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CONTROLLABILITY OF
' TWO—LEVEL LINEAR DYNAMICAL SYSTEMS
by
WAN-LIN KIANG

 ABSTRACT

The mathematical model of a two-level linear
dynamical system is constructed. Controllability of
such systems is then deflned and studied. The relevance
of the model to possible applications 1s demonstrated
by examples.,

The problem of coordination 1s the primary concern
in the present research. The schemes of coordination
are to be conductgq by the superemai using image, con-
straint, goal, and interaction 1ntervéntions. These
terms are defined and their relations with above
mentioned mathematical model and controllability of

the system are then explored.
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CHAPTER I

INTRODUCTION

l.1. Motivations and Objectives

The notion of multi-level system has been a
subject of study for some time, In 1ts broadest sense,
the concept of multi-level system has been assooiateé
witﬁ the description of human organlzation, for Instance,
the corﬁorate stucture of & large business organizetion.
Also, thé concept of multi~level system hss been assoclated
with large complex physical systems, such a&s an integrated
steel mill, These systems are usually too complex to be
enalyzed as &a whole. Consequently, the problem of
decentralization of control hes become a very active
center of investigation, In orther words, it is the
problem of decomposition for large scale systems that
has received most attention. Thls is by no means not
Justifled, but we still feel that contributions to
multi-level systems théory can be made via a different

approach,

In order to explain the rationale behind the present

research, we shall first try to answer'several guestions:



(1) What is & multi«level system? (ii) What structure
charascterizes & multi-level system? (iii) What are the
special properties of a multi-level system? (iv) How

should a multiwlevel'system be studied?

To answer the first question, we shall understand

& multi-level system as a group of interacting goal-

seeking subsystemé arranged in an hierarchial order. For
the moment, we shall only say that such a hierarchial
order exists if the activitles of certain subsystems

are supervised by other subsystems. At the same time,

& goal-seeking activity is also assigned to the group

of subsystems as @& whole., Therefore, & multi-level

system 1s itself a decision-nmaker,

The answer to the second question is closely
relafed to the first one. Since & multi~level systenm
1s understood as a group of goal-seeking subsystems,
we may say that the divislion of labor or decislon-
making capaclty among the subsystems is the special
feature which distinguishes the multi-level systems,
This is very much llke the situatlion studied in tean
declsion theory if not for the word "level", A goal-
seeking subsystem is said to situate on the highest
level whenever its deolsion~making capacity 1s directly

restraining the actlivities of all other goal-seeking



subsystems. A goal-seeking subsysten ls sald to situate
on an intermediate level whenever its decision-making
capacity is defined by higher level subsystems, and at
the same time, must restrain the declislon~-making cepacity
of lower level systems. A goal-seeking subsystem is said
to situate on lowest level whenever 1t imposes no direct

constraint on any other subsysten.

The answer to third question is "interaction®.
However, the speclal kind of interaction in & multl-
level system originates primarily from the fact that
each composing subsystem 1s 1ltself a goal seekling systen,
For goaluseeking subsystems situated on the same level,
the decision made by one subsystem is eassumed not pre-
dictable by other subsystems, The resulting interaction
thus presents as an unknown influence to other sybsystems
on the same level, Since this type of disturbance arlises
as an internal force in & multi—level.system, it may

be celled as Internal disturbance. This type of internal

disturbance will always present in & multi-level system,
Consequently, study of multi-level systems must incor-
porate a Succeséful treatment of internal disturbance.
One way of doing thls 1s that interaction of goal-seeking
subsystems.situated on a lower level be supervised and

regulated by higher level subsystems., We shall call



such function coordination,

There ere perhaps many possible ways of studying
the structures end behaviors of multi-level systems,
First of all, we may divide the study of multi-level
systems into two different but complimenﬁary parts of
syntheslis and analysis, From 8 funétional view-polint
both problems of decomposition and coordinatlon must
be studied, However, it is felt that emphasis on
decomposition or on coordination should be welghted
differently depending upon whether the analysis or the

synthesis of multl-level systems is of major cor: vrned,-

In the analysis of an existing system that might
be modelled as & multi-level system, for lnstance, the
nerve system of a High intelligence animal, one usuelly
starts from the consideration of an integreted system,
TheAfifsﬁ‘éﬁep is to decompose the integrated system
into a group of subsystems according to certaln criteria.
The next étep is the coordination of behavior of the
subsystems. The success of coordination depends heavlily
on how system decomposition is concelved and devised.

In thils respect,.the problens of decomposition would

be equally as Iimportant as the problems of coordination.

In the synthesls of multi-level sysﬁems, particularly



physical and engineering systems, the problem of decom-
position seems to be & minor one as compared with the
problem of coordination, The reasons for this conjecture
are extracted from the following observations: (1) In
the construction of a complex system, the over=-all
system structiure is often not immediately known, Rather,
there usually are individual subsystems of known:nature
which need to be lntegrated. The natural boundaries of
such subsystems could then be used as a divislon line
for the decomposition in the synthesized multi-level
system., (2) In many complex systems, the addition or
deletion of a particular subsysten s always a distinct
possibility. Consequently, it would be very convenient
to take the natural bounderies of known subsystems as

the decomposition from the outset,

The above analysis illustrates why the viewpoint
of coordinatlon, which is to be formulated as a mathe-
matical problem in Chapter III, wlll be adopted as the

basis of the present study.

In previous studles on multi-level system, emphasis
has been mostly placed on the part of quantitetive
theory. The study bf gualitative behavior of multi-
level systems ls qulite scarce and ought to be supple-

mented., Since controllability is one of the most



fundamental qualitetive proverty of any control system,
the controllabllity of a class‘of multi-level systems
will be defined and used &s & baslc goel to be achieved
frdm the synthesis viewpolnt., Within the framework of
a given mathematical model, we shall try to answer the

following questions:

(1) 'What are the declslon problems of the various
levels of a control hlerarchy and how are they

related between levels?

(11) How coordinations can be carried out in order

to achieve & predetermined over-all goal?

1.2 Problem Statenment

Consider the two-level linear dynamical system

represented by

Supremal:
x = A(t)x(t) + C(t)m(t) + 3B, (t)x; (t) (1.2-1)
X = A(t)x(t) + C(t)m(t) | | (1.2-1')
Infimals:
X, = Ai(t)xi(t) + Ci(t)mi(t) + jziDij(t)xj(t)

(1.2-2)



X, = Ai(t)xi(t) + Ci(t)mi(t) 1 =1, 2, sse, P
' (1.2-2')

The precise definltions of the above equations will be

given in Chapters II and III.

The basic problem may be formulated in the following

manner,

(1) Suppose that the supremal (l.2-1') is control-
lable at some finite time T wlth respect to a glven
space M of admissible controls and a glven palr of
states (xo, xd), where X being the initial state and
x4 the desired state. Under what conditions will
supremal (1,2-1) be controllable or e~controllable

at T or some t £ T with réspect to the same M and

(xo, xd)?

(11) Suppose that the above problem is solvable
end that a set of constraints is establlshed on the
time function EBi(t)xi(t) where xi(t) are generated by
the infimals, Can the supremel use coordinative inter-

so that the above mentioned set of constraints can be

ventions to adjust Al(t), mi(t), X , D

met?

(111) Suppose the answer to problem (ii) is



affirmative, What are the possible schemes of coordination
to be performed by the supremal so that to lead to the

goal mentioned in problem (i)?

1.3 Nature of Results

The major contributlons of this thesls are listed
below to correspond to the problem statements in the

previous section,

(1) Some new results on the controllebility of
linear dynamical systems are obtained in section 2,3,
The concept of uniform controllability for linear
dynamical systems 1is introduced in the ssme section

and some related results are derived,

(i1) The concept of controllability under distur-~
bance is introduced in section 2.4, For linear dynamical
systems subjected to additive disturbances, some results
are obtained on the above concept by correlating system
dynemics, control space M, constraints on the additive
disturbance, and the concept of uniform_contfollability.
The concept of redundant control energy 1s also intro-

duced which improves the results obtained above.

(111) In Chapter III, two-level linear dynamical



systems which allow no direct interaction among the
infimals are studied., The problems posed in section 1.2

- are answered affirmatlvely using the results derived in
Chapter II. In Chapter IV, the same problems are answered
for the two-level linear dynamical systems which allows

direct interaction among the infimals,



CHAPTER II

CONTROLLABILITY OF LINEAR DYNAMICAL SYSTEMS

2,1 Introduction

In this thesls, the study on thg behavior of two-
level linear dynamical system will be restricted to the
notion of controllability. Since controllablility is
2 kind of qualitative property, it would be more meéan-
Ingful to conduct the study on a system of definite ‘

structure.

As wvie shall see later in next chapter, the proposed
two-=level linear dynamicel system is essentlally an
aggregation of ordinary linear dynamical systems which
ere describable by ordinary linear differential equation

systems., The interaction among systems belonging to

this aggregation will be characterlized by additive linear

operators.

The principal approach in tackling the problem is the

use of "parametric coordination", which'reduces the math-

matical model of the two—level linear dynsmical system into

e group of Independent linear dynamical subsystems described

by ordinary linear differential equation systems. The

10
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study of the integrated system, 1l.e., the original two-
level linear dynamical system, is then carried out
based on the understanding of the behaviors of the sub-
systems, Therefore, the knowledge on the behavior of
subsystems, such as controllability, is extremely im-

portant,

Since the formal introducing in. around 1960 ﬁy
¥alman (16}, the property of controllability of dynamical
systems has been extenslvely studied. For linear deter-
ministic dynamical systems describable by ordinary
differential equation systems, the results were sum-

narily given in Kalman, Ho, and Narendra[l8j3.

Many of the known results can be used in our present
research, Nevertheless, these are by no means complete
and ‘exhaustive. In order to make present analysis
successful, it beceme quite clear that new knovledge
on controllability must be obtained. Therefore, it is
the primary objective of this chapter to carve out the
results which are necesssary for later development in

the subsequent chapters.

In the present study, we shall understand by e
linear dynamicel system simply &s a system which is
describable by linear ordinary differential equations.

In sectlion 2 of this chapter, we shall give a brief
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survey of past researches onAthe notion of controllabllity
for linear dynamical systems., In sectlon 3 we shall
continue research on the same notion for linear dynsmi-
cal systems with deterministic structure. The concept

of uniform controllability, which is of vital importance
for 1éter developments, 1is then introduced., In section

L of fhis chapter, we shall focus our attention on

linear dynamical systems subject to'additive dlsturbances,
In this latter case, the linear dynamical will be assumed
to be controllable when the additive disturbance 1is

absent.

2,2 Survey of Existing Results on Cbntrollabiiity for

Linear Dynanicael Systems

The 1mportént notion of controllability for dynamlcal
systeﬁs was first formally introduced by Kalman(lh] in
1959, Subsequently, in the first IFAC Congress held in
Moscow , Kalman([16] presented a more complete study on
controllability and its dual property =-- observabllity
for linear control systems, It should be understood thet,
based on diffrerent requlirement, controliability can

be considered either 2s structurasl property or hehavioral
property for a .given dynamlcal system., This differen-

tiation of viewpoint appears to be nonessential in the
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formal sense. Yet, 1lts Influence of the choice of tools

for analysis should not be slighted.

In this section, exhaustive collection of existing
results 1is not intended, we shall present only those
results which are closely related to our present study.
We follow closely the definltive publication of Kalmen,
Ho, &snd Narendral[1l8), and those of Antosiewicz{l] and

Mitter (2817,

For all subsequent analysis, an axiomatic app-
roach of defining generalized dynamical systems (see
for instance, Roxinl311), is not attempted. It is under-
stood that, by & linear dynamical system we mean & sys-
tem having & mathematical model described by linear
ordinary differential equation systems defined on &

finite dimensional Euclidean space and the real line,

Let us consider the genral model of the system

vwnder study as descrlbed by

X = A(t)x(t) + C(t)m(t) 4+ £(t) (2.2-2)

x(0) = x,

where x is an n~dimensional vector defined for all
t 2 0 such that x(t) at each time instant t is an ele-
ment in the n-dimensional Euclidean space RY; A(t) and

C(t) are matrices of continuous functions with dimensions



14

nxnandnixr respectively; n(t) is a vector in R defined
on & compact interval J = [0, 7] in BT = (o, =) such

that t » n(t) is & vector in the normed linear space

dCz or £ ., of Lebesque integrable functions with norms

defined respectively by

ta

)'é'

i

T 2
Wmil, ([ Jim(E at

(2,2-2)

max (suplmi(t)l)
lgi¢r teJ

I mi),

ii

where ]l.l| denotes the usual Euclidean norm such that

2A
Nzt = (= xi)zs f(t) is & vector in Bn defined on J and
i

t - f(t) 1s 2 vector in the linear spaceSccz or £ ¢
With these definitions the exlstance of & unique solution
of (2.,2~1),for any given triple (xo, m, f), 1is quaran-
teed., And the fact that the solution x(t) defined on J

is & vector In &L, or «£ becomes evident.

It is well known that the general solution of (2.2-1)
is glven by

x(t) = o(t)xy + fﬁ@(t, s)C(s)m(s)ds + IE@(t, s)f(s)ds

(202"3)

where @(t) is the fundamentel matrix of the autonomous
system x = A(t)x satisfylng the metrix differential
equation X = A(t)X with the initial condition X(0) = I.
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-

To conform with usual terminology of control sys=-
n
tem theory, let us call B the state space, denoted by
X, of the system, x(t) € X state of the system, m(t)

the control function, and f(t) the disturbance function,

In words, the study of controllabllity is the
effort in answering the fundamental question: "Starting
from a given initial state x € X, can the system (2.2-1)
be steered to some desired state X4 € X in finite time
by the application of some appropriate control function
m(f)?". We glve the formal definition on thls concept

as followsi

vDefinition 2ol Given & desired state xd_e X and an

inition state X, € Xat t = 0, the linear dynamical

system (2,2~1) is saild to hbe controllable if there exists

some finjite time T > 0 and some control function m(t)

which transfer the system (2.2~1) from x, to x, at T,

a

Definition 2.2-2 Given an initlal state X, € X, the

linear dynamical system (2.2-1) 1s sald to be completely

controllable if there exists some finite T > 0 such that

the system can be transferred from XE>E'X to any desired

state Xd € X at T,

Definition 2.2-3 Given a desired state X5 € X and an

initial state x € X, the linear dynemlcal system (2.,2-~1)
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is said to be approximately controllable or s=controllable

1if there exlists some T > 0 and some control functlion
m(t) such that lx(T) - xdl < ¢, wheree»Q0is a positive

constant.

The concept of complete controllablility 1is essen-
tially a structural property for a glven dynamical
system, Even though its mathematical implication 1is
quite important, its signlificance in engineering app;
licatlion can not be 9ver~emphasized. As we shall see
from the various theorems listed subsequently, the tool
of enalysis in the study of complete controllability
has been mostly algebraic, which is not very useful
in extending present results to dynamical systems other
than the linear ones. Furthermore, it seems to be a
reasonable doubt that such global property can not be

meaﬁingfully established for any dynamical system.

On the other hand, the concept of controllability
may be considered to be a local property as well as
a behavioral property. In the present research, it is
more frultful to look at this coﬁcept as & behavlorasl
property. The available tools for studylng the problems
are veried, but follow categorically two basic lines,

namely, algebralc methods and topological methods,

The inclusion of the concept of approximate con-
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trollability in the present study 1s most significeant.
First of all, we feel that this concept is closely
assoclated with the reel world because engineering
epplications 1nvariably_involve some degree of tolerance

or approximation. Furthermore, the concept helps signl-
ficantly to reduce difficultles encountered in mathematical

eanalysis.

Following the algebraic approach, we have these
fundamental results: The classical theorem was obtained
for a linear time-invariant dynamical system under no

additive disturbance.

Theorem 2,2~1 Let A(t), C(t) be constant matrices and

f(t) = 0 for t 2 0, Then system (2.2-1) is completely

controllable if end only if the matrix

n-l
Q = [A, AC, oee , & C]

is of rank n. Moreover, 1f the system 1s completely
controllable, any state can be transferred to any other

state in an arbitrarily short interval of time,

For convenlence, let us introduce the symmetric,

non~-negative definite matrix
. :
W(T) = [Te(t)c(t)c (t)e (t)dat ﬁ (2.2-4)

Then, for a tiwne-varying system, we have
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Theorem 2,2-2 Let f(t) = 0 for t 2 0, The system (2.2-1)

is completely controllable 1f and only if, for some
finite T » 0, the matrix W(T) is positive definite,

Theorem 2.2-3 Let f(t) = 0 for t = 0, The system (2.2-1)

is controllable if and only if the vector é(T)xd - X

" is an element in the range of W(T).

ok .
Now, if we let W (T) to denote the pseudo-~inverse
of the matrix W(T), which reduces to the ordinary

inverse w_l(T) when W(T) is nonsingular, Then,

Theorem 2,2~4 ILet f(t) = 0 for t 2 0, The system (2,2-1)

1s controllable if and only if the condition
%
(1 - w(T)u (1»][¢(T)xd -x,] =0 (2.,2~5)
is satisfied, in which case the control
o ol
m(t) = C'(t)e' (tC)u (T)f@(T)xd - x) (2.2-6)

will accomplish the desired transfer,

Theorem 2.2=5 The minimum control energy E required

to transfer the system (2.,2-1), when f(t) = 0 for t 2z O,

from X tO‘xd et time T < & 1s given by

B

|

T (s} 2 Y
[ m™ (e %at = Né(i)xd - xouw$(T)

(@(T)xg = xo) "W (T)(2(T)xq = %) (2.2-7)

By follbwing the nmethods of topological analysis,
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different condiltlons were obtained which quarantee
similar results. First, let us Introduce the followihg

notations

2 (T) = x5 - @(D)xy + [ oo(T, )£ (t)at (2.2-8)

Let us also define the n x r natrix

V(t.T) = @(T,t)C(t)
It is now appropriate to introduce the space of admis-

-8 1ble controls M by defining

Me {m(t): lml, . %k, te J} (2.2-9)

where k » 0 is a constant.

Let X be the conjugate space of X, Then, by using
the separation property of convex sets in & separable
space such as Euclldean spaces, the fundamehtal theorem

was obtained.

Theorem 2,2-6  Given initial state x, and desired state

x4s» the system (2.2-1) is approximately controllable
(e~controllable) with respect to the space M of admi-
sslible controls if and only if, for every x* € X*, the

following inequality holds

i
)

Cz (1), x> = elix 1l £ x0T v (e, 2)nPat)

Corollary 2,2-7 If the system (2.2-~1) is approximately

controllable with respect to M and (xo ) xd), then there
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exists a least compact time interval J = [o, To] in B' such
that system (2.,2-1) 1s approximately controllable with

respect to M and (xo, xd).

