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Abstract

We study the minimum distance of binary error correcting codes from the following
perspectives:

• The problem of deriving bounds on the minimum distance of a code given
constraints on the computational complexity of its encoder.

• The minimum distance of linear codes that are symmetric in the sense of being
invariant under the action of a group on the bits of the codewords.

• The derandomization capabilities of probability measures on the Hamming cube
based on binary linear codes with good distance properties, and their variations.

Highlights of our results include:

• A general theorem that asserts that if the encoder uses linear time and sub-linear
memory in the general binary branching program model, then the minimum
distance of the code cannot grow linearly with the block length when the rate
is nonvanishing.

• New upper bounds on the minimum distance of various types of Turbo-like
codes.

• The first ensemble of asymptotically good Turbo like codes. We prove that
depth-three serially concatenated Turbo codes can be asymptotically good.

• The first ensemble of asymptotically good codes that are ideals in the group
algebra of a group. We argue that, for infinitely many block lengths, a random
ideal in the group algebra of the dihedral group is an asymptotically good rate
half code with a high probability.

• An explicit rate-half code whose codewords are in one-to-one correspondence
with special hyperelliptic curves over a finite field of prime order where the
number of zeros of a codeword corresponds to the number of rational points.
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• A sharp O(k−1/2) upper bound on the probability that a random binary string
generated according to a k-wise independent probability measure has any given
weight.

• An assertion saying that any sufficiently log-wise independent probability mea-
sure looks random to all polynomially small read-once DNF formulas.

• An elaborate study of the problem of derandomizability of AC0 by any suffi-
ciently polylog-wise independent probability measure.

• An elaborate study of the problem of approximability of high-degree parity
functions on binary linear codes by low-degree polynomials with coefficients in
fields of odd characteristics.

Thesis Supervisor: Sanjoy K. Mitter
Title: Professor of Electrical Engineering

Thesis Supervisor: Daniel A Spielman
Title: Associate Professor of Mathematics
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Chapter 1

Introduction

Error correcting codes are essential for the design of reliable communication systems

and are playing an increasingly important role in areas of complexity theory such as

the study of pseudorandomness. The minimum distance of an error correcting code is

the minimum Hamming distance between two distinct codewords. It is a fundamental

parameter of code design that determines the maximum number of errors that can

be corrected under any decoding algorithm.

In this thesis we study the minimum distance of binary error correcting codes

from the following points of view:

• The problem of deriving bounds on the minimum distance of a code given

constraints on the computational complexity of its encoder with applications to

Turbo-like codes.

• The minimum distance of linear codes that are symmetric in the sense of being

invariant under the action of a group on the bits of the codewords.

• The derandomization capabilities of probability measures on the Hamming cube

having the small bias property, the limited independence property, or the al-

most limited independence property. Classical constructions of such probability

measures are based purely on binary linear codes with good distance properties.
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1.1 Overview of Results

1.1.1 On the minimum distance of Turbo-like codes

The low-complexity and near-capacity performance of Turbo codes has led to a rev-

olution in coding theory. However, the most useful Turbo codes have been observed

to have low minimum distance.

We derive in Chapter 2 worst-case upper bounds on the minimum distance of par-

allel concatenated Turbo codes, serially concatenated Turbo codes, repeat-accumulate

codes, repeat-convolute codes, and generalizations of these codes obtained by allowing

non-linear and large-memory constituent codes.

We show that parallel-concatenated Turbo codes and repeat-convolute codes with

sublinear memory are asymptotically bad.

We also show that depth-two serially concatenated codes with constant-memory

outer codes and sublinear-memory inner codes are asymptotically bad.

In contrast, we prove that depth-three serially concatenated codes obtained by

concatenating a repetition code with two accumulator codes through random permu-

tations can be asymptotically good.

We generalize in Chapter 3 the bound corresponding to parallel-concatenated

Turbo codes and repeat-convolute codes to the much more general setting of an

arbitrary encoder that uses linear-time and sublinear memory.

The results reported in Chapter 2 will appear in a joint work with M. Mahdiam

and D. Spielman [BMS03] that contains also others results that hold in the special

setting of linear parallel concatenated Turbo codes.

1.1.2 Encoding complexity versus minimum distance

A natural extension of the problem in Chapter 2 is the the following question: What

can we say about the growth of the minimum distance of a binary error correcting

code given constraints on the computational complexity of its encoder?

We focus in Chapter 3 mainly on the time-space complexity of the encoder. In

14



this setting, the question is a natural tradeoff question between the parameters: code

minimum distance, code rate, encoding time, and encoding space.

We establish a bound on the minimum distance of a binary error correcting code

given constraints on the computational time-space complexity of its encoder in the

general binary branching program model.

The bound we obtain implies a general theorem that asserts that if the encoder

uses linear time and sublinear space in the most general sense, then the minimum

distance of the code cannot grow linearly with the block length when the rate is

nonvanishing, i.e., the the code cannot be asymptotically good.

Our argument is based on branching program techniques introduced by Ajtai

[Ajt99]. We consider also the case when the encoder is a constant-depth AND-OR

circuit.

The results reported in Chapter 3 will appear in a joint work with S. Mitter

[BM03a].

1.1.3 Some symmetric codes with good distance

Linear codes that are symmetric in the sense of being invariant under the action of

some group on the bits of the codewords have been studied extensively before, yet

we still know very little about how the group structure can be exploited in order

to establish bounds on the minimum distance or to come up with efficient decoding

algorithms. One example of such codes are codes that are invariant under the action

of some group on itself. When the group is cyclic these are cyclic codes. Another

example is when we have a group acting on more than one copy of itself. When

the group is cyclic these are quasi-cyclic codes. The main reason behind looking at

such codes is the presence of an underlying symmetry structure. An ideal goal one

hopes to achieve is to come up with an explicit construction of codes which achieves

the binary GV (Gilbert-Varshamov) bound. This is a very open question since no

such codes are known. Even explicitly constructing new asymptotically good codes is

very desirable since there are only two known classes of constructions: concatenated

algebraic geometric codes and their variations, and expander codes.

15



We study in Chapter 4 randomized and explicit constructions of binary linear

codes that are invariant under the action of some group on the bits of the codewords.

We study a nonabelian randomized construction corresponding to the action of the

dihedral group on a single copy of itself, a randomized abelian construction based on

the action of an abelian group on a number of disjoint copies of itself, and a related

explicit construction.

Cyclic codes have been extensively studied over the last 40 years, yet it is still

an open question whether there exist asymptotically good binary cyclic codes. We

argue that by using a group slightly stronger than a cyclic group, namely the dihedral

group, the existence of asymptotically good codes that are invariant under the action

of the group on itself can be guaranteed. In particular, we show that, for infinitely

many block lengths, a random ideal in the binary group algebra of the dihedral group

is an asymptotically good rate-half code with a high probability.

We argue also that a random code that is invariant under the action of an abelian

group G of odd order on k disjoint copies of itself satisfies the rate-1/k binary Gilbert-

Varshamov bound with a high probability under a condition on the family of groups.

The underlying condition is in terms of the growth of the smallest dimension of a

nontrivial F2-representation of the group and is satisfied by roughly most abelian

groups of odd order, and specifically by almost all cyclic groups of prime order.

The explicit code we study is a specific nondegenerate element of above codes

ensemble in the setting when G is cyclic of prime order p and k = 2. It is based

on quadratic residues. For nondegeneracy reasons, we conjecture that this explicit

code is asymptotically good and probably achieves the binary GV bound. We show

that the codewords in this specific code are in one to one correspondence with special

hyperelliptic curves over the finite field of order p, where the number of zeros of a

codeword corresponds to the number of rational points. This suggests a conjecture

about a bound tighter than the general estimates obtainable from Weil’s theorem for

the underlying class of curves.

The results reported in Chapter 4 will appear in a joint work with S. Mitter

[BM03b].
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1.1.4 On the pseudorandomness based on minimum distance

The notion of indistinguishability was introduced in the eighties by [BM82, Yao82].

A probability measure µ on {0, 1}n is said to ε-fool a boolean function f : {0, 1}n →
{0, 1} if the probability that f takes the value 1, when x is selected according µ, is

ε-close to the true probability that f takes the value 1 when x is selected uniformly

at random.

In the late eighties and early nineties, the following basic pseudorandomness no-

tions was introduced by [Vaz86, NN93] as special purpose generators to derandomize

some randomized algorithms whose analyses can be made to work when only limited

independence is assumed. A probability measure µ on {0, 1}n is said to have the

δ-almost k-wise independence property if µ can δ/2-fool all parity functions on k or

fewer of the n bits. The δ-almost n-wise independence is called the δ-bias property.

The 0-almost k-wise independence property is called the k-wise independence prop-

erty. Saying that µ has the k-wise independence property is equivalent to saying that

any k or fewer of the n binary random variables are statistically independent, and

each of those random variables is equally likely to be 0 or 1.

Classical constructions of such probability measures are based on linear codes

with good distance properties [Vaz86, NN93, AGHP92]. For instance, if C is a block-

length-n binary linear code whose dual has minimum distance above k, then the

uniform distribution on the codewords of C is k-wise independent as a probability

measure on {0, 1}n.

We study in Chapter 5 the derandomization capabilities of probability measures

on the Hamming cube having the k-wise independence property, the δ-bias property,

or the δ-almost k-wise independence property. Mostly, the questions we consider are

about statements that hold for any probability measure having one of those prop-

erties. The exceptions are when we focus on linear-codes-based k-wise independent

probability measures.

The δ-almost k-wise independence property is the weakest of these properties,

and it is necessarily satisfied by any pseudorandom generator for suitable values of
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k and δ. The k-wise independence property is stronger, but when k is relatively

small, the two notions are loosely speaking equivalent in the sense that statements

about foolablity by the k-wise independence property can be translated to statements

about foolablity by the δ-almost k-wise independence property. The δ-bias property is

stronger than the δ-almost k-wise independence property, and it is necessarily satisfied

by any pseudorandom generator for log-depth circuits or randomized bounded-space

computations for suitable values of δ. Thus, in general, understanding the power and

the limitations of such pseudorandomness properties is of fundamental importance

due to their basic nature.

We note first that linear-programming duality can be used to get a purely analyti-

cal characterization of the class of boolean function that can be fooled by the δ-almost

k-wise independence property. The characterization is necessary and sufficient and

is in terms of tight average sandwichability between real valued functions with low

degree and small L1-norm in the Fourier domain.

Then we characterize the location of classical linear-codes-based constructions of

k-wise independent probability measures in the convex polytope of all such measures,

and its subpolytope consisting of those measures whose Fourier transform is nonneg-

ative.

In terms of limitations, we prove that the exponentially-small-bias property is not

sufficient to fool small log-depth circuits nor the weakest branching programs.

From a concrete viewpoint, we prove first that any sufficiently log-wise indepen-

dent probability measure looks random to all polynomially small read-once DNF for-

mulas. The setting is naturally extendable to almost k-wise independent probability

measures. We give an application related to the distribution of quadratic-residues.

Then we establish a very sharp upper bound on the probability that a random

binary string generated according to a k-wise independent probability measure has

any given weight. The setting is naturally extendable to almost k-wise independent

probability measures. We give applications related to the distribution of quadratic-

residues and the weight distribution of linear codes.

We consider also the problem of derandomizability of AC0 by arbitrary k-wise in-
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dependent probability measures, when k is made polylogaritmically large enough. We

reduce this problem to a conjecture about the the symmetry of the optimum of some

symmetric optimization problem with linear constraints and a nonlinear objective

function.

Finally, we study of the problem of approximability of high-degree parity functions

on high-dual-distance binary linear codes by low-degree polynomials with coefficients

in fields of odd characteristics. This problem has applications to the ability of binary

linear codes with sufficiently large dual distance to derandomize AC0, or low-degree

polynomial equations on binary input variables with coefficients in small finite fields

of odd order. Among other results, we relax this problem into essentially a single

low-dimensional low-complexity linear program in terms of Krawtchouk polynomials.

The problem of bounding the optimum of the linear program remains open.

1.2 Error correcting codes basic language

In this section, we assemble various basic notions, definitions, and classical con-

ventions about error correcting codes that we will be using. For an introduction

to the theory of error correcting codes see [Lin99, MS92, Spi96n, Sud01]. See also

[Gal63, Sti93, VY00] for specialized treatments, and [PHB98] for a partially exhaus-

tive treatment.

All codes we will consider in this thesis are binary codes. So, unless otherwise

specified, a code means a binary code.

One way to specify a binary code is by an injective map {0, 1}m → {0, 1}n called

the encoder. The encoder maps binary strings of length m to binary strings of length

n. We call m the message length, n the block length, and the ratio m/n the rate.

The strings in the image of the encoder are the codewords. The code is the image of

encoder in {0, 1}n, i.e., the set of codewords. The encoder is called systematic if the

n codeword-coordinates can be permuted in such a way that the projection of the

encoder on the first m codeword-coordinates is the identity map.

If the encoder is not specified then a block length n code simply means a subset of
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{0, 1}n, i.e., a set of binary strings of length n that are called codewords. In this case,

the rate of the code is defined as r = 1
n

logM , where M is the number of codewords

and log means here and elsewhere in this thesis the binary logarithm. Usually, the

encoder is not specified only when the code is linear because in such a case there is

a relatively acceptable way of encoding in quadratic time. A code is called linear if

is F2-linear, i.e., linear as an F2-vector space, or equivalently if it is a subgroup of

(Z/2Z)n, which we simply denote by Zn
2 . Associated with a linear code are the dual

code, and matrices called a generator matrix and a parity check matrix. The dual

code of block-length-n linear code Q is another block-length-n linear code denoted

by Q⊥, and defined as the set of all binary strings y of length n s.t.
∑n

i=1 xiyi = 0

(mod 2), for each codeword x of Q. A generator matrix of a linear code is any matrix

realization of an F2-linear encoder of the code. A parity check matrix of a linear code

is any matrix whose Null space is the code as an F2-vector space.

In Chapters 2 and 3, a code will be specified by an encoder, which is not necessarily

linear. By abuse of notation we will call the encoder a code when there is no possibility

of confusion. In Chapters 4 and 5, a code will be a linear code that is specified as a

set of strings.

The minimum distance of a code is the minimum Hamming distance between two

distinct codewords, where the Hamming distance between two binary strings of the

same length is the number of positions where they disagree. When the code is linear,

the minimum distance of the code is also equal to the minimum Hamming weight of

a nonzero codeword, where the Hamming weight (which we simply denote by weight)

of a binary string means the Hamming distance between this string and the all zeros

string, i.e., the number of nonzero coordinates of the string.

The minimum relative distance of a code is its minimum distance normalized by

the block length, i.e., the ratio of the minimum distance and the block length.

When speaking about a code, we always mean implicitly that we have an infinite

family of codes indexed by the block length. We do not require that each positive

integer be a block length, we simply require that there are infinitely many block

lengths. The rate (minimum relative distance, respectively) of an infinite family of
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codes means the lim-inf of the rate (minimum relative distance, respectively) of a

code in the family as the block length tends to infinity.

The rate of a code reveals the amount of redundancy added, and the minimum

distance reveals the maximum number of errors that can be corrected under any

decoding algorithm in a worst case sense.

Rate and minimum distance are conflicting parameters. An infinite family of

codes is called asymptotically good if both its rate and its minimum distance are

strictly positive. This is equivalent to saying that the fraction of redundancy added

is bounded by a constant, and the minimum distance of the code grows linearly with

the block length. If an infinite family of codes is not asymptotically good, it is called

asymptotically bad.

By abuse of notation, when asymptotic statements are made, a code means implic-

itly an infinite family of codes. For instance, “an asymptotically good code” means

“an asymptotically good infinite family of codes”, and “a code satisfying the GV

bound” means “an infinite family of codes satisfying the GV bound” (See the GV

bound definition below).

The main objective of combinatorial coding theory is to construct asymptotically

good codes with efficient encoding and decoding algorithms, where complexity is

measured in terms of the growth of the block length.

We say that a family of codes of rate r and minimum relative distance δ satisfies

or achieves the binary GV (Gilbert-Varshamov) bound if r ≥ 1− h(δ), where h is the

binary entropy function, i.e., h(x) = −x log x− (1 − x) log (1 − x).

The existence of families codes satisfying the binary GV bound follows easily by

counting. In fact, a random linear code satisfies the GV bound with a high probabil-

ity. A random linear code means the linear code whose generator matrix is selected

uniformly at random. Since we will be using the expression “high probability”, it is

appropriate here to explain its meaning. When saying that an outcome of a proba-

bilistic experiment happens with a high probability, we mean that we have an infinite

family of probabilistic experiments indexed by the integers n in some infinite set to-

gether with an infinite family of outcomes such that the probability that an outcome

21



happens approaches 1 as n tends to infinity.

It is an old open question whether the binary GV bound is tight, i.e., it is

not known if there are families of codes with better rate versus minimum distance

tradeoffs1. Some people believe it is tight. The best known upper bound is the

MRRW (McEliece, Rodemich, Rumsey, and Welch) bound [MRRW77] on Delsarte

LP (Linear Programming) bound [Del73]. The MRRW bound says that any infi-

nite family of codes of rate r and minimum relative distance δ must satisfy r ≤
1 − h(1/2 −

√
δ(1 − δ)).

Another old open question is how to explicitly construct codes that satisfy the GV

bound. Here it is appropriate to make it clear what explicit means. For simplicity,

assume that we are talking about linear codes. The weakest notion of an explicit

linear code (i.e., an infinite family of linear codes) requires that there is a polynomial

time algorithm that, when given any integer n, outputs a generator matrix for the

code at block length n if n is a feasible block length. Note that complexity is measured

here in terms of n, i.e., not in terms of the length of the representation of n. This

notion is satisfactory, but it can be strengthened by requiring that the algorithm uses

logarithmic space only. It is trendy however to use the word explicit in the sense of

algebraically explicit which, in addition to being algorithmically explicit, means that

that the construction is number theoretic in nature.

1Recall that we are not talking about nonbinary codes. The analog of the GV bound over
nonbinary alphabets is known to be not tight. The construction of algebraic geometric codes from
modular curves, by Tsfasman, Valdut, and Zink [TVZ82], beats the GV bound on alphabets of size
49. One interpretation of this phenomenon is that the Hamming distance is not the sharpest metric
in the nonbinary alphabets case.
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Chapter 2

On the Minimum Distance of

Turbo-Like Codes

We derive in this chapter worst-case upper bounds on the minimum distance of paral-

lel concatenated Turbo codes, serially concatenated Turbo codes, repeat-accumulate

codes, repeat-convolute codes, and generalizations of these codes obtained by allowing

non-linear and large-memory constituent codes.

We show that parallel-concatenated Turbo codes and repeat-convolute codes with

sublinear memory are asymptotically bad.

We also show that depth-two serially concatenated codes with constant-memory

outer codes and sublinear-memory inner codes are asymptotically bad.

In contrast, we prove that depth-three serially concatenated codes obtained by

concatenating a repetition code with two accumulator codes through random permu-

tations can be asymptotically good.

We will generalize in Chapter 3 the bound corresponding to parallel-concatenated

Turbo codes and repeat-convolute codes to the much more general setting of an

arbitrary encoder that uses linear-time and sublinear memory.
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2.1 Introduction

The low-complexity and near-capacity performance of Turbo codes [BGT93, VY00]

has led to a revolution in coding theory. However, the most useful Turbo codes have

been observed to have low minimum distance. In this chapter, we provide general

conditions under which many constructions of turbo-like codes, including families

of serially-concatenated Turbo-like codes [BDMP98] and Repeat-Accumulate (RA)

codes [DJM98, JM99, KU97], must be asymptotically bad. We also present a simple

family of depth-3 serially concatenated Turbo-like codes that are asymptotically good.

Our work is motivated by the analyses of randomly constructed parallel and se-

rially concatenated Turbo codes by Kahale and Urbanke [KU97] and of Turbo codes

with two branches by Breiling [Bre01]. Kahale and Urbanke provided estimates on

the probable minimum distance of randomly generated parallel concatenated Turbo

codes with a constant number of branches. They also provided similar estimates for

the minimum distance of the random concatenation of two convolutional codes with

bounded memory. Breiling proved that the parallel concatenation of two convolu-

tional codes with bounded memory always has logarithmic minimum distance. We

note that both of these bounds are for linear codes with low memory.

These analyses naturally lead to the following four questions:

• Better than random? Do there exist asymptotically good parallel concate-

nated Turbo codes with more than two branches or do there exist asymptotically

good repeat-convolute or repeat-accumulate codes?

Note that the result of Breiling only applies to Turbo codes with two branches

and the results of Kahale and Urbanke do not preclude the existence of codes

that are better than the randomly generated codes.

• Larger memory? What happens if we allow the memories of the constituent

convolutional codes to grow with the block length?

All the previous bounds become vacuous if the memory even grows logarithmi-

cally with the block length.
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• Nonlinearity? Can the minimum distance of Turbo-like codes be improved

by the use of nonlinear constituent encoders, such as automata encoders?

• Concatenation depth? Can one obtain asymptotically good codes by serially

concatenating a repetition code with two levels of convolutional codes?

We will give essentially negative answers to the first three questions and a positive

answer to the last one. For parallel concatenations and depth-2 serial concatenations

of convolutional and automata codes, we prove upper bounds on the minimum dis-

tance of the resulting codes in terms of the memories of the constituent codes. We

show that parallel concatenated codes and repeat-convolute codes are asymptotically

bad if their constituent codes have sublinear memory. This bound even holds if the

constituent codes are nonlinear. We also show that depth-two serially concatenated

convolutional codes are asymptotically bad if their inner code has sublinear memory

and their outer code has constant memory. In contrast, we show that depth-three

concatenations of constant-memory codes can be asymptotically good. In particular,

we prove this for the random concatenation of a repetition code with two accumulator

codes.

2.1.1 Turbo-like codes

The fundamental components of the codes we consider in this chapter are convo-

lutional codes (as block codes) and their nonlinear generalizations, which we call

automata codes. The fundamental parameter of a convolutional code that we will

measure is its memory—the number of registers in its encoder. The memory can also

be defined to be the binary logarithm of the number of states in the encoder’s state

diagram. A general automata encoder is obtained by considering an encoder with

any deterministic state diagram. We will consider automata encoders that read one

bit at each time step, and output a constant number of bits at each time step. These

are also described as deterministic automata or transducers with one input bit and a

constant number of output bits on each transition. We will again define the memory

of an automata encoder to be the binary logarithm of its number of states.

25



Given k convolutional codes Q1, . . . , Qk, a message length n, and k permutations

π1, . . . , πk of length n, we can define the parallel concatenated Turbo code with k

branches [BGT93, VY00] PQ1,...,Qk,π1,...,πk
, to be the code that encodes a binary mes-

sage x to (x,Q1(π1(x)), . . . , Qk(πk(x))), where πi(x) denotes the permutation of the

bits in x according to πi and Qi(y) denotes the output of the convolutional code Qi

on input y.

Given an integer k, we define the repeat-k-times code, rk, to be the code that just

repeats each of its input bits k times. Given a convolutional code Q, a message length

n, and a permutation π of length kn, we define the repeat-convolute code [DJM98],

Ck,π,Q to be the code that maps an input x ∈ {0, 1}n to (x,Q(π(rk(x)))). That is,

each bit of the input is repeated k times, the resulting kn bits are permuted, and then

fed through the convolutional encoder. We also assume that the input x is outputed

as well. While some implementations do not include x in the output, its exclusion

cannot improve the minimum distance so we assume it appears. The number k is

called the repetition factor of the code.

When the convolutional codeQ is the accumulator (i.e., the mapQ(x)j =
∑j

i=1 xi),

this code is called a repeat-accumulate (RA) code [DJM98]. We remark that a paral-

lel concatenated Turbo code with k branches can be simulated by a repeat-convolute

code with repetition factor k whose encoder is a product of the encoders in the parallel

code.

Given two convolutional encoders Qo and Qi that output ho and hi bits per time

step respectively, an integer n, and a permutation π of length hon, we define the depth-

two serially concatenated Turbo code [BDMP98, VY00] CQo,Qi,π to be the rate 1/hohi

code that maps an input x ∈ {0, 1}n to the codeword Qi(π(Qo(x))). The codes Qo

and Qi are called outer and inner codes, respectively. A classical example of serially

concatenated Turbo codes, and that considered in [KU97], is a rate 1/4 code given

by the map (π(x, Lo(x)), Li(π((x, Lo(x)))), where Lo and Li are rate-1 convolutional

codes. This fits into our framework with Qo(x) = (x, Lo(x)) and Qi(x) = (x, Li(x)).

One can allow greater depth in serial concatenation. The only codes of greater

depth that we consider will be repeat-accumulate-accumulate codes (RAA). These

26



are specified by a repetition factor k, an integer n, and two permutations π1 and π2 of

length kn. Setting Q1 and Q2 to be accumulators, the resulting code maps an input

x to Q2(π2(Q1(π1(rk(x))))).

We can generalize each of these constructions by allowing the component codes

to be automata codes. In this case, we will refer to the resulting codes as parallel

concatenated Turbo-like codes, repeat convolute-like codes, and serially concatenated

Turbo-like codes. We refer to all the codes in this family as Turbo-like codes.

In practice, some extra bits are often appended to the input x of a Turbo-like code

so as to guarantee that some of the encoders return to the zero state. As this addition

does not substantially increase the minimum distance of the resulting code, we will

not consider this technicality in this chapter. Note that this technicality easily fits in

the encoding model that we will study in the next chapter.

2.1.2 Previous work

Kahale and Urbanke [KU97] proved that if one builds a parallel concatenated Turbo

code from a random interleaver and convolutional encoders of memory at most M ,

then the resulting code has minimum distance at most Õ(2Mn1−2/k) 1 and at least

Ω(n1−2/k) with high probability. For rate 1/4 serially concatenated Turbo codes of

the form mentioned in the previous section with a random interleaver, they proved

that the resulting code has minimum distance at most Õ(2Min1−2/do) and at least

Ω(n1−2/do) with high probability, where do is the free distance of the outer code and

Mi is the inner code memory.

For parallel concatenated Turbo codes with two branches, Breiling [Bre01] proved

that no construction could be much better than a random code: if the constituent

codes have memoryM , then the minimum distance of the resulting code is O(2M log n).

Serially concatenated codes of depth greater than 2 were studied by Pfister and

Siegel [PS99], who performed experimental analyses of the serial concatenation of

repetition codes with l levels of accumulators connected by random interleavers, and

theoretical analyses of of concatenations of a repetition code with certain rate-1 codes

1Õ(f(n)) means O(f(n) logO(1) n).
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for large l. Their experimental results indicate that the average minimum distance of

the ensemble starts becoming good for l ≥ 2, which is consistent with our theorem.

For certain rate-1 codes and l going to infinity, they proved their codes could become

asymptotically good.

In many arguments, we use techniques introduced Ajtai [Ajt99] to prove time-

space trade-offs for branching programs.

2.1.3 Summary of results

In Section 2.2, we upper bound the minimum distance of repeat-convolute-like codes.

We prove that repeat-convolute-like codes of message length n, memory M , and

repetition factor k have minimum distance at most O(n1−1/kM1/k), and therefore

such codes are asymptotically bad when k is constant and M is sublinear in n. Note

that M sublinear in n corresponds to the case when the size of the corresponding

trellis is subexponential, and so it includes the cases in which the codes have natural

subexponential time iterative decoding algorithm. As parallel concatenated Turbo-

like codes in which the component codes have memory M can be encoded by repeat-

convolute codes with memory kM , we find that these are also asymptotically bad

for k constant and M sublinear in n. This proof uses techniques introduced by

Ajtai [Ajt99] for obtaining time-space trade-offs for branching programs. Comparing

our upper bound with the Õ(2Mn1−2/k) high-probability upper bound of Kahale and

Urbanke for parallel concatenated codes, we see that our bound has a much better

dependence on M and a slightly worse dependence on k. A similar relation holds

between our bound and the O(2M log n) upper bound of Breiling [Bre01].

In Section 2.3.1, we study serially concatenated Turbo-like codes with two levels,

and prove that if the outer code has memory Mo and the inner code has memory Mi,

then the resulting code has minimum distance at most O(n1−1/ho(Mo+2)M
1/ho(Mo+2)
i ).

Accordingly, we see that such codes are asymptotically bad when Mo, ho and hi are

constants and Mi is sublinear in n. The proof uses similar techniques to those used

in Section 2.2. When specialized to the classical rate 1/4 construction of serially

concatenated Turbo codes considered by Kahale and Urbanke [KU97], our bound on
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permutationrepeat k-times

Figure 2-1: Repeat-convolute-like code.

the minimum distance becomes O(n1−1/(2Mo+4)M
1/(2Mo+4)
i ). Comparing this with the

high-probability Õ(n1−2/do2Mi) upper bound of Kahale and Urbanke, we see that our

bound is better in terms of Mi, and comparable in terms of do.

Finally, in Section 2.3.2, we show that serially concatenated codes of depth greater

than two can be asymptotically good, even if the constituent codes are repetition codes

and accumulators. In particular, we prove that randomly constructed RAA codes are

asymptotically good with constant probability.

We conclude with some open questions.

2.2 An upper bound on the minimum distance of

repeat-convolute-like codes

In this section we consider codes that are obtained by serially concatenating a repeat-

k-times code rk with any code Q that can be encoded by an automata (transducer)

with at most 2M states and one output bit per transition. More precisely, if Q is such

an encoder, π is a permutation, and rk is the repeat-k-times map, we define Ck,π,Q to

be the code that maps a string x to Ck,π,Q(x) := (x,Q(π(rk(x)))). See Figure 2-1

This class of codes contains repeat-convolute codes and repeat-accumulate code

when Q is a convolutional code. It also contains parallel concatenated Turbo codes: a

parallel concatenated Turbo code with k branches and memory M can be encoded by

a repeat-convolute-like code with repetition factor k and memory kM by interleaving

the permutations on the k branches.

Theorem 2.2.1 Let k ≥ 2 be a constant integer, Q an automata encoder with at

most 2M states, n an integer, and π a permutation of length kn.

29



If n ≥ 2kkM , then the minimum distance of the code Ck,π,Q is at most

3k2n1−1/kM1/k + 2kkM + k + 1.

Proof. To prove this theorem, we make use of the techniques introduced by

Ajtai [Ajt99] for proving time-space trade-offs for branching programs. In particular,

for an input x of length n, the encoding action of Q is naturally divided into kn time

steps in which the automata reads a bit of π(x), outputs a bit, and changes state.

For convenience, we will let I = {1, . . . , kn} denote the set of time steps, and we will

let si(x) denote the state of Q on input π(rk(x)) at the end of the i’th time step.

Let C denote the code Ck,π,Q. To prove the claimed bound on the minimum

distance of C, we will prove the existence of two input strings, x and y, a set U ⊂
{1, . . . , n} of size at most 2kk(M+1), and J ⊂ I of size at most 3k2n1−1/k(M+1)1/k+k

such that x and y may only differ on bits with indices in U and si(x) and sj(x) may

only differ on time steps with indices in J .

To construct the set J , we first divide the set of time steps I into b consecutive

intervals, where b is a parameter we will specify later. We choose these intervals so

that each has size bkn/bc or dkn/be. For example, if k = 2, n = 4, and b = 3 we can

divide I = {1, . . . , 8} into the intervals [1, 3], [4, 6], and [7, 8].

For each index of an input bit i ∈ {1, . . . , n}, we let Si denote the set of time

intervals in which Q reads input bit i. As each bit appears k times, the sets Si each

have size at most k. As there are b intervals, there are at most bk possible k-sets

of intervals, where by a k-set we mean a set of cardinality k. So, there exists a set

U ⊂ {1, . . . , n} of size at least n/bk and a set of intervals, S, such that for all i ∈ U ,

Si = S. Let U be such a set with |U | =
⌈
n/bk

⌉
and let T be the corresponding set of

intervals. Let l = |T |. The set J will be the union of the intervals in T .

Let t1, . . . , tl be the last times in the time intervals in T (e.g., in the above example

the last time of the interval [4, 6] is 6). For each x ∈ {0, 1}n, that is zero outside U ,

we consider the vector of states of Q at times t1, . . . , tl on input π(rk(x)): {sti(x)}l
i=1.

As the number of such possible sequences is at most 2Ml and the number of x that
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are zero outside U is 2|U |, if

2|U | > 2Ml, (2.1)

then there should exist two different strings x and y that are both zero outside of U

and such that sti(x) = sti(y) for i = 1, . . . , l. To make sure that (2.1) is satisfied, we

set

b =

⌈(
n

kM

)1/k
⌉
− 1.

Our assumption that n ≥ 2kkM ensures that b ≥ 1. Now, since

• x and y agree outside U ,

• the bits in U only appear in time intervals in T , and

• Q traverses the same states at the ends of time intervals in T on inputs π(rk(x))

and π(rk(y)),

Q must traverse the same states at all times in intervals outside T on inputs π(rk(x))

and π(rk(y)). Thus, the bits output by Q in time steps outside intervals in T must

be the same on inputs π(rk(x)) and π(rk(y)). So Q(π(rk(x))) and Q(π(rk(y))) can

only disagree on bits output during times in the intervals in T , and hence on at most

l dkn/be bits. This means that the distance between C(x) and C(y) is at most

|U | + l dkn/be ≤
⌈
n

bk

⌉
+ k dkn/be , as |U | = dn/bke and l ≤ k,

≤ n

bk
+ 1 +

k2n

b
+ k

≤ n
⌈(

n
kM

)1/k − 1
⌉k +

k2n
(

n
kM

)1/k − 1
+ k + 1

≤ n
((

n
kM

)1/k − 1
)k +

k2n
(

n
kM

)1/k

(
n

kM

)1/k

(
n

kM

)1/k − 1
+ k + 1

≤ n(
n

kM

)




(
n

kM

)1/k

(
n

kM

)1/k − 1




k

+
k2n

(
n

kM

)1/k

(
n

kM

)1/k

(
n

kM

)1/k − 1
+ k + 1

≤ n(
n

kM

)2k + 2
k2n

(
n

kM

)1/k
+ k + 1, as n ≥ 2kkM
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≤ 2kkM + 2k2n1−1/kM1/kk1/k + k + 1,

≤ 3k2n1−1/kM1/k + 2kkM + k + 1,

as k1/k ≤ 3/2. �

Corollary 2.2.2 Let k be a constant. Then, every repeat-convolute code with input

length n and memory M and repetition factor k and every parallel concatenated Turbo

code with input length n, convolutional encoder memory M and k branches has mini-

mum distance O(n1−1/kM1/k). Thus, such codes cannot be asymptotically good for M

sublinear in n.

This means that if we allow M to grow like log n, or even like n1−ε for some

ε > 0, the minimum relative distance of the code will still go to zero. Moreover, M

sublinear in n corresponds to the case in which the size of the corresponding trellis

is subexponential, and therefore it includes all the cases in which such codes have

subexponential-time iterative decoding algorithms.

It is interesting to compare our bound with that obtained by Kahale and Ur-

banke [KU97], who proved that a randomly chosen Turbo code with k branches has

minimum distance Õ(2Mn1−2/k) with high probability. Theorem 2.2.1 has a much

better dependence on M and a slightly worse dependence on n. A similar compari-

son can be made with the bound of Breiling [Bre01], who proved that every parallel

concatenated Turbo code with k = 2 branches has minimum distance O(2M log n).

2.3 The minimum distance of serially concatenated

Turbo-like codes

In this section, we consider codes that are obtained by serially concatenating convo-

lutional codes and, more generally, automata codes. In Section 2.3.1, we prove an

upper bound on the minimum distance of the concatenation of a low-memory outer

automata encoder with an arbitrary inner automata encoder. In particular, we prove
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that if the memory of the outer code is constant and the memory of the inner code

is sublinear, then the code is asymptotically bad. In contrast, in Section 2.3.2, we

prove that if the input is first passed through a repetition code and a random permu-

tation, then the code is asymptotically good with constant probability, even if both

convolutional encoders are accumulators.

2.3.1 An upper bound on the minimum distance when the

outer code is weak

In this section, we consider the serial concatenation of automata codes. We assume

that each automata outputs a constant number of bits per transition. This class of

codes includes the standard serially concatenated Turbo codes, and includes those

introduced by Benedetto, Divsalar, Montorsi and Pollara [BDMP98] and studied

by Kahale and Urbanke [KU97]. If the outer code has constant memory and the

inner code has sublinear memory, then our bound implies that the code cannot be

asymptotically good.

Formally, we assume that Qo (Qi, respectively) is an automata encoder with at

most 2Mo (2Mi, respectively) states and ho (hi, respectively) output bits per transition.

For an integer n and a permutation π of length hon, we define CQo,Qi,π to be the

code that encodes a string x ∈ {0, 1}n to the string CQo,Qi,π(x) := Qi(π(Qo(x))) ∈
{0, 1}hohin. We will assume without loss of generality that Qo, Qi, and π are such that

this mapping is an injective mapping. The encoders Qo and Qi are called the outer

and inner encoders, respectively.

Theorem 2.3.1 Let Qo be an automata encoder with at most 2Mo states that outputs

ho bits at each time step, and let Qi be an automata encoder with at most 2Mi states

that outputs hi bits at each time step. For any positive integer n and any permutation

π of length nho, the minimum distance of the code CQo,Qi,π is at most

3h2
ohi(Mo + 2)n1− 1

ho(Mo+2)M
1

ho(Mo+2)

i .
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In particular, if Mo is constant (and hi and h0 are constants), the minimum distance

of the code CQo,Qi,π is

O(n1− 1
ho(Mo+2)M

1
ho(Mo+2)

i ),

and consequently any such family of codes Ck,π,Q is asymptotically bad as long as Mi

is sublinear in n.

Proof. The proof follows the same outline as the proof of Theorem 2.2.1. We begin

by setting Io = {1, . . . , n} to be the set of times steps in the computation of Qo

on input x ∈ {0, 1}n, and setting Ii = {1, . . . , hon} to be the set of times steps in

the computation of Qi on input π (Qo(x)) ∈ {0, 1}hon. We similarly, let
{
s(t)

o (x)
}

t∈Io

denote the sequence of states traversed by Qo on input x and
{
s
(t)
i (x)

}
t∈Ii

denote the

sequence of states traversed by Qi on input π (Qo(x)).

To prove the claimed bound on the minimum distance of CQo,Qi,π, we will prove

the existence of two distinct input strings x and y, a set V ⊂ {1, . . . , n}, a set Jo ⊂ Io,

and a set Ji ⊂ Ii such that x and y are both 0 on bits not in V , s(t)
o (x) and s(t)

o (y)

only differ for t ∈ Jo, and s
(t)
i (x) and s

(t)
i (y) only differ for t ∈ Ji. The minimum

distance bound will then follow from an upper bound on the size of Ji.

To construct these sets, we make use of parameters mo and mi to be determined

later. We first partition the set Io into bo
def
= bn/moc intervals each of size mo or

mo + 1, and we partition the set Ii into bi
def
= bnho/mic intervals each of size mi or

mi + 1.

As Qo outputs at most (mo + 1)ho bits during the time steps in an interval in Io,

the bits output by Qo during an interval in Io are read by Qi during at most (mo+1)ho

intervals in Ii. As there are fewer than (bi)
(mo+1)ho sets of at most (mo +1)ho intervals

in Ii, there exists a set of at least bo/(bi)
(mo+1)ho intervals in Io such that all the bits

output by Qo during these intervals are read by Qi during a single set of at most

(mo + 1)ho intervals in Ii. Let U denote the set of at least bo/(bi)
(mo+1)ho intervals in

Io and let T denote the corresponding set of at most (mo + 1)ho intervals in Ii. We

then let V denote the set of input bits read by Qo during the intervals in U . As all

the intervals in Io have size at least mo, we have |V | ≥ mo |U |. The set Jo will be the
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union of the intervals in T and J i will be the union of the intervals in U .

Let {uj}|U |
j=1 and {tj}|T |

j=1 denote the last time steps in the intervals in U and T

respectively. For each x ∈ {0, 1}n that is zero outside V , we consider
(
s
(uj)
o (x)

)|U |

j=1
,

the sequence of states traversed by Qo on x at times u1, . . . , u|U |, and,
(
s
(tj )
i (x)

)|T |

j=1
,

the sequence of states traversed by Qi on input π(Qo(x)) at times t1, . . . , t|T |. There

are at most 2Mo|U |2Mi|T | such pairs of sequences. So, if

2Mo|U |2Mi|T | < 2|V |, (2.2)

then there are two distinct x and y in {0, 1}n that are both 0 outside V and a

pair of sequences
(
s
(tj)
i

)|T |

j=1
and

(
s
(uj)
o

)|U |

j=1
such that s

(tj)
i (x) = s

(tj)
o (y) = s

(tj)
i for all

1 ≤ j ≤ |T | and s
(uj)
o (x) = s

(uj)
o (y) = s

(uj)
o for all 1 ≤ j ≤ |U |. This means that the

bits output and states traversed by Qo on inputs x and y are the same at time steps

outside the time intervals in U , and therefore the bits output and states traversed by

Qi on inputs π(Qo(x)) and π(Qo(y)) are the same outside time steps in intervals in

T . Thus

0 < d(CQi,Qo,π(x), CQi,Qo,π(y)) ≤ mihi |T | ≤ (mo + 1)mihohi. (2.3)

As this bound assumes (2.2), we will now show that for

mo = Mo + 1, and

mi = 3hon
1− 1

(Mo+2)ho (Mi)
1

(Mo+2)ho ,

this assumption is true.

Our setting of mo reduces (2.2) to

|U | ≥ |T |Mi,
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which would be implied by

bo

b
(mo+1)ho

i

> (mo + 1)hoMi. (2.4)

To derive this inequality, we first note that since x2/x < 3 for x ≥ 1,

mi > hon
1− 1

(Mo+2)ho (((mo + 1)ho)
2Mi)

1
(Mo+2)ho .

