g.s.
O

Operational Channel Capacity
We define the operational channel capacity just as in subsection 3.3.5.

Definition 4.5.5 R is an e-achievable rate if, for every § > 0 there exists, for sufficiently
large T, an (T, M, €) channel code with rate M > R—0. The mazimum e—achievable rate
is the called the e—capacity and denoted CP. The operational channel capacity is defined

as the mazimal rate that is achievable for all 0 < e < 1 and is denoted C°.

Let 0% 0ut 00, nfb yorieqent the operational capacity under output feedback alone and
no feedback respectively.
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Channel Capacity

We define channel input distributions and the channel capacity just as in section 3.3.6.
Definition 4.5.6 For all T Let

(1) Sr={{P(A; | 2",a" 1, 0" 1)}, ).

(2) S:,Q“t C St be the set of all channel input distributions without state feedback.

(3) ng b C S})Ut be the set of all channel input distributions without any feedback.
Definition 4.5.7 For finite T let

(1) Cr = swpses, +I (AT > (27, BT))
out _ 1 T T RT
(2) CP —supSESIQutTI<A — (27, B7))
nfb _ 1 T T T
(3) CF —supsespbeI(A — (27, B7))
For the infinite horizon case let
(1) C =supges,, L(A — (Z,B))

(2) Cout = SUPSES()ooutl(A — (Z,B))

(3) C =sup 4 I(A— (Z,B))
SESs

In the next subsection we will show that C° = ¢, ¢% ©ut = cout anq ¢ nfb _ onfb

4.5.2 Coding Theorem

We now prove the feedback Markov channel coding theorem. The Markov channel is a
special case of the finite alphabet channel we examined in section 4.3. Thus we can apply
theorem 4.4.1 directly.

Theorem 4.5.1 C° = C, ¢% out = gout gnq 00 1o = onfb,

Proof: A Markov channel is just a special case of the channel we examined in section 4.3.
Let Vo = Zy, Vi = (B¢, Zt41), t = 1,...,T — 1, and Vp = Bp. Then we can define a new
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“A—V”channel. Specifically this channel is { P(Vy), P(V; | a®,v'"1),t =1,...,T}. The time
ordering of the random variables involved is, as before,

FT7 VZ)aAla ‘/17 "'7AT7 VT-

There are two differences between this channel and the channels defined in section 4.3. First
there is the addition of the initial state: P(V}). Second the spaces in which the V; live in are
changing with ¢. After straightforward corrections for these changes we can apply theorem
4.4.1 directly. O

4.5.3 Stochastic Control Formulation

In this subsection we introduce the stochastic control formulation. The optimization prob-
lem consists of supremizing over St the directed mutual information between the channel
input and the channel output and state.

%I (4" = (27, BT)).

The following lemma describes how to write this as a sum of “costs.”

Lemma 4.5.3 For Markov channels we have

I(AT - (ZT,BT)) =Y 1 (At§(BtaZt+1) | Bt_lazt) +I(Ar; By | B4, Z7)

Proof: By proposition 4.2.1 and using the time ordering described in equation (4.5) we see
that

1 (AT — (ZT,BT)) = D(PzT,AT,BT ‘ p‘AT‘ZT,BszT,BT)
P(T. 07 | a7)
= P(zT,aT b1 ) log —=r—— 2
zTyazT,bT P(2T,bT)
T7-1

= > 1(4%(Bi, Z1) | B7,2Y) + I(AT; By | BT, 27)

T-1
= > I1(4(Bi, Zs1) | B, 2') + I(Aq; By | BT, Z7)
t=1

The third equality follows by noting definition 4.2.2 and

P(Z",B" |d") = P(Z) Q@ P(Bi | z1,a1) ® P(Z3 | z1,a1,b01) ® ... ® P(Br | 27,a”, 671
= P(Z)®P(B1,% | 21,01) ® ...  P(Br_1, Zr | 27 1,aT 1,67 2)
®P(Br | z%,aT, b7 1),
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To see the fourth equality holds note
1 (A% (By; Zin) | B, 2Y)
= 1 (At;(Bt;ZtH) | Bt_lazt) +1 (At_l;(Bt;Zt—}—l) | Bt_l,Zt,At)
= 1 (At;(Bt;Zt+1) | Bt_laZt)
where the last line follows because, by lemma 4.5.1, (Z;,1, B;) — (A, Bt™1, Z) — A~ forms
a Markov chain. We can prove I(AT; By | BT -1, ZT) = I(A7; Br | BT 1, Z7) holds in a

similar manner. O

Corollary 4.5.1 For Markov channels without ISI we have

1(A" - (2",B")) =

T
t=1

I (At;Bt | Bt=L, Zt)

Proof:
I (At; (Bt, Z41) | Bt_lazt) =TI (At;Zt+1 | BtaZt) +1 (At;Bt | Bt_l,Zt)
-7 (At;Bt | BH,Z?’)

where the last line follows because Z;1 — (B!, Z%) — A; forms a Markov chain when there
is no ISI. O

Note that the mutual information I (AT — (ZT,BT)) can be decomposed into two
sums. The first sum represents the contribution of the channel input and the channel
output and the second sum represents the contribution of the channel input and the next
channel state:

T—1
1(AT - (27,B)) = > I(4s(Bi,Z1) | B, 2') + I(Ar; By | BT, Z7)
t=1
T T-1
= 31 (At;Bt | Bt—l,zt) +31 (At;zt+1 | Bt,zt)
t=1 t=1

When there is no ISI the second sum in the last line equals zero.

Without loss of generality restrict we can restrict attention to channel input distributions
that are independent of a’~!. This is a consequence of the decoder observing the current
state. We will discuss in subsection 4.5.4 why there is a dependence on a'! in the case
when the decoder does not observe the state.

We prove two final simplifications before presenting the details of the stochastic control
problem. Define G; to be the information available to the encoder at time ¢. Recall at one
extreme: Gy = (B'~!, Z"). One intermediate case is if there is no state feedback: Gy = B'~!.
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And the other extreme occurs if there is no feedback at all: G; = @. There are of course
many other information patterns in between.
Lemma 4.5.4

I(At; (Bt, Ziv1) | Bt_l,Zt) =1 (A4 (B, Zyy1) | Z4,Gy) t=1,...,T -1

and
I (AT;BT | BT_I,ZT) =I(Ap;Br | Zr,Gr)

Proof: By lemma 4.5.1 we know (By, Zy11) — (A, Zy) — (B!, Zt1) forms a Markov chain.
Also A; — Gy — (B'~1, Z?) forms a Markov chain. Thus (By, Z;11) — (Gy, Z;) — (B*1, Z171)
forms a Markov chain. Now

I(At; (Bt Z41) | Bt_l,Zt) I(At, (By, Zyy1) | BT, Z¢ Gt)
= I((Bi Zew)s A, B4, 28,Gy) — 1 ((Br, Ze); B, 21, Gy)
= I((Bt, Zt+1); At, Zt, Gy) — ((Bt,Zt-I-l);Bt_laZt,Gt)
= I((B,Zsy1); As, Zy, Gy) — I ((By, Zi41); Zt, Gt)
= I(A4(By, Zi1) | Zt, Gy)

The other equality in the lemma statement is proved analogously. O

Let m(g:) = P(Z; |g+) be the conditional probability of the current state given the
information available to the encoder at time ¢. Note that II; is well defined once we have
fixed the channel input distribution {P(A4; | g¢)}1_,. We now show that II; is a sufficient
statistic.

Lemma 4.5.5

sup I (Ay; (By, Zit1) | Ze, Ge) = sup I (A (B, Zea) | Z,1L) t=1,..,T—1
P(At/gt) P(Ag|mt)

and
sup I (Ar;Br | Zr,Gr) = sup I(Ar;Br | Zr,17)
P(Arl|gr) P(A¢|m)

Proof: One direction is obvious:

sup I (Ag; (Bt Zi41) | Z1,Gr) > sup I (Ag (B, Zey) | Zt, ) .
P(At/gt) P(Ag|me)

This is because the set on the left hand side that we are supremizing over is larger. (Recall
7 is a function of g;.) We now show the inequality in the other direction holds. Note that
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Zy — II; — Gy forms a Markov chain.

I(Ag;(Bt, Ziy1) | Z4,Gr) = I(Ag (Bt Ziv) | Zy, G, IL)
= > Plz,ge,m) I(As; (By, Zg) | 20,96, m1)

2t,9t,Tt

= Y Plz,m) {Zp(gt|7ft) I(Ag; (By, Ziya) | Zt,gt,ﬂt)}
ZtyTt gt

< > P(z,m) I(Ag; (B, Zysr) | 2,m1)
2t,Tt

= I(Ay (Bt Zivr) | Z4,11y)

Where the inequality follows from the convexity of mutual information with respect to the
input distribution: P(at|m) = 32, P(at|gt)P(gt|m:). Thus we see that

sup I (Ag; (Bt Zi41) | Z1,Gr) < sup I (Ag (B, Zey) | Zt, ) .
P(At/gt) P(Ag|mt)

The second equality in the lemma statement is proved analogously. O

We can conclude from this lemma that the receiver should feedback information only
helpful in estimating the state of the channel.

The Dynamic Programming Equation

We are now ready to present the dynamic programming formulation. This formulation is
rather powerful. It allows us to unify many existing results in the literature and provides
many new coding results. Furthermore we are now in a position to apply many of the exact
and approximate solution methods found in the dynamic programming literature. Recall
the optimization problem is

T-1
sup > I (Ay; (B, Ziy1) | Z4,Gy) + I (Ar; Br | Zr, Gr) .
t=1

Where the supremum is over all admissible channel input distributions. We now translate
the elements of this problem into a traditional control problem.

o State
Let the state process be Z;. The dynamics of the state are determined by

P(Zyy1 | ze,up) = ZP(ZtH | zt, a¢)us(ag).
at

o (Control
The control, Uy, takes values in P(.A). It is allowed to be a function of the past controls
and its observations G*. At time ¢ the controller draws an a; from the distribution u;
and inputs it into the channel.
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e Observation
The observation is G¢. The channel output follows

P(By | z,ue) = Y P(By | 21, at)ue(ay)-

ag

e Running and terminal cost
Fort=1,..,T -1

P(by,zev1 | 21, a4)
>a, Pbes 241 | 21, ae)ue(ae)

cilze,ur) = Y Plbezes1 | 26, a0)us(ar) log

at,bt,zi 41

P(br|zr,ar)
Yap P(br | 21, ar)ur(ar)

cT(zT,uT) = Z P(bT | zT,aT)uT(aT) log

ar,br

By lemma 4.5.5 we know that II; is a sufficient statistic. Unfortunately given a gen-
eral observation G, it does not follow that II; will be a controlled Markov process (i.e.
P(Iyyq | ot ut) = P(Tlyyq | m,us).) We need to place some restrictions on the form of the
observation.

Lemma 4.5.6 For the following cases
(1) Gy = (B'=1,ZY)  (full observation)
(2) Gy = Bt~1 (channel output feedback)
(3) Gt=0  (no feedback at all)

the process Il is a controlled Markov process.

Proof: Case one is obvious. We prove case two:

P(z1 | ¢ u') = Plag | Vu)
= ZP(th | 2, 0%, ut) P (2 | b, ut)

2t

P(by | z,ut, b P(z | B ut
= ZP(ZH—l'ZtaUt) (B | 2 )Pl | )
2t

Y5, P(by | Zg,ut, b 1) P(Z | b1, ub)

P(by | z,u) Pz | 01wt
= P(z Zt, U — —
zzt ( t+1 | t t) th P(bt ‘ Zt,ut)P(zt | bt_l,ut_l)

= & <P(zt | gt,utfl),bt,ut)

for some function ®. Thus 7441 = ®(my, by, us). Case three follows analogously. O
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We can now convert the above partially observed Markov decision problem into a fully
observed Markov decision problem. The new state process is II; and the new running cost
is

E(ﬂ't, ’U,t) = Z C(Zt, ut)m(zt).
zt
Theorem 4.5.2 The optimal cost and control can be determined by solving the following
dynamic programming equations

Jr(m) = sup &(r, ur)

ur

and
Jiy(m) = sup c(m, ug +/Jt+1 P(dm|m,uy)

where uz s a function of my.

Proof: By lemma 4.5.5 and lemma 4.5.6 we have shown that II; is a sufficient statistic and
a controlled Markov process. The theorem then follows from theorem 5.4.8 of [Str]. O

Infinite Horizon Average Cost Problem

So far we have dealt with the finite horizon problem. We can also treat the average cost
infinite horizon problem:

1 T-1
Suphmlnff {Z I At, BtaZt—f—l) | Zt,Gt) +I(AT,BT | ZT,GT)}
t=1

where the supremum is over all admissible input distributions.

Assumption 4.5.1 Assume that under all stationary control policies the process Z; is an
ergodic and aperiodic Markov chain.

Note if there is no ISI then assumption 4.5.1 states that, independent of the policy, the Z;
process is an ergodic, aperiodic, Markov chain.

Theorem 4.5.3 Under assumption 4.5.1 the optimal control is the solution to the following
average cost Bellman equation

J* + h(r) = maxcwu —I—/h P(drt|m,u)

Proof: See theorem 4.1 of [Bor]. O
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There are many ways to solve the Bellman equation. Traditional methods include value
and policy iteration. We can also apply linear programming tools. We state now the linear
program:

min J*

subject to

J*+h(r) > &(mu)+ > h(F)P(F|T,u) Vr,u
w€T (mwu)

where T'(m,u) = {7 : P(%|m,u) > 0.}

4.5.4 Extensions and Limitations of our Formulation

Extensions

(1)

(2)

We can treat the case of delayed feedback by the usual state augmentation techniques.
See [Bert] for examples of state augmentation. For the case of channels without ISI
we do not need to augment the state. See [Vis] for similar results.

The error exponents in section 4.4.3 can also be described as a partially observed
stochastic control problem. Specifically the optimization problem defined in definition
4.4.7 can be written as a dynamic program. There is, though, a second optimization
over p.

Limitations

(1)

One strong assumption in our model is that the state is known to the decoder. As
shown in lemma 4.5.3, this allows for the channel input distribution to be independent
of the past a’~!. In the case when the decoder does not know the channel state the
optimization problem is much harder. It is not clear that we can decompose the cost
into a sum of costs. See theorem 4.6.1 of [Gal] for discussion on how to compute
the optimal channel input distribution without feedback. Also see [GV1] for another
method of computing the channel input distribution without feedback. The issue of
dependence on the past a’s is taken up in [HJ]. There they discuss the role of mixing
in finite state channels. If the channel mixes quickly then intuitively there is no need
for the channel input distribution to depend on all the past a’s. They quantify this
dependence.

Another assumption in our model is that the receiver knows what information the
transmitter has. Specifically the receiver knows G;. We can treat the case where
the transmitter uses information the receiver does know by the usual trick of code-
functions. [Sha3] But it is not clear that the simplification of the optimization over
code-function distributions to the optimization over channel input distributions will
continue to hold.
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4.6 Coding Theorem for Gaussian Channels

In this section we address Gaussian channels with feedback. We define the Gaussian channel
and provide a coding theorem. We will follow the same steps as we did in sections 4.3 and
4.4 and make appropriate extensions for the Gaussian case as needed.

4.6.1 Setup

Let the channel input alphabet be X and channel output alphabet be ). Where X = )Y = IR.
Endow X and Y with the usual Lebesgue measure.

Definition 4.6.1 A Gaussian channel is a sequence of stochastic kernels, , {P(dY; | ', y'~1)}_,,
such that there exist vectors oy € R, t=1,....,T and B; € R, t =2,....,T and indepen-
dent Gaussian random variables V; ~ N'(0, Ky,) such that for all (z!,y'~!)

Y, =o' + Byt + V.

The mean of the Gaussian measure on Y; is dependent on (z?,4*~!) but the variance is not.
This fact, as we will see, allows for a simplification in the design of the code-functions.

Note that we have defined the stochastic kernel, P(dY; | z%,y'™!), in terms of the
recurrence Y; = o4z! + By ™1 + V;. The two approaches are equivalent.

Message Set, Encoder, and Decoder

We use the same definitions of message set, encoder, and decoder as given in section 4.3.2
except for the following change. A code-function, f, is now a measurable map from Y~! —
Y taking y'~! — z;. The space of code-functions is still denoted Fr. Note that this can
be quite a complicated space. We will show, though, that without loss of generality we can
restrict our attention to functions, f;, that are affine in y*~ .

Interconnection

Given a measure P(dFT) we can define an interconnection as we did in in section 4.3.3.
Specifically we want to compute a joint measure Q(dF’,dX* dY™) such that the following
all hold @ almost surely:

(1) Q(dFt | Ft—l — ft—l,Yt—l — yt—l) — P(dFt ‘ ft—l)
(2) Xy =F(Y" 1)
(3) QUY; | F' = f', X" =o', Y} = y*1) = P(dY; | a',y" ")

As before we call any measure satisfying the above three properties a consistent measure.
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Lemma 4.6.1 Given P(dFT), a Gaussian channel, {P(dY; | =*,4* 1)}, and the rela-
tions z; = f;(y'™1), there exists a unique consistent measure Q(dFT, dX™T,dy ™).

Proof: This is a generalization of lemma 4.3.1. Any measure satisfying (1) and (2) must
be of the form

T
QUFT,dx™,ayT) = QX" | f1,y") ® {® QY; | f',y" ) ® P(dF, | f“)}
t=1

where Q(dX7T | fT,yT) = d(xT=fr(yT-1y) is a Dirac measure at the point T (7). Recall

FFWTY = (fis o), o Fr(y™))
We now need to identify the channel {Q(dY; | ft,y*~1)}L ;. The following hold almost
surely Q(dF*,dX",dY* )

Q(dy:t | Ft — ft’thl — ytfl) — Q(dy't | FT — ft,Xt — ft(ytfl)’thl — ytfl)
= P@AY:| f'(y"1),9"7)

Operational Channel Capacity

Recall a channel code is M code-functions f7[w], w = 1,..., M. For a given channel code
let Ppr place mass 17 on each code function f7[w], w=1,..M.

Definition 4.6.2 A channel code and a channel over a horizon T are said to satisfy a
power constraint at power K if under the consistent measure Q(dFT,dXT,dYT) we have
1Eo(X X7) < K.

The definition of operational capacity is the same as definition 4.3.11 except we add the
power constraint.

Definition 4.6.3 R is an e-achievable rate at power K if, for every 6 > 0 there exists, for
sufficiently large T, an (T, M, €) channel code with rate lggTﬂ > R—§ and %EQ(Ethl X2) <
K + €. The mazimum € — achievable rate at power K is the called the e—capacity at power
K and denoted C2(K). The operational channel capacity at power K is defined as the
mazimal rate that is achievable for all 0 < € < 1 and is denoted CO(K).

Channel Capacity

Just as in definition 4.3.13 we define a channel input distribution to be a sequence of
stochastic kernels {P(dX; | z'=1,y'=1)}1,. We also define the Gaussian channel input
distribution:
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Definition 4.6.4 A Gaussian channel input distribution, {P(dX; | 2! 1,4 1)}, is a
sequence of stochastic kernels such that there exist vectors vi,m; € RV, t = 2,...,T and
independent Gaussian random variables Wy ~ N(0, Kyy,) such that for all (z'=1,y'=1)

X, =y 4+ plyt + W

Note that we have defined the stochastic kernel, P(dX; | ' !,4*1), in terms of the recur-
rence X; = v,z'™! + njy?~! + W,. As stated before the two approaches are equivalent.

Definition 4.6.5 For a sequence of joint measures {P(dXT,dY 1)}, let (X - Y) &

liminf;

dP
1 xTyT T vvT
in prob T X5, Y7).

log —
& dPXT|YTPYT

As before let St be the set of all channel input distributions. We now define the channel
capacity.

Definition 4.6.6 For finite T let

T
1 1
Cr(K) = sup —I(X" = Y") such that E( =>_ X7 | <K
SeST T t=1

and for the infinite horizon case let

T
1
C(K) = sup I(X —Y) such that limsupE | — > X} | < K.
S€S8s0 T—00 T

In the next subsection we will prove that C(K) = C°(K). Furthermore we will show that
the optimization can, without loss of generality, be restricted to Gaussian channel input
distributions.

4.6.2 Main Theorem

Before proceeding to the coding theorem we prove the following structure result.

Structure Result

In the following if a measure P admits a density with respect to the Lebesgue measure then
denote its density with the lower case p.

Lemma 4.6.2 Let {G(dY; | z*,y*~1)}L_; be a Gaussian channel with density g. Let
{P(dX; | x'~1,y"=1)}L| be a channel input distribution. The joint measure is P(dX™,dYT) =
L, P(dX; | 2Ly ®@G(dY; | 2t,y*1). Furthermore assume that P(dX™,dYT) admits
a density p. Let G(dXT,dYT) be a jointly Gaussian measure with the same second order
properties as P(dX',dY"T). Then
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(a) {G(dX; | zt 1, y" DYE | is a Gaussian channel input distribution.

(b) G(dXT,dYT) has the same independence properties as P(dXT,dYT). Hence they
have the same power.

(c) Io(XT — YT) > Ip(XT - YT).

Proof: Part (a) follows from the fact that G(dX7T,dY™) is jointly Gaussian. Part (b) follows
from noting that independence or conditional independence of some set of random variables
implies that those same random variables are uncorrelated or conditionally uncorrelated.
G(dXT,dYT) has the same second order properties as P(dX”,dYT) thus it inherits the
same independence properties. For part (c) note

Ig(XT 5 YD) - Ip(XT - Y7T)
- D(GXTny ‘ éxT‘YTGyT) - D(PXT,YT | ﬁxT|YT.PxT)

T ., T
z,
= / gxryr(z’,y")log ﬁgXT’YT( v)

dzdy”
9xT|yTgyT (2T, yT)

bPxryr (UUT, C‘/T)
PxTyTPyT (=T, y")

- / pxryr(z’,y")log dz” dy”

gxryr (37T, ?JT)
gxT)yTgyT (=T, y7)

- /pXT,YT (HUT, yT) log

)

= /pXT,YT (CUTa yT) log dedyT
PxryT (HTT, yT)

- daT dy”
PxT|yTPyT (=T, yT)

Gy | xr(y' |«

gyr(yT)
> T | ,.T
T T pYT|XT(y | z%)
— [ pxryr(z’,y" )log
/ Xy ) pyr(yh)

= T T T
T T gYT|XT(y ‘:E ) pYT(y ) T; T
= pxr yr(z,y ) lo — dz" dy
/ xryel ) g( gyr(yT) pYT\XT(yT | zT)

do’dy”

= /pXT,YT (ﬁUT, yT) log

dzT dy”

T T pYT("JT) T ;T
= pxr yr(T”, log —/——=== dz" dy
/ XY ( Y ) ggYT(yT)

D(Pyr | Gyr)

> 0
Where the third equality comes from the fact that the G has the same second order prop-
erties as P. The sixth equality follows because p(y’ | z7) = g(y* | zT). O

For Gaussian channels with a power constraint the supremizing channel input distribu-
tion can be taken to be a Gaussian channel input distribution.
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The Asymptotic Equi-partition Property for Gaussian Processes

The following theorem from [CP] is a generalization of the AEP to non-ergodic Gaussian
processes.

Theorem 4.6.1 Let{Z;} be an arbitrary Gaussian stochastic process with density p. Define
the differential entropies hy 2 —1 [ p(27)logp(2")dz". Then

1
7 logp(Z") —hy -0 w.p.l.

Proof: See theorem 5 of [CP]. Also [Pin]. O

We have shown that the optimal channel input distribution can be taken to be a Gaussian
channel input distribution. This along with a Gaussian channel defines a jointly Gaussian
measure on (X7,Y7). In section 4.4 we proved a coding theorem for finite alphabet chan-
nels. The operational capacity was shown to equal a particular optimization of 1. By using
theorem 4.6.1 we will show that for Gaussian channels we can work directly with I. This is
because the process is information stable. We can often explicitly compute the value of I.

Corollary 4.6.1 For any sequence of jointly Gaussian measures {P(dXT,dYT)}2, we
have

I(X - Y) = liminf %I(XT —v7T).

T—00

Proof: From theorem 4.6.1 we see

1 > 1
T logi(XT,YT) — TI(XT - Y7
1 1
= T longT,YT (XTa YT) - THPXT,YT (XT, YT)
1. . 1
- (T log piyryrpyr (X1, YT) - THﬁleyprT (XT,YT))

- 0-0 w.p.l

Converse Theorem

Theorem 4.6.2 The operational channel capacity for a Gaussian channel is less than or
equal to the channel capacity: C°(K) < C(K).

Proof: Assume there exists a sequence of (T, M1, er) channel codes satisfying the power
constraint, K, with ez — 0. By Fano’s inequality we know
H(er) LI(FT;vT)
i

+er>1— T
log M = TlogMT
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Where P(FT) is the distribution on code-functions in the Tth codebook. (Here H(-) is the
binary entropy function: H(e) = —eloge — (1 — €) log(1 — €).)
Note that proposition 4.3.2 continues to hold for the general alphabet case. Specifically

I(FT.y"y = 1(XT - Y7).

