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Abstract
Reconfiguration Control in Adaptive Networks
by Karin Sigurd

Distributed control systems are emerging as more robust and flexible alternatives to
traditional control systems in several mechatronic fields such as satellite control and
robotics. Instead of relying on one large unit with a centralized control architecture,
one thus uses a parallel structure composed of many simple controllers collectively
capable of performing the same task as the large unit.

Reconfiguration control involves cooperation, coordination and mutual adapta-
tion and is relevant in a number of engineering problems such as formation control,
multiagent learning and role allocation. In addition to being a key issue for using
the distributed control paradigm to its full potential, reconfiguration control also
offers a well delimited framework for addressing a number of interesting theoretical
questions in distributed control such as those related to the overlapping notions of
cooperation and coordination.

We propose a unified game theoretic approach to the problem of reconfiguration
control which interprets node positions as strategies, identifies each configuration
with the unique equilibrium of a game and sees reconfigurations as switches of
games. Our approach is implemented in two different settings, both related to
trajectory planning, and illustrated with simulation results.

In the first setting, we propose replicator learning as a multiagent learning
algorithm which is a generalization of the replicator dynamics and show convergence
in any finite dimension [ of the average strategy to any desired strategy as a function
of the chosen game matrix. We show how this result can be linked to collective
motion in a subspace of R~ resulting in a successive visiting of a set of waypoints.

In the second setting, we propose a novel total field collision avoidance algo-
rithm of magnetic nature which permits a set of vehicles to reconfigure successively
without knowing each other’s positions; strategic sensor positioning makes sure that
the vehicles do not sense their own fields.

Contributions of our research are a multiagent learning algorithm, a unified
game theoretic framework for addressing reconfiguration problems, the identifica-
tion of reconfiguration control as a problem common to several different fields but
previously addressed with field-specific methods, the proposal of a definition of
robustness in this context and, for the two trajectory planning settings in which
our algorithm was implemented, two algorithms for distributed coordination and
collision avoidance, respectively.

Thesis Supervisors: Professor Sanjoy K. Mitter and Professor Jonathan P. How
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Chapter 1

Introduction

Distributed control systems are emerging as robuster and more flexible al-
ternatives to traditional control systems in several mechatronic fields such
as satellite control [46] and robotics [3]. Instead of relying on one large unit
with a centralized control architecture, one thus uses a parallel structure
composed of many simple controllers collectively capable of performing the
same task as the large unit. Robustness and adaptivity are some of the
properties that make parallel systems superior to traditional ones; however,
the distributed paradigm also poses a set of new challenges that need to be
resolved in order to make the distributed paradigm fully operable. One of
these is reconfiguration control, which is the topic of this thesis.

1.1 Reconfigurable Systems

Reconfigurable systems are part of the broader class of distributed systems;
before introducing reconfiguration control, we will therefore comment briefly
on the distributed paradigm and its benefits compared to traditional control.

The Distributed Paradigm Distributed control systems are as a rule
robuster to local controller failure because of their parallel structure - other
controllers can compensate for the lost ones - and because each controller
is simple and inexpensive to replace. Furthermore, a distributed system
has a higher surface to volume ratio, which facilitates interaction, sensing
and detection. The spatial distribution of controllers also offers increased
flexibility by allowing reconfigurations such as change of radii of a circular
network functioning as the aperture of a telescope. However, to obtain
these benefits it is necessary to address the question of coordination among
the distributed units. How do the distributed units adapt to each other to
achieve a collective goal although no unit has access to the whole system
state? If one unit has a system failure, how do the other units detect this,
know how to compensate for the failure and decide which units should do
the compensation? Indeed, the study of coordination can also be motivated
from a purely theoretical point of view since the overlapping notions of



coordination and cooperation, currently attracting a great deal of interest,
are yet to be given generally agreed upon definitions.

Cross-Disciplinary Field Fundamental issues related to the distributed
control paradigm have for some time been simultaneously studied in several
different fields, sometimes under different names. In control theory, large-
scale power systems and air traffic control were the first main topics in dis-
tributed control, originally referred to as decentralized control as opposed to
traditional, centralized control theory. In artificial intelligence, distributed
systems are known as multiagent systems [14, 22] and appear mainly ei-
ther as robotic systems or as softbot systems, that is, as virtual agents in
computer simulations. A third type of distributed system related both to
artificial intelligence and to biology is the swarm [4, 7], a system composed of
a large number of simple and identical units. Natural distributed systems,
such as natural sensor networks and immune systems, are to an increas-
ing extent studied to serve as inspiration in engineering [17, 18]. Among the
relevant notions in the different fields cited above are cooperation, coordina-
tion, emergence, self-organization, adaptivity and mixed initiative, further
described in chapter 2. These notions, several of which are yet to be strictly
defined, reflect a desire to make the distributed units adapt to each other
to optimize their individual and collective performances and to achieve a
desired system structure although no unit has complete knowledge either of
the system state or of the desired structure. While the system needs to be
adaptive and flexible, it also has to be robust against noise and failures in
at least a fraction of the units.

Reconfiguration Control We will use the term reconfiguration control
to denote the study of configuration keeping and change of configurations
in distributed systems, as described in chapter three. By configuration, we
understand any distinct structure assumed by the system and relevant for a
given application and, by reconfiguration, a switch between any pair of such
structures. While problems from this field have previously been addressed
in very different contexts, such as formation control [12, 35, 50|, multiagent
learning and role allocation problems, these studies have as a rule addressed
parts of the field and have offered solutions targeted at specific rather than
general contexts. We propose a unified approach to the problem of reconfigu-
ration control based on game theory which identifies each configuration with
the unique equilibrium of a game and sees reconfigurations as switches of
games. Our approach is implemented in two different settings, both related
to trajectory planning.

Why Reconfigurable? It has been argued that a new control paradigm
may be needed in order for distributed control systems to work optimally
and make use of their full potential [43]. The fact that an optimal role
allocation among the units can make a standard system operate as well as a
more advanced system not operating at its optimal role allocation suggests
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that the systematic study of the control of reconfigurations may be of both
theoretical and practical use.

1.2 Problem Statement

Having found the issue of reconfiguration to be a general problem in dis-
tributed control hitherto addressed only partially and with field-specific
methods, we propose to formally define reconfiguration control, to formu-
late a general framework and algorithm applicable to any reconfiguration
problem in distributed control and to demonstrate our proposed approach
in a relevant application framework.

1.3 Contributions

The contributions of our work are as follows:

Unified Game Theoretic Framework Identifying reconfiguration con-
trol as an issue common to a range of different fields but previously addressed
incompletely and with field-specific methods rather than with general ones,
we proposed a general game theoretic framework for reconfiguration control
that identified node positions with strategies, each configuration with the
unique equilibrium of a particular game and saw reconfigurations as switches
between such games, as described in chapter 4. An important part of this
approach was to identify game classes that can be shown to have one and
only one equilibrium, as was seen in section 4.3.

Replicator Learning We introduced Replicator learning as a general-
ization of the replicator dynamics [45] by making it adaptive in two layers
rather than adaptive at the collective level and static at the individual level,
as described in sections 5.2 and 5.3. Stability was proven in the case [ = 2 for
all matrices and in the general case [ > 2 for a particular choice of the game
matrix G, as seen in section 5.3.5. Furthermore, we derived a high-level
trajectory planning algorithm, described in section 5.4, from this general-
ization that allowed distributed clustering around any of an uncountable set
of points without any node knowing the position of any of the other nodes -
this was seen as relevant in particular for a search application. By redefin-
ing the payoff functions for hetereogeneous nodes, the framework could also
accommodate heterogeneous nodes, as described in section 5.5.

Total Field Collision Avoidance We proposed a novel approach to col-
lision avoidance in multi-vehicle navigation in the form of a total field algo-
rithm of magnetic nature, as seen in chapter 6; our algorithm allowed each
vehicle to avoid collisions with the other vehicles without knowing their posi-
tions. By strategic positioning of magnetic field sensors orthogonally to the
static field generated by the vehicle itself, each vehicle was able to measure
the total field generated by all the other vehicles, as described in section

11



6.5. Furthermore, by choosing the sensor positions in a symmetric way, the
magnetic field component contributed by Earth could be cancelled out in
the calculation of field differences, as seen in sections 6.5.7 and 6.5.8. In
section 6.6, it was shown how each vehicle could generate an estimate of
the total field generated by the other vehicles based on the input from its
sensors.

Robustness Definition We proposed in chapter 7 a definition of robust-
ness in reconfiguration control as a system performance indifference to a
large number of small node errors and to a small number of large node er-
rors; this definition, given in section 7.2.3, was inspired by an analogy in
estimation theory as described in section 7.2.2.

1.4 Disposition

In Brief Below, we first give a brief overview of the field of distributed
control and point at reconfiguration control as an important part of this
field. We then formally define reconfiguration control and describe the key
questions to be addressed. After an introduction to game theory and its
equilibrium notion, we present our proposed approach in general and illus-
trate its use in two different scenarios both related to trajectory planning.
Finally, we address the notion of robustness in reconfiguration control, pro-
pose a definition of robustness and point at relevant current and future
applications. A concluding section provides a summary and gives directions
and suggestions for future research.

Distributed Systems In the chapter Distributed Systems, we introduce
the emerging field of cooperative control in section 2.2 and discuss notions
such as cooperation and coordination, teams and collectives, limited infor-
mation, mixed initiative, adaptivity and differentiation, concluding in sec-
tion 2.3 that reconfigurability makes a system adaptive and enables it to use
its resources in an efficient way.

Reconfiguration Control Having identified reconfigurability as a desir-
able system property, we next define the notions of configuration and re-
configuration of a distributed system, motivate our definitions and give an
example in section 3.1. Reconfiguration control then emerges as the union of
configuration keeping and the controlled switching between configurations.
In section 3.2 we propose a classification of reconfigurations into three ma-
jor groups illustrated with examples and in section 3.3 we introduce the
notion of configuration space, some relevant properties of which are identi-
fied. Finally, we point in section 3.5 at formation keeping, role allocation,
multiagent learning and swarm control as the major fields of previous work
in reconfiguration control and see that as a rule, previous approaches have
offered solutions targeted at specific rather than general contexts.

12



A Game Theoretic Approach In the following chapter, we propose a
unified game theoretic approach to reconfiguration control that interprets
the positions of the distributed units as strategies, identifies each configu-
ration with the unique equilibrium of a parametrized game and sees recon-
figurations as switches of games. An introduction to game theory and its
equilibrium notion is given in section 4.2 along with a motivation for a game
theoretic approach in section 4.4 - its scalability, adaptivity, generality and
robustness are found to be the main arguments in favor of a game theoretic
approach. The two trajectory planning scenarios in which we propose to
implement our approach are briefly introduced in section 4.3.4 as Replicator
learning and Cluster, respectively.

Replicator Learning The Replicator learning scenario is a swarm sce-
nario where a large number N of identical or similar simple units collectively
achieve a result which is beyond the horizon of each individual unit. In the
particular type of population dynamics known as the replicator dynamics,
described in section 5.2, the system is adaptive only at the collective level,
not at the individual level. We propose replicator learning in section 5.3 as a
two-layered generalized replicator dynamics where both layers are adaptive.

Cluster The second scenario, Cluster, is a formation control scenario
where a cluster of vehicles navigate safely in possibly changing formations
visiting waypoints. We construct in section 6.4 a parametrized class of games
that has a unique Nash equilibrium and introduce in section 6.5 a novel to-
tal field collision avoidance approach of magnetic nature which permits safe
navigation without knowing the coordinates of any of the other vehicles.
Strategic sensor positioning, presented in section 6.5.7, makes sure each ve-
hicle senses only the field generated by the other vehicles, not any component
generated by the vehicle itself, and also ensures that the magnetic field of
Earth is cancelled out in the field difference calculated.

Robustness Having presented our general approach and its application in
two specific scenarios, we next look at robustness in reconfiguration control.
To formulate a definition of robustness in reconfiguration control, we first
study the notion of robustness in control in general and how the current
general definition evolved in parallel with the field of control. A definition
of the notion of robustness in reconfiguration control is then proposed in
section 7.2.3, inspired by an analogy in estimation theory as seen in section
7.2.2. Finally, the robustness of our approach applied to the two scenarios
of Replicator learning and Cluster is studied in sections 7.3 and 7.4 and
illustrated with simulation results.

Finally, a concluding section points at applications, gives a summary of the
thesis and provides directions and suggestions for future research.
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Chapter 2

Distributed Systems of
Control

In this section, we give a brief introduction to some relevant notions in the
field of distributed control and motivate the study of reconfiguration control
as an important part of this field.

2.1 Introduction

A distributed control system is composed of N > 1 decision makers or
controllers which typically do not share all information between them, are
distributed in space and are interdependent as reflected by the system topol-
ogy. Thus, a distributed control system is a network of controllers.

The field of distributed control has emerged over the last fifty years and is
defined by the absence of central control, whereas classic control theory usu-
ally assumes a central controller. The need for decentralized or distributed
control theory is to a large extent a result of the technological development
which has shifted the attention from one single mainframe or power station
to large networks of units where parallel processing is essential. Control
theory, artificial intelligence, economics, network theory, cybernetics, bio-
logical systems and granular systems in mechanics are all fields where the
distributed paradigm is important; game theory is an important theoretical
discipline for analyzing distributed systems.

Learning While many classical equations describing population dynamics
were formulated in the nineteen thirties - the predator-prey equations pro-
posed by Volterra are one important example - the replicator dynamics was
introduced in the nineteen seventies by Taylor and Jonker [45]. The analogy
between the two-population version of the multi-population replicator dy-
namics and a two-player game was soon pointed at [52] and analogies were
found between existing reinforcement learning algorithms and this version
of the multi-population replicator dynamics [8].

14



Machine learning for single agents is one of the core subjects of artifi-
cial intelligence and adaptive control [5]. During the past decade, one has
sought to investigate the more general decision problem of machine learning
in multiagent systems where several independent agents try to make optimal
decisions - multiagent systems are found in a rapidly increasing number of
interesting application areas. One approach to machine learning in multi-
agent systems is to use single agent learning methods and treat the other
agents as part of the environment, a method that may be too simplistic,
however. A diametrically opposite approach is to model one’s opponents in
as great detail as one maps the effects of one’s own behavior, a method which
may lead to highly computationally complex systems. For these reasons, an
intermediate way may be the best [32].

Game Theory Modern game theory was born in the nineteen forties with
the publication of the book The Theory of Games and Economic Behavior
by von Neumann and Morgenstern, with Borel, Cournot and Zermelo as
important precursors in the late nineteenth and early twentieth centuries;
Princeton was a center for game theory particularly during World War II.
Nash, Shapley, Kuhn and Tucker made important contributions from the
nineteen fifties and on; furthermore, Aumann, Harsanyi, Selten and Shubik
have been important players from the nineteen sixties and on. In the sixties,
approaches were proposed also for games of incomplete information.

Early on, game theory was concentrating on conflict solution in military
and economic applications. However, after World War II game theory was
studied rather by mathematicians than by economists [40]. In the nineteen
seventies, game theory was discovered as a tool by biologists - at the same
time, there was a revival of interest in game theory in economy. Today,
game theory is used as a theoretical framework for behavioral science and
learning. Could game theory also be of use for studying and describing
machine learning in multiagent systems [32] ?

Small-World Networks Abstract network theory has many links to graph
theory but was formally established with the work of Erdos and Renyi in

1960. In their random network theory, connections between nodes were as-

sumed to be made at random, resulting in a network where most nodes have

the same number of links to other nodes. Forty years later, Barabasi intro-

duced the scale-free network as a network where a few hubs has a very large

number of links to other nodes whereas most nodes have few connections;

furthermore, Barabasi showed that a range of relevant networks such as the

internet and social networks indeed belong in this category [2, 51].

Biological Networks The interest in artificial distributed systems is ac-
companied by a corresponding growing interest in biological networks, initi-
ated by the foundation of the field of cybernetics in 1947 [53]. The nodes of
biological networks consist of molecules such as proteins, of cells or of entire
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organisms and correspond to physiological networks, cellular networks such
as the immune system or social networks such as schools of fish or flocks of
birds. The systemic approach in biology is still in its beginning and, since
the networks to be analyzed and modelled are generally very complex, ef-
forts are often aimed at formulating concepts to begin to even qualitatively
understand the dynamics and other properties of biological networks. Some
fundamental concepts are the allowable size of the network, its connectivity
and how the nodes actually interact - by studying simpler networks in detail,
progress can be made in the formulation of relevant network notions.

2.2 Cooperative Control

The emerging notion of cooperative control refers to distributed engineer-
ing systems into which cooperation is hardwired. To achieve cooperation by
design, it is essential to have clearly defined what cooperation is - in this sec-
tion, we introduce the overlapping notions of cooperation and coordination
and point at the notion of mixed initiative and the property of adaptivity
as essential in cooperative control.

2.2.1 System Topology

The first issue is the system topology, indicating how the different parts of
the system are connected and how they interact. Can all nodes communicate
with one another, are there one-way communication links or possibilities to
broadcast messages? Should distributed systems be designed in hierarchy
with centralized subsystems or rather should even the simplest constitutive
parts have a parallel, interconnected structure into which redundancy is
hardwired?

Clone, Team or Hierarchy? Clones, collectives, colonies and teams are
some notions encountered in cooperative control. The notion of a clone or
a colony is close to that of the swarm, a collection of a large number of
similar or identical units that collectively achieve results which are beyond
the horizon of each individual unit. A team is a collective where the indi-
vidual performance is only counted indirectly as part of the collective result.
Opposite to all these parallel structures is the hierarchy, where upper layers
control lower layers while receiving feedback.

Leaders and Followers Leaders and followers are parts of a hierarchical
topology often used in formation control, where some leader nodes lead the
way and serve as reference points for follower nodes, who may have less
information about the system trajectory.

Static or Changing? Is the system topology static or changing? Al-
though a leader-follower architecture is hierarchical, it assumes a parallel
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character if the nodes take turns as leaders, which may be the case if the
leader position is an energy-consuming one.

2.2.2 Cooperation and Coordination

The notion of cooperation is often preferred to that of coordination in de-
scribing distributed system qualities, yet the terminology is not yet fully
defined and the notion of cooperation is used to denote phenomena ranging
from the collective achievement of a concrete goal to mutual adaptation.

Cooperation vs. Coordination Although the notions of cooperation
and coordination overlap, the term cooperation is as a rule used to denote
win-win situations where two or more units act so that they all perform
better than each would on its own, whereas the notion of coordination de-
notes a mutual adaptation so as not to cancel out each other’s actions or
be in each other’s way. This interpretation of cooperation also applies to
situations where one unit would achieve nothing on its own because the task
is too overwhelming, such as retrieving a heavy object.

Prisoner’s Dilemma While the actual design of cooperative systems is
still an emerging field [44], the theoretical notion of cooperation has been
studied for decades, notably in the form of the classic game theoretic problem
known as the Prisoner’s Dilemma [1]. In this scenario, two prisoners and
presumed accomplices are each faced with the choice of denying or confessing
their guilt. Although their respective payoffs - punishments, in this case -
are functions both of their own choice of action as well as of that of the
other prisoner, they both ignore each other’s choices.

Player1/Player2  Deny  Confess
Gpp = Deny (_17_1) (07_]—0)
Confess (—10,0) (-8,-8)

The payoff matrix Gpp is constructed so that the only game theoretic
equilibrium, corresponding to both prisoners confessing, is Pareto minimal,
whereas the strategy set that maximizes the average player performance is
not an equilibrium. A large number of different learning algorithms have
been tested where players try to achieve cooperation by using the informa-
tion available in the observed previous actions of the opponent - the best
known of these algorithms are Tit-for-Tat and Pavlov, which both are pure
strategies conditional on the players’ actions in the latest iteration of the
game.

Proposed Definition We propose to define a cooperative system as a
distributed system where, given that a performance measure is implied, the
dynamics is such that for each node, the performance is higher than it would
have been if each node had performed isolated on its own.
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2.2.3 Limited Information

Characteristic of a distributed system is the limitation of information - no
controller has a global overview.

Communication and Protocols Is the exchange of information essential
for cooperation? Some feedback to the individual units seems necessary -
the classic studies of the Prisoner’s Dilemma assumed that the players could
observe each other’s previous actions and use them to try to predict their
opponent’s next action. However, the players were not assumed to make
any mutual agreements about future actions. Is the exchange of information
essential for coordination? Rather, it seems essential to have a set of network
rules - a protocol - by which each node has to abide.

Stigmergy Stigmergy is a form of indirect communication through the
environment encountered in natural systems in the form of scent trails. By
making temporary or permanent changes to the environment, each node can
send delayed signals to other nodes that will later come to the same location.
In such a scenario, the envionment is thus dynamic [47] rather than static
and is sometimes referred to as a smart environment.

2.2.4 Mixed Initiative

When no single controller has a global overview over the whole system,
several controllers are likely to be in charge simultaneously.

What is Initiative? In the centralized control paradigm, both decision
making and information are centralized and each system change is thus ini-
tiated by the centralized controller. In distributed control, system changes
may be initiated by any of the nodes, a system quality denoted mixed ini-
tiative. To picture the notion of initiative and how it can switch between
nodes, we may use a ball game such as soccer as an analogy. At any given
moment, one player has the ball - from a dynamic point of view, that player
has more influence than the others on the current development of the game
and can be seen as having the dynamic initiative.

Parallel Initiative Continuing this analogy, should there be just one ball
or several? Should each player be able to simultaneously handle only one
or several initiatives? Is it better to have established rules that foresee
most possible situations and conflicts that can occur or it is sufficient to let
each player do what is best from his perspective? It seems clear that the
latter alternative is not a realistic option at least when one wants system
performance at the margins of the system capability. Initiatives in parallel
may be present either to increase performance or as a redundancy to ensure
robustness. How much redundancy is necessary and how is it related to
robustness?

18



2.2.5 Adaptivity

With no central controller, mutual adaptation is necessary to avoid conflict
or system collapse.

Intelligent System, Smart Gadget Although there may be many ways
of defining an intelligent system, adaptivity is a property likely to be part of
most such definitions. The words intelligent and smart are both encountered
in cooperative control but in slightly different contexts - the word intelligent
usually refers to an entire system which adapts to a range of signals in a
complex but purposeful way whereas the word smart as a rule describes
a concrete object that efficiently and quite directly reacts to one or a few
signals by adaptation.

Adaptivity and Learning Adaptivity and learning are two overlapping
notions for directed and purposeful change performed on-line. The term
learning, used in artificial intelligence, is wide and typically applies to robot
or softbot scenarios whereas the notion of adaptivity, preferred in control
theory, originally denoted simple mechanisms for on-line parameter changes.
Adaptivity is an essential property of a distributed system, but to hardwire
adaptivity into a network one faces several challenges. Even when there is
only one learner, it is important to focus on the goal - sometimes, several
goals may be pursued simultaneously, but at other times, two goals may
be mutually exclusive so that a split focus may lead to a zero net result.
When the system is made up of many learners, the number of potential
such conflicts rises dramatically. Not only do the learners have to take
changing system goals into account, they also have to adapt to possible
structure changes and flaws in the network itself, since other learners may
make mistakes or learners may be added or lost.

Evolution The notion of evolution implies a long-term adaptation at the
system level rather than at both the system level and the individual level and
may typically involve several generations of nodes and a selective pressure.

Emergence and Self-Organization Emergent properties of a dynamic
system are properties that may not initially be present but arise with time
as as a natural outcome of the system dynamics itself. Emergence was
originally mostly studied with heuristic methods in artificial intelligence,
but lately, the topic has attracted attention in control theory where the aim
is to prove emergence mathematically [9]. The notion of self-organization is
closely related to the issue of emergence to which it adds the idea of purpose
- the properties emerging in a given situation should not be random ones,
but the ones most useful in that particular situation.
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2.2.6 Differentiation

Differentiation transforms a homogeneous system into a heterogeneous one,
composed of nodes that are temporarily or permanently specialized to fill
a particular set of functions. When the capacities of at least some nodes
overlap, we have a reconfigurable system, since those nodes can switch roles
with each other.

Efficiency If a system is composed of identical units, it is easy to get an
overview from any perspective of the available network resources. While
this may not be as easy in a differentiated system, if for a given task an
optimal or sub-optimal role allocation can be found, the system may operate
very efficiently. By being able to reconfigure easily, a less advanced but
differentiated network may thus be able to simulate a homogeneous non-
reconfigurable network where all nodes are equally advanced.

Polymorphism Reconfigurability allows the system to show polymor-
phism both at the global level and at the individual level, since not all
functional roles may have to be filled at the same time and different role
allocations at the individual level may give different system properties. A
polymorphous individual unit can fill more than one functional role or as-
sume more than one shape or color; likewise, a polymorphous system can
change its appearance, size or some other essential property.

Modularity Reconfigurability may also permit the system to be modular
at the global level as well as at the individual level - the system may tem-
porarily split into subsystems or modules that are later rejoined to form the
original system. Thus, as each individual node may be composed of detach-
able modules - picture a mechatronic unit made up of separable functional
parts - the whole system can split and merge.

Reconfiguration The two main components of reconfiguration control
are configuration keeping and switching from one configuration into another
- both parts give rise to a number of questions. Given that the system is in
a configuration, are the units collectively responsible for keeping the config-
uration or are some more responsible than others? Do their responsibilities
overlap or are they separated?

The issue of switching deals with initiative, which was discussed in the
previous section. Can anyone initialize a reconfiguration or only some units?
How is the initialization signaled to the other units? How are simulta-
neous and conflicting initializations avoided? How does one prevent noise
from causing an initialization? Reconfiguration control certainly raises many
questions and is the topic of this thesis.
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2.3 Reconfiguration Control

In this section, we motivate the study of reconfiguration control in dis-
tributed control and comment on the choice of the term configuration in
this context.

2.3.1 Term from Molecular Chemistry

In molecular chemistry, the term configuration is used to distinguish molecules
of the same substance that differ only in the relative positions of some atoms.
The distinction between these forms is made because it corresponds to a
functional difference - the geometrical diversity of the two types of molecule
gives them different properties at the macroscopic level. A simple example
is the cis- and trans-configurations of 1,2-dichlorine cyclopropane shown in
figure (2.1). To the left, we see the cis-version where the chlorine atoms are
situated on the same side of the plane formed by the carbon ring whereas in
the trans-version to the right, the chlorine atoms are situated on opposite
sides.

Indeed, the field of chemistry also provides examples of both reversible
and irreversible reconfigurations as molecules react and form new substances.
Furthermore, from physics we know the reversible reconfigurations of sub-
stances that appear in different phases as solids, liquids, gases or plasma as
a function of temperature and pressure.

. oy O a4 H
H + H H ‘F cl
H H

Figure 2.1: Cis-form of a 1,2-dichlorine cyclopropane molecule to the left,
trans-form to the right.

2.3.2 Analogy in Distributed Control

Inspired by the use of the term configuration in the molecular chemistry
setting cited above, we propose to use the same term to denote distinct sets
of relative positions of nodes in a network. While the term formation refers
to a spatial relative positioning of mechatronic units and has the connotation
of order, the term configuration applies also to other contexts than spatial
ones and fits networks of any size.

2.3.3 Motivation

What motivates our choice of reconfiguration control for a research topic?
The potential for reconfiguration is a major key to the superior flexibility

21



and robustness of distributed systems over centralized systems - the study of
reconfiguration control can thus be motivated from an application-oriented
point of view as a major issue to tackle in order to make the distributed
control paradigm fully operable. The study of reconfiguration control is also
motivated from a theoretical point of view since it is a well delimited subject
in distributed control that yet incorporates many of the essential theoretical
issues related to the distributed paradigm.

2.3.4 Reconfiguration Examples

To illustrate the practical use of reconfiguration control, we provide some
examples below of reconfigurations in different applications.

Robotics Mobile robots of similar size and shape that can form recon-
figurable clusters are of particular interest for manipulation and handling
tasks [22] in the industry - one particular case is the handling of lamps for
providing light. Robots for cleaning or clearing large areas are another ap-
plication that may often involve operation in unsafe environments; if some
robots are likely to be lost, reconfigurations that allow new robots to assume
the places of the lost ones are essential.

Aerospace Small satellites forming rings [35, 46] of different radii can
serve as distributed instruments such as telescopes. These instruments also
have the benefit of being disposable since they can be reconfigured into
dissolution as their final configuration after a completed mission. Another
important application is the collective navigation in formations of fleets of
small unmanned vehicles [26], which may form elastic mobile fences around
ships or other travelling vehicles to protect them against intruders.

Computer Agents Role allocation [14, 22] among simulated computer
agents forming a team as illustrated in robotic soccer is yet another relevant
application area. As soon as there is some differentiation among players, dif-
ferent role allocations may make an important difference in the team perfor-
mance. Since very dynamic domains may require frequent reconfigurations
for optimality, efficient reconfiguration control may prove quite valuable.

MEMS Microelectromechanical systems (MEMS) for space applications
would involve thousands of micro- or nanosatellites, passive or active, that
could form a torus or a shell of varying radii around Earth and also be
dissolved after a completed mission [36].
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Chapter 3

Reconfiguration Control

Reconfiguration control is an emerging field in distributed control which
deals with keeping a distributed system in one of a set of desired structures
and making it switch between them in a controlled manner. As noted above,
the choice of the term configuration was inspired by the analogous notion
in molecular chemistry. Below, we propose definitions of the notions of con-
figuration and reconfiguration, suggest classifications, comment on previous
work and point at a set of central research questions in reconfiguration con-
trol.

3.1 Definitions

In the molecular chemistry setting referred to above, we saw that different
configurations were distinguished by different relative positions of the con-
stitutive parts. Wishing to extend the same principle to any distributed
system, we formulate this idea mathematically in this section and propose
definitions of the notions of configuration and reconfiguration.

3.1.1 Node Level

At any time t, each node k, k = 1,..., N, is associated with a position z¥(¢)
in a space X to which we refer as the node space - this position may indeed
be the physical location of the node but may also correspond to something
else, such as an activity level. The vector of ordered node positions z'(t),
22(t),... will be denoted x(t). The configuration is an emergent network
quality and a result of the relative movements of the nodes in the node
space.