Rearranging terms, we find this implies

(
n

(mo + 1)2h2
oMi

) 1
(mo+1)ho

>
nho

mi

≥ bi.

Again rearranging terms, we obtain

n > b
(mo+1)ho

i (mo + 1)2h2
oMi ≥ b

(mo+1)ho

i (mo + 1)mohoMi +mo,

which implies ⌊
n

mo

⌋
> b

(mo+1)ho

i (mo + 1)hoMi.

By now dividing both sides by b
(mo+1)ho

i and recalling bo =
⌊

n
mo

⌋
, we derive (2.4).

Finally, the bound on the minimum distance of the code now follows by substi-

tuting the chosen values for mo and mi into (2.3).

�

We now compare this with the high-probability upper bound of Õ(n1−2/do2Mi) on

the minimum distance of rate 1/4 random serially concatenated codes obtained by

Kahale and Urbanke [KU97]. In their case, we have ho = hi = 2, and our upper bound

becomes O(n1−1/(2Mo+4) M
1/(2Mo+4)
i ). We note that the dependence of our bound on

do is comparable, and the dependence of our bound on Mi is much better.
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permute          accumulate          permute          accumulate      
k-times 

repeat 

  

Figure 2-2: RAA code.

2.3.2 A strong outer code: when serially concatenated Turbo-

like codes become asymptotically good

The proof technique used in Theorem 2.3.1 fails if the outer code is not a convolution

code or encodable by a small finite automata. This suggests that by strengthening

the outer code one might be able to construct asymptotically good codes. In fact, we

will prove that the serial concatenation of an outer repeat-accumulate code with an

inner accumulator yields an asymptotically good code with some positive probability.

Let k ≥ 2 be an integer, rk be the repeat-k-times map, Q1 and Q2 be accu-

mulators2, n be an integer, and π1 and π2 be permutations of length kn. We de-

fine Ck,π1,π2 to be the code that maps input strings x ∈ {0, 1}n to Ck,π1,π2(x) :=

Q2(π2(Q1(π1(rk(x))))). We call Ck,π1,π2 an RAA (Repeat, Accumulate, and Accumu-

late) code We note that this code has rate 1/k. See Figure 2-2.

In contrast with the codes analyzed in Theorem 2.3.1, these RAA codes have a

repeat-accumulate code, Ck,π1(y) = Q1(π1(rk(x)) where those analyzed in Theorem

2.3.1 merely have an automata encoder.

Theorem 2.3.2 Let k ≥ 2 and n be integers, and let π1 and π2 be permutations of

length kn chosen uniformly at random. Then for each constant δ > 0, there exists

a constant ε > 0 and an integer n0, such that the RAA code Ck,π1,π2 has minimum

distance at least εn with probability at least 1 − δ for all n ≥ n0.

So specifically, there exists an infinite family of asymptotically good RRA codes.

2While Q1 and Q2 are identical as codes, we give them different names to indicate their different
roles in the construction.
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Proof. Conditions bounding the size of ε will be appear throughout the proof.

Let Eεn denote the expected number of nonzero codewords in Ck,π1,π2 of weight

less than or equal to εn. Taking a union bound over inputs and applying linearity of

expectation, we see that the probability the minimum distance of Ck,π1,π2 is less than

εn is at most Eεn. Thus, we will bound this probability by bounding Eεn.

To bound Eεn, we use techniques introduced by Divsalar, Jin and McEliece [DJM98]

for computing the expected input-output weight enumerator of random Turbo-like

codes. For an accumulator code of message length N , let A
(N)
w,h denote the number of

inputs of weight w on which the output of the accumulator has weight h. Divsalar,

Jin and McEliece [DJM98] prove that

A
(N)
w,h =

(
N − h

bw/2c

)(
h− 1

dw/2e − 1

)
, (2.5)

where
(

a
b

)
is defined to be zero if a < b. Therefore, if the input to Q is a random

string of length N and weight w, the probability that the output has weight h is

A
(N)
w,h(
N
w

) =

(
N−h
bw/2c

)(
h−1

dw/2e−1

)

(
N
w

) . (2.6)

Now consider a fixed input x to the encoder for Ck,π1,π2. If x has length n and

weight w and π1 is a random permutation of length kn, then π1(rk(x)) is a random

string of length kn and weight kw. This random string is the input to the accumulator

Q1. Therefore, by (2.6), for any h1 the probability that the output of Q1 has weight

h1 is A
(kn)
kw,h1

/
(

kn
kw

)
. If this happens, the input to Q2 will be a random string of weight

h1, and therefore, again by (2.6), the probability that the output of Q2 has weight h

will be equal to A
(kn)
h1,h/

(
kn
h1

)
. Thus, for any fixed input string x of weight w, and any

fixed h1 and h, the probability over the choice of π1 and π2 that the output of Q1 has

weight h1 and the output of Q2 (which is also the output of Ck,π1,π2) has weight h is

equal to

A
(kn)
kw,h1

A
(kn)
h1,h(

kn
kw

)(
kn
h1

) .

Thus, by the linearity of expectation, the expected number of nonzero codewords

38



of Ck,π1,π2 of weight at most εn equals

Eεn =
n∑

w=1

kn∑

h1=0

εn∑

h=1

(
n
w

)
A

(kn)
kw,h1

A
(kn)
h1,h(

kn
kw

)(
kn
h1

) =
2εn∑

h1=1

2h1/k∑

w=1

εn∑

h=1

(
n
w

)
A

(kn)
kw,h1

A
(kn)
h1,h(

kn
kw

)(
kn
h1

) ,

as the terms with dh1/2e > h or dkw/2e > h1 are zero. Using the inequalities
(

x
y

)
≤ (ex/y)y,

(
x

by/2c

)
≤ (4ex/y)y and

(
x

dy/2e−1

)
≤ (4ex/y)y, for positive integers x

and y, we bound this sum by

Eεn =
2εn∑

h1=1

2h1/k∑

w=1

εn∑

h=1

(
n
w

)(
kn−h1

bkw/2c

)(
h1−1

dkw/2e−1

)(
kn−h
bh1/2c

)(
h−1

dh1/2e−1

)

(
kn
kw

)(
kn
h1

)

≤
2εn∑

h1=1

2h1/k∑

w=1

εn∑

h=1

(
n
w

) (
4ekn
kw

)kw/2 (
4eh1

kw

)kw/2 (
4ekn
h1

)bh1/2c (
4eh
h1

)dh1/2e−1

(
n
w

)kw (
kn
h1

)h1

=
2εn∑

h1=1

2h1/k∑

w=1

εn∑

h=1

(
n

w

)(
4e
√
h1√
kn

)kw (
h

kn

)dh1/2e
(4e)h1−1h1

h

The summand in the above expression is at maximum when h = εn. Therefore,

Eεn ≤ εn
2εn∑

h1=1

(
εn

kn

)dh1/2e h1(4e)
h1−1

εn

2h1/k∑

w=1

(
n

w

)(
4e
√
h1

k
√
n

)kw

≤
2εn∑

h1=1

h1

(
4e
√
ε/k

)h1
2h1/k∑

w=1

(
n

w

)(
4e
√
h1

k
√
n

)kw

≤
2εn∑

h1=1

h1

(
4e
√
ε/k

)h1
2h1/k∑

w=1

(
ne

w

)w
(

4e
√
h1

k
√
n

)kw

=
2εn∑

h1=1

h1

(
4e
√
ε/k

)h1
2h1/k∑

w=1



e
(

4e
k

)k
n1−k/2h

k/2
1

w




w

≤
2εn∑

h1=1

h1

(
4e
√
ε/k

)h1 2h1

k
e(

4e
k )

k
n1−k/2h

k/2
1 , as

(
y

x

)x

≤ ey/e

≤ 2

k

2εn∑

h1=1

(
4e2

√
ε/k

)h1

e

((
4e2

k

)k

n1−k/2

)
h

k/2
1

, (2.7)
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since h2
1 ≤ eh1 for all h1 ≥ 1. To bound (2.7), note that the sum has the form

S =
m∑

x=1

αxeβxl

,

where α = 4e2
√
ε/k, β =

(
4e2

k

)k
n1−k/2, l = k

2
, and m = 2εn. If we can guarantee that

αx+1eβ(x+1)l ≤ 1

2
αxeβxl

, (2.8)

for all x = 1, . . . , m− 1, we can use the bound

S ≤ 2αeβ. (2.9)

We can express (2.8) as β((x+ 1)l − xl) ≤ ln 1
2α

. Thus (2.8) holds for all the desired

values of x if β((m+ 1)l −ml) ≤ ln 1
2α

, or equivalently

βml

((
1 +

1

m

)l

− 1

)
≤ ln

1

2α
,

which can be guaranteed when

2lβml−1 ≤ ln
1

2α
and l ≤ m, (2.10)

via the bounds (
1 +

1

m

)l

≤ el/m ≤ 1 + (e− 1)
l

m
≤ 1 + 2

l

m
,

where we need l ≤ m in the second inequality. Going back to (2.7), we get via (2.9)

and (2.10) that

Eεn ≤ 2

k
2(4e2

√
ε/k)e

(
4e2

k

)k

n1−k/2

=
16e2

√
ε

k
√
k
e

(
4e2

k

)k

n1−k/2

, (2.11)

when

2
k

2

(
4e2

k

)k

n1−k/2(2εn)k/2−1 ≤ ln


 1

8e2

√
k

ε


 and

k

2
≤ 2εn,
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or, equivalently, when

ln
1

ε
≥
(

2k
(

4e

k

)k

2k/2−1

)
εk/2−1 − 2 ln

√
k

8e2
and

k

2
≤ 2εn. (2.12)

It follows from (2.11) and (2.12), that for each k ≥ 2, and for each constant δ > 0,

there is constant ε > 0 such Eεn < δ when n is sufficiently large.

�

While the constants we obtain are not particularly sharp, they are sufficient to

prove the existence of asymptotically good families of serially concatenated turbo-

like codes of depth 3. This result should be compared with the work of Pfister and

Siegel [PS99], who performed experimental analyses of the serial concatenation of

repetition codes with l levels of accumulators connected by random interleavers, and

theoretical analyses of of concatenations of a repetition code with certain rate-1 codes

for large l. Their experimental results indicate that the average minimum distance of

the ensemble starts becoming good for l ≥ 2, which is consistent with our theorem.

For certain rate-1 codes and l going to infinity, they proved their codes could become

asymptotically good. In contrast, we prove this for l = 2 and accumulator codes.

2.4 Open questions

• Can the RAA codes described in Section 2.3.2 be efficiently decoded by iterative

decoding, or any other algorithm?

• Can one obtain depth-3 serially concatenated codes with better minimum dis-

tance by replacing the accumulators in the RAA codes with small convolutional

codes? Also, can one improve the minimum distance bounds on the RAA codes?

• If one allows the memory of the outer code in a depth-2 serially concatenated

code to grow logarithmically with the block length, can one obtain an asymp-

totically good code?
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Chapter 3

Encoding Complexity Versus

Minimum Distance

We establish in this chapter a bound on the minimum distance of a binary error

correcting code given constraints on the computational time-space complexity of its

encoder in the general binary branching program model.

The bound we obtain asserts that if the encoder uses linear time and sublinear

memory in the most general sense, then the minimum distance of the code cannot

grow linearly with the block length when the rate is nonvanishing, i.e., the code

cannot be asymptotically good.

The bound extends the bound we obtained in Chapter 2 on the minimum dis-

tance of parallel-concatenated Turbo codes and repeat-convolute codes to the much

the more general setting of an arbitrary encoder that uses linear-time and sublinear

memory. Our argument is based on branching program techniques introduced by

Ajtai [Ajt99]. We also consider the case of constant-depth AND-OR circuits encoders

with unbounded fanin.

3.1 Introduction

In this chapter, we consider the following question:

What can we say about the growth of the minimum distance of a binary
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error correcting code given constraints on the computational complexity

of its encoder?

We concentrate mainly on the time-space complexity of the encoder. In this

setting, the question is a natural tradeoffs question between the parameters: code

minimum distance, code rate, encoding time, and encoding space.

From a practical perspective, this question is important since there are popular

error correcting codes that have low time-space encoding complexity. We are referring

here to Turbo codes, or more precisely to parallel concatenated Turbo codes intro-

duced by Berrou, Glavieux, and Thitimajshima in [BGT93], and repeat-convolute

codes introduced by Divsalar, Jin, and McEliece in [DJM98]. This low time-space

encoding complexity is crucial for the corresponding iterative decoding algorithms be-

cause these algorithms process the state space representation of the encoder. Sharp

bounds on the minimum distance of Turbo codes were first obtained by Kahale and

Urbanke [KU97] when the underlying interleavers are chosen uniformly at random

and the memory of the constituent convolutional codes is is bounded by a constant.

In Chapter 2, we derived strong bounds on the minimum distance of Turbo like codes

in variety of cases. One of these cases is the well structured setting of generalized

repeat-convolute codes where the convolutional code is replaced by an arbitrary au-

tomaton. We argued that such codes are asymptotically bad when the memory of

the automaton is sublinear and the number of repetitions is constant.

In this chapter, we extend this particular result to the much more general set-

ting where the encoder is a binary branching program, or equivalently a nonuniform

random-access machine with binary input registers.

We establish a general theorem that asserts that if the encoder is a binary branch-

ing program that uses linear time and sublinear space, then the minimum distance of

the code cannot grow linearly with the block length when the rate is nonvanishing. In

other words, the code cannot be asymptotically good in such a case, which is a rather

surprising result. In general we derive a bound relating the involved parameters.

Our proof is based on the branching programs techniques introduced in the recent

breakthrough of Ajtai [Ajt99].
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We also consider the case of constant-depth AND-OR circuits encoders with un-

bounded fanin. We conclude with a conjecture about the strongest possible time-space

tradeoffs for encoding asymptotically good codes.

3.1.1 Branching program encoders

By a code we mean in this chapter an infinite family of binary codes where each code

is specified by an encoder. See Section 1.2 for the basic notions and conventions.

Consider a code specified by an encoding map C : {0, 1}n → {0, 1}m. By a

branching program encoder (binary by default, i.e., 2-way) B computing C we mean a

connected directed acyclic graph with a single source and multiple sinks, together with

a set of n binary input variables and a set of m binary output variables satisfying the

following. There are exactly two arrows leaving each non-sink node, the first labeled

with a one and the second with a zero. Every non-sink node is associated with an

input variable. Some of the nodes are associated with output variables (possibly more

than one variable per node), in which case the nodes are labeled by zeros or ones.

The nodes of the graph are called states, the source is called the start state, and the

sinks are called the end states. The branching program B computes C as follows.

The computation starts by reading the value of the variable associated with the start

state and moving according to its value to the next state and so on by reading more

bits, while outputting when an output node is reached, until an end state is reached.

We may want to assume that on any input each output variable will be set at least

once, or we can assume that the output variables are arbitrarily preset. We stress

here that we are allowing the branching program to set an output variable more than

once.

The computation of the branching program on an input is the corresponding se-

quence of states starting with the start state and ending with an end state. The

length of a computation is its number of states, and its time is its number of states

plus the total number of times each output variable is set along the way.

The length of the branching program is the maximum length of a computation.

The time t of the branching program is the maximum time of a computation. The
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size S of the branching program is the total number of states. The memory or the

space M of a branching program is M = log S.

Remark 3.1.1 The codes encodable by such general branching programs correspond

to those encodable by random-access machines with bounded read-write space and

binary input registers, where the time of the branching program is the worst case

running time, and its size is Θ(2M), M being the number read-write bits. Note

that the machine has two types of read-only bits, those corresponding to the input

message, and those corresponding to the code description. Complexity is measured

in terms of the number of bits of the first type. Note that we are not restricting the

size of the read-only bits corresponding to the code description. This is not a problem

since we are deriving lower bounds. See Example 3.1.5 for some consequences of this

unlimited read-only space.

3.1.1.1 Some special types of branching programs

The branching program is called leveled if the states are divided into an ordered

collection of sets each called a level where edges are between consecutive levels only.

In such a case, the width of the branching program is the maximum number of states

per level.

The branching program is called oblivious if the input variables (and the output

variables) are read (respectively, set) in the same order regardless of the input under

consideration. Thus an oblivious branching program is naturally leveled in such a

way that all the nodes in the same level read the same input variables, and set the

same output variables.

The branching program is called a read-k-times branching program if each input

variable is read at most k times on any input.

The branching program is called a write-w-times if at most w output variables are

set per state.
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3.1.1.2 Examples

Example 3.1.2 The trellis of a convolutional code is an oblivious, read-once, and

write-once branching program. The trellis of a systematic convolutional code is an

oblivious, read-once, and write-2-times branching program.

Example 3.1.3 Parallel concatenated Turbo codes are encodable by low complexity

oblivious branching programs as follows. A parallel concatenated Turbo code [BGT93]

C with a constant number k of branches, message length n, and memory M is

specified by k permutations π1, . . . , πk each on n bits and a rate 1 convolutional

code Q (the component code) of memory M0. For x in {0, 1}n, C encodes x as

C(x) = (x,Q(π1(x)), . . . , Q(πk(x))), where πi(x) is the string obtained by permuting

the bits of x according to the permutation πi, and Q(y) is the output of the convolu-

tional encoder Q on the input string y. Thus C is naturally encodable by an oblivious

read-k-times write-2-times branching program B. The states of B are copies of those

of the automaton, and B is naturally leveled. B has length kn and time Θ(n). The

width of B is 2M0 , and its size is at most kn2M0 . Note that the same holds if we

follow the technicality of appending a terminating sequence to the input.

Example 3.1.4 Repeat-convolute codes fit in the same picture. A repeat-convolute

code [DJM98] consists of a repeat-k-times code, a convolutional code, and a permuta-

tion. More precisely, a repeat-convolute code C of message length n and memory M

is specified by a constant integer k, a permutation π on kn bits, and a convolutional

encoder Q of memory M . For x in {0, 1}n, C encodes x as C(x) = (x,Q(π(r(x)))),

where r is the repeat-k-times map, i.e., r(x) is the concatenation of k copies of x.

As in Example 3.1.3, C is naturally encodable by a leveled, oblivious, read-k-times,

write-2-times, length-kn, time-Θ(n), and width-2M0 branching program whose size is

at most kn2M0 .

Example 3.1.5 Any code can be trivially encoded in the binary branching program

model in linear time and linear space by a tree branching program that on any input,

outputs the whole codeword at the corresponding leaf. This makes sense in the
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random-access machine with binary input registers encoding model because we are not

counting the read-only space needed to store the code description (See Remark 3.1.1).

It is worth noting here that when this read-only space is taken into consideration,

we know from the work of Spielman [Spi96] that there exists an asymptotically good

code encodable in linear time and linear space.

Example 3.1.6 Any linear code is naturally encodable by a leveled, oblivious, width-

2, quadratic-time, and write-once branching program.

3.1.2 Main result

Theorem 3.1.7 Let C : {0, 1}n → {0, 1}m be a code (i.e., an injective function)

encodable (i.e., computable) by a branching program B of size S = S(n), time t = t(n),

and length l = l(n) (so l ≤ t).

If t(n) = Θ(n), then the minimum distance of C is

O



(

logS

n

) 1
bl/nc

n


 .

Therefore, C is asymptotically bad when S(n) = 2o(n) and t(n) = O(n).

More generally, if t(n) = Ω(n), then the minimum distance of C is

O



(
t

n

)3
(

logS

n

) n
2t

n


 .

Thus, C is asymptotically bad also when S(n) = 2O(n1−ε1) and t(n) = O(n log1−ε2 n),

for all ε1, ε2 > 0.

Note that l does not appear in the bound in the more general case since t is an

upper bound on l.

In other words linear time and sublinear space for encoding imply that the code is

asymptotically bad, i.e., the minimum distance cannot grow linearly with the block

length when the rate is nonvanishing.
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Note that when the time is linear, the sublinear memory requirement is asymp-

totically tight for encoding asymptotically good codes (See Example 3.1.5).

3.1.2.1 Application to Turbo-like codes

By applying Theorem 3.1.7 to parallel concatenated Turbo codes and repeat-convolute

codes (See Examples 3.1.3 and 3.1.4), we can recover the corresponding bound in

Chapter 2 as follows.

The minimum distance of a parallel concatenated Turbo code with a constant

number k of branches, message length n, and memory M0 is O(n1−1/kM
1/k
0 ) because

the size of the corresponding branching program is at most kn2M0. Similarly, the

minimum distance of a repeat-convolute code with k repetitions, message length n,

and memory M0 is O(n1−1/kM
1/k
0 ).

So both types of codes will be asymptotically bad in any reasonable setting, i.e.,

as long as M0 is sublinear in n. Note that the situation when M0 is sublinear in n

corresponds to the case when the underlying trellis has subexponential size, i.e., when

the corresponding iterative Turbo decoding algorithm has subexponential running

time.

3.2 Proof of Theorem 3.1.7

3.2.1 Ajtai proof techniques for the Hamming distance prob-

lem

We use branching program techniques introduced by Ajtai in [Ajt99]. More specif-

ically, we are referring to the branching program techniques that Ajtai introduced

to show that there is no O(n)-time and o(n logn)-space R-way branching program,

R = nc (c some absolute constant), that decides on the Hamming distance problem:

given n strings in {0, 1}logR, decide whether any (distinct) two of them are at λ logR

Hamming distance apart (λ another absolute constant related to c).

Even though this is a decision problem in the setting ofR-way branching programs,
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while ours is not a decision problem and is in the setting of 2-way branching programs,

the techniques introduced by Ajtai are behind the proof we describe below.

We refer the reader to Ajtai’s paper [Ajt99].

3.2.2 Objects under consideration and terminologies

We will start by making the branching program leveled 1. Recall from Section 3.1.1

that this means that the states are partitioned into l consecutive sets of states each

called a level in such a way that edges (i.e., transitions) occur only between consecutive

levels.

We will divide the branching program into blocks. By divide, we mean partition,

and by a block we mean a set of consecutive levels. For a given block, we will be

looking at states in the lower boundary level of the block. By the lower boundary

level of a block we mean mean the last (with respect to the levels ordering) level

(which is a set of states) in the block (which is a set of levels).

Given an input, we will be looking at the computation of the branching program

on this input, which as we explained in Section 3.1.1 is defined to be the corresponding

sequence of states starting with the start state and ending with an end state. So,

in the leveled case, each computation takes exactly l steps, i.e., it contains exactly l

states.

Fix an input x, and consider the corresponding computation of the branching

program B on x. Fix also a set L of levels or a set T of blocks. By an input bit or

variable (respectively, output bit or variable) accessed or read (respectively, set) in

L or T during the computation of B on x (or equivalently by L setting the input bit

during the computation and so on . . .), all that we mean is that there is a state in the

1This can be done by a classical procedure. Construct a leveled directed graph of l levels where
each level consists of a copy of all the nodes of the original branching program together with the
related output labels. Connect the nodes in each two consecutive levels according to the the graph
of the original branching program. Associate the end states not in the last level with arbitrary input
variables. Connect the end states in any tow consecutive levels by two arrows labeled respectively by
one and zero. Finally, remove all the nodes (together with the related edges) that are not accessible
from the start sate in the first level or can not reach an end state in the last level. The start state
of the new branching program is the remaining state in the first level, and its end states are those
remaining in the last level.
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computation that belongs to a level in L or a level in a block in T where the value of

the input variable is read in order to move to another state (respectively, the value

of the output variable is set).

Finally, by a computation which contains a sequence of states, we mean that each

state in this sequence appears in the computation. Note that here the order does not

matter since the states in a computation are distinct because the branching program

is acyclic.

3.2.3 The oblivious case argument

Recall that an oblivious branching program is naturally leveled in such a way that all

the nodes in the same level read the same input variables, and set the same output

variables.

Since the proof of Theorem 3.1.7 is relatively long, it is instructive to look first

at the very special case when B is oblivious. This case is very restrictive compared

to a general branching program. To restrict the setting further, assume that B is

read-k-times and write-w-times, where k = O(1) and w = O(1).

The argument we used in Chapter 2 to bound the minimum distance of repeat-

convolute codes was in the setting of automata. More specifically, we studied the case

of a repeat-convolute code where the convolutional code is replaced by an arbitrary

automaton. Even though the automata setting is less general than the case we are

considering in this section, the argument naturally extends as follows.

Assume that B is a read-k-times, write-w-times, and oblivious branching program,

where k = O(1) and w = O(1). Thus n ≤ l ≤ kn and m ≤ wn. We want to argue

that the minimum distance of C is O(n( log S
n

)1/k).

Let W be the width of B, thus W ≤ S. We will exhibit two distinct input strings

that map to two codewords at distance O(n( log W
n

)1/k) apart. We will do this by finding

a nonempty set of input variables U , a subset J of levels, and two distinct strings x1

and x2 in {0, 1}n such that x1 and x2 agree outside U , and the computations of B

on x1 and x2 agree outside J . This will give us the desired bound on the minimum

distance. J will be constructed as a union of intervals from a partition of B that we
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define next.

Partition B into b consecutive blocks, each consisting of s1 or s2 levels, where

s1 = bkn/bc and s2 = dkn/be. Assume for now that b is arbitrary as long as s1 ≥ 1.

We will optimize on the integer b later.

Each of the n input variables is read by B in at most k blocks. Recall that B is

oblivious. Thus, for any specific variable, these blocks will be the same irrespective

of the setting of the input variables. There are at most bk k-set of blocks. Here by

a k-set of blocks, we mean a set of blocks of cardinality at most k. So there are at

least n/bk input variables that are read by B in the same k-set of blocks. Let U be

such a set of input variables with |U | = dn/bke, T be such a k-set of blocks, thus

1 ≤ |T | ≤ k. The set J we mentioned above is the union of the blocks in T .

Consider the lower boundary levels L1, . . . , L|T | of the blocks in T ordered by the

level index, and let Q be the set of strings in {0, 1}n that are zero outside U , thus

|Q| = 2|U |. There are at most W k state sequences in L1 × . . .×L|T |, and for each x in

Q the computation of B on x contains such a sequence. So if we can guarantee that

2|U | > W k, we get that there should be a sequence of states {si}|T |
i=1 in L1 × . . .× L|T |

and two different strings x1 and x2 in Q such that the computation of B on both

x1 and x2 contains {si}|T |
i=1. Since x1 and x2 agree outside U , the computation of

Q on x1 and x2 are exactly the same outside the blocks in T . The reason is that

both computations are in similar states each time the branching program leaves an

intervals in T . Thus C(x1) and C(x2) can only differ in the blocks in T . This means

that the distance between C(x1) and C(x2) is at most |T |s2w ≤ kdkn/bew, since

|T | ≤ k, and s2 = dkn/be.

This bound holds under the assumption that 2|U | > W k, which can be guaranteed

if 2n/bk
> W k. So, choose b = d( n

k log W
)1/ke − 1. Note that the only other constraints

we have on b are 1 ≤ b ≤ kn, and the selected value satisfies these constraints when

W is not exponential in n. Note also that if W is exponential in n, the statement of

the theorem is trivial. By replacing this value of b in the upper bound kdkn/bew on

the distance between C(x1) and C(x2), and using S as a upper bound on W , we get

that the minimum distance of C is O(n( log S
n

)1/k). Note that we used here also that
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k = O(1), w = O(1), and C(x1) 6= C(x2) because x1 6= x2 and C is injective.

This proof is short and simple. But when B is not oblivious, the proof does not

go through. The main reason is that we cannot construct U and T regardless of the

setting of the input variables as we did above. When the branching program is obliv-

ious, the read-k-times and the write-w-times restrictions are not fundamental. When

it is not oblivious, they become restrictive. For example, in the general branching

program model, depending on the input, a very large number of the output variables

may be set in a particular state, or a particular input variable may be read a very

large number of times. The point to keep in mind is that the oblivious assumption is

very restrictive.

We will sketch in the next section how to handle the general situation. The proof

is longer and more sophisticated. This is not strange since the statement we are

proving is much more general. The reader is encouraged to go carefully over the

above argument before proceeding to the general case.

3.2.4 Proof technique

We follow the techniques introduced by Ajtai [Ajt99] in the setting of the Hamming

distance problem.

We want to find two input strings x1 and x2 such that C(x1) and C(x2) are close

to each other.

The first step is to make the branching program leveled without affecting its input-

output behavior. Next, we divide the branching program into blocks each consisting

of consecutive levels whose number will be suitably selected later and whose sizes are

as uniform as possible.

To exhibit x1 and x2, we will find a set T of blocks such that:

• the size of T is small,

• the computations of B on x1 and x2 are exactly the same in the blocks outside

T , and
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• not too many output bits of C(x1) (respectively C(x2)) are set in any of the

blocks in T during the computation of B on x1 (respectively x2).

Thus C(x1) and C(x2) can only disagree on the few output bits that are set in T .

To find such x1, x2, and T , we find first T together with a set Q′ of input strings

in {0, 1}n and a sequence {si}|T |
i=1 of states in the lower boundary levels of the blocks

in T in such a way that for each x in Q′:

• the computation of B on x contains {si}|T |
i=1,

• not too many output bits of C(x) are set in any of the blocks in T during the

computation of B on x, and

• the number of variables in x that are accessed only in the blocks in T during

the computation of B on x is large.

We will eventually find the desired x1 and x2 inside Q′ as follows.

We modify the branching program B again so that B is forced to to pass through

a state in the sequence {si}|T |
i=1 each time it attempts to leave a lower boundary level

of a block in T , but without affecting its input-output behavior on Q′.

Using T , define an equivalence relation on {0, 1}n by relating two strings if:

• they share the same set of input variables that are not read during the compu-

tation of B in blocks outside T , and

• they agree on the values of their bits outside this set.

Thus each equivalence class [x] is determined by a set I[x] of input variables and a

setting of the variables outside I[x].

We forced the computation of B to contain the states {si}|T |
i=1 on all inputs so that

we get |[x]| = 2|I[x]|, and hence the size of each equivalence class [x] can be guaranteed

to be large when I[x] is large.

Since for each input string in Q′, the number of variables that are accessed only

in the blocks in T during the computation of B is large, we get that the equivalence

class of each input in Q′ is large.
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By considering the set Ω of sufficiently large equivalence classes so that the equiva-

lence classes of all the elements of Q′ are guaranteed to be elements of Ω, our problem

reduces to selecting the number of blocks so that |Q′| is strictly larger than |Ω|, and

hence there are distinct x1 and x2 in Q′ that have the same equivalence class. The

fact that [x1] = [x2] means that the computations of B on x1 and x2 are exactly the

same outside the blocks in T , and hence C(x1) and C(x2) can only disagree on the

output bits that are set inside the blocks in T .

By construction the number of those output bits will be small. Moreover, and

since C is injective, C(x1) and C(x2) are distinct. The distance between C(x1) and

C(x2) will be the desired bound on the minimum distance of C.

3.2.5 Proof outline

Assume for moment that t = Θ(n). We will deal with the more general case when we

are done by working more carefully with the constants. So say that

t = an and l = cn, (3.1)

where a, c ≥ 1 are constants (a, c ≥ 1 because C is injective).

A) We modify the branching program so that it is leveled. See the footnote in

Section 3.2.2. The modified branching program computes the same function,

i.e., B computes C. The length of the resulting branching program B is l, its

time is t, its size is at most Sl, and its width is at most S. The difference is

that now edges occur only between consecutive levels, and each computation

takes exactly l steps.

B) Partition B into b consecutive blocks, each consisting of s1 or s2 levels, where

we define

s1
def
=

⌊
l

b

⌋
=
⌊
cn

b

⌋
and s2

def
=

⌈
l

b

⌉
=
⌈
cn

b

⌉
. (3.2)

Assume for now that in general 1 ≤ b ≤ l so that 1 ≤ s1, s2 ≤ l. We will

optimize on the integer b later.
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C) Lemma 3.2.1 There exist:

a) absolute constants h, α > 0,

b) Q′ ⊂ {0, 1}n such that

|Q′| ≥ 2n

(Sb)k
, (3.3)

where

k = bcc, (3.4)

c) a set of blocks T ,

1 ≤ |T | ≤ k, (3.5)

d) and a sequence {si}|T |
i=1 of states in the lower boundary levels of the blocks

in T ,

such that for each x in Q′:

1) the computation of B on x contains {si}|T |
i=1,

2) at most

w =
hs1t

l
(3.6)

output bits of C(x) are set in each block in T during the computation of B

on x, and

3) the number of variables in x that are accessed only in the blocks in T during

the computation of B on x is at least

αn

bk
.

Proof. See Section 3.2.6. �

D) Now we modify the branching program B again so that B is forced to to pass

through a state in {si}|T |
i=1 each time it attempts to leave a lower boundary level

of a block in T , while guaranteeing that B behaves exactly like the old B on

the inputs in Q′, i.e., it computes C(x) for each x in Q′.
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We can do this by simply connecting (on both inputs) all the states in the level

above that of si to si, for each i. Note that B need not compute an injective

function anymore, so it may not read all the input variables on some inputs.

It may also leave some of the output variables unset, but this is not a problem

since we can assume that the output variables were arbitrarily preset.

Note that this step is essential for what follows. See Section 3.2.4 for the big

picture.

E) Finally, we bound in Section 3.2.7 the minimum distance of C by exhibiting

distinct x1 and x2 in Q′ such that the distance between C(x1) and C(x2) is

O(n( log S
n

)
1
k ).

F) In Section 3.2.8, we explain how to drop the assumption t = Θ(n).

3.2.6 Proof of Lemma 3.2.1

Consider any input x in {0, 1}n.

• Let k ≥ 1 be an integer, and let h > 0. We will set k then h as we continue.

• Let Rx be the set consisting of all the blocks that sets at most

w
def
=
hs1t

l

bits of C(x) during the computation of B on x.

• Let Dx be the set of input variables that are read in at most k states during

the computation of B on x.

• And let D′
x be the set of input variables in Dx that are read only in blocks in

Rx during the computation of B on x.

First recall from (3.1) that a, c ≥ 1 are the constants satisfying

t
def
= an and l

def
= cn.
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Recall also from (3.2) that

s1
def
=

⌊
l

b

⌋
=
⌊
cn

b

⌋
≥ 1 and s2

def
=

⌈
l

b

⌉
=
⌈
cn

b

⌉
.

Some bounds:

• From the definition of Rx, we must have w(b− |Rx|) ≤ t, thus

|Rx| ≥ b− l

hs1

≥ b
(
1 − 2

h

)
, (3.7)

where the first inequality follows from w = hs1t/l, and the second from the

bound s1 = bl/bc ≥ l/(2b).

• Since C is injective, each input variable must be read at least once, so from the

definition of Dx, we must have have

|Dx| + (k + 1)(n− |Dx|) ≤ l,

i.e., |Dx| ≥ n(1 − c−1
k

) because l = cn. Thus if we set

k
def
= bcc,

we get

|Dx| ≥ n(1 − ε), where ε
def
=
c− 1

k
< 1. (3.8)

• The number of input variables read in blocks outside Rx is at most

(b− |Rx|)s2 ≤
2bs2

h
≤ n

4c

h
,

where the first inequality follows from (3.7), and the second from the bound

s2 = dcn/be ≤ 2cn/b. Thus, by the definition of D′
x, we must have

|D′
x| ≥ |Dx| −

4c

h
≥ n

(
1 − ε− 4c

h

)
,
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where the second inequality follows from (3.8).

Let h be sufficiently large such that

α
def
= 1 − ε− 4c

h
> 0. (3.9)

Note that this implies also that 1 − 2
h
> 0 since c ≥ 1, i.e

|Rx| > 0,

by (3.7).

To sum up, we have fixed some constants h, α > 0, and specified k
def
= bcc, so that

1 ≤ |Rx| ≤ b and |D′
x| ≥ αn. (3.10)

Now, keep the definition of Rx in mind, ignore Dx, and recall that D′
x is a set of input

variables such that:

• each input variable in D′
x is read in at most k levels during the computation of

B on x, and

• each of those levels belongs to a block in Rx.

Recall also that so far we are fixing an input x in {0, 1}n.

Consider all the k-sets in Rx, i.e., the subsets of Rx of size at most k. Each input

variable in D′
x is read in such a k-set during the computation on x, and there are at

most |Rx|k such k-set, so there are at least

|D′
x|

|Rx|k
≥ αn

bk

variables in D′
x read in the same k-set of blocks, where we have used (3.10) to obtain

the estimate. Let Ux be such a set of variables in D′
x, and let Tx be such a k-set of

blocks in Rx. So

1 ≤ |Tx| ≤ k and |Ux| ≥
αn

bk
.
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Note that Tx is nonempty since C is injective.

For each x in {0, 1}n, there is such a Ux and Tx. Fix any such correspondence.

There are at most bk such Tx, so there is a subset Q ⊂ {0, 1}n and a k-set of blocks

T such that

|Q| ≥ 2n

bk
,

and T = Tx for each x in Q. Now consider the lower boundary levels L1, . . . , L|T |

of the blocks in T ordered by the level index. There are at most Sk state sequences

in L1 × . . . × L|T |, and for each x in Q, the computation of B on x contains such

a sequence, so there is a sequence {si}|T |
i=1 of states in L1 × . . . × L|T | and a subset

Q′ ⊂ Q such that

|Q′| ≥ |Q|
Sk

≥ 2n

(Sb)k
,

and the computation of B on x contains {si}|T |
i=1, for each x in Q′.

3.2.7 Bounding the minimum distance

Now we are ready to find the two distinct messages x1 and x2 that C map to close

codewords.

Using T , for each x in {0, 1}n, let Ix be the set of input variables that are not read

during the computation of B on x in blocks outside T . Note that we need a double

negation (“not read” and “outside”) since some of the input variables may not be

read at all because we modified the branching program in (D).

So, by (C.3), for each x in Q′,

|Ix| ≥
αn

bk
. (3.11)

Using T , define the equivalence relation ∼ on {0, 1}n by x ∼ y if:

• Ix = Iy, and

• x agree with y on the bits outside Ix.

In other words, x|I[x]
= y|I[y]

, where [x] means the equivalence class of x.
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Given any x in {0, 1}n, each y ∼ x can only disagree with x on Ix. Conversely, if

y disagrees with x only inside Ix, it must be the case that y ∼ x. To see why this is

true, note that we forced in (D) all the computations of B to leave the blocks in T

in the same states: the the sequence of states {si}|T |
i=1 that we exhibited in (C.1). So

the computations of B on x and y are exactly the same outside the blocks in T , and

hence any bit accessed on x outside T will be accessed on y outside T and none of

the bits in Ix will be accessed on y outside T . It follows that

|[x]| = 2|Ix|.

Thus, by (3.11), for each x in Q′,

|[x]| ≥ 2αn/bk

.

Let Ω be the set of equivalence classes the size of each being at least 2αn/bk
. So, [x]

is in Ω for each x in Q′. Besides, since the equivalence classes are disjoint, we must

have |Ω|2αn/bk ≤ 2n, i.e.,

|Ω| ≤ 2n

2αn/bk . (3.12)

If we can guarantee that

|Q′| > |Ω|, (3.13)

we get that there should be x1 6= x2 in Q′ such that [x1] = [x2]. The fact that

[x1] = [x2] means that the computations of B on x1 and x2 are exactly the same

outside the blocks in T , and hence C(x1) and C(x2) can only disagree on the output

bits that are set inside the blocks in T . But, by (C.2), we constructed Q′ in such way

that the computation of B on any x in Q′ can set at most w bits of C(x) in each

block in T . Thus C(x1) and C(x2) can disagree on at most

2|T |w ≤ 2k
hs1a

c
≤ 2khcna

bc
=

2khan

b
(3.14)

bits, where the first inequality follows from |T | ≤ k (by (3.5)) and w = hs1t/l =
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hs1a/c (by (3.6) and (3.1)), and the second follows from s1 = bl/bc = bcn/bc ≤ cn/b

(by (3.2)).

Moreover, C(x1) and C(x2) must disagree on at least one bit since x1 6= x2, and

C is injective.

Using (3.3) and (3.12), condition (3.13) can be guaranteed to hold if

2αn/bk

> (Sb)k,

which is fulfilled when
1

b
>

(
k log (Scn)

αn

)1/k

,

since b ≤ l = cn. If we can select b so that this holds, we get that the minimum

distance of C is at most 2khan/b. The only restriction we have on b is 1 ≤ b ≤ l, so

we set

b
def
=




(
αn

k log (Scn)

)1/k


− 1. (3.15)

This is always below l, and it cannot go below 1 unless S ≥ 2αn/k2k−log (nc) in which

case the statement of the theorem is trivial. Thus, via (3.14), the minimum distance

of C is at most
2khan⌈(

αn
k log (Scn)

)1/k
⌉
− 1

= O


n

(
logS

n

) 1
k


 .

3.2.8 Dropping the linear time assumption

Now we drop the assumption that t = Θ(n), thus a and c need not be constants.

Since l ≤ t, we use a as an upper bound on c. Assume that a grows with n and

assume also that it is O(logn) since otherwise the statement of the theorem is trivial.

We will not set k = bcc. Going back to (3.8) and (3.9), we have

α = 1 − c− 1

k
− 4c

h
> 1 − a− 1

k
− 4a

h
,

a value that we need to keep bounded away from zero by a positive constant. Set

k = d2(a− 1)e and h = d16ae, thus α > 1/4.
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By using the same choice of b in (3.15) and the same bound on the minimum

distance of C in (3.14), but with the new values of k and h and the bound c ≤ a, we

get that the minimum distance of C is at most

2d2(a− 1)ed16aean⌈(
n/4

d2(a−1)e log (San)

)1/d2(a−1)e⌉− 1
= O


a3n

(
logS

n

) 1
2a


 .

