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Abstract

Despite the increasing volume of data in modern statistical applications, critical
patterns and events have often little, if any, representation. This is not unreasonable,
given that such variables are critical precisely because they are rare. We then have to
raise the natural question: when can we infer something meaningful in such contexts?

The focal point of this thesis is the archetypal problem of estimating the probability
of symbols that have occurred very rarely, in samples drawn independently from an
unknown discrete distribution. Owur first contribution is to show that the classical
Good-Turing estimator that is used in this problem has performance guarantees that
are asymptotically non-trivial only in a heavy-tail setting. This explains the success of
this method in natural language modeling, where one often has Zipf law behavior.

We then study the strong consistency of estimators, in the sense of ratios converging
to one. We first show that the Good-Turing estimator is not universally consistent. We
then use Karamata’s theory of regular variation to prove that regularly varying heavy
tails are sufficient for consistency. At the core of this result is a multiplicative concen-
tration that we establish both by extending the McAllester-Ortiz additive concentration
for the missing mass to all rare probabilities and by exploiting regular variation. We also
derive a family of estimators which, in addition to being strongly consistent, address
some of the shortcomings of the Good-Turing estimator. For example, they perform
smoothing implicitly. This framework is a close parallel to extreme value theory, and
many of the techniques therein can be adopted into the model set forth in this thesis.

Lastly, we consider a different model that captures situations of data scarcity and
large alphabets, and which was recently suggested by Wagner, Viswanath and Kulkarni.
In their rare-events regime, one scales the finite support of the distribution with the
number of samples, in a manner akin to high-dimensional statistics. In that context,
we propose an approach that allows us to easily establish consistent estimators for a
large class of canonical estimation problems. These include estimating entropy, the size
of the alphabet, and the range of the probabilities.
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Chapter 1

Introduction

H 1.1 Motivation

N modern statistical applications, one is often showered with such large amounts of

data that invoking the descriptor ‘rare’ seems misguided. Yet, despite the increasing
volume of data, critical patterns and events have often very little, if any, representation.
This is not unreasonable, given that such variables are critical precisely because they
are rare. We then have to raise the natural question: when can we infer something
meaningful in such contexts?

In applications where the underlying phenomena are continuous, such as in the
earth sciences or financial and actuarial measurements, one is frequently interested in
inference about extreme events. Namely, one would like to estimate the probability
of exceeding very large, or falling below very low, thresholds. Such events are often
underrepresented in historical data, but they remain eminently relevant because of
the catastrophic consequences that may ensue if they were indeed to occur: floods,
bankruptcies, etc. A mature mathematical — probabilistic — theory of extremes [1] has
been developed as a consequence, and has had relative success in addressing many of
the modeling challenges on this front. One of the central tenets that has emerged from
this theory is the importance of structure, in particular in the form of regularity of
the tails of the underlying distributions. If we interpret the estimation of exceedance
probabilities beyond the range of the data as an extrapolation task, we can perhaps
more easily accept the importance of proper assumptions about the tail, in order to
perform this task in a principled manner. Conversely, if no assumptions are made, then
we would be harried by the task of extrapolate into the void with neither compass nor
bearing.

On a rather different front, many applications are fundamentally discrete, rang-
ing from natural language modeling to business analytics. One is then interested in
inference about objects, for example words and syntactic rules or connectivities and
preferences, that have not occurred often in the training data. Once again, we would
like to operate on the fringe of the available information, and perhaps go beyond it,
and in this sense such problems are qualitatively similar to the problem of extremes.
Despite this fact, no attempt has been made, to the best of our knowledge, to connect
these two problems. A core motivation of this thesis is to do precisely that, in the hope

11



12 CHAPTER 1. INTRODUCTION

of better understanding when one can make inferences about discrete rare events, and
how one can best do so. In particular, we focus on the main technique that, when not
used directly, forms the basis of many discrete rare event estimation approaches: the
Good-Turing estimator [17]. Published in 1953, this estimator emerged from British
efforts to estimate the odd of Nazi Germany choosing a not-yet-cracked Enigma cipher.
Coincidentally, the impetus for developing extreme value theory came after the North
Sea flood of 1953, when European governments wanted to estimate the probability of
such disasters. Yet for all the analysis that the Good-Turing estimator was subjected to
since, no tenet paralleling that of tail regularity in extreme value theory was discussed,
i.e. no structural requirement was deemed needed to apply the Good-Turing estimator
or its variants. One reason why this might be so is that this estimator was examined in
the classical framework of additive errors, such as bias, mean square error, asymptotic
normality, and additive concentration, and it was found that it performed adequately
with no need for additional restrictions. However, rare probabilities decay to zero, and
therefore they are better studied multiplicatively.

B 1.2 Contributions and Organization

In this thesis, we start in Chapter 2 by reexamining some of what was known about
the Good-Turing estimator, and find in it evidence that the natural domain of its
applicability is in heavy-tailed distributions. We do this by isolating a minimal property
of the underlying probability distribution, the accrual rate, that both describes the ‘tail’
of the distribution and dictates the behavior of the rare probabilities of interest. When
the distribution is light-tailed, then probabilities decay so fast that using the Good-
Turing estimator is only marginally better than giving a trivial answer, such as 0 for
the probability of a never seen object, i.e. the missing mass. When the distribution
is heavy-tailed, however, the penalty of such a trivial estimator is too large, and the
Good-Turing estimator excels. Thus structure is indeed important.

Using this groundwork, we go on in Chapter 3 to focus on the heavy-tailed regime.
We particularly ask for a tougher notion of performance, strong consistency, in the
sense of the ratio of the estimate and the true rare probability converging to one.
This is a multiplicative property, and thus departs from the classical analysis of the
Good-Turing estimator. Indeed, we show that even for a distribution as simple as the
geometric, Good-Turing fails to be strongly consistent. On the other hand, we show
that a certain characterization of heavy tails, Karamata’s regular variation [18], which
is a refinement of the accrual rate and is closely related to the tail regularity notion used
in extreme value theory, is sufficient for the consistency of the Good-Turing estimator.
The core of this development is a fundamental multiplicative concentration result. We
derive this by using a technique introduced by McAllester and Ortiz [21] for additive
concentration, which we extend to apply to all rare probabilities. We then exploit
the special moment growth rates in heavy-tailed distributions, to achieve multiplicative
concentration. Lastly, we use these results to construct new estimators, which not
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only are strongly consistent in the context of regularly varying heavy tails, but also
address some of the shortcomings of the Good-Turing estimator. Our new estimators
also give a principled approach that justifies some of the ad-hoc algorithms that are used
as improved variants of the Good-Turing estimator. Furthermore, the correspondence
with extreme value theory opens the door to quantitative cross-fertilization between
the two problems, just as we believed it to be qualitatively possible.

In Chapter 4, we explore alternative structures that allow consistent estimation. In
this case, we change the probabilistic model from a fixed distribution, to a distribution
that changes with sample size, akin to Kolmogorov asymptotics in high-dimensional
statistics. When the model was proposed in [31], it was shown that the Good-Turing
estimator is consistent in this regime. So we investigate whether more inference can be
performed in a systematic manner. We consider a class of interesting problems, which
include entropy estimation, alphabet size estimation, and probability range estimation,
and we show that it is possible to tackle them all simultaneously. We give an abstract
solution methodology, and then build explicit constructions that use the consistency of
the Good-Turing estimator as their basis. This effort shows that other structures that
permit inference about discrete rare events are possible, and suggest that one could
potentially characterize all such structures and perhaps unify them.

Each chapter of the thesis introduces all the background and preliminary material
that it requires, and is self-contained. We conclude in Chapter 5 with a summary and
directions for future work.

Bibliographical Notes

Chapter 2 was presented in preliminary form at MTNS 2010 [23], and Chapter 4 was
presented in its almost final form at Allerton 2011 [24].
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Chapter 2

Good-Turing Estimation
and its Performance

ET X1,---,X,, be an observation sequence of random variables drawn indepen-

dently from an unknown distribution P = (p1,pa,---) over a countable alphabet
of symbols, which we denote by the positive integers. An alternative description is in
terms of boxes (or urns) and balls, where each sample corresponds to the label of the
box which a throw of a ball lands in, randomly with probability IP.

We are interested in using the observations to perform probability estimation. In
particular, we would like estimators for qualitatively rare events. One concrete class of
such events are the subsets B,, , of symbols/boxes which have appeared exactly r times
in the observation. For “rare” to be a valid qualifier, we think of r as much smaller
than the sample size n. The case r = 0, for example, corresponds to the subset of
symbols/boxes which do not appear in the observation. Define the rare probabilities as:

M, :=P{B,,}. (2.1)

In particular, M, o denotes the missing mass, the probability of unseen outcomes. We
call the estimation of M, , the Good-Turing estimation problem, in reference to the
pioneering work of Good [17], who gives due credit to Turing. Their solution to this
estimation problem, the Good-Turing estimator, is:

Gy = %7 (2.2)
n

where K, , := | By, | is the number of distinct symbols/boxes appearing exactly r times
in the sample, i.e. the number of boxes containing exactly r balls. The study of the
numbers K, , themselves, and the number K, := ) -, K, , is known as the occupancy
problem. It is natural to ask why we have not used the obvious estimator, the empirical
probability of By, ,, which would be T’K% in contrast to (2.2). For the case r = 0, it
is evident that this degenerates to the trivial 0-estimator, and one would expect to do
better. But in general, Good showed that (2.2) guarantees a bias of no more than 1/n
universally, i.e. regardless to the underlying distribution. One can show that this is not
true for the empirical estimators.

15



16 CHAPTER 2. GOOD-TURING ESTIMATION AND ITS PERFORMANCE

The Good-Turing estimator has been studied in many forms. Beyond the bias
results, there have been results on statistical efficiency, asymptotic normality, concen-
tration, etc. Most of these results put no assumption on the underlying distribution,
therefore giving great generality. However, they are often hampered by the unruli-
ness of P. For example, the results of McAllester and Schapire [22] are in complicated
analytical expressions, and give somewhat weaker convergence than one would expect
(additive, rather than multiplicative, concentration), even for the case of the missing
mass.

In this chapter, we focus on the missing mass problem, i.e. M, . The message
here is whether or not the bias guarantee is asymptotically significant depends on how
probabilities decay within P. The O-estimator example motivates this perspective. The
decay of the probabilities, or tail behavior, turns out to determine how one has to solve
the Good-Turing estimation problem, and also characterizes the Good-Turing estimator
itself. Furthermore, by restricting our attention to certain types of tail behavior which
are natural to expect, we can more easily analyze existing estimators, propose new
estimators, and also develop a keener insight about the nature of this problem and its
extension to other rare event problems. This is the topic of the next chapter.

The rest of the current chapter is organized as follows. In section 2.1 we briefly
outline two perspectives for the construction of the Good-Turing estimator. In section
2.2 we present the bias and concentration properties on which we will focus for the
rest of the development. In section 2.3 we introduce the notions of accrual function
and accrual rates of a distribution. These characterize the aforementioned decay of
probability, and do so intrinsically without reference to an arbitrary index. Then, in
section 2.4.1, we use accrual rates to determine the asymptotic behavior of the expected
value of the missing mass. We apply these in section 2.4.2 to describe the distribution-
dependent performance of the Good-Turing estimator. Lastly we conclude in section
2.5 with descriptive and predictive consequences of our results.

B 2.1 Construction of the Good-Turing Estimator

The original derivation of Good ([17], pp. 240—241) uses an empirical Bayes approach
with a uniform prior, and presumes a finite alphabet. We can arrive to the same
construction by employing an alternative perspective. In particular, assume that the
probabilities {p;};en are known as an unlabeled set (or rather multiset), in the sense
that we know the numerical values, but not which symbols in N they map to. This
is equivalent to knowing the distribution, but making the i.i.d. observations with an
unknown arbitrary relabeling.

If we choose any of the observed symbols, say X,, without loss of generality, then
the a priori probability that X, = j is p;. However, we have the rest of the observations
X1, ,Xn—1, and we would like to know the posterior probability given these. More
precisely, Good’s approach focuses on conditioning on the number of times the value
assumed by X,, appears in the observations. If in the entirety of the observations, the
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value of X,, appears r times, we are then conditioning on it appearing r — 1 times in
the rest of the observations, other than X,,: the event is:

E, = {SI{XZ-:X”}:T—I}.

i=1

Note that although X, is independent from Xj,---, X, _1, the event that X, ap-
pears r — 1 times in Xq,---, X,,_1 is not independent from the event that X,, takes a
certain value. We have:

P{X, = 1P {0 1(x0) = -1}
Sy P{Xn = P {E0 1o (X) = 7~ 1}
pi - () (A —py) 7Y

Zj’ Py’ - (r—l)pj’ (1 —pj)n=D=(r=1)

P 2.3)
(L =py) '

This is a complete posterior description of the distribution of X, given how fre-
quently it appears in the observations. However, we still cannot evaluate or approxi-
mate it, because we don’t really have the p; values. Instead, we aggregate by taking
the posterior expectation. If X,, = j, then its probability is px, = pj. Therefore, we

have: .
Py (A —p) "
Zj/pj/(l _pj) -

Equation (2.4) merges back with Good’s derivation ([17], equation (13)). From then
on, one should only observe that the expected number of symbols appearing exactly r

times out of n is:
n _
Bl = 3 (1)
J

P{X,=j|E.} =

Elpx,|E;] ZPJP {Xn=J|E} = (2.4)

to write:
r+1E[Kyi1r41]

Elpx |E,] =
[pxa | Er] n+l B[K,,]

(2.5)

This leads Good to suggest the principal form of the (per symbol) Good-Turing
estimator, which does not explicitly require any knowledge of the probabilities:

r—+ 1 Kn7r+1
n+l Ky,

Elpx,|E,] = (2.6)

Since this is the same value for every element of B, , C N, the set of symbols
appearing exactly r times, and since |B,, | = K, », Good suggests estimating the total
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probability of By, ,, My, = P{B,,} by (2.2):

r+1

e L.
n—+1 ot

We can also derive the same formula by dropping the Bayesian perspective com-
pletely, and instead looking at the true expectation of M, ,, over the ensemble of ob-
servations, which is easily seen to satisfy:

1
E[M,,] =

= mE[KnH,rH]-

The literature on the Good-Turing estimator has alternated between these perspec-
tives (e.g. Cohen and Sackrowitz 1990). It would be interesting to reconcile the two
interpretations, but this is mostly a philosophical argument.

M 2.2 Performance Valuation

H 2.2.1 Bias and Concentration

Consider an estimator M,, o of the missing mass.

Definition 2.1. If there exists a function f(n) such that |E[M,.0]—E[M,0]| = O (f(n)),
we say that My, o has asymptotic bias of order f(n).