3.1.2 Configuration

We propose the following definition of the notion of configuration:
Definition: a configuration C is a set of vectors x € X" that satisfy the
configuration specific constraint fc(x) € Fo, where fc may be a vector and
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Fc is a set. Thus, C = {x € X" | fc(x) € F¢}. The configurations are
chosen disjoint; the set C(t) formed by all possible configurations at time ¢
is denoted the configuration space.

Any vector x € X such that fc(x) ¢ Fc for any C is said to be part of
the null configuration.

3.1.3 Reconfiguration

We then use the proposed notion of configuration to define the concept of a
reconfiguration:

Definition: a reconfiguration is a system switch in time At < #,,4, from a
position x € C to a position x € €', where C and C are distinct configu-
rations and ¢,,,; is an application specific constant.

3.1.4 Motivation

We chose the above definition of a configuration to obtain a precise yet
general expression that could allow for one global property being expressed
in several alternative ways at the individual level and for possible indifference
to rotations or permutations.

3.1.5 Example

We next give a simple example of a reconfiguring system of N = 2 nodes that
can appear in two configurations in addition to the null configuration. Each
node is associated with a node position z'(¢) and z2(¢) at time ¢; the nodes
are considered to be in configuration Ccjese if the distance |z!(t) — 2%(t)] <
Lumin and in configuration Cpisgant if |21 (2) — 22(t)| > Limaz-

1

Thus, in this case, fo(x) = |z! — 22| is a scalar and

FCClose = {y| 0 S y S me} Whereas
FCDistant = {y| y Z Lmax}

3.2 Reconfiguration Classification

In this section, we suggest a classification of reconfigurations into three dif-
ferent classes - permutation reconfigurations, system reconfigurations and
structure reconfigurations - based on the network level at which the change
takes place. Fach class is briefly presented and illustrated with examples.

3.2.1 Permutation Reconfiguration

We will use the term permutation reconfiguration to denote the reconfig-
uration from a configuration C' € C(t) to a configuration C' € C(t + At)
such that €’ is a permutation of C. This is thus a reconfiguration only at
the individual level, not at the system level, and corresponds to a change

24



of roles between nodes. From a practical point of view, this reconfiguration
class is important by letting the units take turns at occupying particularly
stressful positions. Permutation reconfigurations may also be called for by
an incomplete failure in an individual node, which is reallocated to a dif-
ferent position but remains part of the network. A mechatronic example
would be a leader-follower navigation, where one unit at a time occupies the
fuel-consuming lead position and the units replace each other at this posi-
tion during navigation. A simple example of a permutation reconfiguration
is shown in figure (3.1).

eeeeeeeeeeee Configuration Five Vehicles: Configuration

Figure 3.1: Example of a permutation reconfiguration where nodes 3 and 5
switch positions while all other nodes remain at their original positions.

3.2.2 System Reconfiguration

The term system reconfiguration will be used to denote the reconfiguration
from a configuration C' € C(¢) to a configuration C' € C(t + At) such that
C' is not a permutation of C and C € C(t+ At), C' € C(t). Thus, a system
reconfiguration is a reconfiguration both at the individual level and at the
system level that occurs while the system hardware remains the same. This
is the standard type of reconfiguration where the network goes through a
reversible change to adapt by choosing a more appropriate configuration.
For example, the small network below might change shapes from a V-shape
into an I-shape in order to be able to pass through a narrow passage - such
a system reconfiguration in shown in figure (3.2).

3.2.3 Structure Reconfiguration

A structure reconfiguration, finally, denotes a reconfiguration from a config-
uration C' € C(t) to a configuration C' € C(t+ At) such that C ¢ C(t+ At)
or C' ¢ C(t). This class of reconfigurations corresponds to a change of the
very structure of the network, such as the addition or loss of nodes or the
impairment of a node so that it can no longer fill any of the available roles.
This type of reconfiguration requires more adaptivity of the network than
the previous two configuration classes since in this case, we are dealing with
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Five Vehicles: Configuraon g Venicles: Confi iquration

Figure 3.2: Example of a system reconfiguration from a V-shape to an I-
shape.

more uncertainty - it may be difficult to predict at the design stage every
possible structure change. This question is also closely linked to the notion
of reconfiguration robustness, to be defined and discussed below, and to the
question of irreversible reconfigurations and the change of the configuration
space over time. Examples of structure reconfigurations are, in an economic
network, the entrance of a new competitor in the market and, in a mecha-
tronic setting, the addition of another squadron of vehicles sent out to join
a fleet already on location. In figure (3.3), we see an example of a structure
reconfiguration consisting in the addition of nodes to a network.

Five Vehicles: Configuration Seven Veicles: Configuration

Figure 3.3: Example of a structure reconfiguration, where two nodes are
added to an existing network.
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3.3 Configuration Space

The configuration space at time ¢ is the set C'(¢) of possible configurations
including the null configuration. In this section, we point at some criteria
for classifying configuration spaces.

3.3.1 Node Space

The relative positions making up a configuration may be physical positions,
points in time or have yet some other physical interpretation such as the
individual degree of activity - this may influence some properties of the
configuration space, such as its cardinality.

3.3.2 Static or Dynamic

Is the configuration space static over time or does it vary with time? If so,
can one distinguish some structure such as periodicity in its variation? Many
biological systems are tuned to the various rhythms associated with Earth
such as the change of tides, light, temperature and magnetic field strength.
Any system designed to operate in a periodically changing environment may
need to compensate for these changes or adapt to them.

In a periodic configuration space, a known set of configurations recurs
at a fixed rhythm. A qualitatively different situation is when a novel con-
figuration is added to the set of configurations - it is a design problem to
decide whether such additions will be necessary or not.

3.3.3 Conditional Configurations

Are some configuration options conditional upon the choice of previous con-
figurations? Thinking of the set of configurations and possible reconfigu-
rations as a set of nodes and the edges connecting them, respectively, this
can be reformulated as the question of whether the set of configurations is
a clique or not.

What are the advantages and disadvantages of having conditional con-
figurations? Should particularly aggressive configurations be conditional
ones, preceded by one and only one preparatory configuration to enhance
synchronization and robustness?

3.3.4 Absorbing Configurations

From the application field of nanosatellite control comes the notion of dis-
posable systems, that is, reconfigurable distributed systems whose last con-
figuration is dispersal - a reconfiguration into an absorbing configuration is
thus an irreversible reconfiguration. Are there other less obvious examples
of absorbing configurations than dispersal? One such example might be the
deadlock - a dynamic dead alley - where all nodes either freeze altogether
or get caught in a loop.
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3.4 Additional Issues

In the introductory section on distributed systems, we pointed at a number
of new concepts associated with the distributed paradigm such as mixed
initiative and limited information - next, we will see how these concepts
apply to the particular field of reconfiguration control.

Reconfiguration Initiation

In reconfiguration control, mixed initiative occurs above all in the initiation
of a reconfiguration from one configuration into another - the mechanism
for reconfiguration initiation needs to be designed so that reconfigurations
are not started unintentionally and so that intentional reconfigurations are
yet performed swiftly.

While above we used the analogy of which player has the ball to illustrate
the notion of initiative in a network, in the particular case of reconfiguration
control we may aim at seeing a reconfiguration initiation as the pushing of
a switch button accessible to all nodes.

3.4.1 Heterogeneity

As noted above, the presence of differentiation or heterogeneity among nodes
makes efficient reconfiguration control particularly important since by suc-
cessive reconfigurations, the network can adapt to changing exterior con-
ditions and simulate a homogeneous network where the nodes are more
advanced.

The heterogeneity on which we will focus concerns constraints on the
positions that particular nodes can occupy in the node space - some nodes
may perform optimally in particular intervals or not operate at all in others.

3.4.2 References

By references, we mean pieces of information available to some or all nodes
about the network state such as the positions of key nodes - in formation
control, the notion of leaders and virtual leaders is often used. One approach
is to have only spatial distribution and let all information be shared between
the nodes. However, we will address the situation where there is both spa-
tial distribution and distribution of information - indeed, many researchers
reserve the term distributed control for distributed systems of limited infor-
mation and see networks of spatially distributed controllers that share all
information as a version of centralized control.

3.4.3 Robustness

It is intuitively clear that the issue of robustness is most important in recon-
figuration control - a configuration must not be dissolved because of noise
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or the failure of one or a few nodes. However, to be able to evaluate and
compare the robustness of reconfiguring systems we first need to define the
very notion of robustness in this context - in doing so, we will be inspired
by the definition of robustness in other control settings.

3.5 Previous Work

Previous work in reconfiguration control has often been targeted at specific
applications such as motion control of mechatronic clusters or computer
agent interaction and offers solutions designed specifically for the chosen
setting. The quite diverse fields of formation control, role allocation, multi-
agent learning and swarm control are presented below as the major fields of
previous work in reconfiguration control.

3.5.1 Formation Keeping

Formation keeping is a control application relevant in robotics and artificial
intelligence, where groups of mobile robots are made to move in coordination
so as to keep their relative positions constant; formation control is also
becoming an important application field in aerospace control, especially for
satellite control and unmanned aerial vehicle navigation [26].

Potential Field Formation keeping is often achieved by creating local
potential fields for each unit based on the positions of all the other units,
thus forcing each unit into its particular position in the formation - the
formation is often symmetric so that each unit can use the same calculations
[36]. However, each unit must have complete information of the positions of
the other units and, furthermore, the initial positions of all units must not be
too distant from the formation positions. The positioning into formation can
be seen as a reconfiguration from an unstructured state into a well-defined
configuration.

Leader-Follower Another major approach for formation keeping is the
leader-follower approach [46, 50], briefly introduced above, where some units
have more information than others and act as leaders. The other units aim
to imitate the leaders or use them as reference points to which they should
keep a fixed distance. This approach presents several centralized features
and can be seen as a distributed control approach only if there are several
leaders or if the units take turns at being leaders. As was the case above,
this approach also requires the followers to have precise information about
the position and possibly also the velocity of the leader.

Reconfiguration Reconfigurations between two ordered structures have
been the focus of only a few studies [13], which have mainly addressed ro-
tations - since the formation positions are often a local rather than a global

29



equilibrium, an intermediate shift of positions may be needed before a dif-
ferent potential field may be applied. The inverse problem of concealing
involontary cluster reconfigurations in a given reference frame has been ad-
dressed in order to make a system look invariant from Earth [12].

3.5.2 Multiagent Learning

Multiagent learning is a young discipline in artificial intelligence that seeks
to generalize results from single-agent learning to the multiagent case [14, 32,
42]. Whereas convergence has been proven in the single-agent reinforcement
learning case, analogous proofs are as a rule not available in the multiagent
case.

Iterative Games The multiagent learning problem is often posed as the
problem of attaining any of the equilibriums in an iterative game by learn-
ing from the payoffs obtained. The games may be simple zero-sum games,
such as the game of matching pennies or rock-paper-scissors, or more chal-
lenging general-sum games. The question of Pareto optimality may also be
addressed if there are more than one equilibrium.

The multiagent learning problem can be interpreted as a reconfiguration
from an unstructured state to an equilibrium state. Since the issue is rather
to reach any equilibrium than switching between equilibria, reconfigurations
between structured states have hitherto been less often considered in this
setting.

3.5.3 Role Allocation

The problem of allocating heterogeneous agents to static or dynamic func-
tional roles in a multiagent system has long been studied in distributed
artificial intelligence and tested in laboratory applications such as robotic
soccer or collective box-pushing.

Fitness-Based Awuctions Auction algorithms are often used, with or
without a centralized broker or coordinator, to allocate a set of tasks to
a multiagent system. The agents bid for tasks based on their particular
functional profile and on whether they are currrently idle or busy [22] - if
there is no broker, bids are broadcast and all agents are presumed honest. In
this context, agents sometimes do switch tasks in synchronization, as when
robotic soccer players switch roles in the game or take turns playing. How-
ever, in general, the switching is asynchronous, thus resulting in overlapping
system reconfigurations of a different and somewhat more general nature.
Negotation can take time but may, if implemented efficiently, be quite rapid.
However, it may be more difficult to reduce the fault tolerance necessary for
auction-based role allocation to work.
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Allocation by Learning An alternative to auctions and negotation is
learning, which was described above for general and sometimes quite simple
configuration assumption. Heuristic multiagent learning has successfully
been applied to role allocation problems such as elevator control [14].

3.5.4 Swarm Theory

Swarm theory was established in the late nineteen eighties by Beni [4] as a
field in artifical intelligence, growing out of the work of von Neumann on
cellular automata and inspired by complex natural systems made up of large
numbers of seemingly simple cells or organisms such as bees or ants [7].

Flocking The first approaches in this field were heuristic and aimed at
flocking, that is, keeping a static or moving distributed system coherent
[41]. Each individual unit, referred to as a boid, used a small number of
elementary rules to move based on the current positions and orientations of
its closest neighbors, variables thus assumed to be available to each unit. The
problem of keeping a swarm coherent can indeed be seen as a configuration
keeping problem.

Proving Cohesion In the last few years, there has been a renewed interest
in approaching swarm problems mathematically in order to prove that the
application of a set of local rules will lead to the emergence of a desired
system property such as cohesion. Passino assumed an attraction between
nodes at long distances and a repulsion at short distances to prove swarm
coherence and to show that the nodes would ultimately come to a stop
within the swarm [20, 21].

3.5.5 Robustness

Robustness in distributed control deals with the effect of inaccuracies at the
individual level on the system performance. Since reconfiguration control is
still an emerging part of distributed control, existing studies deal more with
designing algorithms for configuration keeping and reconfiguration than with
investigating how the divergence from these algorithms affects the collective
performance.

Node Failure As noted in the introduction, one of the major strengths
of the distributed paradigm is the inherent robustness given by a parallel
structure; this applies particularly to robustness against individual node
failure. Role allocation problems often take into account the possibility of
mistakes at the individual level - with an auction approach that uses time-
limited contracts, an unfinished task can be put on the market again once
detected. Mclnnes [35] considers the possibility of total node failure in his
local potential function for formation keeping - the network will adjust to
the loss of individual nodes. Little attention is given to incomplete node
failure, where a node is still part of the network but with altered dynamics
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- such a situation can be challenging since the node may cause prolonged
system disturbance.

Communication Failure How can a tradeoff be made between the ro-
bustness offered by a protocol and the flexibility given by on-line commu-
nication? A conservative approach consists in always taking the worst-case
scenario into account and leaving margins large enough even for the worst
possible case. However, this approach goes against the distributed paradigm
by using the system at only a fraction of its potential and by not taking ad-
vantage of the robustness to individual node failure - provided it is rare
enough, the worst-case scenario does not have to be safe.

3.6 Research Questions

What are the main questions that we wish to address in reconfiguration
control?

e Generality Can we find a general algorithm for reconfiguration con-
trol that would be valid in any of the diverse fields of application cited
above?

e Coordination How can one assure that all units are coordinated al-
though none of them knows the current position of any of the other
units? What is the difference between coordination and cooperation?

e Stability How can we assure that a configuration is kept once it has
been attained?

e Initiative What is the best system architecture for mixed initiative
control? How can one prevent deadlocks and avoid too many initiatives
at a time? Are some hierarchical features necessary or is it possible to
use a purely parallel architecture?

e Structure Change How should changes in the network structure such
as the addition or subtraction of nodes or partial failure in one node
be handled?

e Heterogeneity Can node heterogeneity be incorporated in a frame-
work originally designed for a homogeneous system with marginal
changes?

e Robustness How should robustness be defined qualitatively in recon-
figuration control? What are good quantitative measures of robustness
in this context?
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Chapter 4

A Game Theoretic Approach

In this section, we present a unified game theoretic approach to reconfig-
uration control. After a brief overview of our proposed approach, we give
a short introduction to game theory and motivate why a game theoretic
approach is appropriate. Our proposed approach is then described in detail
and two particular scenarios are introduced in which the proposed algorithm
is implemented.

4.1 Approach in Brief

We propose a game theoretic approach to reconfiguration control which in-
terprets node positions as strategies, identifies each configuration with the
unique equilibrium of a game and sees reconfigurations as switches from one
game to another.

In this framework, permutation reconfigurations are seen as the exchange
of payoff functions between individual players whereas system reconfigura-
tions correspond to changes of game parameters for all players. Structure
reconfigurations, finally, are interpreted as changes of the very format of the
payoff functions, concerning such issues as the number of players N. The
proposed framework also accommodates heteogeneous players by designing
special payoff functions for such players.

4.2 Introduction to Game Theory

Below, we will first describe what defines a game and then introduce the
central equilibrium notion in game theory, the Nash equilibrium, and one of
its refinements, the ESS.

4.2.1 Defining the Game

Players, Strategies and Payoffs A game is defined by the number
N > 1 of players taking part, by the strategies available to the players and
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by the payoffs given to each player for each possible combination of these
strategies [37, 40].

Support Each player chooses his strategy p in the set P(A) of probability
distributions over the action space A. The support of a strategy p is denoted
R(p) and defined as {i € A | p; > 0}, where p(-) is the probability of choosing
a particular action.

Pure or Mixed? If |R(p)| =1, p is known as a pure strategy, whereas if
this is not the case, the strategy is denoted a mixed strategy. If R(p) = A,
p is known as a totally mixed strategy.

4.2.2 Nash Equilibrium

Definition A Nash equilibrium of an N-player game of action space A is
defined as a strategy vector p = (p',...,p") where for each k = 1,..., N,
p¥ is a probability distribution over A and the following condition holds for
the expected payoff Ei(-;...) to each player k = 1,..., N, ¢ being any other

available strategy:

Ep(p*;pt, . p" T pP T L pN) > Er(gipt, 0 M L pY) (4)

Here, Ej(p*;p',..pF 1, pF*1, .., p") denotes the expected payoff to player k
playing strategy p* if the other players i # k play p'.

Strict or Weak? If the inequality (4.1) is strict for all k, the Nash
equilibrium is a strict one whereas otherwise, it is denoted weak.

Number of? FEach game for which | = |A| < oo has at least one Nash
equilibrium [38].

4.2.3 ESS

Evolutionarily Stable Strategy KESS stands for Evolutionarily Stable
Strategy and is a refinement of the Nash equilibrium designed as the central
equilibrium notion of evolutionary game theory [33]; it is usually defined for
two-player games.

Refinement of Nash Equilibrium The ESS refines the Nash equilibrium
by requiring symmetry, that is, that both players play the same strategy at
equilibrium. Furthermore, for a weak and symmetric Nash equilibrium to
be an ESS, the payoff to a player who plays the equilibrium strategy against
any other strategy has to be strictly larger than the payoff that the player
would have received, had he played the alternative strategy against itself.

Definition An ESS of a two-player game of action space A is defined as a
strategy vector p = (p', p?) where p' = p? = p is a probability distribution
over A and either of the following conditions holds for the expected payoffs

34



E(-, -), g being any other available strategy:

E(p,p) > E(q,p) or (4.2)

E(p,p) = E(q,p) and E(p,q) > E(q,q). (4.3)

Number of? A finite game can have no ESS, one ESS or several ESS’s.
However, if an ESS is totally mixed, it is the unique ESS of the game, as we
will see below.

Game of Hawks and Doves As an illustration of the two equilibrium
notions above, the matrix Ggp below defines a two-player, two-action game
which has three Nash equilibria: p; ={(1,0),(0,1)}, p2 ={(0,1),(1,0)} and
p3 ={(0.5,0.5),(0.5,0.5)}. Only the last one is also an ESS.

Playerl/Player2 Actionl Action2
Gup = Actionl (-1,-1) (2,0)
Action2 (0,2) (1,1)

This classic game is known as the game of Hawks and Doves with the two
available pure strategies corresponding to aggressive and defensive behav-
iors, respectively.
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4.2.4 Information

To illustrate how the set of equilibria of a game can be transformed by the
information available to the players, we introduce information in the form
of an asymmetry in the simple game of Hawks and Doves above.

Let us assume that at the beginning of each game, each player is assigned
either of two possible roles i € I = {1,2}, that they both always have
different roles in a given game and that the probability of either player being
assigned a particular role in any game is 0.5. The strategies of each player
will now be conditional on the information obtained at the beginning of
the game. In fact, the set of Nash equilibria will now be enlarged to include
two conditional, symmetric equilibria ps ={p4(-|7), p4(-]7)} and p5 ={p5(-|?),
ps(-|i)}, where

pa(jli) = 1if i = j and py(j|i) = 0 if 7 # j whereas
ps(jli) = 0 if i = j and ps(jli) = 1 i i £ .

Indeed, both ps and ps are not only Nash equilibria but also ESS’s. The
addition of information to a game can only extend the set of equilibria, never
reduce it, since it is always possible to disregard the added information.
However, if it is assumed that no player chooses to ignore the additional
information, the addition of information corresponds to a transformation
rather than an extension of the set of equilibria.

The described extension of the game of Hawks and Doves also has a
biological interpretation with the asymmetric roles being interpreted as those
of the owner of a territory and of an invader, respectively. Strategy pu4,
consisting in being aggressive as the owner and defensive as the invader, is
known as the Bourgeois strategy whereas its opposite, strategy ps, may be
denoted the Anti-Bourgeois strategy.

4.3 Our Approach

We will now describe our proposed approach where each configuration corre-
sponds to the unique equilibrium of a particular game and a reconfiguration
is seen as a switch of games.

4.3.1 Configuration as Unique Equilibrium

We propose to see the node space of the individual nodes as a strategy space
and to interpret each node position z*(t) as the strategy played by the node
in a game. The set of configurations will correspond to a set of games of
unique equilibria, where in each case the equilibrium strategies will be the
desired relative node positions of the corresponding configuration. The sys-
tem dynamics, finally, will be chosen to have this unique and parametrized
equilibrium as the global attractor regardless of the parameter values.
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4.3.2 Reconfiguration as Switch of Games

With configurations corresponding to the unique equilibria of different games,
a reconfiguration will be interpreted as a switch of games and implemented
as a switch of game parameters. While the game parameters will in the
standard case correspond to the entries of a game matrix, we note that, as
seen above, the addition of information to a game may be another valid way
of transforming the set of equilibria of a game, if it is assumed that no player
chooses to ignore the added information.

4.3.3 Games of Unique Equilibria

In many recent multiagent learning studies, a particular game is chosen and
the convergence of the strategies to any member of the set of equilibria of
that particular game is studied. Here, instead, a set of games is constructed
that fits a particular equilibrium pattern and rather than switching between
different equilibria of the same game, players switch between the unique
equilibria of different games. For this approach to be efficient, it is necessary
to identify classes of games and equilibrium notions such that each class has
one and only one equilibrium of the chosen type and such that all the games
in the class can be described in a compact and uniform way.

4.3.4 Two Scenarios

To illustrate our proposed approach, we will introduce two different scenarios
in which our approach is implemented. The first scenario, referred to as
Replicator learning, applies to swarms, where the aim is to make precise
statments about the dynamics of the average position of a large number
of simple and similar units. The second scenario, denoted Cluster, is a
traditional formation control framework where a cluster of vehicles travels
in formation to visit a set of waypoints while avoiding collisions. Before
describing the scenarios in detail, we give a motivation for a game theoretic
approach to reconfiguration control.

4.4 Motivating a Game Theoretic Approach

What motivates a game theoretic approach to reconfiguration control?

Scalability As a distributed approach that makes each node responsible
for a large part of its trajectory planning in the node space, a game theoretic
approach scales well. The number of computations required per node is as a
rule constant, whereas the memory required per node may grow as O(N?),
where N is the number of nodes. However, this memory requirement may
be overcome by the addition of a blackboard table accessible to all nodes.

Adaptivity The fact that each node is responsible for a large part of its
trajectory planning in the node space makes it easier to further decouple
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nodes without having to recompute the trajectories of all nodes, as might
be necessary in a centralized approach. The game theoretic approach also
adapts well to extended communication between nodes, since this merely
adds equilibria to the game - the optimality of the added equilibria depends
on the information exchanged. By assuming that no player chooses to ignore
the added information and by seeing the added equilibria as equivalent, the
same algorithm can still be applied.

Generality The game theoretic approach can be applied in any reconfig-
uration control setting and thus offers a unified theoretical framework for a
range of different distributed control problems.

Robustness If robustness is measured as the worst-case configuration
deviation caused by failure in one controller, then the centralized single-
controller approach seems quite vulnerable since a controller failure may
cause a complete system failure. Are all distributed algorithms then nec-
essarily more robust? No, since some purely local distributed algorithms
that assign the role of leaders to some nodes and the role of followers to the
majority of nodes may suffer from a similar sensitivity: a follower failure is
negligible whereas a leader failure may lead to a local squadron failure that
can have at least temporary repercussions in the whole system.

However, the game theoretic approach assigns to each agent a local role in
a global framework, thus in fact adding a centralized aspect to an otherwise
distributed structure. Whereas in a purely local distributed framework, a
local node failure will in the best case be equivalent to a local structure
failure, the global aspect of the game theoretic framework makes it possible
for other nodes to compensate for the local failure and accommodate it in
a locally different but globally equivalent structure, thus cancelling out the
failure.
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Chapter 5

Replicator Learning

In this section, we describe the first of the two reconfiguration scenarios
to which we propose to apply our game theoretic approach. We give a
game theoretic interpretation of a trajectory planning problem and introduce
replicator learning as a generalization of the replicator dynamics that can
under certain conditions be shown to converge to the same equilibria as the
single-population replicator dynamics; these equilibria are then matched to
waypoints to visit. Finally, we show how this framework adapts to the
presence of heterogeneous nodes and illustrate our results with simulations.

5.1 Problem Statement

Our system is composed of N > 1 units k = 1, ..., N, each associated at any
time ¢t = 0,1,2,... with a current position z¥(t) € R™, m < oo, in a given
m-ball B™ of arbitrary but finite radius R in the common coordinate system
X. These positions are updated according to the same equation, where f(-)
is some function and G(t) is a set of parameters:

oh(t+1) = 2F(t) + f(2F(t), 2_k(t), G(1)), where
Z_p(t) = 57 Yizr @' (1) and Z_1(t) is an estimate of Z_(#).
Given a set of waypoints y1, yo, ..., yapr € B, we wish to make the average
position z(t) = + ch\;l zF(t) visit these waypoints in order although each
unit is informed only of its own position in X and knows neither the positions

of the other units nor the waypoints. Our task is thus to find a function
f(-), an estimate T_(¢) and a parameter set G(t) that make this possible.

5.1.1 Problem Motivation

Why is this an interesting problem? Firstly, it is a simple model for studying
cooperation and coordination in a network of N units trying to achieve a
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collective goal, in this case positioning themselves relative to each other in
such a way that the average position coincides with the current waypoint.

Secondly, the most direct application scenario is a search scenario, where
a current estimate of the location of a lost object is available and corresponds
to the current waypoint. In this scenario, not only does one want the average
position of the searching units to coincide with the estimated location of the
lost object; to maximize the observation area of the collective, one also wants
to spread out the units around the waypoint.

We will comment more on the choice of the name replicator learning
for this algorithm below; what is learned by each unit in this scenario is a
position relative to the other units that makes the average position coincide
with the desired waypoint. Thus, the whole network of IV units collectively
learns an average position.

5.1.2 Network Definition

The network is in this scenario composed by the N mobile units, who adapt
to each other’s positions to ensure that they collectively achieve an average
position situated at the current waypoint.

5.1.3 Configuration Definition

In this scenario, the configurations are the set of possible waypoints, that
it, the set of possible values assumed by the average position of the swarm,
whereas a system reconfiguration is the switch from one such waypoint to
another. We note that in this context, the configuration space is uncountable
and we have many degrees of freedom for each possible configuration, that
is, each configuration at the system level corresponds to a large number of
possible combinations of node positions.

Using the configuration definition introduced above, fc(x) is here a

scalar and defined as
1 N
fo(x) = N Z ¥,

k=1
with Fo = {yc}, or if some imperfection is tolerated,
Fo={y € X| |y —yc| < €} for some € > 0.

5.1.4 Proposed Approach

Our proposed approach is based on results from game theory and population
dynamics. The replicator dynamics is a common type of population dynam-
ics used to describe the relative propagation of different phenotypes, the
relative fitness of which is given in the form of a game matrix representing a
symmetric bimatrix game. By phenotype, we understand a distinct version
of a given trait or physical property; the relative fitness of two phenotypes
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indicates how well the two phenotypes would do relative to each other in a
competition for some relevant asset such as food, space or water.

Replicator Dynamics and ESS The individual population members are
seen as discrete replicators that propagate a fixed phenotype, thus giving rise
to a hybrid system which is adaptive at the collective, continuous level but
static at the individual, discrete level. The ESS, introduced above, is known
to be an attractor in the replicator dynamics. Under certain conditions, a
game can be shown to have one and only one ESS, which will be the global
attractor in the replicator dynamics.

Mapping Positions to Compositions We propose to map the positions
of the N distributed units to the compositions of N disjoint populations
growing according to the replicator dynamics. The dynamics of the average
composition will then be seen to correspond to a modified replicator dy-
namics which under certain conditions converges to the same equilibrium as
the replicator dynamics - this is shown analytically for any matrix for the
case | = 2 and for a particular choice of G for [ > 2. By further mapping
each waypoint to the unique ESS of a different game and choosing the set
of parameters G(t) to be the current game matrix, the average position will
converge to the desired waypoint, while a switch of waypoints will correspond
to a switch of game matrices G(t). Thus, we will have a bijective mapping
between positions in a simplex in Euclidean space and compositions in a
probability simplex.

By imposing an upper bound vyax on |f(+)], our problem can be seen as
a motion control problem where z*(¢) is the physical position of a mobile
unit £ moving in discrete time at speed

lZF (¢ + 1) — 2% (8)] = |f (=" (t), Z_1(£), G(t))| < Vimax

for a system-specific constant vy,,x. How, then, do we propose to give a game
theoretic interpretation to the described trajectory planning problem?