3.3 When the encoder is a constant-depth AND-

OR circuit

To outline the boundaries of the picture, we consider the same problem but from the

perspective of the circuit complexity of the encoder. Here we note that not much can

be said other than what is essentially expected. Since we know from [Spi96] that there

are asymptotically good codes that are encodable by linear-size and logarithmic-depth

circuits, we are left with constant-depth circuits encoders with unbounded fanin.

Note first that if C : {0, 1}n → {0, 1}m is a code (i.e., an injective map in general),

we say that C is encodable by a depth d AND-OR circuit with unbounded fanin if

each of the m output bits is computable by a depth d circuit where: 1) the only

allowed gated are AND/OR gates with possibly negated inputs, and 2) the number

of inputs per gate is unbounded. The size of the circuit is the total number of gates.

We argue by a direct application of Hastad switching Lemma that a polynomial

size constant-depth circuit cannot encode an asymptotically good code (actually as

long as the circuit size is subexponential in a power of the block length inversely

proportional to the circuit depth). This is not surprising since in the special case of

linear codes, a small depth circuit encoder corresponds to a code with a low density

generator matrix.

Lemma 3.3.1 Hastad switching Lemma [Has86]: Let f : {0, 1}n → {0, 1} be com-

putable by an unbounded-fanin depth-d AND-OR circuit of size M . Consider a ran-

dom restriction ρ that independently keeps each input bit unset with a probability

p = 1/(20k)d, sets it to 1 with a probability 1 − p/2, and to 0 with a probability
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1 − p/2. Then the probability, over the choice of ρ, that f , when restricted to the

values set by ρ, cannot be evaluated by a decision tree of depth k is at most M2−2k.

Note that a decision tree computing a binary function b : {0, 1}n → {0, 1} on n

variables is a binary tree where each node is associated with one of the input variables,

and each leaf is associated with a 0 or 1 setting of the single output variable. This

implies that if we fix any setting of the input variables, there are at most k variables

that, when negated, will affect the value of b, where k is the depth of the tree. In

other words, when k is small, b has low sensitivity. Thus if a code {0, 1}n → {0, 1}m

(an injective map) is encodable by m decision trees each of depth k, a direct counting

argument shows that its minimum distance can be at most km/n. Hastad switching

Lemma essentially reduces the circuit case to this situation.

Theorem 3.3.2 Let C : {0, 1}n → {0, 1}m, m = Θ(n), be a code (i.e., in general an

injective map) encodable by an unbounded fanin AND-OR circuit of size S and depth

l, then the minimum distance of C is

O((20)l logl+1mS).

Thus, C is asymptotically bad when l = O(1) and S = 2o(m1/l).

Proof. Let x1, . . . , xn be the input variables, A1, . . . , Am the circuits that compute

the output variables y1, . . . , ym, and a = m/n. Thus a ≥ 1 is constant, the size of

each Ai is at most S, and the depth of each Ai is at most l.

Hit the xi’s with a random restriction ρ that keeps each xi unset with a probability

p = 1/(20k)l, sets xi to 1 with a probability 1−p/2, and to 0 with a probability 1−p/2.

Then, for each Ai, from Hastad switching Lemma, the probability that Ai does

not collapse to a decision tree of depth k is at most S2−2k. Thus the probability

that one of the Ai’s does not collapse, or the number of remaining (unset) variables

is below np/2 is at most

P = mS2−2k +
4(1 − p)

np
,

where the later term comes from the Chebychev inequality.
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Fix k = logSm so that P ≤ 1/(Sm) + 4(20 logSm)l/n < 1 when n is large

enough and S is subexponential in n1/l. Note that when S is exponential in n1/l, the

statement of the theorem is trivial.

So, fix any restriction ρ with the property that:

• the set I of input variables left unset by ρ has size at least np/2, and

• each of the Ai’s collapses under ρ to a decision tree Ti of depth k, where k =

logSm and p = 1/(20k)l.

Consider any setting of the variables in I, and let Ii be the set of variables in I read

by Ti on this setting. Each Ii contains at most k variables, and the output of Ti can

only be affected when we change some of the variables in Ii. So there should be a

variable in I that appears in at most

∑
j |Ij|
|I| ≤ km

np/2
=

2ka

p

of the Ii’s . By flipping this variable, we can affect at most 2ka/p output bits, and

at least one output bit since C is injective. Hence the minimum distance of C is at

most
2ka

p
= O((20)l logl+1 Sm).

�

3.4 Open questions

Using branching program techniques introduced by Ajtai [Ajt99], we argued in The-

orem 3.1.7 that there are no asymptotically good codes that are encodable in linear

time and sublinear space in the most general sense. When the time is linear, the sub-

linear memory requirement is asymptotically tight for encoding asymptotically good

codes (See Example 3.1.5).

On the other extreme, quadratic encoding time is achievable by random linear

codes while requiring minimal encoding memory in the branching program model
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(See Example 3.1.6).

We conjecture that in general

Conjecture 3.4.1 If C : {0, 1}n → {0, 1}m, m = O(n), is a code (an injective

map), that is computable by a branching program of memory M and time T , where

MT = o(n2), then the minimum distance of C must be o(n).

Proving the conjecture or finding the correct time-space tradeoffs for encoding

asymptotically good codes when the encoding time is superlinear and subquadratic

is very desirable.
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Chapter 4

Some symmetric codes with good

distance

We study in this chapter randomized and explicit constructions of binary linear codes

that are invariant under the action of some group on the bits of the codewords.

We study a nonabelian randomized construction corresponding to the action of the

dihedral group on a single copy of itself, a randomized abelian construction based on

the action of an abelian group on a number of disjoint copies of itself, and a related

explicit construction.

Cyclic codes have been extensively studied over the last 40 years, yet it is still an

open question whether there exist asymptotically good binary cyclic codes. We argue

that by using a group slightly stronger than a cyclic group, namely the dihedral group,

the existence of asymptotically good binary codes that are invariant under the action

of the group on itself can be guaranteed. In particular, we show that, for infinitely

many block lengths, a random ideal in the binary group algebra of the dihedral group

is an asymptotically good rate-half code with a high probability.

We argue also that a random code that is invariant under the action of an abelian

group G of odd order on k disjoint copies of itself satisfies the rate-1/k binary (GV)

Gilbert-Varshamov bound with a high probability under a condition on the family of

groups. The underlying condition is in terms of the growth of the smallest dimension

of a nontrivial F2-representation of the group and is satisfied roughly by most abelian
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groups of odd order, and specifically by almost all cyclic groups of prime order.

The explicit code we study is a specific nondegenerate element of above codes

ensemble in the setting when G is cyclic of prime order p, and k = 2. It is based

on quadratic residues. For nondegeneracy reasons, we conjecture that this explicit

code is asymptotically good and probably achieves the binary GV bound. We show

that the codewords in this specific code are in one to one correspondence with special

hyperelliptic curves over the finite field of order p, where the number of zeros of a

codeword corresponds to the number of rational points. This suggests a conjecture

about a bound tighter than the general estimates obtainable from Weil’s theorem for

the underlying class of curves.

4.1 Introduction

Linear codes that are symmetric in the sense of being invariant under the action of

some group on the bits of the codewords have been studied extensively before, yet

we still know very little about how the group structure can be exploited in order to

establish bounds on the minimum distance or to come up with decoding algorithms.

One example of such codes are codes that are invariant under the action of some

group on itself. When the group is cyclic these are cyclic codes. Another example

is when we have a group acting on more than one copy of itself. When the group is

cyclic these are quasi-cyclic codes.

structure to come up with fast decoding algorithms.

The main reason behind looking at such codes is the presence of an underlying

symmetry structure. An ideal goal one hopes to achieve is to come up with an

explicit construction of codes up the binary GV (Gilbert-Varshamov) bound. This is

a very open question since no such codes are known. Even explicitly constructing new

asymptotically good codes is very desirable since there are only two known classes of

constructions:

• Concatenated algebraic geometric codes: Justesen [Jus72], Goppa [Gop70], Ts-

fasman, Valdut, and Zink [TVZ82], Elkies [Elk01], and their variations such as

68



the variation of Justesen’s codes based on chinese-remainder codes (see [GRS00]

and the references therein).

• Expander codes: Alon, Bruck, Naor, Naor, and Roth [ABN+92], Sipser and

Spielman [SS96], and Spielman [Spi96].

Another fundamental goal is to be able to use the group structure to come up with

fast decoding algorithms.

4.1.1 Preliminaries

4.1.1.1 Binary linear codes

Unless otherwise specified, by a code, we mean in this chapter an infinite family of

binary linear codes. See Section 1.2 for the basic definitions and conventions.

4.1.1.2 Group algebras

Let R be a finite ring with identity. The ring R is called simple if it has no proper two

sided ideal or equivalently if it is isomorphic to a matrix algebra over some division

ring that must be a finite field since R is finite. The ring R is called semisimple if its

radical is zero, or equivalently if R is the direct sum of 2-sided ideals that are simple

as rings in which case the decomposition is unique.

Let G be a finite group, F a finite field. The group algebra F [G] of G over F is

the F -algebra consisting of formal sums
∑

g∈G f(g)g over F , f : G → F . The group

algebra F [G] is semisimple if and only if the characteristic of F does not divide the

order of G.

See [Bur65, CR62, McD74] for general background.

4.1.1.3 Group action codes

What we mean by a binary linear code invariant under the action of some group is

as follows. Consider an action ρ of a finite group G on a finite set S, and say that a
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(binary F2-linear) code C is ρ-invariant if it satisfies the following. Let M be the |S|-
dimensional F2-vector space written as the set of formal sums

∑
s∈S f(s)s, f : S → F2.

Consider the induced action of G on M by (say left) translation g : f(x) 7→ f(gx).

Then we say that C is ρ-invariant if C is a subset of M closed under addition and

closed under translation by the elements of G. In other words, C is ρ-invariant if C is

an F2[G]-submodule of M (again with the left multiplication convention). Note that

if
∑

s∈S f(s)s is an element of C, then the vector representation of the corresponding

codeword is (f(s))s∈S. Note also that when talking about the asymptotic properties

of a group action code, we implicitly mean that we have an infinite family of group

actions {ρn}n∈I , with the group Gn acting on the set Sn via ρn. The family is indexed

by the block length n = |Sn| of the ρn-invariant code Cn.

4.1.1.4 Hyperelliptic curves

For general background on hyperelliptic curves over finite fields, see for instance

Section 6.2 in [Sti93].

4.1.2 Group action codes literature

4.1.2.1 Cyclic and abelian codes

Binary abelian codes are invariant under the action of an abelian group G on a single

copy of itself, i.e., they are ideals in the binary group algebra F2[G]. Cyclic codes

correspond to the special case when G is cyclic. These codes, and specifically cyclic

codes, have been extensively studied over the last 40 years. See for instance [PHB98].

Yet, it is still an open question whether there exist asymptotically good binary cyclic

or abelian codes in general.

4.1.2.2 Codes in the binary group algebra of the dihedral group

These codes are invariant under the action of the dihedral group Dm on itself, i.e.,

they are ideals in the binary group algebra F2[Dm]. The Dihedral group Dm contains
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2m elements. It is generated by α and β subject to the relations α2 = 1, βm = 1, and

αβ = β−1α.

Codes in the binary group algebra of the dihedral group were introduced by

MacWilliams [Mac69] in the setting of self dual codes. As far as we know, noth-

ing was known before our work about their asymptotic distance properties.

4.1.2.3 Quasi-cyclic codes

Quasi-cyclic codes are invariant under the action of a cyclic group on k disjoint copies

of itself, i.e., they are F2[Z/mZ]-submodules of F2[Z/mZ]
k.

Quasi-cyclic codes were first studied by Chen, Peterson, and Weldon [CPW69] in

the setting when m = p is prime. The result in [CPW69] says that if 2 is a primitive

root of p (i.e., 2 generates F×p ), a random quasi-cyclic code (i.e., an F2[Z/pZ]-submodule

of F2[Z/pZ]
k generated by a random element of F2[Z/pZ]

k) achieves the GV bound with

a high probability. Without assuming the ERH (Extended Riemann Hypothesis), it

is not known whether there are infinitely many primes with the above property. A

later result by Kasami [Kas74] shows that if instead of working in Z/pZ, if we work

in Z/pl
0Z, where l can be varied and p0 is fixed to be the largest known prime such

that 2 is a primitive root of p0, a random quasi-cyclic code achieves a slightly weaker

bound than the GV bound.

A subsequent work by Chepyzhov [Che92], which was mentioned to us recently

by Barg [Bar01], shows that in the cyclic prime case the condition in [CPW69] that

requires 2 to be a primitive root of p can be relaxed to requiring that the size of the

multiplicative group generated by 2 in F×p grows faster than log p and hence the ERH

can be avoided as it is not hard to show that there are infinitely many such primes.

4.1.2.4 Quadratic residues codes

Let p be a prime such that 2 is a quadratic residue, i.e., p = ±1 (mod 8). Consider

the decomposition xp − 1 = (x − 1)q(x)q̄(x) over F2 where q(x) =
∏

i∈Q(x − βi),

q̄(x) =
∏

i∈Q̄(x−βi), Q is the set of quadratic residues modulo p, Q̄ = F×p \Q, and β is

a primitive p’th root of 1 in an extension field of F2. Binary quadratic residues codes
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are the ideals of F2[Z/pZ] = F2[x]/(x
p−1) generated by one the polynomial q(x), q̄(x)

or one of their product with with the polynomial x− 1.

Other than being cyclic codes, these codes are invariant under the action of the

subgroup

{(
a ∗
0 a−1

)}

a6=0

of PSL2(Fp) on Fp by affine transformations. They are

also extendible from Fp to Fp∪{∞} in such a way they are invariant under the action

of PSL2(Fp) by fractional linear transformations on Fp ∪ {∞}. See [Lin99, War74,

PHB98].

It is not known if binary quadratic residue codes can be asymptotically good.

One of the codes we will be studying in this chapter can be related to special

nonbinary quadratic residue codes over F4.

4.1.2.5 Cayley graphs codes

Sipser and Spielman [SS96] constructed explicit binary asymptotically good Low den-

sity parity check codes based on the explicit constructions of Cayley graph expanders

of Lubotzky, Phillips, and Sarnak [LPS88], and Margulis [Mar88]. The underlying

Cayley graph group is PSL2(Fp), p prime. These codes are realized as unbalanced

bipartite graphs in such a way that the codewords are defined on the edges of the

Cayley graph. They are invariant under the action of PSL2(Fp) on more than one

copy of itself.

4.1.3 Summary of Results

4.1.3.1 Asymptotically good codes in the group algebra of the dihedral

group

The most natural class of group action codes are those that are invariant under the

action of a group G on itself, i.e., those that are ideals in the binary group algebra

F2[G] of a group G. The case when G is cyclic (respectively, abelian) corresponds to

the case of cyclic (respectively, abelian) codes. Such codes are very well studied, yet

it is still an open question whether there exist asymptotically good cyclic or abelian

codes. The case when G is nonabelian was studied and introduced by MacWilliams
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[Mac69] in the setting of the dihedral group Dm. However, it was not noted that this

group algebra contains asymptotically good codes.

Our result in Section 4.4 says that if we use a group slightly stronger than a cyclic

group, and namely the dihedral group, the existence of asymptotically good codes

can be guaranteed in the group algebra. In particular, we show that for infinitely

many m’s, a random ideal in F2[Dm] is an asymptotically good rate 1/2 binary code.

The first condition we need on m is that the smallest size of the multiplicative group

generated by 2 in F×p , as p runs over the prime divisors of m (or equivalently the

smallest dimension of a nontrivial F2-representation of Z/mZ), grows asymptotically

faster than logm. We require also for simplicity another condition and we argue that

it is satisfied by all the primes p = ±5 (mod 8). By random here we mean according

to some specific distribution based on the F2-representations of Dm. The implicit

bound on the relative minimum distance is h−1(1/4), where h is the binary entropy

function.

As far as we know, this is the first provably good randomized construction of

codes that are ideals in the group algebra of a group. We are not also aware if it was

previously known that there exists asymptotically good codes that are ideals in the

group algebra of a group.

We leave the corresponding analysis till the end of this chapter since it is based

on the analysis of the quasi-abelian case that we summarize next.

4.1.3.2 Quasi-abelian codes up to the GV bound

Rather than considering the action of a group G on itself, one can consider the action

of G on k disjoint copies of itself. This means looking at codes that are F2[G]-

submodules of F2[G]k. When G is cyclic, these are quasi-cyclic codes.

We consider the case when G is an abelian group of odd order. Our result in Sec-

tion 4.2 says that if the dimension L(G) of the smallest irreducible F2-representation

ofG grows faster than logarithmically in the order of the G, then an F2[G]-submodules

of F2[G]k generated by a random element of F2[G]k achieves the GV bound at rate

1/k with a high probability. Here random means almost uniformly in a suitable sense.
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Roughly, almost all abelian group of odd order satisfy the above condition. This in-

cludes almost all cyclic groups of prime order. Since G is abelian, L(G) depends only

on the order of G, and it is the smallest size of the multiplicative group generated by

2 in F×p , where p runs over the prime divisors of m.

Comparing our result with the literature on quasi-cyclic codes surveyed in Section

4.1.2.3, we see that the innovation in our result is in the fact that it holds for abelian

groups that are not necessarily cyclic of prime order which has the advantage of sup-

plying more block lengths. Our condition on the order of the group is a generalization

of the condition of Chepyzhov [Che92] from cyclic groups of prime order to arbitrary

abelian groups of odd order. Another related work, which was announced for the first

time in the same workshop [DCC01] in which our results were presented, is that of

Meshulam and Wigderson [MW02, MW03] who arrived to a similar condition on the

distribution of the dimensions of the irreducible representations of abelian groups in

the setting of expander graphs constructions.

In Section 4.2.1, we tune the construction in the rate 1/2 case, i.e., when k = 2.

We show that under the same condition on the order of G, and over the choice of

a uniformly random element b of F2[G], the F2[G]-submodule generated by (b, 1) in

F2[G]2 achieves the GV bound at rate 1/2 with a high probability.

4.1.3.3 An explicit construction based on quadratic residues

Of special interest to us is the above tuned construction in the case when the group

G is cyclic of prime order.

Let G = Z/pZ, p prime. Define the PQC (Prime Quasi-Cyclic) codes ensemble as

follows. The codes in the PQC ensemble are in one to one correspondence with the

subsets A of Fp. For each such A, there is a code in the PQC ensemble given by the set

of all pairs (rSrA, rS) as S spans the subsets of Fp. Here rA
def
=
∑

g∈A g ∈ R
def
= F2[G].

We know that, for almost all the primes p, a random subset A of Fp gives a code in

the PQC ensemble that achieves the GV bound at rate 1/2 with a high probability.

We consider in Section 4.3 the problem of explicitly constructing a good code

from the above ensemble, i.e., the problem of explicitly constructing a good set A.
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We study specifically the natural explicit code that corresponds to setting A to be

the set of quadratic residues in Fp. Call this code the QQR (Quasi-cyclic Quadratic

Residues) Code. For nondegeneracy reasons, we conjecture that this explicit code is

asymptotically good and probably achieves the binary GV bound at rate 1/2. The

intuition is the following. The explicit construction problem consists of finding a good

A. We know that almost all the A’s are good and we want to construct a good one.

What are the bad A’s? Characterizing the bad ones is hard. But, intuitively, a bad

A seems to be a one that is too small, too large, or is degenerate in some sense under

addition modulo p. So a promising candidate for A seems to be a moderately sized

set that can be defined without using addition at all. Since p is a prime, there is a

natural choice for such an A: a multiplicative subgroup of F×p whose size is around

half the size of F×p . But, there is only one such subgroup: the set of quadratic residues

mod p.

We present a preliminary analysis of the minimum distance of the QQR code which

(when the prime p is special enough) reduces the problem of bounding its minimum

distance to obtaining a bound on the the maximum number of rational points on a

curve from a family of hyperelliptic curves over Fp. We show that the codewords in

this codes are in one to one correspondence with special hyperelliptic curves over Fp,

where the number of zeros in a codewords is up to an additive O(1) term equal to

the number of Fp-rational points on the corresponding curve. This is when the prime

p = ±5 (mod 8). The curves are of the form y2 = f(x), where f(x) is a nonconstant

square free polynomial of even degree in Fp[x] that has all its zeros in Fp. We argue

that maximizing over the odd degree polynomials can only affect the bound by an

additive O(1) term. This extends the family of curves to those of the form y2 = f(x)

where f(x) a is a nonconstant square free polynomial in Fp[x] that has all its zeros in

Fp.

The general bound of Weil for bounding the number of rational point is inadequate

in our situation since it becomes trivial when the genus of the curve becomes large.

Other than being in the special setting of hyperelliptic curves, the more important

additional special features in our case are:
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• f(x) splits completely over Fp, and

• Fp is a field of prime order, which is a situation where it is not known whether

Weil’s bound can be tight for any curve.

This leads to the following conjecture, whose correctness is equivalent to the asymp-

totic goodness of the QQR code with β as its minimum relative distance:

Conjecture 4.3.6: There exists β > 0 such that for any prime p (or for infinitely

many primes p) and for any non-constant square free polynomial f(x) that splits

completely over Fp, the number of Fp-rational points on the hyperelliptic curve y2 =

f(x) is smaller than 2(1 − β)p.

To support the conjecture we note in Section 4.3.4 that the classical special class

of curves where f has only two non-zero coefficients and where Weil’s bound can

become tight over square fields cannot have too many rational points in our prime

field setting.

The splitting condition may be only needed to handle the high genus cases. A

stronger statement might be true:

Conjecture 4.3.7: There exists β > 0 such that for any prime p (or for infinitely

many primes p) and for any nonconstant square free polynomial f(x) whose degree is

sublinear in p, the number of Fp-rational points on the hyperelliptic curve y2 = f(x)

is smaller than 2(1 − β)p?

This basically means improving Weil’s bound in the setting of hyperelliptic curves

over prime fields.

The explicit binary codes we are looking at are not essentially new codes in the

sense that they can be related after minor modifications to a special class of non-binary

classical cyclic quadratic residue codes over F4 when the prime is special enough as

we explain in Section 4.3.5. What is new is that this special case comes from a code

ensemble where the random is good, and where the code we are studying seems highly

non-degenerate. Our technical contribution is the reduction of the minimum distance

problem to a problem about points on curves. The importance of the conjecture is that

its correctness leads to at least a new family of explicit asymptotically good binary
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codes. From the perspective of the construction origin, it is tempting to speculate

also that the construction achieves the binary GV bound. Proving the conjecture or

finding counter examples for all but finitely many primes is very desirable.

Comparing further with the literature, we note that the relation between codes

and curves we are talking about is very far from algebraic geometric codes since in

our setting each codeword corresponds to a curve whose number of rational points is

related to the weight of the codeword. We note also that the relation between codes

and character sums has been explored before but in the setting of fields of order a

power of 2 (See [PHB98]). The relation we are indicating is different as it is over

fields of prime order.

4.2 A randomized construction from abelian groups

actions

We establish in this section the Claims of Section 4.1.3.2. We consider the case when

G is an abelian group of odd order. We argue in Theorems 4.2.1 and 4.2.4 that if the

dimension L(G) of the smallest irreducible F2-representation of G grows faster than

logarithmically in the order of the G, then an F2[G]-submodule of F2[G]k generated

by a random element of F2[G]k achieves the GV bound with a high probability. Since

G is abelian, L(G) depends only on the order of G, and it is the smallest size of the

multiplicative group generated by 2 in F×p , where p runs over the prime divisors of

m. See Lemma 4.2.5. We note that roughly, almost all abelian groups of odd order

satisfy the above condition. Finally, we tune the construction in Section 4.2.1 in a

way that will be of special interest to us in Section 4.3.

Theorem 4.2.1 Let G be a finite abelian group of odd order m, and consider its

binary group algebra

F2[G]
def
= {

∑

g∈G

f(g)g|f : G→ F2}.
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Consider the randomized construction of codes

Ca,b = {(fa, fb)|f ∈ F2[G]},

where a, b are selected uniformly at random from F2[G].

Let L(G) be the smallest dimension of a non-trivial F2-representation of G.

Let δ > 0 nbe such that h(δ) ≤ 1
2
− log m

2L(G)
. Then the probability that the minimum

relative distance of the code Ca,b is below δ or the rate of Ca,b is below 1
2
− 1

2m
is at

most 2−2L(G)(1/2−h(δ))+5 log m, where h is the binary entropy function.

Therefore, if L(G) grows asymptotically faster than logm, then the code Ca,b

achieves the GV bound for rate 1/2 with a high probability.

Note that L(G) is the lowest dimension of a nontrivial F2[G]-module, and more

specifically the lowest dimension of a nontrivial irreducible ideal in F2[G]. By a trivial

F2[G]-module we mean a R-module M such that rm = m, ∀m ∈M and r ∈ F2[G].

Proof. Let R
def
= F2[G]. Let P be the probability that Ca,b has dimension below

m− 1 and minimum distance below 2mδ, where δ is say below 1/2 for the moment.

P is at most the probability that there is an f ∈ R, f 6= 0 and f 6= e0
def
=
∑

g∈G g,

such that the event

E(f, a, b) : 0 ≤ w(fa) + w(fb) < 2mδ

happens. This is because (e0a, e0b) is either (e0, 0), (0, e0), (e0, e0), or (0, 0), and thus

w(e0a) + w(e0b) = m, 2m, or 0. The first two values are above 2δm and the last can

only decrease the rank by 1. Thus, by the union bound on f ,

P ≤
∑

f∈R,f 6=0,e0

Pra,b[E(f, a, b)] ≤
m∑

l=2

|Dl|max
f∈Dl

Pra,b[E(f, a, b)]. (4.1)

where

Dl = {f ∈ R|dimF2
fR = l},
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and fR is the ideal generated by f in R. Note that we excluded the case l = 0 and

l = 1 since they can only happen when f = 0 and f = e0 respectively.

For all f 6= e0, the ideal fR is nontrivial, so dimF2
fR ≥ L(G). Thus

Dl = ∅ for all 2 ≤ l < L(G). (4.2)

Let

Ωl = {I an ideal of R | dimF2
I = l},

so we have

|Dl| ≤ 2l|Ωl| (4.3)

Consider any l, and any f ∈ Dl. We have

Pra,b[E(f, a, b)] ≤
∑

r1,r2∈fR s.t. 0≤w(r1)+w(r2)<2mδ

Pra,b[fa = r1 and fb = r2]

≤ 2−2l
∑

w1,w2≥0;w1+w2<2δm

|I(w1)||I(w2)|, (4.4)

where I = fR, and if I is an ideal, by I (w) we mean

I(w) def
= {r ∈ I|w(r) = w}.

The 2−2l term is the value of Pra,b[fa = r1 and fb = r2]; indeed, for any r ∈ fR,

Pra[fa = r] =
|Ker Φf |

|R| =
1

|fR| = 2−l,

where Φf : R � fR is given by a 7→ fa.

Replacing (4.2), (4.3), and (4.4) in (4.1), we get

P ≤
m∑

l=L(G)

2−l|Ωl|max
I∈Ωl

∑

w1,w2≥0;w1+w2<2δm

|I(w1)||I(w1)|. (4.5)

Note that so far we have not used any property that depends on G being abelian.

Note also that the maximum above can be replaced by an expected value, but we will

79



not need that.

Lemma 4.2.2 If I is an ideal in R of dimension l, then |I (w)| ≤ 2lh(w/m), where h is

the binary entropy function.

Proof. This follows from the work of Piert [Pir85] and Shparlinsky [Shp86]. In fact

this holds when R = F2[G], and G is an arbitrary group of size m. The result in

[Pir85, Shp86] says the following. Let C be a subset of {0, 1}J of size 2l, J an index

set of size m. Say that a subset A of J is an information set of C if the projection map

from C to {0, 1}A is a bijection, thus |A| = l. Say that C is balanced, if there exists

r ≥ 1 and information sets A1, . . . , Au of C such that for all i in J , the number of

j’s such that i ∈ Aj is exactly r. Note that the Ai’s need not be distinct. The result

says that if C is balanced, then the number of vectors in C of weight w is at most

2lh(w/m). The proof is a double counting argument. This is directly applicable to the

case when C is an ideal in F2[G]. The reason is that since C is linear it must contain

an information set S ⊂ G of size l, and since C is invariant under the action of G, the

{Sg}g∈G are informations sets also. These information sets make C balanced because

for each a in G, the number of g’s such that a ∈ Sg is exactly |S|. H

Lemma 4.2.3 |Ωl| ≤ ml/l0+1, where l0 = L(G).

Proof. Here we use the fact that G is a abelian. In general, since |G| is odd, R is

semisimple. Let R = R0 ⊕ R1 ⊕ . . . ⊕ Rs be the unique decomposition of R into

indecomposable 2-sided ideals. The Ri’s are simple rings. Since G is abelian the Ri’s

are irreducible and they are the only irreducible ideals in R (Each Ri is actually a field

with its idempotent as a unit element). Thus each ideal in R is of the form ⊕i∈ARi

for some subset A of {0, 1, . . . , s}. This fact is the reason behind the bound on |Ωl|;
if G was non abelian then |Ωl| can be much larger than this because each Ri may

contain many irreducible ideals. Without loss of generality, say that R0 is the trivial

one dimensional ideal, i.e., R0 = (
∑

g∈G g)R. Thus, for each i 6= 0, the dimension of

Ri is at least l0 = L(G). So, 1 + l0(s− 1) ≤ m. If I is an ideal of dimension l, then it
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is a direct sum of at most l/l0 + 1 of the Ri’s. There are at most sl/l0+1 such direct

sum, so |Ωl| ≤ sl/l0+1 ≤ ml/l0+1. H

Note that we can get a sharper bound, but this is sufficient for our purpose.

Replacing the estimates in Lemmas 4.2.2 and 4.2.3 in (4.5), we get

P ≤
m∑

l=l0

2−lml/l0+1
∑

w1,w2≥0;w1+w2<2δm

2l(h(w1/m)+h(w2/m))

≤
m∑

l=l0

2−lml/l0+1(2δm)222lh(δ) (since h is convex)

≤
m∑

l=l0

2
−2l

(
1
2
−h(δ)− log m

2l0

)
+3 log m

.

If 1
2
− h(δ) − log m

2l0
≥ 0, we get

P ≤ 2
−2l0(

1
2
−h(δ)− log m

2l0
)+4 log m

= 2−2l0(
1
2
−h(δ))+5 log m.

This completes the proof of Theorem 4.2.1. �

Note that the fact that the estimate of Lemma 4.2.3 fails for nonabelian groups

does not mean that they do not lead to good codes in the setting of this randomized

construction. All that it means is that the argument may need some modifications.

But in all cases, it will become clear in Section 4.4 that the reason why Lemma

4.2.3 fails for nonabelian groups makes them subject to a more natural randomized

construction.

More generally,

Theorem 4.2.4 Let G be an abelian group of order m, and consider the randomized

codes construction

Ca1,...,ak
= {(fa1, . . . , fak)|f ∈ F2[G]},

where a1, . . . , ak are selected uniformly at random from R∗, and R∗ is the set of even

weight strings in R
def
= F2[G].
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If L(G) is asymptotically larger than logm, then the code Ca1,...,ak
achieves the

GV bound for rate 1/k with a high probability.

Proof. The proof is by the same argument in Theorem 4.2.1. We need this even

weight technicality in order to avoid the dominance of some bad events when k is

large enough. The fact that the ai’s have even weight will take care of the case when

f = e0 since then e0ai = 0 always. �

Lemma 4.2.5 Since G is abelian, L(G) depends only on the order of G and is given

by

l(m) = min{#〈2〉p|p a prime divisor of m},

where 〈2〉p is the multiplicative subgroup generated by 2 in F×p .

Proof. Since G is abelian say that G = G1 × . . . × Gt, Gi
∼= Z/pki

i Z, pi prime.

Thus m =
∏

i p
ki
i . If ρ : G → GLl(F2) is a nontrivial F2-representation of G, then

the restriction of ρ on one the Gi’s must be nontrivial, thus L(G) ≥ mini L(Gi).

Conversely, given a representation ρi : Gi → GLl(F2) of Gi, we can extend ρi to G

via ρi(g1 . . . gt) = ρi(gi). Thus L(G) = mini L(Gi). So we can assume without loss

of generality that G is cyclic of order a power of a prime, say G is Z/pkZ. Then the

dimensions of the irreducible F2-representations of G are precisely the sizes of the

equivalence classes in (Z/pkZ)/ ∼, where a ∼ b if a = 2ib (mod pk) for some i. The

trivial representation corresponds to the class consisting of 0. Thus

L(Z/pkZ) = min
0<a<pk

h(a, pk) where h(a, pk) = min
i≥1;a2i=a( mod pk)

i.

Now, h(a, pk) = h(1, pi) where pi = a/gcd(pk, a) as it easy to check. Thus

L(Z/mZ) = min
i=1,...,k

h(1, pi) = h(1, p)

because h(1, pi) ≥ h(1, p) for all i ≥ 1, and hence the claim since h(1, p) = #〈2〉p. �

Now, if r : Z+ → Z+ is a nondecreasing function, let

Z(r) = {m ∈ Z+|l(m) ≥ r(m)}.
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So any family of abelian groups whose orders is in Z(r) leads to rate 1/2 codes up

the GV bound as long as r(m) � logm. Let P (r) be the set of odd primes in Z(r).

Lemma 4.2.6 When r(m) �
√
m/ logm, P (r) is infinite and contains almost all

the primes.

Proof. This statement appears in Chepyzhov [Che92], but we include a proof for

completeness. Say that a prime is bad if it is not in P (r), and let Bn be the set of

bad primes smaller than n. If p is a bad prime then there exists integers a and k such

that 0 < a < r(p) and 2a − 1 = kp. Since r(n) is nondecreasing, we have

|Bn| ≤ #{(a, k) | 0 < a < r(n) and (2a − 1)/k prime}

≤ r(n) log (2r(n) − 1) ≤ r2(n),

and hence the lemma from the prime numbers density theorem. �

So we have many infinite families of abelian groups that lead to codes up to the

GV bound in the sense of Theorem 4.2.1, for instance:

• The cyclic groups of prime order, where the primes are in P (r), and r(m) =

logm log logm.

• Any version of the Abelian groups of order pq where p, q ∈ P (r), r(m) =

logm log logm, and pk, qk > pq for some prespecified constant k.

• Any version of the abelian groups of order pk where p ∈ P (r), r(m) = logm

log logm, and k is a prespecified constant.

• Any version of the abelian groups of order pk(p) where p ∈ P (r), r(m) =
√

m
logm

,

and k(p) <
√

p

log3p
.

4.2.1 Tuning the construction

We can tune the rate 1/2 randomized construction in Theorem 4.2.1 in a way that

uses less randomness as follows.
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Theorem 4.2.7 Let G be a finite abelian group of odd order m. Consider the ran-

domized construction of codes

Cb = {(f, fb)|f ∈ F2[G]},

where b is selected uniformly at random from F2[G].

If l(m) � logm, then the code Cb achieves the GV bound for rate 1/2 with a high

probability.

Proof. We use the terminologies of Theorem 4.2.1. In the setting of Theorem 4.2.1,

Cb = C1,b, where b is selected uniformly at random from R
def
= F2[G].

Let R× be the set of invertible elements in R. First we note that

Prb∈R[dmin(Cb) < 2δp] = Pra∈R×,b∈R[dmin(Ca,ab) < 2δp]

= Pra∈R×,b∈R[dmin(Ca,b) < 2δp].

This is true because if b ∈ R, then Cb = Ca,ab and aR = R, ∀a ∈ R×. Now, we

proceed as in Theorem 4.2.1. Let

P = Pra∈R×,b∈R[dmin(Ca,b) < 2δp],

so P is the probability that there is an f ∈ R, f 6= 0, such that the event

E(f, a, b) : 0 ≤ w(fa) + w(fb) < 2mδ

happens. Thus

P ≤
∑

f∈R,f 6=0

Pra∈R×,b∈R[E(f, a, b)] ≤
m∑

l=l(m)

|Dl|max
f∈Dl

Pra∈R×,b∈R[E(f, a, b)],

where Dl as in Theorem 4.2.1. Consider any l, and any f in Dl. Then

Pra∈R×,b∈R[E(f, a, b)]
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is at most

∑

r1∈fR×,r2∈fR s.t. 0≤w(r1)+w(r2)<2mδ

Pra∈R×[fa = r1]Prb∈R[fb = r2],

and this is at most

max
r∈fR×

Pra∈R× [fa = r] max
r∈fR

Prb∈R[fb = r]
∑

w1,w2≥0;w1+w2<2δm

|I(w1)||I(w2)|,

where I = fR, and I (w) is as defined in Theorem 4.2.1. As before, the second

maximum is exactly 2−l. We will argue that the first is 2−l also.

Say that R = ⊕s
i=0Ri is the unique decomposition of R into irreducible ideals.

Thus each Ri is a field with its idempotent as a unit element, andR× = ⊕s
i=0R

×
i , where

R×
i is the multiplicative group of the field Ri. Let V ⊂ [s] such that f =

∑
i∈V fi, fi

nonzero in Ri. Since each element a of R× is of the form
∑s

i=1 ai, where each ai is a

nonzero element of Ri, we have fa =
∑

i∈V fiai, hence the number of a’s in R× such

that fa = r is exactly
∏

i6∈V |R×
i |, i.e., all the elements of fR× are equally likely to

appear as fa when a is selected from R×, which means that Pra∈R× [fa = r] = 2−l.

The rest is exactly as in Theorem 4.2.1. Note that regarding the rate, here we

always have dimCb = m.

�

4.3 An explicit construction based on quadratic

residues

We elaborate on the explicit construction introduced in Section 4.1.3.3. We study a

natural explicit code based on quadratic residues, that we call the QQR code, in the

setting of quasi-cyclic codes of prime order from Theorem 4.2.7 restricted to the case

when the group is cyclic of prime order. For nondegeneracy reasons, we conjecture

that this explicit code is asymptotically good and probably achieves the binary GV

bound at rate 1/2. We present a preliminary analysis of the minimum distance
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of the QQR code which reduces the problem of bounding its minimum distance to

obtaining a bound on the maximum number of rational points on a curve from a

family of hyperelliptic curves over Fp (Corollary 4.3.5, Conjectures 4.3.6 and 4.3.7).

We show in Theorem 4.3.3 that (when p = 3 (mod 8)) the codewords in the QQR

code are in one to one correspondence with special hyperelliptic curves over Fp, where

the number of zeros in a codewords is up to an O(1) term equal to the number of

Fp-rational points on the corresponding curve. The curves are of the form y2 = f(x),

where f(x) is a nonconstant square free polynomial of even degree in Fp[x] that has all

its zeros in Fp. Then we show in Theorem 4.3.4 that maximizing over the odd degrees

polynomials can only affect the bound by an additive O(1) term. This extends the

family of curves to those of the form y2 = f(x), where f(x) is a nonconstant square

free polynomial in Fp[x] that has all its zeros in Fp (Corollary 4.3.5). We discuss the

prime field situation in Section 4.3.4, and we note in Section 4.3.5 that the QQR code

can be related to a special class of non-binary cyclic quadratic residue codes over F4.

Consider the codes ensemble from Theorem 4.2.7 restricted to the case when the

group is cyclic of prime order.

Definition 4.3.1 “The Prime Quasi-Cyclic codes (PQC) ensemble”: Let p be a

prime. The block-length-2p PQC ensemble consists of the rate-1/2 codes

CA = {(rSrA, rS) : S ⊂ Fp} (4.6)

indexed by the subsets A of Fp.

Here if U is a subset of Fp,

rU
def
=
∑

g∈U

g

as an element of the binary group algebra F2[Z/pZ].

We remind the reader with construction intuition introduced in Section 4.1.3.3.

Theorem 4.2.7 implies that a random code from the PQC ensemble achieves the

GV bound at rate 1/2 for almost all the primes. The explicit construction problem

consists of finding a good A. We know that almost all the A’s are good, and we
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want to construct a good one. What are the bad A’s? Characterizing the bad ones

is hard. But, intuitively, a bad A seems to be a one that is too small, too large,

or is degenerate in some sense under addition modulo p. So a promising candidate

for A seems to be a moderately sized set that can be defined without using addition

at all. Since p is a prime, there is a natural choice for such an A: a multiplicative

subgroup of F×p whose size is around half the size of F×p . But, there is only one such

subgroup: the set of quadratic residues mod p. In what follows we start studying

the explicit construction resulting from setting A to be the set of quadratic residues

modulo p. Our objective is to bound the minimum distance of the resulting code.

Call the resulting rate half code the Quasi-cyclic Quadratic Residue (QQR) code.

Definition 4.3.2 “The Quasi-cyclic Quadratic Residue (QQR) code”: Let p be a

prime, and let Q be the multiplicative subgroup Q of F×p of index 2, i.e., Q is the set

of quadratic residues mod p. The block-length-2p QQR code is the code CQ in the

PQC ensemble.

The main point to keep in mind is that the reason that we are looking at this code

is that it is a highly nondegenerate choice in an ensemble of codes where almost all

the codes achieve the GV bound. So it is very tempting to suspect that this codes

achieves the GV bound or is at least asymptotically good.

4.3.1 The minimum distance of the QQR code

When 2 and −1 are both non-quadratic residues mod p, we can exhibit a one-to-one

correspondence between the codewords of the QQR code and a family of hyperelliptic

curves over Fp.

If S ⊂ Fp, let

fS(x)
def
=
∏

a∈S

(x− a) ∈ Fp[x].
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Let ψ be the quadratic residues character, i.e.,

ψ(a) =





1 if a ∈ Q

−1 if a ∈ F×q \Q
0 if a = 0.