Particularly, when [E[M,, o] — E[M,.0]| — 0 as n — oo, we say that M, ¢ is asymp-
totically unbiased and, intuitively, the bias vanishes no slower than A(n).

Definition 2.2. If there exist constants a and b, such that for all € > 0 and n we have
P{Mn,o < Mpo—e} < aexp(—be2n),

we say that MnO concentrates above My . If this holds for Mn 0> My +e€, then we
say Mn .0 concentrates below M, o. If both hold, then Mn .0 concentrates around M, o.

Concentration results can have various forms of the exponent. The choice of €2n
reflects the results in the literature, such as [22] and [21], based on Chernoff-like bounds.

As mentioned in this chapter’s preamble, it was known to Good that G, o is asymp-
totically unbiased, With asymptotic bias of the order of 1/n. More precisely: E[M, o] <
E[G,0] < E[M, ) + 1. Later Robbins [26] showed that the mean squared error also
decays faster than ? Most of the bias statements that we will make in this chapter
also translate to MSE statements. Many other statistical properties of this estima-
tor, including its asymptotic normality (Esty [12]), its admissibility with respect to
mean squared error only with finite support and inadmissibility otherwise, and being
a minimum variance unbiased estimator of E[M,,_1 ] (both by Cohen and Sackrowitz
[9]), were shown. More recently McAllester and Schapire [22] also showed that G, o

concentrates above M, o.
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Note that other estimators of M, o have also been proposed, with some additional
assumptions on the underlying distributions, such as a known number of species, and
a uniform distribution. Nevertheless, G, o performs comparably to those parametric
estimators. A good survey of this literature can be found in Gandolfi and Sastri [15].

M 2.2.2 Trivial Estimators

Let’s call an estimator Mn,() trivial if it does not depend on the observation sample.
In other words, a trivial estimator is a function that depends on n alone. We will use
such estimators as comparative benchmark against the performance of the Good-Turing
estimator. In particular, we would like to meet the order of asymptotic bias and as-
sert concentration from above. When the same performance can be met by a trivial
estimator, there is no discernible benefit in using the Good-Turing estimator. Con-
versely, when no trivial estimator can meet these guarantees, the value of the estimator
is reinforced, and its use is promoted.

As an example, consider once more the simplest trivial estimator: one which eval-
uates to the constant 0 for all observations and for all n. Indeed, the (random) event
{ieX:i¢{X1,---,Xn}}, by construction, is not represented in the empirical mea-
sure. Therefore the 0-estimator is the empirical estimate of M,, o. Furthermore, it is
easy to show that E[M, o] converges to 0, and thus the 0-estimator is also asymptot-
ically unbiased. One manifestation of the present work is that if P falls in a certain
category, then the O-estimator has asymptotic bias decaying at the same order as or
faster than what G, o can guarantee, namely 1/n. In another category, however, G, o
distinctly outperforms this trivial estimator. Such categories turn out to depend on
how probability decays within P.

B 2.3 Accrual function and rates

We now introduce the notion of accrual function, and use it to characterize probability
distributions. Our goal is to capture the notion of probability decay and heaviness of
tail without an arbitrary indexing or ordering of the symbols, such as by descending
mass. We therefore give an intrinsic definition, as follows.

Definition 2.3. We define the accrual function of a distribution P as:

Ax) = Z Di-

pi<z

Note that A(x) is not a cumulative distribution. Rather, it describes how the
probability mass accrues from the ground up, whence the name. It is intrinsic, because
it parametrizes by probability, rather than by index. More importantly, probability
decay can be described by considering its behavior near x = 0, using the concept of
accrual rates.
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Geometric, p =1
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Figure 2.1. Accrual functions for geometric, power law, and finite distributions.

Definition 2.4. Let the distribution P have an accrual function A(x). We define the
lower and upper accrual rates of P respectively as:
log A(x)

.. log A(x) _
B—llgl;gfm, and p = hrglcljgp gz

If the limit exists, we simply say that P has accrual rate p.

We illustrate this with three examples, as shown in Figure 2.3. First, note that when
the support of P is finite the accrual function is 0 near x = 0, therefore its accrual rate
is infinite. This is indeed the steepest possible form of decay. Next, consider the case
of the geometric distribution with parameter g, i.e. p; = (1 — q)*"!¢. In this case, one
can compute the accrual function to be A(x) = z/q, at every x = p;, and a piecewise
step in between. Consequently, the accrual rate is 1. Lastly, consider the power law
p; = 6/(mi)2. In this case, the accrual function is A(x) = > 6/(mi)?, for i > 771,/6/x.
Near x = 0, we can approximate the sum with an integral, and find A(z) =~ C - /x.
Therefore, the accrual rate is 1/2.

These examples suggest a taxonomy that relates accrual rate to conventional no-
tions of decay. First, the finite support case is characterized, formally, by an infinite
rate. When the rate is bounded, by construction, it cannot be above 1. Exponentially
decaying tails have an accrual rate of one, but so do tails that behave, for example,
roughly as e~ for some B # 1. Below one, we have a distinct regime where the decay
is roughly a power law. When we say ‘roughly’, we mean up to the logarithmic ratio
inherent in the definition of accrual rate. It is interesting that one arrives at these
notions, without an explicit indexing in the definition of the accrual function, although
in the next chapter we shall see that a stronger characterization of the accrual is also
equivalent to an indexed decay.
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B 2.4 Distribution Dependence
W 2.4.1 Behavior of E[M,, ]

We start by giving basic bounds for the expected missing mass using the accrual func-
tion. We then specialize these bounds to obtain asymptotic behavior, based on the
accrual rates of the distribution.

Lemma 2.1. Let the distribution P have an accrual function A. Then for any z,y €
[0,1], the expected missing mass E[M, o] can be bounded as follows:

(1—2)"A(z) < E[Mno] < (1—y)" + A(y). (2.7)

Proof. Let {Y;}, i = 1,2,---, be indicator random variables which are 1 when symbol
i does not appear in the sample and 0 otherwise. Then it follows that M, o =Y. p;Y;
and consequently that:

E[M,] = ZpiE[YZ-J = Zm(l — i)™

Both bounds are then obtained by splitting this sum around values of p; below and
above a given value. For the lower bound:

Zpiéx pi(1—pi)" + Zpi>zpi(1 —pi)"

E[M,o] =
2 Zpiﬁifpi ’ (1 - x)n + Zpi>$pi - 0.

And for the upper bound:

E[M,o] < >,<,pi-1+1—y"
The lemma then follows from the definition of A. O

Theorem 2.2. Let P have lower and upper accrual rates 0 < p < p < oco. Then for
every § > 0 there exists ng such that for all n > ng we have:

n—(P+9) < E[M, ] < n—(p=9)
or, equivalently, for every d > 0 we have that E[M,, ] is both Q(n_(ﬁJr‘S)) and O(nf(ﬁf‘s)).

Proof. We start with the lower bound. Choose any « in (p,p + §). Then there exists
x1 such that for all < x; we have log A(z)/logx < «, or alternatively A(z) > z®.

Consider the expression (1 — z)"z®, and note that its maximal value is achieved at
T = a/(n+a). For n large enough, T < x¢, and we can use the bound for A(x) together
with the left-hand inequality in (2.7) to write:

E[M,o > (1-7)"A(®)
> (-7 = (1-3%5) mlae
Z e %% 1

T
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therefore there exists ni, such that for all n > n; we have E[Mnyo] > A

For the lower bound, choose any 8 in (p — d, p). Then there exists o such that for
all x < z2 we have log A(z)/logz > 3, or alternatively A(z) < z°.

Now consider the expression (1 — z)" + z”, which we evaluate at the test point
z =1—(8/n)*™. Note that using the fact that ¢ > 1 4 z with z = glogg we can
show that z < glog %, and thus for n large enough we will have z < z5. Using the
bound for A(x) with the right-hand inequality in (2.7), we can write:

E[Mo] < (1-2)"+ Az)
< o= (3 (- (3))

IN
~
3™
~—~
+
~
S
—
o
o
I3
~—

therefore there exists ng, such that for all n > ny we have E[M,, o] < n~(e=9), Finally,
set ng = nq V no. O

W 2.4.2 Performance of G,

We apply these results to categorize the performance of the Good-Turing estimator,
based on the accrual rates of the distribution. We start with a general statement
pertaining to trivial estimators, and then derive corollaries about when such estimators
have the same performance guarantees as the Good-Turing estimator.
Theorem 2.3. Let r € [0,1] be given. Then there exists a trivial estimator, namely
Mn,(] = 1/n", that achieves asymptotic bias of order 1/n" for all distributions with lower
accrual rate p > r.

Conversely, given any trivial estimator, there exists a distribution with upper accrual
p < r such that for all ng and ¢ > 0, there exists n > ng where the bias is larger than

c/n”. Therefore the given trivial estimator does not have asymptotic bias of order 1/n".

Proof. Consider the forward statement. Set Mn,O = 1/n", and let P be any distribution
such that p > r. From Theorem 2.2, we know that for large enough n we have E[M,, o] <

1/n". Tt immediately follows that 0 < M,, o — E[M, ] < 1/n", demonstrating the bias
claim.

For the converse, let’s take ¢ = 1 without loss of generality. Assume to the contrary
that there exists an estimator M™, such that for all P with p < r the bias is of order
1/n", that is: there exists ng such that for all n > ng we have |E[M,, o] — Mpo| < 1/n".

Now, pick two distributions. First, let P be such that 0 < p < p < r. Then, let P’
be such that o’ < p. Also pick any ¢ and s such that 7' <t < s < p- We will show that
if M™ has proper bias with P’ it has to decay slowly, and therefore will fail to have
proper bias with P.

Focusing on I, let ng be large enough such that for every n > ng, all of the following
hold:
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e E[M, o] — M, < 1/n" for P’ by our assumption,
e E[M, ] > 1/n' for P’ by Theorem 2.2,
e 5t >2 and n" 7% > 1.

In particular, we get M, o > E[M,o] — 1/n" > 1/nt —1/n".
Now, moving on to P, choose n; > ng such that E[M, ] < 1/n*, by Theorem 2.2.
Then, for all n > ny; we have:

~

Mo —E[M,o] > 1/n'—1/n°—1/n"
= (Nt =1)—1)/n" > 1/n".

But this contradicts our assumption, therefore it’s false. O
This immediately results in the following corollaries.

Corollary 2.4. If P is finite, i.e. has infinite accrual rate, then the trivial estimator
M, 0 = 1/n matches the performance of the Good-Turing estimator asymptotically.

Proof. The bias claim follows from the forward part of Theorem 2.3, by setting r = 1.
For the concentration result, first note that from Theorem 2.2 we know that for large
enough n, we have E[M,, o] <1/n = Mn,07 then invoke the fact that M,, o concentrates
around its own mean. Namely, there exist constants a and b such that for every ¢ > 0
and n we have:

P{E[M, 0] < M, o — €} < aexp(—be’n), (2.8)

This was shown first by McAllester and Schapire [22], and later with tighter constants
(in addition to concentration from below) by McAllester and Ortiz [21]. From here, one
needs only to observe that for large enough n, an event of the form {Mn,o < Z}is a
subset of event {E[M,, o] < Z}, and particularly

P{Mpo < My — €} < P{E[M, ] < M0 — €},
and asymptotic concentration follows from (2.8). O

It is worthwhile to remark that, in this case, even the 0O-estimator achieves bias of
order 1/n, since E[M, o] < 1/n for large enough n, but it does not give concentration
from above.

Corollary 2.5. If P has accrual rate 1, then the trivial estimator Mn,O =1/n has an
asymptotic bias of order L(n)/n, and the concentration property:

P{L(n)M, o < Mo — €} < aexp(—be’n), (2.9)

where L(n) is a slowly varying function, i.e. L(cn)/L(n) — 1 for all ¢ > 0, as n — oo.
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The proof of this corollary follows the same line of argument as the previous one.
Examples of L(n) can vary from constants to iterated and poly logarithms, and are
functions that grow slower than any finite power. For instance, one can show that for
geometric distributions L(n) can be chosen to be a constant (universally for all ¢ smaller
than some ¢q), or logn (universally over all geometric distributions). The description
of Corollary 2.5 is coarser than, but alludes to, the regular variation context which we
elaborate in Chapter 3.

It is not surprising that Good-Turing estimation does not have asymptotic advantage
for finite distributions. However, as we illustrated in section 2.3, an accrual rate of 1
is characteristic of exponential-like light tails. Distributions in many applications fall
under this category, and it is instructive to see that the (asymptotic) advantage in using
the Good-Turing estimator in such situations is marginal.

One would like to assert a converse, to the effect that when the accrual rate of
a specific P is below 1, then no trivial estimators can match the performance of the
Good-Turing estimator. However, this naive converse is not true: if one has knowledge
of the precise expression of E[M,, o], and uses it as a trivial estimator, then bias would
be zero, and concentration would follow from (2.8). Of course, this would constitute
much more than a partial knowledge about accrual rate. In fact, the converse part of
Theorem 2.3 formalizes how lack of such precise knowledge dooms trivial estimators to
failure in this case. We restate this as a corollary.

Corollary 2.6. Given any trivial estimator Mn,o, there is always some distribution P
with accrual rates less than 1, for which M, fails to match the performance of the
Good-Turing estimator.

Accrual rates above one are characteristic of heavy tails. We have thus shown that
here, in contrast to the light tail case, one cannot construct a single trivial estimator
that works as well as the Good-Turing estimator, without being significantly penalized.
Therefore, the Good-Turing estimator presents a distinct advantage in this situation.

Remark

One may argue that the comparison we have presented in this chapter is not entirely fair.
More precisely, we are comparing the Good-Turing estimator’s bias that is (a) worst-
case over all underlying distributions and (b) non-asymptotic, to the bias of a trivial
estimator that is (a) specific to all distributions with a range of accrual rates and (b)
asymptotic. This is certainly a valid argument, and shows that no trivial estimator can
universally replace the Good-Turing estimator. However, our exposition is simply an
analytic tool to probe the significance of the performance guarantees of the Good-Turing
estimator. In particular, we have shown that with heavy-tailed distributionw the Good-
Turing estimator triumphs despite this unfair comparison, which is indicative that this
is the regime where one can effectively learn rare probabilities. In the next chapter,
Chapter 3, we shift our attention to a different performance metric, consistency, and
show more explicitly the importance and role of heavy tails.
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B 2.5 Summary

In this chapter, we considered the problem of estimation of the missing mass, with the
valuation of an estimator’s performance based on bias and concentration. We presented
the popular Good-Turing estimator, and compared its performance with that of trivial
estimators, those that do not depend on the observation. We introduced the notion
of accrual function and accrual rates of a discrete distribution, and showed that they
govern the asymptotic behavior of the expected value of the missing mass.