Theorem 2.,2-6 apparently includes the effects of
the disturbace function f(t). However, explicit utilizationA
of this theorem would be very difficﬁlt when f(t) is
not known & priori. A theorem which would estimate the
effects of additive disturbance on a deterministic
system appears to be much‘useful in our analysis. So, let

us introduce the disturbance set @ which is necessary

Ti
for the statement of the followilng theorem, by defining:

: T
0 = {o(T)eX: lo(TINS o and o(T) = [ _o(T,t)r(t)at}
T
(2,2-20)

Theorem 2.2-8 Let system (2.2-1) be approximately

controlleble with respect to M and (xo, xa) when £(t) = O
fér t 2z 0, Then the perturbed system is ¢ ~controllable
with reépect to M and (xo, xd) if and only if

: #* T # 2 %
¢ ¢ ¢ - max(0, sup{l(xd-xo,x > - k(Iollx V(t,T)Il at)

Nx = 1})
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2.3 Controllability for Disturbance-~Free Linear Dy~

namical Systems

In order to answer certdin quesfions on control=-
-1ability of two~level linear dynemical systems, which
is still to be defined in next chapter, we found that
there are several questlions to be answered on control-
.1ab111ty of linear dynamical systems such as (2.2=1),
The problems can be put into two main categories; (1)
further understahdings on controllability of disturbance=
free systems, which we shall try to answer in this section;
and (2) the effects of disturbance on controllability
of deterministic linear dynamical systems, which we shsall

try to answer in next section,

Therefore, we shell assume throughout this section
that f(t) = 0 for t 2 0, and system (2.2-1) reduces to
the form

X = A)x(t) + c(E)m(t)  x(0) = x_ (2,3-1)

As we have nmentioned previously, the concept of
complete controllability 1s essentislly & structural
property for a given linear dynamical system, In other
words, the conditions of complete controllability

depends only on system structure characterized by systenm
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Matrix A(t) and control matrix C(t). From theorem 2.2~2,
we know that the system is completely controllable if
end only if there is some 0 € T <® such that the matrix
W(T) is positive definite., A very difficult question to
answer 1s how to determine the leest of such T. Another
open question is thls: For some given fixed time T <x and
fixed system matrix A(t), can system (2.3-1) be made
cbmpletely controllable at T by menipulating the control
matrix C(t)? If this is so, 1is there a simple algorithm
of finding an appropriate control matrix C(t) such that
(2,3-1) is completely controllable at T? We shall try

to answer the latter question.

We emphasize particularly on the manipulation
of the control matrix C(t) only because it would not
always be permissible in practical applications to change

the system chsracteristics by altering A(t).

Proposition 2.,3-~1 Let system (2.3-1) be given. A

sufficient condition fpr posltive~-definiteness of the
matrix W(T) is that the control matrix C(t) be square
and nonsingular for some compact interval [tl, t,1 in
RY where o tl < tz s T

Proof It is well known that the fundamental matrix
3(t) is nonsingular for a1l t > 0. Thus, as & conse-

quence of the assumption, the matrix o(t)C(t)C'(t)o' (L)

is nonsingular on.[tl, t2]. Since & (t)C(t)c ' (t)a' (L)
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is also symmetrlc, this implies that the matrix ié po-
sitive~-definite for each t € [tl, té}and positive=-
semidefinite for all other t 2 0, Now we must show that
(x, W(T)x» » 0 for any x # O, Clearly

(x, W(T)x) Ig(x, 2(t)C(t)c’ (£)e (£)xpdt

il

= [Mx, s(e)c(e)er (6)e (¢)x)at
t
+ Jti (x, ®(t)C(t)C' (t)e' (t)xyat
T
+ Itz (x, e(t)c(t)cr (L) (t)xpat

The second term in this equality is apparently greater
than zero whlle the other two terms are non-negetlve,

This completes the proof.

The fact that C(t) be square is not neéessary
for the positive~definiteness of W(T) is easily dis-
closed by following reasoning: Let P, Q be any nonsingulsar
square matrices and A be any square matrix of app-
ropriate dimensions. It is well known that the matrices
PAQ and A hes the same rank, It is also known that,
for any rectangular mafrix A, the ranks of the matrices
A, A'A, and AA' are the same. As a consequence, let
c(t) be a rectangvlar matrix of dimension n X r with
n > r, Then the rank P of the matrix ¢(t)C(t)C'(t)e' (t)
is given by p(&(t)C(t)C' (t)e'(t)) = p(C(t)C' (t))
= P(C(t))ﬁ r < n, In other words, the matrix ®(t)c(t)C'(t)a'(t)

can not be positive~definite. However, we do know that
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there are lincer dynamical systems of the form (2,3-1)

with rectangular C(t) which are completely controllable,

A different scheme appears also useful in manipu-
lating the control matrix C(t) so that a resulting
W(T) would be assured to be positive-definte, Let us

first prove the following result.

Lemms 2.3~2 Given any symmetric matrix A there exists

& scalar « such that the matrix A 4 aI is positive

definite .

Proof: By definitlon, we must show that there exists
en « such that {x, (A + al)xy) > 0 for any x % 0, Since
A = A', we know there is an orthogonal metrix P with
the properties PP' = I and P'AP = A, where A 1s a

Py, then

1t

diegonal matrix., Let x

(x, (& + aI)xy =Py, (& 4 «I)Py)
=y, (A4 aI)yd
=¥ AW + (¥, ¥

n 2 n é
= g2 MYy b 30Ty

P n 2
A Y +a 5V,
1=01 7 4l

114
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Where

* .
A= min (i)
l¢i<n
L3
Let « » |2 |, we have the proof.

Now we shall develope the scheme by consldering

two different cases.

case 1. C(t) is & square matrix but is singuler on some

subset S € [0, T] of non-zero measure,
Let us define & new control matrix
Cy(t) = C(t) + oI (2.3-2)
Where « is constant to be determined. Then

: 2
Cl(t)Ci(t) = C(t)C' (t) 4+ «(C(t) + C'()) 4«1

And

wl(T)

T
f“’(t)ci(t)ci(“@' (t)at
0

i
W(T) +an¢(t)(C(t) + C'(t))e' (t)at

fl

2 T '
4 a IJI?(‘IZ)@'('E)dt ' (2.3-3)

From the way we define the new control matrix Cq(t),
the fact that matrix~wi(T) can be made positive-definite

is quite obvious because it is always possible to select
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a constant « such that Cl(t) is nonsingular. And the
positive-definlteness of wl(T) follows from proposition
2.3-1, This fact is also enhanced by looking at (2.3-3),
we realized thet the last term 1s always positive-
.definite, the first term 1s non—negative~definite,

and the second term is symmetric. Thus, if « is made
to be sufficlently large, the matrix_wl(T) will be

positive-definite,

Case 2 The control matrix C(t) is a general n x r

continuous matrix.

As a direct applicetion of Lemma 2,3-2 & quite
trivial algorithm, which would yield a positive-definite
matrix, can be established., The essential scheme 1s to
modify the original control matrix C(t) in such a way
that a new positive-definite: matrix Cl(t) 15 obtained
on L0, T]cH',

ILet us define

nwy
.

¢, (t) = (C(t) o) + (C(t) 0 +al (2,3=4)
nKI‘ [ )
0/ nxn 0

nxn

Let us denote the eigenvalues of matrix cl(t) - al by

’\l(t)p Az(t),ooon, )tn(t)o Let
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M (t) = pax 11 (b)) (2.3-5)

And, on some finite time interval (t., t,], let

a = ¥

= te[f:lf?tz] | ax(t)] : (2.3-6)

Then, by Lemma 2.3-2, the matrix Cl(t) is positive-
definite and nonsigular for all t e [tl, t2]. As we can
see, Case 1 1s in fact a speclal case of the above.

To summarize, we have

Proposition 2.3-3 For a given linear system (2.3-1) it can

always be made completely controllable by modfying the con-

trol matrix C(t) in a way described by formulii (2,3-4,5,6),

As we have raepeatedly mentionéd, complete controlf‘
lablility is & structural property, thus, this property is .
not affected by outside disturbances such as control
function m(t). It is well known that, ih order to transfer
the system (2,3-1), when it is completely controllable,
from any point in the state space té the origin,vinfinite
control energy will be required. Whén available control
energy is limited, the part of state space can be
reached by & system of the form (2.3-1) from a given
initial state 1s also limited. Based on géometrical
conslderation, it would be interesting and meaning-

ful to answer some of the questions relating the
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definitions of control energy, attainable states, etc.

Let us first introduce the definitions

Definition 2.3=-4 The space M of admissible controls

i1s the set
M= {m(t): liny =k, t € J)
2 opr o™

such that MQ £ ord{ 1is a proper subset of ¢Cz ord .

Most of the results to follow will be true when
M is & subset of either-C2 or & , Therefore, 1f it 1is
(<]

not particularly mentioned, the stated results will

be true for both cases,

Definition 2.3-5 Let the sysﬁem (2.3~1) be controllable,
Let the space M of admissible controls be given. The

space X of admissible initial States is the collection
(@)

of points in the state space such that the systenm

can be transferred from any point in Xo to the origin
in finite time T using only the control functions in
M.

Some of the intéresting and valuable propertles

of Xo can easlly be deduced.

Proposition 2,3-6 The set X_ has the following pro-

perties:
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(1) X is convex

(11) X, is symmetric wlth respect to origin,

(111) Let Xo(Tl) and Xo(TZ) be respectively the spaces

of admissible lnitial states for T, and'Tz,
and~T2:> Tl. Then, X, € Xo(Tl) implies X € Xo(Tz)'

Proof: We shall only show the case -when

M is & subset ofocz.

(1) Let x _ € X, and x . € Xo correspond to some ml(t) € M

ol 02
and mz(t) € M respectively. Let mo(t) = aml(t)+(l~a)m2(t),

where 0 € « £ 1, Then,

Wi

(J

it

T 2 % 2
(Jonmo(t)n at) naml(t) + (1-a)m2(t)u at)-

Wi

. 2
£ (I (e Uml(t)ll+ (1-a)Hm2(t)H) at)

H O B o0 =

2 T 2
Safl llm (E)N at +(1-a)f Nm (t)Il at
1 o 2

o

13

ak 4+ (l"a)k =k
Thus mo(t) is admissible. By hypothesis, we know

p .
@(T)x 5 + IOQ(T,S)C(S)ml(S)ds

0 =
) IT
0= & Lo} i
(T)X02 + 1 (Trs)C(s)mz(s)ds
Let XOO:Z «X 4 + (1-a)x02. Then, at time T and some

%*

m € M, the solution of (2.3-~1l) gives
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. _ | oy | . .
x(T) = (T)x 4+ ] &(7,s)C(s)m (s)ds
00 o
By picking m*(t) = mo(t) on [0, T}, we have

T
F(T)(exyy + (l-a)xoz)foé(T.S)(aml(S)
+ (1-a)m (s))ds

x(T)

. T
= a(é(T)xol + Ioé(T.s)C(s)ml(s)ds)

+ (L-a)($(T)x _ + ITé(T,s)C(s)m (s)ds)
) o >

2

0

1

Thus we have shown that Xo is convex, 1l.e, X oo ia also

en element of XO .

To show (11),Jwe notice for any x ¢ Xo corresponding
to some mo(t) € ¥ there is another admissible control
function -~ mo(t) e'M, corresponding to which there 1s
- xo € Xo. Thus, the conclusion follows from the definition

of a symmetric set,

To show (1i1), let m (t) € M be chosen such that system
o
(2.3-1) is transferred from.xk)e X to the origin at
time Tl. Defining
* m_(t) 0=t sT
0 T, < t =7

+*
it is obvious that mo(t) is admisslible, It is well

known that the fundatmentsl matrix cen be written in
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-1
the form $(t, s) = ¥(t)¥ (s). Thus, by hypothesis,

Tl "'l

x(‘l‘l) -.=.\Ir(T1)(x + 1 "v (t)C(t)mo(t)dt) =0

o (o]

Since ?(Tl) is nonsingular, this implies that

T, -1

x_ + folq, (£)C(t)m_(£)at = O

Consequently, since

x(T,) = qr(Tz)xo + w(Tz)Io v (t)C(t)m (t)at
We have

-1 Tl -1

¥ o(T)x(Ty) = x4+ [ v (5)C(t)Im()at = O
i.e, x € Xo(Tz)'

This completes the proof,

For any glven space of admissible controls, the
space of admissible Initial states will in general not
assume a regular geometric form such as &a circular
disk in a two-dimenslonal case., In order to ellminate
many of the details which may cause formideble diffi-
culties in analysis, we might as well assume .2 well ,
defined geometriq shape for Xo in the state space, and
in tgrn try to estimate the minimum control energy

required to transfer the éystem to the origin from any

v
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initlial state in thls assumed Xo. Therefore, let us
define, from now on, the space of admissible initial

states as
X ={xgs llx ll = k_, x ¢ X} (2.3-7)
Let the control energy be defined by
T 2 .
E = Ionm(t)u at ) (2.3-8)

From Proposition 2.2-5, we know that, 1if the

system (2.3-1) is transferrable from an initial state

d
the minimum control energy required to do the transfexr

xo to a desired state x. ¢ X in.finite time, then

is given by

T 2 2
E el llm(t) at = N3(T)x, - x I 4

o d ToyT(m) (2.3-9)
where W (T) is the generalized inverse of the matrix W(T),
For the sake of simplicity, let us assume that system
(2.3-1) is completely controllable. This assumption

-1

reduces w*(T) into its ordinary form W (T), which is

elso symmetric and positive~definlites Let us also define

-

the target set as

Xd_ = {XdG X3 ”Xd” s e} » (2.3-10)

where ko> € We'shall now say that system (2.3-1) is
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controcllable if it is transferrable from an inlitial
state to the target set in finite time., Clearly, if
the initial state chosen is also an element of X
this requirement 1is fulfilled autometically, Thus, we
shall assume that xois taken from Xo - Xd. When Xo
end Xd are glven, the task remained 1s the estimation
of minimum control energy required to transfer system
(2,3=1) from any xoe IXO to the target set in T.

Let 9S denotes the set of boundary points of a given

set- S. Then, we have:

Proposition 2,3-7 Let system (2.3-1) be completely

controllable when M lis not bounded, lLet Xo and Xd be

given. Then system (2.3-1) is transferrable from any

X € Xo to the tearget set X, i1f and only i1f the space

Gl
of admissible controls M = {m(t): llmllz sk, t € J}

satisfies

k & max min  4¥(T)x,- x -1

X, € 9X, Xg € axd W (T)

Proof Necessity Pick any xo € XB - Xd' Let m(t) be
an admisslible control function chich tranéfer the system

from Xq to the target set at T, Since X, is convex and

d
compact and the trajectory x(t) of (2,3~1) is continuous,

x(t) will first touch Xd on its boundary axd. Thus,
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the minimum energy required to transfer (2.,3-1) from

X, to x, at T, Since E is & continuous function of x_,

da d
by taking infimum overiaXd on E, we know that

El = min Il§(t)xd - X || -1 is the minimum control
X, € 90X °w T(T)
a da
energy required to transfer (2,3-1) from X to Xd at

T. Obviously, E_, = max (E,)is the minimum control
2 X, € XO 1

energy required to transfer (2.3-1) from any x € :Xo

to X, at T, Now, we must show that E2 = max E
d x € ox, 1
o) o

Suppose not, then there exists sonme io € Xo and

X, § 19X, such that B, = l2(1)x, - X°"w“1(1')° But

this 1is lmpossible because Xo is also & convex end compact
set in X. This completes the proof of necessity. Now

the sufficiency part is evident, because we know thset
the‘w§rst case, l,e., the éase when most control energy

is need, will happen only when Xo € axo.

Equiped with this proposition, an estimate of

required control energy when X, and X, are given is

d
possible, which constitutes an 1ndispensable basis
for coordination to be studied in the later chapters.
The notion of controllability considered so far
is basically an on-off property in the sense that a

single time instant is of importance. Thus, it 1is
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possible for an unsteble system to be controllable, which is
apparantly ﬁ;aesirable in practice, This liberty is parti-
cularly objectionable for some of the problems to be
conslidered leter, In order to eliminate this fallibllity

we shall do as followus:

Definlition 2.3-8 Let system (2.3-1) be controllable at
time T with respect to & given space M of admissible
controls and a pair of states (xo, xd). Then it is said

to be uniformly controllable for t = T if it is control-

lable for 2ll t = T, i.e., there exists m(t) in M such

that the corresponding solution x(t) = x., of (2.3-1)

d
for all t =2 T,

Clearly, the above property Wili not be obtained
for any unstable'system. Kalman in an early study of
linear filtering problem [17]used the concept of uni-
formly complete controllability to serve a similar
purpose. For the sake of continuilty and completeness,
several well-known definitions will be introduced in

the following.,

Definition 2.3=9 The solution x(t) = 0 on ET of the

autonomous system X = A(t)x, denoted by 5, is called

the trivial solution,

Definition 2.3-10 The zero state x = 0 is_ said to be
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asymptotically stable for theAlinear system (2.3-1) if

(L) glven any ¢ > 0, there exists a § > 0 such that
x Il £ 8 > lx(t)llse for all t « BT, and (i1i) for =
sufficiently small & * O,IMXJ|S 8 implies x(t)—> 0

as t »w, It is uniformly asymptoticallystable if it 1s

asymptotically stable for all X € X.

Definition 2.3-11 The autonomous system x = A(t)x 1is

sald to be asymptotically stable whenever 1ts zero state

is asymptotically stable, It is uniformly esymptotically
stable if the zero state is uniformly asymptotically
stable.

Definition 2,3-12 The nonautonomous system (2.3-1) is

said to be bounded-input bounded-output stable (b.,i.,b.o.

stable) if, for all xo € X and for all uvniformly bounded
input m(t) defined on R+, the state function solution

. +
x(t) of (2.3-1) is uniformly bounded on R .

In addition, we shall state without proof the
following well known theorems on stability for linear

differential systems:

Lemma 2,3-13 The linear autonomous systém iﬂ=,A(t)x

is uniformly asymptotically stable 1f end only if there

exists constants “ > 0, a2> 0 such that N&(t)l| & « e—azt
" 1
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for t = 0,

Lemma 2,3-14 The linear system (2.3-1) is b.i,b.0,

.steble if and only Iif

(1) there exists a constant b, such that Ud(t)ll £ b

1 1
for t 2 0,
(11) there exists a constent b2 such that
(s, s)e(s)llas = b, for t 2 0,
)

Lemma 2,3-15 The linear system (2.3-1) 1s b.l.b.o,
stable if and oﬂiy 1f its autoﬁémbus part is uniformly

stable,

These theorems in fact tell us thet the conditions
of b.,l.,b.0., stabllity, asymptotical stability, and
uniformly asymptotlical stabllity are all equivalent
for lineer system (2.3-1). As a consequence of this
fect, 1t is now not unduly d4ifficult to prove the theorems
on uniform controllability for linear systems such

as those described by (2.3-1).

Proposition 2.3-16 Let the linear system (2.3-1) be

controllable at time To-with respect to a glven space
M of admissible controls and the pair of states (xo,O).
Then it is uniformly controllable if and only if it is
b.i.b.o, stable, | A
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Proof: Necessity is evident. For sufficlency, 1t is

known by hypothesis that there is a m(t) € M defined on

Jo = (o, T, which will transfer the system from X

to the origin at time To. We claim-that the control

ml(t) = [m(t) for t € Jo will make the system uniformly
0 for t = To

controilable. This 1s true because the,assumptioﬁ of

b.i.b.o. stabllity implies that the complimentary solution

of (2.3-1) (i.e., the solution of x = £(t)x) will be

the trivial solution for t )LTO. Therefore we have

x(t) = 0 for t > T, . Notice also that ml(t) is admissible.