Game Theoretic Interpretation of Trajectory Planning Problem
The set of orthogonal axes of motion, parallel to the coordinate axes, will
correspond to the game theoretic notion of an action space, which in pop-
ulation dynamics is represented by the set of distinct phenotypes. Thus,
the physical position of each mobile unit will be interpreted as its current
strategy in a game. The random interactions between units will consist in
each unit £ indicating a choice of a coordinate axis which indirectly reflects
its current position. Each unit £ then uses the opponent’s choice to esti-
mate the average position of the other units Z ;(¢) and calculates f(-) as
a function of this estimate z_j(t), of its own position 2*(¢) and of the cost
parameters G(t). Before describing our proposed approach in detail, we will
introduce some notions from game theory and population dynamics that
will be needed in the presentation of our approach.
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5.2 Replicator Dynamics

The replicator equations [45] describe the relative propagation with time
of a finite number of phenotypes in a population of replicators, given the
assumption that each subpopulation representing a phenotype grows expo-
nentially at a rate proportional to the fitness of the phenotype in the current
population. While originally formulated as a biological model, the replicator
dynamics also fits a game theoretic framework, as we will see below.

In this section, we give the replicator equations in continuous and dis-
crete time, point at their biological and game theoretic interpretations and
comment on their convergence properties.

5.2.1 Single-Population Replicator Dynamics

The standard version of the replicator dynamics, usually called just the
replicator dynamics, is more correctly referred to as the single-population
replicator dynamics, since in this model all replicators belong to the same
population. We first present this standard form of the replicator dynamics
and then a generalization in the form of the multi-population replicator
dynamics.

Single-Population
Replicator Dynamics

One Population

2-Player Game

Figure 5.1: The single-population replicator dynamics.

Continuous Replicator Dynamics

The single-population replicator dynamics was originally derived by Taylor
and Jonker [45] in continuous time, describing the relative propagation of
the phenotypes in a population where the generation gap dt — 0. As the
discrete version of the equations is presented below, we may find that a finite
generation gap 6t > 0 makes the link with the modelled biological problem
even clearer.

pi(t) = E(e; —p(t),p(t))pi(t), i =1,..,1, for t >0 (5.3)
where p(t) = [p1 (t)...pl(t)]T, Zﬁ-:lpi(t) =1,
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e; is the unit vector along axis ¢
and E(z,y) = 7 Gy, where G is an [ x [ matrix.

In this setting, the variables p; 1 = 1, ...,1 will be interpreted as the propor-
tions of phenotypes ¢ in the population whereas the matrix G is a fitness
matrix where element G';; indicates how well an individual of phenotype :
would do in an encounter with an individual of phenotype j.

Deriving the Equations

The continuous equations can be derived [52] in a straightforward way from
the simple original assumptions on the growth rate and the large number of
population members.

General Case !l < co Assuming that the initial population at time ¢ = 0 is
composed of n(0) individuals, we let the number of individuals of phenotype
i at any time ¢ > 0 be denoted n;(¢) and the total number of individuals be
n(t) = 22:1 ni(t). If the proportion of individuals of phenotype i at time ¢
is pi(t), it is thus clear that

ni(t) = n(t)pi(t). (5.4)

Assuming that the relative fitness is measured as the number of offspring
per time unit and that n(¢) is so large that the weak law of large numbers
can be applied, we get equation (5.5), whereas derivation with respect to
time on both sides of equation (5.4) gives equation (5.6).

ni(t) = E(e;, p(t))ni(t) (5.5)
ni(t) = n(t)pi(t) + n(t)pi(t) (5.6)
Since, by equation 5.6, n(t)p;(t) = n;(t) — n(t)p;(t) = {eq. 5.4, 5.5 }
= E(ei,p(t)) n(t)pi(t) — (32, E(ej,p(t)) n;(t)) pi(t)

= n(t)E(ei, p(t)) pi(t) — n(t)E(p(t), p(t)) pi(t)), we have

n(t)pi(t) = n(t)E(ei, p(t))pi(t) — n(t) E(p(t), p(t))pi(t). (5.7)
Dividing by n(t) on both sides, we get the replicator equations:
pi(t) = (E(e;, p(t)) — E(p(t),p(t))pi(t),i =1, ..., (5.8)

Using the abbreviations p; for p;(t) and p for p(t), an equivalent expression
is for all pairs {(4,7) | 1,7 € {1,2,...,1}, i # j}:
P

d p;
dtp; = (E(ei,p) — E(ejap))p—j (5.9)
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This can be seen since

dpi_pi_pi
dtp;  pj p;

=L (Blew,p)pi — Bp.p)ps) — 2 (Blej p)p; — E(p,p)py)
by pj
—(B(es,p) — B(ej,p) 2. (5.10)
by

Special Case [ =2 When there are only two phenotypes, the equations
in (5.8) can be simplified as follows since pa(t) =1 — p;():

lt) = (Bler,p(0) = B0 () = (1= mopm [1 —1]6 |, 0
= pl(t)(l —pP1 (t))AIQ(t), where A12(t) = E(61 - eg,p(t)). (511)

Conservation Properties

If the initial values p;(0), i = 1,...,1 satisfy the constraints
0<pi(0)<l,i=1,..,10 and Zﬁ-:lpi(O) = 1, then the replicator dynamics
will automatically guarantee that the same constraints are satisfied by the
variables p;(t), i = 1,...,1 for any ¢ > 0. This can be seen since

l l
> Bilt) =Y _(Blei,p(t) — E(p(t),p()pi(t) = 0 (5.12)

=1 =1

and, if p;(t) = 0 or p;(t) =1,
pi(t) = (E(ei, p(t)) — E(p(t), p(t)))pi(t) = 0. (5.13)

Discete Time

The discrete replicator dynamics is given by the following equations:
dpi(t) = pi(t + 1) — pi(t) = 0tE(e; — p(t),p(t))pi(t), i =1,...1, (5.14)
for t =jdt, j=0,1,2,...
where p(t) = [p1 (). ()", iy pilt) = 1,
e; is the unit vector along axis ¢
and E(z,y) = 7 Gy, where G is an [ x [ matrix.

As we go from discrete dynamics to continuous, from a biological point of
view there is no longer a synchronized generation gap; likewise, in a game
theoretic interpretation, the iterated game is played continuously.
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Biological Interpretation

In the original, biological interpretation of the equations, p(t) is the pheno-
type composition at time ¢ of a population of individuals competing for some
scarce resource in pairwise encounters - a phenotype is a distinct version of
a given trait relevant to an individual’s success in such a competition.

Each individual expresses one and only one phenotype during its entire
life span and passes this phenotype on to all its offspring.

The [ x | matrix G indicates the expected outcomes of the pairwise
encounters as fitness points - the expected fitness of an individual of phe-
notype ¢ encountering an individual of phenotype j will thus be given as
entry G;j = eiTGej of matrix G. Likewise, the expected fitness of an indi-
vidual of phenotype ¢ matched against a randomly picked opponent from
the population will be Zé-:l el'Ge;p;(t) = el Gp(t).

At each time t = jdt, j = 0,1,2,..., the subpopulations represented
by the different phenotypes replicate at a rate proportional to their fitness
relative to the average fitness. The replication is thus synchronized and
occurs in discrete time with a generation gap dt.

Game Theoretic Interpretation

The replicator equations can also be interpreted as the strategy dynamics
of an iterated game where, in fact, there is only one collective player - the
population - but where each individual faces an infinite number of potential
opponents chosen at random - all the other population members.

Each phenotype can be interpreted as a pure strategy - from a game
theoretic point of view, the number [ of phenotypes thus corresponds to a
finite action space of actions 1 = 1,2, ..., 1.

The population composition or state p(¢) at time ¢ can be seen as a
collective strategy played by the population as a whole; from the perspective
of each individual population member who will be randomly matched against
any other member of the population, this is the expected opponent strategy.

The fitness matrix G is now instead seen as a payoff matrix.

From a game theoretic point of view, all individuals are thus fixed strate-
gists, always playing the same pure strategy or, in some studies, the same
mixed strategy. This means that the system is non-adaptive at the individ-
ual level and adaptive only at the collective level.
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5.2.2 Multi-Population Replicator Dynamics

In the multi-population version of the replicator dynamics, the iterative
game is an N-player game played by N populations [52]. Whereas in the
single-population replicator dynamics, there was only one collective strategy
p(t), the analogy between populations and players is here more straightfor-
ward since there are now not only one but N > 1 players or populations
with their respective population states or strategies p*(t), k = 1,..., N.

General Multi-Population Case

Introducing the notation p—*(t) for the strategy vector excluding strategy

p ) = [p'(t) P2t .. PN PP .. V()] (5.15)

the N-population replicator dynamics can be written as

pE(t) = (Bles,p™"(t)) = B@*(8),p " ())pf ()6 = 1,...,1 (5.16)

fort>0,i=1,...,land k=1, ..., N,

where p*(t) = [pf (1)..0F (1)]", Sl_, (1) = 1,

e; is the unit vector along axis ¢
_ l [
and E(p'(t),p ' (t)) = Y5 =1 -+ 2oiy—1 Gir.in P, (0P, ()01 (2),

where G is an [V matrix.

Multi-Population
Replicator Dynamics

OO C
N/ e

Figure 5.2: The multi-population replicator dynamics.

0O 0O

N-Player Game
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Two-Population Case

A special case is when N = 2, which can be interpreted as individuals
from either population being matched only with individuals from the other
population rather than with other members of their own population. The
equations for this case are given below with the notation p(t) = p'(¢) and

q(t) = p*(1).

t),qt))pi(t),i =1,...,1 (5.17)
t),p(t))qi(t),i=1,....0 for t >0

pi(t) = (E(ei, q(t)) — E(p
4i(t) = (E(ei, p(t)) — E(q

where p(t) = [p1(t)..;(t)]", S, p(t) = 1,
q(t) = g1 (t).q(®)]T, Si_y qt) =1,

e; is the unit vector along axis ¢

(
(

and E(z,y) = 7 Gy, where G is an [ x [ matrix.

Conservation Properties

The multi-population replicator dynamics has the same conservation prop-
erties as the single-population version, since

! !
Y bk =Y (Blei,p (1) = BG"(0),p *(0))pf(£) =0 (5.18)
i=1 i=1
and, if p¥(t) = 0 or pF(t) =1,

pr(t) = (B(e,p () — B@"(8),p " (1)))pF (1) = 0. (5.19)

Biological Interpretation

The biological interpretation of the multi-population replicator dynamics
differs from the single-population version in two respects.

Firstly, it is assumed that all individuals encounter individuals from a
different population than their own, that is, the relative propagation of a
phenotype in a given population depends on how well the phenotype does
relative to one or several exterior populations.

Secondly, individuals are generally no longer matched pairwise but in
groups of N individuals, one from each population.

Game Theoretic Interpretation

The analogy between the multi-population replicator dynamics and an iter-
ative game is more straightforward than for the single-population case, since
each population £ = 1,..., N can be seen as a player with current strategy
pk(t) taking part in an N-player game rather than one player playing the
game against himself.
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5.2.3 Equilibrium Properties

The ESS [33] was introduced above as a refinement of the Nash equilibrium -
the ESS is the central equilibrium notion in the single-population replicator
dynamics since all ESS’s can be shown to be attractors in this standard form
of the replicator dynamics [15, 52]. This and some other properties of the
ESS needed for our further discussion are presented below.

Totally Mixed ESS Unique

As we saw above, a finite game may have no ESS, one ESS or several ESS’s;
however, if an ESS has full support, it is the unique ESS of the game.
To prove this uniqueness property which will be important in our further
discussion, the following two lemmas and definitions are needed [15, 52].

Definition: Best Response The best response by player k to a strategy
vector p = (p',...,p") is the set of strategies ¢* € P(A) such that

q* = argmax, Ey(q;p*, ...,p" L, pF*L, . pY). From the definition, we see
that a Nash equilibrium is a best response to itself.

Definition: Support The support R(p) of a strategy p € P(A) is defined
as R(p) ={i,i =1,...,1 |p; > 0}.

Lemma 1 Any pure strategy included in the support of a best response
g* to a strategy vector p is also a best response to p [15].

Proof The proof is by contradiction.

Assuming Ej(q¢*;p',...,p" 1, pF*1, .. pY) = 4* and that there exists at
least one a € R(q*) such that Ei(p%p',...,p" 1 pF L, ..,p"Y) < v*, where
R(p®) = {a}, then one could increase the payoff by modifying ¢* so that the
probability of choosing action a would be zero. Since v* was the maximum
payoff, this is a contradiction.

Definition S(p) £ {a € A | E(5",p) = E(p,p)}, R(7"*) = {a}.

Assuming p and ¢ are two distinct ESS’s of the same game, the following
holds:

Lemma 2 R(p) ¢ S(q) and R(q) ¢ S(p) [6, 10, 48]

Proof The proof is by contradiction:
If R(q) C S(p), then E(q,p) = E(p,p) by definition.
Since p is an ESS, we must also have F(p,q) > E(q, q).

Since ¢ is also an ESS, either
(i) E(q,q) > E(p,q) or (ii) E(q,q) = E(p,q) and E(q,p) > E(p,p).
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We now have:
E(q,q) > E(p,q) and E(q,q) < E(p,q), thus contradiction.

This leads to the following theorem:

Theorem 1 A totally mixed ESS is unique [15, 52, 6, 10, 48].

Proof If p is an ESS and totally mixed, S(p) = A by lemma 1. The
theorem follows from lemma 2 since if ¢ is any other ESS, we have
R(q) ¢ S(p) = A, which is impossible.

5.2.4 Convergence of Replicator Dynamics

What can be said of the replicator dynamics as the time ¢ — 0o? Indeed,
at least for [ = 2 and N = 2, both the single-population and the multi-
population versions converge, but with qualitatively different behaviors.

Single-Population Replicator Dynamics

As stated above, every ESS is an attractor in the single-population replicator
dynamics; furthermore, if a game has a totally mixed ESS, that is the unique
attractor. To prove this, the following lemma will be needed.

Lemma 3 If a strategy p is an ESS of a game represented by its game
matrix G, there is a neighborhood B of p such that [15]

p G >n'GrVreB, m#p (5.20)

Proof For each strategy ¢ # p in the strategy space P(A) of probability
distributions over the action space A, we let

7e(q) = (1 — €)p + €q and define (5.21)
e(q) = sup{e > 0 | p" Gme(q) > ¢" Gme(q)} (5.22)
and €" = inf{e(q) | ¢ € P(A)}. (5.23)

Since p is an ESS, the set €(q) is non-empty for any g € P(A), ¢ # p.
This can be seen by fixing ¢ and analyzing the difference

A =pTGr(q) — ¢"'Gre(q) = (1 — €)(pT Gp — ¢T Gp) + e(pT Gq — ¢7 Gq).

If p"Gp > ¢ Gp, we can choose € > 0 small enough for A to be greater than
0.

If p"’Gp = q7 Gp, we know that p” Gq > ¢qT Gq and A will be greater than 0
for any 0 < e < 1.
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Since €(qg) is a continuous function and P(A) is a compact set, €* > 0.

We choose
B = {7.(q)|lq € P(A) and 0 < € < €*}. (5.24)
Since )
pTG'/TE(Q) > qTGﬂ—e(Q) V'/TE(Q) € B, (5'25)
we have

p' ' Gre(q) = (1 — )p” Gre(q) + ep” Gre(q)
(1 — e)p" Gre(q) + eqg" Gre(q) = me(q)" Gre(q). (5.26)

\Y

We let B be the neighborhood
B = {r € Bllp— | <minlp - me-(q)]}. (5.27)
Thus, B is a neighborhood of p that satisfies the desired constraint.

We can now prove the following theorem:

Theorem 2 Every ESS is an attractor in the replicator dynamics [52].

Proof We choose a neighborhood B,
B ={qe P(A)p"Gqg>q" Gq}; (5.28)

we know from lemma 3 that such a neighborhood exists.

Let p be the ESS and choose any g € B.

We will now show that the Kullback-Leibler distance D(p|q) is a Lyapunov
function for the ESS in the replicator dynamics [52].

[
pi .
D(plg) £ pi IOgj and D(plg) >0, D(plg) =0iff g=p.  (5.29)
(2

i=1
Also,

l

%D(MQ) =Y ni

=1
= —(E(p,q) — E(q,q)) <0 for ¢ € B by lemma 3.

. l
q(.]i == pi(Eei,q) — B(g,q))
' i=1

(5.30)
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As a corollary, we finally obtain that a totally mixed ESS is the unique
attractor:

Corollary 1 Every totally mixed ESS is a global attractor in the replicator
dynamics [52].

Proof Let p be the ESS and let ¢ € P(A) be any other strategy.
Since every pure strategy a € R(q) is a best response to p, we have

el Gp =~ for some v and each i. (5.31)
Thus,
! !
pP'Gp =) piv=> av=q"Gp. (5.32)

Since p is an ESS, we must have
pTGq > ¢ Gy. (5.33)

By theorem 2, p is a global attractor.

Multi-Population Replicator Dynamics

The typical dynamics of the multi-population replicator dynamics is qual-
itatively different from the single-population dynamics since interior Nash
equilibria typically are no longer attractors but saddle points [52]; instead,
the strategies converge to asymmetric Nash equilibria on the closure of the
strategy simplex - the equilibrium payoffs to the N populations or play-
ers will therefore also be asymmetric. In the game of Hawks and Doves
described above, the dynamics will converge to the ESS p3 in the single-
population case but to either of the asymmetric Nash equilibria p; or ps in
the two-population case of the multi-population replicator dynamics [52].

Discrete Time vs. Continuous Time

The convergence results derived for the continuous replicator equations carry
over almost unaltered for the discrete case; although it is possible to con-
struct degenerate matrices for which the replicator equations will converge
in the continuous case but not in the discrete case, convergence in both cases
can as a rule be obtained by translation of the matrix.
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5.3 Replicator Learning

After this introduction to the replicator dynamics, we will next introduce
a randomized generalization of the replicator dynamics which has traits of
both the single-population and the multi-population replicator dynamics;
this generalization will be referred to as replicator learning. While a learn-
ing algorithm in its own right, this algorithm will also be used to solve our
original problem. In this scenario, a set of N populations or players play an
iterated two-player game where at each step, the two players are selected
at random among the N potential players; the players selected obtain pay-
offs and update their strategies according to the two-population case of the
multi-population replicator dynamics. Our main objective is to study the
dynamics of the average player strategy as the number of players N — oo.

5.3.1 N Finite

Definitions

e Each player k = 1,..., N is associated with a strategy p*(t) € P(A) at
any time t.

e p(t,N) is the I-vector defined by p(t, N) = % > 6(p — p*(t)).

e K; is a random variable denoting the index of the first player chosen
to play the game at time ¢.

e J; is a random variable denoting the index of the second player chosen
to play the game at time t.

e ¢/t is a random variable taking its values in the set of unit vectors
{e1, €2, ..., e} with probabilities P(e;) = p*(t).

e (v is a positive constant.

At each time ¢ = 0,1,..., the player pair {k;, j;} is chosen at random
according to a uniform probability distribution over the set of distinct pairs
among N potential players and matched against each other. Each player
generates an action according to its current strategy, which is observed
by the other player. The players update their strategies as in the multi-
population replicator dynamics for the case N = 2. The time ¢ is then
advanced to t+ 1, two players k¢+1 and j;11 are chosen and the same update
procedure is repeated. We will next describe first the situation where N is
finite and then the case where N is infinite.
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Individual Dynamics At the individual level, the dynamics is described
as follows:

opKt(t) = pit(t + 1) — it (t) = aB(e; — p"*(t), e’ (O)pf(t)  (5.34)

The expected difference is, £ denoting expectation:

£(5p™t) = N—ZZZ £)"Ge'p] (1)pf ()

k= lj;ékz 1

ZZ D) G (BpF (1), i = 1, .1

k 1 j#k
where p/t(t) = [p**(£)..p"* (1)), Sio P (8) = 1,

where p”t(t) = [p{*(£)..p]* ()]T, b, pi* (1) = 1,

e; is the unit vector along axis ¢

ZIH

and E(z,y) = 7 Gy, where G is an [ x [ matrix.

We note that in a different version of the game, where players can also be
matched against themselves, the expected difference for the finite case would
instead be

11 N N .
ERE) = oy S0 D6 = pHO)T G (O (1) = 1,

Individual Conservation Properties

Each time player k is selected to play the game against another player j,
it updates its strategy as if it met a pure strategist population in the two-
population replicator dynamics; its strategy will thus always stay within the
strategy simplex.

[
D opk(t) = (E(ei,e’t) — E(p"(t),e”)pf (1) =0 (5.35)
=1 ]

and, if p¥(t) = 0 or pF(t) =1,
opi (t) = (Bles, ™) = B(p"(t),e”))pi () = 0. (5-36)

Local Feedback

It is possible to introduce local feedback by letting players play the game
against themselves, giving the local component

opf(t) = pR(t+1) = pii(t) = aB(e; — p"e (1), ™ ()P (1) (5.37)

This converges to the replicator dynamics as & — 0 and will speed up the
global convergence but give a different final configuration of the individual
players.
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Collective Dynamics from equation (5.34), we have that
dpi(t,N) = p;i(t + 1, N) — pi(t,N) = P;(t,N), (5.38)
where Pj(t, N) is the random variable

Py(t, N) = aB(e; — p"*(t),e” (1)) (t) (5.39)

)

— afe; — p" ()T G (DL (1), i =1, 0L

We now examine the expected values of the first and last terms of the ex-
pression in (5.39). For the first expression, we make the following three
notes:

Firstly,

£ (ael Gepl(t) = E(cF aG(e"pk (1)) (5.40)
1 N

oGl Sy S P )k 0)

k=1 j£k
N N

1 1 1 .
:ez‘TOlG(N ;(ﬁ + m)(zpj(t) —p"(t))pf (1)

£e") = o 3 S (0) (5.41)

Thirdly,
£k = v Sork() (542
Thus, we have
& (ac Gelpl! (1)) = acl Gplt, N)pr(t, N) + O(1) (589

For the second term in (21), we make the following two notes:
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Firstly,

E((") (t)aGepj (t)) (5.44)

= OO HaG(— S P (1) (5.45)

Secondly,
1
Jry _ k
E(e") = % S0 ph (5.46)
Thus,

E(—ap" (1)) Ge'tp{ (1) = —a((p(t, N))"B(t, N)i)Gp(t, N) + O(%)
(5.47)

Replicator Learning N Populations

OO0O00O
N/

2—-Player Game

Figure 5.3: Replicator learning.

95



Collective Conservation Properties

To show the conservation properties for replicator learning, we need the
following lemma:

Lemma 4 &, ((pi —pi)(pi —pi)) = — Zé;ﬁz Eu ((pi — pi)(pj — pj))

Proof
Eue((pi — Pi) (pi — Pi)) = Epy (pipi) — 5 (1) (5.48)
i) — Zgut(pipj) = pi(t)(1 - Zﬁj(t))
J#i J#i
pi — > Eucpipy) — i+ Y Di(t)p;(t) (5.49)
i i
Z gut p]))
J#i

We can now show

=1
—Zzﬁm — ;) E(ej,b(t))
i=1 j=1
—0+ZZEM — pj))E(ei, p(t))
7j=1:=1
={Lemma 4} =0 (5.50)

(5.51)
Also, if ﬁz(t) =0or ﬁl(t) =1, 5ut((pz' — ﬁi)(pj — ﬁ])) =0 Vi, 7, making
pi(t) = (E(ei,p(t)) — E(p(t), p(t)))pi(t) = 0. (5.52)

Thus, the collective strategy always stays within the strategy simplex.

We are interested in the case where N is large, which implies that o must
be small; it is therefore of interest to study the case where IV is infinite and
a — 0. However, let us first establish how results obtained for infinite N
link to our original scenario with random interactions in discrete time.
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Theorem 3 For each § > 0, 3 a > 0 sufficiently small and N sufficiently

large so that, if ¢ is the unique ESS,
=
. L = 2y <«
Jim sup - Zoﬁ(lq p(r, N)[) <6
T=

Proof Foreacht=0,1,2,..., let

Ly = D(qlp(t, N)).

Then
pi(t, N)
L1 = Zqz tl—i—l N)
il tN)

=- Z(h log(1 + aAi(t, N))

i

where {A;(¢, N)} is a random process defined as

N
1 1
Ai(t,N) = — N > ) (e — PP (1) Gel Ixe,—

Since 3 Cjy < oo such that A;(t, N) < Cpy, 3 C; > 0 such that
—log(1l + al(t,N)) < —al;(t,N) + C1a?
Thus,

E(Lipr — Lulp™(t),k = 1,.., N) < azqz i(t, N) + Cio?

We have
E(A(t, N)|pf( t),i=1,. z k=1,..,N)

PE(E)(es — 0" (6)TGp (1)
;% IO !

= (i — D) Gl N) + €l 1) + e (E)

for appropriately defined bounded processes €} (t) and €2 (#).

o7

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)



Thus, substituting this in the above equation, we have
E(Lip1 — Lilp"(t),k = 1,.., N) < C1o?

(la = o0 M) Golt, V) + a0+ S (5:60

2|2

)

If ¢ is the unique asymptotically stable ESS of G, we have a constant Cy > 0
such that for all £ = (&1, ...,§) such that ), & = 0, we have

¢1'Gq =0 and £1GE < —Cy¢)? (5.61)

Furthermore, under additional assumptions on G, namely that G can be
written as

where a; < 0,7 =1,...,] — 1 and aq; > 0, we have Zqie;-](t) < 0. Thus,

2

« C
E(Liyr — Lylp*(t),k = 1,...,N) < Cra” — N(02|q_l_)(ta N)J? - Wl)- (5.64)
Taking expectations on both sides of this inquality gives
1 «a
E(Lit1) = E(Ly) < Crafa+ 15) = CagzE(lg = p(t, N)IP). (5.65)

Since L; > 0 for all ¢, we have

t—1
0 < E(L(1) < E(Lo) + 1Crador + 153) = Coe 3 Elg —plt M) (5.66)
m=1

Thus,
1 =L 1 1
- -p < 2 — :
; ;05((1 p(r: N)IF) < &(Lo) + (Na+ ) (5.67)

Thus, if the number of players is large enough and the step size small
enough, then a stability result from the continuous time case with infinite
N carries over to our original scenario with random interactions in discrete
time.
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5.3.2 N Infinite
Definitions

e The random variable p;: Q@ — P(P(A)) denotes the probability that
a randomly chosen player has a certain strategy and takes its values
in the space of probability measures over P(A); uiv @ is its equivalent
when N is finite and « non-infinitesimal.

e p(t) is the l-vector defined by p;(t) = [ pidus, i =1,...,1.

We next study the convergence of the process {p¥(t),k = 1,...,N} as
a—0and N — oo.

We first study the limit @« — 0. The following result is the consequence
of a standard result from stochastic approximation literature, see theorem 1
on p.101 in [29]. To state the theorem we introduce the linearly interpolated
process {p*(t);k = 1,... N} defined as

tr) = (A T+ 0= S ) (56

(87 [0} [0} [0}

Theorem 4.1 The family of probability measures on C([0,00); P(A4)V)
(with the topology of uniform convergence) corresponding to the laws of
{p*(t);k = 1,..., N} parametrized by « is tight and every limit point of this
set as o — 0 has its support on the solutions of ODE

=72 Pilei—p") G (5.69)
J;ék

The theorem is applicable since the noise - 7 in this case - does not depend
on the state p¥ and since if |G| < oo,

(i) for each T < oo, p¥(e; — pF)TGp’ is a polynomial and the set
{supye [pf(m)(e; — p¥(m))"Gp?(m)], @ > 0, m > 0, ma < 7}
is uniformly integrable.

(ii) for each random variable p € P(A) and each 7 < oo, since p¥ (e;—p*)T Gp’
is continuous

lim E sup |pi(e; —p)TGPj —(pi+m)(e; — (p+ 7T))TGP”

m—00,0—0,a—0 |7|<6

= lim & sup |pi(e; — p)' Gp’ — pi(e; — p)" Gp’ + O(|x])| = 0

m—00,0—0,a—0 |7|<6

(iii) there are {n,} and a continuous function f(-) such that n, — oo and
8o 2 ang — 0 and for each p we have as &« — 0 and n — oo

e ot &R (pf (m) (e — p* () G (m) — £ (p);
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this is a weakened form of the weak law of large numbers.

We now want to study this family of ODE’s as N — oco. Since the
dimension of the ODE goes to infinity as N — oo, we define a trajectory in
P(P(A) associated with each N as follows:

1
pi (B) = N Y Liwes: (5.70)
K

For each subset B of mixed strategies, uiv "*(B) denotes the proportion of
the players using a strategy in B at time ¢. By first letting a — 0 and then
N — oo, we avoid the difficulty of assuring the tightness of a sequence in
an infinite dimensional space.

Theorem 4.2 The family of functions {u)Y; N = 1,..,} in C(]0, 00); P(P(A))
(with the topology of uniform convergence on compact intervals) is relatively
compact. Furthermore, any limit point of these functions p; satisfies the
ODE in weak form - for each f € C;°(P(4)),

d 0
i < fn>= [ E gonte=n"6 [autiiudan) G

Proof The relative compactness of {u; N = 1,...} follows from Ascoli
theorem [30].
Fix an f € C;°(P(A)). Then, for any ¢ > 0, we have

< Lo > = < fomg >= == (FF(®) — F(p*(0))). (5.72)

k

For each function p; in C([0, 00); P(P(A)), define another function in C([0, c0); P(P(A))

o ' 9
e(pe) =< fou >=<f,pg* > —/0 Za—g_pi(ei—p)TG/qus(dq)us(dp)d&

(5.73)
To prove the result, it is enough to prove that for any 7' > 0
lim supsup e (u) )| =0 (5.74)
N—o00 t<T

This is easy to prove since the right hand sides of equations (5.69) and (5.72)
are O(%).
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Finally, we can derive the dynamics of p(t) as follows:

. d
Since p;(t) = 7 < pt,pi > and

[1B = pto)pidie = [ 35705 - ppiGren(t)d
i k

:/Zpiajkpk(t)d,“t —/Zijpiijpk(t)dﬂt
P ik
=Y 5i®)Gpr(t) = Y D> pi)pi (1) Gpr(t)
P P

J

- Z Z Eue (pi — Pi(t)) (pj — Dj (1)) G jkDr (1)
Tk

=E(e; — p(t),5(t)) = Y Euc(pi — 5i(1)) (pj — §j (1)) Ele;, (1))
J

i=1,..1, fort >0 (5.75)

_ _ _ [
where p(t) = [p1(t)...1(1)]", Zizy Bi(t) =1,
e; is the unit vector along axis 1,

and E(z,y) = 7 Gy, where G is an [ x [ matrix.