Using these results, we divided distributions into two categories: those with accrual
rates of one or infinity, and those with accrual rates less than one. For the first, we
showed that the performance of the Good-Turing estimator can be rivaled by a trivial
estimator, and thus Good-Turing estimation offers no great advantage. For the second,
we showed that any trivial estimator can be adversarially paired with a distribution
that puts it at a disadvantage compared to the Good-Turing estimator, making the
latter distinctly non-trivial.

Distributions with accrual rates larger than one are heavy-tailed. One domain of
application where such distributions appear extensively is language modeling. Zipf was
one of the earliest researchers in that field to bring out this fact, as he wrote in 1949
[33]: “If we multiply the frequency of an item in a ranked frequency list of vocabulary
by its rank on the frequency list, the result is a constant figure.” This came to be
known as Zipf’s law, and describes a family of distributions with power law probability
decay, relative to an integer order index.

Our method of accrual function and accrual rates offers a characterization of these
and related laws intrinsically, that is without the use of an arbitrary index. This turns
out to be closely associated with regular variation, as we will highlight in the next
chapter, Chapter 3. The proof that Good-Turing estimation works precisely for such
distributions and not for others, can explain why this estimator has been so successful in
natural language processing [14], but has not been adopted widely in other disciplines.
It also predicts that fields where practitioners are likely to apply it with success are
those where such distributions arise, such as economics, networks, etc.
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Chapter 3

Probability Estimation
under Regular Variation

HIS chapter moves the focus entirely to heavy tailed distributions. We use Kara-

mata’s theory of regular variation to more precisely describe such distributions.
Also, whereas the previous chapter focuses on bias and concentration properties of the
Good-Turing estimator, this chapter studies consistent estimation of the probability of
rare events, in the sense of a ratio converging to one, probabilistically. In particular we
ask for strong consistency, where this convergence holds almost surely. We first show
that in general the Good-Turing estimator is not consistent. However, under regular
variation, we show that the probabilities themselves obey a strong law. We do so by
extending the McAllester-Ortiz additive concentration results for the missing mass to
all of the rare probabilities, and then using the regular variation property to show mul-
tiplicative concentration. This is a more natural and useful property, since all quantities
of interest converge to zero. The strong laws allow us to show that Good-Turing estima-
tion is consistent in this regime. Furthermore, we construct new families of estimators
that address some of the other shortcomings of the Good-Turing estimator. For exam-
ple, they perform smoothing implicitly. This framework is a close parallel to extreme
value theory, and many of the techniques therein can be adopted into the model set
forth in this thesis.

The rest of this chapter is organized as follows. In 3.1, we give the basic definition
of consistency and show the failure of Good-Turing to be consistent for geometric dis-
tributions. In 3.2, we give the preliminary background for this development, including
the notion of regular variation, an exposition to the exponential moment method, and
the property of negative association. Using these tools, in 3.3 we extend the additive
concentration results of McAllester, Schapire and Ortiz [21,22] to all rare probabilities.
We then use a parallel approach in 3.4 to derive multiplicative concentration under
regular variation. Finally, in 3.5, we use these results to obtain strong laws, to show
the consistency of Good-Turing estimation under heavy-tailed regular variation, and to
construct a family of new consistent estimators.

27
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Notation

Throughout the chapter, it is convenient to use the limiting notation f ~ g to mean
f/g — 1. We also use the subscript ,5 to indicate almost sure convergence when
quantities are random.

B 3.1 Consistency of Probability Estimation

H 3.1.1 Definition

We say that an estimator Mnm of My, is consistent if ]\;[m, /M, » — 1 in probability.
We say that it is strongly consistent if M,, ,./M,, , — 1 almost surely.

B 3.1.2 The Good-Turing Estimator is not Universally Consistent

Consider a geometric distribution given by p; = (1 — q)¢’ for j € Ny, parametrized by
€ (0,1). We can show the following precise behavior for the counts of symbols seen
exactly once.

Lemma 3.1. For the subsequence n; = |¢/pi] = |cq™"/(1 — q)], with ¢ > 0, we have:
E[Kp, 1] = h(e,q) (3.1)
where -
Z cqme 1", (3.2)

Proof. In general, by Poissonization (e.g. [16], Lemma 1) or using (1 — %)n T e % and
the dominated convergence theorem, one has that as n — oo:

Z np;j(1 —p;)" — Z npje”"Pil — 0. (3.3)
5=0 §=0

This limit is not in general a bounded constant. It can grow unbounded, or can
be bounded but oscillatory. However, in the geometric case, we can obtain a bounded
constant limit by restricting our attention to a subsequence, such as the one we hypoth-
esized, n; = |¢/pi].

Assume that there exists a rather convenient sequence j; — oo slow enough such
that ¢ — j; — oo and

Z Pig=ew o, (3.4)

Jopz

This gives us enough approximation leeway to show first that we can replace n; by
¢/p; in Equation (3.3), without altering the limit:

00 0o
s —cPi

E nipje P — g C J Pi E

7=0 7=0

7=0

Sl )ps | Pi et
Di

”G‘Q

P\o
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pj

Ji
pj —C-
< (e+1) c—=e P =0
]Z_; Dbi

00 )

bi . pj —cPi
+(—V pji—l) e Pi — 0,
<c (e ) | g ce

and second that we can remove the dependence on 7 from the limit, using the fact that:

0 pi ol e pi el
E cLe P = E c=Le “ri
j=

=0 Di i Di
oo
J=Ji
1—7J; [e'e)
= Z cqMe " Z cqMe 1"
m=—00 m=—00

Therefore, to complete the proof, we construct j; as desired. In particular, let
Ji=1— ’VIqu—l (% log p%ﬂ . First note that the subtracted term is of the order of logz,

i
and thus j; — oo yet i — j; — oo. Then, by the fact that > p; =1 and e “Pi is the
largest of the lot since pj;, is the smallest, we have:

Ji , i - 2 Jog L 2100 1
ZZC& —ch c _ i c [logq*(clogm)-‘ c _. ~tog, 1 (2 1oz 57)

Recalling that E[K), 1] = nE[M, o], note that this agrees with the results of the
previous chapter, in particular Corollary 2.5. Using this more precise characterization
over a subsequence, however, we can establish the following negative result.

Lemma 3.2. For a geometric distribution with small enough q, the Good-Turing esti-
mator of the missing mass is not consistent.

Proof. For any real-valued non-negative random variable W, we can use Markov’s in-
quality to establish that:

P W<@ = 1-P Wz@
{ 1 n} { 1 n}
EW]

> 1-

Let’s assume that for some ¢ > 0 and g9 > 0, and for all 0 < g < ¢p, we have
h(c,q) < 1. Choose any such g, then choose any n € (0,1 — h(c,q)), and let ig be large
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enough such that for all ¢ > iy we have E[K,, 1] < 1 —n. Since K, takes integer
values, it follows that for all i > ig:

This means that there’s always a positive, bounded away from zero, probability that
Kp,1 =0, implying G, 0 = 0. Since My, o > 0 for every sample, it follows that with
positive probability Gy, 0/Mp, 0 = 0, and therefore G, 0/My 0 - 1, for any geometric
distribution with ¢ < qp.

To complete the proof, we show that our assumption about A is true. We could
argue for it abstractly, but we give a concrete bound instead. In particular, using the
fact that ze™* < min{z,1/z} for all z > 0, we have

e}

he,q) = Y egme "
m—=—0oQ
-1 0o
< Z 1/(cq™) 4+ ce “+ Z cq™
m=—o00 m=1

1
= ce “+ (—i—c) 4
c 1—gq

Let c = 1 and go = (1 — e 1)/(3 — e™!). Then it is easy to verify that ce™¢ +
(% + c) l%q is continuous, monotonically increasing, and at qq it evaluates to 1. There-
fore, for all ¢ < qo, we have that h(1,q) < 1 as desired. O

This shows that even in the case of accrual rate 1, and a fairly well behaved dis-
tribution like the geometric, the Good-Turing estimator does not result in a consistent
estimator for the missing mass. This motivates us to ask whether the same holds true
for accrual rates less than 1. As we show next, it turns out that heavy tailed distribu-
tions are much better behaved, especially if we make their description more precise by
using regular variation.

B 3.2 Preliminaries

B 3.2.1 Regularly Varying Distributions

In this section we refine the notion of accrual rate, by using Karamata’s theory of
regular variation, which was developed originally in [18], with the standard reference
being Bingham, Goldie and Teugels [4]. The application we have here is based on the
early work of Karlin [19], which was recently given an excellent exposition by Gnedin,
Hansen, and Pitman [16]. We follow the notational convention of the latter.
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It is first useful to introduce the following counting measure on [0, 1]:

v(dz) = Z dp, (dz), (3.5)

where ¢, is a Dirac delta at z.

Using v, we define the following function, which was used originally by Karlin [19]
to define what is meant by a regularly varying distribution, and which is a cumulative
count of all symbols having no less than a certain probability mass:

N1

(z) :=v[z,1]. (3.6)

We also define the following family of measures, parametrized by r =1,2,---:

vp(dz) = 2"v(dz) = Zpgép]. (dz). (3.7)
J

In particular, note that the accrual function can be written in this notation as
A(z) = 11[0,z]. Karlin did not use the accrual function for his definition, but we see in
Theorem 3.3 that there’s an equivalent definition based on A(z).

Definition 3.1. Following Karlin [19], we say that PP is regularly varying with regular
variation index « € (0,1), if the following holds:

v(x) ~z"%(1/x), as x]0, (3.8)

where £(t) is a slowly varying function, in the sense that for all ¢ > 0, £(ct)/l(t) — 1
ast — oo.

It is possible to study the cases & = 0 and o = 1 too, with additional care. However,
we do not tackle these situations in this thesis.

We now give the very useful characterizations which were established to be equiva-
lent to Definition 3.1 by Gnedin et al. [16], in the following portmanteau theorem.

Theorem 3.3. FEquation (3.8) is equivalent to any (and therefore all) of the following
deterministic conditions:

Accrual function:

A(z) = [0, z] ~ %xl—az(l /z), as x10, (3.9)

Ezxpected number of distinct observed symbols:

E[K,] ~T(1 —a)n®(n), as n— oo, (3.10)

Ezpected number of symbols observed exactly once:

E[K, 1] ~al'(1 = a)n®(n), as n — oo, (3.11)
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We also have the following probabilistic equivalent conditions:

Number of distinct observed symbols:
Ky ~as. I'(1 —a)n®(n), as n— oo, (3.12)
Number of symbols observed exactly once:

Kpi ~as o'(1 —a)n®(n), as n — oo, (3.13)

Finally any of the above implies the following for all r > 1:

ve[0, 2] ~ ——a""*(1/z), as zl0, (3.14)
T(r —

E[Kn,r]Nia (T‘ a)naﬁ(n), as n — oo, (3.15)
7!
T(r —

Kpp ~as. L'a)naf(n), as n — oo, (3.16)
r!

It is worth noting that Equation (3.9) implies the accrual rate condition of the
previous chapter, namely Definition 2.4, with p = 1 — a. However, the converse is not
necessarily true.

Theorem 3.3 shows how the regularly varying case is very well behaved, especially
in terms of the strong laws on the occupancy numbers K, ,, which are the elementary
quantities for Good-Turing estimation. In fact, from Equations (3.11), (3.13), (3.15),
and (3.16), we have that for all » > 1, K,, ,/E[K,,»] —as. 1. We will harness this fact
throughout this chapter to study probability estimation in this regime.

B 3.2.2 Exponential Moment Method and the Gibbs Variance Lemma

We adhere closely to the exposition of McAllester and Ortiz [21]. The exponential mo-
ment method takes its name from the use of Markov’s inquality with an exponentiated

random variable. It is embodied in the following statement, due originally to Chernoff
[8].

Theorem 3.4. Let W be a real-valued random variable with finite mean E[W]. Asso-
ciate with W the function S : RT — R, w — S(W,w), where:

S(W,w) = supwp — log Z(W, 8),
BER

with
Z(W,5) = E[¢""].
Then, the lower and upper deviation probabilities are given by:

P{W > E[W]| + ¢} < e”SWEWIl+9,

and
P{W < E[W]| —¢} < e SWEW]—¢)
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We now give some background about Gibbs measures, which have distinct roots in
statistical mechanics, but are also an integral part of the exponential moment method.
It turns out that for any W, there’s always a largest open interval (8_, 84) over which
Z (W, 3) is finite. In this exposition this interval is always the whole real line. Denote
the law of W by p, then with each 5 € (8_, f4+), we can associate the Gibbs measure:

ebw
pp(dw) = Wﬂ(dw)-

Denote by Eg any expectation carried out with respect to the new measure. In
particular denote the variance of W under the Gibbs measure by (W, 8) := Eg[(W —
Es[W])?]. Note that Eg[W] is continuous and monotonically increasing as (3 varies in
(68—, B+). Denote its range of values by (w_,w; ), and let f(w), for any w € (w—,wy)
refer to the unique value (45—, f;) satisfying Eg[W] = w.

McAllester and Ortiz [21] distill a particular result out of Chernoff’s original work,
and dub it the Gibbs variance lemma.

Lemma 3.5. For any w € (w_,wy) and 8 € (S, f+), we have that:

SWow) = wh(w) —log Z(W, B(w))

= D (gl
w v 1
= /E[W] /E[W] mdudv (3.17)
B ra
log(Z(W,8)) = E[W|3+ /0 /O o2(W, 7)drda (3.18)

The importance of this lemma is that it showcases how we can establish concen-
tration by controlling the variance o?(W,3) in (3.17) and (3.18). The following two
lemmas (reproducing Lemmas 9 and 11 in [21], with the exception of part (i) below)
are established by doing precisely that.

Lemma 3.6. Let W be an arbitrary real-valued random variable.
(i) If for a B € (0, 00], we have SUPo<5<3 a?(W, B) < @2, then for all € € [0, 35%]:
2
20
(it) If for a B € [—00,0), we have supg<s<go(W, 8) < g, then for all € € [0, —fo?]:

62

SW,E[W] — ) > —. (3.20)

QZ

We can specialize part (ii) to the following case:
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Lemma 3.7. If W = Zj bjW;, where b; > 0 and W; are independent Bernoulli with
parameter q;, then for all e > 0, we have:

2

€
SW,E[W]| —€) > ———5—.
2Zj b?‘]j

(3.21)

B 3.2.3 Negative Association

We now introduce the concept of negatively associated random variables. We start with
the definition, then give a few lemmas that facilitate establishing the property. Finally
we illustrate the usefulness of this concept within the framework of the exponential
moment method. All these statements and their proofs can be found in the exposition
by Dubhashi and Ranjan [11], and are also outlined in McAllester and Ortiz [21]. We
present the definitions and results in terms of finite collections of random variables, but
everything extends to countable collections with some additional care.