Thus ) . .
FI( X' =Y
H(GT)_|_€T>1_T( )>1_CT(K)

log Mt - % log My % logM~
Thus C°(K) < liminfy Cp(K) = C(K) is a necessary condition for ep — 0. O

Direct Theorem

We prove the direct theorem exactly as before. First we construct a code-function distribu-
tion so that the induced channel input distribution equals the supremizing channel input
distribution. We then use a random coding argument to prove the direct theorem.

There are two ways we can proceed. One approach is to assume finite partitions on
X and Y. Then consider the Gaussian channel restricted to this partition. We have then
reduced the problem to a finite alphabet coding problem and thus can use the results of the
previous sections. To prove the Gaussian channel coding theorem we would have to then
take a limit over finer and finer partitions.

The second approach is to take advantage of the linear structure of the supremizing
channel input distribution. This is how we will proceed here. By lemma 4.6.2 we know that
we can restrict our attention to Gaussian channel input distributions.

Definition 4.6.7 A code-function, fT, is an affine code-function if for every t = 1,..., T it
is of the form
L™ =L W) + My

for some vectors Ly, My, t=2,...,T of the appropriate dimensions and numbers u;.
Note that for an affine code-function, f7', we can find vectors My, L; such that
fily!™Y) = Lhyt=! + M.

Any affine code-function, f7, can be uniquely parameterized by the vectors L;,t =
2,...,T and My, t = 1, ..., T and the vector u”. Thus any distribution on affine code-functions
can be associated with a distribution on the vectors L;, M; and u”.

Now we construct the code-function distribution. We are given a channel input dis-
tribution defined by {X; = yiz'™! + nly'~! + W;}L,. We construct a distribution on
affine code-functions by choosing L; = ¢ and My = n for all t = 1,...,T. We let U ~
N(0,Kw,), t=1,...,T. Clearly the code-function distribution just constructed is good
with respect to the channel input distribution. (Recall definition 4.4.3.) Note that this
construction is very different from the one given in lemma 4.4.3.
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We need to show that the induced channel input distribution equals the original channel
input distribution.

Lemma 4.6.3 We are given a channel input distribution defined by {X; = viz'~ +njy' =1+
Wi}l .. Let P(FT) be a distribution on affine code-functions where Ly = v; and My =
forallt=1,..,T. And Uy ~ N(0,Kw,) for allt =1,...,T. Then the induced channel input
distribution equals the original channel input distribution.

Proof: We are given a Gaussian channel. Let Q(dFT,dX”, dYT) be the consistent measure.
Because P(dFT) can be associated with a Gaussian distribution on U? we know that @
will admit a density with respect to the Lebesgue measure. We can use the same arguments
as in lemma 4.4.2 and lemma 4.4.4, with probabilities replaced with densities, to show that
the lemma holds. O

We now show that lemma 4.4.1 on the equivalence of Radon-Nikodym derivatives con-
tinues to hold for the case of Gaussian channels and affine code-functions.

Lemma 4.6.4 We are given a distribution on affine code-functions, P(dFT), and a Gaus-
sian channel {P(dY; | z',y"~)}_,. Let Q(dFT,dXT,dY™) be the consistent joint measure.
Then with Q—probability one we have

dQFT,YT T T) - dQXT,YT

: = — (xT,vyT).
dQFT QYT deT YT QyT

Proof: Since P(dFT) can be associated with a Gaussian distribution over UT we know
that Q(dFT,dX",dY") admits a density with respect to the Lebesgue measure. Thus we
can follow the steps in lemma 4.4.1 excepting that now we work with densities. Denote the
joint density by ¢(FT, XT,YT). Then for all (f7,zT,y") such that 27 = fT(y7~!) we have

dQpr yr (7.7 grr yr(f7,y")
dQprQyr ’ arrayr (f1,y")
QYT\FT(yT | fT)
gyr(y")
HtT:1 Gy, |ye-1,mt (Yt | fhyth)
gyr(yT)
T avipyer xe(ve | 2yt h)
ayr(yT)
CTYT\XT(?/T | fET)CTXT\YT (mT | ?JT)
qyT (yT)CTXT\YT (=" | yT)
QXT,YT("I"TayT)
§XT|YT gy (zT,yT)
dQxr yr

= —=————("y")
dQxryrQyr
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Now we have the necessary lemmas to prove the direct part of the coding theorem. The
proof follows lemma 4.4.7 rather closely.

Theorem 4.6.3 All rates less than C(K) are achievable.

Proof: Let P(dFT) be the distribution on affine code-functions constructed as in lemma
4.6.3 for the supremizing Gaussian channel input distribution {P(dX;|z*~!,4* 1)} ;. Let
Q(dFT,dXT dYT) be the consistent joint measure induced by P(dF”) and the channel.
Let ¢(FT,XT,YT) be its density. A channel code is selected at random by drawing M
code-functions from P(dFT). Choose a v > 0.

Define ( - T)
1 qpr gr(f~,b 1
Q={(T.p): =1 ’ < —logM )

Then via arguments very similar to those of lemma 4.4.7 with probabilities replaced
with densities we have:

T
Ecodebook(r, i) (Error) < Q(Q) +277
By lemma 4.6.4 the following equality holds for all (f7,z7,4") such that 27 = f7(y—1)

grryr(ffy")  gxryr(@T,y"h)

qprgpr (f1,y7) CTXT\YTCIYT (=T, yT)

Thus we have shown

1 gxr yr(XT,YT) 1 4T
Eeodebooks(r, ) (Error) < Qxr yr (f log Txryrayr(XT,YT) < T logM +v) +2777.

By lemma 4.6.3 and consistency we have
g(XTYT) = qXT Y )p(yT|XT) = x|y p(YT|XT) = p(X7, YT)

thus

1 pxryr(XT,YT) 1 4T
ECOdebOOkS(T,M) (EI‘I‘OI“) < PXT7yT (T log ﬁxT‘YprT (XT, YT) < T logM +v]+2 7L

By theorem 4.6.1 we know that the AEP holds for Gaussian processes. Thus we have

1 1 pXT,YT(XT,YT)
— 10,
T % fyryrpyr (XT,YT)

—Cr(K) — 0 w.p.1.

If we choose My such that #log My + vy < Cr(K), VT then we see

lm E o debooks(r, ) (Error) = 0.

T—oo
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Now we examine the power constraint. By construction the average power satisfies

codebooks(T M) ( ( ZXt>) =

where the inner Eg is with respect to the @ distribution consistent with the particular
channel code chosen. To see this note

ECOdebOOkS(T M) (EQ (l Z Xt2)>
H prr (f7 [w)) Z E (% 3o X7 | fT[w]) df T[], ..., df T [M]
Z/HPFT fw)E ( ZX2|fT )dfT[lL---,dfT[M]

= X [rer T ( ZXt ] [w])df ]
/ prer(f1)E ( ZX2 | fT> @'

\

E |

i

By use of the union bound and Markov’s inequality we have

Peodebooks(r,ar) (@ve. error > € or ave. power > K + ¢)
< Peodebooks(r, ) (ave. error > ¢€) + P, codebooks(T,M) (ave. power > K + ¢)

Ecodebooks(T,M)(error) L K

<
- € K+e

If %log Mp 4+ v < Cp, VT then there exists a T large enough so that the last line in the
above series of inequalities is less than one.

From this we can conclude that there exists a 1" and a channel code with Mp code-
functions such that the probability of error is less than € and the average power is less than
K + e. Since this holds for all € > 0 and all v > 0 we have proved the theorem. O

We end this subsection with some comments on the construction of affine code-functions.
First note that the channel code is determined by choosing for each code-function a vector
uT. The code-function at time ¢ can be thought of linearly modulating u! and the received
y'~1. Since both the transmitter and the receiver observe y*~! the design of the code comes
down to the determination of u”. See Klein for more discussion on the structure of the
code-functions. [Kle]
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4.6.3 Error Exponents

For Gaussian channels there is an error exponent analysis analogous to that given in section
4.4.3. We quickly cite the relevant results. We skip the proofs. They are essentially the
same as in subsection 4.4.3 with probabilities replaced with densities.

Definition 4.6.8 Given a Gaussian channel {P(dY;|f',yv*~1)}I_, and an affine code-function
distribution P(dFT) define the error exponent to be

Br (R.P(AFT)) £ max (—pR gz [ pun {1y ar] v dyT> .

Theorem 4.6.4 The average random coding error over (T,e'®) channel codes drawn ac-

cording to P(dFT) can be upperbounded as

~TEr(R,P(dFT
ECOdebOOks(T,eTR)(e'FTO’f’) < ¢ TBr(RP(FT)),

Definition 4.6.9 The optimal error exponent is

Er(R) 2 sup Er (R,P(FT)) )

P(FT)

Definition 4.6.10 Given a Gaussian channel {P(dY; | z*,y' 1)}, and a Gaussian chan-
nel input distribution {P(dX;|z'~1,y*~1)}L_, define the directed error exponent to be

Br (R {P(dX|a",y" 1)},

1 1
A _ 4 —~ T T — T T\ | 1+p T
= 021,?2‘1( pR Tln/yT [/)(Tp(w ") {p" ™)} T da

Definition 4.6.11 The optimal directed error exponent s

1+p
dyT> .

Er (R) 2 sup Er (RAP(@X|z' ",y )}H,) .
{P(dX¢|zt=1yt=1)}{_ €Sy

Where St is the set of all Gaussian channel input distributions.

Proposition 4.6.1 Fiz a Gaussian channel {P(dY;|z?,y*=1)}L,. Let the affine code-
function distribution P(dFT) be good with respect to the Gaussian channel input distribution
{P@Xi[z*, 5 )}, Then

Br (R {P(dX|2""", " )},) = Br (R, P(dFT)).
Corollary 4.6.2 Fiz a Gaussian channel {P(dY;|zt,y' 1)}_,. Then

Er (R)=Er (R).
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Definition 4.6.12 The optimal no feedback directed error exponent is

=nfb = _ _
B () & sup Br (R {P(@X/Je"" ")) -

{P(dXt|:ct—1,yt—1)}tT:les;’fb

Where S;Lfb is the set of all Gaussian channel input distributions with out feedback. (That
is the stochastic kernel P(dX;|z'=1,y'~') is a function independent of y'~'.)

Proposition 4.6.2 For a given Gaussian channel {P(dY;|zt,y" ")}, we have Er(R) >
=nfb
EpT(R).
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4.7

Examples

In this section we discuss how our formulation captures and complements some of the
existing results in the literature. We also discuss new results. The primary importance of
this work, though, is the introduction of a unified formulation for treating a large class of
feedback channel coding problems with different forms of memory.

(1)

Kramer uses the tools of directed mutual information and graphical methods to ex-
amine the multiple access channel and two-way channel problems. [Kra] We treat the
single user case exclusively. In regards to the single user case he only comments on
Massey’s converse.

Cover and Pombra prove a feedback coding theorem for Gaussian channels of the form
Y=z + Z;

where Z; is an arbitrary Gaussian process. [CP] The Gaussian channel defined in defi-
nition 4.6.1 is more general than the one proposed by them. The following proposition
shows this.

Proposition 4.7.1 Gaussian channels of the form Y; = auz’ + Z; where {Z;} is any
Gaussian process are contained in definition 3.6.1.

Proof: Since {Z,;} is a Gaussian process we can find vectors v; € IR‘™!, ¢ > 1 such
that Z; = v, Z'~' + V; for some independent Gaussians V;.

Let &y = oy — lonzy, anz?, ..., cp_12'71]" and let B; = ;. One can verify that upon
substitution

Y, =z’ + Zy = aurt + By' ' + V.
O

We generalize their coding theorem for Gaussian channels with colored Gaussian noise
to Gaussian channels with ISI and colored Gaussian noise. It is an open question as
to whether their % bit bound for the gain in feedback capacity continues to hold for
this IST channel.

Goldsmith and Varaiya examine a Gaussian channel with fading modulated by a
stationary and ergodic gain sequence. [GV2] In their notation the channel is of the
form

Y (i) = \/9(d)2(i) + N (i)

where {1/g(7)} is a stationary and ergodic process and {N (i)} an IID sequence of
Gaussian noise.

If we restrict their model to channels where the {1/g(z)} gain process is Markov and
ergodic then after a straightforward combination of the results in section 4.5 and 4.6
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we can recover the coding theorem they provide. Specifically we can prove a coding
theorem for Markov channels where conditioned on the state the channel looks like
an AWGN channel.

We can generalize the coding theorem, for an ergodic Markov gain sequence, to cases
where we feedback only channel output information. It is an open question, though,
what form water-filling takes in this more general setting.

(4) Viswanathan examines the case of discrete alphabet Markov channels without ISI.
[Vis] In his notation the channel is of the form

P(}/t |.’L't,8t) and P(St |St_1)

where {S;} is a finite alphabet Markov state process. He solves the channel coding
problem for the case where the encoder observes the state, though possibly delayed.
We generalize his result to discrete alphabet Markov channels that include channel
output feedback and ISI.

(5) Shamai and Caire examine finite alphabet channels with memory. [CS] In their propo-
sition 2 they provide the following coding theorem:

Proposition Assume i) perfect channel state information, Sy, at the receiver; ii) that
the receiver knows the channel state information, Uy, at the transmitter: Uy = g;(S?);
iii) that P(Sy | U') = P(S; | Up); and iv) that {S;},{U;} are jointly stationary and
ergodic. Then C =3, P(u) maxg,) [(X;Y | S u).

Hypothesis iii) is a bit nonintuitive. Note that our model of a Markov channel satisfies
i), ii), and iv) above. In place of iii) we assume that the channel is a Markov channel.
We then provide a coding theorem. We believe the state formulation provided in this
chapter is the correct formulation for computing capacity of channels with memory.

There are, of course, many other results in the literature. One thing lacking, though, is
a general formulation for analyzing channels with memory and differing forms of feedback.
We believe that the appropriate way to approach channels with memory and differing forms
of feedback is to first realize the channel as a Markov channel and then use the techniques
developed here to compute the capacity. There is still much work to be done. This chapter
is a step towards such a general formulation.
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Source-Channel| A, B, | Channel-Source
Xy — Channel — Y,
Encoder Decoder

Figure 4-7: Joint Source and Channel

4.8 Channel Realizations and the Directed Data Processing
Inequality

In chapter five we will examine the problem of transmitting a process over a channel.
Specifically we are interested in combined source-channel encoding and decoding. To that
end we define the source-channel encoder and the channel-source decoder. Furthermore we
provide a directed version the of the data-processing inequality.

Source-Channel Encoder

Let {X;}] ; be a source process taking values in IR with measure P(X7T). Let {Y;},
be the source reconstruction process taking values in IR?. We now discuss the intercon-
nection of the source, the channel and the source reconstruction. As before our channel is
{P(B; | a’,b"=1)}L_, where now A and B can be general Polish spaces. We will usually take
these alphabets to be finite spaces or IR%. See figure 4-7.

We assume the following time ordering on the random variables (X7, AT, BT Y1)

XlaAl,BhYlaX% "'aXTaATaBTaYT-

Definition 4.8.1 A combined source-channel encoder is any family of stochastic kernels
{Q(dA; | xt, o', b'=Y ¢! =)}, such that Q(dA; | z?, a'=1, b1, 4'=1) is independent
of yt—1.

Here we allow the channel input symbol A; to depend on the past source symbols, channel
input symbols, and channel output symbols but we do not allow it to depend on the past

decoder outputs. Specifically under the joint measure the following is a Markov chain:
At _ (Xt’Atfl’Btfl) _ thl.

Definition 4.8.2 A combined source-channel encoder without feedback is any family of
stochastic kernels {Q(dAy | zt,a' 1,081 ot "D}, such that Q(dA; | 2t et 1, b1yt 1) is
independent of (b'~1,y'71).

In this case under the joint measure the following is a Markov chain: A; — (X*, A1) —
(Bt—l’ Yt_l).
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Channel-Source Decoder

Definition 4.8.3 A combined channel-source decoder is any family of stochastic kernels
{Q(dY; | zt, af, b, " 1)}, such that Q(dY; | ¥, a', b', y'~1) is independent of (!, a?).

Note that both the source-channel encoder and the channel-source decoder are nonan-
ticipative. Further note the Markov structure of the different elements. These Markov
relationships are represented diagrammatically in figure 4-7.

Channel Realization

We are interested in the joint measure Q(dX”,dAT,dBT ,dYT). This measure Q must
preserve the underlying channel

Q(d-Bt | Xt — iL't,At — G,t,Bt_l — bt_I,Yt_l — yt—l) — P(dBt | at,bt_l)
Q(dX*, dAt,dB*! dY'!) — a.s.

and the underlying source

Q(dXt | Xt—l — .It_l,At_l — at—l’Bt—l — bt_l,Yt_l — yt—l) — P(dXt | .'L't_l)
QdX'1 dAt dB! dYtTl) — as.

By theorem A.1.1 the measure () can be factored as
QdXT,dAT dBT dY™)

T
= @ QaY; | z',a" b,y ) ® Q(dBy | «*,a", b1,y

t=1
®Q(dAt | xt’atfl’ btfl’ytfl) ® Q(dXt ‘ xtfl’atfl’ btfl’ytfl)
T
= QQUY; | b,y ") @ P(dBy | ", b ") @ Q(dA; | «*,a" 1, b") @ P(dX, | z"71)
t=1

One term in the above product consists of, going left to right, the channel-source decoder,
the channel, the source-channel encoder, and the source.

From this joint measure we can determine the marginal Q(dX*,dY?). By theorem
A.1.2 we can disintegrate it as follows:

T
QXT,dYT) =R QaY; | 2",y ) ® QdX; | z'71)
t=1

where Q(dY; | zt,y*~ 1) is determined Q(dX?,dY*~!)—almost surely. Note that the stochas-
tic kernels, {Q(dY; | =¥, y'~1)}L_;, can also considered a channel between the source and the
reconstruction. The next definition states in what sense one channel can be used to realize
another channel.
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Definition 4.8.4 We say the channel {Q(dB; | a',b' 1)}L | is a realization of the channel
{P(dYy | =ty =)}, if there emists

(a) a combined source-channel encoder, {Q(dA; | zt,a* 1, 60"} |
(b) a combined channel-source decoder, {Q(dY; | b, y'=1)}E,,

such that
PyT|z") = / Q(da”,db",dY T |z").
AT xBT
Recall

Q(dAT,dBT,dYT|aT) = @ QdY; | b, y"™) @ Q(dB: | o', b1 ® Q(dA; | 2t a1, b ).
t=1

We say that a realization {Q(dB; | af,b'=1)}]_ of {P(dY; | ', y'~')}]_, is a realization
without feedback if the source-channel encoder used is a source-channel encoder without
feedback.

Directed Data Processing Inequality

We now prove a “directed” version of the data processing inequality. As before X is the
source, A; is the channel input, B; is the channel output, and Y; is the reconstruction.

Lemma 4.8.1 I(XT;YT) = (X7 — ¥7T) < I(AT — BT).

Proof: X7 is the source and hence not effected by feedback. The equality follows then
from corollary 3.2.3. We prove the inequality in two steps. We first show I(X7 — Y7T) <
I(XT — BT) and then we show I(XT — BT) < I1(AT — BT).

First note that X7 — BT — Y7 forms a Markov chain. This is because Y; — (B?,Y'~1) —
(X, A') and there is no feedback to the source X”. Thus

IXT -y =1x",v") < 1(x"; B") = (X" - B”)

where the inequality follows from the regular data processing inequality given in proposition
A.2. Second note that

I(X% B, | B

M=

I(X" - B") =

by
Il
—

I(A% B, | B™Y)

(AN
™=

ﬁ
Il
_

= I(AT - BY)

—~
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where we have used the fact that conditioned on B?~! the following X*— A’ — B, is a Markov
chain. Thus by the data processing inequality, proposition A.3.2, we have I(X*; B; | B!~!) <
I(A%: B, | BY). O

The directed data processing inequality will be used extensively in chapter five where
we deal with the sequential rate distortion problem and the joint source-channel coding
problem. It is primarily used to prove the converse theorems.
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4.9 Summary

In this chapter we treated the feedback channel coding problem. By using our general
formulation from chapter two we were able to prove a general coding theorem for finite
alphabet and Gaussian alphabet channels with differing forms of feedback.

To prove these coding theorems we showed that one can convert the feedback channel
coding problem to a non-feedback channel coding problem where the input space is now the
space of code-functions. We then reduced the underlying optimization problem from one
living on code-function space to one living on input distribution space. We showed that the
controller, in this case an encoder, completes the joint measure on channel input/output
space.

We showed that the directed mutual information, as introduced by Massey, is the correct
notion of capacity for channels with and without feedback. The directed mutual information,
as opposed to the traditional mutual information, depends on a “causal” factorization of
the underlying joint measure.

We provided random coding error exponents for the case of feedback and showed that
they can be no worse than the non-feedback error exponents.

For Markov channels we showed that one can solve the capacity optimization problem
via dynamic programming. We treat channels with ISI. We argued that Markov channels
are the correct way to treat channels with memory.

We compared our results to some of the existing results in the literature. Furthermore
we showed how our formulation captures many new results. We argued that there is a
need for a general formulation for analyzing channels with memory and differing forms of
feedback. This chapter is a step towards such a general formulation.

We concluded with a discussion of channel realizations and provided a causal general-
ization of the data processing inequality.
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Chapter 5

Sequential Rate Distortion

5.1 Introduction

In this chapter we introduce the sequential rate distortion function and its variants. In
chapter three we learned that an important goal of the encoder and decoder in control
systems under communication constraints is to maintain an error schedule for the state
estimation error. For the most part in chapter three we were interested in driving the error
to zero. But in cases with additive disturbance, as in proposition 3.5.2, we showed that the
objective was to bound the state estimation error. We are now interested in the case where
the source and the channel can be stochastic.

Given a stochastic process, {X;}, it is natural to ask what is the best approximate
representation one can achieve under a rate constraint R. Or conversely for a given ap-
proximation what is the minimum rate required to achieve it. Information theory provides
a methodology for computing lower bounds on the rate given a distortion constraint. This
is called the rate distortion function. Furthermore information theory gives conditions on
when one can achieve this lower bound.

Unfortunately traditional information theory is not causal. This chapter is an attempt
towards developing a sequential information theory. There are many issues to deal with.
One has to be precise as to what assumptions we make on the availability and timing of
encoder and decoder knowledge. Furthermore the role of feedback turns out to be very
important especially when dealing with unstable processes. To this end we introduce the
concept of a sequential rate distortion function. The sequential rate distortion theory tells
us how much channel capacity we will need to transmit a process, say video, over a channel
so that a distortion criterion at each time step is met.

Computing the rate distortion function entails minimizing a mutual information term
over all conditional laws between the input and the output such that a distortion criterion
is maintained. For noiseless channels we are actually interested in a deterministic scheme
between the input and the output. Thus the mutual information infimization problem can
be considered to be a “relaxation” of the problem. There are conditions, most notably large
blocklengths, where this “relaxed” solution can actually be achieved. This is Shannon’s rate
distortion theorem. We will discuss another condition which we call “channel matching”
under which the “relaxed” solution is achievable. Specifically there can exist channels with
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capacity R such that the end to end distortion is the distortion rate value. Furthermore we
discuss what can happen when the “channel matching” condition does not hold. Finally
we will see that the theory of sequential rate distortion is intimately related to the work on
feedback coding in chapter four.

In summary there are three main contributions in this chapter. First we prove the
direct and converse parts of the sequential rate distortion theorem for noiseless digital
channels. Second we show that for Markov sources we can formulate the mutual information
optimization problem as a dynamic programming problem with running cost. Third we
discuss the notion of matching between the source and the channel. This notion was first
introduced by Pilc but we expand this idea in many directions. [Pil] We provide a general
converse theorem for transmitting a process over a noisy channel. We then find conditions
on the noisy channel so that the direct theorem still holds. We discuss the different ways
in which one can realize the matched channel.

In section 5.2 we state background results on rate distortion. In section 5.3 we introduce
the sequential rate distortion problem. Then in section 5.4 we prove a coding theorem
for noiseless digital channels. We also provide a dynamic programming formulation for
computing the infimizing conditional law. An important simplification of the sequential
rate distortion problem leads to the so called successive refinement problem. We discuss
successive refinement in section 5.5. We also relate it to channel coding with feedback. In
section 5.6 we examine the sequential rate distortion problem for a few cases and discuss
some high rate approximations. Finally in section 5.7 we conclude.