5.3.3 Variance

Remembering the original desire to spread out the units as much as possible
in a search scenario, we are furthermore interested in the dynamics of the
variance of p;, expressed as

d ) .
— < e, (pi — pi)* > =< e, L(p?) > —2pip;

dt
= €., (2E(e; — p,p(t))p}) — 2pip;
(5.76)

In the replicator dynamics, the individual units are static pure strategists
which can be found at the corners of the simplex. In replicator learning, the
individual units are instead adaptive and move within the simplex; it would
be interesting to study the stability of the above equation for the evolution of
the variance, since in a search application one typically wishes this variance
to satisfy certain constraints, given an estimate of the probability of finding
the lost object in different areas.
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5.3.4 Replicator Learning vs. Replicator Dynamics

Before studying the stability, we will briefly compare replicator learning with
the replicator dynamics to make clear what is similar and what is different.

Different Matching As stated above, the matching used in replicator
learning is different from both the single-population replicator dynamics and
the general multi-population dynamics; it is best described as a randomized
version of the two-population multi-population dynamics.

Two Adaptive Levels In the single-population and multi-population ver-
sions of the replicator dynamics, the individuals are fixed strategists whereas
the collective strategies p¥(t), k = 1,..., N are adaptive. Thus, in the repli-
cator dynamics, the system is static at the individual level and adaptive
only at the collective level.

In replicator learning, we define a superstructure in the form of the
average strategy p(t), just like the phenotype composition of a population
was determined as the average phenotype of the individuals seen as fixed
and pure strategists. In this way, we obtain a two-layered framework with
adaptivity in both layers rather than in just one.

Variance The replicator learning dynamics will thus vary with the statis-
tics of the node positions. To illustrate this, we examine the two extreme
situations when the variance is maximal or minimal - in the former case,
the dynamics vanishes whereas in the latter case, the replicator learning
dynamics reduces to the replicator dynamics.

Maximal Variance If the variance is maximal and p(¢) is no longer re-
quired to be an interior point, the dynamics vanishes; however, we always
require 0 < p¥(#) < 0 which in turn ensures 0 < p(t) < 1.

For any i, £y, ((p; — P:)?) < ﬁz‘(l — Di)-

Also, for any 4, &,,((p;i — pl ZEM —Dj))-
J7#i

If €4, ((pi — §i)?) = Pi(1 — Pi), then &, ((p; — i) (p; — D)) = —P;pi Vi # i.

Thus, if £, ((pi — p:)?) < pi(1 — p;), we have:

Zgﬂt p]))ae]TGﬁ
—Zé’ut —pj))ael Gp + &, ((pi — pi)*) e Gp
J#
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:Zgut((m —Pz)(p p]))ae Gp — Zgﬂt pi)(pj —ﬁj))aeiTG’ﬁ

j#i J#i

= &u((pi — pi)(pj — p;))(ce] Gp — ae] Gp)
j#i

= (—p;pi)(ee] Gp — ae] Gp)
i#i

l
= (-pip;)(ee] Gp — ae] Gp)
j=1

[ [
=pi Z —pj)ae] Gp) + pi( > _ pjoe] Gp)

=pi(—p" aGp + piel aGp)

=e! aGpp; — pT aGppi,

which would make the expression in (31) zero.

Minimal Variance When the variance is zero, the second term in the
differential equation for replicator learning vanishes, leaving as a result the
replicator dynamics:

If £, ((pi — pi)?) = 0, then p¥ = p; Vk and we thus have Vj # i:
E ((pi = D) (pj — D7) = E, (Pipj) — PiDi = Euy (pj)Pi — Pibj = Pibj — PiPj = 0.

Alternative Formulae The replicator dynamics is as a rule encountered
in its standard formula as seen above (5.3); the replicator learning equations
introduced above generalize these equations by adding a second term to the
differential equations. However, to express the simliarities and differences
between the replicator dynamics and replicator learning in an even more
compact way, we will derive the following alternative formulae, which will
be used below in the stability proof for the general case when [ > 2:

op; = Zﬁiﬁin]‘, where Aij = ae;fFG’ﬁ — oze;-er and (5.79)
J#F

opi = Zé’ut (pipj)Aij, where A;; = ae] Gp — oze]TGp (5.80)
J#F
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These formulae are derived as follows for the replicator dynamics:

opi = (ei — p)" aGpp; = pive] Gp— Y _ pipjoe] Gp (5.81)
J
= pi(pL+ ... + p)ae] Gp— > pipjae] Gp
J
= prael Gp — prael Gp + Z;ﬁiﬁj(aeer’ﬁ - ae?G’ﬁ)
J#
= pipj(ae] Gp— ae] Gp) = > pip; Ay
j#i J#

And as follows for replicator learning;:

opi = (ei — )" aGpp;i — Y _ Eu((pi — Pi)(pj — pj))xe] Gp (5.82)
J
= piae; Gp szp] aGp); Zé’ut p]))(ae?Gp)
J
= pice] Gp— Y Eu((pi — ﬁz')(Pj — ;) + pipj)ae] Gp
J
= ﬁiozeiTGp - Z Euy (pipj)ae]TGﬁ
J
= pi(P1 + ... + D) el Gp — Z Euy (pipj)aeJTGﬁ
J
= (0} — € (0}))ae] Gp+ Y pidjae] Gp =Y Eu(pipj)ae] Gp
J#i J#i
= &, ((pi — D)%) oe] Gp+ Y _ pipjae] Gp— > Ey,(pipj)ae] Gp
J#i J#i
— ZSW p]))ae Gp + Zplp]ae Gp — ZS Pip;) ae; Tap
J#i J#i J#
=Y & — ;) + pibj)ae] Gp = &, (pipj)ae] Gp
J#i j#
= Eupipj)ae] Gp— aef Gp =" £, (pipj)Aij
J#i J#i

As we see, the replicator learning dynamics is similar to the replicator dy-
namics in so far as the expected product £, (p;p;) is similar to the product
of expectations p;p;. In general, £, (p;p;) will be smaller than p;5;, making
the dynamics of p; somewhat faster for the replicator dynamics, but if both
pi and p; are quite small, it is possible that &£, (p;p;) is instead the larger
of the two products, thus instead giving faster dynamics with replicator
learning.
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5.3.5 Convergence of Collective Dynamics

In this section, we will first look specifically at the case [ = 2 and find
that the Lyapunov function used to prove stability in the single-population
replicator dynamics is indeed a Lyapunov function for the replicator learning
dynamics as well. We will then show that for a particular choice of the game
matrix GG, this is also true for the general case if G has a totally mixed ESS.

Theorem 5.1 Every ESS ¢ is an attractor in the replicator learning dy-
namics for [ = 2.

Proof The Kullback-Leibler function D(q|p(t)),

D(qlp(t) Zqz log (5.83)

is a Lyapunov function, since
D(q|p(t)) = 0, D(q|p(t)) = 0 iff p(t) = q
and since, introducing the notation A;;(t) = E(e; — e;,p(1)),
we have

d, S —pi(t)

a2 = 2w g

2 2
-—) p_q(zt) ((B(es, p(t) = E@(), p(0))Di(t) = Y Eu((pi — 5i) (pj — ) Eej, 5(1)))
i=1 1 j=1

(1-q)
(1 =pi(t))

= — (i (0) (1 = () Ara(0)) + (BL(t) (1 — p1 () Ara(t))

— B ey — 1) (1 — 1) Dralt) + %m(pl )1 = ) A

= — (1 = p1(t)Arz(t) + (1 — q1)p1(£) Ara(t)
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~ Eue(p1 = p1)(p1 — p1))Asa(?)
p1(t)(1 —pi(t))

(1 (1 = p1(t) —p1(B)(1 — q1))

o Eullpr = p1) (o — ) )
e pl(lt)(ll—p11(t)) ) A B)@() - )
={&u ((pr —p1)(pr — p1)) <pr(H)(1 —pr(t))}

=1 Eu (01 —P1)(p1 — P1))
p1(t)(1 = pi(t))

|A12(t)(p1(t) — 1) = {Theorem 2} < 0

(5.84)

Theorem 5.2 For any totally mixed g € P(A), |A| =1 < oo, there is an
[ x I matrix G such that ¢ is an ESS of G and such that ¢ is the global
attractor in replicator learning.

Proof For each ¢ € P(A), |A| = [, there is an infinite number of | x [
matrices G that have ¢ as their unique ESS; we know that the set of ESS’s
of a matrix is invariant to the addition of the same constant c,4q to each
matrix element and to the multiplication of each matrix element by the same
positive constant cp,,;;. For each [ < oo, we have [(I — 1) degrees of freedom
in choosing G; we now fix the matrix pattern as follows:

G=|.. (5.85)

The elements a; are a function of the desired unique ESS ¢. For G to be
diagonally dominated (5.33), we have a; < 0,i=1,....,1 —1 and a; > 0. We
have (5.31)

ap
a;q;i +2a1q; = a1qr = q; = — (5.86)
7

Since ¢ is a probability distribution, we have

a(l - %) -1 (5.87)
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The ESS can now be obtained as a function of a; as follows:

H Qs .
q; = — inlj ) 7é l
Wiza; — 3 =1 Ujzma;
O sa;
q = el (5.88)
Wizia; — 3 m=1 Wjzma;
(5.89)

The time derivative of the Kullback-Leibler function %D(qkﬁ(t)) can be
expressed as a linear function of A;;(q;pi(t) — ¢ip;j(t)) with positive coeffi-
cients whether p(t) evolves according to the replicator dynamics or accord-
ing to replicator learning, as we will see next. Making use of our alternative
formulae for the replicator dynamics (5.81) and replicator learning (5.82),
respectively, and letting f;; = p;(¢)p;(t) in the replicator dynamics and
fij = €u (pipj) in replicator learning, we have

FPlP0) = =30 o
:_Z ql )fz]

=ZZAw (@ipi(t) — qipy (£)) —L

2 pi(0)p;()

= {(5.81), (5.82)}

(5.90)

We now turn our attention to the sign of the expression A;;(g;pi(t) —qip;(t)).
With our parametrization of the ESS in the entries of the matrix, we have
for 4,7 # 1
Aij(t)(g;pi(t) — aip;(t))
_ _ _ _ 1
= (aipi(t) — a;Pj (t))(_Hm;éjampi (t) + Hn#z’anpj (t)) —1
Wjza; = 3 inm1 Wjzma;
i j@m
-1
W0 = 3201 Wjzma;

= (aipi(t) — a;p;(t))(—aipi(t) + a;p;(t))

_ _ 1L, 5a
= —(aipi(t) — a;;(1))’ T
Wjriaj =3 =1 Wjzma;
-1
If [ is odd, Hm#’jam > 0 and Hjﬂaj — Z Hj;,gmaj > 0.
m=1
-1
If [ is even, Hm;,gi’jam < 0 and Hj#aj — Z Hj;,gmaj < 0. (591)
m=1
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If j =1, we have:

Ay () (@pi(t) — qipi(t))

= (aipi(t) + aipi(t)) M pmziampi (t) + Mpzianpi(t)) !

105 — Yoty Wjmay
i1 0m
ua; — Yoty izmay
i1 0m
I 2105 — Yoty ILjma;
-1
If [ is odd, sigam < 0 and Ijsa; — Y Mjspma; > 0.
m=1
-1
If [ is even, Hm#,lam > 0 and Hjﬂaj — Z Hj;,gmaj < 0. (5.92)

m=1

= (a;pi(t) + aipi(t)) (aipi(t) + aipi(t))

= (a;pi(t) + a;py(t))?

Thus, Aij(t)(qjﬁi(t) — qiﬁj(t)) <0 forall¢,j € {1, ...,l}, 1< 7.

Finally returning to equation (5.90), we see that with this choice of G,
we indeed have for replicator learning that

d B . q - _ . . ey fz
%D(q|p(t)) = _ ; ]T(t)pZ(t) = ; ; A (t)(qipi(t) — qip; (t))m <0
(5.93)
fiis — _ _E(pips)

since Vi #£ 5, 1 > 7, Aij(t)(q]'ﬁi(t) —qiﬁj(t)) < 0 and BB — pilbp; (O > 0.

5.3.6 Convergence of Individual Dynamics
We can finally make the following statement concerning the expected move-

ment of the individual units as ¢ — oo:

Corollary 2 If lim; o p(t) = ¢ where ¢ is a totally mixed ESS, then the
expected movement of each individual unit vanishes.

Proof By lemma 1, we have E(e;,q) = E(q,q) Vi = 1,...,] since ¢ is a
totally mixed Nash equilibrium. Thus,

lim [ E(e; — p, pe(p))pidpe

t—00

= lim [ E(e; — p,p(t))pidps

t—00

:/E(ei —p,q)pidp =0 (5.94)
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5.4 Control Theoretic Interpretation

Now returning to our original scenario, we will see how the individual strate-
gies p¥(t) can be interpreted as positions moving within the simplex.

5.4.1 Proposed Algorithm

We now use the notions presented above to describe our proposed approach
in detail, starting by the case where there is only one waypoint ¢, where the
m-ball B™ is the largest m-ball having its center at the centroid p¢ of the
simplex Sy, delimited by the hyperplanes p; > 0 Vi =1,...,m, >./* pp <1
and B™ is contained within S, - we will refer to this particular m-ball as
Bg*. We will then show how the algorithm for this particular case can be
generalized to other m-balls and to sets of waypoints.

Idea In Brief

As we saw above, for any [ < oo it is possible to construct an Ix/ game that
has a totally mixed and thus unique ESS p. Furthermore, this ESS will be
the global attractor in the replicator dynamics, as was also shown above.
Thus, as long as the fraction p; of any allowed phenotype i was initially
nonzero, the composition of the population will approach p as t — oc.

If we see our units as a set of N populations growing acording to the
replicator dynamics and assume that an individual from any population k& =
1,..., N is equally likely to be matched against an individual from any of the
other populations, we have N coupled units that update their compositions
p* in the same way.

Since Vk, 22:1 pf = 1, each p* has | — 1 degrees of freedom. Letting
[ — 1 = m, our approach consists in mapping the position z*(t) of each unit
k to the composition p*(t) of population k& and to map the waypoint y to the
totally mixed ESS p of the game matrix defining the relative fitness. Our
choice of Bj* lets us interpret z* both as a position in Byt C R™ and as a
probability distribution over an action space A of cardinality | = m + 1, as
we will see below.

Position and Composition

Each position z¥ € BJ* C R™ can be mapped to a composition p¥ € R+ by
the following mapping h(-): p¥ = 2¥ifi =1,2,...,mandpf, ., =1-37" zF.
We use the term composition instead of probability distribution to stress the
analogy with the composition of a population.

Since |p(+)| < C|G|, for a positive constant C' < oo, by choosing G such
that |G| is small enough one can ensure that indeeed |f ()| < vmax-
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Local Information

Each unit knows only its own current position, not the position of any other
unit or the waypoints. However, to estimate the average position of the
other units, some information exchange with the other units is necessary -
we will allow random interactions between units to occur according to the
following protocol: at any time ¢, two units are selected at random and
matched against each other in a game represented by its game matrix G(t).
G(t) is constructed to have the composition p = h(y) as its unique and
totally mixed ESS - the reason for this choice will be given below. Each unit
k selected uses its current composition p¥(t) = h(z*(t)) to select an action
of index 7 and observes the action of index j chosen by the other unit. If
this is interpreted as a game, the resulting payoff can be looked up as entry
G(%,7) in the game matrix.

To describe this possible information exchange, we will introduce the
random variable I*(¢) to denote the information received by unit & at time
t. If unit k is matched against another unit at time ¢, I*(¢) will be set to
4, the index of the action chosen by the opponent; otherwise, I*(¢) will be
given a null value 0 to indicate that no information was received. At any
time ¢, the outcome of I¥(¢) depends on whether unit  is matched against
another unit and on the current compositions of the other units. We will use
the variable i*() to denote the outcome of I*(t) and, if i*(¢) # 0, denote
by ﬁik(t) the pure strategy described by ﬁzk(t) = 1if i = i*(t), ﬁzk(t) =0
otherwise.

Local Algorithm

For each unit k, the algorithm is based on the following approximation of
the replicator dynamics in discrete time:

pE(t+1) = (L+E(es, 7" O)—E(p* (1), 5" O)pl(t) = (1+(e;—p*(£)) T G5 O)pl (1)

or, equivalently for all pairs {(4,7) | 4,5 € {1,2,...,l}, i # j}:

t
t)

~—

k k k
pit+1)  pi(t) ik (1) ik (1) Pi (
[ — 1 + E ei,pl _ E e‘,pl [

{
J
= (1+ fi (" () =

(5.95)

3

When a unit is not matched against another unit, no update takes place, so
we let f;;(0) = 0. If unit k is indeed matched against another unit, we let

fi(IF(t)) = G(i, T°(t)) — G(j, T*(1)).
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The algorithm is thus as follows:
o Get i*(t).
e Update p¥(t 4 1)
so that for all pairs {(7,7) | i,7 € {1,2,...,1}, i # j}:

DD — (14 fi5(4(1)) %

l k _
P D) o and >, pi(t+1)=1.

oo

~

e Update zF(t +1) = A1 (pF(t + 1)).

Assuming i¥(¢) = j and using the short notation Gj; for G(i, §), this amounts
to solving a system of linear equations to get p¥(¢ 4+ 1) and applying h~1(-)
to obtain z*(¢ 4 1).

The system of linear equations is:

kit +1 k(¢
e BRI R
ph(t+1) N0
%Hn””%f%%%

E (41 Lt
pl_li(l p ) =(1+Gl71j—GU)pl7()
I_Zizlpi(t+1)

(
t

Since pk(t) = h(z*
pE(t+1) = A(t)p"(
sparse vector.

From a local point of view, the algorithm aims at adapting the composi-
tion p*(¢) to maximize the expected payoff. The average composition of the
other units is estimated as the pure strategy corresponding to always playing
the action of index j chosen by the current opponent. Thus, the problem of
choosing a control to update one’s current position is transformed into an
estimation problem [54].

As noted above, if the initial values p¥(0), i = 1,...,1, k = 1,..., N satisfy
the constraints 0 < pf(0) < 1 and 2221 p¥(0) = 1, then the replicator dy-
namics assures that the same constraints are satisfied by the variables pf(t),
1=1,..,01, k=1,...,N for all ¢ > 0. However, in a discrete time version
implemented in a finite precision system, small errors may be introduced
and one should therefore check that indeed 0 < p¥(¢) < 1 for all ¢ > 0.

t)) and G;; are known, this can be reformulated as
) + B(t) where A(t) is a sparse matrix and B(t) is a
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Generalization

How does the algorithm adapt to the case when B™ # B{" and when there
are more than just one waypoint y?

Different m-ball If B™ # Bj*, we will choose the mapping h(-) such as
to give p¥(t) = Zmak(t) + p¢ for i = 1,...,m and
ph=1=3"p%t), 0 < pl(t) <1 and S pi(t) = 1, where Ry, is a
normalization constant and R is the radius of the ball B™.

In the general case as in the special case presented above, by choosing
G such that |G| is small enough one can ensure that indeeed |f(-)| < Umax,
since |p(+)| < C|G]|, for a positive constant C' < oo.

Sets of Waypoints If we are dealing with a set of waypoints y1,ys, ..., ypr
rather than with just one single waypoint y, the modification needed will
be to use a different matrix G; for each waypoint y; and to switch game
matrices as one waypoint has been reached and it is time to move to the
next one.

5.4.2 High-Level Control

From the perspective of the individual node, the control applied is thus a
function of an estimate of the current average strategy [54]; as seen above,
the crude estimate used is the pure strategy - or direction of motion - cor-
responding to the action chosen by the opponent in the game played.

This individual control assures that the collective goal of reaching the
waypoint will be achieved; the algorithm can therefore be seen as a high-
level control that leaves open the option of adding further individual control
as seen in the heterogeneous case, further described below, to accommodate
individual preferences in trajectories or individual end points. Thus, indi-
vidual nodes still are at some liberty to choose components of the function
f() introduced in the problem statement at the beginning of the chapter.

The essential part of this high-level control is thus in choosing a matrix
G that has as its unique ESS the equilibrium corresponding to the desired
waypoint; for any | < oo and any interior ESS, such a matrix G can easily
be constructed by solving an underconstrained system of linear equations.
Through the choice of G, a collective reference trajectory is thus generated.

5.4.3 What Is Learned?

In the introduction to the chapter, we briefly commented on the name repli-
cator learning and what was actually learned by the individual units and
by the system as a whole, respectively. From a game theoretic perspective,
it is again the game theoretic equilibrium that is learned by the collective
as a whole since the average straegy will correspond to the ESS. As noted
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above, from a motion control point of view, the units learn how to mutu-
ally adapt their positions relative to each other so as to make the average
position coincide with the desired waypoint.

Remembering that replicator learning could be seen as a generalization
of the two-population version of the multi-population replicator dynamics,
we get a clearer picture of how this adaptation works. In the two-population
replicator dynamics, the only attractors are asymmetric Nash equilibria in
which one population chooses an aggressive strategy that maximizes its pay-
off and the other population opts for a defensive strategy to minimize its
losses.

In our scenario, the players will typically encounter different opponents
each time the game is played and take a step towards one of the asymmetric
Nash equilibria, that is, towards becoming an aggressive or defensive player,
depending on the matching.

This mutual adaptation may be seen as a self-organization of the units so
that their average position coincides with a desired point; we note that with
the replicator dynamics, where the individual units are static, all individual
units would be situated permanently at the corners of the strategy simplex
whereas in our case, they move within the simplex until the desired collective
structure has been reached.

5.4.4 Relevant Applications

The most direct application of this scenario is a collective search for a lost
object, where an estimate is available of the position of the object. Assuming
each unit can observe points within a ball of a certain radius rys around it,
one wants these observation fields to cover as large an area as possible and
therefore wants to spread out the units as much as possible over the area,
where the lost object is most likely to be found.

Replicator Learning

G Replicator Dynamics 7 H,

(E(p,P))

Figure 5.4: High-level control interpretation of the replicator learning.

73



5.5 Heterogeneity

If some units perform optimally within a particular interval in the node
space, can we modify the given framework to ensure that not only does the
average position converge to the current waypoint, but that in addition,
those units associated with optimal intervals converge towards points in
the respective intervals, provided that a feasible solution exists? Below, we
present a modification of the algorithm that achieves this.

Two Objectives The added constraint of making sure that the hetero-
geneous nodes converge to their optimal points results in the system now
having two simultaneous objectives, namely

e The average position should converge to the current waypoint

e The individual positions of the heterogeneous nodes should converge
to points within their optimal operating intervals.

We propose to let the heterogeneous nodes themselves assure their conver-
gence to their optimal intervals whereas the other nodes take care of the
first and original objective, the convergence of the average position to the
current waypoint. This is done by keeping the same interface as before but
using different matrices for homogeneous and heterogeneous nodes.

Same Interface, Different Matrices We propose to use the same in-
terface as before between units but add an alternative set of game matrices
H* that each has the preferred point of unit k as its unique equilibrium.
If a set of points is preferred rather than just one point, the point set will
be assumed to be a simplex and H* will be the weighted sum of the matri-
ces H*1,H"2 ..., which have the simplex vertices as their respective unique
equilibria.

Heterogeneous Nodes Each heterogeneous node k£ will use the matrix
HF instead of the current game matrix G and will ignore the action chosen
by its opponent in each matching; instead, it will use its own current com-
position p¥(t) to generate a ficticious action which will replace the action
chosen by the opponent in the algorithm. Why is this? In fact, in this way,
node k will simulate the replicator dynamics driven by the game matrix H¥,
which, as shown above, is proven to make the composition - in this case, p*
- converge to the ESS of HF, in this case, the optimal operating point.

In the case where a set of points is preferred rather than just one point,
node k will simulate a weighted sum of replicator dynamics and will converge
to a weighted average of the ESS’s of the matrices used.

With this approach, unit k£ will thus disregard the collective goal of
reaching the waypoint and focus entirely on attaining a point within its
optimal interval. However, by making unit k£ take turns using the common
game matrix G and its own particular matrix H¥, the unit can both actively
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make the average position move towards the current waypoint and at the
same time move towards its optimal operating interval.

Homogeneous Nodes FEach homogeneous node will use the original al-
gorithm without any modification, always using the game matrix G and
always taking the action chosen by its opponent into account. Since the
heterogeneous nodes will converge towards points in their respective opti-
mal operating intervals, the homogeneous nodes will get an estimate of the
average position that is different from the case where all nodes are homo-
geneous, since the heterogeneous nodes will not actively contribute to the
convergence of the average position to the current waypoint - they are using
their own game matrices H¥. However, the heterogeneous units will con-
tribute passively to the convergence of the average position by being taken
into account and compensated for by the homogeneous nodes.

Example An example will illustrate the proposed modification to the
given framework: in a system of N = 100 nodes moving on the unit circle,
let us assume that the current waypoint is y? = (1,7) in polar coordinates
but that nodes 1 — 30 operate optimally at waypoint 32 = (1, %) The other
nodes are assumed to operate equally well at any point.

Units 1 — 30 will use the matrix H which has as its unique ESS the
composition pg = (%, %); the homogeneous nodes will use the game matrix
G?, with p? = (%, %) as its unique ESS.

The corresponding waypoints are

7
yg = h(pH) = (1,277'le) = (17 E) and

yi = h(pt) = (1,27p7,) = (1,)

The simulation of this example can be seen to the left in figures (5.13) and
(5.14) below; matrices G? and H are given directly below.

Playerl/Player2 Actionl Action2

G2 = Actionl (-1,-1) (2,0
Action?2 (0,2) (1,1)
Playerl/Player2  Actionl  Action2
H-= Actionl (—13,-13) (14,0)
Action2 (0,14) (7,7)
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5.6 Reconfiguration

How are the three classes of reconfigurations introduced above interpreted
in this context?

5.6.1 System Reconfiguration

System reconfigurations are changes at the global level that take place with-
out any loss or addition of the constituent parts of the network, that is,
the nodes. Since the global property that we are interested in here is the
average node position, a system reconfiguration in this context is the shift
of the average position from one waypoint to another one.

Below, we will see simulations of all three classes of reconfigurations
which all prove to be stable and have rapid convergence. Why do the recon-
figurations work? At each reconfiguration initiation, the time can be seen
as reset to zero and the system starts out with a new game matrix G; as
the time goes to infinity, the average strategy converges to the unique ESS
of G, that is, the average position converges to the current waypoint.

5.6.2 Permutation Reconfiguration

Permutation reconfigurations are changes at the individual level taking place
while at the global level, the system keeps the same configuration. In this
application, our main interest is the average properties of the network -
few assumptions are made about the particular positions occupied by the
individual nodes. However, as seen above, our framework can be adapted
to accommodate heterogeneous nodes performing optimally at particular
positions - the adaptation consisted in using special game matrices for the
heterogeneous nodes while keeping the same interface as before.

Since in this model of heterogeneity, the individual positions of some
nodes are actually taken into account, a permutation reconfiguration can
be achieved by letting heterogeneous nodes switch preferences or by making
nodes drop or adopt preferences.

5.6.3 Structure Reconfiguration

Structure reconfigurations are changes at the global level accompanied by
a change of the actual network constituents such as the loss or addition
of nodes. As opposed to a formation control context, where the position
of each node is clearly defined relative to all other nodes, in this setting a
structure reconfiguration does not in general change the configuration space
- that would only be the case if all existing nodes were heterogeneous ones
with restricted action spaces.

Still, an adddition or subtraction of nodes will cause a temporary distur-
bance of the average position from the current waypoint, as we will see in the
simulations below. This disturbance will automatically be discarded by the

76



system dynamics, either by the new nodes adapting their strategies to the
game played or by the other nodes shifting their strategies to compensate
for the disturbance.

Biological analogies to structure reconfigurations are massive cell losses
in the human liver or brain; the liver can still function after up to 80% of
its cells are lost and the brain can to a variable extent redistribute functions
such as speech control to other parts of the brain after local massive cell
loss.

5.6.4 Reconfiguration Initiation

The given framework offers many ways, from hierarchical to purely dis-
tributed, for initiating reconfigurations. Below are the most important ones,
which can be used separately or combined.

Broadcast Signal - Push the Button Any node can broadcast a signal
for reconfiguration with the index of the desired waypoint or even with the
game matrix. This can be thought of as any node pushing a button; this
must however be combined with a period of inactivation after each command
to avoid conflicting orders. Such orders can also be issued by a centralized
coordinator, in which case no inactivation period is needed.

Synchronized Switch All units can have synchronized clocks and agree
in advance on successive points in time at which reconfigurations will occur
and on a predefined reconfiguration order; natural rhythms such as change of
tides, light, temperature and magnetic field strength are some of the signals
that may serve as clocks.

Measuring Others’ Average Difference Before the current waypoint
is reached, the average of the estimate of the opponent action over time
will change, whereas it will be constant after the waypoint is reached. By
keeping track of the actions chosen by its opponents, each node can thus
get information about whether the waypoint is reached. If the average node
position was already close to the waypoint at the start, the average will be
almost constant from the start.

Measuring Own Average Difference The node can also measure the
average of its own position over time - before the waypoint is reached, it
will change on an average whereas this will no longer be the case after the
waypoint is reached.
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5.7 Simulation Results

To illustrate our theory, we studied the dynamics of a system of N > 100
units moving on the unit circle or in S; C R? or S3 C R3, respectively, and
updating their current positions according to the proposed algorithm. A
number of different waypoints and initial conditions were used to test the
algorithm and are given in the first section below.

We first studied the convergence to one waypoint at a time and then
simulated successive system reconfigurations from waypoint to waypoint.
Structure reconfigurations were then simulated in which node losses or ad-
ditions of up to 50% were studied. Finally, we showed non-convergence when
the game matrix used did not have an ESS.