This completes the proof,

Since the assumption of b.,i.,b,0, stability for
system (2.3~1) implies that its homogeneous part 1is
uniformly asymptotical stable, the requirement that
x. = 0 seems to be quite artificial., It would look

d
much natural if we could extend the above results to

cases where Xd = 0 18 not necessary. One way to accom-
plish the stated intention is the use of some well
known geometrical properties of the set L(T, M) of

attainable states, which 1is defined as follows:

Defintion 2,.3-17 For system (2,3-1) with & given

space M of admissible controls the set of attainsble

states at some time T is defined as;
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| T
L(T, M) = {6(T) ¢ X: 6(T) = IO§(T. s)C(s)m(s)ds, m € 1}
(1) the set L(T, M) is symmetric with

Lemma 2,3-18
respect to the origin and convex,

) i M)Iif T < T .
(i1) L(Tl, M) C L(fz, ) 1 fz
This lemma leads to the following results,

Proposition 2,3-19 Let the linear system (2.3~-1) be

controllable at T with respect to a given space M of
admissible controls and pair of states (xo, xd). Then

it is umiformly contreclleble if
(1) nxd - §(t)xou is a monotonically decreasing function

of t.
min e (1N

(11) de -¢(T)x Il &
o 6(T) € oL(T, M)

Proof: We must show that, by definition,
- #(t)x_ & L(T, M) for t 2 T. Since L{T, M) C L(T, M)

*a
whenever T < T, by the above lemma, it suffices to
Z T, Conditions

< min ne(T N

show that Xy~ <I>(_t)xo € L(T, M) for t
T oe(m)en (T, M)

(1) and (ii) ensure that de~§(t)xo"

for all t 2 T. Since L(T, M) is symmetric wlth respect

to the origin, thils implies that
Xq - é(t)xo'e L(T, M) L(t, M) for all t= T, which

completes the proof,

Corollary 2.,3-20 Let system (2.3-1) be controllable at
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time T with respect to given space M of admissible
controls and a pair of states (xo, xd). Let the solutions
of (2.3-1) be unifornly bounded on R+. Then systen
(2.3~1) is uniformly controlleble if
IxJi+ sup §3(t)x | £ min (D),

t=T7T ° 6(T) € 0L(T, M)
Proof: Similar to the proof of Proposition 2.,3-19, it

suffices to show that

Ixg - 8(t)x )| £ min I (T)] for all t = T.
N (T) € 9L(T, M)

- < | <
But de é(t)xou axdu + u§<t>xou <0(T? Em%E(T,M)"o(T)“

by hypothesis., This completes the proof,

It cen be shouwn that the above condition can
not be improved in general without imposing further
constraints on the behavior of the state functions

x(t) of system (2.3—lf.

Corollary 2.3-21 Let system (2.3-1) be controllable

at time T with respect to a given M and (xo, xd). Then
it is uniformly controllable for all t = T if
(1) the system 1s b.i.b.o, stable.

(11) h=gll + e« lx JI < min’ le(T)ll, where
170 o(T) € AL(Y, M)

@; 1is a constant depending on the matrix A(t).

Where condition (1) is also necessary,
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Proof: The assumption of b.1l.b,o., stability for system
(2.3-1) ensures that the solution x(t) of % = A(t)x

. has the property lIx(t)l = alMXé:e-azt, for all t z O

where ayy @, Bre positive constants depending on A(t).
Clearly, sup lI3(t)x i} & «_lUxl. This completes the proof,
t 20 (o] ’ 1 (o)

One of the common constraints which might be
imposed on the state functions of system (2.3-1) 1is
the non-oscillatory behavior. Let us introduce the

following:

Definition 2.3-22 A time function x(t) taking its

value in B" is said to non-oseillatory if it satisfies
the following conditlions:
(1) the absolute values of its component functions
lxi(t)l, 121, 2, oee, ﬁ’are monotonically
decreasing functions of time,
(1) sgn (xi(t)) = sgn (xi(O)) for all t 2 0, 1 = 1,2,40ep N
Where sgn denotes the usual sign function, i.e., for

a &R, sgn (&) = -1 if a < 0, sgn (&) =1 if a > Q.

Corollary 2.3-23 Let systemn (2.3-1) be controllable at

time T with respect to a given M and (xo, xd). Then it
is uniformly controllable for t & T if
(1) the solution of X = A(t) is non-oscillatory.

(11) Nx M 4+ WS(T)x I = min g (Tl
d o 6(T) € aL(T, M)
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When xd is not the origin, we would intuitively
expect that such departure from the origin might be
corrected by employling excessive control energy. Thils
intuition would be true at least for many linear systems,
In here, we shall say that a. linear system has sone
excessive control energy available to him when it is
controllable with respect to a subset of a given

space M of admissible controls,

PrOposition 2.3=-24 Let system (2.3-1) be controllable
at‘T with respect to a given M and (xo, xd). Then it
is uniformly controllable for t Z T if
(1) the system is Db.i.b.o. stable,

1

(11) §(t)xoe L(t, Ml) for t = T and x_ € L(T, MZ), where

a
MD M k by

A

MO M. = fm(t): lnll Sk} end k

2 2 or ® <

]

kK. & k.
g T Hy Sk

Where condition (i) is also necessary,

Proof; Let mo(t) € M be a control function which
transfer system (2.3~1) from xo to Xd at time T, Let

t
ml(t) € M. be such that - é(t)xo=fo§(t, s)C(s)ml(s)ds

1
for t 2 T, which 1s possible by hypothesis (ii). Since

L(T, MZ) C L(t, MZ) for any t 2 T and x, € L(T, MZ)’

a

we may select mz(t) & M2 such that
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X
da

!

t E
Ioﬁ(t, s)C(s)mz(s)ds for t 2 T. The control function

m(t) = [mo(t) t €J which is sdmissible
>
ml(t) + mz(t) fortz T

to M, will accomplish the goal of uniform controllablility.

Coroliary 2.3-25 Let system (2.3-1) be controllable

at time T with respect to & given M and (xo, xd){ Then
it is uniformly controllable for t i T if
(1) the system is b.,1.b,0. stable.
(11) sup Me(t)x Il = nin ho¢)Hl
t 2T © 6(T) € aL(T, M)

end Nx Il % min NO(THIU end k. + ¥, & k.
d o(r) € 3L(T, M) 1

S
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2.4 Controllability of Linear Dynemical Systems under

Additive Disturbances

The theory of controllability for disturbence
free linear dynamical systems has been extenéively studied,
Many  important known results were summerized in section 2
of this chapter. There has been also studies on control-
lability of systens other than deterministic linear
dynamic systems. For instance, there are studies on
non-linear systems by Hermes [14) and Marcus{24] and
oﬁ stochastic systems by Connérs[9]. Yet, there seems
to have very little published studies on controllaebility
on dynamlc systems which are deterministic but are under
the influence of disturbances of finlte nmagnitude not
known & priorl. Since it will become clear in the -
subsequent chapters that such problems are to play a
central role in the study on controllablility of two-
level linear dynamical systems, at least a partial

solution of the problem mentioned 1s eminent.

Let us flrst pose the problem to be studled,

Consider the linear dynamical system:

A(t)x(t) + c(t)m(t) + £(t) -~ (244-1)

X =
RS CIONNELA Orms k, t €I} x(0) & x_
X o= A(E)x(t) + C(t)m(t) (2,4-11)
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The above system 1s assumed to have the same definition

as in section 2.2.

It is lmportant at this moment to emphasize
that we consider the additive function f(t) as pertur-
bation on the disturbance-free system (2.4-1'). Con-
sequently, we shall assume in the béginning that systen
(2.4-1") possesses certain properties outlined in
previous sectlons and in turn ask what are the effects

of the function f(t) on those properties.

A very interesting question to be enswered is whe-"
ther & completely controllable disturbence free lineer
dynemical system, such &s (2.4-1), is still completely
controllable under the influence of f(t) which 1is
uniformly bounded on R. As we have mentioned earlier, (.
complete controllability is primarily a property con-
cerning the nature of systems structure. A necessary
condition for a system such as {(2.4-1') to have such
property is that the space of admissible controls be
unbounded, In other words,‘regardihg to our definition,

the space of admissible controls will have to be either

of the entire function spaces £ ord&.
2 [

In ordexr to answer thls guestion let us assume

that £(t) is elso a vector in R = X while £ : t - f(t)
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is = fuhotion in eilther one of the spaces of Le-
besque integrable functions&% or{; with corresponding ‘
norms defined by.formula (2.2-1). We shall now say that
the function f(t) is uniformly bounded whenever it is
norm-bounded . By so doning, we see that the set of
disturbance functions will have the same definition
~as the space of admissible controls, This is of course

done intentionally to simplify the problems.

Proposition 2.4~1 Let system (2.4~1') be completely

controllable at time T when the space M of admissible
controls is the whole space £é orf;. Then the system
(2.4-1) is also completely oontréllable at T when
£(t) 1s uniformly bounded.

Proof: We shall prove this proposlition via constructive

procedure. The general solution of (2.4-1) is given by

t : t
x(t) = é(t)xo + Io§(t, s)C(s)m(s)ds + Ioﬁ(t, s)f(s)ds

It is known that, fqllowing the agsumption of complete
controllabllity, for any glven paif of states (xo, xd),

there ic an admissible control function mo(t) defined

. .
on J such thet x, = §(T)xo 4+ [ 3(T, s)C(s)m (s)ds.,
) : o o
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Since f(t) is also a function 1n‘£2 or-cw, the last

T .
term xf = Io§(T,s)f(s)ds is nothing but an element in X,
Since system (2.4~1') is assumed to be completely conrol-~

lable, it 1s always possible to pick &n ml(t) defined

on'J such that - X, = f:§(T,s)C(s)ml(S)ds. In fact, the
cholice of ml(s) such that C(s)ml(s) = f(s) 8. e,, on J
will do. This is possible because C(s) is a continuous
operator by assumption., Clearly, given any (xo, xd),
the control function m(t) = mo(t) + ml(t) desiined on J,
which 1s admissible, will do the desired transfer., Thils

completes the proof.

When attention is turned onto the problem of

complete controllability of two=-level linear dynamical
systems in the later chapters, the above proposition
wlll provide a tool to solve most questlions concerning

the specific problem of complete controllability.

However, as we have mentloned, we are interested
more on the behavior of tWOulevel_linear dynamical
systems, This dictates us to adopt the point of view
that controllability be consideréﬁ?as behavioral property
for a glven dynamlcal system. Therefore, it will become
& prerequlsite to solve some of the problems on control-

lability end approximate controllability.when the
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system (2.4-1') is under additive disturbences.

Before we attempt to glve a fundamental geometrical
interpretation on controllability based on certain
topological properties of the set of attalnable state,

e few simple results can be derived from known results

on aigebraic arguments.

Let us recall that the main result derlved by
Antosieviecz (Theorem 2,2-6) states that the necessary
and sufficient conditlon for approximate controllability

% 1
for system (2,4~1) is: for every x € X

=

# % T, 2 3 '
Kzl(T). x = ellxll S k(T v(e, T AL) (2.4-2)
X .
The above condition epparently includes controllability

as & speclal case by settinge= O,

Let us assume that system (2.4~2') is ¢~ conrol-
lable with respéct to a given space M of admissible
controlé eand & pair of states (xo, xd). Let

z(T) = x, = (T)x : (2.4-3)
It follows from the above assumption and Theorem (2,2-6)
that, for ell x € X |

L
2

* % T 2
Kam), =3l = ellxll w2 xdf ' vee, mifas)”  (2u4e)

When thé additive disturbance f{(t) is no longer identically
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zero on J, we have

z (T) =x. - &(D)x - ITé(T,t)f(t)dt (2,b-5)
1 o) (o}

a

Apparently, if we can establish inequality (2.4-2)

for a class of disturbance functions subject to
inequality (2.4~4), the ¢~ controllability of system
(2.4-~1) at time T with respect to M and (xo, xd) is
immediately assured. Comparing inegqualities (2.4-2) and
(2.4~4), 1t is clear that a sufficlent condition for
(2.4-2) to be‘true subject to (2.474) is the satis-

faction of

t

. L
Kzl(T), x >l & [z (1), x*>l for p11 x € X (2.4-6)

In other words, a sufficient condition for system
(2.4-1) to remain ¢ - controllable at T with respect
to M and (xo, Xd) is the satisfaction of inequélity
(2.4-6)., Vith this oberservation, the following 1is
establishedi

Proposition 2.4-2 A necessary end sufficlent condition

for inequality (2.4~6) to hold is the simultaneous

satisfacfion of _
(1) {xy, o) > E(Tx_, o(T)¥
(11) 2Kz(1), E)x )| & Co(T), w(T))

Where o(T) = f§§(T, s)f{s)ds.
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Proof: ©Sufficiency: Let (i) and (il) be satisfied, we
shall show that \(zl(T), §(T)x6ﬂ 2 {z(T), x*>l for ell
x*'e X%. Since X 1s a reflexive space, by choosing the
ordinary Euclidean norm for X, we have X = X*. Thus,

it 1s eguivalent to show that

$z(1), ¥ - Co(T), 2 & z(T), %X for all x e X,

Let ¢=:{al, a coay an} be an orthogonal basis for

2
the state space X with a, = o(T)., Let the one dimensional
linear space spanned by 24 be denoted by S1 and the linear
space spanned by ¢ - ay be denoted by Sn-l’ It is obvious
that 5, @)Sn_l = X. If €o(T),x> = 0, which is true for

all x € S _5, inequality (2.4-6) will always hold. Thus

it suffices to show that WKz(T), x - (u(T), x| S {z(T),x)]
for all x € S,. Or, 1f we write X = ew(T), « &€ R, we

must show that 14z(T), o (TPl =~ € (T), o (TN = {z(T), o(T)P|
From (1), (ii) end the fact (s (T), w(T)> > 0 whenever

w(T) £ 0, we have

Kz(T), ol = {o(T), o(oRl = Kz(T), o(T) - 2€¢z(T), o(THI
=Wz(T), ol .

Necessity: Let ineguality (2.4-6) be given, which is

equivalent to {{z(T), o(T) - SCo(T), Q(T)>| £ 1€ 2(T), o(T)),
Suppose { z(T), «(T)» = 0, we must have {o(T), o(T)= 0,

So let us exclude this singular case., Suppose
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(z(T), o(T)> < 0. Then
(z(T), o(T) ~ €o(T), o(T) < £z(T), o(T)> < 0, By
taking absolute value, we have arrived at a contradiction.
Thus condition (1) must be true. Supﬁose
2 1Gz(1), o(TP] < <o(T), o(T)). Then
CKz(m), o1 = Ke(T), o (TN > Wz(D), o(TDH-2¢2(T), w(TH|
= {z(T), o(T)?]
which 1is a contradiction. Thus condition (11) must also

be true., This completes the proof,

Corrollary 2.4-3 Let system (2.,4-1') be &~ control-

lable at time T with respect to & given space M of ad--

missible controls and & palr of states (xo, X.)s Then

4
system (2.4-1) will be ¢ - controllable at T with respect
to M and (xo, xd) if the disturbance function f(t)

satisfies the conditions imposed by Proposition 2.4-2.

An interesting point to notice is that the vector
2z(T) should not be an element in Sl. Because if it 1is
so, we would have {«(T), «(T)) = 0. In other words,
no disturbance with non-zero amplitude ﬁight be éllowed

without affecting the property of & - controllability.

However, the usefulness of this proposition cannot
be overstated., First of all, it is at most & sufficient

condition on & - controllability for & known system,
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Secondly, 1t appears difficult to establish a broad
range of dlsturbance functlions, under whioh‘the property
of e¢-controllability for given systems 1s not affected,
by using the conditions in Proposition 2.4-2 alone.

In order to obtaln a general and unified approach to
solve thlis problem, we shall rely heavily on geometri-
cal motivation. Before doing so, let us define the

followlng:

Definition 2.4-3 Let the system (2.4—1) be given. The

space of admissible disturbance functions is the set

o— . <
Fefe(e) Men, o, 5K te¢J}

where K is a finite constant, and the norms are same

as those defined 1n.(2.2~1);

The general solution of equation (2.4-1) is

given by

' t

x(t) = §(t)xo + Ioﬁ(t, s)C(s)m(s)ds
t .
+ fo§(t, s)f(s)ds . - (244-7)
By definition, x(T) is a vector in the n-dimensional
n .

Euclidean space R = X, As we can see from (2.4-7),

x(T) is in fact the vector sum of three vectors in

state space, When a target state xd 1s defineq,
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e-controllability 1s equivalent to the statement that

the Fuclidean distance measure between x(T) and x

d
setisfles the inequallty
de - x(TH = «
or, rewrlting by using previous notations:
T v .
W v(t, Tm(t)as - z (TS« (2.4-8)
o]

Alternatively, in terms of geometry, e-controllabllity
of (2,4~1) is also equivalent to say that the set of
attainsble states L(T, M) has & non-empty intersection
with the closed ball S(zl(T), e ) with center at zl(T)
and radius ¢ in the state space X, Thus the basilc
problem ls reduced to the study of the propertles of
the set L(T, M) and its relations with S(zl(T), e )

in X,

Now, Let us use & simple sketch in the 2-dimensional

case to illustrate our notivation as in Figure 2.1.

When the e-controllability of system (2.4-1')
is assumed, it 1is clear that the sets L(T, M) and
S(z(T), ¢ ) are not disjoinﬁ. The effect of distur-
bance i1s represented as the translation of the ball
S(z(T), ¢ ) to & new position centered at'zl(T) by &

vector o(7), which is solely due to f(t). When we
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require that the system to remaln e¢-controllable under
disturbance, we must therefore find conditions whilch
would assure us that the shifed ball S(zl(T), ¢ ) has -

a non-empty intersection with L(T, M), Let us now intro-

. duce

Definition 2.4-4 Let the system (2.4~1) be given.

For each glven space F of admissible disturbance functions,

the set of perturbed states 1s the set

(T, F) = {o(T) = f":é(tr, s)f(s)ds, f € F} .

Let us also enlarge the set of attainable state

by defining a new set
L (T, M) = Ps(e(T), ¢ ), o(T) e L(m, 1)} (2.4-9)

where S(6(T), ¢) is a closed ball in X with center at
0(T) and radius ¢ « Intuiltively, by looking at the
sketch, it 1is clear that the system will remain e -con-
trollable at T whenever the vector «(T) is contained in
the shaded reglon, l.e., the intersection of the sets

L (T, M) and o(T, F). The fullfilment of this conclusion
will naturally depend on certain topologlcal properties

| of the sets L, (T, M) and (T, F) and their relative

positions to z(T).

In addition, & crucial remark to be noticed is
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that some fixed time instant T is inmplicityly assumed
throughout the whole argument. In the mean time, the
superposition principle for linear systems.has been

used forvinterpretation.

Since the assumption has been that system (2.4-1')
" 1s e~controllable at T, it wéuld be meaningless to
evaluate the effect of disturbance on ﬁhe property of
t=controllability at T for a different time instant.
Because, in general, there is no guérantee that the se%
of attalinable states will not change &t an instant

other than T. Furthermore, as part of the trajectory

of system (2.,4-1), the position of the state z(T) will
éertainly chenge with tinme, Therefore, in the formel
presentation to follow, it is to be underétood that we

are in effect dealling with & fixed time problem for

the moment.

The following lemma due to Antosiewicz[1] is

the basls for the following analysls.