Theorem 4.3.3 Let p be a prime such that 2 and −1 are non-quadratic residues mod

p (i.e., p = 3 (mod 8)), then the block-length-2p QQR code can be expressed as

{(rQ̄rS, rQrS) : S a subset of Fp}, (4.7)

where Q̄ is the complement of Q in F×p . Moreover, if (rQ̄rS, rQrS) is a codeword of the

QQR code, then the weight of this codeword can be expressed in terms of a character

sum as

p−
∑

a∈Fp

ψ(fS(a)) (4.8)

if |S| is even, and

p+
∑

a∈Fp

ψ(fFp\S(a)) (4.9)

if |S| is odd.

Note that if −1 is a quadratic residue, we get the same relation if we restrict our

attention to the the even weight codewords in the QQR code.

Proof. To avoid confusion between addition and multiplication in Fp, we will be

working with the polynomial version of the group algebra R = F2[Z/pZ]. So R =

F2[x]/(x
p − 1) and rS ∈ R means it is a polynomial rS(x) =

∑
i∈S x

i.

The reason why the QQR code as defined in (4.6) with A = Q can be expressed

as as in (4.7) is that (rQ, 1) and (rQ̄, rQ) generate the same R-submodule in R2. This

is because due to the fact that 2 and −1 are in Q̄, we have r2
Q = rQ̄, and r3

Q = 1. We

have r2
Q = rQ̄ since r2

Q = r2Q because we are in characteristic 2 and 2Q = Q̄ since

2 ∈ Q̄. To see why r3
Q = 1, note that

r3
Q + 1 = (rQ + 1)(1 + rQ + r2

Q) = (rQ + 1)rZ/pZ.
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Now rZ/pZ annihilates all the even weight elements in R and absorbs all the odd

weight ones, thus (rQ + 1)rZ/pZ = 0 since |Q| = (p − 1)/2 is odd (because −1 is a

nonquadratic residue), i.e., r3
Q + 1 = 0.

If rA, rB ∈ R, we can express the weight of rArB as

w(rArB) =
∑

l∈Fp

parity|A ∩ (l −B)|.

Let rS ∈ R. We have

p− w(rQrS) − w(rQ̄rS) =
∑

l∈Fp

1 − parity|Q ∩ (l − S)| − parity|Q̄ ∩ (l − S)|.

Consider a term of this summation for a fixed l and call it Tl(S).

Assume that |S| is even. We have two cases to consider.

• Case 1. When 0 ∈ (l − S).

In this case Tl(S) = 0. The reason is that |(l − S)\{0}| is odd, and hence will

intersect either Q or Q̄ evenly but not both.

• Case 2. When 0 6∈ (l − S).

In this case |Q ∩ (l − S)| is odd if and only if |Q̄ ∩ (l − S)| is odd since |l − S|
is even. Thus

Tl(S) =





−1 if |Q̄ ∩ (l − Sf)| is odd

1 if |Q̄ ∩ (l − Sf)| is even.

It follows that

Tl(S) =
∏

a∈l−S

ψ(a) = ψ(
∏

a∈S

(l − a)) = ψ(fS(l)),

and hence (4.8).

If |S| is odd, we get (4.9) since Tl(S) = −Tl(Fp\S). This is true because |Q∩(l−S)|
and |Q∩ (l− Fp\S)| have opposite parities since |Q| = (p− 1)/2 is odd, and similarly

for |Q̄ ∩ (l − S)| and |Q̄ ∩ (l − Fp\S)|.
This completes the proof of Theorem 4.3.3. �
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Thus the minimum distance of the QQR code is given by

p− max{|
∑

a∈Fp

ψ(fS(a))| : S a nonempty subset of Fp of even cardinality }.

Rather than talking about such character sums, we can talk about the correspond-

ing hyperelliptic curves.

In general if f(x) ∈ Fp[x] is a square free polynomial of degree d and leading

coefficient fd, consider the projective nonsingular hyperelliptic curve whose function

field is Fp(x, y), y
2 = f(x). Let g be its genus, N its number of Fp-rational points, and

n∞ its number of Fp-rational point at ∞. Then N =
∑

a∈Fp
ψ(f(a)) − p+ n∞, and

• g = (d− 2)/2 and n∞ = ψ(fd) + 1, when d is even

• g = (d− 1)/2 and n∞ = 1, when d is odd.

See for instance [Sti93] for a proof.

In our situation, we have the projective nonsingular hyperelliptic curve CS whose

function field is Fp(x, y), y
2 = fS(x). Thus the genus of CS is (|S| − 2)/2, and the

following are equal:

• ∑
a∈Fp

ψ(fS(a))

• −p + number of (x, y) solutions in F2
p of the equation y2 = fS(x)

• −(p+ 2) + number of Fp-rational points on CS.

Thus our problem can be reduced to bounding the character sums, or equivalently

bounding the deviation from p of the number of rational points on the corresponding

curves.

Weil’s bound [Wei48] on the number N of Fq-rational points on a nonsingular

projective curve over any finite field Fq says that

|N − (q + 1)| ≤ 2g
√
q

90



where g is the genus of the curve. See also [Mor94, Sti93, LN83]. The strength of

this bound is in the fact that it holds for any nonsingular projective curve over any

finite field Fq. In our situation it says that

|
∑

a∈Fp

ψ(fS(a))| ≤ (|S| − 2)
√
q + 1.

This bound is good for small |S|, but it becomes trivial when |S| is large, i.e., when the

genus of the corresponding curve is large. We cannot conclude from Weil’s bound any

more than a
√
p lower bound on the minimum distance of the code. The problem we

are dealing with requires using the special features of the curves under consideration

to obtain a better estimate. The reason why we believe that a better bound exists is

that the QQR code appears to be a very nondegenerate code in an ensemble of codes

where almost all the codes achieve the GV bound. The bound should be independent

of |S|. The asymptotic goodness of the QQR code will follow if we can show that

there exists β > 0 such that

|
∑

a∈Fp

ψ(fS(a))| ≤ (1 − 2β)p,

when p is large enough. The GV bound will follow from β = βGV
def
= h−1(1/2) ∼ 0.110.

So far, the only families of curves we were able to find where β goes below βGV are

when −1 or 2 are quadratic residues mod p. One of the worst recorded values of β is

∼ 0.031 for fS(x) = x300 − 1 with p = 4801 corresponding to the case when −1 is a

quadratic residue. We know that 2 should be a non-quadratic residue since otherwise

the code and the curves are not related. One explanation of why −1 being quadratic

residue is bad is that in this case the quadratic residue string is symmetric around

(p− 1)/2, and hence is degenerate in some sense.

What is special about the family of curves we have? First we note that up to an

O(1) additive term, the even assumption on the size of S can be dropped.
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Theorem 4.3.4 Let p be a prime, then

max
∅6=S⊂Fp

|
∑

a

ψ(fS(a))| ≤ max
∅6=S⊂Fp s.t. |S| even

|
∑

a

ψ(fS(a))| + 1

Proof. See Section 4.3.3. �

The additive 1 term results form the displacement of some points at infinity.

Corollary 4.3.5 Let p be a prime such that p = 3 (mod 8), then the minimum

relative distance of the block-length-2p QQR code is the maximum of β > 0 such

that for any nonconstant square free polynomial f(x) that splits completely over Fp,

the number of Fp-rational points on the hyperelliptic curve y2 = f(x) is smaller than

2(1 − β)p.

4.3.2 The hyperelliptic curves conjectures

The special features that we are left with are that f(x) splits completely over Fp, and

that the field of constants Fp is prime, and probably a special prime .

Conjecture 4.3.6 There exists β > 0 such that for any prime p (or for infinitely

many primes p) and for any nonconstant square free polynomial f(x) that splits com-

pletely over Fp, the number of Fp-rational points on the hyperelliptic curve y2 = f(x)

is smaller than 2(1 − β)p.

Note that, it is necessary for p to be a prime, or at least not a square, since in the

later case we know that the conjecture is not true. We will elaborate on this point in

Section 4.3.4.

The splitting condition may be only needed to handle the high genus cases. A

stronger statement might be true:

Conjecture 4.3.7 There exists β > 0 such that for any prime p (or for infinitely

many primes p) and for any nonconstant square free polynomial f(x) whose degree is

sublinear in p, the number of Fp-rational points on the hyperelliptic curve y2 = f(x)

is smaller than 2(1 − β)p?
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This basically means improving Weil’s bound in the setting of hyperelliptic curves

over prime fields.

The correctness of any of these conjectures implies the asymptotic goodness of the

QQR code.

We were not able to establish any of those claims, or find a counter example. We

leave the questions open.

4.3.3 Proof of Theorem 4.3.4

If we look at the projective version of the curves, we can argue that fractional linear

transformations over Fp induce isomorphisms between the corresponding function

fields. We can establish the claim by sending a point of the even cardinality set to

infinity via a fractional linear transformation to make its cardinality odd.

Lemma 4.3.8 Let S be a subset of Fp, α a fractional linear transformation in PSL2

(Fp), w ∈ F×p , and

T =




α−1(S)\{∞} if |S| even or α(∞) = ∞
α−1(S ∪ {∞})\{∞} if |S| odd and α(∞) 6= ∞

Then Fp(x,
√
wfS(x)) ∼= Fp(x,

√
vwfT (x)), where

v =





u|S| when α(∞) = ∞ ,with α(x) = ux+ v

fS(α(∞)) when ∞ 6= α(∞) 6∈ S

−det(α)fS\{α(∞)}(α(∞)) when α(∞) ∈ S.

Proof. Say that

α(x) =
α11x+ α12

α21x+ α22

thus α−1(x) =
α22x− α12

−α21x+ α11

,

and recall that fS(x) =
∏

t∈S(x − t). Direct computations show the following. Let t

be an element of Fp, then:
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• when α−1(t) 6= ∞ and α(∞) 6= ∞, we have

α(x) − t =
α(∞) − t

x− α−1(∞)
(x− α−1(t)), (4.10)

• when α(∞) = ∞ (hence α−1(t) 6= ∞), we have

α(x) − t =
α11

α22
(x− α−1(t)), (4.11)

• and when α−1(t) = ∞ (hence α(∞) 6= ∞), we have

α(x) − t =
−det(α)/α2

21

x− α−1(∞)
. (4.12)

LetK andK ′ be the function fields and write them as the fraction fields of Fp[x, y]/(y
2−

wfS(x)) and Fp[x
′, y′]/(y′2 − vwfT (x′)) respectively. Form (4.10), (4.11), and (4.12)

we can see that

wfS(α(x)) = g2(x)vwfT (x),

where g(x) is a rational function. Thus the map K → K ′ that takes x to α(x′) and

y to g(x′)y′ is an isomorphism since saying (g(x′)y′)2 = wfS(α(x′)) is the same thing

as saying y′2 = vwfT (x′). �

Let N1(Cw,S) be the number of Fp-rational points on the abstract nonsingular

projective curve Cw,S whose function field isKw,S
def
= Fp(x,

√
wfS(x)) and for simplicity

denote

ψΣ(S)
def
=

∑

a∈Fp

ψ(fS(a)).

We have

N1(Cw,S) = ψ(w)ψΣ(S) − p+ n∞(Cw,S),
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where n∞(Cw,S) is the number of Fp-rational point at ∞ and is given by

n∞(Cw,S) =





2 if ψ(w) = 1 and S even

1 if S odd

0 if ψ(w) = −1 and S even .

Now, with S, T and v as in Lemma 4.3.8 in the setting when w = 1, we have K1,S
∼=

Kv,T , and thus N1(C1,S) = N1(Cv,T ). Therefore,

ψΣ(S) + n∞(Cw,S) = ψ(v)ψΣ(T ) + n∞(Cv,T ). (4.13)

If T is an odd cardinality subset of Fp such that ψΣ(T ) 6= 0, let a be such that

fT (a) 6= 0, and let α be a fractional linear transformation such that α(a) = ∞. Then

use the even cardinality set S = α(T ) ∪ {α(∞)}. Therefore

ψΣ(S) + 2 = ψ(v)ψΣ(T ) + 1

since n∞(C1,S) = 2 and n∞(Cv,T ) = 1. It follows that |ψΣ(S)| ≥ |ψΣ(T )| − 1.

4.3.4 A note on the prime field setting

Conjecture 4.3.6 does not hold when the size of the base field is a square. It is known

that Weil’s bound is tight in that setting. Classical examples are over Fp2 where the

hyperelliptic curve y2 = fFp
(x) = xp − x has p2 − p Fp2-rational point when −1 is a

nonquadratic residue mod p.

We can argue that similar cases cannot happen over a prime field. By similar

cases, we mean curves of the form y2 = f(x) where the square free f(x) has two

nonzero coefficients and splits completely over Fp.

Theorem 4.3.9 Let p be a prime such that −1 is a non-quadratic residue (i.e., p =

−1 (mod 4)). If f(x) is a nonconstant square-free polynomial over Fp that splits

completely over Fp and has only two nonzero coefficient, then |∑a ψ(f(a))| ≤ (p+1)/2.
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Proof. Without loss of generality, say that f(x) is a monic. Thus f(x) = fS(x) for

some subset S of Fp. Since fS(x) has weight 2, it should of the form fS(x) = xk − xk
0

or fS(x) = x(xk − xk
0) where k|(p − 1) and x0 nonzero. Thus S is a coset of some

multiplicative subgroup of order k in addition to possibly zero. Without loss of

generality we can assume that x0 = 1 since we can sum over x/x0 after taking x0 out.

This will only affect the character sum by a ψ(x
|S|
0 ) factor. The idea of the proof is

to note that ψ(fS(a)) and ψ(fS(a−1)) are opposite in sign for many a’s. When a is

nonzero, in the first case we have

ψ(a−k − 1) = ψ(−1)ψ(a−k)ψ(ak − 1),

and in the second case we have

ψ(a−1(a−k − 1)) = ψ(−1)ψ(a−k−2)ψ(a(ak − 1)).

So if we assume that −1 is a non-quadratic residue, we get ψ(fS(a−1)) = −ψ(fS(a))

for each a ∈ Q, where Q is the set of quadratic residues mod p. In other words, the

sum vanishes on Q. It follows that |∑a ψ(fS(a))| ≤ (p− 1)/2 + 1. �

Note that the proof uses a special case of (4.13), but we could not go very far with

similar arguments alone.

4.3.5 Relation to cyclic quadratic residue codes over F4

The explicit binary codes we are talking about, i.e., the QQR code, can be related,

after minor modifications, to a special class of non-binary classical cyclic quadratic

residue codes over F4 when the prime is special enough. The distinguishing features

of this special case comes from a code ensemble where the random is good.

When 2 is a nonquadratic residue, we can relate a rate 1/2 subcode EQQR of the

QQR code to a special class of nonbinary cyclic quadratic residue codes over F4. The

relation is a bijection that preserves weight in a suitable sense. The identification

argument is similar to the argument in [HKSS94] that relates nonlinear binary codes
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to codes over Z/4Z. Let R∗ be the ideal of even weight vectors in R = F2[Z/pZ].

Consider the R-submodule C∗
Q = R∗CQ of the QQR code CQ, and call it the EQQR

(Even QQR) code. Let I4 be the cyclic quadratic residue code over F4 generated in

F4[Z/pZ] = F4[x]/(x
p − 1) by the the polynomial (x − 1)

∏
i∈Q(x − βi), where β is a

primitive p’th root of 1 in an extension of F2. We can argue that when 2 is a non-

quadratic residue, there is a bijection between the EQQR code and I4 that preserves

the minimum distance if we measure the weight of a vector in Fp
4 by counting each

occurrence of 1 twice. The choice of 1 is arbitrary; any of the three nonzero elements

of F4 will do. The bijection is essentially an inverse concatenation given by

C∗
Q → I4 : (r(x), rQ(x)r(x)) 7→ γr(x) + rQ(x)f(x),

where γ = rQ(β) generates F×4 . Note that here we are viewing F2[Z/pZ] as F2[x]/(x
p −

1), so here rA =
∑

g∈A g means rA(x) =
∑

i∈A x
i. The proof is not hard. The

reason why we need 2 to be a nonquadratic residue is essentially that otherwise we

get r2
Q = rQ and consequently γ = 1. It is worth mentioning that when 2 is a

nonquadratic residue, binary quadratic residue codes of block length p do not exist.

4.4 The dihedral group randomized construction

In this section, we establish the claim of Section 4.1.3.1. We will argue in Theorem

4.4.3 that for infinitely many block lengths, a random ideal in the binary group algebra

F2[Dm] of the dihedral group Dm is an asymptotically good rate 1/2 binary code. The

condition we require on m is satisfied by almost half the primes, namely all primes p

such that 2 is a nonquadratic residues mod p (i.e., p = ±5 (mod 8)), and such that

the size of the multiplicative group generated by 2 in F×p grows asymptotically faster

than log p. By random here we mean according to some specific distribution based on

the F2-representations of Dm in Theorem 4.4.2. The implicit bound on the relative

minimum distance is h−1(1/4), where h is the binary entropy function.
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Let m be odd, and consider the dihedral group

Dm = 〈α, β|α2 = 1, βm = 1, αβ = β−1α〉,

i.e., Dm is generated by α and β subject to the above relations. So Dm has 2m

elements: the αiβj’s.

We are interested in the structure of F2[Dm] in terms of its ideals. Note that

since the characteristic 2 of F2 divides the even order of Dm, the ring F2[Dm] is not

semisimple, i.e., its radical is nonzero.

Let N be the subgroup generated by β, and H that generated by α. Note that N

is normal. Let

Q = F2[N ].

Any element r of F2[Dm] can be represented uniquely as r = q+αq′, where q, q′ ∈ Q.

From the relation αβi = β−iα we see that αq = q̃α when q ∈ Q, where for q =
∑

g∈S g

in Q, q̃
def
=
∑

g∈S−1 g. Note that˜as a map from Q to Q is a ring homomorphism.

Since Q is commutative and semisimple (because m is odd), let

Q = ⊕w
i=0Qi

be the unique decomposition of Q into irreducible ideals, and let ei be the idempotent

of Qi. Since the Qi’s are finite, each Qi is a field with ei as its unit element. Assume

that the Qi’s are ordered so that Q0 = (
∑

g∈N g), Q̃i = Qi for i = 1, . . . , t, and

Q̃i = Qi+v, v = s− t, for i = t + 1, . . . , s.

Terminology 4.4.1 By an ideal, unless otherwise specified, we mean a left ideal.

If F is a field, by F× we mean the multiplicative group of F . More generally, if

A is a commutative ring with identity, A× will denote the multiplicative group of the

units of A.

In addition to a direct sum of ideals in a group algebra, ⊕ will be used also in the

following context. If T ⊂ {1, . . . , w}, by ⊕i∈TQ
×
i we mean the multiplicative group

defined as the direct product of the multiplicative groups {Q×
i }i∈T and realized in Q
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as {∑i∈T qi|qi ∈ Q×
i , ∀i ∈ T}.

Finally, Mk(F ) means the set of k × k matrices over the field F .

Theorem 4.4.2 Let R = F2[Dm], where Dm is the dihedral group, and m is odd.

The unique decomposition of R into 2-sided ideals is

R = ⊕s
i=0Ri,

where the structure of the Ri’s is as follows.

1) dimR0 = 2. The ideals of R0 are

(0) ⊂ J0 = (
∑

g∈Dm

g) ⊂ R0.

The ideal J0 is the radical of R.

2) For i = 1, . . . , t, we have

Ri = Qi ⊕ αQi.

Each such Ri is simple as a ring and isomorphic as a ring to M2(F2li/2), li = dim Qi.

Moreover, Ri contains 2li/2 + 1 nontrivial irreducible ideals all isomorphic and each

of dimension li. They are given by

I i
[b] = {q(1 + α)b|q ∈ Qi}, for [b] ∈ Q×

i /Z
×
i ,

where Zi = {q ∈ Qi|q = q̃}, a subfield of Qi.

3) For i = t + 1, . . . , s, we have

Ri = Qi ⊕ αQi ⊕ Q̃i ⊕ αQ̃i.

Each such Ri is simple as a ring and isomorphic as a ring to M2(F2li ), li = dim Qi.

Moreover, Ri contains 2li + 1 nontrivial irreducible ideals all isomorphic and each of
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dimension 2li. They are given by

I i
[b] = {q(1 + α)b|q ∈ Qi ⊕ Q̃i}, for [b] ∈ Q×

i ⊕ Q̃×
i /Ti,

where Ti = {q ∈ Q×
i ⊕ Q̃×

i |q = q̃}, a subgroup of the multiplicative group Q×
i ⊕ Q̃×

i .

Proof (when t = s). The representations are essentially similar to the semisimple case

corresponding to the situation when instead of F2 there is a field F whose characteristic

does not divide the order 2 of Dm (see for instance [Bur65, CR62]). We need however

to worry about the fact that the ring is not semisimple and furthermore list all the

irreducible ideals. This is not hard since the group is easy to deal with. We outline

the main steps in the simpler case when Q̃i = Qi for all i, i.e., we do not have to

worry about (3). The situation in (3) follows by a similar argument that we skip

without affecting the completeness of this chapter since we are going to exclude this

situation later on.

Note first that J2
0 = (0) and that R0 consists of

∑
g∈N g and α

∑
g∈N g in addition to

∑
g∈Dm

g. Observe next that αq(1+α) = q̃(1+α), for q ∈ Q, so αQ(1+α)b = Q̃(1+α)b,

for b ∈ Q, and hence the distinction between cases (2) and (3). Moreover, the

decomposition is clearly in terms of 2-sided ideals since for each i, qRi = Riq = Ri

for each q ∈ R, and αRi = Riα = Ri. The claimed structure will essentially follow

once we show that: ∀i 6= 0,

i) Ri contains no other 2-sided ideal, and is thus simple as a ring,

ii) each I i
[b] is irreducible, I i

[b1] 6= I i
[b2]

if and only if [b1] 6= [b2], and any nonzero left

ideal in Ri must contain one of the I i
[b].

Assume in what follows that i 6= 0. From (i) we get also that J0 is the radical of

R since none of the Ri’s can be nilpotent because Qi is a field inside Ri. Moreover,

the fact that Ri is simple implies that all the nonzero irreducible ideals of Ri are

isomorphic and that Ri is isomorphic to Md(K) for some finite field K, where d

is such that Ri = ⊕d
i=1Ri,j, with the Ri,j’s irreducible and the decomposition not

unique unless d = 1. Combining with (ii), we see, from dimensional considerations,
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that d = 2 and hence |K| = 2li/2. The number of the nonzero irreducible ideals

then follows from the fact that in general the number of nonzero irreducible ideals in

M2(K) in |K| + 1.

Proof of (ii): Any I i
[b] is irreducible since Qi is irreducible in Q. Moreover, if

b1, b2 ∈ Q×
i and q1, q2 ∈ Qi, then (q1 + q2α)(1 + α)b2 = (1 + α)b2 if and only if

q1 + q2 = b2b
−1
1 = b̃2b

−1
1 where inversion is in Qi as a field, thus I i

[b1]
= I i

[b2]
if and only

if [b1] = [b2]. Finally, if I is a nonzero left ideal in Qi, then I must contain one of the

I i
[b]’s because I must contain a nonzero r′ = (1 + α)b for some b ∈ Qi. This is the

case since if r′ = b1 + αb2 is any nonzero element in I, for some b1, b2 ∈ Qi, we can

use r = r′ if b1 = b2, or r = r′ + αr′ = (1 + α)(b1 + b2) if b1 6= b2.

Proof of (i): Let r = r1 + αr2 be a nonzero element of Ri for some r1, r2 ∈ Qi,

and consider the 2-sided ideal I generated by r. First we note that I must contain

an element q = q1 + αq2, with q1, q2 ∈ Qi, q1 6= 0, and q1 6= q2. (If r1 = 0, use q = αr.

If r = r1 + αr1, try q = gr for g ∈ N . Thus gr = gr1 + αg−1r1. It cannot be the case

that gr1 = g−1r1, i.e., g2r1 = r1, for all g in N . The reason is that this together with

the fact that the square map in N is onto (because m is odd), mean that r1 =
∑

g∈N g,

i.e., r1 ∈ R0, which is not true). Thus q+αqq−1
1 q2 = q−1

1 (q2
1 +q2

2) is a nonzero element

in Qi, where inversion is in Qi as a field. Note that q−1
1 (q2

1 + q2
2) 6= 0 since q1 6= q2

and the characteristic of Qi is 2. Thus I contains Qi, and hence Ri since the 2-sided

ideal generated by Qi is Ri.

This completes the proof of Theorem 4.4.2. �

So we know all the left ideals in R: they are the direct sums of the left ideals in

the Ri’s.

Theorem 4.4.3 Let m be an odd integer, and consider the dihedral group Dm. Let

R = F2[Dm], and consider the unique decomposition

R = ⊕s
i=0Ri,

of R into 2-sided ideals in Theorem 4.4.2.

Assume that representations of type (3) in Theorem 4.4.2 do not occur, i.e., Q̃i =
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Qi, i = 1, . . . , t = s = w.

Consider the following randomized code construction: generate a rate-( 1
2
− 1

2m
)

random ideal I of F2[Dm] as

I = ⊕s
i=1I

i,

where each I i is selected uniformly at random from one of the 2li/2 + 1 nonzero irre-

ducible left ideals of Ri.

If δ > 0 is such that h(δ) ≤ 1
4
− log m

2l(m)
, then the probability that the minimum relative

distance of I is below δ is at most 2−2l(m)(1/4−h(δ))+5 log m, where h is the binary entropy

function.

Moreover, there are infinitely many such m’s such that l(m) grows asymptotically

faster than logm, and representations of type (3) in Theorem 4.4.2 do not occur, for

instance almost all the primes p = ±5 (mod 8).

Therefore, there are infinitely many integers m such that the left ideal I of F2[Dm]

is an asymptotically good rate 1/2 binary code with a high probability.

We concentrate on the case when representations of type (3) in Theorem 4.4.2 do not

occur for simplicity.

Proof. First we note that this construction is equivalent to the following: pick a

random ideal

I[b] = {q(1 + α)b|q ∈ Q},

where [b] is selected uniformly at random from Q∗×/T , Q∗ = ⊕w
i=1Qi, and T is the

subgroup of Q∗× given by T = {q ∈ Q∗×|q = q̃}. Note that Q∗× is, in the sense of

Terminology 4.4.1, the multiplicative group of units of of Q∗, thus Q∗× = ⊕w
i=1Q

×
i .

From Section 4.2, we know that there are infinitely many integers m with l(m) �
logm, including almost all the primes. To show that representations of type (3) can

be avoided when m is a prime p = ±5 (mod 8), i.e., when 2 is a nonquadratic residue,

assume for the moment that m is a prime p. Following the classical direction, realize

Q as Q = F2[x]/(x
p − 1), and let β be a primitive p’th root of 1 in an extension of F2,
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thus the irreducible decomposition of xp − 1 over F2 is

xp − 1 = (x− 1)
∏

A∈F×
p /〈2〉

gA(x), where gA(x) =
∏

i∈A

(x− βi).

In these terms rewrite Q∗ = ⊕w
i=1Qi as Q∗ = ⊕AQA, where QA is the ideal in Q

generated by g′A(x) = (x− 1)
∏

B 6=A gB(x). Thus Q̃A is generated by g̃′A(x) = g′−A(x).

Hence Q̃A = QA if and only if A = −A. This holds for all A ∈ Fp/〈2〉 if and only if

−1 ∈ 〈2〉, which can be guaranteed when 2 is a nonquadratic-residue since in such a

case 2(p−1)/2 = −1 (mod p).

Now to establish the distance bound when in general representations of type (3)

do not occur, we follow the argument in Theorem 4.2.1 while using the structure of

the dihedral group representations from Theorem 4.4.2. Observe the relation between

this randomized construction and the half randomized construction in Theorem 4.2.1;

this ensemble of codes is, in a suitable sense, a subfamily of that ensemble.

For any b in Q∗×,

I[b] = Q(q + α)b = aQ∗(1 + α)b,

for all a in Q∗×. Thus the probability P that the minimum distance of I[b] is below

2δm, when [b] is selected uniformly at random from Q∗×/T , is the same as the proba-

bility that aQ∗(1+α)b has a minimum distance below 2δm, when a and b are selected

uniformly at random from Q∗×.

Now we proceed as in Theorem 4.2.1. P is the probability that there is an f ∈ Q∗,

f 6= 0, such that 0 ≤ w(af(1 + α)b) < 2mδ. Thus P is at most

∑

f∈Q∗;f 6=0

Pra,b∈Q∗×[0 ≤ w(af(1 + α)b) < 2mδ],

and this is at most

m∑

l=l(m)

|D∗
l |max

f∈D∗
l

Pra,b∈Q∗×[0 ≤ w(af(1 + α)b) < 2mδ],
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where D∗
l = Dl ∩Q∗, and Dl = {f ∈ Q| dim fQ = l}. As before, we have

|D∗
l | ≤ |Dl| ≤ 2l|Ωl|,

where Ωl is the set of ideals in R of dimension l.

Consider any l, and any f ∈ D∗
l . We have

Pra,b∈Q∗×[0 ≤ w(af(1 + α)b) < 2mδ] =
∑

r∈U s.t. 0≤w(r)<2mδ

Pra,b∈Q∗×[af(1 + α)b = r],

where U = Q∗×f(1 + α)Q∗×, and this is at most

max
r∈U

Pra,b∈Q∗×[fa(1 + α)b = r]
∑

w1,w2≥0;w1+w2<2δm

|I(w1)||I(w2)|,

where I = fQ, and I (v) is the set of elements in I of weight v. Fix l, and any f in

D∗
l , and any r in U . We will argue at the end that

Pra,b∈Q∗×[fa(1 + α)b = r] ≤ 2−3l/2. (4.14)

We have from Lemmas 4.2.2 and Lemma 4.2.3 that |Ωl| ≤ ml/l(m)+1, |I(w1)| ≤
2lh(w1/m), and |I (w2)| ≤ 2lh(w2/m). Thus, modulo (4.14), we are done since by arguing

as in Theorem 4.2.1, we get

P ≤
m∑

l=l(m)

2−2l( 1
4
−h(δ)− log m

2l(m))+3 log m ≤ 2−2l(m)( 1
4
−h(δ))+5 log m,

where the last bound holds when 1
4
− h(δ)− log m

2l(m)
≥ 0. The difference is that now we

have 1/4 instead of 1/2. The reason is that before we had 2−2l instead of 2−3l/2.

We still have to establish (4.14). The first thing to note is that when a and b are

selected uniformly at random from Q∗×, each r ∈ U is equally likely to occur. The

reason is that if r = a′f(1 + α)b′, a′, b′ ∈ Q∗×, then the event af(1 + α)b = r can be

expressed as

a′′af(1 + α)b′′b = e∗f(1 + α)e∗ = f(1 + α),
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where a′′ (respectively b′′) is the inverse of a′ (respectively b′) in the multiplicative

group Q∗×, and where e∗ is the unit element of Q∗× and the idempotent for Q∗ (recall

that f ∈ Q∗). Hence, since the uniform selection of a and b is equivalent to the

uniform selection of a′′a and b′′b, we get that the probability that r occurs is equal to

the probability that f(1 + α) occurs, i.e., all the elements of U are equally likely to

occur. In other words, for each r ∈ U ,

Pra,b∈Q∗×[fa(1 + α)b = r] =
1

|U | . (4.15)

Now, decompose f uniquely as f =
∑s

i=1 fi, where each fi ∈ Qi, and let S be the set

of i’s such that fi 6= 0, thus l =
∑

i∈S li. We can express U as

U = {
∑

i∈S

ui|ui ∈ Q×
i (1 + α)Q×

i , ∀i ∈ S}.

Note that this is the first time we used the assumption Q̃i = Qi. Using this one more

time, in terms of the expression of type (2) ideals in Theorem 4.4.2, we have

Q×
i (1 + α)Q×

i =
⋃

[b]∈Q×
i /Z×

i

I i
[b]\{0},

where the union is a disjoint union. Thus

|U | =
∏

∈S

∑

[b]∈Q×
i /Zi

|I i
[b]\{0}| =

∏

i∈S

(2li/2 + 1)(2li − 1) ≥ 23/2
∑

i∈S
li = 23l/2,

and hence (4.14) via (4.15).

This completes the proof of Theorem 4.4.3. �

It is important to note that the h−1(1/4) bound we obtained on the minimum

relative distance is unlikely to be tight. We ended up with this bound because our

argument is based on counting, and the construction does not have enough random-

ness in such a way that a counting argument can go up to the GV bound, i.e., up to

h−1(1/2).
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4.5 Open questions

We conclude with the resulting open questions:

• Conjectures 4.3.6 and 4.3.7.

• Decoding the codes in the PQC ensemble, or specifically the QQR code in

Section 4.3.

• Improving the bound on the minimum distance in the dihedral group construc-

tion.

• Extending the statement of Theorem 4.4.3 by allowing type (3) representations.

• Studying randomized constructions of codes that are ideals in the group algebras

of other nonabelian groups.
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Chapter 5

On the pseudorandomness based

on minimum distance

We study in this chapter the derandomization capabilities of probability measures on

the hamming cube having the k-wise independence property, the δ-bias property, or

the δ-almost k-wise independence property. Classical explicit constructions of such

probability measures are based on linear codes with good distance properties. In

general understanding the power and limitations of such pseudorandomness properties

is of fundamental importance due to their basic nature.

Mostly the questions we consider are about statements that hold for any proba-

bility measure having one of those properties. The exceptions are when we focus on

the k-wise independent probability measures that are based on linear codes.

We note first that linear-programming duality can be used to get a purely analyti-

cal characterization of the class of boolean function that can be fooled by the δ-almost

k-wise independence property. The characterization is necessary and sufficient and

is in terms of tight average sandwichability between real valued functions with low

degree and small L1-norm in the Fourier domain.

Then we characterize the location of classical linear-codes-based constructions of

k-wise independent probability measures in the convex polytope of all such measures,

and its subpolytope consisting of those measures whose Fourier transform is nonneg-

ative.
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On the negative side, we prove that the exponentially-small-bias property is not

sufficient to fool small log-depth circuits nor the weakest branching programs.

From a concrete viewpoint, we prove first that any sufficiently log-wise indepen-

dent probability measure looks random to all polynomially small read-once DNF for-

mulas. The setting is naturally extendable to almost k-wise independent probability

measures. We give an application related to the distribution of quadratic-residues.

Then we establish a very sharp upper bound on the probability that a random

binary string generated according to a k-wise independent probability measure has

any given weight. The setting is naturally extendable to almost k-wise independent

probability measures. We give applications related to the distribution of quadratic-

residues and the weight distribution of linear codes.

We consider also the problem of derandomizability of AC0 by arbitrary k-wise in-

dependent probability measures, when k is made polylogaritmically large enough. We

reduce this problem to a conjecture about the the symmetry of the optimum of some

symmetric optimization problem with linear constraints and a nonlinear objective

function.

Finally, we study of the problem of approximability of high-degree parity functions

on high-dual-distance binary linear codes by low-degree polynomials with coefficients

in fields of odd characteristics. This problem has applications to the ability of binary

linear codes with sufficiently large dual distance to derandomize AC0, or low-degree

polynomial equations on binary input variables with coefficients in small finite fields

of odd order. Among other results, we relax this problem into essentially a single

low-dimensional low-complexity linear program in terms of Krawtchouk polynomials.

The problem of bounding the optimum of the linear program remains open.

5.1 Introduction

A PseudoRandom Generator (PRG) is an efficient algorithm that takes as input a

short string called a seed of purely random bits and outputs a much longer string of

bits with some desirable properties. The notion of a PRG was introduced by Blum

108



and Micali [BM82] and Yao [Yao82] in a setting where the ultimate objective is to

construct PRG’s in such a way that the seed length is logarithmic and there is no

polynomial size boolean circuit that can distinguish between the PRG output and a

purely random string of the same length. The indistinguishablity is in the sense that

the probability that the circuit outputs one does not change significantly between the

two environments. The existence of nonuniform PRG’s follows easily by counting.

The difficulty of the problem is in the construction part. Constructing such PRG’s

implies the correctness of the conjecture P = BPP .

Known answers to this problem rely on unproven hardness assumptions. Impagli-

azzo and Wigderson [IW97] proved that P = BPP under the worst-case hardness

assumption that there exists a language in EXPTIME that is not decidable by (any

nonuniform family of) subexponential-size circuits. The hardness versus randomness

approach was started by Nisan and Wigderson [NW88] in the setting of average-

case hardness assumptions. This approach is a generalization of the unconditional

quasipolynomial complexity PRG of Nisan [Nis91] for AC0, which is based on Has-

tad’s lower bound [Has86] on the hardness of approximation of parity by AC0 circuits.

Under the umbrella of worst-case hardness assumptions, Sudan, Trevisan, and Vad-

han [STV99] gave different proofs of the Impagliazzo-Wigderson Theorem. One of the

proofs is based purely on using locally-list-decodable error correcting codes to turn

average-case hardness into worst-case hardness. A solution of this problem seems

currently far from being reachable unconditionally.

A more modest goal is to construct PRG’s for classes of computations that are less

general than arbitrary polynomial size boolean circuits, for instance, the class AC0

of polynomial size constant-depth unbounded-fanin AND-OR circuits [AW85, Nis91],

and the class RL of logarithmic-space randomized algorithms [Nis90]. Nisan [Nis91,

Nis90] constructed PRG’s for these classes with quasipolynomial complexity.

It is essentially not known as to how to construct polynomial complexity PRG’s

for any relatively-general computational model. This is the case if we exclude models

such as polynomial size decision trees, and DNF formulas where the number of inputs

per clause is bounded by a constant.
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In this chapter we consider an even more basic question which is about studying

the derandomization capabilities of probability measures on the Hamming cube hav-

ing the k-wise independence property, the δ-almost k-wise independence property, or

the δ-bias property as introduced by Vazirani [Vaz86] and Naor and Naor [NN93].

These pseudorandomness notions are special purpose generators that were origi-

nally introduced to derandomize some randomized algorithms whose analyses can be

made to work when only limited independence is assumed. A probability measure µ

on {0, 1}n is said to have the δ-almost k-wise independence property if µ can δ/2-fool

all parity functions on k or fewer of the n bits. The δ-almost n-wise independence is

called the δ-bias property. The 0-almost k-wise independence property is called the

k-wise independence property. Saying that µ has the k-wise independence property

is equivalent to saying that any k or fewer of the n binary random variables are sta-

tistically independent, and each of those random variables is equally likely to be 0 or

1.

Classical constructions of such probability measures are based on linear codes

with good distance properties [Vaz86, NN93, AGHP92]. For instance, if C is a block-

length-n binary linear code whose dual has minimum distance above k, then the

uniform distribution on the codewords of C is k-wise independent as a probability

measure on {0, 1}n. See Section 5.1.1.5 for the other constructions.

The δ-almost k-wise independence property is the weakest of these properties, and

it is necessarily satisfied by any pseudorandom generator for suitable values of k and δ.

The k-wise independence property is stronger, but when k is relatively small, the two

notions are loosely speaking equivalent in the sense that statements about foolability

by the k-wise independence property can be translated to statements about foolability

by the δ-almost k-wise independence property. The δ-bias property is stronger than

the δ-almost k-wise independence property, and it is necessarily satisfied by any PRG

for NC1 or RL for suitable values δ.

Thus, in general, understanding the power and the limitations of such pseudoran-

domness properties is of fundamental importance due to their basic nature.

Mostly the questions we consider are about statements that hold for any proba-
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bility measure having one of those properties. The exceptions are when we focus on

linear-codes-based k-wise independent probability measures.

5.1.1 Preliminaries

5.1.1.1 Basic terminologies

The group (Z/2Z)n is denoted by Zn
2 . The complex characters of the abelian group

Zn
2 are

X z(x)
def
= {(−1)xz}z∈Zn

2
,

where xz
def
=
∑

i xizi. The dual group of Zn
2 (i.e., its group of characters) is identified

with Zn
2 by identifying X z with z. If z ∈ Zn

2 , by w(z) we mean the weight of z, i.e.,

the number of nonzero coordinates.

If g : Zn
2 → C, we let ĝ : Zn

2 → C denote the Fourier transform of g with respect

to the complex characters of the abelian group Zn
2 , i.e.,

g(x) =
∑

z

ĝ(z)X z(x),

or equivalently

ĝ(z) =
1

2n

∑

x

g(x)X z(x).

The degree of g is defined to be the weight of the largest z such that ĝ(z) 6= 0.

In what follows, by a circuit we implicitly mean a boolean circuit, i.e., a single-

sink multi-source directed acyclic graph, where the non-source nodes are associated

with logic-gates (e.g. AND, OR, ...), and the edges are labeled with NOT gates,

in such a way that the circuit computes some boolean function {0, 1}n → {0, 1}, n
being the number of sources. The number of incoming edges to a node (i.e., gate) is

called the fanin of the node or the gate. The size of the circuit is the total number

of nodes in the graph, and its depth is the graph depth. The class AC0 is the class of

AND-OR constant-depth unbounded-fanin polynomial-size boolean circuits. A DNF

(Disjunctive Normal Form) formula is an unbounded-fanin depth-2 circuit realized as

an OR of AND gates. The AND gates are called clauses. A decision tree is a special
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type of DNF formulas where no two distinct clauses can be simultaneously satisfied.

It is called a decision tree because it can be realized as a binary decision tree where

the clauses correspond to the leafs.

If q is power of a prime, the finite field of size q will be denoted by Fq.

When q is odd, the quadratic character of F×q will be denoted by ψ, i.e.,

ψ(a) =





1 if a ∈ Q

−1 if a ∈ F×q \Q
0 if a = 0,

where Q = {a2 : a ∈ F×q } is the set of quadratic residues in Fq, i.e., the non-zero

squares.