5.7.1 Waypoints and Initial Conditions

To test our algorithm in simulations, we used different waypoints and three
main types of initial conditions, all presented below.

Waypoints on the Unit Circle To study our model of a walk on the unit
circle, we chose the following four different waypoints yf in polar coordinates:
y% = (177T)7 y% = (17 %)7 y?2, = (17 %T) and yz = (17 %)

The corresponding compositions p? are obtained as
p; = ' (y7) = (5797 1 — 5797); they are
11 13 71 7 13
pi = (2:2)s p; = (1:1) p; = (g:5) and pi = (2050 25)-
Four game matrices G? were chosen to have the corresponding compositions
p? as unique ESS’s; the game matrices and their respective ESS’s are given
below.

Playerl/Player2 Actionl Action2

G2 = Actionl (-1,-1) (2,0
Action?2 (0,2) (1,1)
p% = (%a %)

Playerl/Player2 Actionl Action2

G2 = Actionl (-3,-3) (2,0
Action?2 (0,2) (1,1)
p% = (%a %)

Playerl/Player2 Actionl Action2

G2 = Actionl (—=1,-1) (14,0)
Action?2 (0,14) (7,7)
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Player1/Player2  Actionl  Action2
G2 = Actionl (—13,-13)  (14,0)
Action2 (0,14) (7,7)
pi = (25, 5)

Waypoints in Sy C #2 To study the motion of the nodes in Sy C %2, we
selected the following four waypoints y?3:

y? = (0.6,0.2), y3 = (0.1,0.4),
y? = (0.33,0.33) and y3 = (0.05,0.15).

Four game matrices Gf’ were chosen to have the corresponding compositions
p; = b7 (y?) = (¥}, Y, i — yi1 — yi2) as unique ESS’s; the game matrices

and their respective ESS’s are given below.

Playerl/Player2 Actionl Action2

G3 _ Actionl (6,6) (5,7)
1 Action2 (7,5) (4,4)
Action3 (7,5) (5,3)
pi=(3%3)
Player1/Player2 Actionl Action2
— Actionl (12,12)  (2,26)
2 Action?2 (26,2)  (1,1)
Action3 (3,4) (8,2)
_ (1 4 5
P% = (15> 107 19)
Playerl/Player2 Actionl Action2
Gl _ Actionl (1,1) (5,8)
3 Action?2 (8,5) (2,2)
Action3 (6,6) (5,2)
Pi= (333
Playerl/Player2 Actionl Action2
a3 — Actionl (2,2) (2,5)
4 Action?2 (5,2) (1,1)
Action3 (6,2) (6,2)

1 3 16
Pi:(mag—oam)

Action3
(5,7)
(3,5)
(2,2)

Action3
(4,3)
(2,8)
(1,1)

Action3
(6,6)
(2,5)
(1,1)

Action3
(2,6)
(2,6)
(1,1)



Waypoints in S3 C R To simulate three-dimensional motion in S3 C 2,
we finally chose the following two waypoints yf:

y} =(0.3,0.4,0.2) and y} = (0.25,0.25,0.25).

4 . .. 4 _
; chosen to have the corresponding compositions p; =

h U yi) = (Wh Yl Ui 1 — ¥l — vy — yi3) as ESS’s are given below along
with their ESS’s.

The two matrices G

Playerl/Player2 Actionl Action2 Action3 Action4

Actionl (2,2)  (15,4) (10,16)  (14,8)
G} = Action?2 (4,15)  (5,5)  (20,10) (28,5)
Action3 (16,10) (10,20)  (2,2)  (8,25)
Action4 (8,14)  (5,28)  (25,8)  (6,6)
P! = (3%, 15 19> 1)

Playerl/Player2 Actionl Action2 Action3 Action4

Actionl (1,1) (4,8) (5,4)  (10,3)
Gi = Action2 (8,4) (2,2)  (6,12)  (4,7)
Action3 (4,5) (12,6) (2,2) (2,9)
Action4 (3,10)  (7,4) (9,2) (1,1)
Py = (111 1)

Initial Conditions We used three main types of qualitatively different
initial conditions to test our algorithm. Firstly, we used the identical ini-
tial condition to let all nodes start at the same position, thus obtaining a
coherent swarm provided that all nodes took small enough steps.

Secondly, we let the units start from points chosen uniformly at random,
which gave a system particularly robust to node losses of even more than
50%.

Finally, we distributed the nodes as far from the centroid of Se or S3 as
possible, thus obtaining an initial node distribution that could be described
an anti-swarm.

In the section on structure reconfigurations, we used a fourth quali-
tatively different type of initial condition in order to obtain a noticeable
disturbance when up to 50% of the nodes are lost - this is the biidentical
initial distribution, in which half of the nodes start at one position and the
other half at another position.
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5.7.2 Convergence to Unique ESS

We first studied the convergence of the average position to the respective
waypoints using different combinations of initial positions, waypoints and
number of units IV - in all cases, the average position was found to converge
to the desired waypoint. Our simulation results are presented below, showing
the dynamics of the average position and the covariances.

Waypoints on the Unit Circle Using the mapping y? = 27p? intro-
duced above, where p? is the first component of p?, we obtain the waypoints
as positions (1,0) on the unit circle. To the left in figures (5.5) and (5.6),
we see convergence of the average position to the waypoints y? and y3, re-
spectively; in both cases, all units started from the same point. To the right
in the figures, we see the final positions of the individual units.

2 ko
Game: G2, Dimension n=2, No. of Units N=100, Identical p(0) Game: G2, Dimension n=2, No. of Units N=100, Identical §0)
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Figure 5.5: Convergence to y? to the left, corresponding final individual
positions to the right; all units starting from the same point, N=100.
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Figure 5.6: Convergence to y5 to the left, corresponding final individual
positions to the right; all units starting from the same point, N=100.
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Waypoints in Sp C #2 With the mapping y* = (p$,p3), we obtain the
waypoints as positions in 82, introduced above; as noted above, this mapping
can be generalized by scaling and translation to y* = a(p?,p3) — (81, B2).
To the left in figures (5.7), (5.8), (5.9) and (5.10), we see the convergence
of the average position to the waypoints y3, y3, y3 and y3, respectively; to
the right in the figures, we see the respective covariances as functions of
time. In figure (5.7), the units started from points far from the centroid of
S9, in figures (5.8) and (5.10), the units started from points chosen uniformly
at random over Sy whereas in figure (5.9), all units started from the same

point.

Game: G2, Dimension n=3, No of Units N=100, Extreme Random p'(0)

1 T T T T T T T

Cov,

-0.02

-0.04

-0.06

-0.08

Game: G, Dimension n=3, No of Units N=100, Extreme Random p'(0)

1
lterations

-0.1

3
Iterations

Figure 5.7: Convergence to y3 to the left, corresponding covariances to the
right; units starting from points far from centroid, N=100.

Game: GJ, Dimension n=3, No of Units: N=100, Uniform Random p'(0)

1 T T T T T T T

0.1

-0.05

Game: G, Dimension n=3, No of Units N=100, Uniform Random p'(0)

1
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Figure 5.8: Convergence to y3 to the left, corresponding covariances to the
right; units starting from points uniformly chosen at random, N=100.
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Game: G, Dimension n=3, No of Units: N=100, Identical p¥(0)

Game: G, Dimension n=3, No of Units N=100, Identical p'(0)
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Figure 5.9: Convergence to y3 to the left, corresponding covariances to the
right; all units starting from the same point, N=100.
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Figure 5.10: Convergence to y3 to the left, corresponding covariances to the
right; units starting from points uniformly chosen at random, N=100.
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Waypoints in S3 C ®% Using the mapping y* = (p}, p3, p3), finally, we
obtain waypoints in S3, introduced above; as noted above, the mapping can
be generalized by scaling and translation to
y* = a(pt,p3,p3) — (B1, B2, Bs)-

To the left in figures (5.11) and (5.12), we see how the average position
converges to the waypoints y and y3, respectively; to the right in the figures,
we see the covariances as functions of time.

Game: G, Dim. n=4, No. of Units N=100, Identical §(0)

Game: G, Dimension n=4, No. of Units N=100, Identical p(0) 00s
. T T T T T

Cov,
°

-0.01

-0.02

-0.03F

-0.04F

L L L L L ~0.05 L L L L L
0 05 1 15 2 25 3 0 05 1 15
Iterations X 10° lterations x10°

Figure 5.11: Convergence to y{ to the left, corresponding covariances to the
right; units starting from points far from centroid, N=100.
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Figure 5.12: Convergence to y3 to the left, corresponding covariances to the
right; units starting from points uniformly chosen at random, N=100.
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5.7.3 Heterogeneity

The heterogeneous case described above will now be illustrated in simu-
lation. Assuming that in a network of N = 100 nodes, thirty nodes are
heterogeneous, operating optimally at a particular point g4, we let the sys-
tem converge to the waypoint 3? while simultaneously accommodating the
preferences of the heterogeneous nodes. The point y,,; was chosen to be
first y7, then 13.

To the left in figure (5.13) below, we see the convergence of the average
position to the waypoint 42 in the presence of thirty heterogeneous nodes;
it is very similar to the homogeneous case shown above in figure (5.5). The
final individual positions of all nodes were plotted for the homogeneous case
to the right in figure (5.13) and for the two heterogeneous cases in
figure (5.14).

Game: G, Dim. n=2, No. of Units N=100, Identical (0), Nodes 1-30 Heterogeneous

| Game: G2, Dim. n=2, No. of Units N=100, Identical (0), Homogeneous Nodes
T T T T T

2 25 3 0 10 20 30 40 50 60 70 80 % 100

15
lterations Node No.

Figure 5.13: Convergence to 32 in the presence of heterogeneous nodes, to
the left; compare with the homogeneous case in figure (5.5). Final individual
positions in the homogeneous case, to the right.

Game: G2, Dim. n=2, No. of Units N=100, Identical f(0), Nodes 1-30 Heterogeneous Game: G2, Dim. n=2, No. of Units N=100, Identical g(0), Nodes 1-30 Heterogeneous
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Figure 5.14: Final individual positions in the heterogeneous case; preference
for y2, to the left, preference for y3, to the right.
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5.7.4 Convergence to Either of Two ESS’s

In a game that has two ESS’s, both ESS’s are attractors and the convergence
to either of them will be a function of the initial strategies. Below, we see
this illustrated in two different simulations for the 2 x 2 matrix G2 which
has as ESS’s the strategies p2, = (1,0) and p2, = (0, 1).

We chose the initial strategies of the individual players at random ac-
cording to a uniform probability distribution and got convergence to y2,
as seen to the left in figure (5.15). The corresponding initial strategies are
shown to the left in figure (5.16).

Playerl/Player2 Actionl  Action2
G2 = Actionl (1,1)  (=1,-1)
Action2 (-1,-1) (1,1)

sin(p)

sinp)

Figure 5.16: Individual initial strategies for G2 giving convergence
to (1, 2m) to the left and to (1, 0) to the right, N = 100.

Sensitivity We then picked four players whose initial strategies p*
(p¥,1 — p¥) were close to p2, and reversed their initial strategies to pF =

86



(1—p¥, p¥) while letting the other ninety-six players keep their initial strate-
gies. The system now converged to ygb instead, as seen to the right in fig-
ure (5.15), with the corresponding initial strategies shown to the right of
figure (5.16).

Equivalent Waypoints Thus, using game matrices that have more than
one ESS will give a capricious system that converges to either of the ESS’s
depending on the initial conditions. However, if the two ESS’s are seen as
equivalent, we can see this as analogous to the unique ESS case discussed
above. Indeed, if we continue using the mapping introduced above, where
the waypoints were positions on the unit circle, both the above ESS’s would
correspond to the position (1,0) on the unit circle. Thus, although toggling
the coordinates of 4% of the units would lead the system to approach the
waypoint (1,0) clockwise rather than counter-clockwise, the system would
still converge to the same waypoint on the unit circle.

Clockwise Convergence to Waypoint (1,0)
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Figure 5.17: Waypoints (1,0) and (1, 27) in polar coordinates correspond to
the same point approached clockwise or counter-clockwise.

Playerl/Player2 Actionl Action2
Gup = Actionl (-1,-1) (2,0)
Action?2 (0,2) (1,1)

Reconfiguration By Information Remembering now the discussion from
the section on game theory on how the addition of information may change
the equilibrium set of a game and the particular example of the game of
Hawks and Doves Ggp with an asymmetry, this represents an alternative
way of switching games: the game is different not because the game param-
eters were changed, but because more or less information was given to the
players.

As we remember, when no information is provided as to which player is
cast in which role i € I = {1,2}, the game has one unique ESS
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pHP = (0.5,0.5), corresponding to the waypoint (1, 7) in polar coordinates.
However, when information about the asymmetry is provided and taken

into account by all players, the resulting game has two ESS’s p{IDasy"‘m (7]%)
and p;IDasy""“ (7]7), both given below and conditional on the information

obtained about the role i.

HDasymm

pi‘IDasymm(jﬁ) — 1 ifZ :] and pl (]|’L) = 0 if’L #] Whereas

pHDasymm (1) — i § — j and pEP®¥™m (jli) = 1 if i # J.

Aﬁabin using the same rrﬁ%jping to obtain waypoints on the unit circle,
Py M (jli =0)and py "™ (j]i = 1) correspond to the waypoint (1,0)
in polar coordinates whereas p;IDasy""“ (412 = 0) and pI;IDasy"‘m (Jls = 1)
give the waypoint (1,27) - because of the periodicity with period 27, the
two waypoints actually correspond to the same point.

With a slight modification of the above mapping, we can now make the
system reconfigure by giving or withholding information about the asymme-
try - the modification consists in consistently using either pHPasymm (| = 0)
or pHPasymm (4]j = 1) to obtain the waypoint when information is provided.

Simulations of reconfigurations caused by a change of game parameters
will be shown next; below, we see reconfigurations caused by the addition
or reduction of information, respectively.

Reconf. By Addition of Information, G2, Dim. n=2, No of Units N=100, Identical p*(0) Reconf. By Reduction of Information, G0, Dim. n=2, No of Units N=100, Identical p'(0)

.
14
x10°

Figure 5.18: Reconfiguration by addition of information, to the left, and by
reduction of information, to the right.
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5.7.5 Reconfiguration

We also studied the reconfiguration dynamics of our system, making our
system of N = 100 units reconfigure in R and R2 - all three categories of
reconfigurations were represented and the results are shown below, starting
with system reconfigurations, continuing with structure reconfigurations and
ending with permutation reconfigurations.

System Reconfiguration In a system reconfiguration, the global net-
work structure changes while the network components remain the same. In
our case, the relevant system component is the average node position, which
is a function of the current game matrix G' - we simulated a reconfiguration
by imposing a discontinuous switch of game matrices. Figures (5.19) and
(5.20) show successive reconfigurations in . In figure (5.19), the system
reconfigures from y? — y3 — y3, whereas in figure (5.20), we see a recon-
figuration from y2 — y? — y?; the waypoints are shown as dotted reference
lines. In both cases, all units were initialized identically.

210 6210 G2 k
Recont.: G to G2 to Gj Dim. n=2, No of Units N=100, Identical p*(0) Recont.: G2 to G to G5, Dim. n=3, No of Units N=100, Identical p'(0)
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Figure 5.19: Successive system reconfigurations from 3> — y2 — y2, N=100.

Figures (5.21), (5.22) and (5.23) show successive reconfigurations in ®2.
In figure (5.21), we see a reconfiguration from y? — y? where all units were
identically initialized; figure (5.22) shows successive reconfigurations from
y? — y3 — y3 from a uniform random initialization whereas in figure (5.23),
the system reconfigures from y3 — y3 — 33 after starting out far from the
centroid.
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Recont.: G to G2 to G2, Dim. n=3, No of Units N=100, Identical p(0)

Recont.: G2 to G2 o G2, Dim. n=3, No of Units N=100, Identical p¥(0)
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-0.02F

-0.03F

-0.04F

Figure 5.20: Successive system reconfigurations from y2 — y? — y%, N=100.
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Recont.: G? to Gi‘ Dim. n=3, No of Units N=100, Identical p(0)

Figure 5.21: System reconfiguration from 43 — 3, N=100.
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Recont.: G2 to G3 to G, Dim. n=3, No of Units N=100, Uniform Random p(0)
Recont.: G2 to G310 G, Dim. n=3, No of Units N=100, Uniform Random p'(0) iecont.: G to G, to Gy, Dim. n=3, No of Units niform Random p'(0)
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Figure 5.22: Successive system reconfigurations from 33 — y3 — y3, N=100.

Recont.: G} to G to G, Dim. n=3, No of Units N=100, Extreme Random p(0)

Recont.: G to G2 to G2, Dim. n=3, No of Units N=100, Extreme Random p'(0)
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Figure 5.23: Successive system reconfigurations from y3 — y3 — y3, N=100.
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Dynamic Equilibrium The waypoints are dynamic equilibria in the sense
that once the average position has reached the waypoint, the movement of
the individual units does not stop, although the expected net movement
over time of each individual unit becomes zero.

Individual Trajectories In figure (5.24), we see the individual trajecto-
ries of some nodes during the successive collective reconfigurations shown
above in figures (5.19) and (5.20). Figure (5.25) shows the individual trajec-
tories of some units as the system performs the successive reconfigurations
seen in figure (5.23).

Reconf.: G2 to G to G, Individual Trajectories

Reconf.: G2 to G to G2, Individual Trajectories

25 3 3
Iterations <10° terations x10°

Figure 5.24: Individual trajectories of three nodes during the successive
collective reconfigurations in figure (5.19), to the left, and in figure (5.20),
to the right.

Recont.: G to G to G, Individual Trajectories Reconf.: G to G to G3, Individual Trajectories
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Figure 5.25: Individual trajectories of three nodes during the successive
collective reconfigurations in figure (5.23).
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Structure Reconfiguration We next simulated a set of structure recon-
figurations, where a network of N units suffered losses of up to 50% or,
conversely, was expanded by up to 50%. In either case, the change of the
network size resulted in a disturbance of the average composition which
varied in size with the initial network distribution. In many cases, the dis-
turbance was negligible even with losses or additions of as much as 50%.
However, when we used a biidentical initial distribution, chosen specifically
to make the disturbance more noticeable, the disturbance is easily observed
and followed by the readaptation of the network to the equilbrium average
position.

s . 40% Node Loss, Game G, Dim. n=3, No of Units N=100, Uniform Random p'(0)
40% Node Loss, Game GZ‘ Dim. n=3, No of Units N=100, Uniform Random p*(0) 02 2
T T T T T T T

1 T T T T T T T —Cov,,
ov.

13
Cov,g

o R T L e

~0.05%

-0.151 Ry

5 5
Iterations s Iterations 5

Figure 5.26: 40% Node loss at time indicated by vertical bars, game G3,
N = 100, uniform random distribution.

5 « 50% Node Loss, Game: G2, Dim. n=3, No of Units N=100, Biidentical p(0)
50% Node Loss, Game: G, Dim. n=3, No of Units N=100, Biidentical p(0) v

4 5 4 5
terations X10° lterations X10°

Figure 5.27: 50% Node loss at time indicated by vertical bars, game G?%,
N =100, biidentical initial distribution.

In figure (5.26), we see a 40% node loss, reducing the number of units
from N = 100 to N = 60. The initial distribution being uniform random, the
disturbance is barely noticeable and needs little adaptation to compensate.

In figures (5.27), (5.28) and (5.29), the initial distribution is biidentical,
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meaning that half of the units were given one initial distribution and the
other half a different initial distribution. In figure (5.27), 50% of the original
N = 100 nodes are lost, in figure (5.28), the network is enlarged by 50%
from N = 67 to N = 100 whereas in figure (5.29), 40% of the nodes are lost,
reducing the network from N = 100 to N = 60.

50% Node Addition, Game G, Dim. n=3, No of Units N=67, Biidentical p(0)

50% Node Addition, Game G3, Dim. n=3, No of Units N=67, Biidentical p(0)

5 4 5
Iterations X10° lterations

Figure 5.28: 50% Node addition at time indicated by vertical bars, game
G3, N = 100, biidentical initial distribution.

3 « 40% Node Loss, Game G, Dim. n=3, No of Units N=100, Biidentical p(0)
40% Node Loss, Game G2, Dim. n=3, No of Units N=100, Biidentical p'(0) 4

4 5
X10° lterations

4 5
lterations

Figure 5.29: 40% Node loss at time indicated by vertical bars, game G%,
N =100, biidentical initial distribution.
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Permutation Reconfiguration The final reconfiguration category to be
simulated is the permutation reconfiguration, where individual nodes switch
positions while at the global level, the system stays at the same waypoint.
In this scenario, we assigned to nodes 1 — 30 the role of heterogeneous nodes
with yops = y3, then performed a permutation reconfiguration by reassigning
this role to nodes 71 — 100 and letting the first thirty nodes be homogeneous
nodes.

To the left in figure (5.30), we see the convergence of the average position
to the waypoint ? with a noticeable disturbance at the start of the permu-
tation reconfiguration indicated by vertical bars. To the right in the same
figure, we see the individual trajectories of three nodes, each one represent-
ing one of the three qualitatively different node groups numbered 1 — 30,
31 — 70 or 71 — 100.

In figure (5.31), we see to the left the individual node positions just before
the reconfiguration, and, to the right, the final individual node positions. As
expected, to the left in figure (5.31), nodes 1 — 30 are all aligned close to y3
whereas the other nodes are distributed to compensate for the heterogeneous
nodes. To the right in the same figure, we see that the heterogeneous role
has been taken over by nodes 71 — 100 and that three qualitatively different
node categories have now emerged: nodes 1 — 30, which were initially het-
erogeneous, nodes 31 — 70, that were homogeneous nodes all the time and
compensated for the others and, finally, nodes 71 — 100, which started out
homogeneous but became heterogeneous after the reconfiguration.

Permutaton Recont, Game G2, Dim. =2, No. of Unis N=100, dentical §0) Penmutaton Recont, Game G2, Dim. n=2, No. of Units N=100, ntial 0)

e el et T

L L L L L L L L L L L L L L L L L L L L
0 05 1 15 2 25 3 35 4 45 5 55 0 05 1 15 2 25 3 35 4 45 5 55
x10° s x10°

Figure 5.30: Convergence to y? with permutation reconfiguration at time
indicated by vertical bars, to the left; corresponding individual trajectories
respresenting three qualitatively different node categories to the right.
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Permutation Recont., Game G2, Individual Positions at Reconfiguration

Permutation Reconf., Game G, Final Individual Positions
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Figure 5.31: Individual node positions just before the permutation reconfig-
uration, to the left; final individual node positions to the right.

5.7.6 Non-Convergence Without an ESS

While all 2 x 2 matrices do have an ESS, that is not the case for [ X[ matrices
where [ > 2 - for comparison, we used a game matrix G that has no ESS
and studied the system behavior. The average position did not converge to
a waypoint for this case but oscillated around the unique Nash equilibrium

), as can be seen in figure (5.32).

Playerl/Player2 Actionl Action2 Action3

pNash — (%’ %’ %
a3 — Actionl
5 Action2
Action3

Game: G3, Dimension n=3, No. of Units: N=100, Identical #(0)

(2,2)
(1,3)
(3,1)

(3,1) (1,3)
(2,2) (3,1)
(1,3) (2,2)

Game: G, Dimension n=3, No.of Units N=100, Identical p*(0)

-0.01F

-0.02F

-0.03F

-0.04

25
lterations

-0.05

1 15 2 25 3
lterations

Figure 5.32: Non-convergence with G2 which has no ESS, N=100; compare
with the convergence to y3 shown above in figure (5.9).
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5.7.7 Different Spread for the Same ESS

In this section, we will see how the step size, that is, the learning rate in-
fluences the spread of the final individual positions around the waypoint.
With a high learning rate, the convergence is fast but the final individual
positions vary a good deal, wheras a low learning rate gives slower conver-
gence but less spread. We again used the waypoint y? = (1,7) on the unit
circle; in figure (5.33), we see the convergence to y? with the same matrix
scaling used above and the resulting final individual positions of the nodes.
The matrix was then further scaled down by 0.1, resulting in an increase of
the time for convergence by a factor of order ten that can be seen to the left
in figure (5.34); to the right in the same figure, we see the corresponding
final individual positions of the units, now much less spread out.

2 k
Game: G, Dimension n=2, No. of Units N=100, Identical p'(0) Game: G2, Dimension n=2, No. of Units N=100, Identical p(0)

T T T T T T T T ===
T )
—_p, Pre
09 2 L _

Figure 5.33: Convergence to 32 to the left with higher learning rate, corre-
sponding final individual positions to the right, N = 100.

2 K
Game: G, Dimension n=2, No. of Units N=100, Identical p'(0) Game: G2, Dimension n=2, No. of Units N=100, Identical p(0)
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Figure 5.34: Convergence to y? to the left with lower learning rate, corre-
sponding final individual positions to the right, N = 100.
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Chapter 6

Cluster

In this section, we introduce the second scenario to which we propose to
apply our game theoretic approach. This is a traditional formation control
setting where a number of vehicles travel in formation and are required
to switch formations without collision. We first give a problem statement,
introduce the corresponding game and prove that in our set of chosen games,
the Nash equilibrium is in each game unique. We then present a novel total
field approach to collision avoidance which enables the units to navigate
safely without knowing the positions of the other units. Finally, simulation
results are presented along with a description of our hardware experiments.

6.1 Problem Statement

Assuming a system of N vehicles £ = 1,..., N, each associated at time
t = 0,1,2,... with a position 7*(¢), a start position 7*(0) and a goal po-
sition ré in a common coordinate system R, we want all vehicles to reach
their respective goal positions within a common time limit ¢t < #,,4, while
travelling in potentially changing formations without colliding with any of
the other vehicles - a type scenario is shown in figure (6.1). These positions
are updated according to the same equation, where Ar is some function and

G(t) is a set of parameters:

rE(t 4 1) = r¥(t) + Ar(rk(t),7(t), G(t)), where
(1) = & SiL ' (2)

Recently Attracting Attention The problem of coordinating the nav-
igation of a large number of vehicles so that they all reach their goal po-
sitions without colliding has attracted a great deal of attention lately. As
the number N of vehicles grows, the problem rapidly becomes intractable
with centralized approaches. Local approaches have been proposed based
on nearest-neighbor interactions and/or potential fields. However, many
of these approaches assume that each vehicle knows which are its nearest
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Figure 6.1: Type scenario for our problem, where a set of vehicles travel in
formation and are matched to a set of waypoints to visit. How can one ensure
the safe navigation of each vehicle to its waypoint(s) without collisions with
any of the other vehicles when no vehicle knows the positions of the other
vehicles?

neighbors and what are their positions. In fact, it may even be necessary
for each vehicle to know the positions and velocities of all the other vehicles
for such approaches to work.

First Local Approaches The first local approaches suggested date back
to 1987 when Reynolds heuristically achieved flocking of so-called boids with
simple local rules based on the positions and velocities of the vehicle’s nearest
neighbors [41]. A similar fixed-velocity version was proposed by Vicsek [49]
in 1995.

Analytical Approaches The promising simulation results of such heuris-
tic methods soon inspired other researchers to approach the problem ana-
lytically with the intention to actually prove the emergence of flocking as
the result of applying simple local rules. The dominating approach has used
potential functions and is represented by McInnes [36], Leonard [31] and
Passino [20]. The flocking is here obtained as the balance of a far-field at-
traction and a near-field repulsion between vehicles which gives a simple
expression for the resulting collective dynamics - Lyapunov stability theory
can then be used to prove asymptotic stability. While theoretically elegant,
these approaches make the assumption that all vehicles have or can obtain
perfect information about the positions of all the other vehicles - if this is
not the case, the approaches collapse. In a large scale dynamic network,
this is not a realistic assumption since it would require a large scale com-
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munication intranet with frequent updates and interagent coordination and
unnecessarily expose position information to those not part of the network.

Limited Information Thus, if the early heuristic studies made us believe
that a local approach was possible and the subsequent approaches actually
proved convergence, the next step to take is to find a scheme that is actually
consistent with large, fluid swarms and makes realistic assumptions about
the information available to each vehicle about the system state at any
time. Indeed, this is a difficult problem in which finding the appropriate
control may be quite a challenge; however, the reward of its solution will
be a distributed approach that is directly applicable to the mechatronic
hardware currently available.

Local Approach Necessary Why is this a hard problem? Firstly, it
is a difficult problem from a control point of view since there are many
degrees of freedom and the complexity grows exponentially with N. As noted
above, this soon makes the problem untractable with centralized methods -
a distributed control approach is necessary. This aspect of the problem is
the one most often recognized as difficult in the previous literature - as noted
above, the solutions proposed consisted in going from centralized control to
local methods. These local methods were at first heuristic but have lately
been complemented with analytical versions proven to converge [39].

Imperfect Information Another difficult aspect of the problem has to do
with information and has hitherto been given little attention. While the dis-
tributed methods proposed in the last decade made the problem tractable,
they kept the assumption of perfect information used in centralized con-
trol. However, such an assumption is unnatural in a distributed framework
for several reasons. Firstly, such extreme redundancy of information goes
against the distributed control paradigm itself - some information redun-
dancy is indeed desired, but the duplication of all information is not. Sec-
ondly, perfect information in swarms is extremely difficult to implement with
current sensing technology - estimating positions and velocities with machine
vision and sonar is difficult even when NN is small; as N grows, this becomes
even harder since vehicles may block each other or distances to units farther
away may be relatively large. Thirdly, an implementation would thus have
to involve an extensive communication network which would be unnecessar-
ily costly and might expose information, thus constituting a security risk.

Potential Field Approach? Some researchers have already attempted to
find potential field schemes alternative to the perfect information approaches
cited above, for problems ranging from more static single-vehicle settings
[19] to the coordination of a network of vehicles [47]. In the former case, an
electromagnet was used to guide an underwater vehicle to its static dock; in
the latter case, inspired by insect navigation methods, artificial pheromones
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were introduced, the increasing or decaying quantities of which were stored
in data bases and used for trajectory planning.