137



X;— Encoder - Decoder
Noiseless

Digital
Channel

Figure 5-1: Traditional Rate Distortion Setup

5.2 Rate Distortion

In this section we discuss background results in rate distortion theory. We discuss the issue
of delay in subsection 5.2.2. In subsection 5.2.3 we introduce the idea of induced channel.
This will turn out to be important for the rest of this chapter. In subsection 5.2.4 we give
some examples. Then in subsection 5.2.5 we discuss the high rate approximation. Finally
in subsection 5.2.6 we discuss regimes where we can achieve the rate distortion bound over
noiseless digital channels.

5.2.1 Review

We assume that our source takes values in a Polish space X. See sections A.1 and A.3
of the appendix for a review of Polish spaces and information theoretic quantities. In
this chapter or focus will be on the cases where X is a countable set or IR?. Specifically
let {X; :t=1,..,T} be a set random variables taking values in X and defined on the
probability space (2, F,P). This process { X;} represents our source. The index ¢ represents
a discrete time index.

Definition 5.2.1 A distortion measure d(-,-) : X x X — IR is a map taking (z,y) into
the nonnegative reals. Let dy(xt,y?) 2 1 3, d(zs,ys).

We will need the following boundedness property.

Assumption 5.2.1 We assume there exists an element ry € X and a positive number
Dinax such that prtd(Xt,xo) < Dpax VE=1,...,T.

For the case when X = IR% we will often take zo = 0. Where 0 is the zero vector in IR%.
(Note if zy # 0 and the distortion measure is translation invariant then we can without loss
of generality recenter the distribution by translating zy to the origin.)

The traditional goal of rate distortion theory is to compress the signals into a smaller
set of signals such that a distortion criterion is satisfied. The idea is to quantize the source
and then transmit it over a noiseless digital channel at the minimal rate. See figure 5-1.

Definition 5.2.2 A blocklength T' quantizer is any measurable map f : XT — Q c X7
where Q is at most countable.

The superscript “0” in the following represents the word “operational.”
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Definition 5.2.3 The operational rate distortion function for horizon 7' is
1
%(D) & inf —H(f(X"
Rr(D) 2 inf 7 H(f(X7))
where F = {f : E'prdT(XT,f(XT)) < D and f is a blocklength quantizer}.

Definition 5.2.4 The operational rate distortion function is

R°(D) 2 limsup R%(D).

T—o00

We have defined the operational rate distortion functions. Now we define the rate distortion
function. In the followinglet Y = X. Let ICyT| yr represent the space of all stochastic kernels

from X7 to YT. (See section A.1 of the appendix for the definition of stochastic kernels.)

Definition 5.2.5 The rate distortion function for horizon T is

.. 1
Rr(D) £ inf lPree(XT5YT)
where A ={Q : Q € Kyrxr and prT®QdT(XT,YT) < D}.

Definition 5.2.6 The rate distortion function is R(D) 2 limsupy_, ., Rr(D)

We now state Shannon’s rate distortion theorem.

Theorem 5.2.1 If the process X; is stationary and ergodic and satisfies assumption 5.2.1
then for any € > 0 and any D > 0 such that R(D) < oo there exists a T large enough and a
quantizer f such that prTdT(XT, f(XT)) <D and $H(f(XT)) < R(D) +e¢. Conversely,
if R < R(D) then there is no T and no quantizer f with +H(f(XT)) < R such that
Ep pdr(XT, f(XT)) < D.

Proof: For the direct part see theorem 7.2.4 of [Berg]. For the converse part see theorem
7.2.5 of [Berg]. O

A much more general statement of the rate distortion theorem without the ergodicity
assumption can be found in [SV] and [Han].

5.2.2 Issue of Delay

Theorem 5.2.1 shows that there exists a coding scheme over noiseless digital channels that
achieves the rate distortion bound. But to achieve this bound the delay in computing Y;
from X; is 2T — t. At time ¢ it takes T — ¢ steps to observe the remainder of the source,
X¢i1,.-, X7, and then it takes another T steps to transmit the quantized source over a
digital noiseless channel. The time-ordering on the random variables is

X1, ., X7, V1, 0, Yo (5.1)
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In control situations this delay may be unacceptable. We seek the minimal rate required to
achieve a given distortion without delay. The time-ordering we would like is

XlayiaXQa"'aXTaYT- (52)

The sequential rate distortion problem that we formulate in section 5.3 answers this ques-
tion. (Note for some control systems some delay or varying delay may be acceptable. See
[Sah] for discussion of coding for varying delays.)

We will show that we can often get around this delay if we do not insist on using
a noiseless digital channel. Recall our main goal is to transmit the source over a given
channel while maintaining a given end-to-end distortion. In general the channel between
the source and the recipient is a noisy channel and not a digital noiseless channel. Shannon’s
separation theorem shows that if the blocklengths are long enough one can transmit the
quantization with very small probability of channel error. Specifically, under rather broad
conditions, one can design the source encoder and channel encoder separately so as to
achieve a given end-to-end distortion. [VVS] But for small delays this separation no longer
holds. The following is an example of this.

Example 5.2.1 Let our source X be a normal N'(0,1) random variable and the distortion
measure be squared error. The rate distortion function for this random variable is R(D) =
%log % D <1. Assume we want to achieve a distortion D = i. Then R(D) = 1.

If we are given a noiseless digital channel capable of transmitting one bit then the best

distortion we can hope to achieve is ”T_Q > i. (The optimal quantizer can easily be seen to

be that which reproduces i\/g depending on whether X > 0 or not.)

Now assume we are given an AWGN channel of the form B = A+W where W is normal
N(0, %) and that there is a power constraint of the form E(A?) < 1. One can compute the
capacity of this channel to be 1.

We will now show that we can transmit our source over this channel and achieve a
distortion i. Let A = X. Then upon observing B the best estimate of X can be seen to be

X = %B and the expected square error can be seen to be %.

We have shown two channels with capacity 1. On one we can achieve the distortion
% on the other we cannot. The separation result does not hold in this case. Furthermore
we were able to achieve the distortion rate value by transmitting the source over a noisy
channel without any quantization. Thus in figure 5-1 the digital noiseless channel would be
replaced with, in this case, the additive white Gaussian noise channel.

It turns out that the AWGN channel used in the above example is in fact the rate
distortion infimizing conditional law. In the next subsection we discuss this induced channel.

5.2.3 Induced Channel and Approximate Factorization

In the last subsection we showed that a noisy channel can be better than a digital noiseless
channel when one is interested only in end-to-end distortion. In this subsection we state a
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necessary condition on the capacity of the channel to achieve a given end-to-end distortion.
We then discuss the induced channel and approximate factorizations.

Theorem 5.2.2 A necessary condition to achieve end-to-end distortion D over a given
channel over a horizon T is Rp(D) < C.

Proof: Assume we are given a channel Q(dB” | a”). (Recall a channel is a stochastic
kernel.) Furthermore assume that this channel has no feedback capacity C. Then for all joint
source-channel encoders and joint channel-source decoders such that £ Pyr yr dr(X T YT) <
D we have Rp(D) < £I1(X",Y") < 2I(A"; BT) < C. The second inequality follows from
the data processing inequality (proposition A.3.2.). O

Induced Channel

The rate distortion infimizing stochastic kernel, Q(dY” | zT), can be viewed as a channel.

Definition 5.2.7 We call the rate distortion infimizing stochastic kernel the induced chan-
nel.

Recall from chapter 4 that A and B are the channel input and output spaces. In this
case we let A = X and B = Y and the source-channel encoder and channel-source decoder
are identity maps. (Recall figure 4-7 of chapter 4.) Furthermore the capacity of this induced
channel is greater than or equal to R (D). To see this note Rr(D) = I(XT;YT) < C.

The infimizing stochastic kernel can be factored as

QYT | 2T) =0 _,Q(dY; | y* 1, aT)

which has the unfortunate property of being anticipative (with respect to the time-ordering

in equation (5.2).) To physically realize this anticipative channel we must introduce delay
(i.e. the time-ordering in equation (5.1).) For the channel Q(dY7 | zT) = ®]_,Q(dY; | y* 1, zT)
the delay for determining Y; from X; is 7. Y; cannot be produced until Xi,..., X7 and
Y1, ..., Y;_1 occur. We comment here that in general I(XT;Y7T) # [(XT — v7).

Approximate Factorization

We know that the induced channel achieves the rate distortion bound. We also know that
in the limit of large blocklength the noiseless digital channel can be used to achieve the
rate distortion bound. We want a way to characterize all channels that achieve the rate
distortion bound to within some e.

Definition 5.2.8

1
Acr(Pxr) = {Q(dYT | 27): Bp_reqdr(XT,YT) < D and TIpr@,Q(XT;YT) < Ry(D) + e}
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This set is nonempty because the rate distortion infimizing law is a member of it. Shannon’s
rate distortion theorem states that under suitable conditions and 7' large enough the set
A¢r will contain a noiseless digital channel of rate R(D) + e.

Definition 5.2.9 A source, Pyr, and a channel, Q(dB* | a®'), are said to be matched if
Q(dBT | aT) is a realization of the rate distortion infimizing stochastic kernel Q(dY T |zT).

The source and channel are said to be approximately matched if Q(dB? | a’') € Acr(Pxr).
(Recall definition 4.8.5.)

We call a matched channel, Q(dBT|aT), a factor, because as we have shown in section
4.8 the induced channel P(dY” | z7) can be factored as

PY” | ") = / Q@Y™ | 5T)Q(dB” | ¢")Q(dA” | z7)
AT x BT

where Q(dAT | z7) and Q(dY™ | bT) are the encoder and decoder respectively. By analogy
an approximately matched channel is called an approzimate factor.

There can be many realizations and approximate realizations. Often times we can realize
a particular channel with much simpler channels. We discuss this in the examples section.
Furthermore our interest in matched channels comes from the fact that they will help us
compute closed form solutions for some classes of sources. Determining a matched channel
is a crucial part in the computation of the sequential rate distortion function for Gaussian
sources.

It is unfortunate that in general the induced channel forces a delay of 1. But for the
case when the source is independent (i.e. P(X?) = ®]_,P(X;)) it can be shown that the
infimizing law is nonanticipative. Specifically

Lemma 5.2.1 If{X;};—1 . 1 are independent then the stochastic kernel that infimizes Ry (D)
has the form Q(dYT | 2T) = @1 ,Q(dY; | x).

Proof:

Pyr yr(m)
I(xXT, vy = sup Pxr yr logL
( ) 7r621-[ Xy ( ) PXTPyT( )

PXTYT( )

> Pxr y1 —_—

,%1 xrye () PXTPYT()

> ZiPX Y(T{')lOg Xt’Yt( )

il et tylt PXtP)/t( )

Where the first equality follows from theorem A.3.2. The first inequality follows because II
can be any partition (not necessarily the supremizing partition.) The third inequality follows
from theorem 9.2.1 of Gallager’s text. [Gal] Since the inequality holds for all partitions it
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must be the case that

T
P
IXT YT >sup 375 Py, v (m) log Pry(m) _ ST I(Xi V).
well t=1

Equality is achieved if Q(dY? | z7) = ®]_,Q(dY; | z;). Furthermore Ed(X;,Y;) depends
only on the marginal P(dXy,dY;). Thus given any measure we can replace it with its
product form. By doing so the distortion remains the same and the mutual information
cannot increase. O

5.2.4 Examples
In this subsection we examine two sources.
(a) {Xy, t=1,...,T} is Gaussian N (0, A).
(b) {Xy, t=1,...,T} is uniformly distributed over the box [—L, L]T.

Definition 5.2.10 Given a distortion measure d its semi-faithful version for distortion D
is defined as

) [ dx,Y) ifdX,Y)<D
dp(X,Y) = { +00 ifd(X,Y)>D

For the Gaussian source we use the following squared error distortion measure:
d(z",y") = o7 —y" I} = (a7 — ") M(z" —yT)

where M is a positive definite weighting matrix. For the uniform source we use the semi-
faithful version of the squared difference distortion measure.

Before proceeding we prove some simplifying properties.
Lemma 5.2.2 Let XT = M2 X7, YT = M3Y7T. Then
(1) I(X"Y") = 1(X";Y7)
@) 1z7 =472 = |27 —yT||3;  where I is the identity matriz.

Proof: (1) holds because mutual information is invariant under injective transformations
(proposition A.3.1 (c).) To see (2) note

137 —g73 = (M3aT — M3yT) (M3zT — M3yT)
= (27 —y")y M= —y7)

2"~y I
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Thus without loss of generality we can restrict our attention to the case where M = I.
In practice the encoder would preprocess the obslervation by applying M2 to it. Similarly
the decoder would postprocess its output by M~ z.

Lemma 5.2.3 Let U be the unitary matriz that diagonalizes prTXTXT' = U'TU. Let
XT =UXT YT =UYT. Then

(1) [(XT;¥T) = 1(XxT;Y7T)

(2) Iz = g7l = " — "7

Proof: Both (1) and (2) hold because mutual information and the squared error distortion
with weight matrix I are invariant under unitary transformations. O

Thus, without loss of generality, we can restrict our attention to the case where the
source covariance Epyr)X TXT is diagonal. In practice the encoder will preprocess the
observation by applying U to it. Similarly the decoder will postprocess its output by U’

Gaussian Source

It is straightforward to compute the rate distortion function for the Gaussian source. By
lemmas 5.2.2 and 5.2.3 we can, without loss of generality, restrict ourselves to Gaussians
with covariance A = diag[Ay, ..., A\7] and a squared error distortion measure with weight
matrix .

By equation 9.7.41 of [Gal] we have

where

where 7 is chosen such that 37, §; = D. This is the so called water-filling solution. For D

1
small enough one can show the above formula reduces to R(D) = 4 log %.

We now characterize the infimizing law. Following equation 9.7.16 of [Gal] we see that
the backward channel has the form

XT=y"+v"

where V7' is distributed normally with mean zero and covariance diag[di, ..., o). Thus the

forward channel has the form
YT =HXT + W7
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where H = E(YTXT)E(XTX™') and W7 is a zero mean Gaussian vector with covariance
EYTY") - E(YTXT)E(XTXT)"'E(XTY™"). This forward channel is the infimizing
law.

There are many ways to realize the channel Y7 = HX” 4+ W”. For example let G be
any invertible transformation. Define BT = GY?, AT = GXT. Then the channel BT =
GHG'AT + GWT also realizes the infimizing law with encoder AT = GX? and decoder
YT = G 'BT. Every such G represents a coordinate transformation and thus induces
a different matched channel to the Gaussian source. Note that these realizations are a
realizations without feedback (recall definition 4.8.5 of chapter four.)

Uniform Source

We assume that we have a uniform source with the semi-faithful version of the mean squared
distortion as its distortion. It is difficult to compute the infimizing law in this case. We
can, though, compute an upper bound on the rate for a noiseless digital channel. This in
turn is an upper bound to the rate distortion function for the uniform source.

We can upper bound the rate distortion function as the logarithm of the ratio of the
total volume of the box to the volume of a box of side-length \2/—]%. Then

1 2r)" L
R(D) < —log ((%))T = log(VT 7).

5.2.5 High Rate Approximation

Now we show that as the distortion goes to zero we can transmit the Gaussian source over a
digital noiseless channel at essentially the rate distortion limit for arbitrary 7. We use the
uniform source results to approximate the Gaussian source. As D — 0 we can approximate
the infimizing law by a digital law.

We first analyze the scalar case and then generalize it to the vector case. Note the
approximations we make now are in no way optimal. They serve only to show that there
exists a coding scheme such that the ratio of the rate distortion function and the rate of
this particular scheme goes to one. To get better results on the optimal rate of convergence
one should apply Bennett’s distortion integral. [Ben]

Let X ~ N (0,)). Recall we are using the squared error distortion criterion. The rate
distortion function for this source is R(D) = max{0, 5 log %} There is nothing to do if
D > A\. Thus we assume D < A\. We propose the following scheme: choose a finite interval
and partition it into regions of size 2v/D. If X falls inside this region we will achieve a
distortion < D. We need to bound the average distortion when conditioned on falling
outside this region. In particular let [—L, L] be the region in which we quantize the source.
L represents the dynamic range. If X falls outside of this region then send the zero signal.
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Let the superscript s represent “scheme.” Thus

s L2 002
D’ < (2—R) +2/L z*p(z)dx

= (ga)+2|/5-Le F +22\Pr(X > L)
L A 2 2
< (2—R)2+21/%Le’§7 + 2\ ™

2
= (g (2,/%L+2A> ¢ %

where the second line follows by integration by parts (see lemma A.4.1) and the third line
follows from the Chernoff bound.

We need to choose L and R such that this distortion is always less than D and that the
rate is close to the rate distortion rate in the limit of small distortion. We will do this by
choosing an L such that the second term is less than %. Then for this L we will choose an
R such that the first term is less than %.

It should be clear that if D — 0 then it must be the case that the dynamic range L — oo.
~ ~ 2
Furthermore there exists an L large enough so that for all L > L we have (2\/ %L + 2)\> e~

.2

< e x. Let L*(D) = 1/4\In(3). Assume that D is small enough so that L*(D) > L. Then

LS(D)2 LS(D)2

(2 %LS(D)HA)e— no<e oo =D

Then choose R so that (%)2 < L. One choice is R*(D) = § log(W). (As usual

we ignore the fact that R should be an integer.) By substituting for L*(D) we can compute
2
R$(D) = % log LMHD(D)) .
For D small enough we have by construction D®* < D. Now we need to show that

limp 0 5 = 1.

2
RY(D) 218 <8MI}3(3))
R(D) 3l0g
. log (8 In (%))

Because of the logln term in the numerator the second term goes to zero as D — 0. Thus
in the limit of small D we can approximate the infimizing law by a digital channel with the
same distortion and rate.

Now we generalize to the vector source case. Let Xi,..., Xy be distributed N (0

,A).
Assume without loss of generality that A = diag[Ai,...,Anx]. For D small enough §; =
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n = £ in the rate distortion formula. For each coordinate let LS (D) = 4/4), In(2)) and
R3(D) = L log(3= In(2)).

The scheme is to partition the box {[—Lj (D), L; (D)] x, ..., x[-L% (D) L% (D)]} into smaller
boxes (i.e. a primitive quantizer in the notation of chapter three.) In the nth coordinate
direction we divide the interval into 25%»(P) smaller intervals. By our results for the scalar
case the average distortion along any coordinate axis will be less than % Thus the total
distortion is less than D.

The ratio of the rates goes to one as

R'D) _ 3y En 1 log(45= In(2])))
R(D) 2N En 1 log NAp
B Yo log(8 111(&))
= 1+ N
En llog 5"

The second term goes to zero as D — 0.

Note that similar results hold for other real-valued random variables. We do not have
to limit ourselves to Gaussian sources. We only require that the source have mass at the
tail, [7° 2?p(z)dz, decreasing sufficiently fast with respect to L.

5.2.6 Summary

In this section we have reviewed the rate distortion problem. We showed that if delay is
an issue then the noiseless digital channel may not be the optimal channel over which to
transmit the source.

We have shown two regimes in which the noiseless digital channel is approximately
matched to the induced channel:

(1) D fixed, T — oo, and the process {X;} ergodic. This is Shannon’s rate distortion
theorem. There is a delay of T' units.

(2) T fixed and D — 0. This was shown in subsection 5.2.5. There is no delay in this
case.

In terms of the time-ordering described in equation (5.2) the infimizing law may be
anticipative. We address this problem in the next section by introducing the sequential rate
distortion problem.
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5.3 Sequential Rate Distortion

In this section we formulate the sequential rate distortion problem. The basic idea is to
transmit a lossy version of a process, say video, over a channel while maintaining some
distortion criterion. A typical control application would be a sensor that is a video camera,
connected to a controller via a noisy communication channel.

We first define the sequential rate distortion function. And then provide a general
converse theorem. In section 5.4 we provide the direct part of the coding theorem.

5.3.1 Setup

We define the following two-parameter source. (As before X is a Polish space.) Let {X;,, :
t=1,..,T,n = 1,..,N} be a set random variables taking values in X and defined on
the probability space (2, F,P). This process {X;,} represents our source. The index ¢
represents a discrete time index. The index n represents a spatial index. Thus at time ¢
we observe the random variables X; 1, ..., Xy n. For example the index (¢,n) can represent
a particular element, n, of a raster scan of the ¢th image in a video stream. We use the
notation X7 é (Xt,la ...,Xt,n),X,fl é (Xl,na ...,Xt,n), and Xt’n é {Xi,j}i:1,...,t,j:1,...,n- (Note
that there is a natural ordering in time but not in space.)
We will generalize assumption 5.2.1 for this new source.

Assumption 5.3.1 We assume there exists an element ty € X and a positive number
Dy.x such that prntd(Xn,t,wo) < Dpax Vn=1.N,t=1..T.

Sequential Rate Distortion Quantizer

Definition 5.3.1 A sequential rate distortion quantizer is a sequence of measurable func-
tions f: such that
ft . Xt’N x y(t—l),N N yN

where the range of each function is at most countable. Specifically f; takes (zbN,y!=bN)
N
Yt -

Lemma 5.3.1 A source distribution, Pxr .~ and a sequential rate distortion quantizer, f1, ..., fr,
specifies a unique measure PyrN y1,N.

Proof: Note that the stochastic kernel Q(dY;Y | z7:V,y'=1N) = 5{YtN:ft(It,N’yt—l,N)}. Then
by theorem A.1.1 the following measure exists

T
P(dx"N,ay BNy = P(dXT’N)®{®Q(dY;N|xT’N,yt—1’N)}-
t=1
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Operational Sequential Rate Distortion

We formulate two forms of the operational sequential rate distortion function for noiseless
digital channels. In the first one we use a distortion schedule. In the second one we use
a time-averaged distortion. The superscript “SRD” represents “sequential rate distortion”
and the “o” represents “operational.”

Definition 5.3.2 Formulation 1
The operational sequential rate distortion function under a distortion schedule is

SRD, 0(

Ry “(Dy,...; Dr) = H(YlN,...,YTN)

inf
(fl’ ’fT)EJ: NT
where F = {(f1, ..., fr) : EpXt,NdN(XtN,Y];N) <Di t=1,..,T}.

Definition 5.3.3 Formulation 2:
The operational sequential rate distortion under a time-average distortion constraint is

SRD, o, ave 1

D — H(YN, ... YN
RT ( ) (fla afT)EJ:NT ( 1o ’ T)

where F = {(f1, ..., fr) : th 1 B dN(XtNaY;tN) < D}.

In both formulations the expectation of the distortion depends on Py~ and not just PXtN.
This is because V" is a function of X»". (Note, though, that Ep v dn( XN, YN =
EPXtN,YtN dN(XtNa Y;:N))

Sequential Rate Distortion

As discussed in the last section the rate distortion problem consists of minimizing the
mutual information over all stochastic kernels satisfying some distortion constraint. For
the sequential rate distortion problem we will take the minimization to be over a “causal”
sequence of stochastic kernels. We define that now.

Definition 5.3.4 A sequence of stochastic kernels {Q(dY,N |y=5N, NV is called a
causal sequence of stochastic kernels if Vi =1, ..., T

QMY [y N 2tV a L a) = QaYY |y, e E, 8T

Vmﬁ_l,...,acg,i:ﬁl,...,:ﬁ%. A causal sequence of stochastic kernels is a channel and thus
denoted {Q(AY," | y==1:N, at M)}V .

Lemma 5.3.2 A source, P(dX™""), and a causal sequence of stochastic kernels,
{QaYN | yt= 5N 2NN uniquely determines a joint measure P(dXTN dYT-V).
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Proof: Follows from theorem A.1.1. Specifically

T

P(dXT’N,dYT’N) — ®P(dY;N | .’L't’N,yt_l’N) ® P(dXt]V | $t—1,N,yt—1,N)
t=1
T
= @YY | ) @ PAXY | oY)
t=1

Where the last line follows because the source is not affected by the past reconstructions.
O

We now state the sequential rate distortion function formulation. This is an optimization
of the mutual information over all infimizing “channels.” We want the infimizing stochastic
kernel to be nonanticipative.

Definition 5.3.5 Formulation 1:
The sequential rate distortion function under a distortion schedule s

R$ED (D, ..., Dr) = inf XN, L XN YN LY

1
NTIP TN,YT,N(

where F = {{Q(dYN |y 1N 2N EPX;V!YtNdN(XgV,Y;N) <Di t=1,..,T and it is

a causal sequence of stochastic kernels}.

Definition 5.3.6 Formulation 2:
The sequential rate distortion function under a time-average distortion constraint is

SRD, :
RT,N (we(D) =inf — N IPXTN yT.N (vaa ---aXijy;YlN’ e YT{V)

where F = {{Q(dYN |y, TNV, o 750 Bp Ny AN (XN, YY) < Danditisa

causal sequence of stochastic kernels}.

A similar formulation of the sequential rate distortion problem can be found in the work
of Pinsker. [GP] Our work differs in many ways. In particular we will give an operational
meaning to the sequential rate distortion function. We will provide a coding theorem and
high rate asymptotics.