Definition 3.2. Real-valued random wvariables Wy,--- , Wy are said to be negatively
associated, if for any two disjoint subsets A and B of {1,--- ,k}, and any two real-
valued functions f : R4 = R, and g : RPl = R that are both either coordinatewise
non-increasing or coordinatewise non-decreasing, we have:

E[f(Wa) - g(Wg)] < E[f(Wa))] - E[g(WB)].

We now show one way to construct new negatively associated random variables,
starting from an existing collection.

Lemma 3.8. If Wy, --- W are negatively associated, and f1,---, fr are real-valued
functions on the real line, that are either all non-increasing or all non-decreasing, then
fiWh), -+, fu(Wk) are also negatively associated.

The elementary negatively associated random variables in our context are the counts
of each particular symbol, or equivalently the components of the empirical measure.

Lemma 3.9. Let P = (p1,--- ,px) define a probability distribution on {1,---  k}. Let
X1, -+, Xy be independent samples from P, and define, for each j € {1, - k}:

n

Cn,j = Z 1{X,L = ]}

i=1
Then the random variables Cy, 1, -- ,Cyp i are negatively associated.

The reason why negative association is useful is the following lemma, which shows
that sums of negatively associated random variables can be treated just like the sum
of independent random variables with identical marginals, for the purpose of the expo-
nential moment method.
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Lemma 3.10. Let W = Z§:1 W;, where Wy,--- Wy are negatively associated. If
Wh,--- , Wy are independent real-valed random variables such that foreachj e {1, - k}

we have L(W;) = L(W;), then for all w, we have:
S(W,w) > S(W,w),
where W = 2521 W;.

It is worth noting that this approach is not very different from the Poissonization
technique used by Karlin [19], Gnedin et al [16], and others who have studied the
occupancy problem. Instead of randomizing the sampling epochs to make counts inde-
pendent, which creates independence at the cost of distorting the binomial distributions
into Poisson distributions, the negative association method enforces only independence.
Of course, just like de-Poissonization which allows one to reconstruct results in terms
of the original variables, here too we need such inversion theorems, and Lemma 3.10
does precisely that.

B 3.3 Additive Concentration

In this section, we follow the methodology of McAllester and Ortiz [21] in order to extend
their additive concentration results for the missing mass M, o, to all of M, ,. For this,
we use the exponential moment method and the Gibbs variance lemma, and negative
association. These results are valid for all distributions, whereas the next section we
specialize to regularly varying distributions, and show multiplicative concentration. The
main theorem of this section is as follows.

Theorem 3.11. Consider an arbitrary P. Then, for every r = 0,1,2,---, there exist
constants a,, by, €. > 0 such that for every n > 2r, and for all 0 < € < €,, we have

P{|M,, — E[M,,]| > ¢} < are " (3.22)

We cannot directly parallel the McAllester-Ortiz [21] proofs of additive concentra-
tion for the missing mass, because unlike M, o, M, , cannot be expressed as a sum of
negatively associated random variables. However, we can work instead with a quantity
that can be expressed as such, namely the total probability of all symbols appearing no
more than r times:

T
Myoosp =Y My (3.23)
k=0
Indeed, we can express it as follows:

Mn,O—)r = ijZn,j,ra (324)
J

where Z,, j, = 1{C),; < r} are indicator random variables associated with each symbol,
in order to contribute its probability mass only when it appears no more than 7 times in
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the observation. Note that each Z,, ;, is a non-increasing function of the corresponding
count C, ;. Since {C, j}jen are negatively associated by Lemma 3.9, then by Lemma
3.8 so are {Zy, j}jen. The following lemma shows that it’s sufficient to prove additive
concentration for every My o, in order to prove Theorem 3.11.

Lemma 3.12. If for every r =0,1,2,---, there exist constants a,, l;r, € > 0 such that
for every n > 2r, and for all 0 < € < é., we have

P{|Mp oy — E[Mypos]| > €} < dpe . (3.25)

then for every r = 0,1,2,---, there exist constants a,,b,,e. > 0 such that for every
n > 2r, and for all 0 < € < €, the concentration (3.22) holds.

Proof. Define the events:
A= {E[Mn,Oﬁr] - 6/2 < Mn,0~>r < E[MH,OHT'] + 6/2}a and

B = {E[Mn,O—W—l] - 6/2 < Mn,O—)r—l < E[Mn,O—W—l] + 6/2}
Then AN B C {E[M, ;] —€ < M, , < E[M,,]+ €}, and thus:

{’Mnﬂ“ - E[Mnm” > 6} C AU B€.

Therefore we can use our hypothesis and the union bound to write that for every
n>2r,0<e<é NAéq:

P{| Moy — E[Ma,]| > ¢} < P(A°UB)
< P(A%) + P(B)
< e g g, et
< (ar + &r—l)e_(ETAET*1)62”/4.

This establishes Equation 3.22, with a, = a, + a,_1, b, = (BT A l;r,l)/ll, and €, =
€r N Ep_1. O

Proof of Theorem 3.11. By Lemma 3.12, we can now work with M, o, rather than
M, . Because of the negative association of {Z, ;,}jen, it follows from Lemma 3.10
that in order to establish concentration for M, o—,, it suffices to show concentration for
the quantity:
Mn,()—n" = ijZn,j,m (326)
J

where Zn,j,r are independent and have marginal distributions identical to Z, ;,, namely
Bernoulli with parameteNr 4 =70 () p;?(l — pj)"*. We would therefore like to use

Lemma 3.6, with W = M,, g—.
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To obtain the lower exponent, it is easiest to use Lemma 3.7, with W; = Zn,j,r and
bj = q;. We have:

;@u—zzy()H11Wk

k=0 j
~ (7 +1 _
_ Z (r(fk)l) ij <Z+ 1>p?+1(1 _pj)(n-‘rl) (k+1)
E[Mp41,5+1]

T
r+1 r+1
< Z E[M, 11 p+1] = —y IE[Mn+1,1—>T+1]

r+1

<
- n+1

Adapting this bound to Equation (3.21), we therefore have the lower exponent:
S(W,E[W] —¢€) > *n/[2(r + 1)].

To obtain the upper exponent, we would like to use part (~z ) of Lemma 3.6. Thanks to
independence and separation, the Gibbs measure for W = M,, g_,, remains a sum of in-
dependent Bernoulli random variables. However, rather than ¢;, these are parametrized

by the following:

Therefore, the Gibbs variance is given by:
B) = _pia;(8) (1~ q;(8)) < Y _pa;(5)
J J

For > 0, we have qjeﬁpj +1—¢; > 1. Using this and the fact that ePri < (1—pj)*6,
we can focus our attention to § < n — r, and write:

*(W,B) < ZP§Qj(1_pj)_ﬁ

_ ZZPJ< ) b1 p Bk

k=0 J

r n B +1 ) )
::Zm%wZ%@;i)wWFMWanu

k=0 \ k+1 j

; Cn,k+1(B)
T

_ k+1 (i)
— kzon—ﬁ—i-l(n 5)an+1(6)
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Here we have used the usual extension of the binomial, to arbitrary real arguments,
which can be expressed in terms of the I' function, or falling products. For every
B < n—r, the ¢, 1(B) define a (defective) probability mass function on the non-negative
integers k (just as E[M,,4; x+1] did in the lower exponent derivation), in the sense that
0 < Gui(B) < 1 for every k, and >, Gur(B) < 1. Therefore, if we bound every
summand, we can use the largest bound to bound the entire sum. We have:

k
G .

Therefore the largest summand bound is that at k = r:

r+1 (r+1)e"

UQ(VVa B) < mer (1-8/n)" = T (1- 5/”)_(T+1) (3.27)

Now select 8 = n/(r + 2) and 7% = % First observe that 3 < n — r since
n > 2r. Then, using the fact that  <1/(m + 1) implies (1 —z)™™ < e, it follows from
Equation (3.27) that for all 0 < 8 < B we indeed have o?(W, 8) < 2. Therefore, part

(i) of Lemma 3.6 applies, and we deduce that for all 0 < e < 1 < %e’”“ = (52 we
have: 2
SW,E[W]+¢€) > o
20

By combining the lower and upper exponents using a union bound, we get that
for a, = 2, b, = 1/[2(r + 1)e"™'], ¢, = 1, we have that for every n > 2r and for all
0 < € < 1, the additive concentration for Mn,0—>r and consequently for M,, o, as given
by Equation (3.25) holds, and by Lemma 3.12, so does the additive concentration for
M, , as given by Equation (3.22). O

B 3.4 Multiplicative Concentration

Our objective in this section is to establish strong laws for M, , for all » = 0,1,---,
which is an extension of the known result for the case of the missing mass (r = 0), which
was previously established (without explicit proof) by Karlin [19] (Theorem 9) and (with
an explicit proof) by Gnedin et al [16] (Proposition 2.5). The results we present here
differ from the latter in two important ways: they use power (Chebyshev) moments and
concentration whereas we use exponential (Chernoff) moments and concentration, and
they use the Poissonization method whereas we use negative association instead. The
derivation of multiplicative concentration parallels that of additive concentration as in
the previous section, with the use of regular variation to more tightly bound moment
growth. The main theorem of this section is as follows.

Theorem 3.13. Assume P is regularly varying with index o € (0,1), as in Definition
3.1. Then for everyr =0,1,2,---, there exists an absolute constant a,, and distribution
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specific constants b, > 0, n, < oo and 6, > 0, such that for all n > n, and for all
0 <4 <9, we have:

H My 1' > 5} < qyebrd®ntn), (3.28)

We cannot deduce the multiplicative concentration of Theorem 3.13 directly from
the additive concentration of Theorem 3.11, because the latter uses a worst case bound
on the Gibbs variance, whereas regular variation allows us to give more information
about how this variance behaves. This is what we harness in the proof.

Proof of Theorem 3.13. Throughout this proof, n > 0 is an arbitrary constant. For
clarity of exposition, we repeat parts of the additive concentration proof, and use regular
variation whenever it enters into play. Once more, let’s first work with M,, g, rather
than M, ,. Again, because of the negative association of {Z, j,};en, it follows from
Lemma 3.10 that in order to establish (additive) concentration for M, o, it suffices to
show concentration for the quantity:

n0—>r § pj n,5,7

where Znijr are independent and have marginal distributions identical to Z, ; ., namely
Bernoulli with parameteNr G =Y 1o ( ) p; ¥(1 —pj)"*. We would therefore like to use
Lemma 3.6, with W = M, o_,.

To obtain the lower exponent, we use the specialized Lemma 3.7 instead, with
W; = Z, j, and b; = gj. We have:

> vl = ZZP;( > B — pj)nh

k=0 j
T
(%) <”+1> k+1 1)—(k+1
— ph (1- p.)(n+)(+)
2y 2 J
E[Mp 41 k+1]
+1
= ;+1ZE n+1,k+1]

At this point, we diverge from the additive concentration derivation, to use regular
variation. Let P be regularly varying with index a. Then there exists a sample size
nr1(n) > 2r that depends only on P, r, and 7, such that for all n > n, 1(n) we have:

r+1 r+l = k+2
E[M, = E K
n+1z w1 k4] n+1kzon+2 [Knt2,+2]
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) n*l(n)

IN

1
( +n)n—|—1k:0n+2 (k +2)!

al'(k+2—«)
(k+ 1)

T—I-lzr:k‘—l-Qaf(k—l-Q—a

= (1+n)(r+1) n~(=9¢(n). (3.29)

k=0

ol (k+2—a)
k1)1
1)72, we h 2»<( )2*a*11 ¢(n). Adapting this to Equati

(r+1)7% we have > . pjq; < (cran®®) " (1 + n)l(n). apting this to Equation

(3.21), we therefore have, for all n > n,1(n) and all € > 0, the lower exponent:

Now observe that >, < (r+1), since o € (0,1). Therefore, for ¢, :=

Cr1 _ 1
SW,E[W]—¢) > —=en? % —— .
( W] ) > 2 (L+mn)l(n)
We follow a similar track for the upper exponent. Once again, we would like to use
part (i) of Lemma 3.6. Recall that the Gibbs measure for W = M,, g_,, remains a sum of
Bp;
gje"J
g;e"Pi+1-q;

independent Bernoulli random variables, with modified parameters ¢;(5) :=

For any 0 < 8 < n —r, we bound the Gibbs variance as before and write:

o*(W,B) < ZP?Qj(l_pj)_ﬂ

_ Zzpj< ) 4], )nhh

k=0 j
v W (=B ke N(n=B+1)—(k+1)
] ZHZ( o1 e
Cn,kJrl(ﬁ)

v kvl ()
= kZ:O S RN GG

r+1
é (r+n1) (1_5/ T—H)Zgns

Recall that we chose n,,; > 2r. Then, for all n > n,1, we have n/(r +2) <n/2 <
(n+1)/2 <n —r. If we again select 5 := n/(r + 2) then for all 0 < 8 < 8 and for all
n > n,1, we have:

(r+1)ertt ot

> Gos(B) (3.30)

s=0

a*(W, ) <

We have used here the same bound used in the approximations in the proof of
Theorem 3.11, with the exception of preserving the sum of the ¢, (8) and adding
the s = 0 term. We do this in order to exploit regular variation. With the addition
of the s = 0 term, ZTH Cn,s(B) becomes a monotonic non-decreasing function over
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B € [0,n —r]. To see why, note that when [ is an integer, this sum represents the
expectation of the total rare probabilities of symbols occurring no more than r + 1
times, out of n — 8 samples. The larger the value of 3, the fewer the samples, and there
is in average more probability in symbols with small counts.

Assume n is even, without loss of generality, as otherwise we can use (n + 1)/2
instead. Then, there exists a sample size n,2(n) > n,; that depends only on P, r, and
n, such that for all n > n,2(n) and for all 8 < 3, we have:

r+1 r+1 r+1
D Gs(B) <D Gus(n/2) =D E[M,aiq )
s=0 s=0 s=0
r+1
+1
= SZ:% ME[Kn/2+2,s+l]

r+1
s+1 al'(s+1—«)
< 2 +2)°
= +"Z n/2+2 (st 1) (n/2+2)%(n)
7’+1
— (1+7) Zzl ol SH alls+1-a) —(-a)y,) (3.31)

Now observe that (r + 1)e’*1 S 710 21- O‘M < 2" (r 4+ 1)(r + 2), since
€ (0,1). Therefore, using ¢, := [2¢"1(r + 1)(r + 2)] 7, we can combine Equations
(3.30) and (3.31), and obtain that for all 3 < 3, we have o?(W, 8) < &2, where

72 = [eran® ] 7 (14 )l(n).