Lemma 2.4-5 Let the system (2.4-1) be given. Let the

space M of admissible controlsand the space F of ad~
missible disturbance functions be also given., Then
the sets L(T, M) end (T, F) are compact convex set

~

in X,
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If we say a set S 1s symmetrlic with respect to
the origin when x € S.lmplles -x € S, then it is easy
to show that both L(T, M) and (T, F) are symmetric
with respect to the origin. We may introduce two linear

transformations as follows:

L(T) « M > L(7, M) o(T) = L(T)m (2.4-10)

]

Q(T)f (2,4-11)

I

Q(T):1 P> o(T, F) o(T)
By definitlon, the mappings are onto.

Let PL and ﬂ) denote the sizes of the sets

L(T, M) and (T, F) respectively. We define

P = sup o (TN (2.4-22)
L 6(T) € L(T, M)

P = sup Ro (TN (2.4-13)
Q o(T) € (7, F)

Let us also define & norm for the continuous

linear mappings L(T) end (T) as

L(T)

supl| L(T)ml| Hml 5 1 (2.4-14)
2 0

rOO

a(1) = suplle(mel Neh, €1 o (2.4:15)

roo

]
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Then

p = sup o)l
L o(T) € L(T, M)

sup WL(T)mil Nmd o Sk
me N 2 or

k sup WL(T)mll Umh < 1
m € M 2 Oor «

[}

XNL (TN (2.4-16)
Similarly
P, = Khe(r) . (2.4-17)

It is clear that, in general, the sizes of the sets
L(T, M) and (T, F) will not be zero when k £ 0 and
K £ 0,

hAgain, from observatlion of the sketch, there
will exist elements in F, under the influence of which,
the property of e-controllability for system (2.4-1)
may not be retalned unless
L (T, M)V (T, F) = L. (T, M), i.e., the set o(T, F)
is & subset of L_(T, M),

~ We know fronm Corollary 2.,2-7, 1f the systenm
(2.4-1) is e~controllable with respect to M, then -

there exists a least compact time interval J =[0, TOJ
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in B such that the system is ¢-controllable. Let us
call this particular time instant TO the optimal time.
For most cases to'follow, we shell designate this To

as our fixed time instant.

It is well known then, following the above
'designation, that the closed ball S(z(T), ¢ ) will barely
contact the set L(T, M), Formally, this means that the
sets S(z(T), ¢) and L(T, M) are not disjoint, and in
addition, there exlists a supporting hyperplan which
.separates the convex sets S(z(T), ¢ ) and L(T, M) at

thelr point of contact.

- Equiped with these observations and knowledge,
we have arrived at the following conclusions. For

which, we shall first introduce the definitlon:

Definition 2.4-6 ILet the space F, with K > 0, cf

admissible disturbance functions be glven. 4 dynamical

system, such as (2.4-1), is said to be ts-controllable

under disturbance with respect to gliven M and (xo, xd)

if, for every f € F, the system is e-conirollable, The

system is said to be completely controllable under

disturbance if it 1ls completely controlléble.

”JProposition 2.4-7 Let system (2.4-1') be given. Let
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the system be ¢-controllable at To with respect to
given M and (xo, xd). Then, if F is given with X > 0,
the system (2.4-1) can not be e¢~-controllable under

disturbance at T, with respect to M and (x , xd).
. o

Proof: Let K > 0, 1t suffices to show that there

exists f € F such that system (2.4-1) is not ¢ -control-
lable at time To. It can be shown that the set |

L (T, M) is also compact. Thus, z(To) will be a boundary
point of LE(TO, M). On the other hand, z(To) serves

‘as the center of the translated set

o' (T, F) ={x + z(T) : 2(T ) ¢ a(T, F)} and is thus

an interior point of Q'(To, F). Then, by definition of

en Interior polnt and a boundary polnt, there is a

e > 0 such that the e¢-neighborhood S(z(To), e) is a
proper subset of Q'(To, F) and

S(z(T ), ¢) v L (T, M) # LE(TO, M). But, since the
mapping Q(TO) is continuous, S(z(TO), ¢ ) is the range

of Q(To) corresponding to some subset of F., By definition
of ¢~controllability, it is required that il(To) be
element of LE(TO, M) corresponding to every f € F,

which is clearly impossible whenever X > 0, This completes

the proof.

Proposition 2,4-8 Let system (2.4-1') be given. Let
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the system be c~controllable at some time T £ T, with
respect to given ¥ and (xo, xd). Let z(T) be an interior
point of L _(T, M). Then thgre exists F with X > 0
depending on z(T) such that the system (2.,4-1) will be
t-controllable under disturbance at T with respect

to M and (XO’ xd)o

Proof: Followling the definlition of e-controllability,
it suffices to show that the set Q' (T, F) with center
at z(T) is a subset of L _(T, M). The size of o' (T, F)
is gilven by ﬂ) = Kne(T)it,.or X = pI{HD(T)n. By hypo-
theslis, there exists € > 0 such that the e-nelghborhood
of z(T), S(z(T), ¢), is contained in L, (T, M), Since

Q' (T, F) is campact‘and convex, &nd norm of Q(T) is

fixed, we may choose K = /N (Tl so that ' (T, F) is

contained in L (¥, M). This comletes the proof.,

Corollary 2.4-9 Tet system (2,4-1') be given. Let the

system be controllable at T  with respect to given
M end (xo xd). Then, for every & » 0, there exists
’

K > 0 such that the system (2.4-1) will be ¢-controllable

under disturbance at To with respect ﬁo M and'(xo, xd).

Proof: This 1s only a speclal case of Proposition

2.4"'8.

Using different phrasing, we have the foliowing



62

corollary which is important'to our subsequent analysis.,

Corollary 2.4-10 Let the system (2.4-1') be given. Let

the system be controllable ‘at T0 with respect to given
M and (xo, xd). Then, for & glven ¢ » 0, a sufficient
condition for system (2.4-1) to be ¢ ~controllable under
‘disturbance at T, with respect to M (xo, xd) is the

satlsfaction of the inequallty
K& & /No(T ) | (2.4-18)

One remark to be made here, the choicé of the
optimal time T_ is really not important, The crucial
point is that we have chosen & control function such
that z(T) is a boundary polnt of L,(T, M). The choice

of optimal time simply enhances this requirement,

The above condition in Corollary 2.,4-10 is apparently
too restrictive sihce-inequality (2.4=18) imposes a
uniform bound on the disturbance function f(t) over
J0 where the sketch depicts only the instanfaneous
situation of system behavior at To' With this under-
standing, we have derived the followling result, which

is in essence equivalent to Proposition 2.2-8.

Proposition 2,4-11 Let the system (2.4-1') be given,

Let the system be controllable at To with respect to
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given M and (xo, xd). Then, for a given ¢ » 0, a
necessary and sufficlent condition for the system
(2.,4-1) to be e-~controllable under disturbance at To\

with respect to M and (xo, x.) is the satisfaction of

d
the inequality

o £ ‘¢ . ) (201‘1""19)
where ¢ is gilven in formula (2,2-10).

Proof: Sufficlency is & direct consegquence of the
definition of e-controllability under disturbance and
the hypothesis. For necessity, let ¢ 2 ¢ and assuﬁe
(2.,4~1) be e~controllable under disturbance at To' we
must show a contradiction. Since both sets LE(TO, M)

and QT are convex and compact, ¢ 2 ¢ implies thet
o

there exists z1(T,) & L (T_, M), This obvious contra-
dicts the requirement of ¢ -controllability. The proof

i1s completed,

Following the above development, an observatlion
is to be nade here. It 1is cléar from the sketch that,
when the system (2.4-1') is controllable at some T
with respect to given M and (xo, xd), then systen

(Zoh-l)vwill be e-controllable under disturbance for -



' 64

given ¢ > 0 at T when appropriate choice of F is made.

We notice also tﬁe some of the disturbance functions in

F may even improve the system performance, 1f we mean by

" improvement that zl(T) is shifted to become an interior
point of L _(T, M) owing to effect of disturbance. However,
in ordex to know:which disturbance functlon would produce
such 1mpr6visation, we nmust know more aboup the character-
istics of both 2 (T) and £(t). It will become clear from
our subsequent considerations that we may not be willing
or able to impose such specific constraints on f(t)

other than the bounds on amplitude as depicted by the
definition of F, Based on thls conslderation, the

above propositlions appesr to be eminent,

Nevertheless, the uniform bound imposed on f(t)
appears definitely too stringent in many ceses when
the present study is transformed into the coantext of
studing two-level linear dynamical systems. In order to
alleviate some of the restrictlions, we will have to
impose other kinds of constraints on the disturbance

£f(t), which must in itself not be unrealistic,

Let x(t) be the general solution of systenm
(24-1), Let xc(t) denotes the complimentary function

of (2,4~1), i.,e.,, the solution of its homogenous part
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X = A(t)x.‘Let xp(t) denotes the partiCuiar.solution of
(2.4-1), which results from the forcing function
c(t)m(t) + £(t). It is well known thet xc(t) - 0 as
t = = when systé@ (2,4-1) is b.i.b.o. stable. Therefore,
if we could find m(t) and f(t) such that xp(t)-a 0 as
t = © to combine with the concept of uniform control-
lability, it might be possiblec to say some thing about
controllablility under disturbance and strenghthen the
previous results, First of all, let us introduce the

fellowing defintion.

Definition 2.4-12 A vectorial function f(t) is said

to have the exponentlal-asymptoticelly stable property

1f there exists positive constants a a,. such that

1 2
-2

le

zt

He(t )l = & for all t = 0O,

Proposition 2.4~13 Let us consider 2 b,i.b.o., stable
system X = A(t)x + £(t). The trivial solution of the
system is uniformly asymptotically stable if f(t) is

exponentlial-asymptotically stable,

Proof: By means of the principle of superposition, it
suffices to show that xp(t)-ﬂ 0, which results from
f(t) only, as t - «, Let

-2t .
He(e < e e 2" for t Z 0. It is known that
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t -1
x (t) =1 &1, s)r(s)ds, where ¥(t, s) = U(t)U (s)
p o '
end U(t) is the fundamental matrix of X = A(t)X.

Uniform asymptotical stability of the system implies

that there exlst pogsitlive constants al' az such that

~a_t
Na(t, o)l= NU(t)) S« e 2 for tZ 0, while
S |
o ()l € ale . There, xp(t) = U(t)IoU (s)f(s)ds

-azt t azs -2 8
end Ix (L)1 % o e [ (ee® )ae 2 )as
P 1 o 1 1

-t ¢ -(az—a )s

= (alalta)e 2 I e 2 ds. Suppose a2 = a,,
it is obvious that xp(t)-ﬁ 0 as t > °,
1 -(a2 - az)t
Otherwise, Hx (t)ll € (2 « @ )(1 = —— e Y,
. p 11 az - e,

Clearly, x (t) > 0 as t -» «, This completes the proof,

As a consequence of thils proposition we have

derived the followling intersting result.

Proposition 2.4-14 ILet system (2.4-1") be controllable

at some time T with respect to given M and (x , 0).
°

then, given ¢ > 0, the system (2.4-1) will be

t-controllable under disturbance ot some time t » T

with respect to M and (x,, 0) if
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(1) F is the set of exponential-asymptotical stable
functions,

(i1) the system is b.i.,b.o. stable.

Proof: Since the deslired state is the origlin, we

mﬁst show that there exlsts a contfol function

m(t) € M corresponding to which Nx(t)il £ ¢ for some

t =2 T, Condition (ii) and Proposition 2.3-16 assure

that system (2.4-1') is uniformly controllable, In other
words there exists mo(t) in M such that the solution
xf(f) of (2.4-1') satisfiles xf(t) = 0 for all t 2 T,

Let us pick m(t) = mo(t), it suffices to show that

Nx(t) - xf(t)N= UIZé(t, s)f(s)dsll € ¢ for some t 2 T,
But the conclusion is assured by condition (i), (ii) -

end Propostion 2.4-13. This completes the proof.

We notice here that a very stringent requirement,
which exists in previous analysls of e-controllability
under disturbance for system (2.4-1) has been removed.
Namely, the disturbance function in F must be uniformly
bounded by a specific bound. Instead, the set of ad~
missible disturbances functions now read as a set of
functibns defined on B% which have the ekponential-
asymptotlical stable property. Although the new con-.
straint still requires that the admissible disturbance

functions be uniformly bounded, at least a specific
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bound need not be specified a priori in order to fulfill
the cbnditions for ¢~controllability dictated in previous
proposition, It will become more evident later that the
new constraint can often be met in practical consider-

ations for two-~level linear dynemlcal systems.

Agein, we notice that the requirement Xg = 0
is quite artificial and should be removed., In fact,
the following result established a general condition

we shall need for our subsequent analysis,

Proposition 2,4-15 Let system (2.4-1') be uniformly

controllable for t Z T with respect to a given M and
(xo, xd), Then, given ¢ > 0, the system (2.4-1) will
be ¢ ~controllable under disturbance at some time

t > T with respect to M and (x_, x ) if the set F is

the set of exponential-esymptotical stable functions.,

Proof: Let x(t) be the solution of (2.4-1), We must
show that there 1is & control function m(t) ¢ M such
that l|x(t) - xdu € ¢ for some time t, Since
the system is aésumed to be uniformly controllable,
there must exist m (t) € M such that the solution

xo(t) of (2.4-1") satisfies x.(t) = x, for all t z T,

da

t .
Let m(t)=fo &(t, s)f(s)ds then it suffices to show that,
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after picking m(t) = mo(t) as the control function for
(2,4-1), | x(t) - xf(t)H = Jw(t)] £ € for some t = T,
and all f(t) € F. Since uniform controllability implies
that (2.4~i) is b.l.b.0. stable, Proposition 2.4~13
essures that the required conclusion is true, 1l.e.,
flw(t)l € € for some t = T and all f(t) € F. This completes
the proof. .

There is another problem of substantlal importance.
That 1is, could the effects of additive disturbances be off-
set by excessive control energy? The enswer is affirmative
et least fér linear systems, as disclosed by the following

proposition,

Propostion 2.4-16 Let the system (2.4-1') be controllable

et time T with respect to given M and (xo, xd). Then system
(2.,4-1) will be controllable under disturbance at T with
respect to an enlarged space of admlsslible controls

«k', t € J} if the space F of admissi-

(o]

v - .
M = {m(t) : Wmi, o,
ble disturbance functions is defined as in Definition 2,4-3
and if v(k' - K) £ K, where y= iugHC(t)H.
: €

Proof: Let us consider only the case &2, the case of £
can be easlily eitended; It sufflices to show that

Foue=1ctn(t) 5 leml, s vk - k), -t €J},
while m(t) € M' = {m(t) : Imi, = k' -k, t € J}.



70

- T
Because, corresponding to each o(T) = foé(T, s)f(s)ds
with f(t) € F, there exists mM(t) € M' such that
T | o
- o(T) = foé(T, s)C(s)m(s)ds when the above is true,
2

T 2 T 2 2T 2
I lc(s)m(t)l ds € Iollc(t)u Ho(t))l dt &7 .[oum(t)ll dt
(o}

2 2 :
€ v (k' - k) o Since K 2 v (k' - k) by essumption,

this implies F C MC. This completes the proof,

In effect, this proposition tells us that out-
slde dlsturbances can countefacted by the use of
additional effort in the case of a linear system, Never-
theless, a strong condition is imposed on the nature of
disturbance, namely the disturbances must at least be
measurable in the Lebesque sense. For the study on
two~level linear dynamical systems to follow 1nAthe
next chapeters, we shall see that this requirement

will invariably be satisfiled.



CHAPPTER III

THE CASE WHEN NO DIRECT INTERACTION BETWEEN INFIMALS PRESENTS

" 3.1 Introduction

In this report, only qualitative property of multi-
level system will be concerned. In order to carry out such
study 1t 1s necessary that a definite mathematibal model be
formulated as the basls of study. Ih section 3.2, the com-

pletion of this task will be the main objective,

Controllablility of a dynamical system has been
viewed elther as a structural or behavioral property.
Since we shall take the later viewpoint in this report,
mainly section 3.3 is used to discuss the problem of
complete controllability, which 1s & structural property,

to complete the dliscussion.

In section 3.4, two references of coordination will
be developed. For later analysls, these two references will

be the principal guideline.

In sections 3.5 end 3.6, the coordination problems
of two-level system, which was defined in sebtion 3.2 will

be studled for the case when no difection interaction

7
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between the infimals presents. .

In section 3.7, the concept of redundant control
energy will be explofed to improve those results obtained

in sections 3.5 and 3.6.

3.2 Statement of Problem and Formulation of Two~level

linear Dynemlical systenm

As we have said in Chapter I, the two-level 1;near
dynemical system to be studled in this thesis is, in
general, a multi—level gsystem. The fundamental charater-
istics that distingﬁish a multl-level system from a
system of usual understanding are interaction, inter-
vention, and internal uncertainty. A mathematical
formulation, or rather an indealized representation of
actual situation, of such systems must preserve and |

ldentify these characterlstics,

Before we attempt to formulate the mathematical
structure of the two-level linear dynamlcal system to
be studied, we shall give in the following a few informal
definitions which would help to clarify the meaning of

our subsegquent analysis.,

Definition 3.2-1 A goal-seeking system is a general
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systemf25] having the following attributes:

(1) A system x = ¢(n, ), where x, m, and f are state
function, control function, and disturbance function
respectively, and ¢ is mapping of the lmput space
M x F into the state space X, where x, m, and f are
elements of X, M, and F respectively.

(11) A set G of objectives or goals,

(111) A set ¥ of admissible alternative actions..

(iv) A set F of uncertainties,

As we have mentioned earlier in this thesié, the
linear dynamlical system to be considered is sinply under-
stood as mathematical system describalbe by a set of
ordinary linear differential equations (2.2-1), When
controllability requlirement is imposed, the system
(2,2-1) becomes naturally a goal-seecking system as the
attributes are indentified as follows: (1) system:
equation (2.2-1); (ii) Goal: controllability with

respect to M and (xo, x.); (11i) Alternetive actions:

d
the space M of admissible controls; (iv) Uncertainties:

the set F of admissible disturbarce functions.

In thlis thesls, we take the point of view that a
malti-level system is & collection of interacting goal-
seeking subsystems., Since the problem under consider-

ation will be restricted to a class of systems with
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assumed mathematical structure, no formal definition on
the notion of subsystem is attempted. But a schematic
diagram showing the general structure of the system to
be studied would help us to have some insight to the

problem being studled.

The system G 1s assumed to be a goal seeking
system, which 1s composed of & collection of interacting
smaller goal-seeking systems Gij’ or subsystems, The
systems Gij are smaller only in the sense that they
ére part of the over-2l1l system G, In the above diagremn,

each block is thus assumed to represent one of the smaller
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goal-seeking systems where the two-wey arrows indicate
that the units are interacting with each other, Based on
thils structure, we may have the following 1nformal-

definitions.,

Definition 3.2~2 A Multi~level goal-~seeking system G is

a gbal-sgeking éystem such that 1t is composed of a
collection of interacting goal-seeking systens
Gy 40 1 =1, 2 eeey, 1, §= 14, 2, veny T while the
declsions made by the goal-seeking subsystem Gij
directly affect and are binding on the activity of
subsystems Glj’ where 1 > 1, but the decisions made by
G1J influence the activity of G1J only indirectly via
the over-all goal of the system G. The subscripts i
distingﬁish the subsystems to be sltuated on a different

level 1.