Sequential Rate Distortion: The Intuition

The notion of causality makes sense only after we have defined a specific time-ordering on
the random variables of interest. As already stated in section 4.3.4 the joint measure tells
us nothing about causality. The time-ordering we are interested in is

N N N N N
Xl ,Yi 5X2 a---,XTaYT .

150



Now given the joint measure P(dX™"", dY ") we can factor it as

T
P(dXT’N,dYT’N) — ®P(dY;N | xt,N’yt—l,N) ® P(dXtN | xt—l,N’yt—l,N).
t=1

The source, though, is not allowed to be affected by the past reconstructions. That is
XN - xt=LN _yt=LN forms a Markov chain. Thus P(dX} | 2= 5", 4*~1V) is independent
of y'=LN. Therefore we see that the induced channel, {P(dY;" | bV, y'=LN)}L, is a
channel used without feedback. Thus

T
I(XT,N _ YT,N) é Z I(Xt’N, YtN | thl,N) _ I(XT’N, YT’N).
t=1

Note that though the induced channel, { P(dY;"¥ | zb" y*=1-N)}] | is used without feedback
it may be the case that a realization of this channel does use feedback. In fact many channels
with memory can be realized by simpler channels, i.e. memoryless channels, with feedback.
This is discussed in more detail in section 5.6.

5.3.2 Converse Theorem

In this section we provide converse theorems for the sequential rate distortion problem.

Theorem 5.3.1 Ryl O(Dy, ..., Dr) > RSED(Dy, ..., Dr) and ROED: © ©¢(D) >

REIZ%D, ave(D)'

Proof: We prove the theorem for formulation 1. Formulation 2 follows analogously. Let
f1,--fr be any sequential quantizer such that Ep_, v dn(X},Y,N) < D; t=1,..,T. Then

1 1
T HO YY) 2 I XA YN, YY)

> RPRP(D,, .., Dr)

Theorem 5.3.1 gives us a necessary condition on the capacity of a digital channel in order
to achieve the operational rate distortion rate. The next lemma shows that the necessary
condition continues to hold for all channels.

Assume we are given a channel {Q(dB; | a®,b'~!)}L,. We provide a necessary condition
on the capacity of the channel, Cr, to achieve an end-to-end distortion criterion.

Theorem 5.3.2 A necessary condition to achieve end-to-end distortion (D1, ..., D) in for-
mulation one over a given channel over a time horizon T is stw,}]%D(Dl,...,DT) < %CT.
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Similarly a necessary condition to achieve end-to-end distortion D in formulation two over

a given channel over a time horizon T is erf,D’ ¢ p) < +Cr.

Proof: We are given a source P(dX1""). Now given any channel, {Q(dB; | b*~1,a")}L,,

source-channel encoder, {Q(dA; | zbY,a?~1 b1 =LV} | " and channel-source decoder,

{Q(AY,N | byt~ bN)}L |, such that EpXt,Yth(XtN,Y,;N) <D; t=1,..,T we have

1
RQS“,II{VD(Dl,...,DT) < WI(XT’N;YT’N)
1
= — 7T XT’N—)YT,N
R )

1 T T
WI(A — B*)

1
< —=C
s §Ur

IN

where we have used the directed information data-processing inequality (lemma 4.8.1 of
chapter four.) The proof for formulation two follows analogously. (The %CT comes from
the fact that the sequential rate distortion function measure rate per spatial dimension.) O

The idea of using the directed data-processing inequality for computing the lower bound
for the sequential rate distortion function is a special example of a more general lower
bounding technique. This technique, discussed in [Mit], shows that the lower bound can
be computed as a maximization of a mutual information representing a channel capac-
ity calculation and a minimization of a mutual information representing a rate distortion
calculation.

152



5.4 Coding Theorem for the Noiseless Digital Channel

In this section we provide a coding theorem for transmitting sources over a noiseless digital
channel. We also provide a dynamic programming formulation for computing the infimizing
law.

In the last section we proved a rather general converse theorem. We prove the direct
theorem under the following ITD assumption.

Assumption 5.4.1 The source {Xypn}n=1,. Nt=1,. T has the following independence struc-
ture:

PdXx™N) = oN_ P(dx]).
Furthermore the {XI}N_. are all identically distributed.

This states that for each n the trajectory in time, {X1 5, ..., X7}, is independent of all other
trajectories {X14,..., X174} 7 # n. Furthermore each trajectory is identically distributed.

Lemma 5.4.1 Under assumption 5.4.1, the causal sequence of stochastic kernels that in-

fimizes RJ‘S:,}]%D(Dl, ey D7) and RﬁﬁD’ Y€ D) factors as

QY™ |y~ a"Y) = @)L Q(dYen |y izh)  VE=1,..T.

D D
Consequently RI*S:,}ED(Dl, v, Dp) = RI‘SJ,%D(Dl, e, D1) and Rgf » (D) = Rfﬂ% » A€ D).

’

Proof:

I(Xt’N; Y;N | thl,N)

M=

I(XT’N; YT,N) _

H_
Il
—

I(XL: Y, | VY

vV
M=
WE

t=1n=1
N

= Y I(X3:Yy)
n=1

where the inequality follows from a straightforward extension of lemma 5.2.1. We have
equality when Q(dy®" | y'=bN z8N) = @, Q(dy! | yi~1zl) V¢t =1,...,T. Furthermore
Ed(Xp,Yn) only depends on the measure Py, ,.v,,. Thus given any measure we can
replace it with its product form. By doing so the distortion remains the same and the
mutual information cannot increase. O

By lemma 5.4.1 we see that we can restrict our attention to the single-letter forms of

R%RD(Dl, .., Dr) and RERD’ WVe(D). (Where the “single-letter” is with respect to the

spatial index n.) Thus when computing the infimizing conditional law we need only look at
sources of the form Pyr (i.e. N =1.)
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5.4.1 Finite Alphabet Source Coding Theorem

In this subsection we prove the direct coding theorem for finite alphabet sources under as-
sumption 5.4.1. Specifically let X be a finite alphabet and our source P(X1"V) = @, P(X ).

Theorem 5.4.1 For finite alphabet sources satisfying assumption 5.4.1 we have for both
formulations

Formulation 1: Distortion Schedule
For any € > 0 and finite T one can find an N(e,T) such that for N > N(e,T)

Formulation 2: Time-Average Distortion
For any € > 0 and finite T one can find an N(e,T) such that for N > N(¢,T)

R%S',@D, 0, ave(D+€) < R:gffD, ave(D) te

Proof: We prove formulation 1. Formulation 2 follows analogously. The proof uses a
random coding argument and has many steps. We outline the steps before proceeding with
the proof.

1) Test channel measure
Typical sets

Random codebook generation

)
)

4) Fixing the rate
) Large deviation bound
)

Existence of sequential quantizer

Step 1: Test channel measure

Given the source and the infimizing law we know, by lemma 5.3.2, that there exists a
joint measure P(X TN YT>NV). By assumption 5.4.1 and lemma 5.4.1 we see that this joint
measure factors as P(XTN YT:N) = @ P(XI'Y,T). Thus we can work with the single-
letter characterization under the measure P(X*,Y?). Since we are using the infimizing law

we know Epd(X;, V) < Dy Vt=1,...,T. Furthermore Ip(XT;YT) = RPRD(Dy, ..., Dr).

Step 2: Typical sets
The following definitions and results follow from Orlitsky and Roche. [OR] Let A, B,C
be generic finite valued random variables taking values in A, B,C respectively. Let their
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joint distribution be denoted P(A, B, C). Given any sequence a” define its empirical mea-

sure to be v, v (a) 2 W This is extended to multiple sequences in the natural way:

V(v pv)(a, b) & Hrlanba)=(@h}]
Define the ¢-robustly typical set

Q%N 2 {aV : |vun (a) — P(a)] < 6P(a), Va € A}.
We can define Qi{f\é similarly. Also define the conditional §-robustly typical set
N g,
Q%Ba) 2 oV : (a",0") € )R}
Let

JAY min P(a).
pa = {a€A : P(a)#0} ( )

We can define p14 g similarly. Finally define

52”’14
3

&N 29| AleN

and for do > §1 let
(62-61)%0A,B
’ =227 PAB
GJAI,,I(;LN A 2|.A % B|€ 3(1+01)

The following three lemmas contain the technical results we will need to prove the the-
orem. The results can be found in [OR].

Lemma A.4.2 The following hold
(a) P(aN GQ%N) >1—ce¢ JN
(b) For all (a™,b") € Q‘SA i we have 2~ NUFDHBIA) < p(pN|gNV) < 2~ NU=0)H(BA)
(c) Let aV € Q(SAI’N. Let b be drawn from P(B"|a"). Then
(bN c 962, (a N)|AN :aN) >1— 62541’1‘;2’ )
(d) For every a € Qi‘l’N we have |Qf42,’g(aN)| >(1- ef&”igz’NﬂN(l*@)H(B‘A).
Proof: See lemma A.4.2 of the appendix. O

The following is the key technical lemma in the proof of the coding theorem.

Lemma A.4.3 Let (zV,y!=1N) € Qo

xiye-1- Let yl be drawn from P(Y;N|y'=N). Then

6 — —_
P ( Q)?; Yt 1( t,Na yt 1,N) | a;t,Na yt 1,N)
> (1-enmh2 N(I(X4Y Y1) 420, H(Y: |V 1))
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Proof: See lemma A.4.3 in the appendix. O
In words, this lemma states that the probability that V", drawn from P(Y,N|y!=1),
looks typical with respect to the measure P(Y;" |25, y*~1:V) is approximately 2~ NI(XHY[YE )

Finally we show that if (z},y)) are d-robustly typical then their distortion is close to
the average distortion.

Lemma A.4.4 If (z]V,yF) € Q%Y then dy (=) ,yY) < (1+0)E(d(X, V7).

Proof: See lemma A.4.4 in the appendix. O

Step 3: Random codebook generation

We will use the test channel measure, P(X7"N, YT'N)  discussed in step 1, to produce
a distribution on sequential quantizers fy, ..., fr. First we need some notation. Let M; be
the number of codewords available to the quantizer at time ¢. We will specify their size in
step 4. Now let

Y1 = {Zil, ’il = 1,...,M1}

denote the range of f;. We call z;, the i1-codeword used at time one. In general let
Yt = {z(il,---,it)’ 11 = 1, ...,Ml, ce . ,’it = 1, ...,Mt}

denote the range of f;. We call zj,
codeword z € YV. Note that every element in the range of f! is uniquely labeled by an
(i1, ...,4¢) sequence. (Recall f* = (f1,..., ft).)

y the (i1, ...,i)-codeword used at time ¢. FEach

The following example may help understand this tree structure. Starting with the
codeword z;, we have My choices of codewords at the next step. This set of My code-
words can be different for each 47 = 1,...,M;. The diagram illustrates a typical path:

Zil) Z(il;l)’ z(ilal’MS)’ Z(ilylaMS;Mél)’“.

Z(iljlzl)
z(ilyl) - z(ilvlaMl’nl)
A A
B Z(i1,1,M3)
¢ hV a
Z(i1,M2) Z(i1,1,M3,Mg)
¢
Time 1 Time 2 Time 3 Time 4
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We can define a distribution on I'y,...,I'r as follows

M,y M>
P(’YT) = H PYlN(zil) H PYZN\YIN (Zil,i2|z'i1) X ..
11=1 10=1
Mt
X H PYI{V|YT—1,N (z’il,iQ,...,iT|zi1 s Zi1,029 s zil,...,’iT_l)-
=1

Note that we have only defined the ranges of the quantizers. We still need to define the
quantizer maps. The idea is to use joint typicality encoders. Before doing so we add one
special symbol, the error symbol, to the range of each quantizer. Thus the cardinality of

the range of each quantizer at time ¢ is now M; + 1.
Given vy, ..., yr define

. 5N
20 . if (‘Tt,N, Ziyy ey z(il,...,it)) € Q),(t,yt
(i1,-02) and (i1, ...,34—1) is the labeling of fg_l(mt_l’N)

t,N
o) =
fop(z™) if any of 2, , ..., %(,,....i,_,) = error symbol

bol . .
CrroT syrmbo or there are no typical elements in ~y;

If there is more than one typical element then use some priority ordering to choose one of
them. In summary the quantizer at time ¢ looks to see if there are any codewords in the range
of ; that are typical with respect to the source and consistent with the previous labeling
of the codewords. If there are none then it produces an error symbol. Once a quantizer
produces an error symbol it will continue to produce error symbols for all subsequent time
steps.

The decoder upon receiving z(;, ... ;,) decodes it as z(;,, __;,)- The decoder upon receiving
the error symbol decodes it as (zg, g, ..., Zg). Recall assumption 5.3.1 where z; is an element
such that EpXt d(Xt,z9) < Dmax. This assumption will allow us to bound the distortion
caused by an error symbol. More on this in steps 6 and 7.

Step 4: Fixing the rate
Choose the M;’s such that

1
¥ log(M; +1) < Ip(X4LY;: | YD e, t=1,..,T

We use M; + 1 instead of M; to account for the error symbol. Any sequential quantizer
drawn from P(T'7) with M,’s satisfying the inequalities above will satisfy the rate part of
the theorem statement. Specifically for all such v/ and their corresponding quantizer f7
we have

1 X

Nl (O, fr(EPN) < S AR (4)

157



IA
3l-
M=
2
=
+
=

IA
N
M=
=
ol
el
=
=<
|
_|_
N,

Step 5: Large deviation bound

Recall the construction of the quantizer in step 3. If at time ¢ we receive a non-error
message then it must be the case that (5, z;,, ..., z(il,___,it)) € Qi’(]tvyt. By lemma A.4.4 this
assures us that

dy(z), 2y, i) < (14 8)Epd(Xy, V).

Our goal, then, is to show that the probability of producing an error signal can be made
arbitrarily small. Let

0< 5(1’1) < 5(1,2) < (5(2,1) <., < 5(15’1) < (5(,5’2) <., < 6(T,1) < 5(T,2)

to be specified later.
We will bound the probability of error at time one. Then we will find a recursive bound
on the probability of error for general times t.

P(error symbol at time 1)

< P(yY not typical given typical z') + P(z} not typical)
N N [ s ,N N My N N,(S ’
= Y P[Pl g0 @) + el ¢ o)
N N,5(1,1)
zy €Qy
61.2),N My b54,1,N
< > P(ay) [1 - P (y{v €05 (wiv))] +ex,”
'
8(1,2),N 01,1,N
< Y P@al)exp[-MiP (3 € 0N @))] + 80
oy
8(1,1),0 ;
< S PN exp [-Mi(1— eyl M) NIE T80 HOD)] 4 S0
ol
< exp [-My(1 - GO N) NIA) 000 HOD)] 4 Lo

where the fourth line follows from lemma A.4.2 (a). The fifth line follows from the useful
inequality (1 — z)M < e~™M% for 0 < z < 1. The sixth line follows from lemma A.4.4.
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Now we show the general step:
P(error symbol at time t) = P(error symbol before t) + P(first error symbol at time t)

Recall that once an error symbol occurs all subsequent quantizers will output an error
symbol. Thus P(error symbol before t) = P(error symbol at t-1).
Now if no error symbol has occurred at time ¢ — 1 then it must be the case that

t—1,N  t—1,N O(t—1,2),N
(z 'Y ) € QXt—l,Yt—l-

We will show there exists a bound on the probability that the first error occurs at time ¢
. 8ti_19),N
that holds uniformly for every (z!=5V, y!~LN) € Q ;t,ll’?}),t,l.

. _ _ 84197, N
P (error symbol at time t | (z!=5V, 7bN) € Qx(.'i,ll’f}),t,l)

< > Pl [P (o ¢ o @y Yy )

x{"eni(i’_l)l’N(xffl,N)
+P(x) ¢ Q4" (2t V) | ot LN

< Z Pzl |zt"N) exp [—MtP (y,{v € Qigi’f}),’tN(wt’N,yt_l’N) | yt_l’N)]
2y e )" -1

< > P(zy |z~ "N) exp [—Mt(l - ei?t’l})/f(t’Z)’N)2_N(I(Xt5n|yt_l)+2‘5(t,2)H(Yt|Yt_1))]
o eay) (@) |

< exp [ M1 — SNy VIO T )] St S0

Thus we have

P(error symbol at time t)
= P(error symbol at t-1) + P(first error symbol at time t)
< P(error symbol at t-1) +
(5 (5 N . - - (5 — ;6 51 7N
exp [—Mt(l _ e)étt,,l})/at (£,2)> )2—N(I(Xt7Yt|Yt D)+26¢; 00 H(Y3|Y? 1))] 4 6)2,)1(,331 (t1) (5.3)

Thus we have a recursive bound for P(error symbol at time t).
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Step 6: Existence of sequential quantizer
Now we show the existence of a sequential quantizer. By lemma A.4.4 and step 5 we
know the expected distortion average over the quantizers at time £ is less than or equal to

(1+ 6(1,2)) Ep(d(X¢,Y:)) + Dmax P( error symbol at time t).

Choose d( 9y < 2_16%' Then the first addend is less than D; + 5. We now show that we

can make the second addend less than %

In step 4 we have chosen the rates such that

M, < oN(Ip(XHYi [V ) +e)

Thus we should further choose d(;9) to be small enough so that exponent in the second
addend in (5.3) is negative. (Note we still need d(;9) < 55 also.) Thus the second addend is
decreasing to zero with N. By our assumption that d;_1,2) < d(,1) we see that the exponent
in the third addend in (5.3) is negative. Thus the third addend is decreasing to zero with N.
Since T' is finite we can find an N large enough so that P(error symbol at time t) < 55—
holds for all t =1,...,T.

Thus we have shown that the expected distortion at time ¢ averaged over all quantizers
is < Dy + €. Since this is an average statement there must exist at least one quantizer that
achieves the required distortion schedule. The theorem is proved. O

Note that we have proved something slightly stronger. In the formulation of the sequen-
tial rate distortion problem with a distortion criterion our goal is to minimize the average
rate over time. But in the course of our proof we were able to show exactly what the rate
at each time instant will be. The rate at time ¢ is less than or equal to Ip(X*;Y; | Y1)
forallt=1,...,T.

5.4.2 Stochastic Control Formulation for Finite Alphabet Source Coding

In this section we continue to assume that the source alphabet is finite and that assumption
5.4.1 holds. Our goal in this subsection is to pose the SRD problem as a constrained Markov
decision problem. To that end we assume that the source is Markov in time.

Assumption 5.4.2 Qur source is Markov in time. Specifically there exist stochastic kernels
such that
P(XT) = P(X1) ®{_ Q(X; | 1)

Structure Results

Recall our objective is to minimize I(X7;Y7T) over all causal channels satisfying the dis-
tortion criterion. Under a causal sequence of stochastic kernels the mutual information
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decomposes in the following manner

IXTYT) =I1(x" - Y") =) I(X' Y, | Y.
t=1

Note the dependence on X! in the addend I(X?Y; | Y'!). We will show that under
assumption 5.4.2 we can, without loss of generality, restrict our attention to addends of the
form I(X;,Y; | Y1), By doing so we will be able to formulate a stochastic control problem
with running cost equal to these addends.

Definition 5.4.1 A causal sequence of stochastic kernels, {Q(Y; | =*,y*=1,)}_,, is called
a simplified causal sequence of stochastic kernels if Vt = 1,...,T we have

QY: | 2" Lzy™ ) = QY [ 2" ap,y ) Vet

We denote a simplified causal sequence of stochastic kernels by {Q(Y; | =,y =)} .
In words this states that the distribution of Y; is a function of only z;,%'~! and is
independent of z'~!. The following two lemmas show that we can restrict our attention to

a simplified causal sequence of stochastic kernels.

Lemma 5.4.2 We are given a Markov P(XT) and a causal sequence of stochastic ker-
nels, {P(Y; | zt,y' " 1)}_,. Denote the resulting joint measure by P(XT,YT) = P(XT) ®
<®th1 P(Y: | :Bt,yt_l)). Then there exists a simplified causal sequence of stochastic ker-
nels, {Q(Y; | z,y' 1)}, such that for the resulting joint measure Q( X1, Y1) = P(XT)®
<®th1 QY; | wt,yt_l)) the following marginals hold for allt =1,...,T

Q(Xt’Yt) = P(Xtayt)'
Proof: We can decompose P(X;,Y!) = P(Y; | z,y' ') ® P(X;, Y1), Let

Q(Y?-f | a"tayt_l) = P(Y?-f | Itayt_l)'

It is straightforward to verify that Q(X1,Y1) = P(X1,Y1). Assume the result holds for all
t < k. We now prove the induction step.

QXx1, YY) = Q(Viy1 | Thy1,9%) ® Q(Xps1, YY)

= PYiq1 | zpi,9F) 0 [ D Q(Ikan-I-l’Yk))
TLEX

= P(Yis1 | 2e1,05) @ | D) QX1 | 7, 0F) ®Q($k,Yk))
TLEX

= Py | 211,05) @ [ Y P(Xiy | 71) ®P(wkayk)>
TREX
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= PYit1 | 2r11,9") ® P(Xpy1,Y")
P(Xp41, Y

Where in the fourth equality we have used the Markov property of the source and the
induction hypothesis. This proves the induction step and thus the lemma. O
We now show that the mutual information is not increased by this () channel.
Lemma 5.4.3 For the measures Pxr yr and Qxr yr of the previous lemma we have
Io(x";Y") <Ip(Xh; YY),

Proof: We know that under @ the following is a Markov chain: Y; — (X;, V¥ 1) — Xt1,
Thus Io(X4Y; | Y1) = Ig(Xy; Y3 | YY),

Ip(XT: YTy = Ip(XT = YT)

T
— ZIP(Xt7Y't | thl)
t=1
T
= Y Ip(YuXLY" ) —Ip(YsY' )
t=1

v

T

D Ip(Yy Xy, YU — Ip(Yi Y

t=1

T

= Y Io(Yy Xy, Y1) = Io(Ye; Y'™') by lemma 4.4.2
t=1

T
= > Io(XpYy [ YT
t=1

T

= Y IpX4y | Y
t=1

= IpX" -»Y7T)

= IoxT;vT)

By lemma 5.4.2 the marginals are equal: Px,y, = Qx,,y;- Thus the average distortion
under the causal sequence of stochastic kernels {P(Y; | zt,4*~1)}L, equals the average
distortion under the simplified causal sequence of stochastic kernels {Q(Y; | z4,y" 1)}, -

Furthermore the mutual information is not increased by using the sequence of causal
stochastic kernels. Thus we can restrict the infimization in definitions 5.3.5 and 5.3.6 to

simplified causal sequences of stochastic kernels.
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Dynamic Programming Formulation

We are now in a position to translate the elements of this problem into a traditional control
problem. By lemmas 5.4.2 and 5.4.3 we know the optimization problem reduces to the
following: Infimize X7 | I(Xy;Y; | Y1) over all simplified causal sequences of stochastic
kernels (e.g. channels ) of the form {Q(Y; | z,4* 1)}7_; while maintaining a given distortion
criterion.

We view the sequential rate distortion problem as a control problem where the decoder
acts as the controller. Specifically the decoder at time ¢ chooses the encoder at time ¢ + 1.
In this case the encoder is a stochastic kernel. Let Ky, x be the space of stochastic transition
matrices from X to Y.

The components of the control problem are:

o (Control
The control takes values in the space of stochastic kernels u; € Ky x. A control policy
is a sequence of measurable functions y; : ’ng_ﬁg x Pt=1 Ky)x taking (=1, yt1) —
Ut.

o State
Let the state be z = (u!~1,y"!) where 2; € ICSJ_I;C x Y-t

e Time Ordering and Joint Measure
X17 Ul’ Yia LT} XT’ UT; YT

The source and any policy, x7, defines a unique measure, P“T, on X7 x IC% p X T

T
P (xT,au”,YT) = P(XT)® {® P (Y, | ottty @ PE (AU | muy>}
t=1

T
= P(XN)® {®Ut(Yt | 2¢) ® 5{Ut—m(ut1,yt1)}}

t=1

e State FEvolution
Note that

t _ t _ t _
PEY; [ uly ™Y = Y PR (Y | g, ut, gt TP (3 | ul )
Tt
= Y w(Yy | @) Play | u Ly
Tt

= > u(Ys | z) Pz | 2")
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and is independent of the policy u’. Thus the state evolution is

0 if (U, Y1) £ (ul,yt !
P(Ziy1 | 2,w) = { P(Y; | ul,yt 1) els(e. 7 )

o Running cost
Define the following two measures

Qu(X:,Y: | zt,ur) 2 ue(Yz | 1) @ P(Xy | 24)

and
Qa(X4,Y: | 2, up) 2 (Zut(Yt | Z1)P(Z+ | zt)) ® P(Xt | 2t)

The running cost is

c(zt,ut) 2 D (Qu( Xy, Y | z,ur) | Qe(Xe, Yy | 26,ur)) = I( X3 Yy | 2, ue).

e Distortion

d(zt,ur) 2 B(A(X0,Yy) | 2e,ue) = D d(me, ye) ue(yelwe) P(we|z)

Tt,Yt

(Note that we have used d(-,-) in two different ways.)

o Objective
Infimize Y.L | E(c(Z;, Uy)) over all control policies, ', while maintaining either dis-
tortion constraint:

(1) E(d(zt,ut)) S Dt Vt = 1, ,T
(2) 7o B(d(z,w)) < D

In the terminology of [BS] we have just defined a non-stationary stochastic optimal
control problem with constraint. The qualifier “non-stationary” comes from the fact that
the state space Y'~! x }CS;& is changing in time. In fact it is growing.