With this bound, part (i) of Lemma 3.6 applies, and we deduce that for every
n > ny2(n), and for all 0 < € < T+2 [eron! 9] - (14 n)f(n) = B2 we have the upper
exponent:

S(W,E[W] + ¢) > € 220 1
’ ~— 252 2 (1+n)l(n)
Let @, = 2, b, = (cr1Ncr2)/2, and & = a?r(l + n)n®"1(n) where d, = T+20;21 =

2(r 4+ 1)e"1. Then, by combining the lower and upper exponents using a union bound,
we get that for every n > n,2 and for all 0 < € < &, the additive concentration for
M,, o, and therefore of M, o, holds as follows:

7 .2,2—« 1
IED{|]Wn,0Hr - E[Mn,OHr” > e} < ape bretn (AFm)é(n) (3.32)

Observe that the range of ¢ depends on n, but that won’t be a problem when we switch
to multiplicative mode.

By using the same development as the proof of Lemma 3.12, we can deduce that
there exist constants a, = a, + ar_1, by = (l;r A 6,:4)/4, and ¢, = d,(1 + n)n®"14(n)
with d, = dr A cir_l, such that for every n > n, o and for all 0 < € < ¢,, we have:

7 —a 1
P{| My, — E[My, ]| > €} < aje "< " mHmm, (3.33)
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Now, observe that:

r+1
E Mn'r = E Kn r
(M, ] n—f—l[ 1,041
~ O‘F(Ttll_o‘)nalg(n) (3.34)

Let’s define m, := W for convenience. It follows from Equation (3.34) that there

exists a sample size n, (77) > n,2(n) that depends only on P, 7, and 7, such that for all
n > n,(n) we have:

(1+ 1) t'mn®(n) < E[M,,] < (1 +n)mn>"1(n).

Let a, be as before, b, = b}m?/(l +n)3, and 6, = d,./m,.. Then for every n > n,.(n)
and for all 0 < 9, we have:

SE[M,, ;] < 6,(1 + n)mn®"t(n) < d.(1+n)n*"1(n) = ¢,.

Therefore Equation (3.33) applies, and we get:

M'I’L'f"
]P’{‘ R 1‘ > 5} = P{|M,, — E[M,,]| > 6E[M,,]}

E[M,]
< a e TR P
a—1 2
v 1
< aexp _bTé‘Q |:ann£(n):| e~
Ty (1+n)l(n)

A 2

Lastly, note that for fixed n > 0, b, and J, depend on P, but do so only through «,
due to m,. On the other hand, the sample sizes n,, depend on the particular convergence
rates in the regular variation characterization, and to describe them explicitly requires
more distribution specific knowledge than simply having a. O

B 3.5 Consistent Probability Estimation

B 3.5.1 Strong Laws and Consistency of Good-Turing Estimation

The strong laws for the rare probabilities are easily established using the multiplicative
concentration of Theorem 3.13.

Theorem 3.14. If P is regularly varying with index o € (0,1), as in Definition 3.1,
then for every r =0,1,2,---, we have

n,r

E[M,, ]

—as. L, (3.35)
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and the asymptotic expression:

al'(r+1—a)
7!

My ~as. E[M,,] ~ n® e (n). (3.36)
Proof. For any o € (0,1), the integral fooo e *dz =T (1 + é), i.e. converges and is
bounded. By a change of variable and the integral test, it follows that the right hand
side of inequality (3.28) is summable. Therefore, we can apply the Borel-Cantelli lemma
in the usual way, to obtain the almost sure convergence of Equation (3.35).

For (3.36), recall that E[M,,,] = “HLE[K,,1 1 ,41], therefore it follows from Equation

n+1
(3.15) that:

Fr+1-a)

E[M,, ;] ~ a n® " (n). O

r!

As a first application of these strong laws, in conjunction with the strong laws for
K, we prove the strong consistency of the Good-Turing estimator in this regime.

Theorem 3.15. If P is regularly varying with index o € (0,1), as in Definition 3.1,
then the Good-Turing estimators are strongly consistent for allT =0,1,---:

Gn,r
Mn r

)

—as. L. (3.37)

Proof. Recall that G,,, = %Kn’r+1. Therefore by the strong law of the rare counts,
i.e. Equations (3.15) and (3.16), we have that

Gn,r
E[Gp,,]

—as. L. (3.38)

On the other hand, note that by equation (3.15), we have E[K,, ,|/E[K;+1,] — 1
for any r. Since E[M,,,] = ﬁE[K,HLTH], it follows that

n+1
E[G,,,]
— = 1. 3.39
E(M,,] (3.39)
Combining the convergences (3.35), (3.38), and (3.39), we obtain (3.37). O

B 3.5.2 New Consistent Estimators

Since we are now considering a model where regular variation plays a critical role, we
can take inspiration from extreme value theory, where regular variation is also pivotal.
In particular, we suggest dividing the estimation task into two: estimating the regu-
lar variation index, then using it in asymptotic expressions, in order to estimate the
quantities of interest. In particular, we shall show that the Good-Turing estimator for
the missing mass itself has such a two-stage characterization, but that the concept can
be used to develop a richer class of estimators for the missing mass and other rare
probabilities.
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Estimating the Regular Variation Index

Using Equations (3.12) and (3.13), we have that the ratio of the number of symbols
appearing exactly once to the total number of distinct symbols defines a consistent
estimator of the regular variation index:

&= . (3.40)

Note that this is by no means the only approach to estimating the index. For
example, other asymptotic expressions that appear in Theorem 3.3 may be harnessed.
Moreover, one may devise methods that are inspired from techniques in extreme value
theory [1], such as performing a Gumbelian splitting of the data into M blocks of size
N,ie. n=M-N. Then one can perform the naive index estimation of Equation (3.40)
in each block, call it &, m =1,--- , M, then average out:

a=—> dpn. (3.41)

With proper choices of M and N, this empirically shows much less volatility than
a straight application of (3.40) (i.e. M = 1, N = n), as illustrated in Figure 3.5.2.
The analytic insight behind this fact is the variance reduction of the averaging process.
The bias of the estimator will depend on how fast the regular variation comes into
effect, i.e. for any given 1 > 0 for what n do we get within a 1+ # factor of the limiting
expression? However this process helps reduce variance within this mode, and if N grows
fast enough, then the compromise results in palpable improvement. Ideally, one would
want to perform this estimation without explicit splitting, and rather use a principled
semi-parametric approach, such as the Hill estimator and its more sophisticated variants
[1]. However, we do not elaborate on that in this thesis.

Two Probability Estimator Constructions

We have shown that the Good-Turing estimator is consistent in the regularly varying
heavy-tailed setting. But the questions remains whether one could do better by working
within this framework explicitly. In this section, we provide two new rare probability
estimators, and show that they are consistent. Furthermore, these address some of the
shortcomings of the Good-Turing estimator. For example, they incorporate smoothing
implicitly.

In particular, our constructions are in two stages. We first assume that we have
chosen a consistent estimator & —,5. . This can be given by (3.40), or potentially more
powerful estimators. Then, we focus on how to use the estimated index to construct
consistent estimators for rare probabilities.

Theorem 3.16. Consider the following family of estimators, forr=1,2,---:

(3.42a)
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X Naive

o  Gumbelian

, (O

Index Estimate

10 20 30 40 50 60 70 80 90 100
Thousands of Samples

Figure 3.1. Comparison of naive and Gumbelian index estimators. The underlying distribution is
regularly varying with index 0.5. For a sample size of n, the Gumbelian estimator is performing aver-

aging of M = |y/n| blocks of size N = |\/n], according to Equation (3.41). Observe the considerably
improved volatility of the resulting estimator.

and for r =0:

i . K,
MY =13 i = am (3.42b)
r>1

If P is regularly varying with index « € (0,1), as in Definition 3.1. Then MT(LIQ are
strongly consistent, for allr =0,1,---:

i)

MTL,T’

—as. L. (3.43)

Proof. Since E[M,, ,] = ;ﬁE[KnHHl], it follows from Equation (3.15) and the strong
law for M, , given by (3.35) that:

T 1-—
Mn,r ~a.s. a (T7+' a)nailf(n).
7!
First consider the case r = 1,2,---. Since & —,5 «, it follows that (r — &) ~as.

(r — ). Observing that I'(r + 1 — a) = (r — @)I'(r — ), we can use Equation (3.16) to
obtain:

K, r 1- _
Mé}r)‘ = (7“ - é‘) — ~as. Mna lg(n) ~a.s. Mn,’r‘

n r!
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For the case r = 0, we use Equation (3.12) and & —, . « to obtain:

MT(L% = dﬁ ~a.s. Mna_lé(n) ~a.s. Mn,O- g

: n 7!

One motivation for introducing the ]\%(1172 family is because they have the ‘absolute
discount’ form that is a component of many language learning heuristics, and especially
the Kneser-Ney line of state-of-the-art algorithms [7]. Here we have systematically
shown the nature of the discount as being the regular variation index. The structure
of M,(ng addresses a peculiarity of the Good-Turing estimator. In particular G, , will
assign a probability of zero to a group of symbols, simply because there are no symbols
appearing in the one higher occupancy level r 4+ 1, regardless to how many symbols
there are in the occupancy level r. Note that here, on the contrary, the estimator will
evaluate to 0 if and only if there are no symbols in the occupancy level itself. As such,
M,(Llr) has smoothing built-in.

We can push smoothing further by using K,,, the number of distinct observed sym-
bols, rather than relying on the individual occupancy numbers K, ,.. Since K, experi-
ences less variability, e.g. it is monotonically increasing with sample size, the resulting
estimator inherits some of that robustness.

Theorem 3.17. Consider the following family of estimators, forr =0,1,---:
al'(r+1—-a) K, (r—d)AKn

) = ATt 1- &) Kn

3.44
T N1 —a&) n (3.44)

r n

If P is regularly varying with index « € (0,1), as in Definition 3.1. Then ]\;[7(122 are
strongly consistent, for allT=10,1,---:
2

)

§>

3

—as. L. (3.45)

=

T

Proof. For convenience, define:

gla) == al(r+1-a) _ <T - O‘>a'

rIl(1 — «) r
We can thus write, as in the proof of Theorem 3.16:
all(r+1—a)

Mn,r ~a.s. naflg(n) = g(a)r(l - a)nailg(n)‘

r!
By the continuity of g(«), since & —,5 «, we also have that g(&) —as g().
Therefore, using Equation (3.12) we obtain:

Ky

D — ga) e
g(a)n

n,r

~as 9(@)T(1 — a)no‘_lf(n) ~as. M. O
)

It is worth noting that we always have MS& = Mffo by construction, and that if &

is the naive index estimator as in (3.40), we also have:
I'2-a) ~ (2

l<n1 N A}<n A )
— = (1-— — === =M. 3.46
. (1-a&)a - aI‘(l—&) ol (3.46)

Ml

(

l=(1-a)
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Good-Turing as a Two-Stage Estimator

If we use the naive index estimator & as in (3.40), then we have:

K K,1 K,
Gnozﬂ:ﬁlz&

) n K. n n 7(1,0 = Mn,o- (347)
n

Therefore, we can interpret the Good-Turing estimator of the missing mass as a
two-stage estimator: estimate the regular variation index «, as in (3.40), and then use
it to obtain a probability estimator, as in (3.42) or (3.44). However, the advantage
of the estimators that we propose is that we can use any alternative index estimator
a, for example as suggested by Equation (3.41), in order to benefit from less volatile
convergence.

Example

As an illustration of the various convergence results and estimators, we use a simple case
where p; o j —1/2 is a pure power law. This defines a distribution P which is regularly
varying with index «. In the numerical examples below we use a = %, motivated by
the very heavy tails that appear in natural language word frequencies.

In Figure 3.5.2, we show the decay behavior over up to 100, 000 samples, of a sample
path of the rare probabilities M, , and their expectations E[M,, ,], for r = 0,1, 2, and
3. We can qualitatively observe the close correspondence to the theoretical n®~! rates.
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Figure 3.2. Decay behavior of M, , and E[M,, ] as n ranges from 0 to 100,000 samples, for r = 0,1, 2,

and 3. The underlying distribution is regularly varying, with index oo = g.

In Figure 3.5.2 we illustrate the strong law by plotting the ratio M, ,/E[M, ,].
Though the convergence is far from smooth, nor does it occur at a uniform rate over
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r, we can qualitatively see that the sample paths narrow down toward 1 as the sample
size increases.
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Figure 3.3. Multiplicative concentration of M, , around E[M, ,] results in a strong law where
My v /E[Mn,r] —as. 1. We illustrate this for the same example as Figure 3.5.2.

To showcase the performance of the new estimators and to compare them to the
Good-Turing estimator, we plot the general behavior of G, ,, MT(LI,E, and M,(Fr) alongside
M, -, in the same example. We make two deliberate simulation choices:

- We use the naive estimator for «, as given by Equation (3.40), in order to show
that the benefit of the new estimators comes from their structure too, and not
only because of better index estimation.

- We purposefully use fewer samples than in Figures 3.5.2 and 3.5.2, in order to
emphasize that the improvements appear even at moderate sample sizes. We let
n range from 0 to 10, 000.

Since we know that all estimators coincide for the case r = 0, and the new estimators
coincide for r = 1, we only look at the first two distinctive cases: r = 2 and 3. First,
we show the raw behavior of the estimators in Figure 3.5.2 (for » = 2) and Figure 3.5.2
(for r = 3). Then, to make the comparison crisper, we also show the behavior of the
ratios of each estimator to M, , in Figure 3.5.2 (for » = 2) and Figure 3.5.2 (for r = 3).
For reference, these figures also show the 1-line and the ratio of the mean itself, i.e.
E[Mn,r]/Mn,T-

Lastly, we make a few qualitative comments. First, it is apparent that Mr(Llr) outper-

2)

forms all estimators when it comes to tracking M, , closely. It is followed by ]\;[7(” in
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Figure 3.4. Behavior of G, 2, MS%, and MT(LQ%, alongside M, 2 and E[Mn,g], in the same example as
Figure 3.5.2, as n ranges from 0 to 10,000 samples.

o

performance, while G - is consistently more volatile than both of the new estimators.

Also note that ]\Zféz,z is the smoothest estimator. However, it tracks E[M,, ;] much bet-
ter than M, , itself. Asymptotically, this does not matter, however for small samples
this might be a feature or a shortcoming depending on whether the focus is on M, , or
E[M,, ,].

B 3.6 Summary

In this chapter, we studied the problem of rare probability estimation, from the per-
spective of strong consistency in the sense of ratios converging to one. We first showed
that consistency is not to be taken for granted. In particular, even in well behaved
distributions such as the geometric, the Good-Turing estimator may not be consistent.

We then focused our attention to heavy tailed distributions, which Chapter 2 sug-
gested as the regime of distinctly non-trivial performance of the Good-Turing estimator.
We refined the notion of accrual rate, using Karamata’s theory of regular variation [18],
following closely the early development of Karlin [19] in the context of infinite urn
schemes. We then used the McAllester-Ortiz method [21] to extend their additive con-
centration results to all rare probabilities. Moreover, in the setting of regularly varying
heavy tailed distributions, we showed that one has multiplicative concentration.