6.2 General System Dynamics

In this scenario, each vehicle has three different tasks to fulfill in parallel: it
should travel from a start position to a goal position, keep its position in the
formation and avoid colliding with any of the other vehicles, which might
be a risk particularly during reconfiguration. We can think of the function
Ar introduced above as the weighted sum of the three corresponding com-
ponents Argoq, Arcon s and Areyy. The last component, aimed at collision
avoidance, should be nonzero when an obstacle - static or in the form of
another navigating vehicle - is too close; the first two components, aimed
at navigation and formation keeping, can be separate or combined in one
single function.

6.2.1 Navigation

The task of navigation from start to goal is in formation control as a rule
accomplished using either of the following three approaches [3]:

Leader-Follower In the leader-follower approach, the majority of units
have no information about the goal and simply track the motion of a leader
or of a weighted sum of the positions of several leaders. In this hierarchical
approach, only a few units - the leaders - know where the goal is relative to
their own positions and move towards it. The leaders have nonzero Argy
components whereas for the followers, navigation towards the goal and for-
mation keeping is achieved by one single component Arg,q1/con f-

Tracking the Mass Center In another approach, denoted the virtual
structure approach, all units track the mass center which is shifted along a
desired trajectory towards the goal. This assumes a hierarchical component
since the shift has to be imposed either by an exterior coordinator or by one
of the nodes - the majority of the units will then automatically move along
the desired trajectory by aiming to keep the distance to the mass center
equal to their respective reference distances; we note that this approach
fuses the tasks of navigation and formation keeping. In this case, all units
have a single Arg,41/cons component for both navigation towards the goal
and formation keeping and receive an update of the system mass center as
a signal from the exterior coordinator.

Weighting Modes A third approach consists in letting all units be in-
formed of the position of the goal relative to themselves and in introducing a
weighting between several behavior modes, one of which is individual navi-
gation towards the goal. In this case, there are thus separate, nonzero Ar gy
and Arc,, s components for all units.
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6.2.2 Configuration Keeping

The objective of configuration keeping is achieved by tracking reference ve-
hicles or reference points and is to at least some extent fused with the nav-
igation towards the goal.

Leader-Follower In the leader-follower approach, the leaders do not par-
ticipate in the configuration keeping - instead, the other units adapt to the
leaders by aiming at keeping fixed positions relative to the moving leaders.
In this way, the followers will automatically also follow a trajectory towards
the goal. As a rule, each vehicle tracks a function of only one or a few of
the other vehicles, which may create chains of secondary followers tracking
primary followers.

Tracking the Mass Center Achieving formation keeping by letting all
vehicles track the mass center is similar to the leader-follower approach;
however, in this case, each vehicle tracks a function of the positions of all
the other vehicles, giving a more robust situation.

Weighting Modes By weighting between navigation towards the goal
and keeping a fixed distance to a moving reference point in the form of a
vehicle position or a mass center, a more parallel system is created since
now all units share the tasks of navigation towards the goal and formation
keeping.

6.2.3 Collision Avoidance

As a third component, finally, vehicles need collision avoidance not to collide
with each other or with obstacles.

Redundant for Configuration Keeping Existing approaches typically
assume all vehicles to have quite advanced sensor systems that keep them
informed of the positions of the vehicles to track and of whether any vehicle
comes to close. Collisions between vehicles are essentially avoided by a
synchronization of speeds and starting out with a sufficient spacing between
vehicles.

Essential for Reconfiguration However, as soon as the issue of recon-
figuration comes into the picture, the risk of collisions becomes very real
indeed - the role of leader may switch to another vehicle and vehicles need
to pass each other to change relative positions. Thus, an approach that
works well for configuration keeping may no longer be valid in the more
challenging situation of reconfiguration control. Indeed, most studies do
not address reconfigurations or study only reconfigurations between similar
configurations where, for example, the leader is the same.
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6.3 Configuration Definition

The formation control setting typically assumes a finite, predefined set of
configurations; the given application decides what configurations are rele-
vant - for a distributed telescope, they may be circle-shaped formations of
varying radii whereas for a fleet of unmanned aerial vehicles, straight lines
or V-shapes may be the desired formations.

General Definition In this setting, the formations, that is, configurations
are sets of node positions relative to the system mass center
F(t) = + Zszl r#(t), where r* are the entries of the node position vector r.

Corresponding Configurations Using the configuration definition in-
troduced above, the entries f&(r) of fc(r) are here

fE(r) = vt = F Ty r* - at,

where x’é is the desired position of node £ in configuration C in a coordinate
system X which has its origin at ¥ and whose coordinate axes are parallel
to and pointing in the same direction as those of R;

Fo = {0 € RV}, or if some imperfection is tolerated,

Fo = {z € RV| |z| < €} for some € > 0.

Specific Definition For illustration, we will use the configurations
j =1,2,3,4, defined by the following positions relative to a local reference
frame with the origin at the system mass center:

V-shape z] = (2.0, -0.8) z? = (—1.0,0.2) 2} = (0.0,1.2)
z] = (1.0,0.2) z} = (2.0,-0.8)

I-shape z1 = (0.0, -2.0) z3 = (0.0, —1.0) 3 = (0.0,0.0)
z3 = (0.0,1.0) 25 = (0.0,2.0)

L= (=1.0,-0.8) 22 = (~1.0,0.2) 23 = (0.0,1.2)
z3 = (1.0,0.2) z5 = (1.0, -0.8)

M-shape z} = (—2.0, —1.0) 2% = (~1.0,1.0) z3 = (0.0,0.0)
z3 = (1.0,1.0) 25 = (2.0,-1.0)

These formations correspond to a V-shape, an I-shape, a U-shape and an
M-shape, respectively and are shown in figure (6.2).
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Figure 6.2: Four distinct configurations: a V-shape, an I-shape,

and an M-shape.
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6.4 Equilibrium Notion: Nash Equilibrium

The equilibrium notion in this setting will be the regular Nash equilibrium
rather than one of its refinements. Here, the uniqueness of the equilibrium
will be a consequence of how the proposed game was constructed rather than
a property of the equilibrium class itself, as was the case above. Below, we
first define the game and then show that any configuration corresponds to
a Nash equilibrium whereas any set of points which is not a configuration is
not a Nash equilibrium.

6.4.1 Defining the Game

We define the game by naming the players, their action spaces, game pa-
rameters and payoffs.

N-player Game In the replicator learning scenario, we were mainly in-
terested in the average position rather than the individual node positions
and, although we let N — oo, for this purpose it was sufficient to use any
k-player game with k£ < oo - we chose & = 2. In this scenario, however,
the position of each node counts and therefore each node participates in
the game each time the game is played; thus, in this case we will have an
N-player game rather than a two-player game.

Strategies In addition to the common coordinate system R, we will in-
troduce another reference frame X which has its origin at the mass center
7(t) of the system of vehicles and whose coordinate axes are parallel to and
pointing in the same direction as those of R. In X, the position of each
vehicle k at time ¢ will be denoted x*(¢). The game will be designed as an
N-player game where the strategy of each vehicle is its current position in
R while its payoff is a function of its current position in X.

Parameters For each configuration j defined, each vehicle k is associated
with a reference vector :1:§c in X corresponding to its assigned position in

formation j.

Payoffs The payoff to each node k is defined as —|z*(t) — xf(t)|, we note
that the payoff to any node k is < 0 and that it attains its maximum when

node k occupies its reference position.

6.4.2 Configuration = Nash Equilibrium

We first show that any configuration, corresponding to a set of such reference
positions, is a Nash equilibrium of the game defined above.

Proof We know from above that any set of positions (r!(t),...,rV (t)) sat-
isfying ¥ (t) = r*(t) — 7 (t) = mf for k =1,.., N will give the maximal payoff
0 to each player. We choose one such set and fix all strategies except that
of player 1.
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We know that ri(t) — 7(t) = ri(t) — = S0, r8(t) = zt.
Any alternative strategy y’(t) can be written as y*(
0 # 0. This strategy will give the payoff

e
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Since this is true for every node, the configuration is a strict Nash equilib-
rium.

6.4.3 Out of Configuration = No Nash Equilibrium

We will next show that no point set (r!(¢),...,7 (¢)) can be a Nash equilib-
rium of the game unless it satisfies —|z*(t) —xf(t)| =0foreachk=1,..,N.

Proof The proof is by contradiction. We assume that (r1(t),...,r (¢)) is
a Nash equilibrium and that for at least one i, —|z*(t) — x;(t)| <0.

This means that there exists an o # 0 such that

ri(t) — % Zszl rk(t) — mz (t) — @ = 0. However, this implies that the alter-
native strategy y'(t) = ri(t) — %a gives a strictly higher payoff to cell 4

than 7!(t), since

ki
N
N 1 1 N .
7 k )
= — - a— = — — %t 2
U v L v 7T(t)+NN—1a 7 () (6:2)
| N 1N |N—1—N+1 =05 o
YT N YT NN 1Y T N—1 7 -

Thus, (r'(t),...,7V(¢)) is not a Nash equilibrium.
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6.5 Proposed Algorithm

Our proposed algorithm consists of two separate parts: firstly, the game
theoretic analysis presented above according to which each configuration
is seen as the unique Nash equilibrium of a different game and, secondly, a
total field collision avoidance algorithm that permits safe navigation without
requiring the vehicles to know each other’s positions.

Idea In Brief

We propose a total field sensing approach of magnetic nature to ensure
collision avoidance as an alternative to approaches where each vehicle needs
to know the positions of some or all of the other vehicles in order to plan a
safe trajectory.

Configuration as Unique Nash Equilibrium While in most formation
control approaches, vehicles use the actual positions of other vehicles or the
mass center of all or some vehicles as reference points in their navigation,
the collective goal of the system is merely the sum of the individual track-
ing goals of each vehicle - no formal system theoretic view is offered. As
described above, we propose a game theoretic view of the collective sys-
tem goal, seeing the current formation as the unique equilibrium of a game
completely described by its parameters and by interpreting switches of for-
mations as switches of such games.

Total Field Approach In this setting, each vehicle generates a magnetic
field around itself and is provided with a set of magnetic sensors that sense
the total field generated by the whole network of vehicles. The vehicle’s
own field is static in its reference frame and known; however, the field con-
tributions of the other vehicles are unknown and vary as the vehicles move.
Since the magnetic flux density decays inversely proportional to the cube of
the distance from the magnetic source, the contribution of vehicles farther
away will be very small compared to that of vehicles situated closer to the
sensing vehicle. The magnetic field generated by the sensing vehicle itself
can be cancelled out with more or less sophisticated methods, leaving as the
net result sensed the dynamic field generated by the other vehicles.

Strategic Sensing In particular, by strategically placing one-axis mag-
netic sensors orthogonal to the vehicle’s own field at different locations, the
vehicle’s own field will not be included in the measurements. Furthermore,
by choosing these locations in a symmetric way, one can also automatically
cancel out Earth’s magnetic field component, thus making sure that the net
difference only reflects the total field generated by the N — 1 other vehi-
cles. By combining the measurements of several on-board sensors placed at
different locations, the vehicle can estimate the gradient of the total field
generated by the other vehicles and move in the opposite direction to avoid
collision. Thus, no vehicle has to know the position of any of the other
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vehicles in order to plan its trajectory. An interesting application where the
total field sensing approach could be useful is robosoccer [16].

Natural Systems Analogy Recent results in biology suggest that similar
mechanisms may be found in natural systems such as flocks of birds, schools
of fish and bee swarms [18]. Indeed, it has been verified that the naviga-
tion skills of such systems can be severely hampered by the application of
disturbing magnetic fields.

Superposition on Naive Approach As noted above, centralized ap-
proaches to the problem rapidly become intractable as the number of vehicles
N grows and it is therefore necessary to opt for a decentralized approach,
making each vehicle responsible for its own trajectory planning. Ideally,
each vehicle would be able to navigate along a straight line from its start
position to its goal without colliding with other vehicles - our approach con-
sists in superposing on such a naive scheme a collision avoidance algorithm
based on total field sensing which makes information about the particular
positions and velocities of the other vehicles unnecessary. Since this is a
highly dynamic form of potential field, we will first briefly review the theory
of artificial potential fields in trajectory planning.

6.5.1 Potential Fields: Background

The potential field approach for obstacle avoidance, proposed by Khatib
in 1986 [27], models goals and obstacles as attractors and repellers of an
artificial potential field in which each vehicle moves.

On-line and Tractable The great advantage of this approach was its
tractability, which allowed highly adaptive on-line trajectory planning in-
stead of the rigid, time-consuming but exact off-line approaches in use at
the time. The most serious shortcoming of the approach was the risk of
local minima and of oscillations near obstacles and in narrow passages [28].

Perfect Information The theoretical simplicity of the potential field ap-
proach comes at the price of assuming perfect information or perfect ex-
traction of information from the sensors. In the former case, the navigating
vehicle has a map, knows the positions of all the obstacles relative to itself
and can thus inversely deduce the forces that it would sense. In the latter
case, the vehicle has sensors good enough to perfectly estimate the positions
and velocities of the obstacles - the sensing modes traditionally suggested
are machine vision or sonar - and then again deduce the forces. The first
case implies a static situation with no real need for on-line path planning
whereas in the second case, unrealistic assumptions are made on the sensors.
In both cases, the unnatural detour needed to actually obtain the ficticious
forces goes against the simplicity of the theoretical framework.
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Other Sensing Modes? s it possible to try other sensing modes to actu-
ally sense real forces, thus giving the potential field approach a simplicity in
implementation to match that of the theoretical framework? Could the sens-
ing of such forces be made more accurate than the estimation of distances
and velocities based on visual or sonar input?

Real Force We thus want to find a common signal, preferably in the form
of a real force, that can be readily measured and informs each vehicle if any
of the other vehicles is close and in which direction it is approaching. Gravity
and electromagnetic forces all decay with the distance between the source
and the sensor, which is desirable in our case. While gravity and electrostatic
forces seem inappropriate due to weak signals and lack of suitable sensors,
respectively, magnetic forces can conveniently be measured with a range of
commercial sensors.

Magnetism With this in mind, we propose a total field collision avoidance
scheme of magnetic nature which requires each vehicle to generate a local
magnetic field with an on-board magnet and sense the total surrounding
field with a set of magnetic sensors.

6.5.2 Magnetic Field Theory: Background

Charged particles in motion generate magnetic fields - here, we review the
central notions in magnetic field theory and examine the flux density around
current-carrying conductors in general and the magnetic dipole in particular.

Definitions The two central notions in magnetic field theory are the mag-
netic flux density B and the magnetic field intensity H, both vector quan-
tities. We will deal with the magnetic flux density B, given in teslas, T, or
in gauss, 1 gauss = 10~* T - the magnetic field of Earth corresponds at its
surface to a magnetic flux density component of about 0.5 gauss.

In figure (6.3), we see an illustration of the magnetic field generated by a
small bar magnet at the origin; to the left in the figure, we see the direction
of the field whereas to the right, the field magnitude is shown.

Magnetic Material Permanent magnets generate a constant static field
around them, the strength of which is determined by the magnitude and
direction of their magnetic moments. This, in turn, depends on the material
of which the magnet is made and on its size and shape. Electromagnets,
on the other hand, are created by winding a current-carrying conductor in
many coils around cores of magnetic material and switching on the current.

Current-Carrying Conductor The magnetic flux density around an in-
finitely long circular current-carrying conductor forms concentric circles in
any plane perpendicular to the direction of the current. When the conductor
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Figure 6.3: Magnetic flux density ‘—g‘ in the xy-plane around a magnetic
dipole, to the left, and |B|, to the right.

has finite length and forms a closed loop, we obtain what is referred to as a
magnetic dipole.

Magnetic Dipole The magnetic flux density B around a magnetic dipole
- a small current-carrying loop - can be described as

B = %(eﬂ cos 0 + egsinb), (6.3)
where jo = 4m -1077 H/m is the permeability of free space, mey is the
magnetic dipole moment, with e, as given in figure (6.4), and (r, 0) are
the spherical coordinates in a coordinate system that has the dipole at its
origin, also as shown in figure (6.4) [11, 34]. The vectors e, and ey are the
orthogonal unit vectors in the spherical coordinate system. Importantly, the
magnetic flux lines around a bar magnet can be very well approximated by
those generated by a magnetic dipole.
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Magnet

Figure 6.4: Spherical coordinate axes and Cartesian coordinate axes.

6.5.3 Vehicles as Magnetic Dipoles

By providing each vehicle with a magnet, we transform our system of navi-
gating vehicles into a system of mobile magnetic dipoles that can be sensed
by each vehicle. Each vehicle generates a magnetic field around itself and
has onboard magnetic sensors to sense the sum of the magnetic fields of the
other vehicles, thus obtaining information about how close the other vehicles
are.

Two issues need to be addressed in particular: firstly, how to make the
vehicles not sense their own magnetic field, only that of the other vehicles
and, secondly, how to exclude the magnetic field of Earth.

6.5.4 Generating the Local Field

Each vehicle k carries a magnet of moment m on board that generates a
magnetic field B¥(-, ). Although constant in the local reference frame R¥ of
vehicle k, the magnetic field B¥(-, ¢) will vary in the common reference frame
R as vehicle £ moves. By the analogy with a magnetic dipole described
above, each magnet naturally defines a local spherical coordinate system
with the magnet at the origin. At any point j described in RF by the
coordinates (r7,67), the field B¥(j,-) generated by vehicle k will be
k(. \_ _Hom j -
Bf(j,-) = 4w(ri)3 (er£2 cos 0] + e sin6y). (6.4)
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6.5.5 Sensing the Total Field

In addition to the magnet, each vehicle has a set of magnetic field sensors on
board with which it can sense the total magnetic field at the corresponding
set of points and draw conclusions about the gradient of the total magnetic
field. From above, we have that the total field sensed at a point j by any
vehicle will be

=

B(j,-) = ,um;z (e,;2cos 9‘,1 + e, sin9‘,i). (6.5)
prt dm(ry )3 Tk k

As we can see, the cubic factor in the denominators above will make the
vehicle’s own magnetic field the dominating term in the sum above when j
is the position of an on-board sensor.

6.5.6 Subtracting Own Field

Since the vehicle’s own magnetic field is constant and known, ideal sensors
would make it possible to subtract this field and obtain the net total field
generated by the NV — 1 other vehicles. Each vehicle k£ would then sense the
other vehicles at point j as B (j), where

Hom

Zr r(r])3

Blg'(ja ) = (er{QCos 0{ + 69{ sinO‘Z). (6.6)

Certain commercial sensors have patented offset straps which make it pos-
sible to apply a magnetic field in the direction opposite to the external
magnetic field, thus cancelling out the external field and making sure that
the net field stays in the range within which the sensing is linear. This thus
permits a more sophisticated form of subtraction of the own field.

6.5.7 Strategic Sensor Positions

Due to hardware limitations and the difference in magnitude between the ve-
hicle’s own field and that generated by the other vehicles, a straightforward
subtraction as described above may not always be possible. However, using
the fact that the vehicle’s own field is constant and known both in magni-
tude and direction in the vehicle’s own reference frame, one can make the
described subtraction unnecessary by strategically positioning the sensors
to measure the total field orthogonal to the vehicle’s own field at different
points.

As noted above, at a given on-board point j the sensor senses the vehicle’s
own field as B*(j,-), where 7";-“ is the distance from the magnet to the sensor
and 0;-“ the angle between the axis of the magnet and the vector from the
magnet to the sensor:

N L _ J Y
B%(j,") = 1r(r])? (eriZ cos 6, + ey siny). (6.7)
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Since all magnetic field lines are closed and continuous, it is possible to
find exact angles 9;-“ where the vehicle’s own field is respectively parallel to or
orthogonal to the axis of the vehicle’s magnet. The former case is the easier
one: when 0;-3 is respectively 0, § or m, the vehicle’s own field is parallel to
the magnet axis. The latter case requires some calculations and leads to the
values for 9;-“ of arccos % or (m — arccos %), that is, 54.7° or 125.3°.

To prove this, we first express the spherical unit vectors e, and ey in the
Cartesian unit vectors e, and e,, where e, is parallel to the magnet axis, as

shown in figure (6.4). We obtain, with the sign depending on the quadrant:

e, = Esinfle, + cosfe, (6.8)

eg = £ cosfe, —sinfey (6.9)
Using these relations, we now have:

2cos fe, + sinfey = 2 cos §(+ sinfe, + cos fe,) + sin O(+ cos fe, — sinfe,)
=+ 3cos Osinfe, + (2cos? O — sin? ) ey (6.10)

For the first case, we want the z-component of the field, £3 cos #sin @, to be
zero. We have:

+3cosfsinf =0 = cosf =0 or sin0:0:>9:0,g,7r. (6.11)

In the second case, we want the y-component, 2cos? 6 — sin?#, to vanish.
Using the fact that cos® @ + sin?6 = 1, we have:

208260 —sin?0 = 2cos?0 — 1+ cos’0 =3cos’H—1=0

+1 +1
= cosf) = — = 0 = arccos —. (6.12)

V3 V3
We have now found a set ©, = {0, 5,7} of angles where the vehicle’s own
field is orthogonal to the z-axis in the vehicle’s reference frame and a set
of angles ©, = {arccos %, (m — arccos %)} where, likewise, the vehicle’s
own field is orthogonal to the y-axis in the vehicle’s reference frame; these
positions are shown in figure (6.5). Thus, if a field component along the
x-axis is detected at an angle 6, € O, or a field component along the y-axis

is measured at an angle ¢, € ©,, we know that they were not generated by
the vehicle itself.

6.5.8 Earth’s Magnetic Field

The magnetic field of Earth is generated by magnetic material in the deep
interior of the planet. At any point on the Earth’s surface, the field has a
component in the tangent plane directed towards the magnetic South pole,
close to the geographical North pole, and an orthogonal component which
we disregard in a two-dimensional setting.
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Figure 6.5: Sensor input positions for measuring the surrounding field along
the z-axis, to the left, and along the y-axis, to the right.

While the strategic sensor positions described above ensure that the
vehicle’s sensors will not sense its own field, the total field sensed will in
general include a component of the magnetic field of the Earth - as the
vehicles rotate, this component will change. However, the symmetric choice
of the strategic sensor positions as illustrated above will make sure that the
component B, of the Earth’s magnetic field sensed by any of the sensors
positioned to measure the z-component will be identical, and the same is
true for the component B, sensed by the sensors positioned to measure
the y-component. Thus, the pairwise subtractions of the measurements of
z-sensing sensors or of y-sensing sensors will always cancel out the Earth
magnetic field component.

Why will the magnetic field component of Earth measured by the sensors
be the same while that is not true for the measurements of the total field
generated by the N — 1 other vehicles? That is because the distance to the
magnetic field source of Earth is infinitely much larger than the distances to
the other vehicles, so that the on-board sensors of a vehicle are all at essen-
tially the same distance from the interior of Earth whereas their respective
distances to the vehicles vary and make a difference.
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6.6 Proposed System Dynamics

In order to navigate towards the goal while avoiding collisions during pos-
sible reconfigurations, each vehicle must use its sensor measurements to
estimate the gradient of the total field generated by the other vehicles to get
information about what directions to avoid.

Weighted Mode We will use the weighted mode approach where colli-
sion avoidance, navigation towards the goal and configuration keeping are
weighted to obtain the desired net result of safe, yet aggressive navigation
towards the goal.

6.6.1 Navigating towards the Goal

Naive Approach When N = 1, there is no uncertainty in the system and
we can let our solitary vehicle navigate along the straight line from r'(0)
to ré. However, as soon as N > 1, such naive paths may no longer be safe
and detours will have to be planned around detected vehicles. In addition,
as the number of vehicles IV increases, the uncertainty grows exponentially
and the task of keeping track of the exact positions of all or even a fraction
of the other vehicles becomes overwhelming - rather, one will have to focus
on whether any of the other vehicles is too close.

Superposition Safe navigation towards the goal is achieved as the weighted
sum of collision avoidance and the movement of the system mass center along
the straight line towards the goal. We have for some weight v, 0 < vy < 1:

A'I"goal = ’yf (613)

6.6.2 Configuration Keeping

Configuration keeping is obtained by making each node keep its distance to

the system mass center, r¥(t) —7(t), equal to its current reference vector mf
rk— 7 — ac;“
Arcons =y e (6.14)

rk — 7 — %

6.6.3 Collision Avoidance

The collision avoidance component Ar.,y; is parallel to the estimated gradi-
ent of the total field VB4, to be described next, but of opposite direction.

We thus have:
vBest

AT‘CO” = _(]' - ’Y) |VB t|'

(6.15)
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6.6.4 Estimating the Gradient

Each vehicle has eight single-axis sensors positioned at the eight strategic po-
sitions chosen above. The four sensors positioned to sense the z-component
of the surrounding magnetic field are numbered clockwise and give the in-
puts z;, ¢ = 1,2, 3,4 corresponding to the spherical angles 0°, 90° and 180°
in the left part of figure (6.5). The same is true for the four sensors mea-
suring the y-component as inputs y;, 1 = 1,2,3,4; they correspond to the
spherical angles 54.7° and 125.3° in the right part of figure (6.5).

We wish to estimate the gradient VB = a%Bex + %Bey at the origin
of the vehicle’s own reference frame. We have

0 0 1 0B
Ip=2 /B2+B2= B,
oz oz z T By /B% +B§(

0B
f+B,—2 1
oy + By a$)and (6.16)
9B,

0 . 0 s 1 0B,
a—yB_a—y,/BerBy_ \/M(Bx 5, B, ) (6.17)

We approximate

B — B —
OB, ~ 227 ond 9B, ~ 2 x3, (6.18)
0x oy Oy lgys

where [, is the distance between the sensors z; and z;.
We average to approximate

B - — 0B - -
T T e T T A TR VRO
ox 2y, 2y Ay 2y 2y

where [,,. is the distance between the sensors y; and y;.
The values B, and B, are estimated from the sensor measurements as

B, ~ 1+ 22+ x3+ 24 and B, ~ y1+y21y3+y4'

; (6.20)

The estimate Vs Best of the gradient thus obtained is used to generate a
collision avoidance component in the motion of the vehicle. We have

T2 — T4

1 1= Y4 | Y2—Y3
VestBest = (Bx I + By(le + 21 ))ex
A /B% + B; 24 Y14 Y23
1 _ _ _
e (B 4 By (T T )ey, (6:21)
B% + B; ls 2ly43 2ly12

where B, and B, are approximated as in (6.20).
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6.6.5 Net Motion

A third important factor is the weighting between the two possibly con-
flicting objectives of orientation towards a goal and collision avoidance, re-
spectively. We wanted to achieve aggressive path planning and got the best
results with a weight of v = 0.66 on the orientation towards the goal and
(1 —) = 0.34 on collision avoidance. The net motion is described by Ar as
given below.

Ar = Argoal + Arwnf + Areon (6.22)

rg —r ’rk —-Tr—= x;ﬁ VBt

+ —(1-
lra — | 7|7"k — 7 — k] =7 |V Best|

=7
(6.23)

Choosing Weight v The weight v needs to be chosen large enough to
ensure that the vehicles reach their destination, yet small enough that they
do not collide. By definition of the system dynamics in reconfiguration when
A""conf =0,

rk —rk(t) VB

Rt +1) :Tk(t)”vg—rk(m —(1—7)W. (6.24)
Defining the function L¥(t) = |r*(t) — rk|, we thus have
LFt+1)=|rF @t +1) — )
_ 0 vB
= 10+~ 0 e 7
rk(t) —rk VB
40 =) Ty TZ| -
rk(t) — VB
(40 =) = ||+ (1=
= (L40) =) + (1=
= LF(t) + (1 - 2)
< LF(t) iﬂ"1—27<0;w>l (6.25)

2

Thus, ify > 5 L L*¥(t) is a strictly decreasing sequence with a lower boundary
LF =0anda ﬁmte initial value L*(0) < oo.
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6.7 Stability Analysis

To evaluate the stability of our approach, we will first analyze the resulting
navigation in environments that are much simpler and more static than the
scenario for which the algorithm was designed.

6.7.1 Two Vehicles

The two-vehicle situation can easily be expressed analytically; in the given
equation, we note that although the distance |r' — 2| to the other vehicle is
the same for both vehicles, the angles ; and 05 are generally not the same.

1

1_
reg—r

|:A,r.1] _ /—;"}f;"l 1) V%(\ﬂl cos? 0o + sin? fy) (6.26)
Ar? el V% (\/4 cos? 0y + sin? 0y)

\re—r?

Qualitatively Different The two- or three-vehicle situation is qualita-
tively different from the multi-vehicle scenario because in the former situa-
tion, each vehicle has much more information about who generated the field
it is sensing - this additional information should be used. In the general
multi-vehicle situation, the field sensed gives little if any information about
the positions of the individual units.

One Vehicle Static We simulated the two-vehicle case where one vehicle
is static - in the left part of figure (6.6), we see how the minimum distance
between a navigating vehicle and another vehicle, here assumed static, varies
with . In the right part of figure (6.6), the trajectories are plotted for
v = 0.55, v = 0.6 and v = 0.66 when the orientation a of the static vehicle
with respect to the z-axis is 90°; from this study we concluded that the
interesting interval for v is quite small.

Introducing Asymmetry in Roles A straightforward approach for en-
suring that each vehicle arrives at its destination without collision is to
introduce an asymmetry in the form of dominance - one vehicle is assigned
a dominant role and does not deal with collision avoidance at all, whereas
the other vehicle is given a subordinated role and yields to the other vehicle.
Once the first vehicle has reached its destination, the second vehicle will no
longer have to yield and collision-free convergence is guaranteed.

Indeed, an asymmetry in roles can be generalized to the case where
N > 2 by giving all players distinct identity numbers £ = 1,2,..., N and by
letting vehicle £ = 1 be the dominant one and the others be subordinate.
Once vehicle £ = 1 has arrived at its destination, it is broadcast that vehicle
k = 2 takes over the dominant role - this procedure is repeated until, if
vehicle £ = N still has not arrived, it will take on the dominant role and
then in fact be alone with no need to yield.
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Introducing Asymmetry in Time Another alternative which can be
generalized to the case where N > 2 is to instead introduce an asymmetry
in time, letting the units start at points close in time rather than at the
same time - this approach can be used for problems with symmetrical initial
conditions. Whether a system has symmetrical initial conditions can be
determined by seeing if the naive approach alone would not only lead to too
narrow margins but indeed also to actual collisions. In a reconfiguration
setting, this would thus mean that the vehicles started the reconfiguration
in series rather than at the same time.