By a code we mean a binary linear code, i.e., an F2-linear subspace C of Fn
2 whose

elements are called codewords. The minimum distance of C is the minimum weight

of a nonzero codeword. By the dual of C we mean the block-length-n linear code

denoted by C⊥ and defined as

C⊥ def
=

{
y ∈ Zn

2 :
∑

i

xiyi = 0 (mod 2) , ∀y ∈ C

}
.

Finally, if n1, n2 are integers and n is a positive integer, we will use the terminolo-

gies [n1 : n2]
def
= {n1, . . . , n2} and [n]

def
= [1 : n].

5.1.1.2 Indistinguishablity

Definition 5.1.1 [BM82, Yao82] If µ is a probability measure on {0, 1}n, and f :

{0, 1}n → {0, 1}, we say that µ can ε-fool f if

|Prx∼µ[f(x) = 1] − Px∼µ0[f(x) = 1]| ≤ ε,

where µ0 is the the uniform probability measure on {0, 1}n.

112



5.1.1.3 Limited independence and small bias

Definition 5.1.2 [Vaz86, NN93] Let µ be a probability measure on {0, 1}n. We say

that µ has

• The δ-almost k-wise independence property: if µ can δ/2-fool all parity func-

tions on k or fewer of the n bits, or equivalently if |EµX z| ≤ δ for each nonzero

z in Zn
2 whose weight is less than or equal to k.

• The δ-bias property: if µ has the δ-almost n-wise independence property, i.e.,

if |EµX z| ≤ δ for each nonzero z in Zn
2 .

• The k-wise independence property: if any k or fewer of the n binary random

variables are statistically independent and each of the random variables is equally

likely to be 0 or 1, or equivalently if µ has the 0-almost k-wise independence

property, i.e., if EµX z = 0 for each nonzero z in Zn
2 whose weight is less than

or equal to k.

5.1.1.4 Relations

Theorem 5.1.3 a) [Vaz86] If µ is a δ-almost k-wise independent probability mea-

sure on {0, 1}n, then the projection of µ on any k or fewer of the n coordinates

is δ-close in the L∞-norm sense to the uniform probability measure on those

coordinates.

b) [Gol92] Any δ-almost k-wise independent probability measure µ1 on {0, 1}n is

nkδ-close to a k-wise independent probability measure µ2 on {0, 1}n in the sense

that |µ1(A) − µ2(A)| ≤ nkδ, ∀A ⊂ {0, 1}n.

Thus, if the k-wise independence property can ε-fool a function f : {0, 1}n →
{0, 1}, then the δ-almost k-wise independence property can (ε+ δnk)-fool f .

Note that in the setting of Section 5.2, (a) follows immediately from the fact that

the L1-norm of the Fourier transform of an AND gate is 1.
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5.1.1.5 Classical explicit constructions from codes

1) [NN93, AGHP92] If C ⊂ {0, 1}q is an n-dimensional linear code such that the

weight of any codeword is qδ/2-close to q/2, then the uniform distribution on

the rows of any matrix whose n columns are linearly independent codewords is

δ-biased as a probability measure on {0, 1}n.

Classical explicit constructions from concatenated Reed-Solomon codes or, more

generally, concatenated algebraic geometric codes achieve q =
(

n
δ

)Θ(1)
.

2) [Vaz86] If C ⊂ {0, 1}n is a linear code whose dual has minimum distance above

k, then the uniform distribution on the codewords of C is k-wise independent

as a probability measure on {0, 1}n.

Classical explicit codes constructions achieve |C| = nΘ(k).

3) [NN93, AGHP92] If λ is a δ-biased probability measures on {0, 1}d and Gd×n is

a generator matrix of a d-dimensional block-length-n binary linear code whose

dual has minimum distance above k, then the probability measure induced

on {0, 1}n by λ, via G as a linear map {0, 1}d → {0, 1}n, is δ-almost k-wise

independent.

By constructing λ as in (1), this construction gives a δ-almost k-wise indepen-

dent probability measure µ that is discrete on its support. Classical explicit

codes constructions achieve an O( k log n
δ

)Θ(1)
support size.

Note that the correctness of (3) follows from observing that the δ-bias property

of probability measures on {0, 1}d is invariant under nonsingular F2-linear maps from

{0, 1}d to {0, 1}d.

5.1.2 Related literature

5.1.2.1 Known polynomial approximations of AC0

We review in this section the literature of the polynomial approximations of AC0 for

future reference.
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Let f : {0, 1}n → {0, 1} be computable by an AND-OR depth-d circuit of size M

and unbounded fanin. Then:

0) [Has86] Hastad switching Lemma: Consider a random restriction ρ that inde-

pendently keeps each input bit unset with a probability p = 1
(20k)d , sets it to 1

with a probability 1− p
2
, and to 0 with a probability 1− p

2
. Then the probability,

over the choice of ρ, that f , when restricted to the values set by ρ, cannot be

evaluated by a decision tree of depth k is at most M2−2k.

1) [LMN89]
∑

z;w(z)>t f̂(z)2 ≤M2−
1
4
t

1
d+3

. The bound is based on (0).

2) [LMN89] Let f̃t =
∑

z;w(z)≤t f̂(z)X z. Then it follows from (1) that

Pr[sign(f̃t) 6= f ] ≤
∑

z;w(z)>t

f̂(z)2 ≤ θ

when t ≥ logd+3
(

M
θ

)4
.

3) [BRS91] There is a polynomial p(x, y) in Z[X, Y ], X = x1, . . . , xn, Y = y1, . . . , yr,

r = O(log 1
θ
log2 n), of degree O(log 1

θ
log2 n logM)d such that for each x in

{0, 1}n, Pry∈{0,1}r [p(x, y) 6= f(x)] ≤ θ

4) [ABFR94, BRS91] There exists a polynomial p ∈ Z[x1, . . . , xn] of degree O(log M
θ

logM)d such that Prx∈{0,1}n[p(x) 6= f(x)] ≤ θ.

5) [Raz87] For any finite field Fq, there is a polynomial p ∈ Fq[x1, . . . , xn] of degree

O(qd logd M
θ

) such that Prx∈{0,1}n[p(x) 6= f(x)] ≤ θ.

We will use a variation of (4) in Sections 5.7 and 5.8, and a variation of (5) in

Section 5.8.

For future reference in Section 5.7.1, we note that

Remark 5.1.4 In (2), (3), and (4), the polynomial p can take very large values

when it disagrees with f , and E|p− f | is potentially very large. For example, in (4),

p can take values as large as 2O(log M
θ

log M)d
, and E|p − f | is potentially as large as

θ × 2O(log M
θ

log M)d
.
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5.1.2.2 Nisan generator for AC0

For future reference in Section 5.8.2.3, we review in this section the proof technique

of the Nisan generator for AC0.

The PRG of Nisan for AC0 is based on Hastad’s lower bound on the hardness of

approximating parity by AC0 circuits.

Lemma 5.1.5 [Has86] Let f : {0, 1}n → {0, 1} be computable by an AND-OR depth-

d circuit of size M ≤ 2n
1

d+1
and unbounded fanin, then

∣∣∣Prx[f(x) = ⊕ixi] − 1
2

∣∣∣ ≤
2n

1
d+1

.

Hastad lower bound is one of the consequences of the Hastad Switching Lemma.

The generator of Nisan is defined as GN : {0, 1}r → {0, 1}n, x 7→ (⊕j∈Si
xj)

n
i=1,

where S1, . . . , Sn are subsets of [r] that form a (v, l)-design in the sense that: 1) each

subset has size l, and 2) no two distinct subsets share more than v elements. The

setting of the values is v = log n, r = O(l2), and r = O(log2d+6 n).

Theorem 5.1.6 [Nis91] GN can ε-fool any boolean function f : {0, 1}n → {0, 1} that

can be realized by an AND-OR depth-d circuit of size M = nO(1) and unbounded fanin,

for all ε = n−O(1).

The argument of Nisan is the following. If GN cannot ε-fool f , then by Yao’s

unpredictability argument, there is an i ∈ {0, . . . , n}, a setting bi+1, . . . , bn of the

input variables xi+1, . . . , xn, and b0 ∈ {0, 1}, such that the function

f ′(x1, . . . , xi−1) = f(x1, . . . , xi−1, bi+1, . . . , bn) ⊕ b0 ⊕ 1

can predict the value of i’th bit of GN from its previous bits with a probability at

least 1
2

+ ε
n
. Since for each j < i, Sj can intersect Si in at most v elements, we get a

boolean function

f ′′(x) = f ′(D1(x|Si∩S1), . . . , Di−1(x|Si∩Si−1
))
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that can compute f correctly on at least 1
2
+ ε

n
fraction of the inputs, where the Di’s are

DNF formulas. When the parameters are suitably selected, this contradicts Lemma

5.1.5 as f ′′ is computable by a circuit of depth d+ 2 and size at most (i− 1)2v +M .

5.1.2.3 The quadratic-residues PRG

When deriving general statements about δ-almost k-wise independent probability

measures, we will give applications to the distribution of quadratic residues via the

quadratic-residues PRG that we review in this section. See Sections 5.5, 5.6, and 5.7.

Also, from a different perspective that we explain in Section 5.9.1, this PRG was the

original motivation behind the start of the research in this chapter.

Consider the quadratic residues PRG which is defined as

G : Fq → {0, 1}n, G(a) = {x(a+ t)}t∈I ,

where q is an power of an odd prime, I a subset of Fq of size n, and x : Fq → {0, 1}

x(a) =





1 if ψ(a) = 1

0 o.w. .

Recall that ψ means the quadratic character of F×q , i.e.,

ψ(a) =





1 if a ∈ Q

−1 if a ∈ F×q \Q
0 if a = 0.

where Q is the set of quadratic residues in Fq.

This PRG was introduced in [AGHP92] in the setting when q is prime and

I = {0, . . . , n − 1}. It was shown in [AGHP92] that this PRG has the 2n/
√
q-

bias property. This is a direct consequence of Weil’s theorem on the analog of the

Riemann Hypothesis for projective nonsingular curves over finite fields, which implies

the following bound in the hyperelliptic case.
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Theorem 5.1.7 [Wei48] Let q be a power of an odd prime, and g ∈ Fq[x] be a non-

constant square free degree-d polynomial, then

|
∑

a∈Fq

ψ(g(a))| ≤ (d− 1)
√
q + 1.

See for instance [Mor94, Sti93, LN83]. By the same argument as in [AGHP92], it can

be shown also that Weil’s bound immediately implies also that |Ea∈Fq
X z(G(a))| ≤

2k/
√
q for each z ∈ {0, 1}n whose weight is at most k. The calculations are at the end

of this section. Thus this PRG has the 2k/
√
q-almost k-wise independence property.

More generally, if p(x) ∈ Fq[x] is a nonconstant square free polynomial of small

degree l, we can define a quadratic-residues-like PRG with respect to p as follows.

Let

Gp : Fq → {0, 1}n, G(a) = {x(p(a + t))}t∈I .

Then it also follows immediately from Theorem 5.1.7 that Gp has the 2ln/
√
q-bias

property, and more specifically the 2lk/
√
q-almost k-wise independence property.

Namely, if z ∈ {0, 1}I has weight at most k, then with S = {t ∈ [n] : zt = 1}, and

Z = {a ∈ Fq : p(a) = 0}, we have

Ea∈Fq
X z(G(a)) =

1

q

∑

a∈Fq

ψ(
∏

t∈S

p(a+t))+
1

q

∑

a1∈Z,a2∈S

X z(G(a1−a2))−ψ(
∏

t∈S

p(a1−a2+t)),

hence
∣∣∣Ea∈Fq

X z(G(a))
∣∣∣ ≤ (lk − 1)

√
q + 1

q
+
lk

q
≤ 2lk√

q
.

Note that the bound becomes worse as l grows. The reason why we are interested

in this generality is not for the purpose of constructing δ-almost k-wise independent

probability measures, but because of the implications of statements that holds for

any δ-almost k-wise independent probability measure to this general setting.
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5.1.3 Summary of results

5.1.3.1 When are the basic pseudorandomness properties sufficient? the

dual perspective

We note in Section 5.2 that linear programming duality gives a purely analytical

characterization of the class of boolean function that can be fooled by the δ-almost

k-wise independence property. The characterization is necessary and sufficient, and

it is in terms of tight average sandwichability between real valued functions with low

degree and small L1-norm in the Fourier domain.

Namely, let f : {0, 1}n → {0, 1}. Then, any δ-almost k-wise independent proba-

bility measure on {0, 1}n can o(ε)-fool f if and only if there exists f1, f2 : {0, 1}n → R

such that

a) f1 ≤ f ≤ f2,

b) E(f2 − f1) = o(ε),

c) ‖f̂1‖1, ‖f̂2‖1 = o
(
ε
δ

)
.

d) deg(f1), deg(f2) ≤ k.

Thus, specifically, 1) any δ-biased independence probability measure on {0, 1}n can

o(ε)-fool f if and only if there exists f1, f2 : {0, 1}n → R satisfying (a,b,c), and 2) any

k-wise independent probability measure on {0, 1}n can o(ε)-fool f if and only if there

exists f1, f2 : {0, 1}n → R satisfying (a,b,d).

We will use the characterizations in Sections 5.5 and 5.7.1.

Then, we consider the unpredictability perspective of derandomizability by basic

pseudorandomness properties. We note that we can take advantage of the generality

of the situation to improve upon the reduction one can get by using Yao’s unpre-

dictability lemma as a black box. We will use this relation in Sections 5.7.2, 5.8.2,

and 5.8.2.2.
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5.1.3.2 Linear codes versus general k-wise independent measures

We study in Section 5.3 the position of classical linear-codes-based constructions of

k-wise independent probability measures in the convex polytope of all such measures,

and its subpolytope consisting of those measures whose Fourier transform is nonneg-

ative.

If C ⊂ {0, 1}n is an F2-linear code whose dual C⊥ has minimum distance above

k, then the probability measure µC
def
= 1

|C|1C supported by C is k-wise independent.

This is the classical construction of k-wise independent probability measures from

linear codes.

Consider the convex polytope Qk ⊂ R{0,1}n
of k-wise independent probability

measures µ on {0, 1}n. This polytope is specified by the constraints: µ ≥ 0,
∑

x µ(x) =

1, and
∑

x µ(x)X z(x) = 0, ∀z 6= 0 such that w(z) ≤ k.

We show that the linear codes C (and their translations, i.e., cosets) that are

minimal (with respect to inclusion) with the property the dual C⊥ has minimum

distance above k are extreme points of Qk.

We note that they are not all the extreme points, which leaves us with the open

problem of studying the other extreme points.

A very special property of µC is that its Fourier transform µ̂C is nonnegative.

Let Pk ⊂ Qk be the convex polytope of k-wise independent probability measures on

{0, 1}n whose Fourier transform is nonnegative.

We argue that the binary linear codes with dual distance above k are exactly the

elements of Pk that are uniform on their support, and exactly the elements of Pk that

are on the boundary of a specific radius- 1
2

sphere containing Pk and centered at 1
2
µ{0}.

Thus they are specifically extreme points of Pk.

Here again we note that they are not all the extreme points, which again leaves

us with the open problem of studying the other extreme points.

Let Lk be the set of linear codes with dual distance above k. Relaxing the set Lk

to Pk is one way to look at Delsarte LP (Linear Programming) coding bound [Del73]

in the setting of linear codes. We will explore in Section 5.8.5 other relaxations based
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on this approach.

5.1.3.3 Some limitations of the small bias property

We argue in Section 5.4 that there is a 2−Ω(n)-biased probability measure µ on {0, 1}n

that cannot o(1)-fool a function that can be realized as an O(logn)-depth circuit of

linear size, and as an O(1)-width read-once oblivious branching program.

5.1.3.4 Log-wise independence versus read-once DNF formulas

We argue in Section 5.5 that any sufficiently log-wise independent probability measure

looks random to all polynomially small read-once DNF formulas.

More specifically, we show that if f : {0, 1}n → {0, 1} is computable by a read

once (i.e., the clauses are disjoint) DNF formula with m clauses, then any k-wise

independent probability measure µ on {0, 1}n can ε-fool f , with

ε = min
1≤s≤n

2−(s−log m) + 2−
k−37
11s .

Therefore ε = o(1), when for instance k = logm log logm.

We conclude with a similar statement for δ-almost k-wise independent measures

when k is relatively small, and we give an application to the distribution of quadratic

residues by applying the result to the quadratic residues PRG.

After using the sandwiching approach of Section 5.2, we complete the result as a

consequence of a more general result on weak probability measures, which is a notion

that is naturally suggested by the problem. We say that a probability measure γ on

{0, 1}m is (k, ε)-weak if when γ ′ is another probability measure on {0, 1}m that agrees

with γ on all its projection on any k of the coordinates, then the L∞-distance between

γ and γ′ is at most ε. We show that if X1, . . . , Xm are independent binary random

variables, then the corresponding probability measure on {0, 1}m is (k, 2−
k−37
11 )-weak.
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5.1.3.5 Limited independence versus weight probability

We establish in Section 5.6 a sharp O(k−1/2) upper bound on the probability that a

random binary string generated according to a k-wise independent measure has any

given weight.

More precisely, we show that if µ is a k-wise independent probability measure on

{0, 1}n. Then

max
a=0,1,...,n

Prx∼µ[w(x) = a] ≤ 1
∑

0≤l even ≤bk/2c−1
1
2l

(
l

l/2

)

=

√
π + o(1)
√
k

,

where the asymptotic statement is in terms of the growth of k.

The setting is naturally extendable to almost k-wise independent measures. We

give applications related to the distribution of quadratic-residues and the weight

distributions of linear codes.

We give another application of the bound in Section 5.7.3.

5.1.3.6 Poly-log-wise independence versus AC0

We consider in Section 5.7 the problem of derandomizability of AC0 by arbitrary

k-wise independent probability measures, when k is made polylogaritmically large

enough. We reduce this problem to a conjecture about the the symmetry of the opti-

mum of some symmetric optimization problem with linear constraints and a nonlinear

objective function.

We consider in Section 5.7 the following problem which was essentially proposed

by Linial and Nisan [LN90].

How large should k be as a function of n,M, d, and ε so that the k-wise indepen-

dence property is sufficient to ε-fool any AND-OR circuit on n-bits of size M , depth

d, and unbounded fanin?

The generality of the problem has many potential applications. The setting is

naturally extendable to δ-biased probability measures, and consequently has appli-
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cations related to the distribution of quadratic residues. Note that the dual of the

problem is asking for a new characterization of AC0 by low-degree polynomials over

the reals in the sense of Section 5.2.

First, we reduce this problem to the following question.

How large should k be in terms of h and n, so that if X1, . . . , Xn+1 are binary

k-wise independent random variables, no degree ≤ h polynomial p over the reals on

X1, . . . , Xn can predict the value of Xn+1 with a probability significantly better than

1/2?

The reduction corresponds to the case when h is polylogarithmic in n, and is

based on the approximability of AC0 circuits by low-degree polynomials over the

reals (Beigel, Reingold, and Spielman [BRS91], Aspnes, Beigel, Furst, and Rudich

[ABFR94]), and the unpredictability perspective in Section 5.2.

Using the bound we established in Section 5.6, we establish a good bound in the

restricted version of the problem corresponding to the case when p is a symmetric

polynomial. We show that if k ≥ 16πh2, h is larger than some absolute constant, and

X1, . . . , Xn+1 are binary k-wise independent random variables, then no symmetric

degree-h polynomial over the reals on X1, . . . , Xn can predict the value of Xn+1 with

a probability larger than 1/2.

Due to the highly symmetric nature of the low-degree polynomials predictors

problem, we conjecture that the symmetric case is a worst case.

Establishing this conjecture will pull the bound we established on the symmetric

case to the more general setting of arbitrary low-degree polynomials, and consequently

will resolve in a satisfactory way the problem of derandomizability of AC0 by any

polylog-wise independent probability measure. The correctness of the symmetric

optimum conjecture implies that in order to guarantee that the k-wise independence

property is sufficient to M−Θ(1)-fool any size-M depth-d circuit in AC0, it is sufficient

to make k = Θ(log4dM).
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5.1.3.7 Parity with encrypted linear help

We study in Section 5.8 the problem of approximability of high-degree parity functions

on high-dual-distance binary linear codes by low-degree polynomials with coefficients

in fields of odd characteristics. This problem has applications to the ability of binary

linear codes with sufficiently large dual distance to derandomize AC0, or low-degree

polynomial equations on binary input variables with coefficients in small finite fields

of odd order. Among other results, we relax this problem into essentially a single

low-dimensional low-complexity linear program in terms of Krawtchouk polynomials.

The problem of bounding the optimum of the linear program remains open.

See Section 5.8.1 for a detailed summary.

5.2 When are the basic pseudorandomness prop-

erties sufficient? the dual perspective

Definition 5.2.1 We say that a measure property can ε-fool a function f : {0, 1}n →
{0, 1}, if any probability measure on {0, 1}n with this property can ε-fool f .

We note in Theorem 5.2.4 that linear programming duality gives a purely analyti-

cal characterization of the class of boolean function that can be fooled by the δ-almost

k-wise independence property. The characterization is necessary and sufficient and it

is in terms of tight average sandwichability between real valued functions with low

degree and small L1-norm in the Fourier domain. We conclude in Corollaries 5.2.5

and 5.2.6 similar statements for the δ-bias property and the k-wise independence

properties.

We illustrate in Lemma 5.2.2 that allowing real values compared to binary values

is essential.

In Section 5.2.1 we consider the unpredictability perspective of derandomizability

by basic pseudorandomness properties. We note that we can take advantage of the

generality of the situation to improve upon the reduction one can get by using Yao’s

unpredictability lemma as a black box.
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We will use the sandwichability characterizations in Sections 5.5 and 5.7.1, and

the unpredictability perspective in Sections 5.7.2, 5.8.2, and 5.8.2.2.

Consider first the δ-bias property. Let f : {0, 1}n → {0, 1}. When is the δ-bias

property sufficient to o(1)-fool f?

Let µ be a probability measure on {0, 1}n with the δ-bias property, i.e., |EµX z| < δ

for each nonzero z in Zn
2 . Consider the Fourier transform f̂ : Zn

2 → R of f , i.e.,

f(x) =
∑

z f̂(z)X z(x). After taking the expectations and noting that f̂(0) = Ef , we

get

Eµf − Ef =
∑

z 6=0

f̂(z)EµX z,

thus

|Eµf − Ef | ≤ δ‖f̂‖1,

where ‖f̂‖1 =
∑

z |f̂(z)|. Thus, if we set δ = o
(

1
|f̂‖1

)
, we can guarantee that µ can

o(1)-fool f . Since the smallest size of the support of any µ with the δ-bias property

is
(

1
δ

)Θ(1)
, we need ‖f̂‖1 to be small.

How large is this class of functions? It contains for instance small decision trees

[KM91]. More generally

Lemma 5.2.2 Let f : {0, 1}n → {0, 1} be computable by a decision tree where each

node is associated with a set of variables whose parity determines the next node. Then

‖f̂‖1 ≤ M , where M is the number of leafs.

Proof. Since f is a disjoint OR of the leafs, it can be expressed as f =
∑M

l=1 fl ◦ L,

where L : Zn
2 → Zm

2 is F2-linear and each fl : Zm
2 → R is an AND gate on some of the

variables x1, . . . , xm with possibly negated inputs. Thus ‖f̂‖1 ≤ ∑
l ‖f̂l ◦ L‖1 ≤ M

because ‖f̂l ◦ L‖1 ≤ ‖f̂l‖1 = 1. �

But for an arbitrary binary function f , ‖f̂‖1 can be as large as 2
n
2 . What about

low complexity boolean functions? The AC0 ones for instance?

Lemma 5.2.3 Consider the read-once monotone depth-2 O(n)-size circuit f : {0, 1}n

→ {0, 1} given as the AND of a NAND gates each on b bits, thus n = ab. Assume

that a = 2b, then
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a) ‖f̂‖1 = 2Ω( n
log n

)

b) deg(f) = n

c) Ef = Θ(1),

but ∃f1, f2 : {0, 1}n → R such that

d) ‖f̂1‖1, ‖f̂2‖1 = 2O(log n log log n)

e) deg(f1), deg(f2) = O(logn log log n)

f) f1 ≤ f ≤ f2

g) E(f2 − f1) ≤ 1
log n

.

Note that a version of (a) appears in [BS92].

Proof. In Section 5.2.2 �

Thus, we cannot hope to go far with the small L1-norm requirement alone. But

the existence of f1 and f2 resolves the problem for the function f in the above Lemma.

Indeed, we have

(Eµf1 − Ef1) − E(f − f1) ≤ Eµf − Ef ≤ (Eµf2 − Ef2) + E(f2 − f) (5.1)

Thus

|Eµf − Ef | ≤ δmax{‖f̂1‖1, ‖f̂2‖1} + E(f2 − f1)

≤ δ2O(log n log log n) +
1

logn

≤ 2

log n

when δ = 2−O(log n log log n) is sufficiently large. Compare this with the L1-norm ap-

proach alone which requires setting δ to 2−Ω( n
log n

).

Thus, those boolean functions that can be well trapped between two real valued

functions whose L1-norm in the Fourier domain is not very large can be well fooled
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by the not too small bias property, and this class is provably larger than the class of

boolean functions whose L1-norm in the Fourier domain is not very large. It turns

out this is a complete characterization. See Corollary 5.2.5 below. More generally,

Theorem 5.2.4 Let f : {0, 1}n → {0, 1}, δ, ε > 0, and k a positive integer. Then

the δ-almost k-wise independence property can ε-fool f if and only if ∃f1, f2 : Zn
2 → R

such that

• f1 ≤ f ≤ f2

• δ
∑

z 6=0 |f̂1(z)| + E(f − f1) ≤ ε

• δ
∑

z 6=0 |f̂2(z)| + E(f2 − f) ≤ ε

• deg(f1), deg(f2) ≤ k.

Therefore, asymptotically speaking, the δ-almost k-wise independence property can

o(ε)-fool a boolean function f : {0, 1}n → {0, 1} if and only if ∃f1, f2 : {0, 1}n → R

such that

• f1 ≤ f ≤ f2

• E(f2 − f1) = o(ε)

• ‖f̂1‖1, ‖f̂2‖1 = o
(
ε
δ

)

• deg(f1), deg(f2) ≤ k.

Proof. By linear-programming duality, see Section 5.2.3 for the calculations. Note

that the two primals are: max
∑

x µ(x)f(x)−Ef and max Ef−∑x µ(x)f(x) where we

are optimizing on µ : Zn
2 → R such that µ > 0,

∑
x µ(x) = 1, and |∑x µ(x)X z(x)| ≤ δ

for each nonzero z in Zn
2 whose weight is less than or equal to k. �

Corollary 5.2.5 Let f : {0, 1}n → {0, 1}, and δ, ε > 0. Then the δ-bias property can

ε-fool f if and only if ∃f1, f2 : Zn
2 → R such that

• f1 ≤ f ≤ f2
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• δ
∑

z 6=0 |f̂1(z)| + E(f − f1) ≤ ε

• δ
∑

z 6=0 |f̂2(z)| + E(f2 − f) ≤ ε.

Therefore, asymptotically speaking, the δ-bias property can o(ε)-fool a boolean function

f : {0, 1}n → {0, 1} if and only if ∃f1, f2 : {0, 1}n → R such that

• f1 ≤ f ≤ f2

• E(f2 − f1) = o(ε)

• ‖f̂1‖1, ‖f̂2‖1 = o
(
ε
δ

)
.

Corollary 5.2.6 Let f : {0, 1}n → {0, 1}, ε > 0, and k a positive integer. Then the

k-wise independence property can ε-fool f if and only if ∃f1, f2 : Zn
2 → R such that

• f1 ≤ f ≤ f2

• E(f − f1) ≤ ε and E(f2 − f) ≤ ε

• deg(f1) , deg(f2) ≤ k.

Therefore, asymptotically speaking, the k-wise independence property can o(ε)-fool a

boolean function f : {0, 1}n → {0, 1} if and only if ∃f1, f2 : {0, 1}n → R such that

• f1 ≤ f ≤ f2

• E(f2 − f1) = o(ε)

• deg(f1), deg(f2) ≤ k.

5.2.1 The unpredictability perspective

Arguing by unpredictability will divide ε by n if we want to use Yao’s Lemma as a

black box. We note that we can take advantage of the generality of the situation and

manage with dividing ε by 2 only.
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Lemma 5.2.7 I) Let f : {0, 1}n → {0, 1}, and µ a probability measure on {0, 1}n,

and ε > 0 such that

|Prx∼µ[f(x) = 1] − Prx[f(x) = 1]| > ε, (5.2)

then there exists b ∈ {0, 1} and z ∈ {0, 1}n such that

Prx′∼µ′[f(x′1, . . . , x
′
n) ⊕ b = x′n+1] >

1

2
+
ε

2
, (5.3)

where µ′ is the probability measure on {0, 1}n+1 given by

µ′(x′) =





1
2
µ(x′|[n]) if x′n+1 = 0

1
2
(σzµ)(x′|[n]) if x′n+1 = 1,

(5.4)

and where (σzµ)(x)
def
= µ(x⊕ z).

II) In general, assume that µ and µ′ are related via (5.4) for some z. If µ is

a δ-biased, k-wise independent, or a discrete measure (i.e., uniform on its support)

supported by a linear code, then so is µ′. Moreover, in the case when µ is k-wise

independent, µ′ has also the additional property that any k + 1 bit including the last

are independent.

See Sections 5.7.2 for an application.

Note that unlike the setting of Theorem 5.2.4 and Corollaries 5.2.5, and 5.2.6, the

statement of the Lemma make sense only when f takes binary values.

Note also that µ′ works by generating x′n+1 uniformly at random, and depending

on the value of x′n+1, generates x′1, . . . , x
′
n according to µ or σzµ.

Proof. The main point is to substitute the nested sequence of PRG’s in Yao’s

unpredictability lemma, which is the part responsible for dividing ε by n, by an

expectation argument based on translations of the PRG.
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Consider the translations σzµ of µ by elements z in {0, 1}n with respect to addition

⊕ in Zn
2 . We have Prx[f(x) = 1] = EzPrx∼σzµ[f(x) = 1], thus

Prx∼µ[f(x) = 1] − Prx[f(x) = 1] = Ez(Prx∼µ[f(x) = 1] − Prx∼σzµ[f(x) = 1]),

and hence Hypothesis (5.2) implies ∃z ∈ {0, 1}n such that

|Prx∼µ[f(x) = 1] − Prx∼σzµ[f(x) = 1]| > ε.

Fix such a z. Thus ∃b ∈ {0, 1} such that

Prx∼σzµ[f(x) ⊕ b = 1] − Prx∼µ[f(x) ⊕ b = 1] > ε,

and hence (5.3) since

Prx′=(x,x′
n+1)∼µ′ [f(x) ⊕ b = x′n+1] =

1

2
Prx∼µ[f(x) ⊕ b = 0] +

1

2
Prx∼σzµ[f(x) ⊕ b = 1]

=
1

2
+

1

2
(Prx∼σzµ[f(x) ⊕ b = 1] − Prx∼µ[f(x) ⊕ b = 1]).

Verifying (II) is straightforward. �

We can elaborate on (II) in the special case of linear codes as follows.

Corollary 5.2.8 If f : {0, 1}n → {0, 1}, and C ⊂ Zn
2 is a linear code whose dual

distance is above k, and ε > 0 are such that:

|Prx∈C [f(x) = 1] − Prx∈Zn
2
[f(x) = 1]| > ε,

then

Prx∈C′′[f(x) ⊕ b = ParityA(x)] >
1

2
+
ε

2
,

for some linear code C ′′ ⊂ Zn
2 , b ∈ Z2, and A ⊂ [n] such that:

b) the minimum dual distance of C ′′ is above k

c) |A′| > k, for all A′ ⊂ [n] such that ParityA|C′′ = ParityA′ |C′′.
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Here ParityA : {0, 1}n → {0, 1} means ParityA(x) = ⊕i∈Axi.

Proof. We are in the setting where µ is a discrete probability measure supported

by a linear code C ⊂ Zn
2 whose dual distance is above k, and µ′ is related to µ via

(5.4). Let C ′′ = C ∪ (C + z), C ′ ⊂ Zn+1
2 be the support of µ′, and A such that

C ′ = {(x,ParityA(x)) : x ∈ C ′′}. Note also that z 6∈ C since ε > 0. �

See Sections 5.8.2 and 5.8.2.2 for an application.

5.2.2 Proof of Lemma 5.2.3

Partition [n] into a disjoint interval I1, . . . , Ia each of size b, thus f : Zn
2 → {0, 1} is

given by

f(x) = Πa
i=1(1 − fi(x)), fi(x) = Πi∈Ii

xi. (5.5)

1) We want to compute the Fourier transform f̂ of f from that of the fi’s. To do

this, we need the following straightforward lemma.

Lemma 5.2.9 If G = G1 × . . . × Gm be a direct product of finite abelian groups,

and f1, . . . , fm : G → C are such that fi(g) depends on the Gi-component of g, then

f̂i(X ) = f̂i|G(X i), where X i is the Ĝi-component of X , and
∏̂

i fi =
∏

i f̂i.

The proof is direct. Let us go back to our setting with G = Zn
2 , and Gi = {x :

x|[n]\Ii
= 0}, we get f̂ =

∏
i 1̂ − fi. We have

1 − fi = 1 − 1

2b

∑

T⊂Ii

(−1)|T |X T (x),

thus ‖1̂ − fi‖1 = 2 − 2
2b , and hence

‖f̂‖1 = ‖1̂ − f‖1 =
∏

i

‖1̂ − fi‖1 =
(
2 − 2

2b

)a

= (Ef)2a ≥ 2
n

log n .

2) To construct f1 and f2, we proceed by an inclusion-exclusion mentality. Expand

(5.5) as

f =
a∏

i=1

(1 − fi) =
n∑

k=0

(−1)kgk, gk =
∑

T⊂[a];|T |=k

∏

i∈T

fi, (5.6)
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and let g≤k =
∑k

i=0(−1)igi. By the same proof of inclusion-exclusion, or equivalently

by a direct induction, we have

g≤k−1 ≤ f ≤ g≤k

for each even k. Say that k = Θ(log log n) is even, and let f1 = g≤k−1 and f2 = g≤k.

We have

E(f2 − f1) = Egk =
∑

T⊂[a];|T |=k

∏

i∈T

Efi =
(

a

k

)
2−kb ≤ 2−k log k

e ≤ 1

log n
.

Note that the main point why we got a good bound from truncating the inclusion-

exclusion is that the fi’s are independent as random variables and the probability

of f is small enough. For an elaborate study of this approach, see Section 5.5. The

degree of f2 is at most kb = O(logn log log n), similarly for f1. Finally

‖f̂2‖1 ≤
∑

T⊂[a];|T |≤k

‖
∏̂

i∈T

fi‖1 ≤ k
(

a

k

)
= 2O(k log n) = 2O(log n log log n)

since ‖∏̂i∈T fi‖1 = 1, and similarly for f1.

5.2.3 Linear-programming duality calculations

Theorems 5.2.4 and Lemma 5.5.8 follow immediately from two applications of the

following lemma.

Lemma 5.2.10 Let X be a finite set, B be a collection of real valued functions on

X, µ0 a fixed probability measure on X, δ > 0, and let Mδ be the set of probability

measures µ on X such that |Eµβ − Eµ0β| ≤ δ, for each β in B. Let f be real valued

function on X. Then

max
µ∈Mδ

Eµf = min




Eµ0g + δ

∑

β∈B

|ĝβ| :
(ĝ0, (ĝβ)β∈B) ∈ R× RB s.t. with g : X → R

given by g = ĝ0 +
∑

β∈B ĝββ, we have g ≥ f




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Proof. Index the functions in B by z ∈ I, and let β̃z = βz −Eµ0βz. We have a linear

program: maximize
∑

x µ(x)f(x), (µ(x))x∈X ∈ RX , subject to the constraints





∑
x µ(x) = 1

µ(x) ≥ 0, ∀x
−δ ≤ ∑

x µ(x)β̃z(x) ≤ δ, ∀z.

Taking the dual of this feasible linear program, we get: minimize θ0 + δ
∑

z(θ
′
z + θ′′z ),

(θ0, (θ
′
z, θ

′′
z )z) ∈ R2|I|+1, subject to the constraints




θ0 +

∑
z(θ

′
z − θ′′z )β̃z(x) ≥ f(x), ∀x

θ′z, θ
′′
z ≥ 0, ∀z,

or equivalently, minimize θ0 + δ
∑

z |θz|, (θ0, (θz)z) ∈ R|I|+1, subject to the constraints

θ0 +
∑

z

θzβ̃z(x) ≥ f(x), ∀x,

since the minimum of a + b subject to a− b = c and a, b ≥ 0 is |c|. �

5.3 Linear codes versus general k-wise indepen-

dent probability measures

We study in this section the position of classical linear-codes-based constructions of

k-wise independent probability measures in the convex polytope of all such proba-

bility measures, and its subpolytope consisting of those whose Fourier transform is

nonnegative.

Let C ⊂ Zn
2 be a binary linear code, i.e., an F2-linear space. The dual of C⊥ of C

is

C⊥ def
=

{
y ∈ Zn

2 :
∑

i

xiyi = 0 (mod 2) , ∀y ∈ C

}
.

Recall from Section 5.1.2 the classical construction: if the minimum distance of the

dual C⊥ of C is above k, then then µC
def
= 1

|C|1C is a k-wise independent probability
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measure on Zn
2 .

Consider the convex polytope Qk ⊂ R{0,1}n
of k-wise independent probability

measures µ on {0, 1}n. This polytope is specified by the constraints: µ ≥ 0,
∑

x µ(x) =

1, and
∑

x µ(x)X z(x) = 0, ∀z 6= 0 such that w(z) ≤ k.

We show in Section 5.3.1 that the linear codes C (and their translations, i.e.,

cosets) that are minimal (with respect to inclusion) with the property that the dual

C⊥ has minimum distance above k are extreme points of Qk.

We note that they are not all the extreme points. The problem of studying the

other extreme points remains open.

A very special property of µC is that its Fourier transform µ̂C is nonnegative.

Let Pk ⊂ Qk be the convex polytope of k-wise independent probability measures on

{0, 1}n whose Fourier transform is nonnegative.

We argue in Section 5.3.2 that the binary linear codes with dual distance above

k are exactly the elements of Pk that are uniform on their support, and exactly the

elements of Pk that are on the boundary of a specific radius- 1
2

sphere containing Pk

and centered at 1
2
µ{0}. Thus they are specifically extreme points of Pk.

Here again we note that they are not all the extreme points, and the problem of

studying the other extreme points remains open.

Let Lk be the set of linear codes with dual distance greater than k. Relaxing

the set Lk to Pk is one way to look at Delsarte LP (Linear-Programming) coding

bound [Del73] in the setting of linear codes. We will explore in Section 5.8.5 other

relaxations based on this approach.

5.3.1 Relation to general k-wise independent measures

Consider the convex polytope Qk ⊂ RZ
n
2 consisting of the k-wise independent proba-

bility measures µ on Zn
2 , i.e., µ such that EµX z = 0 for each nonzero z in Zn

2 whose

weight is at least k.

Note that Qk is given by the the linear constraints:
∑

x µ(x) = 1, µ(x) ≥ 0 for

each x in Zn
2 , and

∑
x µ(x)X z(x) = 0 for each nonzero z in Zn

2 whose weight is at least

k.
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Let C be a binary linear code in Zn
2 whose dual C⊥ has minimum distance above

k. Then the discrete measure µC
def
= 1

|C|1C supported by C is an element of Qk. More

generally, for each translation D of C, i.e., for each coset D ∈ Zn
2/C, µD

def
= 1

|D|1D is

an element of Qk.

Theorem 5.3.1 Let k ≥ 0. The translations (i.e., coset) of the binary linear codes

in Zn
2 that are minimal (with respect to inclusion) with the property that their dual

has distance greater than k are (i.e., corresponds to) extreme points of the convex

polytope Qk of k-wise independent probability measures on Zn
2 .

Proof. Let µ ∈ Qk. Let S be the support of µ, and consider the R-vector space

IS = {α : S → R | ∑x∈S α(x)X z(x) = 0, ∀z ∈ Zn
2 s.t. w(z) ≤ k}.

Then µ is an extreme point of Qk if and only if IS is zero dimensional.

The equivalence follows from the basic characterization of an extreme point of a

linear program whose constraints are in the canonical form Ay = b, y ≥ 0. Namely, a

feasible solution y is an extreme point if and only if the columns of A corresponding

to the nonzero entries of y are linearly independent.

Note that this means that if µ is an extreme point, then µ is uniquely determined

by S and hence must be of minimal support.

First, observe that for any S ⊂ Zn
2 , we have IS ∼= IS+a for all a ∈ Zn

2 . This

follows from the multiplicativity of the characters, and namely because X z(x + a) =

X z(x)X z(a). Thus, rather than starting from a translation of a linear code, we can

start without loss of generality from a linear code.

Suppose that the support of a measure µ in Qk is a linear code C ⊂ Zn
2 that is

minimal with the property that its dual C⊥ has minimum distance above k. We want

to argue that µ is an extreme point, or equivalently that IC contains only the zero

function. From the multiplicativity of the characters, we see that IC is invariant under

translation by elements in C, i.e., if α is a function in IC , then so is (σaα)(x)
def
= α(x+a)
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for each a ∈ C. Thus IC is an ideal in

Â(C)
def
= {α : C → R}

when viewed as a ring under convolution 1

(α ∗ β)(x) =
∑

y

α(y)β(x+ y).

Since C is abelian, the ring Â(C) decomposes as a direct sum of 1-dimensional

ideals. The decomposition is

Â(C) =
⊕

z̄∈Zn
2 /C⊥

(X z̄)

into 1-dimensional ideals generated by the characters

{X z̄(x)
def
= (−1)xz}z̄∈Zn

2 /C⊥

of the abelian group C, where xz
def
=
∑

i xizi, and the definition is independent of the

choice of z ∈ z̄.