We now prove one final simplification. We will show that the distribution of the state
given z; is a sufficient statistic for the problem. Consequently we can use this distribution
as the state.

We will use the conditional probability of X; given z; as our sufficient statistic. Specif-
ically let n : }C:ty_ﬁ( x Y71 — P(X) taking z; — P(X|z). Let II; = n,(Z;). We will show
that (II4,...,II7) is a sufficient statistic for control.
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Note that in the definitions of ¢(z¢,us) and d(z¢,u;) the term z; enters the cost and
distortion only through P(X;|z;). Thus we define

(e, up) 2 E(c(Zy,up) | mp)-

Note that if m; = m4(2;) then ¢(my, us) = c(z¢, uy). Similarly define

d(ﬂ't,’ult) A E(d(Zt,’U,t) ‘ ﬂ't).

Similarly if Tt = nt(zt) then J(ﬂ't, ’U,t) = d(zt,ut).

Lemma 5.4.4 The process I1; is a controlled Markov process.
Proof:
P(Xpp1 | huh) = D P(Xyp1 | m) Pz | o)
i

P(yt | xtayt_laut)P(mt | yt_laut)
E:'c P(yt ‘ :itayt_laut)P('it | yt_laut)

u(y | ze) Pz |y~ u™?)
Yaue(ye | Ze)P(Ze | yi=1,ut=l)

= Y P(Xpy1 | w)
Tt

= > P(Xi1 | m)
T
= é(ﬂ-tautayt)
for some function ®. Thus

P(Ht+1|ﬂ't, ut) = P(Ht+1|ﬂ't, ut).

a
It is straightforward to verify that
T T
Ipu(XT5YT) =3 Ipu (X VYY) = 3 Bpu(e(Tl:, Uy))
t=1 t=1
and

Epu(d(X, V1)) = Bpu(d(TT;,U))  t=1,...,T.

Now we can pose the dynamic programming equations. As stated before the problem
is a constrained Markov decision problem. Such problems are difficult to solve. We sim-
plify the problem by strengthening the form of the constraint. The resulting optimal rate
under formulation 1a and 2a defined below will be an upper bound on the optimal rate in
formulation 1 and 2 respectively.
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Formulation 1la: Strong Distortion Schedule
Strengthen the constraint in formulation 1 by using

F= {{Q(Ytlxtaﬂ-t)}t 1 (Wt,ut) <Dy t=1,. T}.

Formulation 2a: Time-average Strong Distortion
Strengthen the constraint in formulation 2 by using

T
F = {QUilzem) oy ¢ > dlmi,w) < D).
t=1

Definition 5.4.2 Let Jy,..., Jp be functions on P(X) defined backwards starting with T':

Formulation la: Strong Distortion Schedule
where
J = inf ¢(m,
r(r) uE!l'ZnT('ir)c(Tr v)

and

Jy(m) = elﬂntf c(myu -|-/Jt+1 P(dw|m,u)

where Qu(m) = {u € Kyjx such that d(m,u) < Dy}.

Formulation 2a: Time-Average Strong Distortion
Here we expand the state to (my, d¢) where 6 represents the distortion accrued up to
timet— 1. Let

Jr(m,§) = inf &(m,u

T( ) uEQT(w,J) ( )

and

Tim.d) = inf clm,u) + / o1 (7, §)P(d#, db|m, 6,u)

where Qy(m,8) = {u € Ky|x such that d(m,u) < D —6}. Also 41 = & + d(me, uy).

Theorem 5.4.2 In both cases if the infimization is achieved by a policy p* = (u1, ..., p1)
then u' is optimal. Furthermore u' can be chosen to be a deterministic function of the
{m} or {m, 0} processes.

Proof: Theorem 3.2.1 of [HLL]. O
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5.4.3 Gaussian Source Coding Theorem

In this subsection we provide a source coding theorem for Gaussian sources. We first give
a structure result. Then we discuss source mismatch. And we conclude with a coding
theorem.

Gaussian Structure Result

We show that for a Gaussian source the Gaussian channel is the best channel in terms of
minimizing the mutual information.

Lemma 5.4.5 Let G(dX7T) be a jointly Gaussian source admitting a density g. Let
{P(dY; | =t 9" 1)}, be a channel. Call the resulting joint measure P(dXT,dYT). Fur-
thermore assume that P(dX™,dY") admits a density with respect to the Lebesque measure.
Let G(dXT,dYT) be a jointly Gaussian measure with the same second order properties as
PdXT dYyT). Then

(a) {G(dY; | z',y'~Y )}, is a Gaussian channel.

(b) G(dXT,dY") has the same independence properties as P(dX',dY™).

(¢) Io(XT;YT) < Ip(XT3YT).

Proof: Part (a) follows from the fact that G(dX”,dY7T) is jointly Gaussian. Part (b) fol-
lows from noting that independence or conditional independence of some random variables
implies that those same random variables are uncorrelated or conditionally uncorrelated.
G(dXT,dYT) has the same second order properties as P(dXT,dYT) thus it inherits the
same independence properties. For part (c) note

Ip(XT; Y1) — Ig(XT:YT)

T ., T
x,
= /pr,yT(:cT,yT) log Pxtyr(a,y )

dz dy”
pxr (2T)pyr (yT)

gxTyrT (CCT, ?JT)
gxr (1) gyr(y")

- /QXT,YT (-’ET, yT) log deTdyT

bxT\yr (SUT | yT)

dzt dy”
gxr(z7)

= / pxryr(z',y")log

gxT|yT (=" | y")

dz’dy”
gxr(zT)

— / pxryr(zt,y")log

pXT|YT($T | y")
gxT|yT (=T | yT)

O — —

pxryr(z’,y")log dz” dy"

pYT(yT)D(PXT\yT | GXT|yT)dyT
>

Where the second equality comes from the fact that the G has the same second order
properties as P and because P(dX') = G(dX71). O
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If we are using the squared error distortion measure we see that the distortion is the
same under P or G. Thus for the Gaussian source the best channel that minimizes mutual
information while maintaining a given squared error distortion is the Gaussian channel.

Mismatch

What happens if one uses a channel not matched to a given source?

Corollary 5.4.1 Let P(dXT) be a source admitting a density. Let G(dXT) be a Gaussian
source with the same second order statistics as P(dXT). Let {G(dY; | =%, y" 1)}, be

a Gaussian channel. Then both joint measures P(dXT) ® <®th1 G(dY; | xt,yt_l)) and
GdXT)® (®tT:1 G(dY; | xt,yt_l)) have the same second order statistics.

Proof: The result follows from lemma 5.4.5. O

Thus if we use the Gaussian channel {G(dY; | z!,4* !)}]_; for the source Pyr then
the resulting distortions D;, ..., D7 will equal that of the distortions under G xr. This is
related to the rate distortion mismatch problem. [Lap] The mismatch problem pertains
to computing the resulting distortion when one does not use the appropriate infimizing
channel.

Gaussian Coding Theorem

We now prove a direct coding theorem for transmitting Gaussian sources over a noiseless
digital channel.
In section 5.3.2 we proved a general converse theorem. We still assume assumption 5.4.1.

Theorem 5.4.3 For Gaussian sources satisfying assumption 5.4.1 and the squared error
distortion measure we have:

Formulation 1: Distortion Schedule
For any € > 0 and finite T one can find an N(e,T) such that for N > N(e,T)

R]“ﬁD, O(Dl + €, "',DT + 6) < R];S{{ZD(DI, ...,DT) + €.

Formulation 2: Time-Average Distortion
For any € > 0 and finite T one can find an N(e,T) such that for N > N (e, T)

RTSﬁID, 0, ave(D +o< Rng’ ave(D) te

Proof: We prove formulation 1. Formulation 2 follows analogously. We reduce this problem
to the problem we solved in theorem 5.4.1 by partitioning the alphabet space.

Let P(dX™,dY") be the interconnection between the Gaussian source and the infimizing
channel. We know this is a jointly Gaussian measure.
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We will choose an appropriate “rectangular” partition, II, of X7 x Y. By “rectangular”
we mean that every element 7 € II is of the form # = Fy X, ..., xEp X F1 X, ..., xFr where
E; € B(X) and F; € B(y)

With this partition, IT, we define new “quantized” random variables X”', Y7, Specifically
if X; € E, then let X; be any fixed representative point in ;. Similarly if ¥; € F; then let
Y; be any fixed representative point in Fj.

Now choose a finite partition II{ so that

I(X5Y, | YN - I(X5 Y | YY) <6 Vi=1,..,T.

By the definition of mutual information such a partition exists. (See definition A.3.2 in the
appendix.)
Similarly choose a finite partition I} so that

E(d(X;,X;)) <6 and E(d(Y;,Y;))<d Vi=1,..1T.

Since the variance of X; and Y; is finite for all ¢ we know that such a finite partition exists.

Let IT° be the common refinement of H{ and Hg. Now note that X’t, Y; are finite valued
random variables. Thus we can use theorem 5.4.1 to show that there exists a sequential
quantizer with rates

R <I(XL%, | V7Y + %

and average distortion
~ o~ €
Dy < E(d(X:, 7)) + 2

forallt=1,...,T.
We can find a ¢ small enough so that

I(XLY YT <I(Xhyvieh) +

N ™

and

E(d(X,Y;) < E(d(Xy, X))+ E(d(X, V7)) + E(d(Y:, V7))

€

for all ¢ = 1,...,T. For this choice of § we see that
Ry < I(XL YY) 46

and average distortion
Dt S E(d(XhYt)) +e

forallt=1,...,7. 0
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5.4.4 Stochastic Control Formulation for Gaussian Source Coding

Our goal in this subsection is to pose the SRD problem as a constrained Markov decision
problem. To that end we assume that the source is Markov in time. This is just assumption
5.4.2 specialized to the Gaussian source.

Assumption 5.4.3 Our Gaussian source is Markov in time. Specifically there exist gains
Ay and independent Gaussians Wy ~ N (0, Kw,) such that

X1 NN(O,le) and X1 A +Wy, t=1,...,T -1
(Without loss of generality we assume the process is zero mean.)

Here we have specified the source stochastic kernels in terms of a recurrence. The two
approaches are equivalent.

Structure Results

Recall a Gaussian channel {P(dY; | zf,y*~1)}]; can be realized by the recursive description
Y; = ayxt + Byt~ + V; (for some gains oy, 3; and independent Gaussian random variables
Vi)

Analogous to definition 5.4.1 we define

Definition 5.4.3 A causal sequence of Gaussian stochastic kernels, {Y; = ayx® + Byt~ +
Vi}E |, is called a simplified causal sequence of Gaussian stochastic kernels if Vt = 1,...,T
we have oz’ = oy (where ap = (a1, ..., apt).) We denote a simplified causal sequence
of Gaussian stochastic kernels by {Y; = ay .z + By’ ™ + VY.

We also prove lemmas analogous to lemma 5.4.2 and lemma 5.4.3.

Lemma 5.4.6 We are given a Gauss-Markov source P(dX') and a causal sequence of
Gaussian stochastic kernels, {P(dY; | z*,y'=')}]_,. Denote the resulting joint measure by

PdXT,dYyT) = P(dXT) ® (®th1 P(dY; | xt,ytfl)) . Then there exists a simplified causal
sequence of stochastic kernels, {Q(dY; | z4,y'™1)}L 1, such that for the resulting joint mea-
sure Q(dXT,dYT) = P(dXT) ® (®f:1 Q(dY; | xt,yt_l)) the following marginals hold for
alt=1,...T

Q(dX;,dY") = P(dX;,dY").

Proof: Let p and ¢ represent the densities of P and () respectively. We can decompose
p(ze,y") = p(yelze, '~ p(e,y'~"). Let

q(ye | 26,y = plys | o,y Y).
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It is straightforward to verify that ¢(z1,y1) = p(z1,y1) holds for all (z1,y1). Assume the
result holds for all ¢ < k. We now prove the induction step. For any (zj41,y*!) we have

(e, ¥ = qlyksr | Tee1,y") (/Q($k+1|$kayk)Q(xkayk)dwk)
= q(yk+1 | Tri1,9") (/P($k+1|$k)P($k,yk)d$k>
= P($k+1,yk+1)

This proves the induction step and thus the lemma. O

We now show that the mutual information is not increased by this () channel.

Lemma 5.4.7 For the measures Pxr yr and Qxr yr of the previous lemma we have
Io(x%;YT) < 1p(xT;Y7).
Proof: Lemma 5.4.3 holds for general alphabets.

By lemma 5.4.6 the marginals are equal: P(dX;,dY;) = Q(dXy,dY;). Thus the average
distortion under the causal sequence of Gaussian stochastic kernels {P(dY; | z,y*~ 1)},
equals the average distortion under the simplified causal sequence of Gaussian stochastic
kernels {Q(dY; | =1,y 1)} -

Furthermore the mutual information is not increased by using the causal sequence of
Gaussian stochastic kernels. Thus we can restrict the infimization in definitions 5.3.5 and
5.3.6 to simplified causal sequences of Gaussian stochastic kernels.

Dynamic Programming Formulation

It is straightforward to extend the dynamic programming formulation for finite alphabet
sources described in subsection 5.4.2. to the Gaussian source case. We quickly specify the
components of the control problem.

o (Control
The control takes values in the space of Gaussian stochastic kernels u; € ICJC;" y (where
we have used the superscript “G” to represent Gaussian.) A control policy is a se-

quence of measurable functions p; : IC%’};I x Y-l — ICJ(;" » taking (u=1 y' 1) o wy.
Recall a simplified Gaussian channel has the form Y; = oy + By'~' + V4. Thus we

need only specify oy, 6; and the Gaussian V;.

o State G
Let the state be z; = (u'~1,y'~!) where 2 € ICM;Z_l x Y1,
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o Joint Measure

T
PH(dXT,dUT,dYT) = P(dXT)®{®ut(dYt|a:t)®5{m:m<ut—1,yt—l>}}
t=1

e State Fvolution
As before the state evolution can be shown to be

if (U, Y1) # (ul,y')

0
P(dZy1 | 2tyur) = { P(dY; | ut,yt™1) else.

e Running cost and distortion
The running cost is
|cov (X [Y*71)]

c(z,ur) 2 I(Xe; Yy | z,ur) = log Teov (X, Y|

And the distortion is
d(z1,u1) 2 E(| X, = Yil* | 21,u1) = trace (cov(Xy[Y"))

where the distribution on (X;,Y") is well-defined given u’.

o Objective
Infimize Y1 | E(c(Z;, Up)) over all control policies, u”, while maintaining either dis-
tortion constraint:

(1) E(d(zt,ut)) < Dt Vi = 1, ...,T
(2) 731 E(d(z,w)) < D

We will use the conditional probability of X; given z; as our sufficient statistic. Specif-
ically let n; : ICS"’;_I x Y1 — P(X) taking z; — P(dXi|z) = N (E(Xy|z), cov(Xy|2)).
Let IT; = ny(Z;). As before one can show that (IIy, ..., II7) is a sufficient statistic for control.
Define

E(m,ut) é E(c(Zt,ut) | 7Tt) and J(ﬂ't,’ult) é E(d(Zt,’U,t) ‘ 7l't).

Lemma 5.4.8 The process I1; is a controlled Markov process.

Proof: For all (z;11,y?, u') we have

pleeyr | yhuh) = /P($t+1 | @:) pla | y',u') da
plye | 2oy u) play | "1 uh)
d
/p(wt-Fl | (Et)fp(yt | -Tt, t 1 ’U,t) ( | — l,ut)d])t Tt
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1 tfl)

we(ye | @e)pla | ' u
= p(xea1 | —~ - —dzx
/ (e | t)fut(?/t | ) p(a@e |yt T, ut-N)dz,
= O(my, us, Y1)
for some function ®. Thus
P(dlyyy | 7' u!) = P(dliyq | m,u).

As stated before the problem is a constrained Markov decision problem. We simplify
the problem by strengthening the form of the constraint. The resulting optimal rate un-
der formulation la and 2a defined below will be an upper bound on the optimal rate in
formulation 1 and 2 respectively.

Definition 5.4.4 Let Ji,...,Jr be functions on the space of Gaussians random variables
on R defined backwards starting with T:

Formulation la: Strong Distortion Schedule
where
Jr(m) = inf &(m,u
r(m) = nf &(mu)

and

Jy(m) = uelnntf c(m,u) +/Jt+1 P(dw|m,u)

where Qy(m) = {u € Ky|x such that d(m,u) < Dy}.

Formulation 2a: Time-Average Strong Distortion
Here we expand the state to (my,0r) where 0y represents the distortion accrued up to
timet—1. Let

Jr(n,0) = inf ¢&(m,u

T( ) uw€Qr(7,0) ( ’ )

and

Jy(m,6) = uE(iZ?(f;r 5 &(m,u)+ € tJyy1 (7, 8)P(d7, dé|m, 6, u)

where Qy(m,6) = {u € Ky|x such that d(m,u) < D —6}. Also 6,11 = 6 + d(my, uy).

Theorem 5.4.4 In both cases if the infimization is achieved by a policy p* = (u1, ..., p1)
then u' is optimal. Furthermore u' can be chosen to be a deterministic function of the
{m} or {m, 0} processes.

Proof: Theorem 3.2.1 of [HLL]. O
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5.4.5 Summary and Extensions

In this section we have proved a sequential source coding theorem over noiseless digital
channel for both the finite alphabet and Gaussian case. When the source is Markov we
showed that the mutual information optimization problem can be converted into a con-
strained dynamic programming problem.

Some possible extensions include

(1) The calculation of error exponents.

(2) Generalize the sequential rate distortion problem to sources that are trees. Trees are
a natural extension of Markov processes.

(3) Allow for memory in the spatial direction. For example we might be able to treat
processes that are Markov random fields evolving in time.
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5.5 Successive Refinement

In this section we describe the successive refinement problem. The basic problem is to
observe a static source and then successively transmit more information about it over time.
At each time step the decoder outputs a better and better reconstruction. Note that this
is essentially what we were doing in chapter three. There the initial state uncertainty was
successively refined over time.

The problem of successive refinement was first introduced by Equitz and Cover. [EC]
We show here that successive refinement problem is just a special case of the sequential rate
distortion problem.

5.5.1 Setup and Results

In this section our source is XV with distribution Pyx.

Definition 5.5.1 A successive refinement quantizer is a sequence of measurable quantizers
ft such that
ft . XN X yt—l,N — yN

where the range of each function is at most countable. Specifically f; takes (z™,y'=bV)
N
Yt -

At time ¢ the quantizer f; has access to the observation X~ and all the previous recon-
structions Y{V, ..., Y;V,. Just as in the rate distortion case if the channel is noiseless then
both the encoder and decoder have access to the past Y;/V’s. If the channel is noisy then we
need to be explicit about whether there is a feedback link or not.

We now formulate the successive refinement problem. The superscript “SR” represents
“successive refinement.”

Definition 5.5.2 The operational successive refinement function s

SR, o . 1 N N
R °(Dy,...,Dr) = f  ——HYN, .Y
N (D1 )= g ar (Y 7)

where F = {(f1,..., fr) : prNdN(XN,YtN) < Dy t=1,.,T}. (Note we assume
D> Dy > .. > Dr.)

We are interested in minimizing the time-average entropy. One could also ask for the
set of all rates that satisfy the distortion schedule. This is more in tune with the original
formulation of the successive refinement problem [EC], [Rim]. Computing the acceptable
rate region is rather difficult in general. But reducing a criterion on the set of rates to
an average rate makes the characterization of the problem easier. Also for the control
applications we have in mind we are interested in the average rate needed to achieve some
goal.
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Now we define the successive refinement function.

Definition 5.5.3 The successive refinement function is

1
RYE (Dy,..., Dr) = inf —1Ip

ey (X Y)

where F = {Q(Y |,y "My ¢ Bpy, o dn(XY, YY) <Dy t=1,...,T).

It should be clear that the successive refinement problem is just a special case of the
sequential rate distortion problem with distortion schedule. Thus the converse theorem, the
direct theorem, the dynamic programming formulation, and the extensions to the Gaussian
source all continue to hold.

For the sake of convenience we state the coding theorem.

Theorem 5.5.1 For any € > 0 one can find an N(€) such that for N > N (e)

R’f;?f O(Dl + €.y DT + 6) S R'I‘S":_]Ri[(Dl, . DT) + €.
Furthermore a necessary condition to achieve (D1, ..., Dr) over a given channel of capacity
Or is RE(Dy, ..., Dr) < LOr.

Proof: Follows from sections 5.3 and 5.4. O

5.5.2 Examples

In this section we examine two sources.
(1) X% is an N dimensional Gaussian N'(0, A x~)
(2) X% is uniformly distributed over the box [—L, L]V.

For the Gaussian source we use the weighted squared error distortion measure. For the
uniform source we use the semi-faithful version of the squared error measure.

We want to successively refine both sources with the following distortion schedule: Dy >
Dy > ... > Dp. For the Gaussian source we compute the infimizing channel and discuss
how that channel may be realized. For the uniform source we upper bound the successive
refinement rate by computing the rate required for a digital channel. Then as we did in
section 5.2.5 we will show how the uniform source result can be used to determine a high
rate approximation for the Gaussian source.
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Gaussian Source

In this subsection we characterize the infimizing channel for the successive refinement of a
Gaussian source.
We first state a preliminary lemma.

Lemma 5.5.1 Assume that U, V,W are jointly Gaussian vectors. Then

1 |Auwl
U, viw) = 3 log 7|AU|W,V|

where Ay|w and Ay, are the conditional covariances.

Proof: This is a straightforward calculation. O

Assume we have chosen some nondegenerate Gaussian measure Py~ yr.v. Let Axnye.n

be the covariance of X" given observation Y»". Then from lemma 5.5.1 we can show the
following sum is a telescoping sum:

I(XN, Y*tletfl,N)

™=

I(XN; YT’N)

.
Il
—

|AXN|Yt—1,N |
[Axn yen|
|Axn|
|Axnyr]

H.
Il
—_

[l
M=
N | =

N =
e
o
oQ

This tells us that the mutual information only depends on the initial covariance and the
final covariance. This observation greatly simplifies the successive refinement problem.

Before computing the infimizing channel we consider some other simplifications. By
lemmas 5.2.2 and 5.2.3 we can without loss of generality assume that the weight matrix in
the squared error distortion measure is identity and that the covariance A x~ is diagonal.

Since Ay~ is diagonal we know by lemma 5.4.1 that we can choose the infimizing
Gaussian channel to factor as P(dY,¥ | zV,y!=bN) = @, P(dY;p | Tn, vl !). Thus we can
restrict the infimizing channel to be a Gaussian channel consisting of N parallel independent
channels.

The successive refinement problem defined in section 5.5.1 can be restated with the
above simplifications as:

SR .. |Axn|
= —log —————
RT,N(Dla ) DT) 15_1_f o og |AxN|YT,N|

where F = ({P@Y;Y |y "MV, a)L, 5 Bpy ydn(XN, YY) S Dy t =1, T

and the channels are independent parallel Gaussian channels}.
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Figure 5-2: Successive Refinement

[A x|

XN |yT.N|
final covariance we see that this problem is essentially the rate distortion problem dis-
cussed in section 5.2.4. The difference, though, is that we need to achieve the intermediate
distortions also.

There is not a unique solution to this optimization. One solution is to choose a channel
P(dY{" | X"V) such that ED(X",Y}") < Dr. And then not transmit anything over the
next T — 1 time steps. Note that in this case all the rate occurs in the first step and no
rate occurs in the subsequent steps. We can make the problem more realistic by imposing
a peak rate constraint. We will not, though, formulate this problem here.

The non-uniqueness of the solution is related to the same phenomena we saw in chapter
three. For the case where we only had uncertainty in the initial condition the role of the
encoder and decoder is to essentially deliver a better and better description of the initial
state. Over a time horizon T' this can be done in many ways while still maintaining the
same error at time 7. For example we could transmit all RT bits in the first step and zero
for all the remaining steps or we could send R bits every step.

Figure 5-2 shows one possible way to successively refine a 5-dimensional Gaussian source
with covariance diag[Ai, ..., As] over a time horizon of 3. The area under n; should be < Dy,
the area under 72 should be < D, and the area under n3 should equal Ds.

We present one solution that is based on achieving the distortion D; exactly at every
time step (as opposed to < D; at every time step.) This solution is based on the basic rate
distortion solution described in section 5.2.4.