We then used the multiplicative concentration to establish strong laws. These al-
lowed us to show that regularly varying heavy tails are sufficient for the consistency
of the Good-Turing estimator. We then used the newly established strong laws, in
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Figure 3.5. Behavior of G, 3, ]\7[7(}%7 and Mfg, alongside M,, 3 and E[Mn,g}, in the same example as
Figure 3.5.2, as n ranges from 0 to 10,000 samples.

addition those established for the occupancy numbers by Karlin, to construct two new
families of consistent rare probability estimators. These new estimators address some
of the shortcomings of the Good-Turing estimator. In particular, they have built-in
smoothing, and their structure follows closely the ‘absolute discounting’ form used ex-
tensively in computational language modeling heuristics [7]. As such, in addition to
a systematic and principled estimation method, our results provide a justification to
these algorithms and an interpretation of the discount as the regular variation index.
Since our estimators can be split into two parts, first index estimation and then proba-
bility estimation, they are closely related to tail estimation techniques in extreme value
theory [1]. This correspondence opens the door for modern semiparametric methods to
be applied in the present framework. We leave this elaboration to the conclusion, in
Chapter 5.
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example as Figure 3.5.2, as n ranges from 0 to 10,000 samples.
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Chapter 4

Canonical Estimation
in a Scaling Regime

E now propose a general methodology for performing statistical inference within

a ‘rare-events regime’ that was recently suggested by Wagner, Viswanath and
Kulkarni. Our approach allows one to easily establish consistent estimators for a very
large class of canonical estimation problems, in a large alphabet setting. These include
the problems studied in the original chapter, such as entropy and probability estimation,
in addition to many other interesting ones. We particularly illustrate this approach by
consistently estimating the size of the alphabet and the range of the probabilities.
We start by proposing an abstract methodology based on constructing a probability
measure with the desired asymptotic properties. We then demonstrate two concrete
constructions by casting the Good-Turing estimator as a pseudo-empirical measure,
and by using the theory of mixture model estimation.

H 4.1 Introduction

We propose a general methodology for performing statistical inference within the ‘rare-
events regime’ suggested by Wagner, Viswanath and Kulkarni in [31], referred to as
WVK hereafter. This regime is a scaling statistical model that strives to capture large
alphabet settings, and is characterized by the following notion of a rare-events source.

Definition 4.1. Let {(A,,pn) }nen be a sequence of pairs where each Ay, is an alphabet
of finite symbols, and p, is a probability mass function over A,. Let X, be a single
sample from py, and use it to define a ‘shadow’ sequence Z, = np,(X,). Let P, denote
the distribution of Z,. We call {(An,pn)}nen a rare-events source, if the following
conditions hold.

(i) There exists an interval C = [¢,¢], 0 < ¢ < ¢ < 00, such that for alln € N we have
% <pula) < 5 for all a € Ay, or equivalently, P, is supported on C.

(i) There exists a random variable Z, such that Z,, — Z in distribution. Equivalently,
there erists a distribution P, such that P, = P weakly.

53
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To complete the model, we adopt the following sampling scheme. For each n, we
draw n independent samples from p,, and we denote them by X, 1,---, X, . Using
these samples, we are interested in estimating various quantities. WVK consider, among
a few others, the following:

e The total (Good-Turing) probabilities of all symbols appearing exactly k times,
for each k € Ng.

e The normalized log-probability of the observed sequence.
e The normalized entropy of the source.
e The relative entropy between the true and empirical distributions.

They also consider two-sequence problems and hypothesis testing, but we focus here on
single sequence estimation.

It is striking that many of these quantities can be estimated in such a harsh scaling
model, where one cannot hope for the empirical distribution to converge in any tradi-
tional sense. However, WVK’s estimators have some drawbacks. For example, since
they are based on series expansions of the quantities to be estimated, one has to care-
fully choose the growth rate of partial sums, in order to control convergence properties.
More importantly, they are specifically tailored to each individual task. Their consis-
tency is established on a case-by-case basis. What is desirable, and what this chapter
contributes to, is a methodology for performing more general statistical inference within
this regime. Ideally such a framework would allow one to tackle a very large class of
canonical estimation problems, and establish consistency more easily.

We may summarize the fundamental ideas behind our approach and the organization
of this chapter as follows. First, in Section 4.2, we isolate the class of estimation
problems that we are interested in as those that asymptotically converge to an integral
against P. The quantities studied by WVK fall in this category, and so do other
interesting problems such as estimating the size of the alphabet. Other problems, such
as estimating the range of the probabilities given by the support interval C, can also
be studied in this framework.

Next, in Section 4.3, we propose an abstract solution methodology. At its core, we
construct a (random) distribution P, that converges weakly to P for almost every ob-
servation sample. This construction immediately establishes the consistency of natural
estimators for the abovementioned quantities, if bounds on C are known. If in addi-
tion the rate of the convergence of P, is established, the framework gives consistent
estimators even without bounds on C.

To make this methodology concrete, we build on a core result of WVK that estab-
lishes the strong consistency of the Good-Turing estimator. In particular, since the
role of the empirical measure is lost, we show in Section 4.4 that we can treat the
Good-Turing estimator as a pseudo-empirical measure. Once this is established, we can
borrow heavily from the theory of mixture models, where inference is done using i.i.d.
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samples, and adapt it to our framework. In Section 4.5, we suggest two approaches for
constructing P,: one that is based on maximum likelihood, and another that is based on
minimum distance. Both constructions guarantee the almost sure weak convergence of
P, to P, but the latter, under some conditions, also provides the desirable convergence
rates.

In Section 4.6 we illustrate the methodology with some examples. In particular, we
show how one can consistently estimate the entropy of the source and the probability
of the sequence as studied by WVK, but we also propose consistent estimators for the
size of the alphabet and for the support interval C'.

Notation

Throughout, we use F'(.;.) to denote the cumulative distribution of the second argument
(which is a probability measure on the real line or on the integers) evaluated at the first
argument (which is a point on the real line or an integer).

B 4.2 A General Class of Estimation Problems
H 4.2.1 Definitions

Given i.i.d. samples Xy, 1,-- -, X, from the rare-events source (A, p,), we can pose a
host of different estimation problems. Since the alphabet is changing, quantities that
depend on explicit symbol labels are not meaningful. Therefore, one ought to only
consider estimands that are symmetric, in the sense of invariant under re-labeling of
the symbols in A,,. In particular, we consider the following class of general estimation
problems.

Definition 4.2. Consider the problem of estimating a sequence {Yy}nen of real-valued
random variables using, for every n, the samples Xy 1,- -+ , Xyn. We call this a canon-
ical estimation problem if, for every rare-events source, we have:

E[Yn]:/cfn(x)dPn(x). (4.1)

for some sequence of { f,} of continuous real-valued functions on R™ that are uniformly
bounded on C' and that converge pointwise to a continuous function f.

Observe that this definition corresponds indeed to estimands that are invariant
under re-labeling, in expectation. The following lemma characterizes the limit.

Lemma 4.1. For any canonical estimation problem,
EY,] — / f(x)dP(x). (4.2)
C

Proof. Since P, = P, we can apply Skorokhod’s theorem ([3], p. 333), to construct
a convergent sequence of random variables &, —,5. &, where &, ~ P, and £ ~ P. By
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continuity, it follows that f,,(&,) —as. f(§). By the bounded convergence theorem, we

then have E[f,(&,)] — E[f(£)]. Since E[Y,] = E[f,(§,)], and fC f(x)dP(z) = E[f(£)],
the lemma follows. O

It is often more interesting to consider the subclass of canonical problems where
there is strong concentration around the mean, and where the Borel-Cantelli lemma
applies to give almost sure convergence to the mean.

Definition 4.3. If a canonical estimation problem further satisfies |Y,, — E[Y,]| —as. 0,
then call it a strong canonical problem. It follows that for strong canonical problems,

Yy —ae /C F(@)dP(z). (4.3)

Using these definitions, a reasonable estimator will at least agree with the limit set
forth in Lemma 4.1. Other modes of convergence may be reasonable, but we would like
to exhibit a statistic that almost surely converges to that limit. We make this precise
in the following definition.

Definition 4.4. Given a canonical problem as in Definition 4.2, a corresponding es-
timator is a sequence {Yn}neN such that, for each n, Yn(al, <y an) is a real-valued
function on (Ay)", to be evaluated on the sample sequence Xy 1, , Xppn. A consis-
tent estimator is one that obeys

Vo(Xnts- > Xnn) —as. /C f(z)dP(x). (4.4)

For canonical estimation problems that are not necessarily strong, this approach
produces an asymptotically unbiased estimator, with asymptotic mean squared error
that is no more than the asymptotic variance of the estimand itself. For strong canonical
estimation problems, this approach establishes strong consistency, in the sense that the
estimator converges to the estimand, almost surely.

B 4.2.2 Examples

To motivate the setting we have just described, we first note that all of the quantities
studied by WVK are strong canonical estimation problems. For each quantity, WVK
propose an estimator, and individually establish its consistency by showing almost sure
convergence to the limit in Lemma 4.1. In contrast, what we emphasize here is that
this can potentially be done universally over all strong canonical problems.

To highlight the usefulness of this generalization, we illustrate two important quan-
tities that fall within this framework. We will revisit these in more detail in Section
4.6. The first quantity is the normalized size of the alphabet: |A,|/n. For this, one
can show (see, for example, [2]), that |A,|/n = [, 1dP,(z). Therefore we can take
fulz) = f(x) = %, and since the estimand is deterministic, we have a strong canonical
estimation problem.
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The second quantity of interest is the interval C, or equivalently its endpoints ¢ and
¢. Note that, by construction, P is supported on C. Without loss of generality, we may
assume that ¢ and ¢ are respectively the essential infimum and essential supremum of

Z ~ P. Therefore, note that ([ a:iqu(az))l/ ? converges to the essential infimum (—)
or supremum (+) as ¢ — co. We can therefore consider, for fixed ¢ > 1, the strong
canonical problems that ensue from the choices f,,(z) = f(z) =2 % and f,(z) = f(z) =
x?. These, by themselves, are not sufficient to provide estimates for ¢ and ¢. However
if, in addition to consistency, we establish the convergence rates of their estimators,
then we can apply our framework to estimate C', as we show in Section 4.6.

H 4.3 Solution Methodology

Our task now is to exhibit consistent estimators to canonical problems. We present here
our abstract methodology, which we demonstrate concretely in Section 4.5. The core
of our approach consists of using the samples X, 1,---, X, to construct a random
measure P, over RT, such that for almost every sample sequence, the sequence of
measures { P, } converges weakly to P. We write: as n — oo

P, =5 P. (4.5)

If we accomplish this, we can immediately suggest a consistent estimator under
certain conditions, as expressed by Lemma 4.2. We will be interested in integrating
functions against the measure P,. However, since the support C of P is unknown,
we first introduce the notion of a tapered function as a convenient way to control the
region of integration. Given a real-valued function g(x) on RT, for every D > 1 define
its D-tapered version as:

gDy  x< D!
gp(x) =< g(x) xz € [D™1, D]
g(D) x>D

If g is continuous on (0,+00), then we can think of gp(z) as a bounded continuous
extension of the restriction of g on [D~!, D] to all of R*.

Lemma 4.2. Consider a canonical problem characterized by some f. Let the support
C of a rare-events source be known up to an interval [D~1,D] D C for some D > 1.
Then, if P, =as. P as n — oo, we have that

Y, = [ fp(z)dP,(x) (4.6)
R+
18 a consistent estimator.

Furthermore, if f is bounded everywhere, we can make the uninformative choice
D = oc.
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Proof. Since the tapered function fp is continuous and bounded on R*, the almost
sure weak convergence of P, to P implies that fR+ fpdP, —as. fR+ fpdP. But since
P is supported on C' and fp agrees with f on C, we have [, fpdP = [, fpdP =

Jiu faP. O

In general, however, we will be interested in problems where we do not have an a
priori knowledge about the endpoints of C, and where an uninformative choice cannot
be made because f is not bounded on R", such as f(z) = logz, 1/x, or 2. For these
problems, we can apply our methodology of integrating against P, by first establishing a
rate for the convergence of equation (4.5). We characterize such a rate using a sequence
K,, — 00, such that: 3

Kndw(P,, P) —45. 0, (4.7)

where dw denotes the Wasserstein distance, which can be expressed in its dual forms:

dw (B, P) = /R+ \F(x: Py) — F(x: P)|da

= sup
heLipschitz(1)

/ hdP, — th‘. (4.8)
R+ R+

In the remainder of the chapter we will particularly focus on K,, of the form n® for some
s> 0.

In the following lemma, we describe how we can use convergence rates such as (4.7)
to construct consistent estimators that work with no prior knowledge on C, for a large
subclass of canonical problems.

Lemma 4.3. Consider a canonical problem characterized by some f, which is Lipschitz
on every closed interval [a,b], 0 < a < b < oco. If K,dw(Py, P) —as 0 as n — oo, for
some K, — oo, then we can choose D, — oo such that

Y, = . fp,, (2)dP,(x) (4.9)

is a consistent estimator. The growth of D,, controls the growth of the Lipschitz constant
of fp,,, which should be balanced with the convergence rate K,. More precisely, Yy, in
(4.9) is consitent for any D,, — oo that additionally satisfies

K,
liminf —— > 0, 4.10
n—ee Lip(fp,) (4.10)

where Lip(g) indicates the Lipschitz constant of g.

Proof. First note that for any D > (671 Vv ¢), since P is supported on C and fp agrees
with f on C, we have:

/R _fpdP = /C fpdP = /C fdp. (4.11)
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Then, using the fact that for every D, fp/Lip(fp) is Lipschitz(1), we can invoke
the dual representation (4.8) of the Wasserstein distance to write:

1
K, sup ——
""p Lip(fp)

By combining equations (4.11) and (4.12), it follows that for any sequence D,, — oo,
we have:

. fpdP, — /R . fDdP’ —as. 0. (4.12)

K, / -
Lib(fo,) |Jas o (419
If furthermore D, is chosen such that equation (4.10) is satisfied, then the factor

% is eventually bounded away from zero, and can be eliminated from equation

(4.13) to lead to the convergence of the estimator. O

Of course, there may be more than one way in which one could construct P,. In
this paper, we focus on demonstrating the validity and usefulness of the methodology
by providing two possible constructions. The results would remain valid regardless
to the specific construction, and other constructions boasting more appealing proper-
ties, such as rates of convergence under more lenient assumptions, are welcome future
contributions to this framework.