One Vehicle: Minimum Distance to Obstacle as Function of y and Time

ce to Obstacle

Minimum Distan

Figure 6.6: Variation with v of the minimum distance between a navigating
vehicle and a static vehicle, to the left, and three different trajectories for
v = 0.55, v = 0.6 and v = 0.66 when the orientation a of the static vehicle
with respect to the z-axis is 90°, to the right.

PD-regulator To increase the angular inertia, the collision avoidance part
Ar. can be formed as a weighted average of the current and previous
normalizations of the field gradient, as expressed in equation (6.27). A
simple z-transform analysis then shows the collision avoidance part of our
controller to be a PD-regulator with respect to the gradient of the total field
magnitude |B| as given in equation (6.29).

Are(t) = aey(t) + fev(t — 1) (6.27)

Are(t) = Kpeg (1) + Kp ST = =) (6.28)
K K

a=Kpt+ = 0=-=" (6.29)
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6.7.2 Potential Dangers

The main risks to the system stability are the presence of deadlocks, oscil-
lations, the possibility of collisions and observability.

Static Deadlocks A static deadlock is a situation where at least one
vehicle stops moving altogether, caught by opposing forces of zero resultant
which on the one hand strive to move the vehicle towards its goal and, on
the other hand, aim at avoiding collisions. For our algorithm, this can only
occur if the weight v < 0.5.

Dynamic Deadlocks In a dynamic or cyclic deadlock, on the other hand,
the vehicles still move but only in a cyclic manner within a restricted space.
Typically, the relative motion of the vehicles during this cycle gives rise to
conflicting commands for each vehicle at different points, such as focus on
collision avoidance versus navigation towards the goal. This can happen if
v < 0.5; such values of v are thus not allowed. However, even if v < 0.5 this
risk is small whereas algorithms constructed to allow for no collisions at all,
briefly described below, carry much higher risks of dynamic deadlocks.

Oscillations Oscillations are a general danger in potential field approaches
- in our case, they are above all caused by low angular inertia in the vehicle
model, which causes the surrounding field to vary too much between two
successive points in time, thus causing the responses from the individual
vehicles to be very different at these two time points.

Collisions The more aggressive the navigation, the narrower the margins
and, in consequence, the higher the risk of collisions. A worst-case scenario
that allows for no collisions leaves most of the benefits of the distributed
paradigm unused - the fundamental strength of the distributed system is its
parallel structure that allows the system to function well although fractions
of the system are lost.

In some cases, safer navigation with larger margins may be preferred to
aggressive maneuvering - we obtained qualitatively different and less aggres-
sive navigation by making all vehicles orient their magnets along an agreed
upon axis, thus making sure the superposition of all fields did not cancel
out any part of the individual components.

Observability Low observability is often an additional constraint in ac-
tual applications, where in addition to navigating safely, vehicles should
avoid detection by potential opponents, who are assumed to be able to ob-
serve everything in certain possibly moving observation fields - this can be
pictured as an observation circle moving along some trajectory over the
space in which the vehicles are moving.

By seeing the center of the moving observation field as a ficticious vehicle,
our algorithm can easily be adapted to this case as well. Each actual vehicle
takes into account not only the real fields generated by the other vehicles
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but also weighs in a ficticious field component as generated by the ficticious
vehicle - the weight £ can be chosen to reflect the importance attached to
avoiding detection. This gives the following expression for the ficticious field
B it and the modified surrounding field:

() = e PO g j sin @’
Byict((4,7) = §4W(le)3 (erg2cos 0/ + ey sin 6 ) (6.30)
Bk (5,-) = ﬁ(eﬁ-%}os 0] + €y sin®/) + Byict (7, -) (6.31)
Ik I

We tested this approach in our original setting to which a moving observation
field was added. As expected, the addition of an additional constraint made
the collision avoidance margins to the real vehicles somewhat tighter while
also assuring that the vehicles kept a safety margin to the center of the
observation field as desired.

Minimum Distance Between Vehicles as Function of Weight Minimum Distance as Function of Weight

T T T T T

Minimum Distance Between Any Pair of Vehicles
o
o
L

Minimum Distance to Center of Observation Circle

80 90 100 110

Time

Figure 6.7: Variation with £ of the minimum distance between any pair of
vehicles, to the left; variation with £ of the minimum distance between any
vehicle and the center of the observation field, to the right.
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6.7.3 Factors of Influence

We concluded above that if the weight v > 0.5, all vehicles will indeed arrive
at their respective destinations but the margins to the other vehicles may
still vary with a number of factors, of which the main ones are presented
below.

Weight v If v < 0.5, the total field approach in its current version can
indeed give rise to static deadlocks. We found the interesting interval of v to
be small, 0.55—0.66, as stated above - beyond this interval, the margins were
too narrow or the objective of navigating towards the goal became subordi-
nated and vehicles overreacted to the presence of other vehicles, producing
oscillating trajectories and crossing each other’s paths more than once.

Space Available vs. N Clearly, given a limited space there is an upper
bound on the number of vehicles N that can navigate within the space
without colliding - if N is too large, each vehicle will be surrounded by
vehicles and face a high risk of collision no matter what direction it chooses.

Step Size vs. Vehicle Size In this scenario, the vehicles are not modelled
as points but have noninfinitesimal dimensions as reflected by the maximal
distance [, between the on-board sensors. The step size relative to the
vehicle dimensions is a factor to be taken into consideration - we let the step
size be 1.0 — 1.5 times the dimensions of the vehicle.

Symmetry Symmetric problems may pose a challenge by leading to mir-
roring trajectories along the original axis of symmetry which makes it dif-
ficult for vehicles to cross paths. The most straightforward way of solving
this is to introduce an asymmetry in time, making the nodes start at slightly
different points in time.

Orientation o The relative orientation «;;(t) of two vehicles ¢ and j at
time ¢ plays an important role in the extent to which the vehicles sense each
other - with a periodicity of m, the vehicles have a blind spot. In the case
where there are only two vehicles, particularly if one of them is static, this
may be a problem, but in the standard case where N > 2, «;;(t) depends
on so many factors that it is extremely unlikely that even a static vehicle j
will be in the blind spot of a vehicle ¢ for more than one time step.

Angular Inertia Imposing a maximum turning angle 0,5 per time step
makes the total field changes more smooth for each vehicle and thus reduces
the risk for oscillations in the trajectories. However, if Oy, is too small,
there may be a risk of staying close to blind spots since the relative orien-
tation «;;(t) may hit such a spot for some combination ¢ and j and time
t.
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6.7.4 Alternative Formulations

We tried some variations of the total field algorithm in which the field mag-
nitude was taken into account and the step size or weight varied; although
more elaborate, we found them to work less well than the original version
of the algorithm for reasons given below.

Magnitude Rather than Gradient Currently, the gradient is normal-
ized and the resulting displacement is the same whether the magnetic field
sources are situated far away or close to the sensing vehicle - to be able to
guarantee that no collisions will occur, each vehicle has to stop as soon as
the field magnitude |B| sensed by any sensor is above a threshold |B|pax.
If the field magnitude sensed by any of the other sensors is smaller than
a minimum threshold |B|min, the vehicle may move in the direction of the
negative gradient - such a minimum threshold is needed since if the field
magnitude is very large in all directions around the vehicle, any movement
may give rise to a collision. Assuming N is finite, a subset Npoyng of all
vehicles will be positioned on the boundary of the convex hull Ay (¢) of the
area in which the vehicles are currently moving. These vehicles, at least,
will have freedom of movement in the direction away from Ay (t). However,
the resulting movement will not have the dynamics typical of high-speed
vehicles but rather be suitable for an explorative, slow rover-like vehicle.

Variable Step Size Allowing the step size to be variable would make it
possible to take large steps when |B| is small and small steps when |B] is
large. However, such a scheme is vulnerable to static deadlocks, as verified in
simulations, since in a cluttered environment all vehicles may end up taking
very small steps, leading to a static situation.

Variable Weight v By letting the weighting parameter « vary with |B]|,
one can focus on navigation towards the goal and let v — 1 when |B] is
small and, conversely, let v — 0 when |B| is large and collision avoidance
has the higher priority. Unfortunately, we found this approach to be quite
vulnerable to dynamic deadlocks.

Step Back in Emergency When the field gradient is parallel or almost
parallel to the direction towards the goal, it is clear that the main local
obstacle region for that vehicle lies right in front of it. A slight modification
to the algorithm that was heuristically shown to increase the margins to the
other vehicles was to let the vehicle take a step along the negative gradient
if the angle 8 between the field gradient and the direction towards the goal
was less than a minimum value Sp,;,. This is a special case of variable weight
v since v = 0 if 8 < Bmin-
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6.8 Heterogeneity

In contrast to the first scenario described above, in the cluster scenario each
functional role is individually designed for the corresponding node and can
thus be adapted to suit its particular profile. If one node reacts slower
to change than the other nodes, it may not be required to be active in
permutation configurations but will keep its current relative position while
the other nodes switch roles.

Reduced Position Spectrum In the first scenario, we focused on the
heterogeneity where some nodes are limited in their choice of positions as
compared to others; this particular type of heterogeneity is important in the
cluster scenario, too. This can thus be seen as the heterogeneous players
having a reduced action space compared to the other players; since the
actions are positions in R and the position spectrum is defined relative to
the mass center in X, the positions to avoid will change with time.

Defensive Position Preference In particular, some nodes may prefer
a defensive position behind other nodes rather than occupying one of the
often more energy-consuming front roles.

Relative Position Preference Some nodes may instead have position
preferences defined relative to the positions of other nodes. This also corre-
sponds to a reduced action space as compared to other nodes, but with the
preferred positions now conditional on the current strategies of just a few
nodes rather than on all nodes through the mass center - the whole payoff
function for that particular player is thus changed, not just its parameters.

In the leader-follower approach cited above, the followers are artificially
assumed to have such relative position preferences; in this analysis, such
preferences will only be assumed when they correspond to a physical con-
straint such as two players jointly carrying one item and therefore needing
to be side by side.

While such a preference may be difficult to accommodate in the general
case, it easily adapts to several standard formations such as the V- or I-
shapes introduced above.

Slower Dynamics If a node is impaired so that its dynamics changes, for
example by slowing it down, either the network as a whole will have to slow
down to stay in formation or the impaired node will have to be discarded.
However, in the special case where different nodes may have different speeds,
such as a satellite network forming concentric circles of different radii circling
around Earth in synchronization, the impaired node may shift orbits to an
orbit of lesser radius.

124



6.9 Reconfiguration

How are the three classes of reconfigurations introduced in the classification
above - permutation, system and structure reconfigurations - interpreted in
this setting?

6.9.1 Permutation Reconfiguration

Whereas in the swarm application described above, the main interest was
the average position, in this high precision system the exact position of
each node counts and the issue of permutation reconfigurations has higher
priority. Since each individual formation position corresponds to a reference
position with respect to the mass center of the system, a switch of roles
corresponds to a switch of reference positions - from a game theoretic point
of view, the players switch payoff functions with each other but otherwise
the game is still the same.

6.9.2 System Reconfiguration

System reconfigurations are switches from one predefined formation to an-
other - in our example for N = 5, between the V-, I-, U- and M-formations
- and are here implemented as a synchronized switch of game parameters,
that is, individual reference positions with respect to the mass center of the
system. Thus, only the parameters used in the payoff functions change, not
the payoff functions themselves.

6.9.3 Structure Reconfiguration

A structure reconfiguration goes beyond the mere swapping of game param-
eters, either at the level of local nodes or at the level of the whole network.
In a structure reconfiguration, some payoff functions are replaced by new
ones or the very format of the game changes such as the number of players
N, requiring a redefinition of the whole set of payoff functions.

In node loss, if the formation position of a lost node is known, one
can compensate for it when estimating the mass center of the system by
adding a virtual node at its formation position while awaiting the arrival of
a replacement node. When the formation position of the lost node is not
known, it may be possible to obtain such information indirectly by analyzing
the disturbance of the mass center trajectory caused by the loss of the node.

The addition of nodes will call for corresponding adjustments of the ref-
erence positions of the other nodes; the number of such adjustments should
preferably be made as small as possible.
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6.9.4 Reconfiguration Initiation

Reconfiguration initiation concerns reasons for reconfiguring, who takes the
initiative to reconfigure and how the roles are allocated among the nodes.

Reasons for Reconfiguration

The network may have many different reasons for reconfiguring - we present
four main categories of such reasons and give motivations.

Function As a rule, the network has a function, which may range from
forming a distibuted telescope of varying radius to working as an elastic
fence around a vessel navigating in the ocean. The function is as a rule
tied to the relative positions of the nodes, thus to their configuration, and
reconfigurability is usually the reason for using a network of small, simpler
units rather than one single, large unit.

Environment The network is located in an environment which may change
either because the network is moving or because the environment itself is
dynamic. Although the network may be filling a constant function at the
time, such as forming a telescope of constant radius, it may now need to
reconfigure in order to fill the same function in a changing environment. For
example, a navigating network may need to reconfigure from a V-shape to
an I-shape to be able to pass through a narrow passage and avoid collision
or it may have to reconfigure from an I-shape to a V-shape to be able to
better observe the environment and not have nodes blocking each other’s
view.

Individual Nodes As the individual nodes change, permutation or struc-
ture reconfigurations may be necessary because an impaired node needs to
be reallocated to a different role. Furthermore, permutation reconfigura-
tions may also be called for to get a balanced energy consumption among
the nodes, since some roles may be more energy-consuming than others.

Interaction with Other Networks Interaction with other networks may
be yet another reason for reconfiguration; the objective may be to detect
and locate the other network such as in searching for a number of static
landmines or, when the other network is a mobile enemy, to avoid being
observed or to assume a defensive configuration that makes it more difficult
to attack.

Taking the Initiative

If each predefined configuration is identified by an index, any node can ini-
tiate a reconfiguration by broadcasting the index of the desired new config-
uration. However, such a scheme puts a good deal of responsibility on each
node and may be vulnerable both to single errors in judgment and to interior
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network attacks. Furthermore, a period of saturation during which no mes-
sages can be broadcast needs to follow to avoid conflicting reconfiguration
commands.

In an alternative approach, different nodes may be responsible for initi-
ating reconfigurations depending on the current configuration - this would
avoid the possibility of conflicting reconfiguration commands.

Yet another approach is to have a central coordinator, either exterior
or part of the network, that receives distributed sensing input from the
network and makes the final decision about reconfiguration, possibly on the
recommendation of local nodes.

Role Allocation Once the decision has been made to reconfigure, each
node needs to know its role in the new configuration. One alternative is to
give each role in every configuration a number 7, 5 = 1, ..., N and to let each
node k, k = 1,..., N always have the role j, 7 = k. At reconfiguration, the
nodes are informed of the new mass center and the new configuration and
find their way to their new relative positions with the total field approach.

Role Assignment By Priority If heterogeneous nodes are present that
have a reduced position spectrum, they may be given priority in choosing
their next roles, given that a new configuration has been chosen. The rest of
the nodes may then be allowed to choose their respective new roles in order
of increasing index k.

Asynchronous Reconfiguration Since many configurations have at least
one axis of symmetry and the total field approach is sensitive to symmetries
when N is small, it may be a good idea to let the nodes start reconfiguring
at points close in time rather than simultaneously.
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6.10 Simulation Results

In this section, we present a series of simulations carried out to test our
approach. Formation keeping has already been extensively studied using
the three different approaches cited above - leader-follower, virtual structure
or weighted mode - and we therefore focus on the collision avoidance and
reconfigurations.

6.10.1 Collision Avoidance

In this scenario, ten vehicles A, B,...,J were assigned start and goal positions
from the sets S and G of start and goal positions, respectively, where S =
{(3,0) |¢ = 0,1,...,9} and G = {(7,10) |¢ = 0,1,...,9}. All vehicles started
at different points s € S and had different goal points ¢ € G. Although
this scenario was constructed to study collision avoidance in general, we
node that it can also be interpreted as a permutation reconfiguration of an
I-shape composed of N = 10 vehicles.

To evaluate the performance of the algorithm, the minimum distance
between any pair of vehicles was plotted as a function of time both for
the total field approach with v = 0.66 and for the naive approach with no
collision avoidance - the result is shown in figure (6.8). While the naive
scheme with no collision avoidance indeed led to collisions, the total field
approach made sure each vehicle kept a minimal safety distance to all other
vehicles.

In figures (6.9), (6.10) and (6.11), we see comparisons between trajecto-
ries generated by the total field approach and the naive scheme, respectively.
At some particularly interesting points in time, the simultaneous positions
of all ten vehicles are marked with the symbols o, * or A.

Ten Vehicles: Minimum Distance Between Vehicles as Function ofy
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Figure 6.8: Minimum distance between any vehicle pair, total field approach
and naive approach without collision avoidance compared; v = 0.66 for the
total field approach.
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Ten Vehicles: Trajectories for Vehicles A, B and Cy=0.66 Ten Vehicles: Trajectories for Vehicles A, B and C, Naive Approach
T T T T T T T T T T

Figure 6.9: Safe aggressive trajectories for vehicles A, B and C, to the left;
trajectories without collision avoidance to the right. The positions of all
vehicles at a particular time are indicated by the symbol o.

6.10.2 Reconfiguration

Reconfigurations of all the types identified above - permutation, system and
structure reconfigurations - were also simulated.

System Reconfiguration In figures (6.13), (6.14), (6.15) and (6.16),
we see system reconfigurations between the four configurations introduced
above. In figure (6.13), the system reconfigures from the V-shape to the I-
shape; in figure (6.14), it goes from the V-shape to the U-shape and rotates
simultaneously, whereas in figure (6.15), we see a reconfiguration from the
I-shape to the U-shape. Figure (6.16), finally, shows a reconfiguration from
the V-shape to the M-shape with simultaneous rotation.

The reconfiguration trajectories are shown to the left in all figures, while
to the right we see how the minimum distance between vehicles changes
over time during the reconfiguration with the total field approach in solid
line and a standard potential field approach dashed; the initial formation
is shown with double circles whereas the final formation is indicated with
simple circles.

The naive scheme with no collision avoidance would indeed lead to col-
lisions in figures (6.15) and (6.16), but the total field approach gave safe
trajectories. Analyzing the situation in figure (6.15), we see that the colli-
sion would be caused by the symmetry of the subproblem for nodes 4 and
5, whereas in figure (6.16), the crossing paths of vehicles 3, 4 and 5 rather
than symmetry would be to blame.
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Ten Vehicles: Trajectories for Vehicles D, E, F and G;=0.66

Ten Vehicles: Trajectories for Vehicles D, E, F and G, Naive Approach
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Figure 6.10: Safe aggressive trajectories for vehicles D, E, F and G, to the
left; trajectories without collision avoidance to the right. The positions of
all vehicles at a particular time are indicated by the symbol o.

Ten Vehicles: Trajectories for G, H, | and J,=0.66

10 T T T

Ten Vehicles: Trajectories for Vehicles G, H, | and J, Naive Approach

Figure 6.11: Safe aggressive trajectories for vehicles G, H, I and J, to the
left; trajectories without collision avoidance to the right. The positions of
all vehicles at two particular times are indicated by the symbols o and *,

respectively.
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Ten Vehicles: Trajectories for Vehicles A, F and G,y=0.66 Ten Vehicles: Trajectories for Vehicles C, D, H and Jy=0.66
4 4 4

10 & & > 10 | : i : :
*
*
o a B o . ¥
o

L o |

8 B 8 o ° o
7+ B 7+ B

*
6 B 6 B
* * *x o
- 5 * 4 > st 4
4 . B af B
o o o
ab o ° B 3k ,
o
o B o B
ik B 1k B
R . . . . . . . o . . . . .
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9
X x

Figure 6.12: Safe aggressive trajectories for vehicles A, F and G, to the left,
and for C, D, H and J, to the right. The positions of all vehicles at three
particular times are indicated by the symbols o, * and A, respectively.

Five Vehicles: Reconfiguration
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Figure 6.13: System reconfiguration between the V-shape and the I-shape,
to the left, and the minimum distance between vehicles during the reconfig-
uration, total field approach and potential field approach compared, to the

right.
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Figure 6.14: System reconfiguration between the V-shape and the U-shape,
to the left, and the minimum distance between vehicles during the reconfig-
uration, total field approach and potential field approach compared, to the

right.
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Figure 6.15: System reconfiguration between the I-shape and the U-shape,
to the left, and the minimum distance between vehicles during the reconfig-
uration, total field approach and potential field approach compared, to the

right.
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Five Vehicles: Reconfiguration Five Vehicles: Minimum Distance Between Vehicles
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Figure 6.16: System reconfiguration between the V-shape and the M-shape,
to the left, and the minimum distance between vehicles during the reconfig-
uration, total field approach and potential field approach compared, to the
right.

Permutation Reconfiguration In figures (6.17), (6.18) and (6.19), we
find simulations of permutation reconfigurations with performance compar-
isons betwen the total field approach and a standard potential field approach.
In figure (6.17), we see a permutation reconfiguration within the I-
configuration, where the original node order d,iginq is permuted into dy,

doriginat ={1 2 3 4 5},d1={3 4 5 1 2} (6.32)

To the left in the figure, we see the reconfiguration trajectories, while to
the right the minimum distance between vehicles during reconfiguration is
shown as a function of time with the total field approach and a standard
potential field approach compared. Without collision avoidance, this is a,
one-dimensional problem which will lead to several collisions; with the total
field approach, the units react to the motion of the other vehicles and the
collisions are avoided, as shown in solid line.

Figure (6.18) shows a permutation reconfiguration within the M-shape,
where the original node order d,;;gina; is permuted into da,

dy={2 3 1 5 4} (6.33)

The symmetry of the subproblem for nodes 4 and 5 would lead to a collision

with the naive scheme; the collision is avoided with the total field approach.
Figure (6.19), finally, shows a permuation reconfiguration within the V-

shape; again, the node order d,;gina; 1s permuted into ds as given above.
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Figure 6.17: Permutation reconfiguration
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Figure 6.18: Permutation reconfiguration while keeping the M-shape, to the
left, minimum distance between vehicles during the reconfiguration, total
field approach and potential field approach compared, to the right.
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T T T T

Minimum Distance Between Any Pair of Vehicles

v — Total Field
\ s — - Other
.

L L L L L L L L L L L
-3 -2 -1 0 1 2 3 5 10 15 20 25 30
x

Figure 6.19: Permutation reconfiguration while keeping the V-shape, to the
left, minimum distance between vehicles during the reconfiguration, total
field approach and potential field approach compared, to the right.

Structure Reconfiguration In figure (6.20), (6.21) and (6.22), we see
structure reconfigurations consisting in node additions after some nodes are
lost and have to be replaced.

Figure (6.20) assumes an initial situation where nodes 2 and 4 of the
I-shape have been lost and vanished and two new nodes are sent out to
replace them. At the same time, a permutation reconfiguration takes place
so that the original node order dyriginq is replaced by ds,

d3={2 - 3 — 4} (6.34)

Here, the dash denotes a lost node; the new nodes take roles 1 and 5. As
seen to the right in the figure, neither the total field approach nor the naive
approach with no collision avoidance leads to collisions but the margin is
somewhat broader for the total field approach.

In figure (6.21), nodes 2 and 3 in the V-shape stop functioning but do not
vanish; instead, they now become static obstacles that both the remaining
and the new nodes have to avoid. A permutation reconfiguration occurs
simultaneously so that the initial node order doigina becomes dy, while
again the new nodes assume roles 1 and 5. In this case, the naive approach
gives rise to a collision between a new node and the static former node 3;
with the total field approach, the new node instead navigates between the
two static nodes.

dy={2 - - 3 4} (6.35)

Figure (6.22), finally, shows a structure reconfiguration of the M-shape
where three new nodes are addded after nodes 3, 4 and 5 stop functioning
and become obstacles. In this case, no simultaneous permutation reconfigu-
ration takes place - the old nodes keep their previous roles. With the naive
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approach, one of the new nodes collides with the static former node 4, but

the collision is avoided with the total field approach.

Five Vehicles: Reconfiguration

Five Vehicles: Reconfiguration
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Figure 6.20: Structure reconfiguration where two nodes vanish from the I-
shape and are replaced by two new nodes, to the left, minimum distance
between vehicles during the reconfiguration with total field approach and
naive scheme without collision avoidance compared, to the right.
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Figure 6.21: Structure reconfiguration where two nodes stop within the V-
shape and are replaced by two new nodes that have to navigate past them, to
the left, minimum distance between vehicles during the reconfiguration with
total field approach and naive scheme without collision avoidance compared,
to the right.

Five Vehicles: Reconfiguration Five Vehicles: Minimum Distance Between Vehicles
15 T T T T T

y
o
T
L
Minimum Distance Between Any Pair of Vehicles

Figure 6.22: Structure reconfiguration where three nodes stop within the
M-shape and are replaced by three new nodes that have to navigate past
them, to the left, minimum distance between vehicles during the reconfigura-
tion with total field approach and naive scheme without collision avoidance
compared, to the right.
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6.11 Hardware Implementation

We also performed experiments with hardware using one sensor and two
identical light-weight magnets to simulate the scenario of two vehicles mov-
ing relative to each other. Furthermore, a series of measurements was carried
out to confirm the theoretical deductions such as the strategic sensor posi-
tions and detection ranges and to test the function of the patented offset
straps of the sensor - for the latter measurement series, we used two sensors
and a set of magnets of varying sizes.

Sensors The sensors used were Honeywell’s HMC2003 and HMR2300,
which are three-axis magnetic sensors targeted at fields up to 2 gauss and
have a resolution of less than 70 pgauss. The sensors are equipped with
patented offset straps that allow the application of an electrically generated
magnetic field in a direction opposite to the exterior magnetic field, thus
making it possible to locally cancel out any component of the exterior field
and bring the net field back to the linear range.

Magnets The magnets used to simulate two navigating vehicles were two
identical, cylindrical magnets of length 18 mm, diameter 5 mm and weight
6 g - their magnetic moments were aligned with the cylinder axes.

Verifying Strategic Positions In the measurements to confirm the the-
oretical deductions, we verified the ratio between the detection range and
the on-board distance between the vehicle’s own sensors and magnet to be
around thirty. This was also obtained theoretically by defining the on-board
distance between the vehicle’s own sensors and magnet as the distance where
the sensors would measure 2 gauss and the detection range as the distance
where the sensing vehicle would measure less than 70ugauss. We also veri-
fied the strategic sensor positions to correspond to those calculated above.
The detection ranges for the different magnets tested were found to vary
from 1m to 7m.

Testing Relative Motion In our simulation of a two-vehicle scenario,
we positioned the sensor at a strategic position in ©, or ©, close to one of
the magnets, thus simulating a vehicle with an on-board magnet and one
sensor. The sensor and the first magnet were kept static throughout the test.
The other magnet was mobile and used to simulate a second vehicle moving
relative to the first one. The same sets of tests were performed once for ©,
and once for ©,. We let the mobile vehicle travel along the z-axis and y-axis,
respectively, first approaching and then passing the static vehicle. In this
scenario, we got interference from the on-board magnet, situated as close as
1-2 cm to the sensor - this reduced the detection range ratio from thirty to
fifteen, likely because the sensors used - HMC1002 as part of HMR2300 - do
not compensate for cross-axis effects, as do more advanced sensors.
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Chapter 7

Robustness

What happens when some units do not keep their individual positions in
the current configuration? To what extent can configurations be kept and
reconfigurations performed correctly in the presence of different kinds of
such deviations?

In this section, we first review the notion of robustness in control and
see how it is defined in central and distributed control, respectively. We
then focus on what aspects of robustness are particularly relevant in the
specific case of reconfiguration control and point at other control areas where
analogous robustness issues are encountered. Based on these observations,
we finally propose a definition of robustness for reconfiguration control and
give a motivation.

7.1 Robustness in Control: Background

The notion of robustness in control refers to the insensitivity of the system
behavior to deviations from the assumed model [23]. Examples of such de-
viations are parameter errors, noise distributions other than those assumed
and unmodelled dynamics, such as nonlinear terms ignored in a lineariza-
tion. Stability, convergence and optimality are especially important aspects
of the system behavior in this respect.

A preciser definition of robustness is as follows: given a set M of possible
models of the system and the observation noise and given a metric dy; over
M, we assume a model My € M is chosen based upon which a controller
T is obtained. The controller T" is defined as robust if it gives a sufficiently
good performance not only at the model, but also in a neighborhood
{M € M| dy (M, M) < €} of the model, where € > 0.

To understand the development of the notion of robustness in control
theory we may need to briefly consider the history of control theory itself,
starting by central control and continuing with distributed control theory.
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7.1.1 Centralized Control

The first rigorous analysis of a feedback control system was given in 1868 by
Maxwell, who linearized a set of differential equations of motion to find the
characteristic equation of the system and showed how the system stability
depends on the system parameters, thus explicitly stating the robustness of
the system stability to errors in the system parameters.

In the development of mass communication systems at Bell Laboratories
during the nineteen twenties and thirties, the frequency domain approaches
proposed over a century earlier by Laplace and Fourier proved useful. This
led Nyquist to propose the Nyquist stability criterion in 1932 and Bode to
suggest in 1940 the use of the notions of gain and phase margin in stability
theory - all of these notions also give the robustness margins.

In 1946, Hall pointed at the risks of ignoring noise in control theory and
showed how the frequency domain approach could be used to design stable
systems that took the noise into account.

However, the frequency domain approach is best suited for linear time-
invariant (LTI) systems and, furthermore, its graphical techniques such as
Nyquist plots are best applied to single-input single-output (SISO) systems.
The desire in the nineteen fifties and sixties to design advanced spacecraft
of nonlinear dynamics and with multiple inputs and outputs (MIMO) led to
a return of the focus to the time domain.

In 1960, Kalman introduced linear algebra and matrices which facilitated
the treatment of MIMO systems. In the nineteen seventies, the frequency
domain approach was extended to MIMO systems, giving rise to the notions
of characteristic locus, diagonal dominance and the inverse Nyquist array.