Recall that A = diag[A1, ..., Ax] is diagonal. To achieve a distortion D; in the first time
step we apply directly the results of section 5.2.4.

Because the objective % log 0 only depends on the initial covariance and the
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Thus we get
1 X1, A
IxXNyN)= =3 Slog

where

5 _ m if m < Ap
Ln Ap if n > An

where 7, is chosen such that % 27]:]:1 01,n = D1. The backward channel has the form
XN = YlN + VlN

where V/V is distributed normally with mean zero and covariance diag[d; 1, ..., 01, n].
The residual uncertainty in X is captured by V{¥. Thus at time 2 we refine V;¥. Thus
we get

I(XN_YN|YN)ZL§110 51_”
2 TN L,

where

5o m if gy < o1
2m 01 if M2 > 01

where 79 is chosen such that % 27]27:1 02, = Do. The backward channel has the form
VN = =)+ Y

where V3 is distributed normally with mean zero and covariance diag[ds,1, ..., 62, n]. Note
this implies

This procedure is repeated for ¢ = 3,...,7. In general we have
Vi = =)+ vy
where V¥ is distributed normally with mean zero and covariance diag[dt1, ...,0¢n]. This
implies
Now we can convert the backward channels to forward channels as follows

Y = XN +wl

where H; = E(YN XN)E(XNXN") and W} is a zero mean Gaussian vector with covariance
EYNYN) — EYNXN)E(XNXN)-1E(XNYN'). For t > 1 we have

V-, =1V W,

179



where where H; = E((Y,N —Y;Y,)V,Y)E(V,Y, VM) and WY is a zero mean Gaussian vector
with covariance B((YY =YX 1) (VY =Y&) —B((VN - YE)VE) BV VE) T BE (Y -
Y;"}). This forward channel can be rewritten as

YN =H(XY -vY)+ Y, + W

The second addend is the minimum mean squared estimate of the state given Y*~1V, The
first addend is a suitably scaled innovation.

There are many ways to realize these successive refinement channels. We will discuss
one particular realization of the infimizing channel: the memoryless additive white Gaussian
noise channel with noiseless feedback. This realization will be important in section 5.5.4
where we discuss the Schalkwijk-Kailath feedback channel coding scheme.

Proposition 5.5.1 We are given a scalar Gaussian source X ~ N(0,)\) that we want to
successively refine according to the distortion schedule Dy = o\ where 0 < o < 1. We can
realize the successive refinement channel by an AWGN memoryless channel with noiseless
feedback and capacity C = %log é

Proof: Let the AWGN channel have the form By = Ay + V; where V; ~ N (0,1) and power
constraint P. We will specify the power P needed to achieve the distortion schedule.

The successive refinement channel is of the form Y; = hy(X — Y;—1) + Y31 + W; where
hi = (1 — ) and W; ~ N(0, (1 — a)Dy).

We now construct a source-channel encoder and channel-source decoder and realize
this channel over the B, = Ay + V; channel. Let A; = ¢4(X — Y;—1) where g, = ,/15—:1.
Note that this source-channel encoder uses channel output feedback Y; 1. And let Y; =

Yt—l + V4 (1 - Oé)DtBt.

We now show that this source-channel encoder and channel-source decoder realize the

channel:
Yi = Yii+y/(1-)D: B,
= Y1+ (1 —a)Dy (A +V))
= Y1+ (1 —a)D: (g(X = Y1) + V)
= Y +(1-a)(X —Yie) +1/(1—a)D: Vi

= Y+t (1-a)(X -Yi1)+ Wy

o

To compute the capacity of the By = A; + V; channel note that P = ¢g?D;_ 1 = %
This implies C = 3(1+ P) = $log 2. O

In summary this proposition states that a memoryless AWGN channel with noiseless
feedback and capacity C can be used to successively refine a source N (0, \) with distortion
schedule D; = A2 2¢T,
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Uniform Source

Assume we are a given a uniform source with the semi-faithful version of the mean squared
error distortion. It is difficult to compute the infimizing law in this case. We can, though,
compute an upper bound on the rate for a noiseless digital channel to achieve a distortion
schedule D > ... > Dp. In fact we have already done this in chapter three.

In the first step we can upper bound the number of bits needed to achieve D; by
log(\/ND%). (See section 5.2.4.) For time step two we know the error is in a ball of size at
most D;. Thus we can upper bound the number bits needed to achieve Dy by log(v/N g—;).
And so on.

The average total number of bits for this scheme is

lilo (\/JVDt_l)—llo (\/Ni)
T & Y, T Y D,

where D_; 2 L. The peak rate for this scheme is max; log(v N DEI )-

High Rate Approximation

We now show that as the distortion D; goes to zero we can transmit the Gaussian source
over a digital noiseless channel at essentially the successive refinement rate. We will use
the uniform source results to approximate the Gaussian source. Just as we did in section
5.2.5 we will show that as D; — 0 we can approximate the infimizing Gaussian channel by
a digital channel.

We first treat the scalar case: X ~ N(0,)). The vector case is a straightforward
extension. Assume that we are given the Gaussian channels {Q(dY; | z,y'"!)}L, with
Ry =I(X;Y; | YY) and Dy = E(d(X,Y;)) forall t =1, ..., T

We will find an L representing the dynamic range of all the quantizers in the successive
refinement scheme. For the first time step we use the exact scheme described in section
5.2.5. Then

L\? o0
D; < (27?> +2/L z2p(z)dz.

At time two we send a refinement of X. In particular, if X falls into [—L, L] at time one

then we know that the distortion after one step will be < 2%?. We need only refine this

using Rj bits. If X did not fall into [—L, L] then we send zero. Thus the distortion at time
two is

L \? ©
S
< | —=—== .
DQ—(2Ri2RS> +2/L plo)ds

By repeating this scheme we see that

L\ 00
D! < |=—""— +2/ ?*p(z)de  Vt=1,..,T.
t = <H§_12Ri> . p( )

We need to choose L and R} t =1,...T such that D} < D; and R} is close to R; for all ¢.
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By section 5.2.5, let L® = 4/4\1n (DLT) Then for D small enough we will have

2 [{° 2%p(z)dz < B
I LR . L 8Aln 2
Now choose R such that (W) < 5t. Specifically choose Rf = 5 log ( yoT )
i=1 ¢
And for t =2,...,T let Rf = }log 5L,
By construction D] < % + % < D;. Now

R} - log(8 ln(DlT))
Ry logDi1

and for ¢t = 2,...,T we have

Dy

R} :log b,

1 D;_
Rt 3 log B—tl
Now we will take D1 — 0. Because Dy > Dy >,...,> Dp we see that Do, ..., Dy — 0. Let
us assume that D7 goes to zero with respect to D; at a rate slow enough to insure that
log In DI—T
log DLl
on this assumption.) Under this assumption we see that all the ratios of the rates converge
to 1. Thus we can achieve the successive refinement rate over a digital channel in the limit

of high rate.

— 0. Note that this is not a stringent assumption. (In section 5.5.3 we shed light

5.5.3 Rate of Convergence

In the successive refinement formulation in section 5.5.1 we start with a distortion schedule
and ask what is the minimum rate required to achieve those distortions? We can also ask the
opposite question. For a given rate how fast can the distortions in the distortion schedule
decrease? We answer this question here as well as make some connections to chapter three.

In chapter three we examined the case where the only uncertainty in the system occurred
in the initial condition. The basic idea there was to send a better and better description
of the initial condition. Here we ask how fast can the D;, Ds,... converge to zero while
maintaining a finite rate per time step. Specifically how fast can D, converge to zero while
maintaining: limsup;_, ., #1(X;Y1,...Yr) < co. The basic result is that for a finite rate the
distortion can not decrease faster than exponentially in .

Lemma 5.5.2 Let X be a IR valued random variable admitting a density. Under the square
error distortion measure the distortion rate function is bounded as
22h(X) 2R 2R
—— 27" < D(R) < X) 2™
o 277 < D(R) < con(X)

with equality when X is Gaussian. (Where h(X) is the differential entropy.)
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Proof: This follows from equation 4.3.15 and theorem 4.3.3 of [Berg]. O

Suppose we are given a channel {Q(dB; | a?,b=1)}%°,, a source-channel encoder, and
channel-source decoder such that sup, %I (X;Y1,...,Y;) = R < 0co. Then by lemma 5.5.2 we

have
92h(X)

D, > 2 UE gy,

2me

Thus for any channel with finite capacity the end-to-end distortion across that channel
cannot decrease faster than exponentially in %.

Rate of Convergence of the Chapter Two Tracking Scheme

We now re-formulate the basic problem of chapter two as a successive refinement problem.
The basic problem there concerns itself with finding conditions so that the estimation error
goes to zero. We know we cannot drive the distortion to zero faster than exponentially in
time. Furthermore the system dynamics are increasing the size of the error at each time step
by the matrix A. Thus the rate has to be larger than a certain measure on the eigenvalues
of the matrix A. In proposition 3.5.1 of chapter three a scheme was proposed with error
decaying exponentially.

We now convert that problem into a successive refinement problem. For a given rate
we find an upperbound on how fast the distortion can decrease in the distortion schedule.
This upperbound is computed for the scheme described in chapter three. Here, though, we
allow the initial state to be distributed according to a given distribution.

The scheme presented in chapter three first grew the dynamic range of the quantizer
until it “captured” the state. The dynamic range has to grow faster than the dynamics.
After the state is “captured” the scheme starts sending quantization information.

Let us look at the scalar version of that scheme. Let Px be a measure on IR. The
dynamics of the system are X;;; = aX; and X is distributed according to Px. We want
| X}, — X;| to go to zero. This is essentially the same thing as asking |a’Xy — a’ X (¢)] to
go to zero. This, though, is nothing more than a successive refinement problem where the
distortion schedule D; has to go to zero faster than a°.

We showed that if we know a bound on L where Xy € [—L, L] then D; decreases as
D; < L(5%)" (where R > loga.) Now we give the rate of convergence of the expected
distortion when we don’t have known bounds on the support. We give an upper bound
by analyzing the scalar version of the quantization scheme. The dynamic range growing
scheme is as follows: first start the dynamic range at some L and grow it until we capture
the state. Let the initial position, z, be drawn from Px. Define D;(x) to be the distortion
accrued at time ¢ when the initial position is . We can bound this by

Dy(w) < (L2 ()1 =e()

where c(z) represents the first time we capture the state. Specifically ¢(z) is the smallest
integer ¢ such that a’z < L2!®. The first term in the product above represents the “effective”
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initial dynamic range. The second term represents the decrease in distortion once we have
captured the state. Clearly R > loga is a necessary condition for convergence.
We are interested in

D, = / Dy (z) P(dx)

t—c(x)
< / L2e@ER (2%) P(dz)

1 ) () e

Now ¢(z) < llogz%R + 1. Thus

IA
b‘
—
/N

[\»)
2l e
N———
Z
g\‘%
=
/N
SIE
N——
~
+
sl
|
&
1=}
G

Where R .
2 a
=2 (2)
aLR+;€»a 2R
is a function that decreases exponentially to zero in t for fixed L, R and R > loga.
Thus if the 1+ ﬁ;ga moment of X exists then D; decreases at a rate 2-t(E-loga) Note
that

lim 1+ L = 00
R—loga R —loga
and
lim 1+ _ R =2

R—o0 R —loga

Thus this scheme requires at least finite variance to work. The generalization to the vector
case is straightforward.

In chapter three we showed that for any initial condition we could drive the error to
zero. Here we have refined those results. First we showed that the problem can be posed
a successive refinement problem. And second we showed that if an appropriate moment
condition holds then the average distortion, D;, decreases at a rate 2~ #£-loga),
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Figure 5-3: General Schalkwijk-Kailath Scheme

5.5.4 The Relationship between Successive Refinement and Feedback Chan-
nel Capacity

In this section we show that the Schalkwijk-Kailath feedback channel coding scheme is
a special case of the successive refinement problem. [SK] We give new insight into this
feedback channel coding problem and the double exponent error property. Recall from
chapter four that we left open the question of how much better the channel coding error
exponent can be under feedback as compared to the exponent without feedback.

First we describe a generalized form of the Schalkwijk-Kailath scheme. Assume that
we want to send one of 28T messages over a given channel over a time horizon T with
arbitrary small probability of decoding error. The idea is to divide an interval [—L, L] into
28T uniform regions. We map each message w to the centroid of one of the regions.

Let the messages w be drawn uniformly with probability 2,,%. Then let X be the
random variable taking values in [—L, L] according to whichever message was chosen. This
Px is our source and we will successively refine it. Now assume we are given a channel
{P(dB; | a',b'"')}}_,. The generalized Schalkwijk-Kailath scheme consists of designing a
source-channel encoder and channel-source decoder so as to minimize the distortion in the
reconstruction of X at time 7. See figure 5-3. (The dotted lines in the figure represent
possible feedback links.)

The probability of decoding error is the probability that Y7 falls outside the region the
source X lives in. Specifically Chebychev’s inequality shows us

L
Pr (decoding error) = Pr (|YT —X| > W)
22RTDT
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where DT = E((YT - X)2)

Given a particular channel, {Q(dB; | a®,b!=1)}L . it is in general rather difficult to
determine the optimal encoding and decoding scheme to minimize Dp. We can, though,
show the following:

Proposition 5.5.2 There exists a channel of capacity C' such that
Pr (decoding error) < 27 2T(C—R)

Proof: From lemma 5.5.2 we know there exists a channel with capacity C such that
D(CT) < cov(X)2=¢T. Thus

L
Pr(decoding error) < Pr (|YT —X| > —)

QRT
- 92BT ).
< cov(X) 9—2I'(C—R)
< 9 2T(C—R)

By lemma 5.5.2 we also know that Dr cannot decrease faster than exponentially. Thus
the bound &RLTQ& cannot decrease faster than exponentially. How then does one recover the
double exponential exponent found in the work of Schalkwijk-Kailath? By using Chernoff’s
inequality instead of Chebychev’s inequality. Specifically:

L
Pr (decoding error) = Pr (\YT - X|> QW)

2 2
e— SUPg >0 <0 22LRT —log E(e? YT =X) ))

In general this large deviation exponent is difficult to compute. But we can say something
for the case of Gaussian channels with affine encoders.

If we restrict our channels to be Gaussian channels with or without noiseless feedback
and our source-channel encoder to be affine then we can show that P(dY; | X = z) is a
Gaussian distribution for all . Thus

L L
Pr <|YT _X|> 2@) — 3P <|YT | > o | X = x) P(z). (5.4)

Furthermore E ((Yr — )% | X =z) = Dr independent of z. To see this note that by
corollary 5.4.1 we can treat the source as mismatched to the Gaussian channel. In this case
the conditional distributions of the channel outputs Y; conditioned on X are Gaussian.

The following lemma, tells us how to bound the deviations of a Gaussian random variable.
Note that we also have a lower bound.
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Lemma 5.5.3 Let Z be a scalar zero mean Gaussian random variable N'(0,X). Then

(1)

2

Pr(|Z] > M) <e ox

(2) If % > 1 then

2
‘/ﬁx e~ 3% <Pr(|Z| > M)

Proof: This is proposition 2.2.1 of [Dud]. O

The following proposition shows that over AWGN memoryless channels with feedback
the error exponent decreases at a doubly exponential rate. (Recall that the capacity of a
memoryless channel is not increased under feedback.) We also show that for the Schalkwijk-
Kailath scheme the exponent cannot decrease faster than double exponentially.

Proposition 5.5.3 For a memoryless AWGN channel of capacity C and noiseless feedback
the probability of channel error under the Schalkwijk-Kailath scheme can be bounded as

22T (C—R) _ 92T(C—R)

2~ T(C=R) e="—5— < Pr(decoding error) < e

where R < C' and the lower bound holds for T large enough.

Proof: By proposition 5.5.1 and the mismatch corollary 5.4.1 we know that we can use the
memoryless AWGN channel with feedback to successively refine the source Px with distor-

. 2
tion schedule D; = Ep(X?)272¢%. Where Ep(X?) = =2 J (-1 — 3 + 51)L) < L
Now apply lemma, 4.5.3 with M = 2,%, A= Dy = Ep(X?)272¢T C > R, and T large
enough we have

2T(C—R) L2 52T(C—R)

Ep(X? L _
ﬁ S PI‘ (lYT —.’E‘ Z WlX = w) S e 2EP(X2)

.2
L 2_T(C_R)€_ QEP(X2)2

Then by equation (5.4) the proposition follows. O

We have reproduced the double exponent channel error of the Schalkwijk-Kailath scheme.
Furthermore we have shown that one cannot do better than the double exponent on Gaus-
sian channels with affine encoders. Finally we have shown that the generalized Schalkwijk-
Kailath scheme is really a special case of the successive refinement problem.
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5.6 Solution Characterization and High Rate Approximation

In this section we will compute the sequential rate distortion function for Gauss-Markov
sources under differing information patterns. We discuss what happens when the Gauss-
Markov source is unstable. At the the end we discuss the high rate case.

Recall a Gauss-Markov source can be defined recursively as

X1 ~ N(O, AXI) and Xt—l—l = AXt + Zt (55)

where Z; ~ N(0,Az,). Furthermore assume that we are using the squared error distortion
measure with identity as the weight matrix.
5.6.1 Sequential Rate Distortion for Gauss-Markov Sources

When computing the sequential rate distortion infimizing channel we can, by lemma 4.4.6,
restrict our attention to simplified causal sequence of Gaussian stochastic kernels. We now
show that Gaussian channels of the form, {Y; = ayz; + Biy'™! + Wi }L, can be realized
over memoryless AWGN channels with noiseless feedback. This result is a generalization of
the construction given in proposition 5.5.1.

Proposition 5.6.1 Gaussian channels of the form, {Y; = cyzy + By’ ™' + Wi Y1, can be
realized over memoryless AWGN channels with noiseless feedback.

Proof: Assume we are given a Gauss-Markov source Pxr. Let the source-channel encoder
have the form

Ay = Ky an(my — B(Xlyt1).
Note that it is a function of the past y'~!. Let the channel-source decoder have the form
Y = e B(X,ly' ™) + B~ + Kb
And let the AWGN channel at time ¢ have the form
By = A +V;

where V; ~ N(0,1) with an average power constraint
_1 _1
P, = E(A}A;) = trace (wa oy Ax,yi1 o KW;">

where Ay, ye-1 = E ((z; — B(Xy|y* 1)) (z: — E(X;|y*"'))') is the error covariance in esti-
mating X; from Y?~ 1.

We now show that these source-channel encoders, memoryless AWGN channels, and
channel-source decoders can be used to realize the original channel.

YV, = az+ Byt T+ W
= iz — EGlY'™) + e B(Xey"™1) + Byt + W
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1 1
= wBXy" ) + By + K, (wa ay(ze — B(Xely'™ 1)) + Vt)
1
= aEXy"™) + By + Ky, (ar + Vi)
|

Proposition 5.6.2 For the channel realization above the mutual information separates into
a sum of the mutual informations for each memoryless AWGN channel: I(XT,YT) =

Siy I(As; By).
Proof:

I(Xt, Y}lyt—l)

M=

I(xT vyt

o~
Il
—

I(Xu Y|y

Il
M=

-+
Il
—

I(Ag; By|[YP )

I
M=

3
Il
—

I
M=

I(Ays; By)

o~
Il
—

Where the second equality comes from using a simplified causal sequence of Gaussian stochas-
tic kernels. The third equality comes from the fact that A; is a function of X; and Y.
Similarly Y; is a function of B; and Y* . The fourth equality comes from noting that
(X; — E(X¢|[Y*™1)) is independent of Y1, O

Sequential Rate Distortion Solution

We first solve the sequential rate distortion function in closed form for the scalar Gauss-
Markov process. We then solve the vector case in the high rate regime.
For the scalar case our source is of the form:

Xi ~ N(O, )\Xl) and X1 =aXe + Zy (56)

where Z; ~ N(0,\z,).

Let {B; = A; +V;}]_, be a sequence of memoryless AWGN channels that realize, under
noiseless feedback, the sequential rate distortion infimizing channel. Let R; = I(A; By).
From subsection 5.2.4 we know that we can reconstruct a Gaussian source with variance A
over a Gaussian channel of rate R with distortion A272%.

Now the source-channel encoder computes the innovation z; — E(X|y'~!) = az;_1 +
Zt—1 — ays—1. It then scales it and transmits it over the A; — B; channel. Thus the recon-
struction has distortion for ¢ > 1:

Dy = (a®Dy1 + Az, ) 27" with Do =0, Ay = Ax,.
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Thus to achieve the distortion schedule {D;}_; we require

1 I 1 T 1 G/ZD, _I_)\ _
RID(D, D) = 13 = 7Y {0 o (S22 )
t=1 t=1

In the case where D; = D, Vtand Az, = Az, Vit we have

1 A
lim R’ZS"RD(D,D, ,D) — max {0’ ~log (aQ + _Z>} .
T—o0 2 D

We comment here that even if the source is unstable we can still achieve the distortion
schedule as long as the rate is large enough.

Now we treat the case of an N—dimensional vector valued Gauss-Markov source. We
treat only the high rate (low distortion) regime. In this high rate regime we know, by the
results in subsection 5.2.4, that we can reconstruct a Gaussian source with covariance A
over a matched Gaussian channel of rate R with an error covariance A2~ % . The resulting
distortion is 2*%trace(A)

Thus, just as before we get, the recursion

2Ry

A = (AAt_1AI + Athl) 27N with Ag =0, AZO = AX1-

Where A; represents the error covariance matrix. The distortion is D; = trace(Ay).
In the case when Az, = Az and R; = R we get

T
Ar =2 N A Ax, 28 AT + 3 (27 VAT A2V A)Y
t=1

Since we are in the high rate regime we can assume that R is large enough so that 2=~ A
is a stable matrix. Thus in steady state the distortion per time step is equal to

o
trace (2(2_%A)t_1AZ(2_%A)t_1’> .
t=1

Unfortunately we cannot go much further than this. It is very difficult to get closed form
solutions for the SRD function for the vector-valued Gauss-Markov case.

Source-Channel Mismatch

So far we have been assuming that the “A — B” channel with noiseless feedback is matched
to the SRD infimizing channel. What happens if the “A — B” channel is still an AWGN
channel but no longer matched to the source? For example the dimension of the source and
the dimension of the channel, i.e. the number of parallel channels, may not be equal.
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It is very difficult to solve this problem for the general case. See the work of Basar and
Bansal. [BB] In general the optimal source-channel encoder and channel-source decoder
will be nonlinear.

One can compute the optimal affine source-channel encoder and affine channel-decoder.
This is done by Lee and Peterson. [LP] There they provide conditions on the eigenvalues
of the source covariance and the channel noise covariance to insure that they are matched.
In the case when they are not matched they show how to approximately match the source
and channel.

5.6.2 Sequential Rate Distortion for Differing Information Patterns

We have shown that the SRD infimizing channel can realized over memoryless AWGN
channels with noiseless feedback. Often times in practice this feedback is unavailable to
the encoder. (Recall from chapter two the definitions of encoders with differing information
patterns.)

We are interested in channels that can be realized over memoryless AWGN channels
without feedback. We now define two variants of the sequential rate distortion problem
with differing information patterns. Recall definitions 5.3.5 and 5.3.6 where we defined the
SRD problem.

(1) Memoryless Sequential Rate Distortion (MSRD)
In this case the source-channel encoder at time ¢ is independent of X*~! and Y* 1.

(2) Innovation Sequential Rate Distortion (ISRD)
In this case the source-channel encoder at time t transmits information only about
the innovation Z;. (Recall equation (5.5).)

In the MSRD we do not allow the source-channel encoder access to the past channel outputs
or inputs. In the ISRD formulation the source-channel encoder is allowed to transmit
information only about the innovation Z;. The ISRD problem was first formulated by
Borkar and Mitter in [BM].

We now characterize the solutions for these two variants of the sequential rate distortion
problem.

Memoryless Sequential Rate Distortion (MSRD)

First we solve the scalar case. We then solve the vector case in the high rate regime. The
source-channel encoder is independent of the past source values and past source reconstruc-
tions. Thus the best distortion we can hope to achieve over an AWGN of rate R; at time
step t is Dy = \x,272f. Specifically the encoder looks at the marginal statistics of X; at
time ¢ and then encodes that. In the N—dimensional vector case and high rate regime we

get Ay = Ath%- And thus D; = trace (A;) .
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Note that if A is unstable then the covariance of the state A, is growing exponentially.
Thus we can never hope to achieve a finite distortion D; at a finite rate for all time. In the
case when A is stable and Az, = Az, V¢ we know Lyapunov’s equation defines the steady
state covariance:

Ax = AA)(AI + Ay

If we use the same rate at each time step then the steady state reconstruction error covari-

ance satisfies on
A=AANA" + Az27 .