B 4.4 The Good-Turing Pseudo-Empirical Measure

B 4.4.1 Definitions and Properties

The platform on which we build our estimation scheme is the Good-Turing estimator,
and in particular its strong consistency in this scaling regime, as established by WVK.
In this section, we recall the main definition and review the properties relevant to the
rest of the development. Once again, let B, j, be the subset of symbols of A,, that appear
exactly k£ times in the samples X, 1,---, X, ». Then we have, for each £k =0,1,--- ,n,
the probability M, = pn(Bn) of all symbols that appear exactly & times. We can
write these in the infinite vector form with the notation M, . = { M, i }ren,, which we
pad with zeros for £ > n. In particular, we restate the Good-Turing estimator:

Definition 4.5. Recall K, , = |By, ;| be the number of symbols of A, that appear k
times in Xp1, -+, Xnn. Write the Good-Turing estimator of M, . as a vector G, . =
{Ghrk}ken, 5 for each k € Ng, where recall that

(k+ 1)K kst
—

Gnk:

)

(4.14)

WVK establish a host of convergence properties for the Good-Turing estimation
problem and the Good-Turing estimator. We group these in the following theorem.
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Theorem 4.4. Define the Poisson P-mizture X = {\,}ren, as, for each k € Ny :

k_ —x
Ak:/ x; dP(z). (4.15)
C .

We then have the following results that determine the limiting behavior of M, ., and the
strong consistency of the Good-Turing estimator G, :

(i) We have that My, i —as. A\ and Gy ) —vas. Ak, and therefore |Gy, i, — My, ;| —vas. 0,
pointwise for each k € Ng as n — oo.

(i) By Scheffé’s theorem ([3], p. 215), it also follows that these convergences hold in
Ly almost surely, in that || M,,. — |1 —as. 0 and ||Gr,. — A1 —as. 0, and therefore
|Gr,. — My, |1 —as. 0, as n — oo.

B 4.4.2 Empirical Measure Analogy

The analogy that we would like to make in this section is the following. Assuming A
is given, one could take m i.i.d. samples from it, and form the empirical measure or
the type, call it 5\n = {j\n,k}keNo- Such an empirical measure would satisfy well-known
statistical properties, in particular the strong law of large numbers would apply, and
we would have ;\nk —as. k- By Scheffé’s theorem, L1 convergence would also follow.
It is evident from Theorem 4.4 that despite the fact that we do not have such a true
empirical measure, the Good-Turing estimator G,,. behaves as one, and we may be
justified to call it a pseudo-empirical measure.

Now observe that since, for discrete distributions, the total variation distance is
related to the L; distance by suppcp, An(B) = A(B)| = %Hj\n — A1, the true empirical
measure also converges in total variation. As a special case, the Glivenko-Cantelli
theorem applies in that supy, [F(k; A) — F(k; Ap)| —as. 0. Recall that F(.;.) denotes
the cumulative of the second argument (a measure) evaluated at the first argument. In
light of the above, this remains valid for the pseudo-empirical measure. However, for
the classical empirical measure, we also have the rate of convergence in the Glivenko-
Cantelli theorem, in the form of the Kolmogorov-Smirnov theorem and its variants for
discrete distributions, see for example [32]. Such results are often formulated in terms
of a convergence in probability of rate ﬁ So we next ask whether such rates hold for
the pseudo-empirical measure as well.

We first note that the rare-events source model is lenient, in the sense that it does
not impose any convergence rate on P, = P. Therefore, convergence results that aim
to parallel those of a true empirical measure will depend on assumptions on the rate
of this core convergence. In particular, let us assume that we know something about
the weak convergence rate of P, to P in terms of the Wasserstein distance, in that we
assume there exists an r > 0 such that

n"dw(Po, P) — 0.
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For example, in Lemma 4.7, we will show that this holds true for a class of rare-events
sources suggested by WVK.

Next, note that Lemma 11 in WVK gives the following useful concentration rate for
the pseudo-empirical measure around its mean.

Lemma 4.5. For any § > 0, n'/?79||G,,. — E[Gy, ]|l1 —as. 0.

In the following statement, we show that a Kolmogorov-Smirnov-type convergence
to X does hold for the pseudo-empirical measure G, ., with a rate that is essentially
the slower of that of the concentration of Lemma 4.5 and that of the rare-events source
itself.

Theorem 4.6. Let r > 0 be such that n"dw (P,, P) — 0. Then for any § > 0, we have:

pr V280 gup | F(k; \) — F(k; Gy)| —as. 0. (4.16)
k

Proof. For convenience, define By, = {0,---,k}. The proof requires three approxima-
tions. The first is to approximate G,. with E[G,.]. This is already achieved using
Lemma 4.5. Since the L; distance is twice the total variation distance, and specializing
to the subsets By, we have that for all § > 0:

n2=% sup |F(k; E[Gp.]) — F(k; G.)| —as. 0. (4.17)
k

The next two approximations are (a) to approximate E[G,, .| with a Poisson P,-
mixture (using the theory of Poisson approximation), and (b) to approximate the latter
with A, which is a Poisson P-mixture (using the convergence in dw (P, P)).

Part (a) — For convenience, let m, be a Poisson(z) P,-mixture, and let 1, be a
Binomial (%, n) P,,-mixture. One can show, as in the proof of Lemma 7 of WVK, that
E[G,,] is a Binomial (£,n — 1) P,-mixture. We first relate E[Gy,.] to 1, which is the
natural candidate for Poisson approximation. We then use Le Cam’s theorem to relate
Np, tO Ty

We start with a general observation. Let .# = {f(;z):2 € C} and ¢ = {g(-;2) :
x € C} be two parametric classes of probability mass functions over Ny, e.g. Poisson
and Binomial, and let () be a mixing distribution supported on C. Say that for some
subset B C Ny, we have the pointwise bound |f(B;x) — g(B;x)| < £(z). It follows that
the mixture of the bound is also a bound on the mixture. More precisely:

/ F(B; 2)dQ(x) — / 9(B; 2)dQ(z)
C C

< /C (2)dO(). (4.18)

Note that if the pointwise bound above holds uniformly over B, then the same is true
for the mixture bound. We will use this particularly with the subsets By, to bound the
difference of cumulative distribution functions.
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Now let g, (k;x) be the c.d.f. of a Binomial (£,n) random variable, and let g, (k; z)
be the c.d.f. of a Binomial (%,n — 1) random variable. For any given k, we have the

following;:

- ot - () ()-8

Using the facts that the sum is no larger than the mean and that g, (k;z) < 1, it
follows that for any given k we have:

|gn(k; ) — gy, (k; )]

() G - S

m=0

X
S —
n

Note that [ gn(k;2)dP, = F(k;n,), the c.d.f. of n,, and [ g, (k; z)dP, = F(k; E[Gy]),
the c.d.f. of E[G,,.]. Using the observation leading to equation (4.18), it follows that:

)

(4.19)

3‘ (e}

sup [F(k; B[Gy.]) — F(k; )| < ~ / 2dPy(z) <
k nJco

Using Le Cam’s theorem (see, for example, [28]), we know that the total variation
distance, and hence the difference of probabilities assigned to any subset B C Ny by a
Poisson(z) distribution and a Binomial (%, n) distribution is upper-bounded by ’”—; We
apply this to the subsets By, and use the observation leading to equation (4.18) once
again to extend this result to the respective P,,-mixtures:

2

1 .
sup | F(k; 1) — F(k;mn)| < — / 22dP,(z) < & (4.20)
k n.Jc n
By combining equations (4.19) and (4.20), we deduce that for all 6 > 0:
n*=0sup |F(k; E[Gy.]) — F(k;m)| — 0. (4.21)
k

Part (b) — Now let h(k;z) be the c.d.f. of a Poisson(x) random variable. Observe
that:

rMe2 xmflef:p

k
d
0 < gphlkse) =D~ +m—r

m=0
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m ,—x

k
1 z™e 1
< -3 — “E[Poi =1.
= - mzom p_ . [Poisson(z)]

Therefore, when viewed as a function of z, h(k;z) is a Lipschitz(1) function on C
for all k. Using the dual representation of the Wasserstein distance, we then have:

sup |F'(k; ) — F(k; A)|
k

= sup
k

/C h(k; 2)dP,(z) — / h(k; z)dP(z)

C

< sup
heLipschitz(1)

/thn—/ th':dW(Pn,P).
C C

Using the assumption of the convergence rate of P, to P, it follows that for all § > 0
we have:

n" O sup |F(k;m,) — F(k; \)| — 0. (4.22)
k

The statement of the theorem follows by combining equations (4.17), (4.21), and (4.22).
O

In a practical situation, one would expect that the rare-events source is well-behaved
enough that > 1/2, and that the bottleneck of Theorem 4.6 is given by the 1/2 rate,
and therefore we have a behavior that more closely parallels a true empirical measure.
Indeed, some natural constructions obey this principle. Most trivially, for a sequence
of uniform sources, e.g. if p,(a) = 1/n, we have P, = P, and therefore r = co. More
generally, consider the following class of rare-events sources suggested by WVK.

Definition 4.6. Let g be a density on [0, 1] that is continuous Lebesque almost every-
where, and such that ¢ < g(w) < ¢ for all w € [0,1]. Let Ay, ={1,---, |an]} for some
a >0, and for every a € A, let pp(a) = f(ﬂfﬂjmw g(w)dw. One can then verify that
{(An,pn)} is indeed a rare-events source, with P being the law of g(W'), where W ~ g.
We call such a construction a rare-events source obtained by quantizing g.

Lemma 4.7. Let g be a density as in Definition 4.6, and let {(An,pn)} be a rare-events
source obtained by quantizing g. If g has finitely many discontinuities, and is Lipschitz
within each interval of continuity, then for all r < 1:

n"dy (Pp, P) — 0

Proof. Without loss of generality, assume o« = 1, and that the largest Lipschitz constant
is 1. Consider the quantized density on [0, 1]:

[wn]/n
gn(w) = n/ g(v)do,
([wn]-1)/n
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where the integral is against the Lebesgue measure. Then it follows that P, is the law
of gn(W,,), where W,, ~ g,.

Say g has L discontinuities, and let D,, be the union of the L intervals of the form
[(a —1)/n,a/n] which contain these discontinuities. In all other intervals, we have that
|g(w) — gn(w)| < 1/n, using Lipschitz continuity and the intermediate value theorem.

It follows that
/ 9(w) — go(w)|dw
[0,1]
1

L
— /rmwmm+/ g—guldw < 2+ L
D, [0,1\Dx, n n

)

For any particular x € C, let B, = {w € [0,1] : g(w) < 2}. We then have
PP = F@iP)] = [ aw) = (o)t
L+1
[ latw) - gatwdw < =12
Be n

IN

By integrating over all x:
L+1)¢—¢
dw (P, P) = / |F(z; P,) — F(x; P)|dz < (—i—)n(c)
C
Therefore the lemma follows. O

We end by remarking that the rare-events sources covered by Lemma 4.7 are rather
general in nature. For example, all of the illustrative and numerical examples offered
by WVK are special cases (more precisely, they have piecewise-constant g).

W 4.5 Constructing P, via Mixing Density Estimation

We would now like to address the task of using X,, 1,---, X, , to construct a sequence
of probability measures P, that, for almost every sample sequence, converges weakly to
P, as outlined in Section 4.3. Since we have established the Good-Turing estimator as
a pseudo-empirical measure issued from a Poisson P-mixture, in both consistency and
rate, this is analogous to a mixture density estimation problem, with the true empirical
measure replaced with the Good-Turing estimator G,...

We start by noting that the task is reasonable, because the mixing distribution in a
Poisson mixture is identifiable from the mixture itself. This observation can be traced
back to [29] and [13]. Then, the first natural approach is to use non-parametric maxi-
mum likelihood estimation. In Section 4.5.1, we use Simar’s work in [27] to construct a
valid estimator in this framework. Unfortunately, to the best of the authors’ knowledge,
the maximum likelihood estimator does not have a well-studied rate of convergence on
the recovered mixing distribution. In Section 4.5.2 we consider instead a minimum
distance estimator, with which Chen gives optimal rates of convergence in [6], albeit by
assuming finite support for P.



Sec. 4.5. Constructing Pn via Mixing Density Estimation 65

Ml 4.5.1 Maximum Likelihood Estimator

We first define the maximum likelihood estimator in our setting. Despite the fact that
it is not, strictly speaking, maximizing a true likelihood, we keep this terminology in
light of the origin of the construction.

Definition 4.7. Given the pseudo-empirical measure (Good-Turing estimator) G,. the
maximum likelihood estimator of the mizing distribution is a probability measure PML
on RY which mazimizes the pseudo-likelihood as follows:

0 oo .k, —x
=ML xr’e
P € argmax g G log (/0 x dQ(x)) . (4.23)

@ =0

It is not immediately clear whether 15%\“4 exists or is unique. These questions were
answered in the affirmative in [27]. On close examination, it is clear that these properties
do not depend on whether we are using a pseudo-empirical measure instead of a true
empirical measure. Hence they remain valid in our context. Next, we establish the
main consistency statement.

Theorem 4.8. For almost every sample sequence, the sequence {f’,{m} converges weakly
to P as n — oco. We write this as Pﬂb\“ =as P.

Proof. The main burden of proof is addressed by Theorem 4.4 in establishing the strong
law of large numbers for the pseudo-empirical measure, and which is originally given
in WVK’s Proposition 7. Indeed, in Simar’s proof ([27], Section 3.3, pp. 1203-1204),
we only use the fact that G, —as. A for every k € Ng. The rest of the proof carries
over, and the current theorem follows. ]

It is worth noting that the consistency of the maximum likelihood estimator does
not even require that condition (i) in the Definition 4.1 of the rare-events source to
hold, since Theorem 4.4 in fact holds without that condition. In that sense, it is very
general. However, when every neighborhood of 0 or co has positive probability under P,
it limits the types of functions that we can allow in the canonical problems, including
sequence probabilities and entropies as discussed in WVK. When P is not compactly
supported, it is also difficult to establish the rates of convergence.

H 4.5.2 Minimum Distance Estimator

We now define a minimum distance estimator for our setting. The reason that we
suggest this alternate construction of P, is that it is useful to quantify the convergence
rate to P, and the minimum distance estimator provides such a rate. However, it does
so with the further assumption that P has a finite support, whose size is bounded by a
known number m.

Also note that the definition of the estimator circumvents questions of existence by
allowing for a margin of € from the infimum, and does not necessarily call for uniqueness.
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Definition 4.8. For a probability measure Q on RT, let m(Q) denote the Poisson Q-
mizture. Then, given the pseudo-empirical measure Gy, ., a minimum distance estimator

~MD
with precision € is any probability measure P, ™ on RT that satisfies

sup | F'(k; W(ﬁnMD’m’€
k

) = F(k;Gn,)

< infsup |F(k;m(Q)) — F(k; G, )| + €,
k

where the infimum is taken on probability measures supported on at most m points, on
RT.

We now provide the main consistency and rate results associated with such estima-
tors.