Definition 3.2-3 Let us conslder a two-level goal~

seeking system G (1 =1, 2) in which j = 1 vhen 1 = 1,
J=1, 2, ¢se, P when 1 = 2, Subsystenm Gll wlll be called
the supremal and subsystems sz, J =131, 2, ecey Py, will

be called infimal,

Following this definition, the supremal will
.clearly have priority of actlion over the infimals.,

Besides the duty of satisfying its own goal, the supremal
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must also overlook the activities of the infimals in
order to satisfy the over-all goal of G. VWe may call
thls kind of supervising the control problem of the

supremal,

Definition 3.2-4 ILet us consider the two-level goal-

seeking system defined in Definition 3.2-3. The control

problem of the supremal 1s called coordination. The

coordinative actions to be performed by the supremal

are called intervention.

There are several forms of intervention a supremal
could use, namely: (1) Goal intervention, in which the
supremal affects the goal or objective which is the
basis for the decision of the infimal, (ii) Imege
intervention, in which the supremal modifies the model
of the system which the infimal uses., (iii) Constraints
intervention, in which the supremal restricts the domain
on the control action of the infimels. (iv) Interaction
intervention, in tthich the supremal controls the

communication channels between the infimals.

As we have_said, we are interested in knowing some
qualitative properties of a two-level goal-seeking systemn,
to be exact the property of controllability of such

system, It is therefore necessary that & definite
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mathematical model of the systembespecified. This we
shall do as follows:

The supremal:
= A(t)x(t) + C(t)m(t) + iBi(t)xi(t) (3.2~1)
- < €
Mo={u(t): fmi, <k t¢J}
The infimals:

%= A (0)x (8) + C (6)m (6) 4 5, Dyy(00%(8)
(3.2-2)

My ={m(t): "mﬂlz op oo 5 E g

t € Ji}
where each differential equation system is assumed to
have the general definition as system (2.2-1); and
Bi(t?' Dij(t) are matrices of continuous functions,

To be noted here, the subscript 1 denotes individual
sﬁbsystems and should not be confused with the com~
ponents of the supremal., We shall write for componcnts
of eech items as x = (xl, X
A(t) = (ay,(t) 2,(t) = (a
Dij(t) = (a

X X s X == X X o8 gX
2! 1 n) 1 ( 31 %120 5 1n1)5

(L)), Jyk =1, 2, ocsey n,
ijkl 1’1 = 1 2, LERN) njo

The term iBi(t)xi(t) in (3.2-1) will reflect the

13k
(L)) kK = 1, 2, eee, 1

interaction between the supremal and the infimals while

- the term (t)x (t) in (3.2-2) represents the

j £ 1 1)

communicatlion among the infimals, It is also clear that,
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if we consider the terms 3B (t)x (t) and 2 D (t)x (t)
“ R 34118 )

as additive disturbances imposed on each respective

system, the study of controllability problems will utilize

very heavily the results obtained in the previous chapter.

‘w1thin the framework of the above mathematical

| description, it is clear tﬁat the system (3.2=1)-(3.2-2)

s a collection of interacting goai-seeking subsystens,
which ha&e the attributes: systems (3.2-1) or (3.2-2),
sets. of alternative actions M or Mi, sets of'ﬁncértainties
F (represented by iBi(t)xi(t))or Fi (represented by

D t)x t end t f !
ij( ) 1J( )), end sets of goals Gl or G2_ which

JA1 J

are to be defined,.

Definition 3.2-5 The system (3.2-1)(3.2-2) is called @

two-level linear dynamical system in the sense that the

- supremal end infimals are all described by linear

differential equation systems,

Definition 3.2-6 “he over-all goal of the two-level

linear dynamical system (3.2-1)(3.2-2) is defined to
be the e-controllability with &€= 0 = of  the supremal
(3.2-1), i.e., given M and (Xo, xd) there exists m ¢ M

such that the solution x(t, X, (£)) of (3.2-1) at some
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T < o« satisfles the inequality I x(T, Xi) - xdu < e,

One crucilal observation to mentioned is: why do we

] Z 1Dij(t)xj(t) es

uncertaintles when they are genearated by deterministic
systems? As we have repeatedly sald, each infimal is
considered as a goal-seceking subsystem. Therefore, when
the space Mi
each infimal will behave like an independent goal-seeking
system, 1l.e.,, they will choose thelr oﬁn course of actlion
within th bound of lmposed constraint. Consequently, the
solution xi(t) of (3.2-2) &s a function of miE Mi will
vary in a certain range. This kind of varistion will

usually‘not known to the .supremal a priori. Since

solution x(t) of (3.2-1) is clearly a function of the

_solutions xi(t) of (3.2-2), and thus also denoted by

x(f, xi), the supremal is then forced to consider the
functions xi(t) as uncertainties, This kind of uncer-

tainty has been called internal uncertainty[34] which

‘is inherent to any true multi-level system, For the

present study, one way to cope wlith the problem of
internal unbertainty ls to lmpose bounds on the functions
xi(t) or to require certain characteristics be satisfied

by xi(t). The purpose of coordination to be perfofmed

of admissible controls and the goal is defined,
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by the supremal 1s exactly to carry out this kind

of regulatlion,

In the present study, we shall restrict the

coordinative actions to have the following forms:
(1) Goal intervention: by setting the desired
stetes x, . for each infimal,
(11) Imege intervention: by requiring the iﬁfimals
to possess certain propertlies, such as stability,
(111) Constraints intervention: by specifying the
spaces Mi of admlissible controls and initial
states xio'

(iv) Interaction intervention: by imposing res-

trictions on the matrices Di.(t)..
J

Definition 3.2~7 It is required that the coordinative

actions performed by suprem@l be representable by constants
or in simple terms. Thesecoordinative a&ctions will be

called parametric coordination,

The advantéges of employing parametric coordination are
two fold: (1) the coordinative actiéns can be clearly
specified, and (ii) when interventions have been imposed,
the infimals and supremal can then operate as lsolated
goal-seeking system Without Worrying about deteriorating

over~all performance of system (3.2-1)(3.2-2).
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Equiped with the above definitions we may attempt

to give the following statement.

Statement of Problem: It 1s required to know whether and

how the suprémal (3.,2~1) could use parametric coordin-
~ation to regulate the behaviors of the infimals (3.2-2)
so ﬁhat the over-all goal of the two-~level linear
dynamical system (3,2-1)(3.2-2), as defined by Definition

3.2=-6, can be attained.

3.3 The Problem of Complete Controllability

When looking af the schématic representation of the
two-level linear dynemical system we had in last section,
one is inclined to compare it with linear composity systems,
The ﬁroblem of complete controllabllity of composite
systems was first considered by Gilbert(12] and quite
recently by Chen and Desoer(7 ] . The composite systems
studied by Gilbert have in general the following

schematlic representatlons:
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mn=m Xa=m X=X
serles
my X2
. Sl >
m b's
e S s
S W2 X2
parallel
2 m x
1.
Sy
Xz .
2 ‘m2=x2
closed

Figure 3,2
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In the diagrams, S1 and S2 were assumed to be linear
transformation. We also notice in each of the three
representations that there is only oneinput m and one
output x of interests, which are both véctors of course.,
But, at least in principle, these composite systems

can be reduced to a single system of the following

representation

Figure 3.3

The prdblem of complete controllability for system
S(Sl, 82) was then studied when certain properties of
: subsysﬁems Sl’ 82 were assumed to be known. However,

no control problem was associated with each subsystens,

As we have mentloned, controllability of a
dynamical systems can elther be cdnsidered as a
structural property or a behevioral property of the

system, In the previous study of composite systems,
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clearly 1t was concelved as structural. However, it would
not be so fruitful if it be so considered in the present
study of two-level linear dynamicel systems., The primery
rationale.for this differentiation is that the problem

of controllability for our présent system will be considered
from a viewpoint of decislon-making,., By assoclating with
each infimal & decislon-making problem, the structural
interactlion among the subsystems of two-level éystem
becomes less rigld than those of the composite systems.
Consequently, the problém of complete controllability

for the two-level linear dynamicel system (3.2-1)(3.2-2)

wlll not be so important and interesting in itself,

In this section, we shall only consider the case
when Dij(ﬁ) = 0 forall t 2 0 and all i, j. We shall
also need some known preliminary results in order to
prove & final result on complete comtrollability for

system (3.2-1)(3.2-2), Let us consider the linear system -

x = A(t)x(t) + £(t) B . (3.3-1)

where it has the usual definition as system (2,2-1),

is glven

The general solution of (3.351) with x(0) = Xq

by

x(t) = &(t)x  + Izé(t, s)f(s)ds | T (3.3-2)
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At any finite time instant T, we have

t
x(T) = E(T)Xo + fo§(T, s)f(s)ds
=TIx <+ Q(T)f
o
_ where T: X - §(T)x0
T
and a(T): £ - o(T) = fo"_ﬁ(‘I‘, s)f(s)ds

are completely continuous linear operators. Therefore

there exist constants Kl’ K, depending only on I andln(T)

2
such that the following are true:

Nrx W= K, iix
e (T)f) £ Kzllfll
In oth€ér words, we.must have
hxh = K=l + Kéﬂfn‘ for 0 £ t & 7T (3.3-3)

Usiﬁg this fact, it is possible to prove the following

propogition,

Proposition 3.3~1 Let us conslider the two-level linear

dynazmical system (3.2—1)(3-2—2)9 Let Dij(t) = 0 for all

t = 0. Let the supremal (3.2-1), with B, (t) = 0, for
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t z 0 and all i, be completeiy controllablec at some time
T when the space M of admissible controls is the entire
£ ord space. Then the two-level linear system is
cimpletzly controllable at T,

Proof: As a consequence of Proposition 2.,4-1, it

suffices to show that the function EBi(t)xi(t) is
: i

uniformly bounded on J. But this required fact l1ls guaran~
teed by the above observation (3.3-3) since the matrices
Bi(t) are 2lso assumed to be continuous. Thls completes

the proof.

As pointed out by Kalmanl(19], & general 1ineaf
dynamical system cen be decomposed algebraically into
four parts which a2re completely controllable and com-
pletely observeble, completely controllable but unobserv-
able, vncontrollable but completely observable, and
uncontrollable and unobservable, respectively. In order

to avoid any unnecessary pltfall, we shall assume from
now on that all subsystems in the two-level systen
(3.2-1)(3.2~2) are completely controllabe when
By(t) = Dy ,(t) = 0 for all t & 0 and a1l 1, i
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3.4 The Fundmental Inequalities

The basic aséumption that the supremal is control-
lable at the optimal time To with respect to a given
space of admissible controls has greatly reduce the

mathematical difficulties in dealing with problems
| associated with the assumed two-level linear dynamical
system, because we are now in a position to solve the
problems by considering only the relationships between
the system matrix A(t) of the supremal and the distur-
banées functions which are in fact generated by the
infimals, Since we are in éssencé considering a linear
problem for which the principle of superposition prevails,
we notice that the assumptlon of a fixed time, at Tb
in particular, does not reduce the significance of the
results obtained vreviously and those to follow. Beceuse,
as we have observed in section 2.4, only the topologicél
properties of the sets L(T, M), (T, F), and z(T) and
thelr relative position in the state space are'important,
which, in the case of linear system, can certainly be

ad justed by the use of the principle of superposition.

Corollary 2.4-10 and Proposition 2,4-11 give us
two basic conditions which can be applied to the study

of controllability of the assumed two-level lineer
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dynamical system. From the véry beginning of this thesis
we have emphsized tne viewpolnt that each infimal shall
operate as 1independent goal-seeking system after appro-
priate constraints are beilng imposed by the supremsl.
Attending to this guldeline, we must reduce the in-
equalities given by Corollary 2.4-10 and Proposition
2.,4~11 to a form suitable for the implementation of

parametrlic coordination.

Let us wrlite down again the mathematical model
of the two-level linear dynamical system.

The supremal:

¥ = A(t)x(t) 4+ c(t)m(t) +‘§Bi(t)xi(t) (3.4-1)
X = A(t)x(t) 4 C(t)m(t) (3.4-1")
x(0) = X o M ={Hﬂt)‘ Il T\l B teJ}

2 or

The infimals:

X = A, (8)x, (8) + Ci(t)ml(t) L =1, 2, eees P
(3.“’"2)

x, (0) = %, , M, = {my(t): |lmiH2 op o £k, t €J}

We shall understend that the subsystems sre of appro-

- priate dimensions n, nq, Nyyeesy 0, and have the usual
_ Y
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definition as system (2,2-1). For any chosen admissible
control functions, the general solutions for the sube-

systems are respectively:

x(t) = §(t)xo +—ft§(t; s)C(s)n(s)ds + Eft§(t,s)B (s)x, (s)ds
. o i 0 i i

(3.4-3)
and
g (t)x, + 1 ety
xi(t) = i(t X0 + 0§1(t, S)Ci(s)mi(S)dS | }(3« -4 )
Let us define
f£(t) =3B, (t)x, (t) (3.4-5)
11
Then, the norm of f(t) will setisfy the following:
"f(tﬂlﬁﬂi'Bi(t)xi(t)M
S 5B, (B)hx () for all t Z O
P! 1

Here.l\Bi(t)H is the Euclidean matrix norm of the matrix
1.

: - % N3
) Bi(t) end B, (t)ll = (tr Bi(t)B i(t)) e § i(bij& at each

time instant t. Since Bi(t) are assumed’ to be known
matrices, the norms are uniformly bounded for all t

and we meay define the followling constants:

,Bi = tS'lelpJ"Bi(t)“, i =.1, 2, seey P (3'“"‘6)

Followirg this definition, we have
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Ne(e)l = zﬁillx ()M t €J (34~7)
1 i

With this knowledge, we have

PropdsitionAj.u-l ~Let the supremal (3.4-1') be control-

lable at the optimal time T with respect to given M
o)
end (x , Xd). Then, given ¢ > 0, the supremal (3.,4-1)
o
will be e~controllable at 'I‘o with respect to M and -

(xo, xd) if the following 1s true:

;Iﬁillxi(t)ll & e/llﬂ(To)ll. teJ | (3.4-8)

Proof:s This proposition is a direct consequence of

Corollary 2,4-10 end formula (3.4-7),

On the other hand, we mey use the inequality
provided by Proposition 2:4-11 to derive another criterion

of éignifioant importance to the subseguent development.,

By incorporafing the definition of f(t) as in
(3.4~5) and the set (T, F) of perturbed states as in

Definition 2.4-4, we have

' ‘T » -
(T, F) ={e(P): o(T) = ilogT’ s)bi(s)xi(s)ds}

(3 04“9)

Then, proposition 2.4-~11 depicts that the following

inequality is a sufficlent condition.to achieve the
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.over-all goal:
Ho (T} = ¢ for all o(T) € (T, F)
Again the norm of «(T) will satisfy
T
Ho (7)) = SN[ E(T, s)B (s)x, (s)dsl|
1 © 1 1
Let us denote
. T .
wi(T) = IoigTr s)B, (s)x, (s)as (3.4-10)
Then
o (TN £ znwi(T)N
i
Therefore, we have the following proposition which
provides another fundamental inequality.

Proposition 3.4-2 Let the sumpremsl (3.4-1') be control-

lable at the optimal time To wlth respect to given M
and (xo, xd). Then, gilven ¢ > 0, the supremal (3.4~1)
wlll be e—~controllable at To with respect to M and

(xo, xd) if the following is true:
S{le (T )| s ¢ (3.4-11)
3 1 o

Inequality (3.4-11) will provide an importent clue

. for coordination. Nevertheless, this condition alone does

not provide us a powerful tool to achieve fruitful

—
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analysis, because it only stipulates an instantaneous
situation at T_. Unless the properties of &(t), Bi(t),
and Xi(t) and their combined effect as represented by
wi(t) are fully known and completely adjustable, it

is almost an impossible task to guarantee the satis-
faction of this inequality at that particular time
instant To. Undoubtedly, this is beyond the scope'of
parametric coordination which we intend to use exclu-
sively in the present study. Consequently; certaln
compromises must be made in order to solve the problem.,
By reviewing the results obtained in section 2.4, we
see that Propositions 2.4-14 and 2.,4-15 do provide us

with the necessary tool.

The guldelines of coordination provided by in-
equalities (3.4-8) and (3.4-11) are undoubtedly too
restrictive to achleve the over-all goal intended. The
reéson lies of course on the use of norm which simply
supresses certain nice properties of the time functions
x, (t), Bi(t), or mi(t) that might be used to improve the
sufficiency conditions. Nevertheless, these guldelines
are not 1ikély to be improvable in genéral because of the.
viewpolnt we have taken in treating the functions xi(t)
as internal uncertainties, In which case the bounds or

certain simple characteristics set on th state functions
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x (t) seem to be the only reasonable constraints.
i .

Nevertheless, by summerizing the results in this
section end previous observation, & few conclusions
could still emergé. That is; there are several schemes
of coordination the supremal could use to regulate thé
system behavior and to achleve the over-all goal, The
following cases will be investigated in the subseguent
sections. |

(1) The supremal may use constrains intervention to
set for each infimal the space Xio of admissible initial
states and the space Mi of admisslible controls so that
inequality (3.4~8) might be satisfied.

(11) The supremal mey use goal intervention to set
the target_set for eaqh infimal, constraints inter-
ventions as in (1), end image intervention so that
inequality (3.4-11) might be satisfied.
| (111) The employment of redundant control energy

to improve the results obtained in (i) and (ii).

Since the interaction among infimals is assumed
to be completely supressed in the study of this chapter,
the use of interaction intervention will be discussed

In the next chapter.
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3.5 Coordination by Use of Image and Constraints

Interventlions

Let us write dowm again the two-level liner
dynamical system to be considered in this section,

The suprenzal

% = A6)x(6) + O(edn() + 33, (b)x, (5) (3.5-1)

x(0) =x, M ={m(t): ‘H£H =k, t € J}
o 2. or »

X = A(t)x(t) + C(t)m(t) (3.5-1")

The infimals

%, = Ai(t)xi(t) £ 0 (6dm(8) =1, 2, ., p
(305"2)
x, (0) = Xior My o= imi(t)x nmin2 op o kyy to¢ Ji}

 Let us assume that the unperturbed supremal
(3.5~1') is controllable at time T with respect to
M and (%o Xd)' The problem to be solved is then: how
the supremal can use interventions to coordinate the
activities of the infimals so that the supremal (3,5-1)
itself can remain controllable or e&-~controllable under

the influence of the state functions x (t).
i
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In last section, one of the fundamental inequalities

developed was

ziﬁillxi(t)ll % e/f‘ﬂ(rro)u for t € J_ (3.4-8)

We shall use this inequality as a basis to develop some
schemes of coordination which the supremal may use in

order to regulate the activities of the infimals.’