If IC was nonzero, then it must be a direct sum of some of those ideals, so it is

sufficient to argue that X z̄ 6∈ IC , for each z̄ ∈ Zn
2/C

⊥.

Assume that there is a z̄0 ∈ Zn
2/C

⊥ such that X z̄0 ∈ IC , then we have

∑

x∈C

X z̄+z̄0(x) =
∑

x∈C

X z̄(x)X z̄0(x) = 0,

for each z whose weight is at least k, i.e., z̄0 + z̄ 6= 0̄ for each such z, or equivalently

z̄0 6= z̄ for each such z. Let Q = 0̄ ∪ z̄0 and C ′ = Q⊥. Then:

1Note that Â(C) is isomorphic as an R-algebra to group algebra

R[C]
def
=

{∑

z∈C

azz : αz̄ ∈ R, ∀z ∈ C

}
,

i.e., formal sums of elements in C with coefficients in R. The isomorphism maps α : C → R to∑
z α(z)z.
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1) C ′  C since C = 0̄⊥ and z̄0 6= 0̄, and

2) the minimum distance of Q is above k since 0̄ = C⊥ has minimum distance

above k, and z̄0 6= z̄ for each z whose weight is at least k.

This contradicts the assumption that C is minimal with the property that its dual

has minimum distance greater than k. �

We conclude this section with some open questions.

Conjecture 5.3.2 If an extreme point of Qk is uniform on its support, then it must

be supported by a binary linear code.

Problem 5.3.3 It is experimentally evident that in general not all the extreme points

of Qk are uniform on their support. Classify the other extreme points and study their

algebraic structure.

Judging from a small number of machine generated examples, it is tempting to

speculate that they come from linear codes over other finite fields by some way of

binarizing and assigning weights. Prove or disprove?

5.3.2 The nonnegative Fourier transform property

Let C ⊂ Zn
2 be a linear code. Let µC be the discrete measure on Zn

2 supported by

C, i.e., µC(x) = 1
|C|1C(x). Consider the Fourier transform µ̂C of µC , i.e., µ̂C(z) =

1
2nEµX z. We have

EµC
X z =

∑

x∈Zn
2

µC(x)X z(x) =
1

|C|
∑

x∈C

X z(x) = 1C⊥(z), (5.7)

where C⊥ is the dual of C. So, a very special feature of µC is that µ̂C ≥ 0.

Let k ≥ 0. We show below where exactly the binary linear codes lie in the

convex polytope Pk of k-wise independent probability measures on Zn
2 whose Fourier

transform is nonnegative. We argue that the binary linear codes with dual distance

above k are exactly the elements of Pk that are uniform on their support, and exactly
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the elements of Pk that are on the boundary of a specific radius- 1
2

sphere containing

Pk and centered at 1
2
µ{0}. Thus they are all extreme points of Pk.

Theorem 5.3.4 Let:

• k ≥ 0

• Pk ⊂ RZ
n
2 be the convex polytope of k-wise independent probability measures µ

on Zn
2 satisfying µ̂ ≥ 0.

• Lk be the set of probability measure on Zn
2 corresponding to binary linear codes

with dual distance above k, i.e.,

Lk = {µC : C ⊂ Zn
2 linear s.t. min-dist(C⊥) ≥ k}.

• U be the set of probability measure on Zn
2 that are uniform on their support.

• D be the radius- 1
2

sphere in RZ
n
2 centered at 1

2
µ0, where µ0 = 1{0}, i.e., µ0 :

Zn
2 → R is given by

µ0(x) =





1 x = 0

0 o.w.
,

then

Lk = Pk ∩ U = Pk ∩ ∂D and P ⊂ D,

where ∂D means the boundary of D. Thus, in particular, all the elements of Lk are

extreme points of Pk.

We will explore in Section 5.8.5 some relaxations based on relaxing Lk to Pk.

Proof. Without loss of generality we can assume that k = 0 since the more gen-

eral case follows by intersecting with the convex polytope Qk of k-wise independent

probability measures on Zn
2 .

First, note that P0 consists of the set of µ : Zn
2 → R such that : µ ≥ 0,

∑
x µ(x) = 1,

and
∑

x µ(x)X z(x) ≥ 0 for each z in Zn
2 .
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The next thing to note is that α : Zn
2 → R belongs to D if and only if

(
1

2

)2

≥
(
α(0) − 1

2

)2

+
∑

x6=0

α(x)2,

which can be written as α(0) ≥ ∑
x α(x)2. Accordingly,

• α ∈ D if and only if α(0) ≥ ∑
x α(x)2, and

• α ∈ ∂D if and only if α(0) =
∑

x α(x)2.

Let µ be a probability measure on Zn
2 . Then it is sufficient to show that

A) (I) and (II) below are equivalent.

I) There is a linear code C ⊂ Zn
2 such that µ = 1

|C|1C .

II) a) µ̂ ≥ 0

b) µ(0) =
∑

x µ(x)2

B) If (a) holds, i.e., if µ̂ ≥ 0, then:

1) µ(0) ≤ ∑
x µ(x)2

2) If µ is uniform on its support, then (b) holds.

The implication from (I) to (II) is immediate. We want to prove the other direc-

tion, and establish (B). First, some observations:

i) In general we have

2−n
∑

z

Eµ

(
X z − (EµX z)

2
)

=
∑

z

µ̂(z) − 2n
∑

z

µ̂2(z) = µ(0) −
∑

x

µ2(x), (5.8)

where we have used Parseval equality 2n∑
z µ̂

2(z) =
∑

x µ
2(x) in the last step.

ii) If µ satisfies (a), then EµX z − (EµX z)
2 ≥ 0 for each z.

This is the case because 0 ≤ EµX z by (a), and in general we have EµX z ≤ 1.

Proof of (B): Assume that µ satisfy (a). Then (5.8) and (ii) imply that 0 ≤
µ(0) −∑

x µ(x)2, and hence (1).
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To establish (2), note first that this means that µ(0) 6= 0. Thus the requirement

that µ is uniform on its support together with µ(0) 6= 0 imply that, for each x, either

µ(x) = µ(0) or µ(x) = 0, hence

0 =
∑

x

µ(x)(µ(0) − µ(x)) = µ(0) −
∑

x

µ(x)2,

i.e., (b).

(II)⇒ (I): Now back to (A), using (b), we see that the sum on the right hand side

of (5.8) is actually 0. This together with (ii) mean that the only possible scenario is

that EµX z − (EµX z)
2 = 0, i.e., EµX z ∈ {0, 1} for each z.

Let

Q = {z : EµX z = 1} = {z : X z(x) = 1, ∀x ∈ Support(µ)}.

By the multiplicativity of the characters, we have X z1+z2(x) = 1 when X z1(x) = 1

and X z2(x) = 1, thus Q is linear. Let C = Q⊥, the dual of Q. Then by (5.7),

EµC
X z = 1Q(z). But since EµX z ∈ {0, 1} for each z, we have 1Q(z) = EµX z by the

definition of Q. Thus for each z, EµX z = EµC
X z. In other words µ̂C = µ̂, and hence

µ = µC . �

Here again

Problem 5.3.5 It is experimentally evident that in general not all the extreme points

of Pk or P are uniform on their support. Classify the other extreme points and study

their algebraic structure.

One way to look at Delsarte LP coding bound [Del73] in the special case of linear

codes is as relaxing Lk to Pk. See Lemma 5.8.19. Since experimentally not all the

extreme points of Pk come from linear codes, this suggests the following

Question 5.3.6 Is Delsarte LP coding bound tight for linear codes?

The answer is not clear. Note that whether Delsarte LP coding bound is tight for

arbitrary binary code is open also. It is an old and famous open problem.
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5.4 Some limitations of the small bias property

We show that the exponentially small bias property is not sufficient to fool small log-

depth circuits, nor bounded-space computations as it cannot fool some of the weakest

branching programs. More specifically

Theorem 5.4.1 There is a 2−Ω(n)-biased probability measure on {0, 1}n that cannot

o(1)-fool a function from {0, 1}n to {0, 1} that can be realized as an O(logn)-depth

circuit of linear size, and as an O(1)-width read-once oblivious branching program.

Proof. Assume n is even, and let f : {0, 1}n → {0, 1} be the binary quadratic form

f(x) =
n/2∑

i=1

xixi+n/2 (mod 2).

Thus f is the XOR of n
2

AND gates, hence computable by O(logn)-depth circuit, and

obviously computable by an O(1)-width read-once oblivious branching program. Let

µ be the probability measure on {0, 1}n given by

µ(x) =
1

|Ω|f(x), where Ω = {x : f(x) = 1}.

We will argue that µ is (1 − o(1))2−n/2-biased.

Since

EµX z = 2nµ̂(z) =
2n

|Ω| f̂(z) =
f̂(z)

f̂ (0)
,

we need to compute the Fourier transform of f . It is more natural to deal with

1 − 2f = (−1)f . Indeed, (−1)f is an eigenfunction of the Fourier transform with

eigenvalue 2−n/2, i.e.,

(̂−1)f =
1

2n/2
(−1)f . (5.9)

One way to verify this is to note that, by Lemma 5.2.9, we only have to check it when

n = 2, i.e., when f(x) = x1x2, in which case (5.9) is the identity

(−1)x1x2 =
1

2
+

1

2
(−1)x1 +

1

2
(−1)x2 − 1

2
(−1)x1+x2.
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Thus, since

f̂ =
1

2
1̂ − 1

2
(̂−1)f ,

we get

f̂(z) =





1
2

+ 1
2n/2+1 when z = 0

(−1)f(z) 1
2n/2+1 when z 6= 0

.

Therefore when z is nonzero

EµX z =
1

2n/2

(−1)f(z)

1 + 2−n/2
,

and consequently |EµX z| = 2−n/2(1 − o(1)). �

Note that the measure constructed in the proof is uniform on its support Ω whose

size is 2n−1(1 + o(1)). Note also that its bias δ can be shown to be optimal up to

a 1 ± o(1) factor in the class of measures that have the same support size and are

uniform on their support. By picking random subsets of Ω, other support sizes can

be achieved with very low bias also.

5.5 Log-wise independence versus read-once DNF

formulas

We argue that any sufficiently log-wise independent probability measure looks random

to all polynomially small read-once DNF formulas, more specifically

Theorem 5.5.1 Let f : {0, 1}n → {0, 1} be computable by a read-once (i.e., the

clauses are disjoint) DNF formula with m clauses. Then any k-wise independent

probability measure µ on {0, 1}n can ε-fool f , with

ε = min
1≤s≤n

2−(s−log m) + 2−
k−37
11s .

So ε = o(1), when for instance k = logm log logm.

Proof. See Corollary 5.5.12. �
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After using the sandwiching approach of Corollary 5.2.6 to reduce to a simpler

case, the proof of Theorem 5.5.1 is partially by inclusion-exclusion, which is the

argument we used to establish parts (d),(f), and (g) of Lemma 5.2.3. We discuss in

Section 5.5.3 the intrinsic limitations of Inclusion-exclusion when used in the more

general setting of arbitrary DNF formulas.

Starting with an arbitrary DNF formulas, we conclude Corollary 5.5.12 as a con-

sequence of a more general result on weak probability measures in Lemma 5.5.10.

The notion of weak probability measures is naturally suggested by the problem. See

Definition 5.5.4.

Before going to weak probability measures, we derive a consequence of Theorem

5.5.1 and we give an application to the distribution of quadratic residues.

Corollary 5.5.2 Let f : {0, 1}n → {0, 1} be computable by a read-once DNF for-

mula with m clauses, then any δ-almost k-wise independent probability measure µ on

{0, 1}n can ε-fool f , with

ε = min
1≤s≤n

2−(s−log m) + 2−
k−37
11s + δnk.

Note that the bound is good only when k is relatively small.

Proof. This follows from Theorem 5.5.1 via part (b) in Theorem 5.1.3. �

Corollary 5.5.3 Let S1, . . . , Sm be disjoint subsets of Fq, q a power of an odd prime.

Let Q be the set of quadratic residues in Fq. Let n = | ∪i Si|. Then

∣∣∣∣∣
1

q
#{a ∈ Fq : Si + a 6⊂ Q, ∀i} −

∏

i

(1 − 2−|Si|)

∣∣∣∣∣ ≤ ε,

where

ε = min
1≤s,k≤n

2−(s−log m) + 2−
k−37
11s +

2knk

√
q
.

Thus ε = o(1), when for instance q = 22 log n log m.

Proof. Let I = ∪iSi. Consider the monotone read-once DNF on the variables {xi}i∈I

consisting of m clauses each corresponding to an Si, and the quadratic residues PRG
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G : Fq → {0, 1}I as defined in Section 5.1.2.3. The claim follows from Corollary 5.5.2

since G has the 2k/
√
q-almost k-wise independence property. �

Similar statements can be derived for the quadratic-residues-like PRG’s defined

in Section 5.1.2.3.

5.5.1 Weak probability measures

Start with an arbitrary DNF formulas. We will restrict later on to the read-once case.

Consider a DNF formula f on n bits with m clauses. Let µ be a k-wise independent

probability measure on {0, 1}n. We want to make k large enough so that µ can ε-fool

f .

First we note that, without loss of generality, we can assume that each clause has

size at most s as long as we remember to add m2−s = 2−(s−log m) to ε. Here s is an

integer that we will tune later on. In other words, if we can show that µ can ε-fool f

under this restriction, then µ can (ε+ 2−(s−log m))-fool f without this restriction.

The reason is that if not all the clauses have size at most s, we can construct two

new DNF formulas f ′ and f ′′, where f ′ is constructed by removing from f all the

clauses whose size is above s, and f ′′ is constructed by removing from each clause

in f whose size is above s as many variables as needed in an arbitrary way to make

its size s. Thus f ′ ≤ f ≤ f ′′ and Eµ0(f
′′ − f), Eµ0(f − f ′′) ≤ m2−s, where µ0 is the

uniform measure on {0, 1}n. So establishing the claim for f ′ and for f ′′ implies the

claim for f with an m2−s additive term to ε. This is the case because, with Corollary

5.2.4 in mind, we can sandwich f between the upper polynomial of f ′′ and the lower

polynomial of f ′.

Under this assumption, consider the map F : {0, 1}n → {0, 1}m, where Ft(x)

is the value of the t’th clause on x. Let µ∗
0 be the probability measure on {0, 1}m

induced by the uniform measure µ0 on {0, 1}n via F , and let µ∗ be the one induced

by µ. Since µ is k-wise independent, µ∗
A = µ0

∗
A for each A ⊂ [m] such that |A| ≤ k

s
,

where by µA we mean the probability measure on {0, 1}A induced by µ

This suggests the following problem.
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Definition 5.5.4 Let γ be a probability measure on {0, 1}m. Say that γ is (k, ε)-

weak if when γ′ is another probability measure on {0, 1}m that agrees with γ on all its

projection on any k of the coordinates, then the L∞-distance between γ and γ ′ is at

most ε.

In other words, γ is (k, ε)-weak if when γ ′ is another probability measure on {0, 1}m

such that γ′A = γA for each A ⊂ [m] such that |A| ≤ k, we must have |γ(x)−γ ′(x)| ≤ ε,

for each x ∈ {0, 1}m. Here by γA we mean the probability measure induced on {0, 1}A

by γ.

Problem 5.5.5 Let F : {0, 1}n → {0, 1}m, x 7→ y, be such that each yi is an AND on

some of the variables x1, . . . , xn with possibly negated inputs. Let γ be the probability

measure on {0, 1}m induced by the uniform measure on {0, 1}n. Given ε, how large

should k be so that γ is (k, ε)-weak for each such F?

We will not resolve this problem for arbitrary DNF formulas. We will obtain

a good bound in the read-once case, which corresponds to the situation when the

induced random variables are statistically independent.

Before doing so, we make some observations about weak probability measures.

Theorem 5.5.6 [LN90] Let U1, . . . , Um, V1, . . . , Vm be finite sets such that |∩i∈AUi| =

| ∩i∈A Vi| for each A ⊂ [m], |A| ≤ k, then

| ∪m
i=1 Ui|

| ∪m
i=1 Vi|

= 1 +O(e
− 2k√

m ),

when k = Ω(
√
n), and

| ∪m
i=1 Ui|

| ∪m
i=1 Vi|

= O
(
m

k2

)
,

when k = O(
√
m), for some global absolute constants. Moreover, the bound is tight

in the worst case when k ≤ √
m.

Corollary 5.5.7 Any probability measure on {0, 1}m is (k,O(e
− 2k√

m ))-weak, for some

global absolute constants. Moreover, the bound is tight in the sense that there is a

probability measure on {0, 1}m that is not (
√
m, o(1))-weak.
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Lemma 5.5.8 A probability measure γ on {0, 1}m is (k, ε)-weak if and only if ∀x0 ∈
{0, 1}m, ∃f1, f2 : {0, 1}m → R such that with

δx0(x) =





1 if x = x0

0 o.w.
,

we have

a) deg(f1), deg(f2) ≤ k

b) f1 ≤ δx0 ≤ f2

c) Eγ(f2 − δx0), Eγ(δx0 − f1) ≤ ε

Proof. By linear-programming duality, see Section 5.2.3 for the calculations. Note

that the two primals are: max Eγδx0 −Eγ′δx0 and max Eγ′δx0 −Eγδx0 , where we are

optimizing on the probability measures γ ′ on Zn
2 such that Eγ′X z = EγX z for each

nonzero z in Zn
2 whose weight is at most k. �

Lemma 5.5.9 If γ is a probability measure on {0, 1}m supported by a set of size N ,

and

k ≥ 2
log (N + 1)

log m
k

+ 3,

then γ is (k, 0)-weak.

Proof. By suitably negating some of the variables if needed we can assume without

loss of generality that x0 = 0. Let g : Zm
2 → R be a polynomial of degree k0 such that

g(0) = 1 and g(x) = 0 for each nonzero x in the support of γ. Since all the characters

of Zm
2 are linearly independent, and specifically the V

def
=

∑k0
l=0

(
m
l

)
characters X z

where the weight of z is at most k0, we can set k0 to the smallest integer satisfying

V ≥ N + 1. Then, set f1 and f2 to f1(x) = (1 − ∑m
i=1 xi)g

2(x) and f2 = g2. So (b)

is satisfied. Regarding (c), f1 and f2 are zero on any nonzero x in the support of

γ which means that Eγf1 = Eγf2 = Eγδ0. As for (a), we have k = 2k0 + 1. So it

sufficient to make k large enough so that
∑b k−1

2
c

l=0

(
m
l

)
≥ N + 1. �

Now, we come to the main result in this section.
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Lemma 5.5.10 If X1, . . . , Xm are statistically independent binary random variables,

then the corresponding probability measure γ on {0, 1}m is (k, 2−
k−37
11 )-weak.

Proof. See Section 5.5.2. �

Problem 5.5.11 The bound is quite good compared to the general case. The con-

stants are definitely not tight. What is the best exponent? Also, is this bound asymp-

totically tight in terms of k for small values of k such as k = logO(1) m or k = mo(1)?

Corollary 5.5.12 Let f : {0, 1}n → {0, 1} be computable by a read-once (i.e., the

clauses are disjoint) DNF formula with m clauses. Then any k-wise independent

probability measure µ on {0, 1}m can ε-fool f , with

ε = min
1≤s≤n

2−(s−log m) + 2−
k−37
11s .

So ε = o(1), when for instance k = logm log logm.

Proof. As we noted earlier in this section we can assume without loss of generality

that each clause has size at most s as long we remember to add m2−s = 2−(s−log m) to

the error.

Under this assumption, consider the map F : {0, 1}n → {0, 1}m, where Ft(x)

is the value of the t’th clause on x. Let µ∗
0 be the probability measure on {0, 1}m

induced by the uniform measure µ0 on {0, 1}n via F , and let µ∗ be the one induced

by µ. Since µ is k-wise independent, µ∗|A = µ∗
0|A for each A ⊂ [m] such that |A| ≤ k

s
.

The claim then follows from Lemma 5.5.10 which is applicable since X1, . . . , Xm are

independent because the clauses are disjoint. �

5.5.2 Proof of Lemma 5.5.10

Without loss of generality, we can assume that x0 = 0. Consider the weight function

w : Zm
2 → [0 : n] given by w(x) =

∑m
i=1 xi. Since the Xi’s are independent, the

distribution of w(X1, . . . , Xn) has the shape of a bell. Let γ∗ be the corresponding
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probability measure, i.e., the one induced on [0 : n] by µ via the weight map w. It is

sufficient to trap the delta function δ′0 : [0 : m] → {0, 1},

δ′0(w) =





1 if w = 0

0 o.w.
,

between two low-degree polynomials f ′
1, f

′
2 ∈ R[w], i.e., f ′

1 ≤ δ′0 ≤ f ′
2, in such a way

that Eγ∗(f ′
2−δ′0), Eγ∗(δ′0−f ′

1) ≤ ε. Then we can pull back f ′
1 and f ′

2 by w to construct

f1 and f2, i.e., we set f1(x) = f ′
1(w(x)) and f2(x) = f ′

2(w(x)). Note that this preserves

the degrees, i.e., degf1 = degf ′
1 and degf2 = degf ′

2.

The natural thing to do is to select the zeros of f ′
1 and f ′′

2 so that they are at the

places where γ∗0 is large. This is indeed the only thing to do, given that we want to

work in the projected framework, regardless of whether the Xi’s are independent or

not. What is special about the case we are considering now is that we can do this by

exploiting the strong structure of independent Bernoulli random variables. Naturally,

there are two cases to consider depending on the shape of the bell γ∗(w), the first

when the mean u
def
= Ew∼γ∗

0
w is large, and the second when the mean is small. Let

s > 0 be some threshold that we will specify as we proceed.

• Case 1: When the mean u > s.

Set

f ′
1(w) = 0 and f ′

2(w) =
(
1 − w

u

)k′

where k′ ≤ k is an even integer. We will restrict k′ further and fix it as we

proceed. This choice is experimentally optimal when u is sufficiently large. It

works in general because, when the mean is large, 0 is in the tail of the bell,

which means that Eγ∗δ′0 is already small. On the other hand f ′
2 takes very small

values on a relatively wide region around the center of the bell, which makes

Eγ∗(f ′
2 − δ0) small.

Let 0 < δ < 1. We will fix δ as we proceed. We have

Eγ∗(f ′
2 − f ′

1) ≤ Prw∼γ∗
0
[w ≤ (1 − δ)u] + δk′

+ Prw∼γ∗
0
[(1 + δ)u ≤ w ≤ 2u]
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+
∑

u≤d≤m−u

Prw∼γ∗
0
[w = u+ d]

(
d

u

)k′

≤ Prw∼γ∗
0
[w ≤ (1 − δ)u] + δk′

+ Prw∼γ∗
0
[w ≥ (1 + δ)u]

+
∑

u≤d≤m−u

Prw∼γ∗
0

[
w ≥

(
1 +

d

u

)
u

](
d

u

)k′

.

Now, we use Chernoff bound2 to obtain

Eγ∗(f ′
2 − f ′

1) ≤
(

e−δ

(1 − δ)1−δ

)u

+ δk′
+

(
eδ

(1 + δ)1+δ

)u

(5.10)

+
∑

u≤d≤m−u


 e

d
u

(1 + d
u
)1+ d

u




u (
d

u

)k′

.

Assume that k′/u ≤ θ, where θ < 1/2 is a parameter that we specify later.

Noting that ex

(1+x)1+x ≤ 2−( x
3
+ 1

5
) for all x ≥ 1, and that x ≤ 2

2
3
x for all x ≥ 0, we

can upper bound the last summation as follows.

∑

u≤d≤m−u


 e

d
u

(1 + d
u
)1+ d

u




u (
d

u

)k′

≤
∑

u≤d≤m−u


 e

d
u

(1 + d
u
)1+ d

u




u (
d

u

)θu

≤
∑

u≤d≤m−u

2−( 1
3

d
u
+ 1

5
)u2

2
3

d
u

θu

= 2−
u
5

∑

u≤d≤m−u

2−
2
3
( 1
2
−θ)d

≤ 2−( 2
3
( 1
2
−θ)+ 1

5
)u

1 − 2−
2
3
( 1
2
−θ)

. (5.11)

All the terms in (5.10) and (5.11) are nonincreasing as u grows. Thus we can

use the lower bound s we have on u. Moreover the condition k′/u ≤ θ can be

guaranteed by requiring that k′ ≤ θs. The other conditions we have on k′ are:

k′ ≤ k, and k′ odd. If we assume that θs ≤ k, we can set k′ to the largest odd

integer less than or equal to θs, and use θs − 2 as an upper bound on k′. It

2The version of Chernoff bound we are using is the following (See [MR95]): If z1, . . . , zm are
independent Poisson trials, and z =

∑
i zi, then, for each 0 < δ < 1, the probability that z <

(1− δ)Ez is at most
(

e−δ

(1−δ)1−δ

)Ez

≤ e−(Ez)δ2/2. On the other hand, for each α > 0, the probability

that z > (1 − α)Ez is at most
(

eα

(1+α)1+α

)Ez

.
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follows that

Eγ∗(f ′
2 − f ′

1) ≤
(

e−δ

(1 − δ)1−δ

)s

+ δθs−2 +

(
eδ

(1 + δ)1+δ

)s

+
2−( 2

3
( 1
2
−θ)+ 1

5
)s

1 − 2−
2
3
( 1
2
−θ)

, (5.12)

for all settings of reals δ, θ satisfying: 0 < δ < 1, 0 < θ < 1/2, and θs ≤ k.

• Case 2: When the mean u ≤ s.

When the mean is sufficiently small, the above choice is not good neither for f ′
1

nor for f ′
2. In this case, judging from simulations, the right choice is to construct

f ′
1 and f ′

2 so that they have relatively many distinct zeros distributed relatively

sparsely, but not consecutively, and all close to zero. It is not clear however

what is the optimal distribution of the zeros. To establish the claimed bound,

we use a suboptimal choice that we can analyze. The first thing to try is to set

f ′
1(w) =

k∏

t=1

(
1 − w

t

)
and f ′

2(w) =
k−1∏

t=1

(
1 − w

t

)

when k is odd. Note that since k is odd we have f ′
1 ≤ δ′0 ≤ f ′

2. This will give us

the claimed bound, which seems asymptotically optimal.

Note that this choice of f ′
1 and f ′

2 is equivalent to truncating the binomial repre-

sentation of δ′0 in the sense that δ′0(w) =
∑m

l=0(−1)l
(

w
l

)
, f ′

1(w) =
∑k

l=0(−1)l
(

w
l

)
,

and f ′
2(w) =

∑k−1
l=0 (−1)l

(
w
l

)
. This is equivalent also to truncating the inclusion-

exclusion formula (5.6) as in Section 5.2.2. Since we are doing a plain truncation,

it makes sense that in general when we have dependencies among the random

variables this construction is not going to work. This is indeed provably the

case as we explain in Section 5.5.3.

For the purpose of this proof, it is sufficient to note that

f ′
2(w) − f ′

1(w) =
w

k

k−1∏

t=1

(
1 − w

t

)
=

(
w

k

)
.
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Thus by the independence of X1, . . . , Xm,

Eγ∗(f ′
2 − f ′

1) =
∑

A⊂[m];|A|=k

∏

i∈A

pi,

where pi is the probability that Xi = 1. Recall that we are in the situation

where Ew∼γ∗w ≤ s, i.e.,
∑m

i=1 pi ≤ s.

Claim: The maximum of
∑

A⊂[m];|A|=k

∏

i∈A

pi,

over p1, . . . , pm ≥ 0 such that
∑m

i=1 pi ≤ s, occurs when all the pi’s are equal.

Proof of claim. We use a local perturbation argument based on the symmetry

of the objective function. Note that the objective function is not convex.

Consider any p1, . . . , pm satisfying the constraints, and any i 6= j. Assume that

pi 6= pj. We will make pi = pj while keeping c
def
= pi +pj and (pt)t6=i,j unchanged,

and while increasing the value of the objective function. To do this it is sufficient

to note that

∑

A⊂[m];|A|=k

∏

t∈A

pt = a(pi + pj) + bpipj = ac+ bpipj,

where

a =
∑

A⊂[m]\{i,j};|A|=k

∏

t∈A

pt, and b =
∑

A⊂[m]\{i,j};|A|=k−1

∏

t∈A

pt.

The claim then follows since b ≥ 0, and the maximum of pipj subject to pi, pj ≥ 0

and pi + pj = c occurs when pi = pj. H

Thus

Eγ∗(f ′
2 − f ′

1) ≤
(
m

k

)(
s

m

)k

≤
(
em

k

)k ( s
m

)k

= 2−k log k
es .

This is assuming that k is odd. Thus, in general, for any integer k ≥ 2, we can

construct f ′
1 and f ′

2 with

Eγ∗(f ′
2 − f ′

1) ≤ 2−(k−1) log
(k−1)

es . (5.13)
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Combining (5.12) and (5.13), we get that in general, if k ≥ 2 is an integer, then γ∗
0 is

(k, ε(k))-weak, where

ε(k) = min
s,δ,θ

(
e−δ

(1 − δ)1−δ

)s

+ δθs−2 +

(
eδ

(1 + δ)1+δ

)s

+
2−( 2

3
( 1
2
−θ)+ 1

5
)s

1 − 2−
2
3
( 1
2
−θ)

+ 2−(k−1) log
(k−1)

es , (5.14)

and we are optimizing on the reals s, δ, and θ satisfying: s > 0, 0 < δ < 1, 0 < θ <

1/2, and θs ≤ k.

Setting θ = 12
25

, δ = 2
3
, and s = k−1

21/10e
, we obtain

ε(k) <


 e−

2
3

(1
3
)

1
3




k−1

21/10e

+
(

2

3

) 12
25

k−1

21/10e
−2

+


 e

2
3

(4
3
)

4
3




k−1

21/10e

+
2
−( 1

75
+ 1

5
) k−1

21/10e

1 − 2−
1
75

+ 2−
k−1
10

< 2−
k−37
11 ,

where the last inequality holds for all values of k where the claimed bound is nontrivial,

i.e., for all k > 37. Note that the above choice of s, δ, and θ is not optimal, but it is

sufficient to get a concrete bound.

5.5.3 The intrinsic limitations of Inclusion-Exclusion in the

DNF case

Consider a DNF formula with m clauses X1, . . . , Xm on n variables. The t’th term

of the inclusion-exclusion formula is

Tt =
∑

A⊂[m];|A|=t

E
∏

i∈A

Xi.

See the proof of Lemma 5.5.10 for other interpretations of this term in terms of the

sandwiching polynomials in the projected setting. In general Tt does not vanish as t

increases.

One trivial instance is when all the clauses are the same. This can however be

resolved by excluding all but one of the clauses.
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Another trivial case is when we have a very large number of clauses. This case

can be resolved by removing as may clauses as needed to get a new DNF formula

that bounds the original one from below, and use the constant 1 function to upper

bound the old DNF formula.

Less trivial and hybrid cases that make Tt large are for instance when we have

many clauses with some common variables (possibly none) such that, given that the

common variables are correctly set, the probability that none of the clauses containing

these variables is satisfied is very small (e.g. sunflowers with many pedals). Such cases

can be also resolved. The motivation is the Razborov sunflowers trimming technique

[Raz85]. Indeed, we can tightly sandwich the DNF between two new DNF’s where

such cases do not occur.

There is however an intrinsic limitation to this attempt. One example where noth-

ing can be done to the DNF formula to make Tt converge is the following symmetric

case.

Consider the case when we have m = n clauses, the first on the variables y1, . . . , ys

and the others are cyclic shifts of this clause modulo n. If we suitably select s in the

order of Θ(logn), so that the probability that the DNF is 1 is Θ(1), we get a symmetric

situation where Tt diverges and no trick can be made to make it converge.

This example can however be resolved by other means not based on inclusion-

exclusion. One trivial way to resolve it is to partition the clauses into Θ(log n)

collection where they are disjoint. This gives us an O(log3 n) bound on the needed to

k so that the k-wise independence property can fool this DNF.

5.6 Limited independence versus weight probabil-

ity

We establish an O(k−1/2) sharp upper bound on the probability that a random binary

string generated according to a k-wise independent measure has any given weight.
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Theorem 5.6.1 “Limited independence versus weight probability lemma”: Let 2 ≤
k ≤ n. Let µ be a k-wise independent probability measure on {0, 1}n. Then

max
a=0,1,...,n

Prx∼µ[w(x) = a] ≤ 1
∑

0≤l even ≤bk/2c−1
1
2l

(
l

l/2

)

=

√
π + o(1)
√
k

,

where the asymptotic statement is in terms of the growth of k.

Note that the bound is experimentally quite good for low values of k. Moreover, in

the extreme case when k is very large it is also very good. For instance, when k = n,

it is only off by the constant factor π√
2
(1+ o(1)) from the actual value

√
2

πn
(1− o(1)).

We will give an application of this bound in Section 5.7.3.

First some direct consequences, and an application to the distribution of quadratic

residues.

Corollary 5.6.2 Let C ⊂ {0, 1}n be a linear code whose minimum dual distance is

above k, 2 ≤ k ≤ n. Then

max
a=0,1,...,n

Prx∈C [w(x) = a] ≤ 1
∑

0≤l even ≤bk/2c−1
1
2l

(
l

l/2

)

=

√
π + o(1)
√
k

.

Corollary 5.6.3 Let 2 ≤ k ≤ n. Let µ be a δ-almost k-wise independent probability

measure on {0, 1}n. Then

max
a=0,1,...,n

Prx∼µ[w(x) = a] ≤ 1
∑

0≤l even ≤bk/2c−1
1
2l

(
l

l/2

) + δnk

=

√
π + o(1)
√
k

+ δnk.

Note that the bound is good only when k is relatively small.

Proof. This follows from Theorem 5.6.1 via part (b) in Theorem 5.1.3. �
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Corollary 5.6.4 Let q be a power of an odd prime, Q the set of quadratic residues

in Fq, I any subset of Fq, and a any integer. Let n = |I|. Then

1

q
#{b ∈ Fq : |(I + b) ∩Q| = a} ≤ ε

where

ε = min
4≤k≤n

1
∑

0≤l even ≤bk/2c−1
1
2l

(
l

l/2

) +
2k√
q
nk.

Thus when for instance q = 2log2 n, we get ε ≤
√

3π
log n

when n is large enough.

Proof. Consider the quadratic residues PRG G : Fq → {0, 1}I as defined in Section

5.1.2.3. The claim follows from Corollary 5.6.3 since G has the 2k/
√
q-almost k-wise

independence property. �

Similar statements can be derived for the quadratic-residues-like PRG’s defined

in Section 5.1.2.3.

5.6.1 Proof of Theorem 5.6.1

The proof is based on Krawtchouk polynomials {K(n)
l (w)}n

l=0,

K(n)
l (x)

def
=

∑

z∈Zn
2 ;w(z)=l

X z(x) =
l∑

i=0

(−1)i

(
w

i

)(
n− w

n− i

)
def
= K(n)

l (w), w = w(x).

Note that the value of K(n)
l : Zn

2 → R on x ∈ Zn
2 depends only on the weight w(x)

of x, thus by abuse of notation K(n)
l ∈ R[w], deg(K(n)

l ) = l. We compile first some

elementary properties of Krawtchouk polynomials that we will be using. See for

instance [Sze75, MRRW77].

• Let β(n) is the binomial measure on [0 : n], i.e

β(n)(w) =
1

2n

(
n

w

)
,
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and let

p
(n)
l =

K(n)
l√(
n
l

) , l = 0, . . . , n.

Then {p
(n)
l }l are orthonormal w.r.t β(n), i.e., Eβ(n)p

(n)
l p

(n)
s = δl,s. Note that this

follows immediately from the orthogonality of the characters {X z}z of Zn
2 .

• Being orthogonal, they satisfy a recurrence relation that takes the form

(l + 1)K(n)
l+1(w) − (n− 2w)K(n)

l (w) + (n− (l − 1))Kn
l−1(w) = 0, (5.15)

for l ≥ 1. Moreover, we have

K(n)
0 (w) = 1 (5.16)

K(n)
1 (w) = n− 2w. (5.17)

Lemma 5.6.5 Let µ be a k-wise independent probability measure on Zn
2 , k ≤ n. Let

a ∈ {0, 1, . . . , n}. Then

Prx∼µ[w(x) = a] ≤ 1

S
(n)
bk/2c(a)

,

where

S
(n)
t (a)

def
=

∑

0≤l≤t

K(n)
l (a)2

(
n
l

) , t = 0, . . . , n.

Proof. We have a linear program:

max
µ

Prx∼µ[w(x) = a],

where we are maximizing over the k-wise independent probability measures µ on Zn
2 .

The dual is

min
g
Eµ0g,
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where µ0 is the uniform measure on Zn
2 , and where we are minimizing over the polyno-

mials g : Zn
2 → R such that deg(g) ≤ k, g ≥ 0, and g(x) ≥ 1, ∀x such that w(x) = a.

Taking advantage of the problem symmetry, we see that the dual is equivalent to the

projected dual:

min
f
Eβ(n)f,

were we are minimizing over the polynomials f ∈ R[w] such that deg(f) ≤ k, f ≥ 0,

and f(a) ≥ 1. We only need to note that the projected dual is an upper bound on the

original dual, which is immediate. The fact that the projected dual is equal to the

original dual follows form the symmetry of the problem by an averaging argument

that takes advantage of the concavity (linearity in our case) of the objective function.

We will get the bound by setting f(w) = f1(w)2, where f1 ∈ R[x] is such that :

f1(a) = 1 and deg(f1) ≤ bk/2c. This will reduce the linear program to a least square

problem, whose exact solution is the claimed bound. Express f1 as f1 =
∑bk/2c

l=0 clpl.

Using the orthonormality of {pl}l, we get

Eβ(n)f =
bk/2c∑

l=0

c2l .

Taking the constraint f1(a) = 1 into consideration, we get the following upper bound

on the projected dual

min{∑l c
2
l : {cp}bk/2c

p=0 s.t.
∑

l clpl(a) = 1} =
1

∑bk/2c
l=0 p

2
l (a)

,

since in general the minimum of ‖y‖2
2, y ∈ RN such that 〈a, x〉 = 1 is 1

‖a‖2
2
. �

The rest of the proof is about estimating the minimum of S
(n)
t (a) over the choice

of a in {0, . . . , n}. Experimentally, it is evident that the minimum occurs at bn
2
c. This

is also very intuitive since this value carries the maximal weigh of β (n), but proving

that the minimum occurs here is very tricky. Evaluating S
(n)
t (a) at a = n

2
, when n

is even, can be done in a systematic way using the recurrence relation (5.15), which

greatly simplifies under these conditions.

157



Lemma 5.6.6 1) If n is even, and 0 ≤ t ≤ n,

S
(n)
t

(
n

2

)
≥

∑

0≤l even ≤t

1

2l

(
l

l/2

)
.

2) As t increase,

∑

0≤l even ≤t

1

2l

(
l

l/2

)
=

√
2

π + o(1)

√
t.

We take care of the case when n is odd by showing that

Lemma 5.6.7 Assume that n is odd, then for any 1 ≤ t ≤ n,

S
(n)
t

(
n− 1

2

)
≥ S

(n−1)
t−1

(
n− 1

2

)
.

The tricky part, is

Lemma 5.6.8 For any n and t such that 0 ≤ t ≤ n, the minimum of S
(n)
t (a) occurs

at a = bn
2
c.

Combining these lemmas, we get:

• when n is even

S
(n)
t (a) ≥ S

(n)
t

(
n

2

)
≥

∑

0≤l even ≤t

1

2l

(
l

l/2

)

• when n is odd

S
(n)
t (a) ≥ S

(n)
t

(
n− 1

2

)
≥ S

(n−1)
t−1

(
n− 1

2

)
≥

∑

0≤l even ≤t−1

1

2l

(
l

l/2

)
.

Hence in general: for each n, each 1 ≤ t ≤ n, and all a ∈ {0, . . . , n},

S
(n)
t (a) ≥

∑

0≤l even ≤t−1

1

2l

(
l

l/2

)
.

We still have to establish the lemmas. We start in the reverse order.
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5.6.1.1 Proof of Lemma 5.6.8

The numerical experiments suggest the correctness of the following stronger statement

Conjecture 5.6.9 Let γ be probability measure on [0 : m], and let {pl}m
l=0, pl ∈ R[w],

deg(pl) = l, be the corresponding family of orthonormal polynomials. Assume that γ

is nondecreasing on [0 : bn
2
c] and that γ(w) = γ(n−w). Assume further that t is odd.

Then
∑t

l=0 pl(w)2 attains its minimum at w = bn
2
c.

But it is not clear at the moment how to prove this statement in this generality.

We will get the lemma by establishing something that is apparently more specific

to Krawtchouk polynomials.

We will argue that

Lemma 5.6.10 Let 0 ≤ l ≤ n− 1. Then

K(n)
l (w)2

(
n
l

) +
K(n)

l+1(w)2

(
n

l+1

)

attains its minimum at w = bn
2
c.

This implies Lemma 5.6.8. Indeed, if t is odd, we can group the t+1 terms in the

expression of S
(n)
t (w) into t+1

2
term each as in Lemma 5.6.10. If t is even, noting that

S
(n)
0 (w) = 1 (via (5.16)), we can group the last t terms in the expression of S

(n)
t (w)

into t
2

term each as in Lemma 5.6.10.