Theorem 4.9. Let r > 0 be such that n"dw (P, P) — 0, and assume that it is known

. . NMD, s€En ..
that P is supported on at most m points. Let P, " be g sequence of minimum

distance estimators chosen such that e, < n~™™"1/2} " Then as n — co, we have that
for any 6 > O:

nnlin{r/2,1/4}—§dw (Pi\lAD’m’en’ P) —as 0. (424)

. . . ~MD,m,en
Remark: Since dy induces the weak convergence topology, it also follows that P,, e

=as P.

Proof. To derive rate results in [6], Chen establishes a bound on the Wasserstein dis-
tance between mixing distributions, using the Kolmogorov-Smirnov distance between
the c.d.f.s of the resulting mixtures. For this, he first introduces a notion of strong iden-
tifiability (Definition 2, p. 225), and shows that Poisson mixtures satisfy it (Section
4, p. 228). He then shows (in Lemma 2, p. 225) that if we have strongly identifiable
mixtures and if two mixing distributions have a support of at most m points within
a fixed compact set, such as C, then we can find a constant M (which depends non-
constructively on m and (), such that for any two such mixing distributions @; and
)2, we have:

dw (Q1,Q2)* < Msgp [F(k; 7(Q1)) — F(k; m(Q2))] (4.25)

The main burden of proof therefore falls on our Theorem 4.6 in establishing a
Kolmogorov-Smirnov-type convergence for the pseudo-empirical measure. The argu-
ment we present next is based on Chen’s proof (Theorem 2, p. 226). We have:

~MD,m,ep,

sup P (P ")) = F(k; G|

~MD,m,ep,

< sup |F(kin(P,™ ) — F(k: V)|

+sup |F(k;\) — F(k; Gy,.)
k
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< 2sup|F(k;A) — F(k;Gp,.)| + €ns
k

. . . oy "’MD, 1€n
where the final inequality is due to the definition of P, e

by our choice of €,, it follows that for all § > 0, we have:

. By Theorem 4.6, and

(/2 =28 g | (s o (PY D)) — F(k: G| —as, 0. (4.26)
k
By combining (4.25) and (4.26), the theorem follows . O

Note that Chen’s result can be used to show more. In particular, if we think of the
true mixing distribution as residing in some neighborhood of a fixed distribution, then
the convergence holds uniformly over that neighborhood. This may be interpreted as a
form of robustness, but we do not dwell on it here.

H 4.6 Applications

To solve canonical problems in the setting of Lemma 4.2, when an a priori bound on C
is known or when f is bounded on R, it suffices to construct a sequence of probability
measures P, that weakly converges to P for almost every sample sequence. Since
Theorem 4.8 provides such a sequence, we need not go further than that.

However, to work within the more general setting of Lemma 4.3, where no knowledge
of C is assumed and f can be any locally Lipschitz function, we can use the result of
Theorem 4.9. In this section, we start by illustrating this for some of the quantities
considered by WVK. We then suggest two new applications: alphabet size and support
interval estimation. We conclude by remarking on some algorithmic considerations.

W 4.6.1 Estimating Entropies and Probabilities

First consider the entropy of the source H(p,,), and the associated problem, in normal-
ized form, of estimating Y, = H(p,) —logn. One can then write:

v = —/ log xd P, (z),
C

and therefore, by comparing to equation (4.1) with f,(x) = f(x) = —log(z), we have
a canonical estimation problem, and since Y, is deterministic, it is also strong. If we
have a bound on C, we can use Lemma 4.2. Otherwise, note that on intervals of the
form [D~!, D], log x is D-Lipshitz. Therefore if for some s > 0, nsdw(ﬁn, P) —,5. 0, as
given by Theorem 4.9 for example, then we can apply Lemma 4.3 using D,, = n®. If s
exists but is unknown, we can still apply Lemma 4.3 using any sequence that is o(n®),
such as D,, = €!°8°"_for some ¢ > 0. The consistent estimator becomes:

i = /R logp, 2dPy (@) (4.27)
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Next consider the probability of the sequence p,(Xp1,-- -, Xpnn), and the associated

normalized problem of estimating Y;} = %logpn(Xn,l, <, Xy ) + logn. We have
(WVK, Lemma 5):

E[YP] = Ellogp,(X,)]+logn

= / log xd P, (z),
C

and therefore we also have a canonical estimation problem. Using McDiarmid’s theorem,
one can also show that (WVK, Lemma 6) |E[Y}] — Y| =, 0, and therefore we once
again have a strong canonical estimation problem, and we can construct a consistent
estimator as in the case of entropy. Referring to equation (4.27), we have Y/ = —Y;/,

M 4.6.2 Estimating the Alphabet Size

Consider the size of the alphabet |A,,|. Since the model describes large, asymptotically
infinite, alphabets, we look at the normalized problem of estimating Y,A = |A,|/n. We
have (cf. [2]):

A l _ pn(a)
vA = n21 > 5

acA acA P
1
= / —dP,(z).
cZ

Once again, having a deterministic sequence of the form of (4.1) with f,,(z) = f(z) =
1/x, it follows that {¥;4},en is a strong canonical problem. If we have a bound on C,
we can use Lemma 4.2. Otherwise, note that on intervals of the form [D~1, D], 1/z is
D2-Lipshitz. Therefore if for some s > 0, n®dyw (P,, P) —vas. 0, as given by Theorem
4.9 for example, then we can apply Lemma 4.3 using D,, = n*/2. As in Section 4.6.1, if
s exists but is unknown, we can still apply Lemma 4.3 using any sequence that is o(n?),
such as D,, = €!°8°™_ for some ¢ > 0. The consistent estimator becomes:

yA = /R ). (4.28)

B 4.6.3 Estimating the Support Interval

As discussed in Section 4.2.2, estimating the support interval is not a canonical problem
per se. However, we show here that we can extend the framework in a straightforward
fashion to provide consistent estimators of both ¢ and ¢.

Lemma 4.10. Let P, =, P such that for some s > 0, we have nsdw(]sn,P) —as 0.
This is particularly true under the conditions of Theorem 4.9. Given ¢ #0 and D > 1,
let 9, denote the D-tapered version of 9.

If ¢, = logn/loglogn and D, = ns/2an)  then we have: as n — oo,
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. 1/qn
([, oprari@) " o
R+

~ 1/gn
and </ -TanndPn (.CE)) —a.s.
R+

Proof. For conciseness, let us drop the argument of the probability measures, and write
dP for dP(x). We provide the proof only for ¢, since the argument is analogous for ¢.
Recall that ¢ is the essential infimum of a random variable Z ~ P. Therefore, for any
D > (¢t v ¢), we have:

Q¢

o

1/q
</ qudP) — ¢ as q— oo. (4.29)
R+

In the absence of a rate of convergence, we cannot simply plug in P,. But since we
know that n®dw (]5”, P) —, 0, we can use the dual representation of the Wasserstein
distance and the fact that for every g and D the function %D_l_q:cgq is Lipschitz(1)
over R to state: as n — oo,

D1-a
n® sup
q,D q

/ z;1dP, — / J:quP‘ —as. 0. (4.30)
R+ R+

We now want to relate this to the difference of the ¢*" roots. Note that each of the
integrals in (4.30) is bounded from below by D~9. Using this and the fact that for any

1 1 1 i1 .
a and b > 0 we have |a /1 —p /q‘ < ;(@Ab)i " [a — b|, we can write:

_\ /g 1/q
</ qudPn) — (/ azl_)qu)
R+ R+

D14 P _
/ qudPn — / xquP‘ .
R+ R+

q
The choices ¢, = logn/loglogn and D, = ns/2an) allow us to have D2 — ns,
and yet guarantee that as n — oo both ¢, and D,, — co. With this, we can use the
convergence of equation (4.30), to state: as n — oo,

N\ Van 1/qn
(/ :z:Bq”dPn> — </ a:Bq"dP>

< D*.

p-1-an )
<n*—= / zp"dP, — qu"dP’ —ras. 0. (4.31)
We then combine (4.29) and (4.31) to complete the proof. O

Remarks. Note the following:
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(i) Other scaling schemes can be devised for ¢, and D,,, as long as they both grow to
00 as n — 0o, yet D" remains at most O (n®).

(ii) If a bound [Dpin, Dmax] D C is already known, then we can taper x? accordingly,
without growing D,,. In this case, we can also speed up the rate of convergence
by choosing g, = 5 logn/log %.

(iii) If only an upper bound or only a lower bound is known, we can taper z¢ accordingly,
and only grow /shrink the missing bound. In this case we leave ¢, = logn/loglogn
as in the Lemma.

(iv) In the Lemma and the alternatives in these remarks, if s is unknown we can replace
it wherever it appears (together with constant factors) with a suitably decaying
term, that guarantees the behavior of remark (i). For example, in the Lemma, we
can choose D,, = n!/(anV1081087) gince then D2I" becomes o(n®) for any s, and the

proof applies.

B 4.6.4 Algorithmic Considerations

One of the appealing properties of the maximum likelihood estimator is that, by a result
of Simar in [27], it is supported on finitely many points. Simar also suggests a particular
algorithm for obtaining the PM"F, the convergence of which was later established in [5],
with further improvements. One can also solve for the MLE using the EM algorithm,
as reviewed in [25]. Penalized variants are also suggested, such as in [20]. The literature
on the non-parametric maximum likelihood estimator for mixtures is indeed very rich.
As for the minimum distance estimator, in [6] Chen suggests variants of the work in
[10], where they use algorithms based on linear programming.
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Conclusion

B 5.1 Summary

In this thesis, we considered the problem of estimating the total probability of symbols
that appear very rarely in successive independent samples from a discrete distribution.
We closely examined the conditions under which one can meaningfully make inferences
about these rare probabilities. We first gave evidence that the bias and additive con-
centration properties of the classical Good-Turing estimator of the missing mass are
distinctly non-trivial only when in a heavy-tailed regime. For this we proposed the
notion of accrual rate, which describes how probability accrues up from the rarest sym-
bols. This explains the success of Good-Turing estimation in natural language modeling,
where heavy tails are the norm.

We then focused on consistent estimation of rare probabilities. We showed that, here
too, heavy-tailed distributions play an important role. For this, we used the notion of
regular variation, which is a restricted but more precise version of accrual rate. As an
illustration to what happens in the absence of regularly varying heavy tails, we showed
that even for a geometric distribution Good-Turing is not consistent. On the other
hand, under heavy-tailed regular variation, we showed that Good-Turing estimation is
always consistent. We established this by showing multiplicative concentration for the
rare probabilities, also extending existing additive concentration results in the process.
Lastly, within this regime, we constructed a family of consistent estimators that address
some of the shortcomings of the Good-Turing estimator. Since the core mechanism of
this approach is to estimate the regular variation index, this brings rare probability
estimation in this discrete setting closer to the continuous setting of tail estimation and
extreme value theory. Cross-fertilization between these frameworks is now possible, in
particular by using semi-parametric approaches to index estimation.

Lastly, we studied an alternative model where instead of a fixed distribution, one
samples from a distribution whose support increases with the number of samples. This
captures situations of large alphabets, where the underlying sample space is finite but
comparable in size to the number of samples. Every event in this model is rare, and
one may call it a ‘rare events’ regime. In this context, we considered a large class of
canonical estimation problems, including entropy, sample size, and probability range
estimation. We presented an abstract solution methodology for consistent estimation,

71
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based on the construction of a sequence of random measures that almost surely converge
weakly to a distribution that characterizes the rare events regime. We then cast the
Good-Turing estimator as a pseudo-empirical measure from a Poisson mixture, and used
mixture density estimation to give two concrete constructions of the desired sequence
of measures, thus establishing consistent estimators for the quantities of interest.

M 5.2 Future Work

B 5.2.1 Functional Convergences

In the context of the infinite occupancy model as a framework for modeling discrete
rare events, there are several directions, which can result in radically better inference
methods. As we have seen, since regular variation is the natural framework, estimating
its index, «, is central. We have suggested some simple consistent estimators & for
the index. However if one wants to use & in estimators for quantities beyond total
probabilities, such as entropies as we did in the scaling context, or in statistical decision
rules, one needs to characterize the convergence rates of the strong laws. Concentration,
large deviation, and Berry-Esseen bounds for the CLTs are pertinent in this regard. We
expect such work to capitalize on the modern treatment of second order regular variation
conditions, [1].

But a more powerful approach to performing inference in this context would be to
characterize convergence via a functional CLT. In particular, it is desirable to extend
the horizon of r as n — oo at the appropriate growth speed, e.g. R, — oo, and
give uniform convergence rates for the vector (K ,)r=1.. r,. This can result in an
elegant parallel to empirical process theory, and can enable semiparametric inference
to obtain estimators, for o and other quantities, that take advantage of more of the
available information in the sample. Such an approach further tightens the parallel
with inference in extreme value theory, [1], as nonparametric tail-index estimators rely
on extending-horizon, intermediate order statistics.

H 5.2.2 Dependent Data

One could also consider the Good-Turing estimation problem in the presence of Markov
observations, that is the problem of estimation of the stationary probability of discrete
unobserved or rarely observed states. A primary motivation to study this extension is
to gauge the risk of a dynamic system evolving into a hitherto unseen state. Despite the
fact that many applied areas where the Good-Turing estimator is used have intrinsically
dependent observations, as in the case of speech and language modeling, this problem
has not had any direct treatment. For example, in n-gram models, one reverts back
to the conditional independence structure to perform inference in the classical Good-
Turing setting, coupled with smoothing techniques that layer out n-gram models of
varying orders. One can show that naive extensions of i.i.d. estimators to Markov chains
lose many of the original performance guarantees, even the property of asymptotic
unbiasedness. However, when certain, such as Doeblin-type, conditions are imposed on
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the chain, some of these properties may be recovered. Since many well-behaved models
do satisfy these assumptions, such results form the basis of a rigorous generalization.

H 5.2.3 General Rare Event Models

We have seen in this thesis that in the absence of structural restrictions, rare event
models may be ill-posed for inference. In particular, in the absence of regularly varying
heavy tails, we have found that even the simple example of a geometric distribution may
lead to inconsistent estimates. This is in the same spirit of the importance of regular
variation in estimating tail probabilities in extreme value theory. On the other hand, we
have seen that other structures, such as the scaling regime of [31], offer an alternative
to fixed-distribution sampling, and that not only can one perform rare probability esti-
mation in such contexts, but also solve a larger class of inference problems. Yet another
approach to modeling rare events is to capture them in terms of requirements on data
for a given estimation task, which we may call the sample-complexity perspective. This
is done for example in the recent work of [30]. Therefore, an exciting open problem is to
relate fixed-distribution sampling, scaling methods, and sample-complexity approaches.
The goal of making this correspondence precise is to identify the universal structures
that are both necessary and sufficient for inference about rare events.
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CHAPTER 5. CONCLUSION

“ Intentio hominis totum facit possibile.

b
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