It is guite obvious that 1hequa1ity (3.4~8) is

a more restrictive version of the following inequality,
whilch also serves as a sufflclent condition for the
steted problem: |

i«"Bi(t)xi(t)ll s &/la(r ) . for t € J - (3.5-3)
Suppose that the Weighting matrices Bi(t) can be designed
as désired, inequality (3.5~3) can always be satisfied
no matter what the state functions xi(t) are. For
instance, the weighting matrices Bi(t) might be the

representation of a saturetion mechanism such that
£ o € J
"Bi(t)xi(t)" “ for t o

Then, let the saturation mechanlism be so'designed that

e, S €/2(T )|, the achlevement of over-all goal for
i , '

system (3.5-1)(3.5-2) will be accomplished. Or, if the
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state functions xi(t) are uniformly bounded over rT and
Bi(t).are time-varying, there always exists & set of

By (t) such that the above inequality will be satisflied,
However, if we consider Bi(t) to bear certain physical
meaning which is usually the case in the real world,
then we do not have the liberty of arbitrarily designing
Bi(t)' Thus, we shall assume in this sectlon and those
to follow that matrices Bi(t) sre fixed on B'. In order
to achieve the over-all goal, the supremal must then
use interventions to restrict the amplitude of the state

functions xi(t).

The fact that the state functions xi(t) will be
bounded-onlany finite time interval was clearly es-
tablished in section 3.3, However, the above obser-
vation is usuvally too crude to be useful. Let us take
& look of the fundamental lemme on differential in-

equality.

Lemma 3,5-1[13] Let x(t) defined on R™ be & solution of

% = A(t)x(t) + £(t)., Then
Hx(t)ll = f"xoﬂ + ftﬂf(s)Hds} expftHA(s)Hds
© o

Applying this lemma to the solution of any infimal
(3.5-2) we have



t :
x, (£ 2 Tz, B+ [ Nc, (s)m, (s)las} eprEHAi(S)Nds

If we let
@« = sup “Ai(t)ﬂ
it € Jg
y = sup NCi(t)H
1t €J,
Clearly,
x (B = {lix + YK T} exp(e,T) fort €& J
“ i { 1;' i1 ;} p io o

(3 .5-1;.)

Thus, 1f we select x ’ ki' ai such that the right-

io’ 'Yi

hand side of (3.5-4%) is less than some constant &,, this

i
would establish a sufficient condition for &-control-
lability of the supremal (3.5-1). However, since in-
equality (3.5-4) is exponentially growing as & function
of To, the bounds established is again too restrictive;
The reason for this inconvenlience 1ls that no restriction
has been 1mpo§ed on system structures of the infimals,

In other words,more refined inequallty might be obtained ‘
when the infimals are required fo poOSSEess certain pro-

perties, which constitutes the employment of image

intervention.

Let us consider the case when the infimals are
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required to be bounded-input bounded-output stable,
Lemma 2.3-14 assures that the following property holds

for each infimal:

"@i(t)n £ b,y for 211 t z O (3.5-5)
t

I 12 (¢, s)ci(s)uds $b for all t 2 0 (3.5-6)
o i iz _

where bil’ b are positive constants. Consequently,

i2
we have

t
=, (611 < Hﬁi(t)“ﬂxigl-* IOH§i(t,S)Ci(S)Hﬁmi(S)Hds

L
£ llx, N+ kb, (3.5-7)

Thus, ;f the constants bil’ X500 ki' b12 can be so

chosen that the right-hand side of (3.5~7) is less than
some constant ai, this will establish a sufficient
condition for the s~controllablility of the supremal,
il.e,, the achievement of the over-all goal, We may
summerize the above analysis to give the following

proposition.

Proposition 3.5-2 Let the supremal (3.5-1') be controllable

at time T, with respect to (xo, xd)'and o given M. Then,

for some given € > 0, the supremel (3,5-1) will be
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e-controllable at time To with respect to M and (xo,-xd)

if |

(1) the infimals are b.i.b,o. stable,

(11) iixi(bilnxiou + kb o) s &/ha(r )l (3.5-8)
Based on thls theorm, & scheme of cdordination,

which reduces the two-level linear dynamical system into

a group of independently operating subsystems, can be

- divised., It should be pointed out, however, that

inequality (3.5-8) may not be satisfied for a glven

€ > 0 when the infimals have fixed systems structure

and must start from some fixed initial states, In this

case, the supremal cen only use the allocation of

control energy represented by the spaces of admissible

oontrois as & means of intervention. For conveniencé,

let us gilve

Definition 3.5-3 For some given & 2> 0, the lnequality

(3.5-8) is saild to be consistent if

iﬁi(bilnxio") se/lae ) (345-9)

When the consistancy condition is satisfied, the
- supremal will have some freedom in the use of constraint
intervention. Suppose that the inltlal states of each

infimal can be adjusted, then the supremal may essign
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the spaces X, of admissible initisl states by giving

the constants kK .. iIn this case inequality (3.5-8) becomes
io _

i l;(bilkio +b k) E e/lm(To)n - (3.5-8%)

Obviously, the consistancy condition can alweays be

satisfied by some appropriate cholice of kio'

Based on the above proposition, we may formulate.

& scheme of coordination as follows.,

Scheme of Coordinstion 3.5-4

(1) the supremal exercises imege intervention by requiring
that each 1nfimal be boicboOQ St3<blet |
(11) the supremal commands the infimals to send in

informations concerning the constants b 1 and b, 5.

(111) the supremel exercises its constraint intervention

by selectin x, for each infimal so that the consis-

lo
tancy condition 1s satisfied.

(iv) the suprenal exercises constraint intervention by
gelecting Mi for each infimal so_thathinequality

(3.5-8') is satisfied.

In this scheme of coordination, the flow of infor-

- mation is completely representable by real constants,
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In orther words, it does conform to the definition of

"parametric coordination” as defined in section 3.2.

When the assumption of b.i.b.,o. stability is
lifted, it would be difficult to assess expliclt bounds
on the state functions using the differential inequality
in Lemma 3,5-1 as has been demonstrated. rHowever, using
"8 method due to Rosen{30], it is possible to discern

the existance of such bounds. Let us first introduce

Definition 3.5~5 The differential control system

¥ = £f(t, x, m) with its control space M is p-stable,
' +

if for every t_ € R and m ¢ M, x(to) € R(r)

R(P) = {x: Wx\ = p} implies x(t) € R(P) for to s £ < 7,

Definition 3.5-6 The differential system x = f£(t,x,m)

is controllable p~gtable iT there exists & control

function m € ¥ such that x = £(t, x, mo) is p~-stable,

Rosen was successful to obtain result for linear

constant systems, So let us conslder
X = Ax(t) 4 Cm(t) (345-1")
This is only a special case of (3.5-1').

Definition 3.5-7 The matrix C is a control matrix for

A 1f there exist no vector x, such that the conditions
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x'(A+A'")x > 0 and llc'x)l= 0
hold simultaneously.
Then, for system (3.5~1") he gave

Lemma 3.5~8 There exists & p » 0, such that the systenm

(3.5-1") is controllable rp-stable if and only if C is

a control matrix for A,

In order to apply this theorem to the proposed
two-level linear system, let us assume that all the

infimals are constant systems. Thus

ii =A% (8) + Cm (8), 1 =1, 2,_.... p  (3.5-2')

and we have

Proposition 3.5-2 Let the perturbation matrices Bi(t) be
fixed., For a given € » 0, in order to satisfy inequality
(3.,4~8) it is necessary that Ci are control matrices

for Ai respectively.

Proof: By hypothesis, it is required thatllxi(t)" < ai
0 st = T, i = I, 2, seesy Dy 116’0, the infimals
(3.5-2') are at least controllable P-stables Thus,

the proof follows as a consequence of Lemma 3.5-8,

The presentation of above analysls here is only
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for its sesthetic value., Since no explicit bound can
be established based on PYropositlion 3.5-9 alone, the
practical value of this theorem in the present context

is limited.

Another class of systems of general interests
is the class of systems whlich employ feedback type
control., That is , the control function is repre-
senteble by some welghted function of the state wvector.
In the following case, we shall assume that all infimals
employ exclusively lineer continuous feedback type

control, i.e,

mi(t) = H (t)xi(t), 0=t =T, i=1,2, vee, P

(3.5-10)

11

where H..(t) sre continuous matrices of approprizte

il
dimensions. Without loss of generality, we may write

Ci(t)mi(t) 'Ci(t)Hil(t)xi(t) (3.5-10")

Hi(t)xi(t)’ i=1,2, «0sy, P

where Hi(t) ere necessarily square matrices of dimension

ni. Thexrefore

ii = Ai(t)xi(t) + Hi(t)xi(t), 1 =1, 2, ves, P

(3-5"11)
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where Hi(t) are to be designed. Again, we want the

solutions of (3.5~11l) to satisfy the criteria

in(t)H <a 0=t ST,

i’
There are several approaches could be utilized

to solve the problem stated previously.

As we have said previously in section 2.3, for a
iinear dynemical system, the property of boﬁnded—input
bounded~-out stability has a very close relationship
with the property of uniformly asymptotlical stablility.
Since the satisfaction of inequality (3.4~8) dictates
a vniform bound on the state function xi(t), it would
be natural to require that the infimal to have the
bound-input bounded~output stable property. We shall
also apply this idea to the feedback control system
stipulated above. One could write system (3.5-11)

_also as
X, = (Ai(t) + Hi(t))xi(t) ‘ (3_05-11' )‘

Then, formally, one could conslder system (3.5~11') as
én avtonomous system, i.e., those systems without
external forcing functions. In order to maintain the

solution xi(t) of (3.5-11') within a uniform bound
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on R+, the matrix (Ai(t) + Hi(t)) must have certain
properties., In order to satisfy the required condition,
it is well kxnown[5]1 that Hi(t) can not be any arbitrary
matrix, when system (3.5-2) 1s assumed to be b.i.b.o.
stable, On the other hand, for any glven Ai(t), there

do exist some feedback matrix Hi(t) which quarantees

the asymptotical stability of (3.5-11). This facp is

established in following lemma:

Lemma 3.5-10 Let the system (3.5-2) be bounded-

input bounded-output stable. Then there exists a feed-

back matrix Hi(t) such thet system (3.5-11) is asympto-

1Y

tically Stable, provided that HHi(t)H “3 for t 2 0,

where a3 is a constant depending upon Ai(t)'

For the proof of this lemma, we shall need the following

well-known result:

Lemma 3.,5-1. If u, v 20, if al is a positive constant,

and 1f

t
us o« 4 [ uvds
1 o

Then us e exp(l vas)
' 1l o

Proof of Lemma 3.5-10 The solution of (3.5-11) is

£
Xi(t) = @i(t)xio + IOQA(t, S)Hi(S)Xi(S)ds
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From the proof of Proposition 2.4-13, we know that

-0 t 2 t e s
hx ()M £ e 12 4 & e 22 [ e 12 yjm (sWMx, (s)Mas
1 11 i1 o i i
or,
a_t t a._s8
iz ()le ® S a + aal e Y2 Ux (s)las
i 1 130 i :

From Lemna 3.5-11, we have

a t a a ¢
llxi(t)ue 2 s agl3 for t = 0
1

If «a « < « , We can conclude that lIx (t)l] - 0 as
13 2 i

t - «, Since the constants « , o depend upon A (t),
il i2 i

it is clear that a13 depend upon Ai(t).

Using the terminology we have used so far, the
asymptotical stebility of system (3.5-11) is equlivalent
to say that the state function xi(t) has the exponential-
asymptotically stable property. Then, by the application

of Lemma 3,5-10, the following proposition is proved.

Propostion 3.5-12 Let the supremel (3.5-1') be control-

- lable at To with respect ﬁo a given M and (xo, xd).

Then, given ¢ > 0, the supremal (3.5-1) will be
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escontrollable at T with respect to M and (x , xd) if
o o)

(1) the infimels (3.5-2) are b.i.b,o0, stable
(11) the infimals use feedback control withllHi(t)H < a

13
(111) . 3 1Biaiuxion < E/uo(mo)ll

where e & o are constants depending on Ai(t).
13 i
Proof As a consequence of Lemma 3,5-10, it is péssible

to select the feedback matrices Hi(t) with HHi(t)H < ai

such that infimals (3.5-11) are uniformly asymptotically

, -a.,t
stable. Therefore, Hxi(t)n g« Hxille 1" for t = 0,
1 o)
where “i and ai are positive constants., Clearly
llxi(t)ll < aiux { which depends on Ai(t). Then, condition
io

(1i%) guarantees the conclusion which follows from

inequality (3.4-8). This completes the proof,

For practical purposes, the compulation of constants
ai would present a problem. However, there are cases in
which these constants can readily be computed, for instant,
time~-invariant linear systems and hon-oscillatory type
systems, Suppose this problem 1s solwable by an algorithm,
then a general scheme of coordination can be devised

ag follows:
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Scheme of Coordination 3.5-13

(1) The supremal commands the infimals to send up infor-
mations on the constants bil'
(i1) The supremal computes constants ay by selecting
eppropriate feedback matrices Hi(t) (or limitations

on H (t)) with lH (¢} 5 « .
i 1 i3

(11i) The supremal selects judicial constants ai-and

initiel states xio(or the space %0

initial states) such that inequality (3.5-13)

of admissible

is satisfied.
(iv) The supremal commands the infimals to operate

within the constraints on Hi(t) and Xio'

Let us now investigaete the case when the infimals
are. time inveriant systems. The infimals are now

described by

x =Ax (t) + C
171

X mi(t) - (3.5-2")

1

The foundamental metrices are §i(t) = exp(Ai o+ Hi)t.

Let the eigenvalues of the matrices Ai be 81l aistinct. The
assumption of b.i.b.,o0, stabllity ensures that all the eigen-

values are negative real constants,

By & standard technigue in matrix anslysis, we
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nay .choose orthogonal matrices Gi such that G‘iGi = I

-1 .
and G1 AiGi = Ai where Ai are diagonal matrices with
A’il’ A’iz' e sy A'in ’ i= 1, 2, esey P ON the diagonal.
i
: = G « 5=2") reduce to
Let X, 1yi, (3.5 )
; - ) ¢t " (3.5-14)
— A R = o )=
y, = ( L F G, HiGi)yi(t ' yio I 3.5
) -1
n v (6) = B (0)6 x (3.5-15)
here 8 (t) ( -1 s AH, = H,A
where = exp(a ¢ He )t. uppose A, =
1 R ] R A A

for L =1, 2, ¢¢e, P, 1t 1ls easy to show that
-1
& = exp(A tlexp(G H G t), because
1 i I 11
-1 -1

A'(G H.G ) = (G HG )A., Under this hypothesis
i 01 11 i 11

-1 ' -1 -1
t) =G x (t) = cxp(A t)exp(G H G t)& x
vyl 14 PRASRIGRRAE, Bymvimy %,

One sufficlent condition for yi(t) to be non-oscillatory
-1 |
is that exp(G1 HiGit) be non~oscillatory, because

exp(Ait) is non-oscillatory. This requirement will be

- assvred 1f the metrices Hi have distint negative real
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constants as elgenvalues, Thils 1s so because the matrices

-1

Gi HiGi has the same eigenvalues as Hi. To summerize,

we have

 Proposition 3.5-14 Let the conditions of Proposition

3.5-12 be satisfied. Let the infimals be constant systems
described by (3.5~2). Let all the system matrices

A i=1, 2, s, p have distinct reel negative eigen-

i’
values, Let AiHi = HiAi’ i=1, 2, «vv, Pe Then the con-

clvusion in Proposition 3.5~12 holds if

p
AN AR LCR] (3.5-17)

" Proof: If suffices to show that Ix (t)ll € n lx |
_ i 1 1io
i:l, 2] e 0y P, Os‘t. In fact
1 -1

HG exp(A tlexp(G H t)G N'hx
i i i 1 i io

1A

ix (LIl
i

-1
llexp(a tlexp(G H G t)l Nz
i S S A 1 io

because Gi is also an isometry, Thus the above reduces to
1

< e . - °
ngi(t)ll s Hexp(.’\it)“ uexp(Gi HiGit)H llxioll. But

-1 ' o
“eprit" S V1, ]Iexp(Gi HiGitHI ) Jﬁ; because of the
i
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negativity in eigenvalues. Then "xi(t)" & nillx1 il
‘ . o

as required.

It is known that, 1f AsH, = HyA; end if Ay and Hy

are dlagonalizable, then there exists & normal matrix

(] ' 1
Gi of the property GiGi = GiGi such that G1 HiGiand
Gy 4Gy
be made and let ¥y = G

sre both diagonal matrix,.let this assumption

1™

where A, and 4, ere diagonal metrices composed of

elgenvalues.

X, Then éi(t) = exp(A1 +Ai)t

Proposition 3,5-15 Let the conditions of Proposition

3,5—12 be satisfied., Let the infimals be constant systems.
- L.et the system matrices have distinct real néqative
elgenvalues, Then the conclusion of Proposition 3.5-12
holds if

(1) Ia 1 > |

8 | 1 =1, 2,44,p;3=1, 2,..,n1 where Aij and
13 i

813 are eigenvalues of Ai and Hi respectively,

-
(11) 3 B8 A1 Ix
=11 i3

. < €/} (T )l (3.5-18‘)

o

Proof: It suffices to show that Ilx, (t)ll s {ﬁiuxi i
Somm—— (o}

fori:l, 2, teoy Do In fact

~

: 1
in(t)n b3 HGiexp(Ai + Ai) X Gi H'Hxiou

= A A .
fexp( gt 1)tu Hxidl
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Let Ia, | > |5 | be satisfied, the matrix A, + a
13 1) _ 1 i
will have negative eigenvalues. Thus neXp(Ai + Ait)n s Fﬁ;.

Therefore, in(t)ﬂ e (ﬁ&ﬂxigl as required,

Similar bounds on xi(t) could also be established
when commutative property is not assumed betweenAA1 and
Hy. Let us consider the time~invariant linear infimals
(3.5-2")., By the fundamental differential inequality

used previously we have
Hx, (EN = lix Hexp[ftHA + H Hds] (3.5-19)
i io o 1 i

or

N, (£ % llx, Nlexplid Ut explH N ¢ (3.5-20)

Again, if we assume that Ai have distinctlive eigenvalues,
we may teke the same transformation Xy = Giyi' Then

Ly, (£ < "Gi xiouexpuA£|t expliE;lit, 0 = t

By requiring “Xi(t)n 3 HGiﬂﬂyi(t)H < a,, 04£t s T,
e sufficlent condition would then be
24
T < -

HGﬁluGzlﬂﬂxioMexpuAiut
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Wl

2
‘Since A1 are diagonal, ”Ai“ = (Ekji) . We must establish
i

an explicit estimetion of HHiﬂ. In order to do so, let

us state the following lemma without proof:

Lemma 3,5-16 [11] Let A be a matrix with eilgenvalues

Al'<A2’ Love £ As’ s § n not necessarily distinct .

k m-1
Then WA jI € cok (s |Aj| )

where ||Al]

tH
™M
i\

(¢}
{]
=
L
>
1
>
fote
(Y

mi, m‘j are the multiplicity of any elgenvalue and

m = Wm8X (), Therefore, for any H, with distinct
1¢t¢s 1 i

eigenvalues, we shall have

_ 2% :
< -
(A °1o‘§“31' ) (3.5-22)
Where c¢ = II (X - ,), by are the elgenvalues

io J2k Ji ki | Ji

of Hi' With this derivation, formula (3,.5-21) is

reduced to
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i

. _ 2 23
exp(cio(ilkjil )ZT)é i

ol

) T
(3 . 5-23 )

2
T

-1 4
HG, I Gy "'HXiJleXp(ii

To-summerize, we have

Proposition 3.5-17 Let the condition of Proposition

3,5-12 be satisfied. Let the infimals be constant systems
described by (3.5-2"). Let the matrices Ai, Hi have
distince negative real eligenvalues. Then the conclusion
of Proposition 3.5-12 holds if

p <
(1) 3 2y = e/Na(z )l

(i1) ineguality (3.5-23) 1s satisfied for 1 =1, 2, ves, Do

The above analysis could eqﬁally be carried out
for time-varying linear systems, Using a technlque
developed by Bernstein( 61}, Ai(t) could theoretically
be reduced to a tri-dlagonal form, which facilitates
an explicit estimation of»HAi(t)H. Nevertheless, since .
there exists no algorithm'which computes the elgen-
function in(to of an arbitrary matrix Hi(ﬁ), it is

practically useless to have & formula like (3.5-23).