To establish Lemma 5.6.10, it is instructive to prove it first for Hermite polyno-

mials which are in a suitable setting (that is not sufficient for our purposes) limits

of Krawtchouk polynomials. Then, we will imitate the proof in the Krawtchouk

polynomials setting. Normalized Hermite polynomials {H̄l(x) = 1√
2ll!
Hl(x)}∞l=0 are

orthonormal polynomials w.r.t to the Gaussian density 1√
π
e−x2/2 on R, and they sat-

isfy

Hl(x) = 2xHl−1(x) − 2(l − 1)Hl−2(x) (5.18)

d

dx
Hl(x) = 2lHl−1(x). (5.19)
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See for instance [Sze75].

We show that

Lemma 5.6.11 Let l ≥ 0. Then

H̄l(x)
2 + H̄l+1(x)

2

attains its minimum at x = 0.

Proof. If l = 0, the proof is straight forward, so assume l ≥ 1. Let

Vl(x)
def
= 2ll!(H̄l(x)

2 + H̄l+1(x)
2) = Hl(x)

2 +
1

2(l + 1)
Hl+1(x)

2.

Then
d

dx
Vl(x) = 2lHl(x)

d

dx
Hl(x) +

1

l + 1
Hl+1(x)

d

dx
Hl+1(x).

Using (5.19), and then (5.18), we get

d

dx
Vl(x) = 2Hl(x)(2lHl−1(x) +Hl+1(x)) = 4xHl(x)

2,

and hence the lemma. �

We have the recurrence relation (5.15) for Krawtchouk polynomials, i.e., an analog

to (5.18). To adapt this proof we need to find an analog to (5.19).

Lemma 5.6.12 Let 0 ≤ w ≤ n− 1 be an integer.

a) If 1 ≤ l ≤ n− 1,

K(n)
l (w + 1) −K(n)

l (w) = −2K(n−1)
l−1 (w).

b) If 0 ≤ l ≤ n− 1,

K(n)
l (w + 1) + K(n)

l (w) = 2K(n−1)
l (w).
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Proof. Define x(w,n) ∈ Zn
2 by

x
(w,n)
i

def
=





1 if i ≤ w,

0 if i > w.

Thus

K(n)
l (w) =

∑

z∈Zn
2 ;w(z)=l

X z(x
(w,n)).

a) Accordingly,

K(n)
l (w + 1) − K(n)

l (w) =
∑

z∈Zn
2 ;w(z)=l

(
X z(x

(w+1,n)) − X z(x
(w,n))

)

=
∑

z∈Zn
2 ;w(z)=l

X z(x
(w,n)) ((−1)zw+1 − 1)

= −2
∑

z∈Zn
2 ;w(z)=l and zw+1=1

X z(x
(w,n))

= −2
∑

z∈Zn−1
2 ;w(z)=l−1

X z(x
(w,n−1)).

b) And similarly,

K(n)
l (w + 1) + K(n)

l (w) =
∑

z∈Zn
2 ;w(z)=l

X z(x
(w,n)) ((−1)zw+1 + 1)

= 2
∑

z∈Zn
2 ;w(z)=l and zw+1=0

X z(x
(w,n))

= 2
∑

z∈Zn−1
2 ;w(z)=l

X z(x
(w,n−1)).

�

Proof of Lemma 5.6.10. For integer values of w, let

Ul(w)
def
=

(
n

l

)
K(n)

l (w)2

(
n
l

) +
K(n)

l+1(w)2

(
n

l+1

)


 = K(n)

l (w)2 +
l + 1

n− l
K(n)

l+1(w)2.
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If l = 0, we know from (5.16) and (5.17), that U0(w) = 1 + 1
n
(n− 2w), and hence the

claim is obvious in this case. Assume that l ≥ 1. We have

Ul(w) − Ul(w + 1) = K(n)
l (w)2 −K(n)

l (w + 1)2 +
l + 1

n− l

(
K(n)

l+1(w)2 − K(n)
l+1(w + 1)2

)

=
(
K(n)

l (w) − K(n)
l (w + 1)

) (
K(n)

l (w) + K(n)
l (w + 1)

)

+
l + 1

n− l

(
K(n)

l+1(w) −K(n)
l+1(w + 1)

) (
K(n)

l+1(w) + K(n)
l+1(w + 1)

)

= 4K(n−1)
l−1 (w)K(n−1)

l (w) + 4
l + 1

n− l
K(n−1)

l (w)K(n−1)
l+1 (w)

=
4

n− l
K(n−1)

l (w)
(
(l + 1)K(n−1)

l+1 (w) + (n− l)K(n−1)
l−1 (w)

)

=
4

n− l
K(n−1)

l (w)(n− 1 − 2w)K(n−1)
l (w)

=
(
n− 1

2
− w

)
8

n− l
K(n−1)

l (w)2, (5.20)

where the third equality is from Lemma 5.6.12, and the one before the last is from

the recurrence relation (5.15), which at n− 1 becomes

(l + 1)K(n−1)
l+1 (w) − (n− 1 − 2w)K(n−1)

l−1 (w) + (n− l)K(n−1)
l−1 (w) = 0.

This completes the proof of Lemma 5.6.10. Note that when n is odd, we have

Ul(
n−1

2
) = Ul(

n+1
2

).

�

5.6.1.2 Proof of Lemma 5.6.7

We need the following relation along the lines of Lemma 5.6.12.

Lemma 5.6.13 Let 0 ≤ w ≤ n− 1 and l ≥ 1 be integers, then

K(n)
l (w) = K(n−1)

l (w) + K(n−1)
l−1 (w).

Proof. In the notations of Lemma 5.6.12, we have

K(n)
l (w) =

∑

z∈Zn
2 ;w(z)=l

X z(x
(w,n))
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=
∑

z∈Zn
2 ;w(z)=l and zn=0

X z(x
(w,n)) +

∑

z∈Zn
2 ;w(z)=l and zn=1

X z(x
(w,n))

=
∑

z∈Zn−1
2 ;w(z)=l

X z(x
(w,n−1)) +

∑

z∈Zn−1
2 ;w(z)=l−1

X z(x
(w,n−1)).

�

Accordingly, when n is odd, we have

K(n)
l

(
n− 1

2

)2

= K(n−1)
l

(
n− 1

2

)2

+ K(n−1)
l−1

(
n− 1

2

)2

+2K(n−1)
l

(
n− 1

2

)
K(n−1)

l−1

(
n− 1

2

)

= K(n−1)
l

(
n− 1

2

)2

+ K(n−1)
l−1

(
n− 1

2

)2

,

since K(n−1)
v

(
n−1

2

)
= 0 when v is odd (this follows from (5.15) and (5.17)). Therefore,

S
(n)
t

(
n− 1

2

)
=

t∑

l=0

1(
n
l

)K(n)
l

(
n− 1

2

)2

= 1 +
t∑

l=1

1(
n
l

)
(
K(n−1)

l

(
n− 1

2

)2

+ K(n−1)
l−1

(
n− 1

2

)2
)

=
t−1∑

l=0


 1(

n
l

) +
1(
n

l+1

)


K(n−1)

l

(
n− 1

2

)2

+
1(
n
t

)K(n−1)
t

(
n− 1

2

)2

.

Noting that

1(
n
l

) +
1(
n

l+1

) =
1

n
n−l

(
n−1

l

) +
1

n
l+1

(
n−1

l

) =
(
1 +

1

n

)
1(

n−1
l

) ,

we get

S
(n)
t

(
n− 1

2

)
=

(
1 +

1

n

)
S

(n−1)
t−1

(
n− 1

2

)
+

1(
n
t

)K(n−1)
t

(
n− 1

2

)2

≥ S
(n−1)
t−1

(
n− 1

2

)
,

for each t ≥ 1.
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5.6.1.3 Proof of Lemma 5.6.6

1) When n is even and w = n
2
, (5.15), (5.17), and (5.16) simplify to

lK(n)
l

(
n

2

)
+ (n− l + 2)K(n)

l−2

(
n

2

)
= 0 , K(n)

1

(
n

2

)
= 0 , and K(n)

0

(
n

2

)
= 1.

Therefore, when l is odd,

K(n)
l

(
n

2

)
= 0,

and, when l ≥ 2 is even,

K(n)
l

(
n

2

)
= ±n− (l − 2)

l
× n− (l − 4)

l − 2
× . . .× n− 2

4
× n

2
.

Thus, when l ≥ 2 is even,

K(n)
l

(
n
2

)2

(
n
l

) =

(
n×(n−2)×(n−4)×...×(n−(l−2))

2×4×...×l

)2

n×(n−1)×...×(n−(l−1))
l×(l−1)×...×2×1

=
(l − 1) × (l − 3) × (l − 3) × . . .× 3 × 1

l × (l − 2) ××(l − 4) × . . .× 2
× n

n− 1

n− 2

n− 3
. . .

n− (l − 2)

n− (l − 1)

≥ (l − 1) × (l − 3) × (l − 3) × . . .× 3 × 1

l × (l − 2) ××(l − 4) × . . .× 2

=

l!
2l/2(l/2)!

2l/2(l/2)!

=
1

2l

(
l

l/2

)
.

It follows that

S
(n)
t

(
n

2

)
≥

∑

0≤l even ≤t

1

2l

(
l

l/2

)
.

2) From Sterling approximation

√
2πmm+ 1

2 e−m+ 1
12m+1 < m! <

√
2πmm+ 1

2 e−m+ 1
12m ,

we have √
2

π

1√
l
e−( 1

6l
− 1

12l+1
) <

1

2l

(
l

l/2

)
<

√
2

π

1√
l
e−( 2

12l+1
− 1

12l
),
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when l ≥ 2. Moreover, for each even t0 ≥ 2, and each even t > t0,

2
∑

t0+2≤l even ≤t

1√
l
<
∫ t+2

t0

dl√
l
< 2

∑

t0≤l even ≤t

1√
l

It follows that, for each t,

∑

0≤l even ≤t

1

2l

(
l

l/2

)
= (1 − o(1))

√
2

π

1

2

∫ t

1

dl√
l

=

√
2t

π + o(1)
,

where the asymptotic statement is in terms of the growth of t.

5.7 Poly-log-wise independence versus AC0

We consider in this section the problem of derandomizability of AC0 by arbitrary

k-wise independent probability measures, when k is made polylogaritmically large

enough. We reduce this problem to a conjecture about the the symmetry of the opti-

mum of some symmetric optimization problem with linear constraints and a nonlinear

objective function.

Consider the following problem which was essentially proposed by Linial and Nisan

[LN90].

Problem 5.7.1“k-wise independent versus AC0”: How large should k be as a func-

tion of n,M, d, and ε so that the k-wise independence property is sufficient to ε-fool

any AND-OR circuit on n bits of size M , depth d, and unbounded fanin?

The generality of the problem has many potential applications. We explain in

Section 5.7.1 its relation to δ-biased probability measures, an application related

to the distribution of quadratic residues, and its dual which is asking for a new

characterization of AC0 by low-degree polynomials over the reals.

First, we reduce Problem 5.7.1 in Section 5.7.2 to to the following question.

Problem 5.7.8“Low-degree polynomial predictors”: How large should k be in terms

of h and n, so that if X1, . . . , Xn+1 are binary k-wise independent random variables,

no degree ≤ h polynomial p over the reals on X1, . . . , Xn can predict the value of
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Xn+1 with a probability significantly better than 1/2?

The reduction corresponds to the case when h is polylogarithmic in n, and is based

on the approximability of AC0 circuits by low-degree polynomial over the reals (Beigel,

Reingold, and Spielman [BRS91], Aspnes, Beigel, Furst, and Rudich [ABFR94]), and

the unpredictability perspective in Section 5.2.

Using Theorem 5.6.1 (Limited independence versus weight probability lemma),

we establish in Section 5.7.3 a good bound in the restricted setting of Problem 5.7.8

corresponding to the case when p is a symmetric polynomial.

We show that if k ≥ 16πh2, h is larger than some absolute constant, and X1, . . . ,

Xn+1 are binary k-wise independent random variables, then no symmetric degree-

h polynomial over the reals on X1, . . . , Xn can predict the value of Xn+1 with a

probability larger than 1/2.

Due to the highly symmetric nature of Problem 5.7.8, we conjecture in Section

5.7.4 the following.

Conjecture 5.7.14: The symmetric case is a worst case. In other words, for all 0 ≤
h, k ≤ n, when maximizing the probability that a degree ≤ h polynomial on x1, . . . , xn

successfully predicts the last bit of a k-wise independent probability measure on

{0, 1}n+1, over the choice of the polynomial and the measure, the maximum is attained

by a symmetric polynomial and (consequently) a symmetric measure.

Establishing this conjecture will pull the bound we established in the symmetric

case to the more general setting of Problem 5.7.8, and consequently will resolve in

a satisfactory way Problem 5.7.1. The correctness of the symmetric optimum con-

jecture implies that in order to guarantee that the k-wise independence property is

sufficient to M−Θ(1)-fool any size-M depth-d circuit in AC0, it sufficient to make

k = Θ(log4dM).

5.7.1 The AC0 conjectures

Problem 5.7.1 [LN90] “k-wise independence versus AC0”: How large should k be

so that the k-wise independence property is sufficient to ε-fool any circuit on n-bits of

size M , depth d, and unbounded fanin?
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Denote the minimum such k by K5.7.1
AC0

(n,M, d, ε).

Problem 5.7.2 “δ-bias versus AC0”: How small should δ be so that the δ-bias prop-

erty is sufficient to ε-fool any AND-OR circuit on n-bits of size M , depth d, and

unbounded fanin?

Denote the minimum such δ by δ5.7.2
AC0

(n,M, d, ε).

Conjecture 5.7.3 “The poly-log-wise independence versus AC0 conjecture”:

K5.7.1
AC0

(n, nO(1), d, o(1)) = O(logO(d) n),

when d = O(1).

Conjecture 5.7.3 can be called the relaxed Linial-Nisan conjecture since Linial

and Nisan originally conjectured in [LN90] that K5.7.1
AC0

(n,M, d, 0.1) ≤ logd−1 M , but

with these tight parameters this statement is apparently not correct as noted in Luby

and Velickovic [LV96]. Using their result stated in Theorem 5.5.6, Linial and Nisan

established the bound K5.7.1
AC0

(n,M, 2, 0.1) ≤
√
M logM . Note that this is only slightly

better than the trivial bound.

The correctness of the symmetric optimum conjecture, that we state in Section

5.7.4, implies that K5.7.1
AC0

(n,M, d,M−Θ(1)) = O(log4dM).

Recall that Corollary 5.5.12 is a statement about the correctness of Conjecture

5.7.1 in the special case of read-once DNF formulas.

Conjecture 5.7.4 “The inverse-quasi-poly-bias versus AC0 conjecture”:

δ5.7.2
AC0

(n, nO(1), d, o(1)) = Ω(2− logO(d) n),

when d = O(1).

It follows from (b) in Theorem 5.1.3 that

− log δ5.7.2
AC0

(n,M, d, ε) ≤ K5.7.1
AC0

(n,M, d,
ε

2
) logn+ log

2

ε
. (5.21)
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Thus

Proposition 5.7.5 Conjecture 5.7.3 implies Conjecture 5.7.4.

From Corollaries 5.2.5 and 5.2.6, the dual perspective is as follows

Corollary 5.7.6 1) Conjecture 5.7.4 is equivalent to: For any f : {0, 1}n → {0, 1}
that is computable by an AC0 circuit of depth d, there exists f1, f2 : Zn

2 → R

such that

a) ‖f̂1‖1, ‖f̂2‖1 = O(2logO(d) n)

b) f1 ≤ f ≤ f2

c) E(f2 − f1) = o(1).

2) Conjecture 5.7.3 is equivalent to: For any f : {0, 1}n → {0, 1} that is computable

by an AC0 circuit of depth d, there exists f1, f2 : {0, 1}n → R such that

a) deg(f1), deg(f2) = O(logO(d) n)

b) f1 ≤ f ≤ f2

c) E(f2 − f1) = o(1).

Compare this with the known approximation of AC0 by low degree polynomials

summarized in Section 5.1.2.1. See Remark 5.1.4.

Note that Nisan generator for AC0 (see Section 5.1.2.2) is a special O(logO(d))

n)-wise probability measure. It is also linear. See Section 5.8.2.3 for a comparison of

Nisan generator with arbitrary linear k-wise independent measures.

Finally, observe that by arguing as in Corollary 5.5.3, we can derive some conse-

quences of small bias conjecture to the distribution of quadratic residues as follows.

Let S1, . . . , Sm be arbitrary subsets of Fq. Let Q be the set of quadratic residues

in F×q . Let I = ∪iSi, ~1 ∈ ZI
2 the all ones vector, and n = |I|. Then

∣∣∣∣∣
1

q
#{a ∈ Fq : Si + a 6⊂ Q, ∀i} − 1

2n
#{z ∈ ZI

2 : z|Si
6= ~1|Si

, ∀i}
∣∣∣∣∣ ≤ ε,
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where ε is such that δ5.7.2
AC0

(n,m, 2, ε) ≥ 2n/
√
q.

Compare with Corollary 5.5.3. Similar statements can be derived for the quadratic-

residues-like PRG’s defined in Section 5.1.2.3.

5.7.2 Low-degree polynomials predictors

Consider

Theorem 5.7.7 [BRS91, ABFR94] Let f : {0, 1}n → {0, 1} be computable by an

AND-OR depth-d circuit of size M with unbounded fanin. Then there exists a family

of functions {pα}α∈I , pα ∈ Z[x1, . . . , xn], and I some index set such that

1) the degree of each pα is at most h = hd
0, h0 = O(log M

θ
logM)

2) for each x in {0, 1}n, Prα∈I [pα(x) 6= f(x)] ≤ θ,

where θ > 0 is tunable.

Note that the maximum absolute value of each pα on {0, 1}n can be as large as

2O(log M
θ

log M)d
, and that E|pα − f | is potentially as large as θ2O(log M

θ
log M)d

.

Note also that the statement in [BRS91, ABFR94] is (4) in Section 5.1.2.1. But,

we need the stronger statement in Theorem 5.7.7 which can be extracted from the

proof in [BRS91, ABFR94] used to establish (4).

Using Theorem 5.7.7 and Lemma 5.2.7, we can reduce Problem 5.7.1 (k-wise

independence versus AC0) to

Problem 5.7.8 “Low-degree polynomials predictors”: Let µ be a k-wise independent

probability measure on Zn+1
2 . Let p : Zn

2 → R such that deg(p) ≤ h. How large should

k be with respect to n, h, and ε, so that

Prx∼µ[p(x1, . . . , xn) = xn+1] ≤
1

2
+ ε? (5.22)

Denote minimum such k by K5.7.8
poly−pred(n, h, ε).

169



It is important to stress here that essence of Problem 5.7.8 is that that p can take

values other than 0 and 1.

The relation is as follows.

Lemma 5.7.9 K5.7.1
AC0

(n,M, d, ε) ≤ K5.7.8
poly−pred(n, h

d
0, (1 − α)ε

2
), where

h0 = O(log 2M
αε logM), and 0 < α ≤ 1 tunable.

Proof. Using Lemma 5.2.7, there is f ′ : {0, 1}n → {0, 1} of the same circuit com-

plexity as f , and a measure µ′ on {0, 1}n+1 in the same class of µ such that

Prx∼µ′[f ′(x1, . . . , xn) = xn+1] >
1

2
+
ε

2
. (5.23)

Now consider the family of polynomials {pα}α∈I , pα ∈ Z[x1, . . . , xn], with respect to

f ′ in the setting of Theorem 5.7.7. Since for each x in Zn
2 , Prα∈I [pα(x) 6= f ′(x)] ≤ θ,

we get that there is α ∈ I such that Prx∼µ′[pα(x) 6= f ′(x)] ≤ θ. Hence there exists a

p : Zn
2 → Z such that

1) deg(p) ≤ h
def
= hd

0, h0 = c log M
θ

logM , c > 0 a constant

2) Prx∼µ′[p(x|[n]) = xn+1] >
1
2

+ ε
2
− θ,

where θ can be tuned. Set θ = αε/2. �

Thus Conjecture 5.7.3 (The poly-log-wise versus AC0 conjecture) follows from

Conjecture 5.7.10 K5.7.8
poly−pred(n, h, o(1)) = poly(logn, h).

We will establish in the next section this conjecture in the special case when p is

a symmetric polynomial, which will lead us to the more specific version

Conjecture 5.7.11 K5.7.8
poly−pred(n, h, 0) = O(h2).

Remark 5.7.12 Note that we need to proceed in Problem 5.7.8 (Low-degree poly-

nomials predictors) by unpredictability in the sense that we cannot hope to go far

with the following question. Consider the k-wise independent situation. If p is a low

degree polynomial on {0, 1}n, how large can

ε = |Prx∈{0,1}n[p(x) = 0] − Prx∼µ[p(x) = 0]|
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be when µ is a k-wise independent probability measure on Zn
2 and k is large enough?

The issue with this question is that ε cannot be made arbitrarily polynomially small.

For instance, say that µ is the discrete probability measure supported by a linear

code defined by the single constraint which requires that the parity of all the variables

x1, . . . , xn is zero. Say also that n is even and that p(x) =
∑n

i=1 xi − n/2 − 1. Then

µ is (n − 1)-independent, and the degree of p is 1. But ε = Θ( 1√
n
). So with this

question we cannot hope to achieve an ε below Θ( 1√
n
) (e.g. ε = n−3 is not achievable)

regardless of how large we make k as long we are below k = n.

5.7.3 A good bound in the symmetric case

Assuming that the polynomial p in Problem 5.7.8 (Low-degree polynomials predictors)

is symmetric, we establish the following bound. The bound is consequence of Theorem

5.6.1 (Limited independence versus weight probability lemma).

Theorem 5.7.13 Consider Problem 5.7.8 (Low-degree polynomials predictors) in

the special case when p is restricted to be a symmetric polynomial on the variables

x1, . . . , xn, i.e., assume that p : Zn
2 → R is such that the value of p(x) on x ∈ Zn

2

depends only on the weight w(x) of x.

Let K5.7.8
poly−pred−symm(n, h, ε) be the corresponding minimum.

Then

K5.7.8
poly−pred−symm(n, h, 0) ≤ 16πh2

when h is larger than some absolute constant.

This means that under these conditions the chances of predicting xn+1 correctly

cannot be better than the value 1/2, which is achieved by the constant polynomials

p = 1 or p = 0.

Proof. Let µ be a k-wise independent probability measure on Zn+1
2 , k ≥ 2. We will

use the following consequences of the k-wise independence of µ:

• The projection µ′ of µ on Zn
2 , i.e.,

µ′(x1, . . . , xn) = µ(x1, . . . , xn, 0) + µ(x1, . . . , xn, 1),
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is k-wise independent.

• The last bit xn+1 of µ is unbiased, i.e., Prx∼µ[xn+1 = 1] = 1
2
.

Let p : Zn
2 → R be a symmetric polynomial on the variables x1, . . . , xn. Assume that

deg(p) ≤ h. We will show that if

∑

0≤l even l≤bk/2c−1

1

2l

(
l

l/2

)
≥ 4h, (5.24)

or equivalently if,

k ≥ 16πh2 when h ≥ some absolute constant, (5.25)

then

Prx∼µ[p(x1, . . . , xn) = xn+1] ≤
1

2
. (5.26)

Let

β = Prx∼µ[p(x1, . . . , xn) = xn+1],

and let µ′ be the projection of µ

If the degree of p is zero, then β = 1
2

when p = 0 or p = 1, and β = 0 otherwise. So

assume that deg(p) ≥ 1. Since p(x) depends on the weight of x, let f be a univariate

polynomial in R[a], deg(f) ≤ h, such that p(x) = f(w(x)) for each x ∈ Zn
2 . Let S0

be the set of solutions of in R of the equation f(a) = 0, and S1 those of the equation

f(a) = 1. So |S0|, |S1| ≤ h, and for each x ∈ Zn+1
2 satisfying p(x1, . . . , xn) = xn+1, we

have w(x1, . . . , xn) ∈ S0 ∪ S1. Therefore

β ≤ Prx∼µ′[w(x) ∈ S0 ∪ S1] ≤ |S0 ∪ S1| max
a∈{0,...,n}

Prx∼µ′[w(x) = a].

Using Theorem 5.6.1, and the bound |S0 ∪ S1| ≤ 2h, we get

β ≤ 2h
∑

0≤l even l≤bk/2c−1
1
2l

(
l

l/2

) ≤ 1

2
,
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where the last inequality is (5.24). The asymptotic expression in Theorem 5.6.1 means

that (5.24) is equivalent to k ≥ 16(π + o(1))h2, and hence (5.25) since since k and h

are integers and π is irrational. �

It is important to note that we partially used in the proof the fact that µ is k-

wise independent. We only used the fact that µ′ is k-wise independent, and that

the last bit of µ is unbiased. In general when p is not symmetric, we know that we

must use the limited independence properties of the last bit. However, the symmetry

of the problem suggests the following conjecture: in the setting where µ is k-wise

independent, the worst case is achievable by a symmetric polynomial.

5.7.4 The symmetric optimum conjecture

Accordingly, we can reduce Problem 5.7.8 (Low-degree polynomials predictors) to the

following conjecture.

Conjecture 5.7.14 K5.7.8
poly−pred(n, h, 0) = K5.7.8

poly−pred−symm(n, h, 0).

In other words, the worst case of Problem 5.7.8 is achievable by a symmetric

polynomial.

Backtracking, we get from Theorem 5.7.13, Lemma 5.7.9, and Proposition 5.7.5

that

Proposition 5.7.15 Conjecture 5.7.14 implies:

• Conjecture 5.7.11 (The K5.7.8
poly−pred(n, h, 0) = O(h2) conjecture),

• Conjecture 5.7.4 (The inverse-quasi-poly-bias versus AC0 conjecture), and

• Conjecture 5.7.3 (The poly-log-wise independence versus AC0 conjecture).

It specifically implies that K5.7.1
AC0

(n,M, d,M−Θ(1)) = O(log4d M), when d = O(1).

Note that Problem 5.7.8 (Low-degree polynomials predictors) can be phrased as

a symmetric optimization problem over linear constraints as follows.
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We are interested in

Φ(n, h, k)
def
= max

p,µ
Prx∼µ[p(x1, . . . , xn) = xn+1],

where we are optimizing over the polynomials p : Zn
2 → R, deg(p) ≤ h, and the k-wise

independent probability measures µ on Zn+1
2 .

Denote the R-linear subspace {f : Zm
2 → R} by L(Zm

2 ).

Let M ⊂ L(Zn+1
2 ) be the convex polytope consisting of µ ∈ L(Zn+1

2 ) satisfying:

µ ≥ 0,
∑

x µ(x) = 1, and
∑

x µ(x)X z(x) = 0 for each z 6= 0 ∈ Zn+1
2 such that w(z) ≤ k.

Let P be the linear subspace of L(Zn
2 ) consisting of all the functions p in L(Zn

2 )

satisfying:
∑

x p(x)X y(x) = 0 for each y ∈ Zn
2 such that w(y) > h.

Finally, let U : L(Zn+1
2 ) × L(Zn

2 ) → R be given by

U(µ, p) =
∑

{µ(x) : x ∈ Zn+1
2 s.t. p(x1, . . . , xn) = xn+1}

Then

Φ(n, h, k) = max
(µ,p)∈M×P

U(µ, p). (5.27)

The symmetric group Sm of permutations π of {1, . . . , m} acts on the vector

space L(Zm
2 ) = {f : Zn

2 → R} by permutations of the variables, i.e., via (ρπf)(x) =

f((xπ(i))i). Sn acts also on L(Zn+1
2 ) in a natural way when Sn is identified with the

subgroup of Sn+1 consisting of the permutations that leave n+ 1 fixed. Thus Sn acts

on L(Zn
2 ) × L(Zn+1

2 ) naturally via ρπ(f, µ) = (ρπf, ρπµ). In this sense we have:

a) U is invariant under the action of Sn, i.e., U(ρπ(p, µ)) = U(p, µ), ∀π ∈ Sn.

b) P is symmetric under the action of Sn, i.e., ρπ(P ) = P , ∀π ∈ Sn.

c) M is symmetric under the action of Sn+1, i.e., ρπ(M) = M , ∀π ∈ Sn+1.

Conjecture 5.7.14 can be stated as follows: For each 0 ≤ h, k ≤ n, the maximum in

(5.27) is achievable by a pair (p∗, µ∗) invariant under the action of Sn, i.e., ρπp
∗ = p∗

and ρπµ
∗ = µ∗, ∀π ∈ Sn, Or equivalently, by a a pair (p∗, µ∗) such that p∗ is a

symmetric polynomial on the variables x1, . . . , xn.
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A final remark is that U is obviously not convex, and the above general symmetry

remarks are unlikely to be sufficient alone if we ignore the other special features of

the problem. Resolving the conjecture should involve taking more advantage of the

structure of U, P , and M .

5.8 Parity with encrypted linear help

We study in this section the problem of approximability of high-degree parity func-

tions on high-dual-distance binary linear codes by low-degree polynomials with coeffi-

cients in fields of odd characteristics. This problem has applications to the derandom-

izability of AC0 or low-degree polynomial equations on binary input variables with

coefficients in small finite fields of odd order by binary linear codes with sufficiently

large dual distance. Among other results, we relax this problem into essentially a

single low-dimensional low-complexity linear program in terms of Krawtchouk poly-

nomials. We leave the problem of bounding the optimum of the linear program open.

5.8.1 Summary

We consider the following special case of Problem 5.7.8 (Low-degree polynomials

predictors).

Problem 5.8.2 “Parity with encrypted linear help”: Let F = Q or Fq, q an odd

prime. Let C be a block-length n binary linear code and X be a parity function on

C such that:

1) the dual distance of C is above k

2) any realization of X on C requires a XOR of more than k bits.

How large should k be with respect to n, h, and ε, so that X cannot be approximated

on C with a probability larger than 1/2 + ε by a degree ≤ h polynomial p on the n

bits of C with coefficients in F ?

Our interest in this problem is motivated by the following applications:
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• When F = Fq, q = O(1), this problem is essentially equivalent to the usability

of arbitrary binary linear codes with sufficiently large dual distance to fool low-

degree polynomial equations over binary input variables with coefficients in F .

See Lemma 5.8.4.

• When F = Q or Fq, q = O(1), the problem of derandomizability of AC0 by

arbitrary linear codes with sufficiently large dual distance can be efficiently

reduced to Problem 5.8.2 with h polylogarithmic in n. See Section 5.8.2.2. In

the rationals case, this relation is a special case of the reduction in Section

5.7.2. In the finite-fields case the reduction is based on the AC0 versus low-

degree polynomials theorem of Razborov [Raz87].

The classical parity approximability problem by low-degree polynomials corre-

sponds to the case when C = {0, 1}n and X is a parity on all the n bits of C. The

classical problem was resolved to some extent by Smolensky [Smo87] who argued that

parity on the {0, 1}n cannot be approximated by a degree h = o(
√
n) polynomial with

a probability larger than 1
2

+ Ω( h√
n
). Note that the error term h√

n
is very unlikely to

be tight. For instance, when h = 1, and F = F3, the error term appear experimen-

tally to be 2−Θ(n). Moreover, assuming Conjecture 5.7.14 (The symmetric optimum

conjecture), the error term is zero when F = Q and k > 16πh2.

We argue in Section 5.8.3.4 that the argument of Smolensky provably fails to

generalize to the setting of Problem 5.8.2 (Parity with encrypted linear help) in the

typically case when the minimum distance of the code C (not the dual) grows linearly

with the block length. The reason is that, in such a case, the graph constructed by

modding out the Hamming cube by the dual of C is a good expander. Roughly, this

invalidate the geometric argument of Smolensky since this argument is essentially

based on the low expansion of some sets of probability 1/2 in the Hamming cube.

The Nisan generator for AC0 (see Section 5.1.2.2) is a linear code and hence falls

in this category of PRG’s. The argument behind Nisan generator is by reduction to

the problem of approximability of parity on the whole Hamming cube. We argue in

Section 5.8.2.3 that arguing by reduction fails to generalize to arbitrary linear code
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with sufficiently large dual distance. The failure occurs provably in the typical case

when – again – the minimum distance of the code C (not the dual) grows linearly with

the block length. The meaning of the failure of the reduction in such a case is that the

extra information given to the original circuit or the polynomial is written in a format

which is too hard for a small constant-depth circuit or a low-degree polynomial to

reproduce even partially.

We explain the algebraic interpretation of Problem 5.8.2 (Parity with encrypted

linear help) in Section 5.8.3.3. Algebraically, this problem is about bounding the

dimension of the space of solutions of a type of difference equations on Cayley graphs

based on linear codes, or, equivalently, the problem of bounding the dimension of

the vector space spanned by translations of a function on the graph whose support

has a special geometry. We use the later formulation to conclude that Smolensky’s

argument does not generalize.

Then we proceed by doubly relaxing Problem 5.8.2.

5.8.1.1 The first relaxation

We know from Smolensky’s work [Smo87] that parity on the Hamming cube cannot

be approximated by a low-degree polynomial. The setting of Problem 5.8.2 (Parity

with encrypted linear help) is parity on a linear code. Consider (1) and (2) in Problem

5.8.2. What (2) is saying is that all the realizations of this help are difficult on the

low-degree polynomial, i.e., the help is in a suitable sense encrypted and potentially

useless. What (1) is saying is that the code is k-wise independent. This is supposed

to make the help even more useless, but (2) is already a relatively strong condition

alone. We relax the problem by dropping (1). This drastically simplifies the problem.

We note in Section 5.8.4 that, by dropping (1), we can reduce to the case when the

polynomial p has degree 1. We can reduce further to the setting when the polynomial

has all its coefficients equal to 1 in the small finite-fields case. In the rationals case,

we can reduce to a similar setting where all the coefficients of the linear form are ±1

under bounds on the coefficients of the original polynomial, which are consistent with

the AC0 situation. See Section 5.8.5.3.
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5.8.1.2 The LP relaxation

Then motivated by Delsarte LP coding bound [Del73], we relax the resulting prob-

lem further into a low-dimensional low-complexity linear program. The relaxation

corresponds to relaxing the problem of optimizing on linear codes to the problem of

optimizing on probability measures whose Fourier transform is nonnegative.

In the special case of linear codes, we can look at Delsarte LP coding bound as a

bound via this relaxation. See Lemma 5.8.19. Recall that we studied in Lemma 5.3.4

this relaxation carefully and we characterized the position of linear codes in the set

of all probability measures whose Fourier transforms is nonnegative.

To test the goodness of the relaxation in the setting of Problem 5.8.2 (Parity with

encrypted linear help), we test it on the following related problem. How small can a

linear code C of block-length n be if we know that there is a parity function X on C

s.t any realization of X on C requires a XOR of more than k bits. This is equivalent

to asking how large can a coset of a linear code be if we know that it has no element

of weight below d = k + 1 bit. Let Md the maximum. By applying the relaxation to

this problem, we argue in Lemma 5.8.16 that we get the following linear program.

Let f : [0 : d] × [0 : n− d] → R,

f(w1, w2) =





2n if w1 + w2 = 0

0 o.w.
.

Let M̃d = min Eβg, where we are optimizing on g : [0 : d]× [0 : n−d] → R such

that with ĝ : [0 : d] × [0 : n− d] → R related to g via

g(w1, w2) =
∑

l1,l2

ĝ(l1, l2)K(d)
l1

(w1)K(n−d)
l2

(w2),

where the {K(m)
t (v)}t are the Krawtchouk polynomials, we have

a) g ≥ f

b) ĝ(l1, l2) ≤ 0, when l1 ≤ l2 and l1 + l2 6= 0,
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where β is the product binomial measure on [0 : d] × [0 : n − d]. Here we are

using the notation [n1 : n2]
def
= {n1, . . . , n2}.

By suitably constructing g, we argue in Lemma 5.8.17 that M̃d = Md = 2n−d. This

is an indication of the goodness of the relaxation.

By similarly relaxing the reduced version of Problem 5.8.2 (Parity with encrypted

linear help), i.e., after the first relaxation summarized in Section 5.8.1.1, we show in

Lemma 5.8.15 that we obtain the following linear program.

The finite fields case: Let b0 ∈ Fq, q a small odd prime (e.g. q = 3), and

f : [0 : k + 1] × [0 : n− k − 1] → {0, 1} be given by

f(w1, w2) =





1 if w1 + w2 + b0 = (−1)w1 (mod q)

0 o.w.
.

How large should k be so that there exists ĝ : [0 : k + 1] × [0 : n− k − 1] → R

such that with g : [0 : k + 1] × [0 : n− k − 1] → R given by

g(w1, w2) =
∑

l1,l2

ĝ(l1, l2)K(k+1)
l1

(w1)K(n−k−1)
l2

(w2),

we have

i) g ≥ f

ii) Eβg ≤ 1
2

+ ε

iii) ĝ(l1, l2) ≤ 0, when l1 ≤ l2 and l1 + l2 6= 0,

where β is the product binomial measure on [0 : k + 1] × [0 : n− k − 1]?

In the bounded-coefficients rational case, we end up in Section 5.8.5.3 with the fol-

lowing linear program.

The rational case: Let s1, s2, s3, s4 be nonnegative integers such that s1 + s2 =

k+1 and s1 + s2 + s3 + s4 = n. Let b0 and u be integers such that u is nonzero.
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Let f :
∏4

i=1[0 : si] → {0, 1} be given by

f(w) =





1 if w1 + w3 − w2 − w4 + b0 = u(−1)w1+w2

0 o.w.
.

How large should k be so that there exists g :
∏4

i=1[0 : si] → R such that with

g :
∏4

i=1[0 : si] → R given by

g(w) =
∑

l

ĝ(l)
4∏

i=1

K(si)
li

(wi),

we have

i) g ≥ f

ii) Eβg ≤ 1
2

+ ε

iii) ĝ(l) ≤ 0, when l1 + l2 ≤ l3 + l4 and l1 + l2 + l3 + l4 6= 0,

where β is the product binomial measure on
∏4

i=1[0 : si]?

What is interesting about this relaxation is that we have now a single low-dimensional

low-complexity linear program parameterized by b0 ∈ [0 : q−1] in the finite fields case.

In the rationals case, it is parameterized by the feasible settings of the parameters

s1, s2, s3, s4, b0, and u. Note that each of those parameters can take O(n) nontrivial

value only. The dimension is very low since we have O(nk) = O(n2) variables in the

finite fields case, and O(n2k2) = O(n4) in the rationals case. The same estimates hold

for the number of constraints. Unfortunately, we cannot get much insight from exper-

iments since this linear program is numerically unstable due the wide spectrum of the

values taken by Krawtchouk polynomials. The numerical simulations are breaking

down before n = 50.

We leave the problem of bounding the optimum of the linear programs open.

5.8.2 The problem

In this section F will be a field whose characteristic is not equal to 2.
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Terminology 5.8.1 If C ⊂ Zn
2 is a linear code and g : Zn

2 → F , by ĝ : Ĉ = Zn
2/C

⊥ →
F we mean the Fourier transform of g with respect to the characters

{X z̄(x)
def
= (−1)xz}z∈Zn

2 /C⊥

of the abelian group C over F , where xz
def
=
∑

i xizi and the definition is independent

of the choice of z ∈ z̄. Thus

g(x) =
∑

z̄

ĝ(z̄)X z̄(x)

or equivalently

ĝ(z̄) =
1

|C|
∑

x

g(x)X z̄(x).

The weight of a z̄ ∈ Zn
2/C

⊥ is defined to be the minimum weight of a z′ ∈ z̄, or

equivalent the weight of z̄ is the distance of z̄ from 0̄ in the Cayley graph Zn
2/C

⊥ as

defined in Section 5.8.3.1 to be the quotient of the Hamming cube Cayley graph on Zn
2

by the subgroup C⊥ of Zn
2 .

The degree of g is defined to be the weight of the largest z̄ such that ĝ(z̄) 6= 0.

Problem 5.8.2 “Parity with encrypted linear help ”: Let C ⊂ Zn
2 be a linear code

and z̄1 ∈ Zn
2/C

⊥ such that :

1) The minimum distance of the dual C⊥ of C is above k, or equivalently the

probability measure µC = 1
|C|1C is k-wise independent.

2) The weight of z̄1 is above k, or equivalently all the equivalent representations of

the parity X z̄1 on C require the XOR of more than k bit.

Let p : C → F such that deg(p) ≤ h. How large should k be so that

Prx∈C [p(x) = X z̄1(x)] ≤
1

2
+ ε? (5.28)

Denote the minimum such k by K5.8.2
parity(n, h, ε)F .

Our interest is in the cases when F = Fq, q an odd prime, or F = Q.
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5.8.2.1 The finite fields case

When F = Fq, q = O(1), Problem 5.8.2 (Parity with encrypted linear help) is essen-

tially equivalent to Problem 5.8.3 below.

Problem 5.8.3 “Linear codes versus low-degree F -polynomial-equations on binary

input variables”: Let C ⊂ Zn
2 be a linear code such that the minimum distance of the

dual C⊥ of C is at least k. Let p : C → F such that deg(p) ≤ h. How large should k

be so that

|Prx∈Zn
2
[p(x) = 0] − Prx∈C [p(x) = 0]| ≤ ε? (5.29)

Denote the minimum such k by K5.8.3
poly−eqn(n, h, ε)F .

Our interest is in the case when F = Fq, q = O(1) a small odd prime.

Note that when, for instance, F = Q we cannot hope to get a good bound in terms

of ε in the setting of Problem 5.8.3. See Remark 5.7.12.

The relation follows from the unpredictability perspective in Corollary 5.2.8.

Namely,

Lemma 5.8.4 Let q be an odd prime, then

K5.8.2
parity

(
n, (q − 1)h,

ε

2

)

Fq

≤ K5.8.3
poly−eqn (n, h, ε)Fq

≤ K5.8.2
parity (n+ 1, h, ε)Fq

.