In the scalar case we can compute explicitly the steady state covariance Ax = IAT‘ZZ In
the case where Dy = D, Vtand Az, = Az, Vi we have

. >MSRD _ 1 Az )}
Th_)néO Ry (D, D,...,D) = max {O, 5 log ((1 —D) ]

Innovation Sequential Rate Distortion (ISRD)

In this case the source-channel encoder computes the innovation Z; and transmits that over
an AWGN channel of rate R;.

We first treat the scalar case. The innovation can be reconstructed over an AWGN
channel of rate R, at a distortion D; = A 7,27 2B We use the tilde to represent the distortion
on the innovation as opposed to the distortion on the source reconstruction. It should be
clear that the optimal channel-source decoder computes the estimate of the state as follows
Y1 = aYs + Z;. Thus the distortion follows the recursions Diy1 = a®’D; + X Zt2_2Rt. For

the vector case and high rate regime we get Ay = AAA" + Azt2_21vﬂ. With distortion
D; = trace(Ay).

Note that if A is unstable then the distortion D; is growing exponentially. Thus we can
never hope to achieve a finite distortion D; at a finite rate for all time.

In the case when A is stable, Az, = Az Vt, and we use the same rate at each time step
we know Lyapunov’s equation define the steady state covariance:

A= AANA" + A2~ 7.

Note that this is exactly the same as the MSRD solution. Thus we have just shown
that the ISRD and MSRD formulations are equivalent. This curious phenomena states that
in the innovation scheme the rate gained by decorrelating the process into innovations is
equal to the rate lost in trying to account for the accumulating errors. Thus there is no
gain in coding the innovation as opposed to coding the state with respect to its marginal
distribution.

A similar result for block-coding of Gauss-Markov sources is shown by Berger. See
theorem 6.3.3 of [Berg]. Specifically he shows for the high rate regime that coding the
source as a block and coding the innovations as a block lead to the same rate-distortion
functions. We have just shown a sequential version of the Berger result continues to hold.
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In summary the ISRD and MSRD formulations are equivalent. Furthermore for unstable
sources there does not exist a finite rate, as there did in the SRD formulation, that insures
finite distortion for all time. This suggests that for unstable sources one cannot achieve
finite distortion at a finite rate for all time if there is no feedback to the source-channel
encoder. See Sahai’s thesis for more discussion along these line. [Sah]

Operational Equivalence

The curious phenomena, of the ISRD and MSRD equivalence continues to hold for the scalar
stable Gauss-Markov source and a noiseless digital channel.

Proposition 5.6.3 The operational rates for the ISRD problem and the MSRD problem
for scalar Gauss-Markov processes are the same.

Proof: Our source is a scalar Gauss-Markov process X;11 = aX; + Z; where |a| < 1 and
Zy ~ N(0,Az). Assume we are in steady state. Then X; ~ N(0, ]_)\Tig)

Let Qx be the optimal quantizer for X;. That is it achieves the smallest entropy while
constraining average distortion to be at most D. Let it’s rate be R, . Given that we have
the optimal quantizer for the random variable X ~ N (0, l’lfz ) can we determine the optimal
quantizer for another random variable Z ~ N(0,Az)? Yes. For the innovation scheme we
know the quantizer @)z that we use to quantize the innovation must be constrained to have
distortion less than or equal to D(1 — a?).

Let the optimal quantizer be Qx = {{R;}, {¢i}} where R;’s represent the quantizing re-
gions and the g; represent the centroids of the regions. Then Doy =3; [p.(z — ¢)?*p(x)dz.

Let Qz = {{\/11—a2 R;}, {\/11—a2 gi}} = {{Si},{vi}}. By symmetry this is the optimal quan-
tizer with rate Rg, = R, and distortion Do, = ¥; [s.(z — v;)’p(z)dz. Now in terms

of distribution X = ﬁZ. After substitution we see Dg, = 3, [s.(# — v;)?p(2)dz =

Y Jr (VI = o= VT = a2q)* B VT —d%dz = 5, [, (1—a?) (2 —g)p(x)dz = Dy (1-
a?). Thus for the same rate quantizers we achieve the same distortion whether we use the
innovation coding scheme or the memoryless coding scheme. O

It is not clear, though, if the result continues to hold for the vector-valued Gauss-Markov
case.

5.6.3 High Rate Asymptotics

We conclude this section by showing that we can achieve the sequential rate distortion rate
over a digital noiseless channel in the limit of low distortion.

Uniform Sources

First we give a quick discussion of the SRD for uniform sources. Let z; € Q C IRY where
Q2 is a bounded set. Let ||z;|| < L. And let the dynamics follow 2411 = Az + 2z;. We want
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to achieve a distortion |z; — |3 < D; for each t. This is nothing more than the problem of
observability under bounded disturbances treated in chapter three. Specifically proposition
3.5.2. gives an upper bound on the rate required to insure a given distortion schedule.

High Rate Asymptotics for the Gauss-Markov Source

We now treat the problem of high rate asymptotics for the Gauss-Markov case. We solve
the scalar case. The vector case is more difficult and is left to future work. The main ideas,
though, are captured in the scalar case. The source is X; 1 = aX;+ Z; with X1 ~ N (0, \x,)
and Z; ~ N(0,\z). Assume without loss of generality that a > 0.

Fix a finite horizon 7. We want to achieve a distortion D at each time step while
maintaining a rate close to R; = %log ()‘%) and R; = %log (aQ + )‘ﬁz) forallt =2,...,T.

We will define two dynamic ranges [-Lx,,Lx,] and [-Lz,Lz]. The idea is that if
X, € [-Lx,, Lx,] and for all ¢ the innovation Z; € [-Lz, L,] then we will reconstruct the
source with a distortion bounded by %. We will show that the distortion accrued by falling
outside these dynamic ranges can be bounded by %.

2
We want to choose Ry so that (gﬁll) < g. And we will choose R; for t = 2,...,T so

2R¢

2 2
that <@> < g. Thus let R} = %log 2LDX1 and R} = log (a + \/%LZ) . (Recall “g”
represent “scheme.”)
In the following let Gz(Lz) = 2 [f; 2°p(z)dz where p(z) ~ N'(0,z) and Gz(Lx,) =
ZfE‘;{l 12p(z)dx where p(z) ~ N(0,\x,). Then

s LXl 2
Dy < (27?) +Gx, (Lx,),

2
D
a\/= + Ly
D} < (7VZR> +dGx, (Lx,) +Gr(L),

and in general

2
awg + Ly =2
D? < (;T +a2(t71)GX1(LX1) +Za2ZGz(LZ).
1=0

By our choice of the Rj’s the first term on the right hand side of each inequality is equal
to % and represents the distortion accrued when the source has fallen into the dynamic
range of the quantizer. The subsequent terms represent the distortion due to the quantizer
overflow.

We now bound the distortion due to overflow. To that end we choose Lx,, Lz such that

t—2
4 D
2(t—1) % <
t:HllfL_)_(,T a GXI(LXI)-i-i:EOa Gz(Ly) <5
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Ly
From section 4.2.5 we know there exist Ly, Lx, large enough so that Gz(Lz) < e **z and
fol
Gx,(Lx,) < e ®X1. Assume Lx, and Ly are large enough to satisfy these inequalities.

Then choose Lx, so that

_ D
Jmax, G (Lx) < 7

Specifically ifa < 1 thenlet Ly, = 4/4)\x, In % andifa > 1thenlet Lx, = \/4)\X1 In W%)D
and if @ > 1. Also choose Lz so that

max ZGQZGZ Lz) <

D
t=1,.,T 2°

) 2AT—1)
Specifically let Ly = \/ 42z 1n %

NOW upomn substitution fOI‘ LX1 we get
X 4 8)\)( 1 7T4
8A llnD 1 1 naz( -Up

1
ElogToer:§log D

Rj =

depending on whether ¢ < 1 or a > 1 respectively. For t =2, ...,T we get

8z . 4(a2T-1) —1)
S =1 1 .
R; og(a—l—\/D n (@@—1)D
By construction we have achieved the distortion D at each time step. We need only
check that the rate of our scheme is close to the SRD rates. Specifically we need to show

that %E goes to one as D goes to zero. That limp_,q % =1 follows from section 5.2.5. We
check the case for t = 2,...,T. We have

RS log ((1 + \/8)‘2 In —4((22(; 11))D 1))
. n .
lim — = lim
D=0 Ry D50 Llog <a2 + /\ﬁz)
\/BAZI 4(22(T-1)_1)
(a2 1)D
Az
— 1 1. D
* 0T Log (,\_Z)
22(T-1) _1
log 8]11(—27
— 1+ lim (810 =)

D—0 log ( ﬁz )
The second term goes to zero as D goes to zero.

Thus we have shown in the high rate case that we can achieve the SRD rates over a
noiseless digital channel.
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5.7 Summary

In this chapter we formulated the sequential rate distortion problem. This problem is a
generalization of the traditional rate distortion problem to processes over time. We showed
that the sequential rate distortion provided a general framework for viewing rate distortion
and successive refinement as special cases.

For Markov source we applied the tools of dynamic programming to characterize the
conditional channel laws in the rate distortion problem as “policies.” These infimizing laws
were called matched channels. We showed that in general the separation between source
and channel coding does not hold for small delays. But when the source and channel are
matched we can achieve the sequential rate distortion bounds.

We provided explicit solutions to the sequential rate distortion function for Gauss-Markov
processes. We showed that unstable Gauss - Markov processes cannot be transmitted across
a noisy channel at the rate determined by the rate distortion function unless there is feed-
back.

We reexamined the Schalkwijk-Kailath feedback coding scheme by representing it as a
successive refinement problem with exponentially decaying distortion schedule. The suc-
cessive refinement formulation was also used to compute bounds on the coding schemes
presented in chapter three.

We provided high rate asymptotics for the sequential rate distortion function.
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Chapter 6

Control of Stochastic Systems
Under Communication Constraints

6.1 Introduction

In this chapter we examine the stochastic control problem when there is a communication
channel connecting the sensor to the controller. See figure 6-1. This problem arises when the
plant and the controller are geographically separated and there is a noisy or band-limited
communication channel connecting them. One example of this occurs in remote control
over wireless links. The analysis of this problem will require the tools developed in all of
the preceding chapters.

We first formulate the control problem using the framework introduced in chapter two.
The system consists of a plant, an encoder, a channel, a decoder, and a controller. The
plant and the channel are given to us. We must design the encoder, decoder, and controller
to satisfy some control objective. We look only at the case where there is a communication
channel between the sensor and the controller. The link between the controller and the plant
is assumed to be noiseless. The problem is already difficult with one communication link
and thus we leave the case of two communication links to future work. Many of the insights,
though, provided for the one communication link case carry over to the more general case.

In the previous chapters we have treated the problem of encoder/decoder design for the
problem of channel coding with the objective of minimizing the probability of error and for
the problem of joint source-channel coding with the objective of minimizing the end-to-end
distortion. For the control problem we need to design the encoder/decoder pair as well as
the controller. We assume centralized design. By the results in chapter two we know this
problem can be solved, in principle, via dynamic programming. In general, though, the
joint optimization of the encoder/decoder pair and the controller is hard to solve.

We specialize the control problem to the linear quadratic Gaussian (LQG) control prob-
lem. We show that if the encoder and decoder are equi-memory and the encoder has access
to the controls then the “control” aspect and the “communication” aspect of the problem
can be separated. See the dashed box in figure 6-1. The traditional separation theorem
for the partially observed LQG problem states that the controller and the estimator can be
separated. Specifically we can apply a certainty equivalent controller to the state estimate.

197



Here we will show that a more general notion of separation holds. Under the hypothesis
mentioned the certainty equivalent controller is still optimal. The encoder and decoder are
designed to provide the “best” state estimate. The controller design is independent of the
channel, the encoder, and the decoder. It will turn out that the “communication” aspect
of the problem can be reduced to a sequential rate distortion problem over a given noisy
channel with a particular weight matrix tuned to the underlying Riccati equation. These
ideas will be discussed in more detail in the sequel.

We examine two kinds of channels: the digital noiseless channel and the additive white
Gaussian noise (AWGN) channel. For the digital channel we can use the operational se-
quential rate distortion function to bound the end-to-end distortion for a given channel
rate. For the AWGN channel we can use the sequential rate distortion function to bound
the end-to-end distortion for a given channel capacity. Furthermore under conditions of
joint source-channel matching we can show this bound to be tight. The optimal quadratic
cost then decomposes into two pieces: a full knowledge cost and a sequential rate distortion
cost.

In summary the main contribution of this chapter is the application of our previous
results to the problem of stochastic control under a communication constraint. We show
for the LQG problem, under suitable conditions, that a generalized separation principle
continues to hold.

In section 6.2 we formulate the stochastic control problem using the framework of chapter
two. In section 6.3 we examine the tracking and LQG problems. In section 6.4 we conclude.
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Figure 6-1: System

6.2 Stochastic Control Problem

The general setup consists of a plant, an encoder, a channel, a decoder, and a controller.
There are five different kinds of signals: state X;, channel input A;, channel output By,
decoder output Y;, and control U;. The time-ordering is

Xy, A1, By, ', Ur,..., X1, Ar, By, Y, Ur.

Now we define where the signals live, the system specifications, and the information
pattern. The state and decoder output X;,Y; are IR%valued processes. The control U is a
IR™-valued process. Let the channel input and channel output live in A; € A and B; € B
respectively. We will treat two cases: A is a finite set or A = IR!. The former will be used
when we treat the noiseless digital channel and the latter will be used when we treat the
AWGN channel. Furthermore we assume that the channel input space equals the channel
output space: A = B. See figure 6-1.
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Recall, from definition 2.2.1, that a model of a system is the set of all joint measures P
that are consistent with the time-ordering, system specification, and information pattern.
We describe the different system and decision kernels now.

Plant

To define the plant we need to specify the stochastic kernels
Q(dX;iq | 2t at, 08 ot ut), t=1,...T

We are interested in the time-invariant, linear Gaussian plant. Thus we can equivalently
write these kernels as

Xl, X‘H—l = F.’L‘t-f-G’u,t—I— Wta t= ].,T —1

where {W;} are IID Gaussian ~ N (0, Ky ), the initial position X; ~ N (0,Kx), and F, G
are system matrices of suitable dimensions.
Note that X;,1 is independent of X*~1 A% B! Y*! U'~! given X;,U;.

Channel

We treat two channels: the digital noiseless channel and the time-invariant, memoryless,
AWGN channel. Abstractly each channel can be treated as a sequence of stochastic kernels
of the form

QdB; | zt,al, by W), t=1,.,T.

For the digital channel we can equivalently write these kernels as
Q(dBt | xt,at, btfl’ytfl’utfl) = 6(Bt:ag)'

And for the time-invariant, memoryless, AWGN channel we can equivalently write these
kernels as
Bi=a+V;

where the {V;} are IID and distributed as V; ~ N (0, Ky). Furthermore there is a power
constraint: Ep(A}A;) < L, Vt. Where P represents the overall joint measure. (We have

not completely specified it yet.)
Note that B; independent of X, A*" 1, B"1 Yt 1 U!~! when given A;.

We have just defined the system specifications. The encoder, decoder, and controller
are designed by the designer. Now we need to describe their information patterns.
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Encoder
The encoder is specified by the designer

Q(dAt | xt’a't_labt_layt_laut_l)a t= 17 aT

We make no restrictions on the information pattern here. The restrictions will come when
we define equi-memory. Note that in general there are five kinds of feedback to the encoder:
the state, the past channel inputs, the past channel outputs, the past decoder outputs, and
the past controls. In the sequel we will discuss how these feedback paths may be realized.
If the encoder is allowed to see the past controls then in the parlance of chapter three
the encoder is in encoder class one. Similarly if it cannot observe the control then it is in
encoder class two.

Decoder
The decoder is specified by the designer
QdY; | «t,al, bty Wb, t=1,..,T.
The information pattern here stipulates that Y; be independent of X, A given B!, Yt~1 U1
Controller
The controller is specified by the designer
Q(dU; | =t at, byt ut Y, t=1,..,T.
The information pattern here stipulates that U; be independent of X*, A* given B, Y U1,
In summary our model consists of all joint measures P such that
(1) Plant:

P(dXt_|_1 | Xt — .'L't,At — at,Bt — bt,Yt — yt,Ut — ’U,t)
P(dXi11 | Xy = 24, Up = uy)
= QdXii1 | 4, us) P(X", AL, B Y' U —as. t=1,..,T—1

(2) Channel:

P(dBt ‘ Xt — .’I,'t,At — at,Bt—l — bt_l,Yt_l — yt_l,Ut_l — ut—l)
P(dBt ‘ At = at)
Q(dB; | ay) P(xt, AL BEL YL Ut —as. t=1,.,T

(3) Encoder: there are no restrictions on the information pattern.

P(dA; | b a0 ) e =1, T
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(4) Decoder: there are restrictions on the information pattern.

P(dY;f | xtaatabtayt_laut_l) = P(dY;f | btayt_laut_l) = 1a"'7T

(5) Controller: there are restriction on the information pattern.

P(dUt | xtaatabtaytaut_l) = P(dUt | btaytaut_l) t= 1a"'7T

The resulting joint measure factors as
P(dXT dAT dBT,dyT, dUuT)

T
= ® {P(dXH_l | 2t at, b8yt ut) @ P(dA; | =t a1 00yt ul Y
t=1
®P(dBt | :Et,a,t, bt_l,yt_l,ut_l) ® P(in | It,at,bt,yt_l,ut_l)
QP (dU; | xt,at,bt,yt,ut_l)}
T

— ® {Q(dXH_l | z,u) @ Q(dA; | b, a1, 0y ul ) ® Q(dBy | ay)
t=1

®QAY: | b y' ' ut 1) @ QU | Byt ul 1)}

This completes the specification of the linear Gaussian model under communication con-
straints.

Centrally Designed Model

We assume that the encoder, decoder, and controller all have complete system and policy
knowledge. Thus, by definition 2.2.5, the system is a centrally designed model.
Performance

A common objective is to minimize the average cost

1

T
=Ep Y (X4, Uy)
T =

for some integrable running cost ¢(-,-). In principle we can solve this problem by dynamic
programming. Unfortunately this is very difficult.

In the next subsection we examine the quadratic cost problem. Under suitable restric-
tions on the information patterns of the encoder and decoder we will show that a general
separation principle holds.
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6.3 Linear Quadratic Gaussian Problem

In chapter three we defined the notion of equi-memory. We extend that definition to the
stochastic case. This equi-memory condition allows the encoder and decoder to be coor-
dinated in their actions.. We then define expectation predictive encoders and decoders.
This allows both the encoder and the decoder the ability to remove the effect of the control
signals Uy.

Definition 6.3.1 An encoder and decoder are said to be equi-memory if there ezists a
sigma-field oy C o(BY" 1, Y1 U 1) such that the stochastic kernels defining the encoders

Q(dA, | ottt Bt Lyttt
are o(X;) X or-measurable. The stochastic kernels defining the decoders
QUY: | b,y ')
are o(By) X o measurable.

In words this states that the encoder at time ¢ is a measure on A parameterized by
z; and some measurable function f(b'~1,y'~! 4!~!) and the decoder is a measure on Y
parameterized by b; and the same function f(b*~1,4~!, u!~1). Thus the encoder and decoder
use the same information excepting that the encoder also observes X; and the decoder also
observes B;.

Definition 6.3.2 An equi-memory encoder and decoder with oy = o(Y'~1,U*"1) are called
an expectation predictive encoder and an expectation predictive decoder respectively if the
encoder is of the form

At =g (It — E(Xt | bt_l, yt_l, Ut_l))
for some measurable function g and the decoder is of the form
Y, = B(X, | b,y u ).

Note that in this case both the encoder, Q(dA; | %, a'~!, b1, =1 4!~1), and the decoder,
Q(dY; | b',y'~1, u!~1), are Dirac measures (i.e. they are functions.)

The encoder has access to the past y’s. This requires a dedicated link between the
decoder output and the encoder. Now Y; is a function of (b*,4*~!, u*~!). Thus we can send
B; to the encoder instead of sending Y;. Upon receiving B; the encoder can compute Y;
(recall we have assumed centralized design.) For the noiseless digital channel case we do
not need a special link because the encoder can compute 3*~! locally.

In the noiseless digital channel case the function g is quantizer that is applied to the
innovation. In the AWGN channel case the function g is a gain matrix magnifying the value
of the innovation while maintaining an average power constraint.
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Let the estimation error be denoted A; 2 X; — Y.

Lemma 6.3.1 For equi-memory expectation predictive encoders and decoders the error, Ay,
is uncorrelated with U 1.

Proof:
First note

Api = FX,+GU,+W,— E (FXt +GU, + W, | B, Y, Ut)
= FA+W,—E(FA+W, | B, YUY

Thus E(A¢y1) = 0. Now

E(M | UY) = E[FA+W,—E(FA+W, | BHLYLUY) | U]
- E [FAt +W, | Ut] —E [E (FAt +W, | Bt“,Yt,Ut) | Ut]
E[FA+W, |U'| — E[FA+ W, | U]
= 0

Thus we see that A1 is uncorrelated with U!. O

6.3.1 Tracking
We treat the tracking problem first.

Definition 6.3.3 A linear Gaussian system with a communication channel is said to be
trackable, independent of control, at distortion D, if there exists a channel encoder and
decoder such that the squared state estimation error E(||X; — Y3||?) < D for all control
sequences and times t.

The following proposition gives a lower bound on the capacity of a channel in order to
achieve trackability. This is essentially the converse theorem for sequential rate distortion.

Proposition 6.3.1 Let R&Sjeq(D,D, ..., D) be the sequential rate distortion function for the
{Xy11 = Fzy + Wi}, source. A necessary condition on the capacity of the channel for
the linear Gaussian system to be trackable, independent of control, at distortion D is Ct >

Rfeq(D, D,..,D).

Proof: Note that if we use the zero controller, i.e. a controller that only outputs the zero
control, then the problem of trackability reduces to a sequential rate distortion problem for
the source {Xy11 = Fz; + Wi}L ,. By theorem 5.3.2 we know that a lower bound on the

capacity of the channel that achieves a distortion D at each time step is R?eq(D, D,...,D).
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Since this is a lower bound on the capacity when we apply the all zero control it must be
a lower bound on the capacity for the system to be trackable, independent of control, at
distortion D. O

The previous proposition provides a lower bound on the capacity of the channel needed
to achieve trackability independent of control at distortion D. Note that this necessary
condition holds independently of whether we use an equi-memory predictive encoder and
decoder or not.

The next proposition gives upper bounds on the capacity needed for trackability.

Proposition 6.3.2 The following sufficient conditions on capacity hold

(1) If the channel is a digital channel with rate Cp > R}Sjeq’ °(D,...,D) then there ezists
an encoder and decoder such that the linear Gaussian system is trackable, independent

of control, at distortion D. (Where here R&Sjeq’ © is the operational sequential rate
distortion function for the source {Xyy1 = Fxy + Wi}t )

(2) If the channel is a time-invariant, memoryless, AWGN channel with capacity Cr >

R&Sjeq(D, ..y D) and furthermore the channel is matched to the source {Xy11 = Fxy +
Wi}, at distortion D then there exists an encoder and decoder such that linear
Gaussian system is trackable, independent of control, at distortion D.

Proof: For both channels assume the encoder and decoder are equi-memory and expecta-
tion predictive. By lemma 6.3.1 the error, A, is uncorrelated with the past U*~!. Thus the

problem reduces to sequential rate distortion on the source: {X;,1 = Fx;+W;}7_,. For the

digital channel we know that Rgeq, O(D, ..., D) is an achievable rate. For an the AWGN

channel that is matched to the source we know that Rgeq(D, ..., D) is an achievable rate.
a

Note that in the AWGN channel case the decoder is required to feedback B; to the
encoder in order to realize the sequential rate distortion infimizing channel.

6.3.2 Quadratic Performance
Now we treat the LQG problem. Our goal is to minimize the long term average cost
. ]‘ d ! !
lljrpjolép EE[; X,QX; + U, SU| (6.1)

where () is positive semidefinite and S is positive definite.
Assume that the pair (F, G) is controllable. Then under full state observation it is well
known that the optimal steady state control law is a linear gain of the form Uy = LX; where

L=—(G'PG +S) 'G'PFX (6.2)
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and P satisfies the Riccati equation
P=F (P-PG(G'PG+8) ' G'P)F+Q. (6.3)
Furthermore the optimal cost is
E(W'PW) = tr(PKw) (6.4)

These standard results can be found in [Bert].

Proposition 6.3.3 For expectation predictive encoders and decoders the optimal control
law, for the quadratic cost, is the certainty equivalent control law. Specifically the optimal
steady state control law is of the form Uy = LY; where L is given by (6.2).

Proof: Bar-Shalom and Tse prove a general theorem that states that the certainty equiv-
alent controller is optimal if and only if the state estimation error is uncorrelated with the
past controls. [BT] We have shown in lemma 6.3.1 that the state estimation error, Ay, is
uncorrelated with the past controls. O

We will now convert the problem into a fully observed LQ problem with Y; being the
new state process. This approach follows Borkar and Mitter. [BM] Note that

Yipn = Xpp1 — A
= Fn—FGUt—F(FAt—FWt—At_H)
= FY; +GU + W,

where Wy = (FA; + W; — Ay41). Our new system has dynamics Yi11 = FY; + GU; + W,.
We need to show that {W;} are uncorrelated.