‘A similar formula could also be established for.

a constant system by using an lnequality due to
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Wazewski(38]). Let us state it without proof as a lemma

Lemme 3,5-18 Let x = A(t)x(t). Let B(t) = 3(A(t) + A'(%)).

let A(t) and o(t) be the minimum and maximum eigenvalues

of B(t). Then
t t
Ix llexp [ A(s)ds s Jx(t)h £ lx llexp [ o(s)ds
(o] le) o o

' Let us eagain consider the time-invariant infimals
described by (3.5-2") which employ feedback-type controls.,
Let

P, =3(A 4+ H 4+ A' 4+ H'
1 (i 1 i 1)

Let the eigenvalues of A, H be i , Iji respectively.

I | ji
For physical consideration, we shall restrict that the

retrices A, 4 H

1 have distincet eigenvalues ¢, . with

i ji

*
negative real parts. Let ° denote max( s ). Then, since
ji

3(a, .., + h ) = % . < 0, 1=1, 2, e0e, P
j J

51337 13

we have

.
Jol < |3
i J(aijj + hijj“

where aijj' hijj ere diagonal elements-of matrices Ai' Hi
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respectively., Therefore,

*

Ihil < 2ls5(a +h )= 2(lsa, | +lxlh

)
3 13 133 g 133 J 133]

3t
where Ai are the maximum eigenvalues of matrices Pi.

Using Lemme 3,5-19

3

NXionexﬁ[foA;dg]

173

lx, ()

| £, ®
nxionexp[folkilds]

13
X explAr |t
i 1ol pl il

N

I

,jlt exp2)3h \t

& llx llexp2lsa
10 ey 3133

J

By requiring uxi(t)ﬂ & 2 0 =t % T »We have another

sufficient econdition

83
exp2lsh, , IT & (3.5-24)

1335 o .
J nxiollelp 2 Iiai.

| T,

JJ

To summerize, we have

Proposition 3,5=-19 Let the conditlions of Propostion

3.5-12 be satisfied. Let'therinfimals be constant systems
described by (3.5-2"). Let the matrices Ai’ Hi have the
properties assumed above, Then the conclusion of

Proposition 3,5-12 holds if
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p
(1) =

< g/lla
2 B2y / (T N

1
(11) ineguality (3.5-24) be satisfied for i =1, 2, ..4, Do

Combining the utilization of Scheme of Coordination
3.5-13 and Propositions 3.5~1%4, 3.5-15, 3.5-17 and
3.5=-19, the supremal has several coordination schemes
at his disposal to guide the performance of the two-

level linear dynamicel system.

We have explored quite extensively when the infimals
are commanded to use feedback type controls., The primary
rationale in the above analyslis is the use of exponential-
asymptotically steble property of the state functions
xi(t). This is by no means unreasonable in the case of
linear systems. This property could certainly be enhanced
by the use of norm~bounded controls, which will be studied

in the next section.

3.6 Coordination Using Image, Constraint, and Goal

Interventions

In Propostion 3.4-2, a sufficient condition was
established for the es-controllability of supremal,
The condition
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p 2 2
b IV&(T)U s e (3.4-11)
i=1 ,

T
o
where “&(To) = jo §(To, s)Bi(s)xi(s)ds, is essent;ally

an end point condition., Therefore, in order to achieve
the over-all goal defined previously, restrictive pro-

perties must be imposed on #(t), Bi(t), and xi(t)

so that inequality (3.4-11) can be guaranteed. The main

theme of this section is to investigate such possibilities,

Let us again write down the system structure,

The supremel:

. P |
x = A(t)x(t) + C(t)m(t) + = Bi(t)x (t), =x(0) =x
' i=1 1 (o]
(3 06"'1)
x = A(t)x(t) + C(t)m(t) x(0) = x_ (3.6-1")
The infimals: -
o= A (B)x, (8) + € (Edm (8),  x,(0) = x,
(3.6=2)

Let us assume that the unperturbed supremal
(3.6-1') is controllable at time T, with respect to
a given spéce M of admissible controls and a palr of

states (xo, Xd), where Xd = 0 when-ever unspecified,
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The problem to be solved is then: how the supremal can
use interventions to coordinate the behaviors of the
infimals so that the supremal itself can remain controle
lable or e-controllable for a given ¢ > 0 with respect

to the fixed control space M and the palr of states
X X )
(xg0 x,)

In order to conform with the general scheme of
"parametric coordination”, we want to find a criterion
which is suitable for use on any typical inflimal, From

formula (3.,4-11), it appears that such 2 scheme is
possible if we can have Nwi(T)” £ b, for all

i=1, 2, ee., D, vhile ib? < &,

In this section we shall assume'that the matrices
Bi(t) are known and fixed, Therefore, we may let

yi(t) = Bi(t)xi(t), j. = 1, 2, s e 0y P (3-6"'3)
Thus

T
wi(T) = foﬁ(T,s)yi(s)ds. 1 =1, 2, ess, P (3.6-4)

Clearly, the points wi(T) ¢ B will be completely

determined whenever $(t) and yi(t) - Bi(t)xi(t) are known.

We shall apply some of the results obtained in section 2,3

o
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and section 2.4 to solve the coordination problem,

In last sectlon, the essential réstriction placed
on the infimels was the requifement that the state
functlons xi(t) be uniformly normébounded on & time
interval {0, T). This kind of constraint may be too
restrictive for practical purposes, As a consequence,.
we shall try in this section to substitute the boundedness
requirement by conditions commonly assumed for practical

systems, such as stability end controllability.

Throughout this section, we shall assume that
the supremal is b,1.b.o, stable., Furthermore following
the practice of section 2.3, the fixed time requiremenﬁ

will be relinguished as we shali‘see 1ts necessity.

Proposition 3.6-1 Let the supremal (3.,6~1') be

controllaeble at time T with respect to a glven M and
(xo, 0). Then the supremal (3,6~1) will be &-controlledble
for a given € » 0 at some time t 2 T if the infimals

with zero control are asymptotically stable.

Proof: As a consquence of Proposition 2.4-14, it
suffices to show that HEyi(t)H £ “le-azt, where @«
and az are positive constants. Since

I3y, () % 3y, (8D, 1t suffices in turn to show that
3
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_aizt

< e where « .a > 0, The matrices
Iy, (eI & o 10 “io |

Bi(t) are assuvmed to be continuous, thus we may show

tead that Ix (t) € o' e 12 ' ' > 0, But this
inste (B2 el Y1t Y2

is exactly the case following the hypothesis and

Lemma 2,3~13. This completes the proof.

As it is well known, for & linear dynamical systen,
the term asymptotic stability is practically synonymous
to‘stability. Since ﬁhis is one of the most common
properties assumed for & practicael system, the ébove
proposition does induce a profound implication. One
short coming to be overcome is how to.éstimate the
particular t at whichvthe supremal (3.6-1) will be

e~controllable under the perturbation of infimsls.

Proposition 3.6-2 Let the supremal (3.6-1') be control-

lable a2t time T with respect to a given M and (XO, 0).
Then the supremal (3.6-1) will be,e~controliable for

a given ¢ > 0 at some time t 2 T with respect td M and
(xo, 0) if the infimals are

(1) b.i.b.o., stable

0

o' i)'

" Proof: Following"the proof of last proposition, it
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t

-«
12 for

suffices to show thet uxi(t)us.aile

for 1 =1, 2, eee, DP. Let Ei(t) € ¥, be the control

i
functions which transfer the respective infimsls from

xio to 0, Clearly, the selection of control functions

mi(t) =gtﬁﬁ(t) 05t < T, will accomplish the proof,

0 T& < t

because xi(t) = 0 for t 2 T, following the property of

i
b.l.b.0o. stability. Since uxi(t)u are bounded over a
finite time interval and zero otherwise, it 1is always
posslibe to find positive constant'ail, a12 such that
-a t

uxi(t)u s lﬁle 12", This completes the proof.

One thing to be noted in above proposition is that
the time instant T1 is not required to be fixed. Clesarly,
this 1s a consequence of the assumption that the‘sub—

systems be asymptotlically stable,

Corollary 3.6-3 Let the conditions of Proposition

3.6-2 be satisfied. Then the same conclusion holds if
the infimals are b.i.b.o, stable and controllable with

- respect to M

N and (xio, Xid) where X4 £ 0,

Proof: Let m (t) € M, be the control function which

i

transfers the respective infimal from x to x, _.

io id
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Clearly, the selectlion of control function
mi(t) = {ﬁi(t) 0 =2¢ ¢ T1 will accomplish the proof.
< .
0 Ti t

Because, let Xi(Ti) = X the function “Xi(t)" for

id’
t 2 T1 exhibits the exponential-asymptotic stable
preperty., Followling the argument of previous proposition,

the complete proof follows.,

.As we can see, all the above propositions depend
on‘the assumptions of asymptotical stability and uniform
controllability. The requirement that the supremal be
transferrable from an initial state to the origin is
nothing but an assurance of uniform controllability.'

Since we have shown In section 2,3 that the property

of uniform controllability is attainable in less restrictive
cirecumtances, the above requirement should be reducible,
which is evident in the following proposition. First,

let us recall thset

. . |
L(T, M) ={0(T)s 6(T) = [ (T, s)C(s)n(s)ds, me M}

‘Proposition 3,6~ Let supfemal (3.6~1') be controllable

at T with respect to & given M and (xo,'xd). Then supremal
(3.6-1) will be &€-controllable for a given &> 0 at some

time instant t 2 T with respect to M end (xo, xd) if
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(i)llxdl + supllg(t)x | = min Le(Til.
Tet © o(T)eaL(T,)

(11) the infimals are b,i.b,0. stable and controllable
0).

with respect to M, and (x

i io’

Proof: Condition (i) and the assumption that supremal
(3.6~1') is b.i.b.o. stable guarantee that.sumpremal
(3.,6-1') is uniformly controllable, which follows from
Corollary 2.3-20. The remain of the proof follows from
the proof of Proposition 3.6-2.

As a consequence, we have also

Corollary 3.6-5 Let the conditions of Proposition

3.6=4 be satisfied. Then the same conclusion holds if

(1)ledu + suplf¢(t)x | s nin Fe(T)l
Tet © 6(T)eol(T,M)

(11i) the infimals are b.l.b.o. stable and controllable

with respect to Mi anad (Xio’ Xid)' where Xia £ 0,

Proof: Same as in Corollary 3.6-3.

As we have seen 1in above propositions, the condition
that the infimals be controllable is quite essential,
Otherwlse the sﬁate functions xi(t) will not necessarily
exhibit the exponential-asymptotically stable property.

A natural question arises: Can the fixed time requirement
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be retained if additional constraints are imposed onto
the controllability condition of the infimals? The
answer appears to be yes. But, since a formal proof can

not be provided, we shall only state 1t as

Conjecture 3.6-6 Let the supremel (3.6-1') be control-

lable at T with respect to a given M and (xo, Xd)-

Then supremal (3.6-1) will be €-controlleble at T with

respect to M and (xo, xd) if

(1) the infimals are b.i.b,0. stable,

(11) the infimals are controllable at time Ti’ which
are sufficiently small, with respect to Mi and

(xio. 0).

Proof (heuristic): The proof relies upon whether we
could obtain wi(T) by regulating Ti such that

. 5 o . .
iuwi(T)u £ &, The extreme case is xi(t) = 0 which
antomatically satisfles the condition, On the other hand,
we know that the infimals are uniformly controllable.

Thus xi(t) = 0 fort 2z T.. The state functions have

i

the form x,(t) = {x,(t) 0 £t s7T,
i i i
<
0 Ti t

_ ' T T :
Since wi(T) = fo§(T, t)Bi(t)xi(t)dt=foi§(T,t)Bi(t)xi(t)dt
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in which both (7T, t).and X;(T)'have the exponentisl-
asymptotically stable property, it should be possible to
select Tilso small that inwi(T)nz = 62; |

The above propositions provide a very broad
basis for the coordination to be performed by supremal
in order to achleve the over-all goal., We may fopmulate

a general gulde-line as followus,

:

Scheme of Coordination 3.,6-7: The uniformly control-

lable suopremal will retain its €&-~controllability by
attending to these procedures:
(1) BRequiring that the infimals to have b.i.b.o. stable

property.

(11) Determining for each infimal the spaces of ‘@édmissible

controls, the space of admisslble initial conditions,
end the target states.
(11i1) Requiring that the infimals be transferred to the

target states at some pre-selected time Ti'

Another legitimate question to ask at thls moment

is: Since wi(T) > 0 as T = > in the present case, can

" the supremal use 1ts control action to offset the effects

ol wi(T) so that to make itself strictly controllable
et some finite time interval? The answer seems to be

negative in general. For instance, we do not exclude
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the case when the supremal must use 211 the available
control energy in order to maintain its uniform control-
lability. In this case, it is clearly impossible to
obtain extra control enérgy to offset the effect of
“i(T). We shell further consider this question in next

section.,

Now we shall examine the special case when the
infimals employ feedback type controls. Following pre-

vious practices, we may rewrite equation (3.6-2) as

X, = Ai(t)xi(t) + Hi(t‘)xi(t) (3.6-4)

where Hi(t) are feedback matrices to be determined.
For this type of control, we have'the fundamental

result,

| Proposition 3.6~8 Let supremal (3.,6-1') be controllable

at T with respect to 2 given M end (x,, 0). Then, for
a given ¢ > 0, supremal (3.6-1) is e~-controllable at
some t 2 T with respect to M and (XO, 0) if

(1) the infinals (3.6~2) are b.i.b.o, stable

(11) the feedback matrices satisfy HHi(t)H £ a _, while

i3

aiB is a constant depending on Ai(t).

Proof: Following the pfoof of previous propositions,

it suffices to show that the solutions of (3.6-L4) have
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the exponential-asymptotically stable property. Since
Hi(t) are adjusteble to needs, Lemma 3.5~10 and condition
(1) ensure the l2st requirement. This completes the

proof.

A synthesis algorithm of obtaining such feedback
matrices for general linear systems is not an easy task.,
However, when the infimals are restricted to be time-
invariant linear systems, & procedure of design 1is

possible as demonstrated in the previous section,

In order to improve system performance in thé
sense that supremal (3.6-1) may achieve its goal of
e-controllability for a least time interval, one would
intuitively feel that an incressing in tﬁe decaying
rate of the state function Xi(t) should help. This
could certainly be done by the judiclial cholce of
feedback matrices Hi(t)' The supporting motlive for this
observation is no different from that‘of conjecture

3.6""60

3.7 Coordination by Using Bedundant Control Energy

The 1deas of usling redundant control energy to

counteract the effects of disturbences is & natural one.
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Based on this conceptlion, the fundamental result Pro-
position 2.,4~16 was derived, In the propsed two-level
linear dynemical system, interaction among the sub- -
systems is considered as additive disturbance. We

would thén expect that the above conception should pro-
vide us a powerful tool in deeling with the coordination

problem.

Let us consider the following system:

The supremal

-

X = A(t)x(t) + C(t)m(t) + iBi‘t)xi(t) (3.7-1)
x = A(t)x(t) + C(t)m(t) : (3.7-1")
M={m(t): lImly op «5k, t € J}

£ k', teJ}, k<k'

(o]

M' = §{n(t): “m"z o

The infimals:

it

%y o= Ay (8)x, (8) + €y (6)m, (b) (3.7-2)

My ={m(t): lWmM, (. § %y, t€J}

We shall assume that supremal (3.7-1') is cﬁntrollable
with respect to given M and (xo, xd). As & consequence
of Proposition 2,4~16, the controllability of supremsl
(3.7-1) with respect to M and (Xo, xd) will be gua-

ranteed provided that the following inequality is



130

satlsfied:
Elgnxi(t)u € v(k' - k) for t € J (3.7=3)
i

This requires that all state functions xi(t) of the
infimals be uniformly bounded on some finite time inter-
val, This possibility has been shown previously. However,
in order to get more explicit and useful results, it

1s necessary that the infimals possess certaln ﬁroperties.

Let us assume that the infimals are all b.,i.b,0.

stable. Then, there exist poslitive constants, bil’ biz’
i= i, 2, seesy D such that
u§i<t>u S byq for t z 6
N las € b >
o i(t, Q)Ci(s) ds € io for t= O
Foxr every solution Xi(t) of (3.7-2) we have

Consequently, the following resulit is established

Proposition 3,7~1 Let supremal (3.7-1') be controllable

at T with respect to a given M and (xo,'xd). Then su-
premal (3.7-1) will be controllable at T with respect to
M' D ¥ and (xo, xd) if

(1) the infimals are b.1.,b.o., stable,

'(11) i/%(biluxiél + bizki) € v(k' - k)
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Proof This proposition is & direct consequence of

Proposition 2.4-16 and formula (3.7-3)(3.7-4).

When the two-level system (3.7-1)(3.7-2) is given,
the constents By bil’ biZ' Y are fixed constants
while "X1J| and ki are variables., Therefore, the supremeal
‘may carry out its coordinative actions by &sdjusting
these variables, A scheme of coordination based on

Proposition 3,7-1 may be constructed as follows

Scheme of Coordination 3.,7=2 Suppose supremal (3.7-1')

is controllable at T with respect to a given M and

(xo, xd). Then the over-2ll goel of the two-level linear

system (3.741)(3.7-2) will be achleved if the following

coordinative procedure is followed:

(1) the supremel uses image intervention to ensure that
the infimels are b.,i.b.o. statble,

(11) the supremal commands the infimals to send up
information concerning the constants bil and biZ‘

(111) the supremel computes the values kio and ki so
that condition (ii) in Proposition 3.7-1 is sa-
tisfied. |

(iv) the supremal uses constraints interventions by assign-

fing the spaces Mi and Xio for each infimal,

This 1is done by glving the constants, kio and ki'

The above result can certainly be refined when
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additional conditlions are imposed on the activities

of the infimals. For instance, we have

Proposition 3.,7~3 Let the supremal (3.,7-1') be con-

trollable at T with respect to & given M and (xo, xd).
Then, supremal (3.7-1) wlll be controllable at T with
respect to M' D M and (x, Xd) if

(1) the infimals are b.i.b.o, stable,

(ii) the infimals are controllable with respect to

and (X. O)o

glven Mi 10?

| J )
(111) zBi“il“XiJ' < Y(k k), where ay are constants

depending on Ai(t).

Proof ILet the solution of ii = Ai(t)xi be ii(t).