Proof. Let p and C be as in Problem 5.8.3. Fix k, and assume that (5.29) does not

hold. Let f : Zn
2 → {0, 1} be given by f(x) = p(x)q−1, then apply Corollary 5.2.8.

This proves the first inequality. The second is immediate. �

5.8.2.2 AC0 implications

Lemma 5.8.5 There are some global absolute positive constants c1, c2 such that if

f : {0, 1}n → {0, 1} is computable by an AND-OR size-M depth-d unbounded-fanin

circuit, C is a block-length-n binary linear code whose minimum dual distance is above

k, and
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I) either

k ≥ K5.8.2
parity

(
n, hd

0, (1 − α)
ε

2

)

Q
,

where h0 = c1 log 2M
αε logM , and 0 < α ≤ 1 tunable,

II) or

k ≥ K5.8.2
parity

(
n, hd

q ,
ε

4

)

Fq

,

where hq = c2q log 4M
ε ,

then µC can ε-fool C.

We get (I), via Corollary 5.2.8, by specializing Lemma 5.7.9 to the setting of k-wise

independent measures coming from linear codes.

The relation in (II) follows by the same argument, but while using Razborov

Theorem 5.8.6 below instead of Theorem 5.7.7. Note that in (II) we fixed α to 1/2

since, unlike in the Q-setting, we cannot hope here to get a good bound when α = 1.

Theorem 5.8.6 [Raz87] Let f : {0, 1}n → {0, 1} be computable by an AND-OR

depth-d circuit of size M with unbounded fanin. Let q be a power of any prime Then

there exists a family of polynomials {pα}α∈I , pα ∈ Fq[x1, . . . , xn], and I some index

set such that

1) the degree of each pα is at most h = hd
q, hq = O(q log M

θ
)

2) for each x in {0, 1}n, Prα∈I [pα(x) 6= f(x)] ≤ θ,

where θ > 0 is tunable.

Note that the statement in [Raz87] is (5) in Section 5.1.2.1. But, we need the

stronger statement in Theorem 5.8.6 which can be extracted from the proof in [Raz87]

used to establish (4). Note also that the theorem is nontrivial only when q is small.

5.8.2.3 The nature of the problem

We point out in this section why Problem 5.8.2 (Parity with encrypted linear help)

cannot be resolved by reducing it to the problem of approximability of parity on the
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whole Hamming cube by low-degree polynomials. For the sake of comparison with

the Nisan generator for AC0, rather than working with low-degree polynomials, we

will illustrate the issue in the setting of AC0 circuits. The same argument applies to

low-degree polynomials.

We want to show that when k is made large enough with respect to M = nO(1) and

d = O(1), there is no size-M depth-d unbounded-fanin AND-OR circuit f : {0, 1}n →
{0, 1}, and no binary linear code C ⊂ {0, 1}n such that

Prx∈C [f(x) = ParityA(x)] >
1

2
+ ε,

where A ⊂ [n] is such that |A′| > k, for all A′ ⊂ [n] such that ParityA|C = ParityA′|C .

Here, ParityA : {0, 1}n → {0, 1} means ParityA(x) = ⊕i∈Axi.

In other words, we want to show that such an f cannot approximate a parity

function on a code where the parity size can be made large enough so that any f

having the same complexity cannot perform the approximation if it is going to do the

direct thing: concentrate on a smallest weight representation and try to approximate

it.

The most direct thing to try is a reduction, i.e., try to argue that if there is such an

f with a small circuit complexity, then there is a small circuit of constant depth that

can approximate a plain regular parity function to get a contradiction. Unfortunately

we can argue that if this is going to work then the minimum relative distance of C

must be zero in the limit, which is not a typical case. By “if this is going to work”, we

mean the natural meaning of a reduction in this setting: find a linear encoding map

of E of C, E : {0, 1}u → C, i.e., a bijective F2-linear map, such that ParityA pulls

back by E to a parity function ParityB : {0, 1}u → {0, 1}, i.e., ParityA ◦E = ParityB

for some B ⊂ [u], satisfying

• |B| is large, and

• for each i, 1 ≤ i ≤ n, Ei(r) is easy to compute as a function of r|B by a parity

of weight si, when r|[u]\B is fixed to some desirable value.
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This means that the total number of ones in the columns of the generator matrix of E

corresponding to B is at most
∑n

i=1 si, and hence at least one of those columns must

have a (nonzero) weight less than or equal to
∑n

i=1 si/|B|. Therefore the minimum

distance of C can be at most
∑n

i=1 si/|B| = o(n) when the si’s are small enough

and |B| is large enough to get a result. This reduction framework is essentially the

mentality of Nisan generator for AC0 (see Section 5.1.2.2) which is a linear code whose

minimum dual distance is poly-logarithmic, but has also a zero minimum relative

distance in the limit by the above counting argument.

The meaning of the failure of the reduction when the minimum distance of the

code C grows linearly with the block length is that the extra information given to

the original AC0 circuit is written in a format which is too hard for a constant depth

circuit of a small size to reproduce even partially.

The same reasoning applies to the case when we have a low-degree polynomial

instead of an AC0 circuit. The reduction fails when the minimum distance of the

code grows linearly with the block length because the extra information given to

the original polynomial is written in a format which is too hard for a low-degree

polynomial to reproduce even partially.

Note that, typically, the minimum distance of C grows linearly with n since a

random C, satisfying constraints (1) and (2) in Problem 5.8.2 (Parity with encrypted

linear help), with for instance k = logO(1) n, has minimum distance n/2 − o(n).

5.8.3 The algebraic setting

5.8.3.1 Cayley graphs based on linear codes

Let C be a binary linear code of block length n and dual distance d. Thus C ⊂ Fn
2

is a linear space and the minimum distance of Q
def
= C⊥ is d. Consider the space

X
def
= Zn

2/Q which is isomorphic to C as F2-vector spaces. The group Zn
2 when seen as

the Hamming cube is a Cayley graph generated by e1, . . . , en, where ei is the vector in

Zn
2 with a single one at position i. Consider the quotient graph structure on the group

X resulting from modding out the Cayley graph Zn
2 by the subgroup Q. This Cayley
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graph is generated by ē1, . . . , ēn, where if x ∈ Zn
2 we mean by x̄ the corresponding

element in Zn
2/Q. In other words, x̄ and ȳ are connected by an edge if x̄ = ȳ + ēi for

some ēi. A fundamental domain or a Dirichlet region (by borrowing from Riemann

surfaces terminology) of X in Zn
2 is any subset D of the Voronoi cell of zero in Zn

2

with respect to Q such that D is maximal with the property that no two points in

Q are equivalent by translations via elements in Q. Since any such D contains the

bd/2c-neighborhood of zero in Zn
2 , we see that any bd/2c-neighborhood of a node in

X looks exactly like the bd/2c-neighborhood of zero in the Hamming cube Zn
2 , i.e.,

they are isomorphic as graphs. Thus, if d is large, X looks locally like the Hamming

cube Zn
2 . In other words, Zn

2 is in a suitable sense a combinatorial covering of X. Note

that X will have multiple edges or equivalently have degree below n if and only if we

are in the extreme case d = 1. Assume for the rest that d > 1.

The local properties of X such as the volumes of small neighborhoods and expan-

sion of sets inside small neighborhoods are the same as those of Zn
2 . To study other

properties such as expansions of more spread sets, consider the Laplacian of the graph

X. Let L(X) be the space of complex (or real, it does not make a difference) valued

functions on X. As a linear operator on L(X), the Laplacian ∆ of X is given by

(∆f)(x̄) =
n∑

i=1

f(x̄) − f(x̄+ ēi), f ∈ L(X).

The complex characters of X are {X z(x̄)
def
= (−1)xz}z∈C , where C = Q⊥ is the

dual of Q, i.e., the original code we started from. Note that xz
def
=
∑

i xizi and is

independent of the choice of z in z̄. These characters form an orthogonal basis for

L(X).

It is not hard to show that the eigenvalues of the Laplacian ∆ are exactly twice

the weights of the codewords of in C. A proof can be found in [AR94]. Moreover, the

eigenspace of the eigenvalue λ ∈ 2w(C), w meaning the weight function, is spanned

by the characters {X z}z∈C s.t.w(z)=λ/2.

Hence, specifically, the smallest nonzero eigenvalue of ∆ is λ1(X) = 2dmin(C),

where dmin(C) is the minimum distance of C. Thus we can get a bound on the
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Cheeger constant of X

h(X)
def
= min

A,B⊂Zn
2 /Q;A∩B=∅

e(|A|, |B|)
min{|A|, |B|} ,

with e meaning the number of edges between A and B. From the bound h(X) ≥
λ1(X)/2, we obtain

h(X) ≥ dmin(C). (5.30)

5.8.3.2 Equations on codes versus difference equations on graphs

Let F be a field whose characteristic is not equal to 2, and C and X as above.

Let L(C, F ) be the F -vector space of F -valued functions on C, and L(X,F ) be the

F -vector space of F -valued functions on X. We can view L(C, F ) as an F -algebra

under pointwise multiplications in which case we denote it by A(C, F ), and we can

view L(X,F ) as an F -algebra under convolution ∗

(a ∗ b)(z̄) =
∑

ȳ

a(ȳ)b(z̄ + ȳ),

in which case we denote by Â(X,F ). Thus we have the F -algebras isomorphism:

A(C, F )
ˆ→Â(X,F ), whereˆis the Fourier transform

f̂(z̄) =
1

|C|
∑

x

f(x)X z̄.

Note that Â(X,F ) is isomorphic to the group algebra

F [X]
def
= {r =

∑
z̄ z̄a(z̄) | a : X → F}

via Â(X,F )
˜→F [X], ã =

∑
z̄ a(z̄)z̄.

Now, let f ∈ L(C, F ), and consider the set V (f) of zeros of f , i.e.,

V (f) = {x ∈ C | f(x) = 0}.
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We are interested in the number of zeros. We have |V (f)| = dimFA(C, F )/(f), where

(f) is the ideal generated by f in A(C, F ).

Thus by the isomorphism,

|V (f)| = |C| − dimF (a)∗ = dimF (a)⊥∗ ,

where

a
def
= f̂ ∈ Â(X,F ),

(a)∗ is the ideal generated by a in Â(X,F ), and (a)⊥∗ is the annihilator of (a)∗, i.e.,

the ideal in Â(X,F ) given by

(a)⊥∗ = {r ∈ Â(X,F ) : r ∗ a = 0}.

Note that Â(X,F ) = (a)∗ ⊕F (a)⊥∗ .

We can think of dimF (a)∗ directly as it is defined, i.e., the dimension of the F -

vector space spanned by the translation {σz̄a}z̄∈X of the function a : X → F . w Here

σz̄ means the translation operator on X given by (σz̄a)(ȳ) = a(ȳ+ z̄). Note that this

is the case because σz̄a = a ∗ δz̄, where

δz̄(ȳ)
def
=





1 if ȳ = z̄

0 o.w.
.

Regarding dimF (a)⊥∗ , in general, define, for g ∈ L(X,F ), the F -linear operator

T (g) on L(X,F ) by T (g) =
∑

z g(z)σz, i.e.,

(T (g)r)(z̄)
def
=
∑

ȳ

g(ȳ)r(z̄ + ȳ) = (r ∗ g)(z).

We can think of T (g) as a Toplitz-like (or Laurent-like) operator with respect to the

Fourier transform on C, and hence the terminology. When g is nonzero only in a

small neighborhood Nh(0) of zero, we can think of T (g) also as a local averaging
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operator,

(T (g)f)(z̄) =
∑

ȳ∈Nh(0̄)

g(ȳ)f(z̄ + ȳ),

i.e., as difference operator by analogy with a differential operator on a Lie group.

Here, if z̄ ∈ X, Nh(z̄) means the h-neighborhood of z̄ in X, i.e.,

Nh(z̄) = {ȳ ∈ X : d(z̄, ȳ) ≤ h}.

Back to dimF (a)⊥∗ , we are interested in the case when f = X z̄1 − p, where the

degree of p is small and the weight of z̄1 is large. This means that T (b), where b = p̂,

is actually a local averaging operator. Thus dimF (a)⊥∗ is the dimension of the space

of solutions of the difference equation

T (b)g = σz̄1g

in g.

5.8.3.3 The algebraic formulation

Back to Problem 5.8.2 (Parity with encrypted linear help), in the language of Section

5.8.3.2, we have

Lemma 5.8.7 Let C ⊂ Zn
2 be a linear code. Consider the Cayley graph X = Zn

2/C .

Let z̄1 ∈ X. Assume that:

1) The minimum distance of the dual Q = C⊥ of C is above k, or, equivalently, X

looks up to neighborhoods of radius b(k + 1)/2c exactly like the Hamming cube.

2) The distance between z̄1 and zero is above k.

Then each of (I) and (II) below is an equivalent formulation of Problem 5.8.2. Let

b ∈ L(X,F ) such that b is nonzero only inside Nh(0̄).

I) Let a = b−δz̄1 , and I be the ideal of Â(X,F ) spanned by the translation {σz̄a}z̄∈X
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of a. How large should k be so that

dimF I ≥ |X|(1
2
− ε)?

II) Let J be the ideal of Â(X,F ) consisting of the set of f ∈ L(X,F ) satisfying the

equation (T (b) − σz̄1)f = 0. How large should k be so that

dimFJ ≤ |X|(1
2

+ ε)?

5.8.3.4 Smolensky’s argument is ungeneralizable

In this section we note that Smolensky’s argument is ungeneralizable in the typical

case when the minimum distance of the code C grows linearly with the block length

n. The reason is that the smallest eigenvalue of the Laplacian of X is twice the

minimum distance of C, and when the later is linear in n, X is, unlike the Hamming

cube, a good expander for sets of relative size 1/2.

Smolensky [Smo87] argued that parity on Zn
2 cannot be approximated by a degree

h = o(
√
n) polynomial with a probability larger than 1

2
+ Ω( h√

n
). Note that the error

term h√
n

is very unlikely to be tight. For instance, when h = 1, and F = F3, the error

term appear experimentally to be 2−Θ(n). Moreover, assuming Conjecture 5.7.14 (The

symmetric optimum conjecture), the error term is zero when F = Q and k > 16πh2.

In the setting of Lemma 5.8.7, the setting of Smolensky’s result corresponds to

the case when C = Zn
2 , X = Zn

2 with the Hamming cube graph structure, and z̄1 is

the all ones vector.

In the setting of (I) in Section 5.8.3.3, Smolensky’s argument can be understood

as follows. Find a large set of linearly independent σz̄a’s. We can phrase Smolensky’s

approach as looking for a subset T of X such that T ∩Nh(T + z̄1) = ∅ which makes

the {σz̄a}z̄∈T linearly independent simply because for each z ∈ T , (σz̄a)(z̄ + z̄1) = 1

while (σz̄′a)(z̄ + z̄1) = 0, ∀z̄′ 6= z̄ ∈ T .

In the Hamming cube, we can interpret the approach of Smolensky as setting

T = Nn/2−h/2−1(0) (Smolensky actually sets T = Nn/2−h(0), but the above choice is
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tighter). This satisfies T ∩ Nh(T + z̄1) = ∅. Thus when h = o(
√
n), by Sterling’s

approximation, we get |T |
|X| = 1

2
− Θ( h√

n
), and hence dimF I

|X| = 1
2
−O( h√

n
).

In order for this approach to work, we need |T |
|X| = 1

2
−o(1) and T ∩Nh(T + z̄1) = ∅.

But, unfortunately, when the minimum distance of C is Θ(n), no such S exists in a

useful way not even in the most trivial case. More precisely

Lemma 5.8.8 When the minimum distance of C is Θ(n), there is no subset T ⊂ X,

such that T ∩Nh(T + z̄1) = ∅ and |T |
|X| = 1

2
− o(1), not even when h = 1.

Proof. Assume that such a T exists when h ≥ 1. We have, with ∂ meaning boundary,

i.e., ∂A
def
= N1(A)\A,

T ∪ ∂T ⊂ Nh(T ) ⊂ T c + z̄1,

where the second inequality follows from the hypothesis T ∩ Nh(T + z̄1) = ∅. Thus

|T | + |∂T | ≤ |T c|, i.e.,

|∂T | ≤ 2|T c| − |X|. (5.31)

Using (5.30) in Section 5.8.3.1, and then the hypothesis |T |
|X| = 1

2
− o(1), we get

e(T c, T ) ≥ dmin(C) min{|T c|, |T |} = dmin(C)|X|(1
2
− o(1)),

hence

|∂T | ≥ e(T c, T )

n
≥ δmin(C)|X|

(
1

2
− o(1)

)
,

where δmin(C) = dmin(C)/n is the minimum relative distance of C. Replacing in

(5.31), we get
|T c|
|X| ≥

1

2
+ δmin(C)(

1

4
− o(1)),

a contradiction when δmin(C) = Θ(1). �

Note that, typically, the minimum distance of C grows linearly with n since a

random C, satisfying constraints (1) and (2) in Problem 5.8.2 (Parity with encrypted

linear help) with for instance k = logO(1) n, has minimum distance n/2 − o(n).
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5.8.4 The first relaxation: parity with moderately encrypted

linear help

We know from Smolensky’s work [Smo87] that parity on the Hamming cube cannot

be approximated by a low-degree polynomial. The setting of Problem 5.8.2 (Parity

with encrypted linear help) is parity on a linear code. Consider (1) and (2) in Problem

5.8.2. What (2) is saying is that all the realization of this help are difficult on the

low-degree polynomial, i.e., the help is in a suitable sense encrypted and potentially

useless. What (1) is saying is that the code is k-wise independent. This is supposed

to make the help even more useless, but (2) is already a relatively strong condition

alone. Consider dropping (1), and call the resulting problem “parity with moderately

encrypted linear help”. Denote the corresponding minimum by K̃5.8.2
parity(n, h, ε)F . Thus

K̃5.8.2
parity(n, h, ε)F ≥ K5.8.2

parity(n, h, ε)F .

One advantage of dropping (1), is that this, essentially, reduces the problem to

the case when the degree of the polynomial is 1, i.e., a linear form.

Lemma 5.8.9 K̃5.8.2
parity(n, 1, ε)F ≤ K̃5.8.2

parity(n, h, ε)F ≤ hK̃5.8.2
parity(n

h, 1, ε)F .

Proof. The construction behind the second inequality is to use the monomials of the

polynomial to build a linear map through which the original linear code maps to a

new linear code where the original polynomial reduces to a linear form. The block

length of the new code is at most the number of monomials which can be at most
∑h

i=1

(
n
i

)
≤ nh. Since the parity on the original code cannot be realized as a parity

of k or fewer bits, and the each monomial is a parity of at most h bit, the parity on

the new linear code will have no realization as a parity of k/h or fewer bits. �

When the F = Fq, q = O(1), we can actually reduce further to the canonical case

where the coefficients are all 1.

Problem 5.8.10 “Parity with moderately encrypted linear help: the symmetric

mod-q-case”: Let C ⊂ Zn
2 be a linear code and let z̄1 ∈ Zn

2/C
⊥ such that the weight of
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z̄1 is above k. Let q be an odd prime, how large should k be so that for each b0 ∈ Fq,

Prx∈C [b0 +
n∑

i=1

xi = X z̄1(x)( mod q)] ≤ 1

2
+ ε?

Denote the minimum such k by K5.8.10
parity−symm(n, ε)q.

The reduction is as follows.

Lemma 5.8.11 K5.8.10
parity−symm(n, ε)q ≤ K̃5.8.2

parity(n, h, ε)Fq
≤ hK5.8.10

parity−symm((q−1)nh, ε)q.

Proof. The additional component to the construction in Lemma 5.8.9 is to repeat

each monomial as many times as its coefficient when the coefficient is regarded as an

integer between 1 and q − 1. �

Observe that when q = O(1) and h = O(logO(1) n), the reduction is up to

quasipolynomial factors an equivalence. Our interest in the setting q = O(1) and

h = O(logO(1) n) is motivated by the AC0 problem. See Section 5.8.2.2.

In the rationals case, i.e., when F = Q, we can do something similar when we

have bounds on the coefficients of the polynomial p. We can reduce the problem to a

setting where all the coefficients are ±1. See Section 5.8.5.3.

5.8.5 The linear-programming relaxation

Until Section 5.8.5.3, we will focus on the finite fields situation.

Consider Problem 5.8.10 (Parity with moderately encrypted linear help: the sym-

metric mod-q-case). We are optimizing on the linear codes C ⊂ Zn
2 and z̄1 ∈ Zn

2/C
⊥

such that the weight of z̄1 is above k, i.e., the weight of any z1 ∈ z̄1 is above k.

Equivalently, we are optimizing on µ, a probability measure on Zn
2 , and z1 ∈ Zn

2 such

that:

1) there exists a linear code C ⊂ Zn
2 such that µ is the discrete probability measure

supported by C, i.e., µ = µC, where µC
def
= 1

|C|1C.

2) w(z1) ≥ k + 1

193



3) EµX z+z1 = 0 for each z ∈ Zn
2 such that w(z) ≤ w(z1) − 1.

We can do this by using a z1 ∈ z̄1 of minimal weight.

Consider relaxing (1) in the sense of Section 5.3.2 to

1’) µ̂ ≥ 0, or, equivalently, EµX z ≥ 0, for each z in Zn
2 .

Thus, Problem 5.8.10 (Parity with moderately encrypted linear help: the sym-

metric mod-q-case) relaxes to a linear program as follows.

Problem 5.8.12 “LP-relaxed parity with moderately encrypted linear help: the

symmetric mod-q-case”: Let z1 ∈ Zn
2 such that w(z1) ≥ k + 1.

Let q be an odd prime, b0 ∈ Fq, and f : Zn
2 → {0, 1} be given by

f(x) =





1 if w(x) + b0 = X z1(x) (mod q)

0 o.w.
.

Primal question: How large should k be so that

max
µ∈P

Eµf ≤ 1

2
+ ε?

where P is the polytope of probability measures on Zn
2 such that

• EµX z ≥ 0 for each z in Zn
2

• EµX z+z1 = 0 for each z ∈ Zn
2 such that w(z) ≤ w(z1) − 1.

Dual question: How large should k be so that there exists g : Z2 → R such that

• g ≥ f

• Eµ0g ≤ 1
2

+ ε

• ĝ(z) ≤ 0, ∀z 6∈ Nk(z1) ∪ {0},

where µ0 the uniform measure on Zn
2?
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Note that dual calculations are along the lines of Section 5.2.3.

A natural question here is how small can |C| be, or equivalently how large can

|C⊥| be, subject to: (2) and (3) above with µ = µC? The other question is what

bound can we conclude from the above relaxation, i.e., when we replace (1) with (1′)?

Problem 5.8.13 “LP-relaxed coset-size versus minimum-weigh problem”: Let f :

Zn
2 → {0, 1},

f(x) =





2n if w(x) = 0

0 o.w.
.

Let z1 ∈ Zn
2 such that w(z1) ≥ d, P be the polytope of probability measures on Zn

2 such

that

• EµX z ≥ 0 for each z in Zn
2

• EµX z+z1 = 0 for each z ∈ Zn
2 such that w(z) ≤ w(z1) − 1,

and consider

M̃d = max
µ∈P

Eµf.

(To be precise, we are maximizing also over z1, but by symmetry they are all the same

when the weight is fixed).

The dual is: M̃d = min Eµ0g, g : Zn
2 → R, such that

• g ≥ f

• ĝ(z) ≤ 0, ∀z 6∈ Nd−1(z1) ∪ {0},

where µ0 the uniform measure on Zn
2 . Thus Md ≤ M̃d, where

Md = max{|Q| : Q ⊂ Zn
2 linear and z1 ∈ Zn

2 , s.t. min-weight(Q+ z1) ≥ d}.

This is the case because with Q = C⊥ as above and d = k + 1,

EµC
f = 2nµC(0) =

2n

|C| = |Q|.
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We will argue in Theorem 5.8.17 that Md = M̃d = 2n−d, which is an indication of

the goodness of the relaxation.

To compare the above linear program with Delsarte LP bound, we can phrase

Delsarte LP bound as follows.

Problem 5.8.14 “Delsarte LP bound [Del73]”: Let f : Zn
2 → {0, 1},

f(x) =





2n if w(x) = 0

0 o.w.
.

Let d be integer, U be the polytope of probability measures on Zn
2 such that

• EµX z ≥ 0 for each z in Zn
2

• EµX z = 0 for each nonzero z ∈ Zn
2 such that w(z) ≤ d− 1,

and consider

Ñd = max
µ∈U

Eµf.

The dual is: Ñd = min Eµ0g, g : Zn
2 → R such that

a) g ≥ f

b) ĝ(z) ≤ 0, ∀z ∈ Zn
2 such that w(z) ≥ d,

where µ0 the uniform measure on Zn
2 . Thus Nd ≤ Ñd, where

Nd = max{|Q| : Q ⊂ Zn
2 linear s.t. min-dist(Q) ≥ d}.

Note that Delsarte LP bound is in terms of Krawtchouk polynomials, but, by

symmetry, Delsarte linear program (regardless of whether its origin is linear or non-

linear codes) can be lifted to the above linear program. See Lemma 5.8.19. Note also

that it is an old open question whether Nd = Ñd.

A final remark is that the linear codes rate-versus-distance tradeoff problem cor-

responds to the maximal acceptance probability of an AND gate on n-bits when the

input is randomly selected from a linear code satisfying a bound on its dual distance.
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5.8.5.1 Fourier transform of weight-based functions

Let S1, . . . , Sc be a partition of [1 : n], i.e., Si∩Sj = ∅ for each i 6= j and ∪iSi = [1 : n].

Here, and in what follows, we will be using the notation [n1 : n2]
def
= {n1, . . . , n2}. Let

si = |Si|, and consider π : Zn
2 → ∏c

i=1[0 : si], x 7→ (w(x|Si
))c

i=1.

Let f : Zn
2 → R such that f(x) depends only on π(x). By abuse of notation, we

can think of f as f :
∏c

i=1[0 : si] → R. Consider the Fourier transform f̂ : Zn
2 → R of

f . We have

f̂(z) =
1

2n

∑

x

f(x)X z(x) =
1

2n

∑

w∈
∏c

i=1
[0:si]

f(w)K̄(s)
w (z), (5.32)

where s
def
= (s1, . . . , sc), and K̄(s)

w : Zn
2 → R is given by

K̄(s)
w (z)

def
=

∑

x;π(x)=w

X z(x) =
∑

x;w(x|Si
)=wi

c∏

i=1

X z|Si
(x|Si

)

=
c∏

i=1

∑

x∈ZSi
2

X z|Si
(x) =

c∏

i=1

K(si)
wi

(w(z|Si
)).

Here, if a and b are integers, K(a)
b : [0 : a] → R, and by abuse of notation K(a)

b : Za
2 → R,

is the Krawtchouk polynomial given by

K(a)
b (y)

def
=

∑

x∈Za
2 ;w(x)=b

X y(x) =
∑

t

(−1)t

(
v

t

)(
a− v

b− t

)
def
= K(a)

b (v), (5.33)

for y ∈ Za
2 with v = w(y).

Thus, f̂(z) = f̂(π(z)) and f̂ :
∏c

i=1[0 : si] → R is given by

f̂(l) =
1

2n

∑

w

f(w)K̄(s)
w (l) and f(w) =

∑

l

f̂(l)K̄(s)
l (w), (5.34)

where K̄(s)
w : Zn

2 → R, and by abuse of notation K̄(s)
w :

∏c
i=1[0 : si] → R, is a product of
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Krawtchouk polynomials

K̄(s)
w (z)

def
=

∑

x;π(x)=w

X z(x) =
c∏

i=1

K(si)
wi

(li)
def
= K̄(s)

w (l), (5.35)

for z ∈ Zn
2 with l = π(z).

The direct way to see the many of the properties Krawtchouk polynomials is to

start from the hypercube. Two such immediate properties are

EλK(a)
b1
K(a)

b2
= 2nλ(b1)δb1,b2 and λ(b1)K(a)

b2
(b1) = λ(b2)K(a)

b1
(b2), (5.36)

where λ is the probability measure on [0 : a] induced via w by the uniform probability

measure on Za
2, i.e., λ is the binominal measure given by λ(b)

def
= 1

2a

(
a
b

)
. See for instance

[MRRW77, Sze75] for other properties Krawtchouk polynomials.

Similar relations apply in the higher dimensional situation under consideration.

Let β be the probability measure on
∏c

i=1[0 : si] induced via π by the uniform prob-

ability measure on Zn
2 , i.e.,

β(w)
def
=

1

2n

c∏

i=1

(
si

wi

)
(5.37)

is a product binomial measure. Then the 1-dimensional relations immediately gener-

alize as

EβK̄(s)
l1 K̄(s)

l2 = 2nβ(l1)δl1,l2 and β(w)K̄(s)
l (w) = β(l)K̄(s)

w (l). (5.38)

Replacing in (5.34), we get

2nβ(l)f̂(l) = EβfK̄(s)
l and β(w)f(w) = Eβ f̂K̄(s)

w . (5.39)

5.8.5.2 The low dimensional equivalent problems

Accordingly,

Lemma 5.8.15 Problem 5.8.12 (LP-relaxed parity with moderately encrypted linear

help: the symmetric mod-q-case) is equivalent to the following.

Let q be an odd prime, b0 ∈ Fq, and f : [0 : k + 1] × [0 : n − k − 1] → {0, 1} be
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given by

f(w1, w2) =





1 if w1 + w2 + b0 = (−1)w1 (mod q)

0 o.w.
.

Primal question: How large should k be so that

max
µ∈P

Eµf ≤ 1

2
+ ε?

where P is the polytope of probability measures on [0 : k+1]× [0 : n−k−1] such that

• EµK̄(s)
l ≥ 0 for each l

• EµK̄(s)
l = 0, when l1 > l2,

and s = (k + 1, n− k − 1).

Dual question: How large should k be so that there exists g : [0 : k+1]×[0 : n−k−1] →
R such that

• g ≥ f

• Eβg ≤ 1
2

+ ε

• ĝ(l1, l2) ≤ 0, when l1 ≤ l2 and l1 + l2 6= 0,

where β is the product binomial measure on [0 : k + 1] × [0 : n− (k + 1)]?

Proof. First, without loss of generality , we can assume that z1 in Problem 5.8.12

has weight exactly k+1 since the problem is about how large should the lower bound

on the weight of z1 be. Let S1 be the support of z1, and S2 = [n]\S1. Thus |S1| = k+1

and |S2| = n−k− 1. The equivalence follows from noting that the objective function

is a linear function invariant under permutations of S1 and S2, and all the constraints

are symmetric with respect to such permutations. To get the equivalence, we can

start with an optimum of the original problem, apply all such permutations, then

average to get an invariant optimum.

�

By the same argument, we get
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Lemma 5.8.16 Problem 5.8.13 (LP-relaxed coset-size versus minimum-weigh prob-

lem) is equivalent to the following. Let f : [0 : d] × [0 : n− d] → R,

f(w1, w2) =





2n if w1 + w2 = 0

0 o.w.
.

Primal: M̃d = maxµ∈P Eµf , where P is the polytope of probability measures on [0 :

k + 1] × [0 : n− k − 1] such that

• EµK̄(s)
l ≥ 0 for each l

• EµK̄(s)
l = 0, when l1 > l2,

and s = (d, n− d).

Dual: M̃d = min Eβg, g : [0 : d] × [0 : n− d] → R such that

a) g ≥ f

b) ĝ(l1, l2) ≤ 0, when l1 ≤ l2 and l1 + l2 6= 0,

where β is the product binomial measure on [0 : d] × [0 : n− d].

Theorem 5.8.17 M̃d = Md = 2n−d

Proof. First we show that M̃d ≤ 2n−d. Set

ĝ(l1, l2) =





2n−d if l2 = 0

0 o.w.
.

Hence (b) is satisfied. To see why (a) is satisfied, note first that

ĝ(w1, w2) =
∑

l1,l2

ĝ(l1, l2)K(d)
l1

(w1)K(n−d)
l2

(w2) = 2n−d
∑

l1

K(d)
l1

(w1)K(n−d)
0 (w2).

But K(n−d)
0 (w2) = 1, and

∑

l1

K(d)
l1

(w1) =





2d if w1 = 0

0 o.w.
.
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Thus (a) is satisfied also. The bound M̃d ≤ 2n−d then follows since Eβg = ĝ(0, 0) =

2n−d.

The fact that Md ≥ 2n−d follows from the first example to try. Namely, set

Q = Zn−d
2 0d and z1 = 0n−d1d. �

Question 5.8.18 A purely combinatorial proof of Md = 2n−d?

Similarly,

Lemma 5.8.19 Problem 5.8.14 (Delsarte LP bound) is equivalent to the following.

Let f : [0 : n] → R,

f(w) =





2n if w = 0

0 o.w.
.

Primal: Ñd = maxµ∈U Eµf , where U is the polytope of probability measures on [0 : n]

such that

• EµK(n)
l ≥ 0 for each l

• EµK(n)
l = 0, when 1 ≤ l ≤ d.

Dual: Ñd = min Eβg, g : [0 : n] → R such that

• g ≥ f

• ĝ(l) ≤ 0, when l ≥ d,

where β is the binomial measure on [0 : n].

Note that this the classical statement of Delsarte linear program.

5.8.5.3 The characteristic-zero case

Consider Problem 5.8.2 (Parity with encrypted linear help) when the base field is

F = Q. In order to be able to reduce to a canonical linear program similar to

the one in Lemma 5.8.15, we need a reduction to a canonical problem like Problem

5.8.10 (Parity with moderately encrypted linear help: the symmetric mod-q-case). We
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partially have such a problem from Lemma 5.8.9, but this is not directly reducible to

a low dimensional LP after relaxation.

We can however reduce to a problem similar to Problem 5.8.10 when we have

bounds on the coefficients of the polynomial. If we can assume such bounds, we can

naturally reduce to the situation of a linear form where all the coefficients are ±1.

As far as the AC0 application is concerned, we can assume such bounds. We can

extract from the construction in [BRS91, ABFR94] the stronger version of Theorem

5.7.7 where in addition to (1) and (2), we can assume that:

3) The sum of the absolute values of the coefficients of each pα is 2O(h log M).

Consider Problem 5.8.2 (Parity with encrypted linear help) in the setting when

the base field is Q. Restrict the problem further to the situation where we are given

a bound L in such a way that p satisfies:

3) up =
∑

z̄ a(z̄)X z where u 6= 0 ∈ Z and a : Zn
2/C

⊥ → Z is such that
∑

z̄ |a(z̄)| ≤ L.

Let K5.8.2
parity−bounded−coef (n, h, L, ε)Q be the corresponding minimum, and let

K̃5.8.2
parity−bounded−coef (n, h, L, ε)Q be the minimum corresponding to dropping (1) as in

Section 5.8.4.

Then, we can reduce to the following variation of Problem 5.8.10 (Parity with

moderately encrypted linear help: the symmetric mod-q-case).

Problem 5.8.20 “Parity with moderately encrypted linear help: the symmetric

rational-case”: Let C ⊂ Zn
2 be a linear code and let z̄1 ∈ Zn

2/C
⊥ such that the

weight of z̄1 is above k.

How large should k be so that for each partition S ′, S ′′ of [n], and for each b0 ∈ Z

and u 6= 0 ∈ Z,

Prx∈C [b0 +
∑

i∈S′
xi −

∑

i∈S′′
xi = uX z̄1] ≤

1

2
+ ε?

Denote the minimum such k by K5.8.20
parity−symm(n, ε)0.

The reduction is as follows

K̃5.8.2
parity−bounded−coef (n, h, L, ε)Q ≤ hK5.8.20

parity−symm(2L, ε)0.
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This proof is along the lines of Lemma 5.8.11.

The linear-programming relaxation then translates naturally as follows. We only

have to change the the definition of f in Problem 5.8.12 (LP-relaxed parity with

moderately encrypted linear help: the symmetric mod-q-case) as follows.

We have a partition S ′, S ′′ of [n], b0 ∈ Z, u 6= 0 ∈ Z, and f : Zn
2 → {0, 1} is given

by

f(x) =





1 if w(x|S′) − w(x|S′′) + a0 = uX z1(x)

0 o.w.
.

As for the low dimensional equivalent problem, we get the following.

Problem 5.8.21 “LP-relaxed parity with moderately encrypted linear help: the

symmetric rational-case”: Let s1, s2, s3, s4 be nonnegative integers such that s1+s2 =

k + 1 and s1 + s2 + s3 + s4 = n. Let b0 and u be integers such that u is nonzero. Let

f :
∏4

i=1[0 : si] → {0, 1} be given by

f(w) =





1 if w1 + w3 − w2 − w4 + b0 = u(−1)w1+w2

0 o.w.
.

Primal question: How large should k be so that

max
µ∈P

Eµf ≤ 1

2
+ ε?

where P is the polytope of probability measures on
∏4

i=1[0 : si] such that

• EµK̄(s)
l ≥ 0 for each l

• EµK̄(s)
l = 0, when l1 + l2 > l3 + l4,

and s = (s1, s2, s3, s4).

Dual question: How large should k be so that there exists g :
∏4

i=1[0 : si] → R such

that

• g ≥ f

• Eβg ≤ 1
2

+ ε
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• ĝ(l) ≤ 0, when l1 + l2 ≤ l3 + l4 and l1 + l2 + l3 + l4 6= 0,

and β is the product binomial measure on
∏4

i=1[0 : si]?

Let K5.8.21
LP−parity−symm(n, ε)0 be the minimum such k.

This relates to the AC0 situation as follows.

Lemma 5.8.22 There are some absolute positive constants c, c′, such that if f :

{0, 1}n → {0, 1} is computable by an AND-OR of size-M depth-d unbounded-fanin

circuit, C is a block-length-n binary linear code whose dual has minimum distance

above k, and

k ≥ hd
0K

5.8.21
LP−parity−symm

(
2L, (1 − α)

ε

2

)

0
,

where h0 = c log 2M
αε logM , L = 2c′hd

0 log M , and 0 < α ≤ 1 is tunable, then µC can

ε-fool f .

5.8.6 Some generalities

In the setting of finite fields, Problem 5.8.3 (Linear codes versus low-degree F -

polynomial-equations on binary input variables) is a special case of the following

problem, which is essentially about approximating the number of solutions of low-

degree character equations on abelian groups over small finite fields.

Let G be a finite abelian group together with some grading on its group of char-

acters Ĝ. Let H be a subgroup of G such that all the defining characters of H have

high degree. Let p be a low-degree function on G taking values in a small finite field

F whose characteristic does not divide the order of G. The problem is about when

can we guarantee that the fraction of elements g of G satisfying the equation p(g) = 0

does not change significantly when we restrict g to be an element of H.

So, Problem 5.8.3 corresponds to the case when G = Zn
2 , F = Fq with q = 3 for

instance, and the grading is coming from the Hamming cube.

A similar example is, for instance, when G = Zn
5 , F = F2, and the grading is

coming from the Cartesian product of n copies of the circle graph on Z5.
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5.9 Open problems

We conclude with the resulting open questions:

• The symmetric optimum conjecture (Conjecture 5.7.14), and the original low-

degree polynomial predictors problem (Problem 5.7.8).

• A bound on the linear programs in Lemma 5.8.15 and Section 5.8.5.3, and the

original parity with encrypted linear help problem (Problem 5.8.2) from the

algebraic perspective in Lemma 5.8.7.

• The k-wise independent versus AC0 problem (Conjecture 5.7.3 and Problem

5.7.1), and the δ-biased versions in Conjecture 5.7.4 and Problem 5.7.2.

• Classify the nonlinear extreme points of the convex polyptopes Qk and Pk, i.e.,

Problem 5.3.5, Conjecture 5.3.2, and Problem 5.3.3.

• Problem 5.5.5: how weak are probability measures induced by the uniform

measure via arbitrary depth-1 maps?

5.9.1 The power of the quadratic residues PRG

One of the basic questions motivating the start of the research in this chapter is the

quadratic residues PRG. See Section 5.1.2.3. Consider the quadratic residues PRG

over a prime field Fq for nondegeneracy reasons.

The mystery of the way quadratic residues are oddly distributed for a given prime

promises great derandomization capabilities and intrigued people long before com-

plexity theory existed. It is very tempting to conjecture that they look random even

to something as powerful as all polynomially sized circuits. A more modest start is

the following:

• Show that the quadratic residues PRG can o(1)-fool all DNF formulas of size

M on n bits when the prime q is made polynomially large enough in terms of

n and M .
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• Show that the quadratic residues PRG can o(1)-fool all read-once oblivious

branching programs of size S on n bits when the prime q is made polynomially

large enough in terms of n and log S.

Note that constructing polynomial complexity PRG’s for small DNF formulas or

low-memory read-once oblivious branching programs is a fundamental open question

because it is essentially not known how to (unconditionally) construct polynomial

complexity PRG’s for any relatively-general computational model (If we exclude mod-

els such as polynomial size decision trees, and DNF formulas where the number of

inputs per clause is bounded above by a constant).

It follows from Weil’s bound that this PRG has the 2n/
√
q-bias property as noted

in [AGHP92]. The quadratic-residues PRG seems to have much stronger proper-

ties, but in all the proof attempts we were trying, we were not using more than

this property, which lead us to the following question: what can we conclude from

this property alone? i.e., what kind of functions can be derandomized by this prop-

erty alone? Is this property alone sufficient to derandomize AC0 (At this point the

transition from a polynomial complexity objective to a quasipolynomial complexity

objective happened)? or small read-once oblivious branching programs? And, natu-

rally, the following related problems appeared. What can we conclude from the k-wise

independence property alone? i.e., what kind of functions can be derandomized by

this property? Is it sufficient to derandomize AC0 when k is poly-logarithmically

large? What kind of functions can be derandomized by arbitrary linear-codes-based

k-wise independent probability measures? The rest of the story is in the beginning

of this chapter.
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