The development of stability theory for MIMO systems from the nineteen
seventies and on thus gives a theoretical framework for making rigorous
statements about the stability and robustness of systems that are spatially
distributed but share all information; not only should each subsystem be
stable and robust in the traditional SISO sense, but the system as a whole,
involving interactions between these subsystems, must also be stable and
robust. However, the complexity of such systems grows exponentially with
the number of distributed units - with the current computational capacity,
very large systems are only tractable with the distributed control paradigm,
the robustness of which will be discussed below.

Thus, the robustness tools of central control are much the same as the
tools for assessing stability since these automatically give the allowed interval
for robustness. These include notions such as gain and phase margin, usually
expressed in open-loop properties, such as the open-loop system matrix, that
can be measured.

7.1.2 Distributed Control

In distributed control, there are more than one controller and information
is not generally shared. The control of power systems and air traffic control

140



have hitherto been the main focus of this relatively young control area.

Assuming that the controllers know each other’s action spaces but not
each other’s strategies, a conservative method is the worst-case scenario
approach where each controller avoids such actions that might lead to an
undesirable state. This approach assumes that the controller knows a good
deal about the structure of the environment, including the other agents, and
that this structure is rather static; it also requires defensive behavior to be
acceptable.

7.2 Robustness in Reconfiguration Control

Reconfiguration control may be addressed with methods either from central
control or distributed control, although the poor scaling of central methods
will generally put severe constraints on the size of the network.

7.2.1 Reconfiguration Specific Constraints

The two major points in reconfiguration control is configuration keeping and
switch of configurations.

Once a configuration has been formed, it must be kept until a signal
is given to change configurations. Configuration keeping must be robust
to some units fulfilling their particular role in the configuration imperfectly.
Furthermore, a configuration must not break down due to the total failure of
just one or two units. If indeed the constant occupation of a small number
of configuration roles is vital to the configuration keeping, there must be
redundancy mechanisms ensuring that another unit takes over any of those
particular roles, should one of its current occupants fail.

The switch of configurations is, as stated above, initialized by some
agreed upon signal. It is most important that configuration switches are
not started by mistake and that if accurately initialized, they are performed
swiftly and safely. Thus, a reconfiguration should be robust to contamina-
tion of the agreed upon signal by noise and to the failure of some units to
detect the signal. Furthermore, as discussed above in the section on mixed
initiative, the network must be robust to conflicting reconfiguration com-
mands given by different nodes almost simultaneously. On the other hand,
a dynamic environment may require the possibility to interrupt or modify an
initialized reconfiguration. If so, a signal for doing so must be devised that
distinguishes such an emergency change of plans from the situation where
conflicting commands are given close in time by parts of the network that
ignore each other’s commands.

7.2.2 Analogies in Other Control Areas

There are other areas of control where the quality of a collective result
depends on the accuracy of a number of distributed inputs. In estimation
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theory, a parameter estimate is formed from a number of noisy measurements
- scalar or vector - containing some information; whether the measurements
are sequential or simultaneous, they can be seen as distributed inputs. The
estimator aims at extracting this distributed information as efficiently as
possible to output a collective result - the estimate - that is as accurate as
possible.

Robustness in estimation theory generally means robustness to devia-
tions from the probability distribution used to model the noise. As a notion
in estimation theory, the term robustness was coined by Box in the nineteen
fifties and initially defined as insensitivity to changes in extraneous factors
not under test. Hampel later added the aspect of stability to the defini-
tion of robustness in analogy with the robustness of mechanical structures.
Another important insight was the fact that a robust estimator must be
insensitive not only to a large number of small errors but also to a small
number of large errors [24, 25].

The theory of robust estimation offers a number of quantitative measures
that might find their analogies in reconfiguration control. One such quan-
titative measure is the breakdown point, indicating the smallest fraction
of contaminated observations that can cause an estimator to become com-
pletely unreliable; an analogy in reconfiguration control would be how many
nodes may fail without noticeably changing the configuration. Another im-
portant quantitative measure is the minimax variance of an estimator which
corresponds to the general question of how to minimize the worst-case per-
formance, given a set of possible noise sources and a function for evaluating
the system performance.

7.2.3 Proposed Definition

We propose to define robustness in reconfiguration control as the absence
of influence on the system performance by small errors in a large number
of nodes or by large errors in a small number of nodes. Thus, the keeping
of a configuration C, C = {x € XV | fc(x) € F¢} by a network of nodes
k=1,...,N positioned at times ¢ at

y(t) = [y (1), 52 (1), ...,y (1)]T, y¥(t) € X, is seen as robust if

|dx (y(t)) — dx(x)] <€

for some system specific but uniform e and a performance measure dx.
Likewise, the reconfiguration starting at time ¢; and ending at time to from
a configuration C' into a configuration €',

C' = {x € X" | for(x) € For} is seen as robust if

ldx (y(t)) — dx(x)| < € for t < t,
ldx (y(t)) —dx(x)| < e fort >ty

and to — t1 < tymaz, With ¢4, being a system specific constant.
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7.2.4 Motivation

The proposed definition conforms with the general definition of robustness
in control and is, more specifically, analogous to the definition of robust-
ness in estimation theory. The purpose of reconfiguration is adaptation to
changes in the environment or in desired system functions in order to keep
the system performance optimal or sub-optimal - the proposed definition
reflects this by putting the system performance in focus.

How do the two implementations of our algorithm, Replicator learning and
Cluster, meet the proposed requirements for robustness in reconfiguration
control?

7.3 Robustness in Replicator Learning

As seen in the heterogeneous case presented above in the section on Replica-
tor learning, the system is robust to at least some categories of large errors
occuring in a large minority of the nodes. What categories of errors are rel-
evant in the Replicator learning scenario and to what extent is the system
robust to these possible errors?

7.3.1 Parameters: Matrix G

Parameter errors concern errors in the game matrix G used by each node and
can be further divided into three types - the matrix may be contaminated
by noise, the matrix may not correspond to any defined configuration or
the matrix may correspond to a waypoint but not the current one; the last
of these cases is treated as a reconfiguration error rather than a parameter
error and will be discussed below.

A noisy matrix G = G + N used by some nodes would in general cause
a local disturbance of those nodes which would, however, be compensated
for by the other nodes like in the case of the heterogeneous nodes.

If the matrix used does not correspond to any defined configuration, it
may have several ESS’s or no ESS; in the former case, if all nodes used
the same matrix, the system would converge to one of the ESS’s, which one
depending on the initial conditions. All finite matrices have at least one Nash
equilibrium, many of which are centers in the replicator dynamics; thus, if
all nodes used the latter matrix, an oscillating motion around the Nash
equilibrium would be probable, as seen above in a simulation. If some nodes
use the correct matrix and some nodes a different matrix, both populations
will try to compensate for each other as the homogeneous nodes were seen
to do for the heterogeneous ones above - the net result will depend on the
proportion of the two types of nodes and on the distance between the current
waypoint and the points corresponding to the multiple ESS’s or the Nash
equilibrium of the erroneous matrix; this is illustrated in figure (7.1).
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Figure 7.1: Imperfect convergence towards ¢} in the presence of nodes using
matrix G2 instead of G3, to the left, corresponding covariances to the right;
all units starting from the same point, N=100.

7.3.2 Information: Opponent Action

Information errors concern defects in the communication between a given
node and the other nodes in the network. The node may not receive any
information at all, it may receive some information or the information may
be noisy and thus sometimes incorrect. A fourth type of information error
would be an exterior attack where the node by mistake interacts with a
node from another network rather than with a fellow node from its own
network. Finally, the node may receive erroneous information - the last case
may be seen as an interior attack where another node in the network sends
out deceptive information on purpose about its actions.

If the node does not receive any information about the action of the
other node although it was matched to another node, it may opt for the
same approach suggested for the heterogeneous nodes, that is, generate a
ficticious action from its own composition to replace the action taken by its
opponent; this is illustrated in fiugre (7.2). With this approach, the node
will converge towards the current waypoint but will not contribute towards
forming a cluster around the waypoint.

Indeed, the option of generating a ficticious action from the current
own composition can be used as a redundant safety measure even when
information about the actions chosen by the opponent nodes is received; if
the trajectories of the compositions generated with the regular algorithm
diverges very much from that generated with the modified algorithm used
by heterogeneous nodes, it is possible that the information obtained was
incorrect, by mistake or intentionally.

If a node does not receive any information about the actions chosen by its
opponents and has at the same time lost its parameters - thus, a combination
of a parameter error and an information error - it would do best to move
to the centroid of the region in which it is moving since that will require
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an equal effort for the other nodes to compensate for it no matter what
the current waypoint is, given that the node has no information about the
current waypoint.

Robustness to Information Loss, Game GJ, No of Units 70/30, Identical p*(0)
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Figure 7.2: Convergence to y3 to the left in the presence of information
loss, corresponding covariances to the right; all units starting from the same
point, N=100.

7.3.3 Operation

Operation errors concern the way in which the node implements the algo-
rithm - the main case would be the static node which does nothing, yet is
still part of the network. This slight variation of the heterogeneous case will
be solved exactly as in the heterogenous case, since the static nodes can
be seen as heterogeneous nodes starting out at an optimal operating point
where they will thus stay.

7.3.4 Network Composition

Changes in network composition such as node losses or node additions may
be intentional structure reconfigurations or may occur unintentionally and
be seen as errors in network composition; in either case, they can be treated
in the same way by the network. Thus, for this type of error, we can refer
back to the section on structure reconfigurations where the network was
found to be very robust to even quite large changes in network size.

7.3.5 Reconfiguration

Reconfiguration errors concern cases where the reconfiguration signal was
not received by some nodes, where conflicting reconfiguration signals were
given or where a deceptive reconfiguration signal was sent out either by a
network node - an interior attack - or by an exterior node not part of the
network - an exterior attack.
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Redundancy of signals in the form of rules can be used as a precaution
in case reconfiguration signals are lost - the nodes may have been informed
of the preliminary order in which waypoints were to be visited before they
were sent out. As suggested above, particularly dangerous waypoints may
be visited only conditionally on visiting a particular waypoint immediately
before.

To reduce the risk of interior nodes giving erroneous reconfiguration sig-
nals by mistake, a certain number of other nodes may be required to confirm
the suggested reconfiguration before it is actually carried out. However, this
will slow down the network and decrease its reconfiguration speed if too
many nodes are involved. To prevent exterior nodes from giving reconfigu-
ration signals, coded signals may be used.
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7.4 Robustness in Cluster

The Cluster framework is in several ways different from the Replicator learn-
ing scenario, but the error categories listed above are still relevant in this
framework too.

7.4.1 Parameters

The main parameters in which we are interested are the weight v and the

reference positions mf used by vehicles £ = 1,..., N for the configurations

J =1, Jmaz-

Weight v The relevant spectrum of v, 0 < v < 1, was discussed above;
for the purpose of guaranteeing arrival at the destination, we found the con-
straint v > 0.5. If v < 0.5, the vehicles soon exhibit an irrational behavior,
overreacting to the presence of other vehicles - the resulting trajectories
cross paths several times with the same vehicle and may head off in direc-
tions away from the goal.

As for the upper part of the spectrum for v, we experimentally found it
necessary to impose v < 0.7 to avoid too narrow margins between vehicles;
this thus leaves 0.5 < 7y < 0.7 as the interesting interval for +.

From a robustness point of view, the system is more robust to some vehi-

cles using too large a -y rather than a too small one; if a vehicle uses a y that
is too large, that vehicle will pay relatively less attention to collision avoid-
ance than the others and leave it to the other vehicles to yield. However,
if a vehicle uses a 7y that is too small, it will generate a quite inconsistent
trajectory and seriously disturb many other vehicles, potentially generating
quite a few collisions.
Reference Position :chC The other interesting parameter is the reference
position :chC each vehicle k seeks to keep with respect to the system mass cen-
ter within the current configuration j. If a vehicle uses the wrong reference
position :fc;?, the mass center may not follow the expected trajectory but a
trajectory consistently perturbed by O(%L’E? — “§|) If the perturbed mass
center trajectory can be compared to the expected trajectory, it may thus
be possible to extract some information about which node is responsible,
given that the correct reference positions of all nodes are known.

The conclusion is that the system is to some extent robust to this type
of errors since the other nodes adapt to the perturbed mass center and that,
if the number of nodes using defective reference parameters is not too large,
it may even be possible to point at the defective node by analyzing the
perturbed trajectory of the system mass center.
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7.4.2 Information: Sensors

The vehicles obtain information about the other vehicles by sensing the
total field with their magnetic sensors - what happens if some sensors stop
working?

Partial Sensor Failure Four sensors are used to measure the field differ-
ence in the z-direction in the vehicle’s reference frame; another four sensors
measure the field difference in the y-direction. If some of the sensors are not
working, a different formula may be used to calculate a simplified estimate
of the gradient which, although less accurate, still carries information.

There is an asymmetry in this case for the sensing along the z-axis and
the y-axis, respectively, since there are two sensor pairs along each axis for
the sensing along the y-axis but only one sensor pair for each axis for sensing
along the z-axis.

Both groups of four sensors are completely robust to sensor failure in one
single sensor and are robust to respectively four or two out of the six possible
combinations of simultaneous failure in two sensors - in the two remaining

cases, no estimates will be obtained for two of the four components 331?;,
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In figure (7.33, we see how the minimum distance between any pair of ve-

hicles over time would change in two of the reconfiguration scenarios studied
above if all vehicles lost the same one or two sensors. To the left in the figure,
we again simulated the permutation reconfiguration shown in figure (6.18),
this time removing either the front sensor z; or the back sensor z3 from all
vehicles. The partial derivative 33% was now approximated as
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depending on what sensor input was missing, whereas B, was approximated
as
T1+ T+ To+ T3+
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We see that although the simulated node loss slightly reduced the minimum
distance between any pair of vehicles, the minimum distance trajectories
were barely changed by the simulated loss of one node.

To the right in figure (7.3), we simulated a double node loss in the
structure reconfiguration from figure (6.21). This time, all vehicles were
assumed to simultaneously lose either the back sensor z3 and the right back

sensor s or z3 and the right front sensor y;. The modified formulae for E’a%

and B, were still as given above; the partial derivatives 33% and 83—% were
now approximated as
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Figure 7.3: Minimum distance between any pair of vehicles during the per-
mutation reconfiguration shown above in figure (6.18) with and without loss
of one sensor, to the left; minimum distance between any pair of vehicles
during the structure reconfiguration shown above in figure (6.21) with and
without loss of two sensors, to the right.
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We see that the change in the minimum distance trajectories were now much
more noticeable, although the qualitative behavior was essentially the same.
The minimum distance with a double node loss was now less than half of
that obtained when all sensors were intact.

Complete Sensor Failure If all sensors fail, the vehicle completely relies
on the other vehicles to yield to it - this corresponds to the situation de-
scribed above where there is an asymmetry in roles and the vehicle without
sensors is playing the role of the dominant vehicle. To reduce the risk of
collisions, the impaired vehicle may start moving slower or stop altogether
for a limited period to let the others pass.

7.4.3 Operation

Operation errors are errors in implementing the algorithm; they include
incorrectly identifying the current formation, mistaking the goal or taking
too large steps or steps of varying size.

Current Formation If one or a few nodes know the index of their current
role but incorrectly identify the current formation, in the worst-case scenario
they will try to occupate a role filled by another node, which will lead
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to a collision. Since the reconfiguration is normally a transient process of
all nodes finding their respective relative positions, the fact that a node
continues detecting a large field close to its goal is by itself an error signal
which may cause both nodes to either leave the network or to request an
information update.

Current Goal Likewise, a node that has incorrect information about the
direction of the goal or the current location of the mass center will encounter
an unexpectedly large or unexpectedly small total field which will serve as
an error indication.

Low Precision A node which takes larger than expected steps can be
reallocated to a front position where it will speed up the network and not
cause collisions with other nodes. Low precision nodes that track their
positions with respect to the system mass center less precisely than other
nodes may be allocated to end or side positions where they are less likely
to disturb the trajectories of other nodes than if they were given interior
positions.

7.4.4 Network Composition

Just as in the Replicator learning case, structure reconfigurations such as
additions or losses of nodes may be intentional or unintentional and may be
treated in similar ways regardless of why they occurred. However, since this
scenario puts much severer constraints on the individual node positions, the
higher precision required makes it necessary to treat the unintentional node
losses somewhat differently.

Addition or Loss of Nodes If a node is accidentally lost and this is
noticed by the coordinator pushing the mass center forward along the desired
trajectory, the diverging position of the lost node is not taken into account
when calculating the location of the mass center; instead a dummy node is
created which is always assumed to track the mass center perfectly until a
replacement node has arrived.

If the node loss is not detected, the trajectory of the mass center will
start to diverge too - as noted above, if one or only few nodes are lost, the
direction of this divergence can be used to infer which node was lost.
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Chapter 8

Applications

Although modular robotic systems with a decentralized control architecture
have been studied since the late nineteen eighties, no one has yet succeeded
in taking this emerging technology out of the laboratory. What are the
main fields of application and the corresponding system functions desired?
What key issues remain to be addressed to take the final step out of the
laboratory?

8.1 Application Fields

Automotive Automated highway systems are an important application
in which cars and trucks are provided with autopilotes tracking the vehicles
in front of them during navigation on the highway.

Aeronautical/Military Fleets of unmanned aerial vehicles (UAVs) nav-
igating in dynamic formations are an active field of research. During this
decade, a significant portion of the military aviation is planned to be re-
placed by unmanned aircraft.

Robotics Assembly robots have been used for the last decades in the in-
dustry; several robots are usually involved but act in sequence rather than
in parallel. Operation stops due to robot failures are very costly but not
so uncommon - an added challenge to launching robots working in parallel
would thus be the increased risk of system failure. Therefore, the introduc-
tion of robot systems would have to be motivated by a significantly higher
output and a lower risk of failure in individual robots.

Science Important are also a number of scientific applications in which a
large number of distributed sensor units circling Earth are used to collect
data, thus providing stereo sensing.
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8.2 Application Tasks

Data Collection Swarm systems are suitable for a range of data collection
tasks, where a static or dynamic physical field such as Earth’s magnetic field
is to be studied. By spreading a sensor swarm over an area and using their
sensed data, a composite stereo picture is obtained of the field studied.
The possibility to reconfigure such systems would allow users to make the
resolution higher in areas of particular interest and adapt to changes in such
areas.

Detection Detection tasks involve elastic mobile fences formed by swarm
members around ships and other vehicles travelling by land or sea; such tasks
are referred to by the term perimeter defense whereas the individual robots
in the fence are called robotic sentries. The sentries here aim at detecting
mobile enemies and preventing the enemy from getting through the fence.
This is an example of an interaction between two reconfigurable systems -
by reconfiguring, the sentry system may divide into modules, some of which
encircle detected enemies while others continue to look out for undetected
ones.

Another type of the detection scenario is the search-and-find scenario
where static objects such as landmines are to be detected - this often in-
volves operation in dangerous or inaccessible environments where the risk
of losing units is high and the possibility of permutation and structure re-
configurations therefore essential.

Tracking Tracking mobile objects such as other vehicles used as references
or being pursued is yet another application - members of a mechatronic
system may track each other, as is common in the leader-follower approach
to formation control, and the mechatronic system may in turn collectively
track a mobile solitary vehicle such as a ship in perimeter defense around
which the collective reconfigures for optimal defense.

Manipulation/Displacement Solitary robots are already used in the
automotive industry for car assembly; a coordinated robot team can be
particularly useful in handling elastic material and to allow a fleet of small
robots to collectively handle large objects. This may either mean simple
collective carrying of a large object from one location to another or involve
handling such as manipulation or assembly of objects.

Mission The army ant scenario is a type military mission scenario, where
a set of small robots collectively locate an object to retrieve, assume an
appropriate configuration in order to pick up and carry the object, and
successfully bring it back to their base. As reflected in its name, this is
an entire scenario involving a sequence of collective tasks belonging to the
above categories.
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8.3 Application Objects

Since most of the described application systems are intended to interact with
objects or fields, collecting data, carrying and manipulating one or several
objects or looking out for potential enemies, another relevant classification
criterion concerns the very objects with which the system interacts, notably
their number and their mobility.

Solitary or Collective? Does the system interact with one or several
objects at a time? In tasks involving manipulation or displacement, the
object is often a solitary large object which a node could not handle on its
own but which collectively the nodes can manage to carry. The system may
also handle one object at a time with all nodes performing different tasks
simultaneously, such as painting different parts of a large object.

If instead the system is interacting with many objects at a time, we are
closer to a scenario of a swarm-swarm interaction, which opens for a very
large number of solutions.

Static or Mobile? A mechatronic system looking for hidden landmines
in a given area can be seen as an interaction between a mobile swarm and a
static swarm. An even more challenging scenario is when the mobile mecha-
tronic system meets a similar mobile system, as may occur in perimeter
defense or in encounters between groups of UAVs.

8.4 Out of the Laboratory

What steps remain in order to take the technology represented by distributed
mechatronic systems out of the laboratory?

Safety A principal issue is safety in several respects - safety for persons
who might get in the way, safety for equipment and buildings situated where
the distributed system is operating and safety for the mechatronic units
themselves.

Main principles for achieveing safety include separating the mechatronic
system from anything vulnerable as far as possible and having a hierarchy
of safe emergency solutions if something should go wrong.

Efficiency For distributed mechatronic systems to be the winning alter-
native in a choice between the novel technology and traditional, centralized
control systems, the former alternative must be shown to be superior in
efficiency.
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Chapter 9

Conclusion

In this final chapter, we review what we have learned in reconfiguration
control, point at the contributions of this thesis and suggest directions for
future research in reconfiguration control.

9.1 Summary

The recent application of the distributed control paradigm to networks of
mobile mechatronic units such as robots or unmanned vehicles offers power-
ful tools to handle large and complex systems that would be untractable with
centralized control. At the same time, a set of new issues emerge, intrinsi-
cally associated with distributed control, such as cooperation, coordination,
mutual adaptation and reconfiguration. Many of these central notions still
lack generally agreed upon definitions and are interpreted in distinct ways
in different settings and by different authors, although a general idea of a
win-win situation or mutual coordination is usually present.

Reconfiguration Control

We found the topic of reconfiguration control, comprising configuration keep-
ing and switching between configurations in distributed systems, to be a
well delimited subject of study in distributed control that would permit us
to address a number of interesting theoretical aspects of distributed control
within a framework of practical interest in applications such as collective
search and navigation in dynamic formations.

The topic of reconfiguration control has recently been addressed in var-
ious contexts such as formation control, multiagent learning, role allocation
problems and swarm theory. However, most of these studies have focused
on particular parts of reconfiguration control such as configuration keep-
ing, and the solutions proposed have often been specifically targeted at the
chosen application - we wanted to find a general framework that could fit
reconfiguration problems from all the different fields cited above. To better
understand the set of possible reconfiguration control problems, we analyzed
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and proposed classifications of configuration spaces and reconfigurations and
identified coordination, adaptivity, mixed initiative and emergence as impor-
tant features of a reconfiguring system.

While most previous studies focus on the subproblems of getting into
configuration and keeping a configuration, we found that there is more to
efficient reconfiguration control than just these aspects - indeed, the system
must at all times be prepared for reconfiguration, which in the Replicator
scenario meant that it was better if the units were spread out rather than
concentrated around the ESS. This reflects the need to find a system balance
between stability or configuration keeping on the one hand and adaptivity
or reconfiguration on the other.

Our Approach

We proposed a novel theoretical analysis of reconfiguration control which
interpreted node positions as strategies, identified each configuration with
the unique equilibrium of a parametrized game and interpreted each recon-
figuration as a switch of game parameters; an alternative way of changing
the game was to add or reduce the information available.

Two Scenarios

Our proposed approach was implemented in two scenarios, the first one a
swarm problem and the second one a traditional formation control problem;
the scenarios were chosen to represent the two ends of a spectrum ranging
from large-scale systems where the individual positions play a smaller role
to small-scale system where high precision is required in the adjustment of
the individual positions.

In the first scenario, Replicator learning, where the average position of a
network of N units was required to visit a sequence of waypoints, we matched
the desired average positions to the totally mixed ESS’s of different games
and saw the switch from one waypoint to another as a system reconfigura-
tion. Permutation reconfigurations and structure reconfigurations were also
described; furthermore, this simple network allowed us to address a num-
ber of issues such as how to handle heterogeneity, two-level polymorphism
and robustness to factors such as parameter errors, loss of information and
defective node operation.

In the second scenario, Cluster, we constructed a set of games which had
the desired formations as their respective unique Nash equilibria and used
total field collision avoidance for navigation during reconfiguration; in this
way, the vehicles could avoid collisions without knowing the positions of any
of the other vehicles. In this setting we also studied system, permutation
and structure reconfigurations and addressed robustness issues, particularly
concerning parameter errors and defective operation in nodes.

155



9.2 Contributions

We proposed a unified game theoretic framework for reconfiguration control
that interpreted node positions as strategies, identified each configuration
with the unique equilibrium of a particular game and saw reconfigurations
as switches between games. A key part of our approach consisted in iden-
tifying classes of games having a desired equilibrium pattern and in using
compact and uniform game descriptions. Scalability, adaptivity, generality
and robustness were properties that motivated a game theoretic approach.
We also showed how the framework could be adapted to fit heterogeneous
nodes by redefining the payoff function for the heterogeneous nodes.

We introduced Replicator learning as a generalization of replicator dy-
namics, derived its equations and showed that for each totally mixed ESS
q, there is a matrix G such that ¢ is the unique ESS of G and the global
attractor in replicator learning.

The Replicator learning scenario was linked to the application of collec-
tive search where one not only wants the average position of the units to
coincide with a given point but also wants the units to spread out to increase
their collective observation field. In our model, this corresponded to a desire
to have a p that was diffused rather than concentrated in a Dirac measure.

An additional advantage of the algorithm was its rapid convergence rate
and the fact that given a desired ESS, a game matrix G could easily be
constructed by solving a linear underconstrained system of equations.

Another aspect of the Replicator learning scenario concerned giving a
control theoretic interpretation of the game theoretic framework, thus ob-
taining a framework of high-level control where each individual unit calcu-
lated its individual control as a function of a simple estimate; the individual
trajectories were controlled just enough for the system to reach its collective
goal.

The scenario was found to be very robust to heterogeneity, parameter
error, loss of information and defective operation in individual nodes. In
particular, the high robustness of the Replicator learning scenario to struc-
ture reconfigurations led to interesting analogies with biological systems such
as the human liver that can survive losses of up to 80% of the nodes and
the brain which can to a varying extent redistribute local network functions
from damaged tissue to other areas.

The Cluster framework offered a game theoretic interpretation of a track-
ing problem extensively studied in formation control, thus showing that our
unified framework was applicable also to a scenario where the individual
positions required much more precise control.

To make the vehicles navigate safely in reconfiguration without knowing
each other’s positions, we introduced a novel collision avoidance algorithm in
the form of a total field approach of magnetic nature. By strategic position-
ing of the magnetic sensors orthogonal to the vehicle’s own field, we were
able to naturally eliminate the vehicle’s own field which otherwise would
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have drowned the field generated by the other vehicles, situated much far-
ther away from the sensor than the vehicle’s own magnet. We tested the
principle behind the strategic sensing using two different sensors.

Finally, we proposed a definition of robustness in reconfiguration control
based on an analogy with estimation theory and illustrated with examples
how it would apply in our case.

9.3 Adaptivity vs. Stability

Reconfiguration control is more than just a successive convergence to a set of
different equilibria; efficient reconfiguration implies that the network is at all
times ready for change. This, in turn, requires a balance between adaptivity
and stability. On the one hand, configuration keeping should be stable and
robust, on the other hand, given the right conditions, reconfigurations should
be swift and robust.

In the Replicator learning scenario, the additional term we derived pre-
pares the system for reconfiguration by spreading the units away from the
ESS, whereas the original term achieves convergence towards the equilib-
rium.

A general proposition concerned letting particularly aggressive configu-
rations be conditional configurations - this would apply in particular for the
Cluster scenario where the individual units have to keep precise positions
and are not at liberty to modify their positions to prepare for a possible
reconfiguration.

9.4 Future Work

Future work in this field includes the introduction of more communication
between nodes and the study of interactions between reconfiguring systems.

More information exchange makes it possible to further pursue the idea of
changing the game by adding or reducing information rather than changing
the game parameters.

Another scenario concerns the play between polymorphism at the global
level and polymorphism at the individual level, which is already intro-
duced here since each individual player can as a rule play any strategy
p € P(A). To limit the polymorphism at the individual level, one could
associate each player with a shifting pure strategy, for example decided as
mF = arg max; p¥(t).

For replicator learning, it would also be of great interest to study the
dynamics of the higher moments of p, in particular the variance.

The extent of robustness to structure reconfigurations is another relevant
area, implying either a swift permutation reconfiguration where remaining
nodes fill the positions of the most essential nodes lost or a thoroughly
parallel system structure where each subpart of the system is essentially
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the same. The former case was illustrated by our simulations where all
nodes started from the same points whereas the latter case corresponds to
the simulations where the units started from positions chosen uniformly
at random all over the simplex. As noted above, this also has biological
analogies in systems such as the liver and the brain.

The modularity of a distributed system is also an interesting field, al-
lowing the system to temporarily divide itself in two or more separated
subsystems that can then merge again. This can be achieved by letting one
half of the nodes use one game matrix and the other half another matrix; to
compensate for the nodes playing a different game, the nodes will become
even further polarized.

If the division into subsystems is permanent rather than temporary, we
instead obtain two or more separate systems and come to study the interac-
tion between reconfiguring systems. In a competitive or aggressive situation,
this would add an anti-cooperative element to the cooperative framework
proposed - thus, even more attention has to be given to reconfiguration ini-
tiation to make sure that exterior nodes cannot pose as nodes part of the
network and deceptively initiate reconfigurations in the other network.

Thus, reconfiguration control is a rich field with applications ranging from

mechatronic systems to biological networks and offers a great many inter-
esting problems to address!
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