Lemma 6.3.2 For expectation predictive encoders and decoders the random variables {W;}
are uncorrelated.

Proof: We need to show that E(W;W,) = 0 for all s,t. We will prove E(W;W,,,) = 0.
The more general case will then follow.

Since we are using expectation predictive encoders and decoders we know W, is un-
correlated with A;y;. Furthermore W, and Ay41 are uncorrelated with Wyy;. Thus W,
is uncorrelated with FA 1 + Wi, But FApp + Wi = Apo + Wt+1- Thus W, is
uncorrelated with Ao + V~Vt+1.

Once again since we are using expectation predictive encoder and decoders we know
VE/}H is uncorrelated with A, 5. Thus it must be the case that W; is uncorrelated with
Wi, O

The running cost for the original problem can be decomposed as

B(X;QX,+UiSU)) = E(Y,QY;+USU) + E(A;QA).
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The optimal cost under the Y; process is, by equation (6.4), equal to tr(PKy,).

Assume that E(A;A}) = H for all t. By propositions 6.3.1 and 6.3.2 we have both
necessary conditions and sufficient conditions on the channel for this to occur. Then the
optimal cost for the original problem is

1z 1 &
limsup —E[Y_ X{QX; + U{SU;] = limsup— > E(Y/QY; + UiSUy) + E(ALQA)

= tr(PKy) +tr(QH)
— tr(PKw) + tr((F'PF — P + Q)H)

The optimal cost decomposes into two terms. The first term is the full state cost and the
second term depends only on H the state estimation error covariance. Thus we have reduced
the problem of computing the optimal cost to that of minimizing ¢tr((F'PF —P+Q)H) over
a given channel. But this latter problem is nothing more than a sequential rate distortion
problem with squared error distortion and weight matrix (F'PF — P + Q). This problem
was treated in chapter five.

In the scalar case we can compute this cost explicitly. Specifically for channels with
capacity R > max{0, log |F'|} we have

Kw (F?P - P+ Q)

Ave. Cost > PKw + IR F2

Equality is achieved if our channel is a matched AWGN channel. For the digital channel we
need to replace the second addend with the operational distortion at rate R. If |F'| > 1 and
R < log |F| then the cost equals infinity. In summary we have characterized the tradeoff
between the channel capacity, R, and the LQG performance.
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6.4 Summary

In this chapter we formulated a stochastic control problem with a communication link
connecting the sensor to the controller. At this generality the problem is difficult to solve.
We simplified the problem by finding conditions that allow us to separate the “control”
part from the “communication” part. Specifically we examined the LQG problem with
communication constraints. We showed that under expectation predictive encoders and
decoders the certainty equivalent controller is optimal. Thus the “control” part is indeed
separated from the “communication” part. The solution to the “communication” part was
shown to be equivalent to the solution of a sequential rate distortion problem. Finally
we showed that the optimal cost separates into two pieces: a full knowledge cost and a
sequential rate distortion cost.
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Chapter 7

Summary

This thesis explores the distributed control problem where there are communication chan-
nels between the different components of the system. In this setting, traditional infor-
mation theory, which codifies the fundamental limitations of reliable communication over
noisy channels, is not directly applicable. The reason is traditional information theory is
asymptotic, has delays, and does not completely deal with feedback. Since feedback is an
essential element of control in the presence of uncertainty and since delays have to be taken
into account in control problems, especially for unstable systems, it is natural to look for
a unification of information theory and stochastic control when components of the control
system are interconnected though communication channels.

We provide such a unification in chapter two where we define our general model. This
unified view of control and communication clarifies many of the conceptual issues underlying
the distributed control problem. Our model of a system is defined to be the set of all
probability measures that satisfy the three specifications:

(1) A time ordering on the variables of interest.

(2) A specification of the stochastic kernels representing the plants and channels in the
system.

(3) A specification of the information patterns for the different decision variables.

The control problem becomes one of choosing a sequence of controller stochastic kernels to
interconnect the partially specified system kernels so as to satisfy some control objective.

This framework allows us to clarify the different kinds of knowledge: knowledge of the
signals, knowledge of the system and policies, and knowledge of the objective or objectives.
We show that within this framework and under the assumption of a centralized design
we can formulate a broad class of distributed control problems as dynamic programming
problems. Furthermore we can use this framework to understand the fundamental limits to
performance in distributed systems when there are channel constraints.

In chapter three we examine the deterministic control problem with a communication
channel from the sensor, measuring system variables at the plant, to the controller. We
formulate the control problem and discuss the role of different information patterns. We
provide a lower bound on the rate required to achieve different control objectives that is
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independent of the information pattern used. We show that this rate can be achieved for a
particular class of information patterns. We introduce the concept of covering number.

In chapter four we treat the feedback channel coding problem. We provide a rather
general coding theorem. We show that the directed mutual information is the correct notion
of mutual information when computing the capacity of a channel. It allows us to move from
code-function distributions to channel input distributions. Next we show that for Markov
channels the capacity optimization problem can be formulated as a dynamic programming
problem. Lastly we provide a directed version of the data processing inequality.

In chapter five we examine the sequential rate distortion problem. We provide a coding
theorem for noiseless digital channels. For Markov sources we show that the capacity
optimization problem can be formulated as a dynamic programming problem. We also
examine the problem of joint source-channel coding. We discuss the role of matching.

In chapter six we put all the pieces together to examine a stochastic control problem with
a communication channel connecting the sensor, at the plant, to the controller. We show
conditions on the information pattern that effectively separate the design of the controller
from the encoder and decoder. Specifically for the LQG control problem we give conditions
for the optimality of the certainty equivalent controller.
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Appendix A

Background and Supporting
Results

A.1 Chapter 2

Stochastic Kernels

A Polish space, X, is a complete, separable, metric space. We endow it with the topology
induced by the metric. Let X be a random variable defined on (€2, F,P) and taking values
in the Polish space (X, B(X)) where B(X) is the Borel o—field. We use lowercase “z” to
represent a particular realization of the random variable X. Define the induced probability
measure on X as Px(A) where A € B(X). Specifically Px(A) 2 P({w : X(w) € A}).

We now provide the basic definition and theorems for stochastic kernels. For more
details the reader should see section 7.4.3 of [BS].

Definition A.1.1 Let X,) be Polish spaces. A stochastic kernel on Y given X is a function
Py x(-|-) such that

(a) Py x(-|z) is a probability measure on Y for each fired x € X

(b) Py x(B|-) is a measurable function on X for each fized B € B(Y).

Theorem A.1.1 Let X1, Xy, ... be a sequence of Polish spaces and, for n = 1,2, ... define
V=& x..xA&, and Y =[], Xi. Let v be an arbitrary measure on X; and for everyn =
1,2... let Py(dXni1|yn) be a stochastic kernel on X, 11 given y,. Then there exists a unique
probability measure P, on Y such that, for every measurable rectangle By X ... X By, € Yy
we have

P,(B; x ... x By) :/ V(divl)/ Py (dzz|zy) - - / Py 1(dzp|T1, ey Tn1)-
B Bs Bn

Proof: See [BS] proposition 7.28. O
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Theorem A.1.2 Assume the hypothesis of the last theorem. Given a joint measure P, (B X
... X By) we can disintegrate it as

P,(By x ... x By) :/ z/(d:cl)/ Pl(dx2|ac1)---/ Po_r(dn|1, ooy )
B1 Bs B,

where each stochastic kernel P;(dX;|z1,...,zi—1) is determined uniquely P,(dz1, ...,dz;_1)-
almost surely. And v(dX1) is just the marginal of the joint measure.

Proof: See [BS] corollary 7.27.2. O

Thus we can integrate stochastic kernels and disintegrate joint measures in a well defined
and almost surely unique way. We will use the shorthand

Pu(Xm, vy an) = l/(Xm) [0 PX2|X1 (dX2|CE1) R QR PXn|X1,...,Xn71(an|‘T1’ ...,J,‘n_l)
(where each stochastic kernel is defined uniquely almost surely as described in theorem
A.1.2) For a given stochastic kernel we may suppress the subscript and write Py x (dY|z)
as P(dY|z).

We are given a measure Px)y,z. Define Px|y Pzy Py to be the measure

PxyPayPy(Ba, By, Bo) 2 [ P(Boly)P(B.ly) Pdy)
Y

where P(dX|y) and P(dZ|y) are the regular conditional probabilities of Px y,z.

Definition A.1.2 The random variables X,Y, Z form a Markov chain, denoted X —Y — Z,
if Px)y,z = Px|yPzy Py
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A.2 Chapter 3

Key Technical Lemma
Let A € IR%*%. Then by theorem 3.4.1 A has a real Jordan canonical form.
Lemma 3.4.1 HIYH '=7

Proof: H'YH ! is the product of three block diagonal matrices. Thus we need only check
that it holds for each of the blocks. The blocks come in two types: those associated with
real eigenvalues and those associated with complex conjugate eigenvalues. For the the real
eigenvalue case Hj is identity. Thus clearly I'J;I~* = J;. Let us examine the complex
conjugate eigenvalue case:

H}J;H;"
[ r(0)! pr(@) I r(0)*
_ r(9) pr(0) I r(0)*
i r(6)” pr(0) r(6)*
[ pr(0)~* r(0)7" r(6)*
_ pr(0) 1 r(0) r(0)"
_ U (0)"
[ pr(0) I
_ pr(0) I
i pr(6)
S

a

Lemma 3.4.2 If for all i we have R; > max{0,log |\;|} then YT Fg is stable. If there exists
at least one i such that

R; < max{0,log |\;|}
then TFE is unstable.

Proof: TFp is block diagonal. Each block is upper triangular. If R; > max{0,log |\;|}
then the diagonal of each block will consist of numbers in [0,1). These are the eigenvalues
of that block. Therefore each block is stable. Thus TFp is stable. (See page 39 of [HJo].)

If R; < max{0,log|)\;|} for at least one i then there will be a block with a particular
element on the diagonal with value greater than one. This is an eigenvalue of value greater
than one. Therefore that block is unstable. Thus Y Fp is unstable. O
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Stability of certain matrix products

Lemma 3.5.1 Let A be a stable matriz. Let By be a set of matrices such that |By|| < L
and the limit limy_,oo By — 0. Let S; = f;(l) A1 B, then limyyo0 Sy = 0.

Proof: Since A is stable there exists ¢ > 0 and 0 < A < 1 such that ||A!|| < eAf. For all
€ > 0 there exists a T'(¢) such that ||B;|| < eVt > T(e). Let t > T'(¢). Then

t—1 t—1
I ATTIB;| < Yo IIATITIB)

IN

t—1
e XN B|
=0

T(e) t—1
< ATTOINTATEOSGL 4 Y NIt

§=0 i=T(e)+1

< ﬁ {/\t—T(e)—lL_l_e}

Now we can choose e small enough and a t large enough so that the sum is arbitrarily
small. O
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A.3 Chapter 4

Divergence and Mutual Information

We use “log” to represent logarithm base 2 and “In” to represent logarithm base e. Given
two measures P and () defined on the same space we say P << @ if P is absolutely

continuous with respect to ). Denote the Radon-Nikodym derivative as %. If P is not
absolutely continuous with respect to () then define 2—5 2 0.

Definition A.3.1 Let IT be a measurable partition of (2, F). Denote the elements of the
partition by m € II. Define the divergence between two measures P,Q on (Q,F) to be

= su ) 10 P(Tr)
D(P | Q) =sup 3 Plm)og -

where the supremum is over all measurable partitions.

Theorem A.3.1 The divergence can be characterized as:

[ log g—gdP if P<<@Q
+00 else

D(PIQ)={

Proof: See theorem 2.4.2 of [Pin].
Given a joint measure Pxy on X x ) we denote the marginal of Pxy on X by Px.
Where Px(dX) = fy PX,Y(dX, dy)

Definition A.3.2 The mutual information between two random variables X and Y is de-
fined as Ip, (X;Y) 2 D(Px,y | PxPy) where Px Py denotes the product of measures on
X x Y. (We will use I(X;Y) when the underlying joint measure is obvious.)

By definition A.3.1 we have

; =su ) lo 7PX’Y(W)
I(X;Y) = HP%PX,Y( )1 & B Py () (A.1)

where the supremization is over all partitions IT measurable with respect to (X x Y,
B(X x Y)). Furthermore, as the following theorem states, we can restrict the partitions to
be “product” partitions.

Theorem A.3.2 In equation (A.1) there is no loss in generality by restricting to partitions
IT whose elements 7 are of the form m = E X F where E € B(X) and F € B(Y).

Proof: See theorem 2.1.1 of [Pin]. O

Recall the notation Pxy Pzy Py in definition A.1.2.

Definition A.3.3 The conditional mutual information between X and Z given Y is defined
as
Ipy v, (X;Z[Y) 2 D(Pxy,z | PX|YPZ|YPY)-
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This is a measure of the distance between Pxy,z and its “Markov” form X —Y — Z. By
definition A.3.1 we have

Px y,z(m)
log 1= A2
Pxy Pzjy Py () (4.2)

I(X;Z|Y) =sup »_ Pxy,z(m)
il well

where the supremization is over all partitions IT measurable with respect to (X x ) x
Z,B(X x Y x Z)). Furthermore, as in theorem A.3.2, we can restrict the partitions to be
“product” partitions.

Theorem A.3.3 In equation (A.2) there is no loss in generality by restricting to partitions
IT whose elements w are of the form m = E X F X G where E € B(X), F € B(Y), and
G € B(2).

Proof: See theorem 3.5.1 of [Pin]. O

Note that in general I(X;Z|Y') # suppy > ren Px,v,z(m) log %. See exercise 2.27

in Gallager’s text for a counterexample. [Gal

Definition A.3.4 If X is a random variable taking on a countable number of values, x;,
then its entropy is defined as H(X) 2 — Y, P(X = z;)log P(X = ;).

One can easily show for this case that H(X) = I(X; X).

Definition A.3.5 If X is a random variable admitting a density, px, then its differential
entropy is defined as h(X) 2 — [ px(z) logpx (x)dz.

Theorem A.3.4 Given three random variable XY, Z.
(a) Px,z << PxPz and Pxy,z << Py|x Pz xPx if and only if Pxy,z << PxyPz.
(b) If Pxy,z << PxyPz then

dPxy,z _ dPxy,z o dPx z
dPX,yPZ dPY|XPZ|XPX dPx Py

almost surely Pxy,z.
(c) I X,)Y;2)=1(Y;Z | X))+ I(X;2Z)
Proof: See theorem 3.6.1 of [Pin]. O
The following proposition lists some further useful properties we will need.
Proposition A.3.1 The information measures defined above are well defined and
(a) D(P | Q) > 0 with equality if and only if P = Q.
(b) I(X1;X3) = I(Xa; X1).
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(¢) Mutual information is invariant under injective transformations. Let f be an injective
measurable function from X to X. Then I(X1; Xo) = I(f(X1); f(X2)).

(d) Pxy,z = PxyyPzyPy, i.e. X =Y — Z form a Markov chain, if and only if
I(X; Z|Y) = 0.

Proof: Proof of these results can be found in Pinsker’s text [Pin]. O

The following proposition is called the data-processing inequality.
Proposition A.3.2 Let X — A— B —Y be Markov chain. Then I(X;Y) < I(A;B).

Proof: We know both I(X,B | A) =0 and I(4;Y | B) = 0. Thus I(X;B) = I(4;B) +
I(X;B | A)—I(A;B | X) <I(A;B). A similar calculation shows I(X;Y) < I(X;B). O

Information Stability

In order to prove lemma 4.3.2 we need the following three lemmas. Combined they state
that the mass of i(AT; BT) at the tails is small. Recall that A and B are finite spaces.

Lemma A.3.1 Let G > log|A|. For any sequence of measures {Pyr}}_, we have

1 1
lim F|=log—=1
TI—I>I;O T 8 P(AT) { % log ——+

Proof: This proof is adapted from lemma A1l of [HV]. Let

Q={a’ : Pa’) <277},

Now
1 1 1 1
E|l=log—=1 = — P(a")log —
T og P(AT) {%logﬁ>G}:| Tagﬂ (a ) og P(CLT)
1 P(a™) 1 1
= 7PO) T iy 08y — PO o8 P(O)
al €N P(Q)
1 T 1
< - S
< P log| AT — - P(2)log P(2)

1 o1
< = —
< TP(Q) log|A™ | + T

where the first inequality follows because entropy is maximized by the uniform distribution
and the second inequality follows because —zlogz <1, 0<z < 1.
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Now P(Q) < [Q27T¢ < |AT[27TC, Thus

L oe— 1 1
T °8 P(AT) {3

Tlog PATYZ

1

E }] < log | A|2~T(G-leg 4D 4 T

This upper bound goes to zero as T' goes to infinity. O

Lemma A.3.2 Let G > log|Al|. For any sequence of joint measures {Pyr pr}7; we have

. ]-_.' T T
lim F TZ(A B )1{%;(AT;BT)S_G} =0

T—00

Proof: Let
Qyr = {a” : P(a” | b7) < 27TC},

Note that for P(b7) > 0 we have

P(a" | 0")PQ" | a") _ P(" | a”)

P(a" [ ") = P(b7) - P(7)
Now
E :%?(AT;BT) L tiar;pry < G}]
[ B(RT | AT
- E _%log% 1{%10g% < G}]
> F % log P(AT | BT) 1{%logP(AT | BT) < —G}]

i 1 1
_ p T E T
- ET: (b ) [Tlog P( AT | bT) 1{ATEQbT} ‘ b :|
b

- ZP(bT) <log | A2~ T(G—loglA]) 4 l)
T

Y

T

1
_ —T(G—log|A|)
<log |A|2 + T)

Where the last inequality follows from lemma A.3.1. This lower bound goes to zero as T
goes to infinity. O

Lemma A.3.3 Let G > log|Al|. For any sequence of joint measures { Pyr pr}¥_; we have

. Lo 7. pT
lim E TZ(A ; B )1{§(T4T;BT) > 6} =0.

T—oo
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Proof: Let
QbT = {a : ( T | bT) 2_TG}.

Note that for P(b') > 0 we have

1 BT |d") . P | aT)
P(aT | bT)  P(a [0T)P(T) =  POT)
Now
ST
E fZ(A 1 {L7(AT;BT) > G}
(1. B(BT| A7) ]
= El=zlog——+—1
T P(BT) {%10 B AT > G}_
3 1 -
< E 1og71
T B(AT | BT) {108 gz 2 0|
= Y PW"E llog;1 red b’
e T P(AT | b7) {ATeQ,r}
< Y POT) (log iz TO e ) 4 )
bT
1
— (1o | A2 T(Glog A) )
(1ogajz TEtor 40 4.

Where the last inequality follows from lemma A.3.1. This upper bound goes to zero as T
goes to infinity. O

Now we can prove lemma 4.3.2.
Lemma 4.3.2 For any sequence of joint measures {PAT’BT }_, we have

I(A — B) < liminf lI(AT — BT) <limsup %I(AT — BT)<T(A— B)

T—o0 T—o0

Proof: We first prove the leftmost inequality. For any ¢ > 0 we have

1
?I(AT—>BT) > E

1, P(BT| A7)
T %7 P(BT) {3108 24T <)

pBT) =
1. P(BT| AT
G < Liog (BT [ A7)

- P T P(BT)

-

+ (I(A> B)— P ll

Tlog(i‘j;l)ZL(A—)B)—e]
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The first addend goes to zero by lemma A.3.2, the second addend goes to zero by definition
of I, and the probability in the last addend goes to 1. Thus for T large enough we have
+I(AT — BT) > I —2e. Since € is arbitrary we see that I(A — B) < liminfr_,o (A7 —
BT).

The second inequality, liminfr_,o +I1(AT — BT) < limsupp_,, #I(AT — BT), is
obvious.

Now we treat the rightmost inequality. For any € > 0 we have

1 1. PB(BT|AT)

—1(AT - BT) < E|=log———"1 5 Al
7 ) < T %8~ p(BT) {108 207 1AT ) (A1)
+ arla> i M>f(A—>B)+ (A.2)

_Tog P(BT) = € .

_ 1. PBT|AT) .

—log—————~ < .

+ (I(A—)B)—I—e)P[Tlog ) <I(A—B)+e¢| (A3)

The first addend goes to zero by lemma A.3.3, the second addend goes to zero by definition
of I, and the probability in the last addend goes to 1. Thus for T' large enough we have
+I(AT — BT) < I + 2¢. Since € is arbitrary we see that limsupy_,, 71(A7 — BT) <
I(A— B). O
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A.4 Chapter 5

Lemma A.4.1 If X ~ N(0,)) then for L >0

o0 >\ L2
/ z?p(z)dr = | =—Le 2x + APr(X > L).
L 27

Proof: We prove this by integration by parts.

[ee] 1 9 22 —A.’I: 22 o0 [es) )\ mzd
re"2xdr = e 2x —I—/ e 2xdzx
/L V21 27 L L V2w

[ A 12
= 4/=—Le 2x + APr(X > L).
2m

The proof of the following lemma follows from [OR].
Lemma A.4.2 (a) P (aN € QiiN) >1- G%N.
(b) For all (a™,bN) € Qi{% we have 2~ NUHHH(BIA) < p(pN|oV) < 2= N(I-)H(B|A),
(c) Let aV € Q5AI’N. Let bV be drawn from P(B"|a"). Then
P (bN € Q%,’}BV((LNHAN = aN) >1- 62,’22’]\[.
(d) For every a™ € QJA“N we have |Q(jf7’f3v(aN)| >(1-— e‘i?’N)QN(l_@)H(B‘A).

Proof:

2 a
(a) By Chernoff’s bound we have P (Jvan(a) — P(a)| > dP(a)) < e~ N5 Use this and
the union bound to get result (a).

(b) Since (aV,bV) € Q%' we know

by = 2Bt obie i)

¥ (LA, (03, (00)P0) s )

Now ‘Za,b <V(aN,bN)(aab) — P(a, b)) 10g pr7ay

<034, Pla,b)log % = 6H(B|A).
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(c) Note that E (vax pvy(a,b)[aY) = von (a) P(bla)

P (Y(an 5v)(a,b) — P(a,b)] > 8,P(a,b) | a™)

— — a 7P(a) v,Nn(a a aN
= P (o ) (@9) = Pla.b)] > b= v (@P(bla) | o)

_ v 62-81)2p(ab)
< e NV samn

where the third line follows from the Chernoff bound and a rearranging of terms. Now
use this and the union bound to get (c).

(d)
1N < P (b e 0y (@)|4Y = aV)
= Z PN |a™)
oV ey (V)

< |Qi542,év(aN)|2—N(1—62)H(B|A).

where the first line follows from part (c) and the last line follows from part (b).

The following is the key technical lemma in the proof of the coding theorem.

Lemma A.4.3 Let (z"V,y=1N) € Qi;;]\{,t,l. Let y¥ be drawn from P(Y,N|y*=5N). Then

N o ;N ,N t—l,N t,N t—l,N
P(yt EQ)?t,Yt—l(xt Y ) [ 2",y )
> (1— Ny NIy 2 HYY),
Proof:

N d2,N t,N _t—1,N t,N _t—1,N
P (y € QN 1@,y BY) [ 2Nyt bY)

= > Py |y="")

N ~0f%2:N t,N ,t—1,N
Yp €y (@B Ny oL

Z 9~ N(1+8:)H(Y;|[Y*1)

Neqd2:N t,N ,t—1,N
Yi EQXt,thl(Z‘ Y )

v

t—1
m%l\;t_l(wt,N’ yt—l,N)|2—N(1+62)H(Yt|Y )
(1— eiéz‘s;;fv)QN(l—Jz)H(YtIXt,Yt_l)Q—N(HJz)H(YtIYt_l)
(1 — 72N ) NIX Y426 HX YY)

AV

v
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Where the third line follows from lemma A4.2(b) and the fifth line from lemma A4.2(d).
The last line comes from noting

(14 G2)H(Y[Y'™") = (1= 6) H (Y| X", V')
HY|Y'™) = HY|X, YY) + 6 (HWY') + HYX, Y')

[(X5 YY) + 6 (HIY'™) + H(Yi X" Y')
I( X% YY) + 26, H(Y; Y1)

IN

Lemma A.4.4 If (z)¥,y]) € Qg’(lt\jyt then dn (zl¥,ylY) < (1 + §)E(d(Xs, Yy)).

Proof:

1 N
dN(xévayiv) = N Zd(xt,nayt,n)
n=1

= Z Yzt n,yen) ("Ea y)d(:c, 'y)

Y

< Y (1 +8)p(z,y)d(z,y)

= (14+0)E(d(X:,Yy)).
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