As & consequence of condition (i), we know that there.

exlst positive constants @39 1%4p such that

-0 t
- iz
< z
Hxi(t)H @44 for t 0. Let xi(t) denote the
solution of (3.7~-2)., Then condition (ii) ensures that
-a, .t
i 3 [4 12
there exists am € Li such thst Hxi(t)ﬂ £ o e Sayq.

The conclusion follows from Proposition 2.4-16 and

condition (iii). This completes the proof.

Since condition (1ii) in the above Proposition
is quite similar to condition (ii) of Proposition 3.7-1,
the Scheme of Coordination 3.7-~2 needs only minor mo-

dification to give:

Scheme of Coordination 3.7-4
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(1) the supremel uses image intervention to ensure that
the infimals ere b.i.b.o. stable,

(i1) the supremal commands the infimels to send up in-
formations concerning the constants ail;

(111) the supremal computes the values k,, S0 thset
condition (iii) in Proposition 3.7-3 is satisfied.

(iv) the supremal uses constraint intervention to de-
termine By for each infimal and commends the
infimals by using goal intervention to behave

in such a way that condition (1i) of Proposition
3.7-3 is satisfied,

When the enalysis for the general case of norm-
bounded controls has been studied as in the above, it
is natural to turn our attention to the case when the
inf}mals are linear feedback control systems. Therefore,
the infimels will have in general the following mathe-

matical representation:

Where'Hi(t) are continuous matrices to be designed,
Since Hi(t) is a realization of the conﬁrol action of
system (3.7-2), we shall still call the'restrictions
imposed on Hi(t) as constraint interventions. The system
Xy = Ai(t)xi(t)'are stiil assumed to be unifornly

asymptotically stable. Therefore, after we denote by
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ii(t) the solutions of ii = Ay (£)xy(t), X;(t) will sa-

tisfy the following property:

Hii(t)" £ %1 %0 © iz , for tZ O (3.7-5)

where ail’ aiz are positive constants.

Proposition 3.7-5 Let supremal (3.,7-1') be controlla-

ble at some T with respect to a gilven M and (xo,-xd).

Then supremal (3.7-1) will be controllable at T with

respect to M' @ M and (xo, xd) if

(1) the infimals are b.i.b,0., stable,

(11) NH (e = “i3 for t ¥ 0 where @4 > O depending
on A, (t).

(ii1) ;Bitﬁnxigl £ v(k' ~ k), where o; are positive
constants depending on Ai(t) and Hi(t)'

Proof Condition (i) guarantees that there are posi-

tive constents % aizsuch’that inequality (3.7-5)

is satisfied. Let aila13'< ®35, Lemme 3.5-10 ensures

that systems (3.7-2') are uniformly aéymptotically

stable, Therefore, when an appropriate feedback matrix

Hi(t) is chosen, the solution xi(t) of system(3.7-2")

..vit

must satisfy in(t)ﬂ € «a e for t 2 0 and

1 X10 ‘
> 0, ¥y > 0, Or Hxi(t)ls *lixy I for t 2 0, Then,
the conclusion of this proposition follows from condition

(111) and Proposition 2,4-16, This completes the proof.

Agalin, the scheme of coordination previously
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stated can be used with minor modification. We shall

not repeat the scheme of coordination here,

Obviously, the znalysis for general time-varying
iinear dynemical systems, &s we heve in the above, pro-
vides only a2 guideline for the désign and coordination
problems. Any detailed algorithm for design and coor-
dination must be provided when & SpQCifiG system: is
given, Referring to the present status of control sys-
tems theory, this appears to be possible oniy when the
systems considered are strictly time—invariéﬁt. For
such cases, some results were obtained in section 3.5
for the linear feedback contirol systems. It should be
obvious, however, that most results obtained therein
are adaptable to fit into the study of this section,

In fact, most propositions of section 3.5 are valid
when two modifications are made in the statement of
those propositiong, namely: (1) the statement "E~contr§1-

leble at T with respect to N and (xo, X.)" is substituted

5
by "controllable et T with respect to M' > M and (x, xd)";
and (ii) the constant ¢/ 1Q(T)l is substituted by

Y(k' - k) in the corresponding inequalities. Therefore,

we shall not pursue further the improvisation of system
performence by using redundant control energy for the

case when inequality (3.4-8) is used as a basis of

coordination, Rather, it is interesting to see how the
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same problem can be solved when inequality (3.4-11)
is to be used as the basis of coordination 2s was done

in section3.6.

InAlast section we have szen the possibility of
maintaining the e-controllability of & uniformly controi.
lable sﬁpremal when it is subject to a disturbance
function having the exponential-asymtotically stablé
property. The limitation on the conclusion of e-control=-
lability vrather than controllability was the joint
consequence of two causeé, namely: (i) the possibility
of exhausting all avallable control energy in order to
maintain the uniform controllability of the supremal;
and (ii) the effect of disturbance will die down only
as time t epproaching infinite., Intuitively, one would
expect that the conclusion of e-controllabllity could
be improved to that of strict controllability if either
one of the above two causes 1is eliminaged. Clearly,
the introduction of redundant control .energy has eliminated
the first cause becauvse the control energy avallable
to the supremal is by definition not exheaustible in
the sense mentioned ebove, In fact, the introduction
of redundent control energy leads to the expected |

conclusion:

Proposition 3,7-6 Let supremal (3.7-~1') be uniformly

controllable for t 2z T with respect to & given M and
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(xo, xd). Let supremal (3.7~1) be subjected to the dis-
turbance function f(t) which has the exponential-asym-~
ptotically stable property. Then supremal (3,7-1) will
be controllable at some t 2 T with respect to M' 92 M
end (x_, %4).
Proof By hypothesis we know that k' - k > 0, As a
conseqﬁence of the assumption of uniform controlla-
bility, it suffices to show that there exists a control
- "o : s LI
function m (t) in M" = {m(t) “m(t)l\2 op o5 K k}

such that o(t) = Iz§(t,s)f(s)ds = IZ§(t,s)C(s)mo(s)ds
for some t &= T, Similar to previous analysis, we know
that Ne(t)ll > 0 as t > <, On the other hand, it is known
that L(t, M") is a closed symmetric convex set in X
which hes the property L(tl, Mr) € L(t,, M") for any

t, > t; > 0. Clearly, o(t') € L(t’, H") for some t'2 O

and remains so for all t > t'. This completes the proof.

Equiped with this result, the findings of last
section can now be strengthened. In the sequel, we

shall assume that supremal (3.7-1') is b.i.b.0., stable.

Proposition 3.,7-7 Let supremal (3.7=1') be controle~
lable at T with respect to a given M and (xo, 0).
Then supremal (3.7-1) will be controllable at some

t 2 T with respect to ' D N end (x_, 0) if

(1) the infimals are b.i.b.0. stable,
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(11) mi(t) =0 fort 20, 1 =1, 2, esey Do

Proof From Propositién 2.3-16 and the hypothesis,

we know that supremel (3.,7-1') is uniformly controllable,
As a consequence of Proposition 3.7-6, it then suffice
to show that the function fBi(t)xi(t) has the exponen-
tial-asymptotically stable property., But this require-
ment was proved Tor the present case as in the proof

of Proposition 3.6~1l. This completes the proof.-

Proposition 3.7-8 Let supremal (3.7-1') be control-

1eble ot T with respect to & given M and (x,y 0)s
Then supremal (3.7-1) will be controllable at some
t 2 T with respect to M'> M and (Xo, 0) irf

(i) the infimals are b.i.b.o. stable,

(11) the infimals are controllable with respect to

i
Proof Similar to the proof of the previous propo-

giyen M, and (x4 o Q).

sition, it suffices to show that the function
%Bi(t)xi(t), or the state functions xi(t), has the
exponential-asymptotically stable property. From Pro-
position 2.3-16, conditions (i) and (ii) ensure that
each infimal is unifbrmly controllable with respect

to My and (x 0). This implies that xi(t) = 0 at

io?
sonme Ti and all t = Ti’ 1 =2, 2, «¢ey, Pe Thus, xi(t)
must have the exponential-asymptotically stable property

as required. This completes the proof.
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This proposltion can be strengthened for the case
when the supremal (3.7-1') is controllable with a

desired stete Xy £ 0, We have

Proposition 3,7-9 Let supremal (3.7-1') be control-.

lable at T with respect to a given M and (x, xd).
Then supremal (3.7-1) will be controllable at some
t 2 T with respect to M' > N and (x,, xd) if

(1) Hxgll + supﬂ@(t)xon < min He(Tin.
Tst (T )€EL(T,HM)

(11) the infimals are b.i.b.o. stable.

(1ii) the infimals are.controllable with respect to
gliven Mi and (Xio’ 0).

Proof From Corollary 2.3-20, condition (i) ensures

that supremal (3,7-1') is uniformiy controllable for

t 2 T, Thus, a complete proof follows from the proof

of the previous proposition.

For the claess of infimals in which feedback type
controls are employed, which have the mathematical

representation (3.7-2'), we have:

Proposition 3.7-10 Let supremal (3,7-1') be control-

leble at T with respect to & given M and (x_, X4).
Then supremal (3.7-1) will be controllable at some t & T

with respect to M' 2 ¥ and (xo, Xq) if

(1) lixgl + supli@(t)x N = min he(T,
Tst o(T)eaL(T,11)
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(1i) the infimals (3.7-2') are uniformly asymptotically
stable,

Proof By condition (ii), solution xi(t) of (3.7-2")

has the exponential-asymptotically stable property.

The proof follows as & consequence of the fundamental

Proposition 3.7-6.

After some thinking on the nature of the problem,
it becomes quite obvlous that the implicationsvof |
Conjecture .3.6=6 could equally be applied to the present
case, In fact, by increasing the size of the space M',
which leads to an enlarged set L(T, M"), the same
consequence can be reached.Hopefully, many improvements

to the above results can then be obtained.



CHAPTER IV

THE CASE WHEN THERE IS DIRECT INTERACTION AMONG INFIMALS

4,1 Introduction

In this chapter the same problem defined and studled

in Chapter III will be studied., The two-level system
concerned here, however, contains a set of directly

interacting infimals,

In sections 4.2 and 4.3, coordination is studied
using respectively the two basic guldelines developed
in section 3.4,

In section 4,4, the concept of using redundant
control energy will be explored to strengthen those

results obtained in sections 4.2 and 4.3.

4,2 Coordination end Norm-Bounded State Functions

When ‘the fundemental ineguelity (3.4-8) is used
as & basis of coordination, as will be done in this
section, & uniform bound on the state functions Xi(t)
of the infimals must be established. Because of the
existance of interactioh among the infimals, the task

of esteblishing such bounds is more complicated than

141
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before, First of all, let us write down the mathemetical
model of the two-level system to be studied in this
section., We have

The supremal:

™
1

A(t)x(t) + C(t)m(t) + EBi(t)Xi(t) (4.2~1)

He
]

A(t)x(t) + C(t)m(t) _ _ (4.2-1'{

The infimals:

X = Ai(t)xi(t) + Ci(t)mi(t) + jiiDij(t)xi(t)
(’4’.2"'2)
’.‘1= Ay (8)x, (£) + ¢, (t)m, (t) (L,2-27)

where the equations Will heve the usual definitions

as previously defined.

Similer to the practice 1in section 3.5, we shall
again assume that the unperturbed supremal (4.2-1')
is controllable at some time T with respect>to a given
space M of admiséible controls and a pair of states
(x xd).'Then the major question to be answered in
this section is the solution to the same control problem
of the supremal using inequality (3.4-8) as a basis,
Namely: Given ¢ > 0, how the supremal caﬁ use different

forms of intervéntiohs to coordinate ﬁhe activities of
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the infimals in order that the system (4.2-1) is

e-controllable at T with respect to 1 end (xo, xd).

From & mathematical viewpoint, the matrices
Bi(t) and Dij(t) would have the sawme meaning, i.e., >
they represent the interaction among systems, However,
since the activities of the infimals are to be limited
by the coordinative actions of the supremal, we shall
assume that the matrices Dij(t) are to be designed to

fit the command of the supremal., This practice indicates

the use of interaction intervention.

There are two possible approaches of designing
the interactions, which stipulate entirely different
1mplicathn in the design philosophy, One of the approaches
is to condister the term EDij(t)xj(t) in equation (4,2-2)
as an outside disturbance acted on the particuler
infimal i, In this case, the objective of interaction
intervention is to place‘a uniform bound on this dis-
turbance function, for instance
';iiDij(t)xj(t)“ < 81, t€J, 1 =1, 2, ¢es, P
(4.,2-3)
By so doning, the design of interaction matrices'Dij(t)
becomes a2 quite simple matter., In fact, the physical

reelization of the matrices Dij(t) in this particular
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situation will be some saturation devices. We notice
that this kind of interaction intervention is often
used in the real world. For instance, the protective
circuit-breaker in an electricity transmission line is

usually designed to hendle a fixed emount of load,

In addition to the advantage mentioned:-above, this
approach will reduce quite significantly the difficulties
in analyéis. For instance, we may introduce the following

new function without loss of generality.

fi(t) = jiiDlj(t)xj(t) t € J

’ (402—4)
<

llfi(t)ll s 8,

In this case, f, '+ t = fi(t) is clearly a Lebesque
integraeble function which is uniformly bounded on &
e compact time interval J. Consequently, its effect
on the behavior of the infimal can be assessed using

the results obtained in sections 2.3 and 2.4,

In many cases, however, the above approach is not
realizable, i.e., the interaction between the infimals
cannoﬂ be realized as saturation‘devices.'F¢r instance,
the transmission tie line of two electricity pooling

areas 1is usually a device of continuous. flow. Under

()

these clrcumstances, the interaction matrices DiJ
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will be operators satisfying certain constraints. The
influence of intereaction on system behavior is now due

(t).

to the state functions xj(t) under the transformations Dij
Therefore, the design of interaction in this approach
becomes more or less & structural problem, In other

words, the design criteria of D j(t) is closely asso-

i
ciated with the system matrices Ai(t) and control ma-
trices Ci(t). We shall limit ourself by restricting
Dij(t) to be matrices with continuous time functions

as elements.

If the second approach is necessary, we may re-
write the equations of the infimals by introducing the

'following notations:

L (t) = rxl(t) , . A((t) = Aj(t) 0 ve. O
X, (t) |o Ay(t) vy O
\xp(t) o 0 e Ay(t)
G(t)= rcl(t) O R ER R O
0 Colt) eeess O

0 0 sevee Cp(t)
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D(t) = |0 Dyp(t) seuwses Dy, (%)
Dyp(t) 0 cernee Dpo(t)

Dpl(t) Dpz(t) es 0 v e 0

X, = (%, M () = [my(t) (4.2-5)
XZO mz(t) .
kxpo mp(t)

Then, the infimals become a single integrated system

represented by
X A (E)X(E) + 6 (6)mt) +O()X(t) (4.2-6)

Since Ml s = | mylf, it is clear that the admissible
i
controls M (t) for system (#.2-6) will be elements in

some subset of the following set:
Mo={m(e): ml, s Eiki, t e J} (b.2-7)

First, let_us investigate the situation when the
first approach 1is permissible. In this case, the inter-
action among the infimals is represented by equation
(4,2-4)., The mathematical description for each infimal

is now

X = Aj(t)xi(e) + Ci(t)mi(t) + fi(t) (4,2-8)



147

where fi(t) is subject to the constraint (4.2-4)

Proposition 4,2-1 Let supremel (4.,2-1') be contro~

)e

llable at some T with respect to a given K end (xo, Xd

Then, for some given &> 0, supremel (4.2-1) is e-con-
trollable at time T with respect to M and (x,, x4) if
(1) the infimels are b.i.b.o. stable. A

(11) 2B, (b, x + byl biBSi) < e/ uQ(T)N

io
where bil' b12' b13 are pos;tive-constants de~-
pending on Ai(t) and Ci(t).

Proof As a consequence of condition (1), we know that

there are positive constants bil' b12 such that

“§3(t)n g byq and fg"@i(s)ci(s)ﬂds £ b , for 811 t = 0,

i

This in turn implies that there is positlive constant
& _
\ I € Din, F y P ;
b, 5 such that Ioléi(s) ds % byq. Folowing Proposition
3.4~1, the claim will hold if 38 xi(t) g ¢/ la(T)t

3 i
for t ©J, Since

“Xi(t)u < "§i(t)ﬂdlxiJI + [ Néi(S)Ci(sﬂl-Hmi(s)Hds

o ¢ o ot

+ LN (s)llry (s) las
< biluxiou + by ok, + b138i for all‘t_z 0,

condition (1i) ensures the claim., This completes the

proof,

The above result has the same meaning as Propo-

sition 3.5-2. Therefore, in order that the supremal mey
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P

exerclse its coordinative actions, the consistancy
condition &s defined in Definition 3.5-3 will have to
be satisfied. In the mean time, Scheme of Coordination
3.5-4 can be employed in the present case with bnly
minor modification, It 1s clear that, in the above pro-
position, condition (i) is a realization of image in-
tervention while condition (i1) contains the use of
both constraint intervention and interaction inferQ

vention.

The condition revealed by Proposition 4,2-1 is
possibly too restrictive for many applications. However,
the result can be greatly improved when the use of
goal interaction interaction is exercised by the supre-
mal, As before, the goal intervention is to be under-
stood as the assignment of desired target set and some
controllability requirement to be fulfilled by the in-
fimals. The precise formulation is given in the pro-

posltion to follow.

Proposition 4.,2-2 Let supremal (4.2-1') be control-

leble at some T with respect to a given M and (x, Xd).
Then, given &> 0, the supremal (4.2-1) will be t-con-
trollable at T with respect to M and (x, Xd) if

(1) the infimels are b,i.b.o. stable,

(ii) the infimals (4.2-2') are controllable with respect

to given M; and (xio, 0).
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5.) < Q
(111) zﬁi(ailnxiou + b13 i) < e/ fa (T
where ai and. b13 are positive constants depending
" on Ai(t).
Proof Similar to the proof of Proposition 4,2-1,
it suffices to show that EﬁgnxiCtHIS e/ HQ(T)jifor t € J,
From condition (i) end Lemma 2.3-15, we know that the

solutions Ei(t) of X, = Ai(t)x1 satisfy the inequality

i

- t
WE (6 € 2 Ux, e 12° for all t = 0. Let the solutions

i1 “io
of (4.,2-2') be xim(t). Then, condition (ii) guarantees
that there exists some m, &€ M, such that Hxim(t)uﬁllfi(t)n
- for all t 2 0, In other wordsl\xim(t)H.& aiinJl for t 2 0,
Since the solutions xi(t) of (4.2-2) satisfy

: t
nxi(t)u s Hxim(t)ﬂ + IOHEi(s)H'Hfi(s)Mds

£ alixgll + bygdy for all t 2 0,
condition (iii) ensures the sstisfaction of the re-

quired lnequality. This completes the proof,

The above proposition clearly demonstrated the
usefulness of gdal intervention in the present context,
However, the requirement that the desired target for
each infimal should be ﬁhe origin in thé corresponding
state space of the infimal is again restrictive in some
cagses, We may thus strengthen the ebove result by mo-

difying condition (ii) in Proposition 4,2-2,
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Proposition 4.2-3 Let supremal (4,2-~1') be control-

lable at some T with respect to & given M end (xo, xd).
Then, given € » 0, the supremal (4.,2-1) will be e~con-
trollable at T with respect t§ I and (xo, xd) if
(i) the infimals are b.i.b,o, stable,

(11) the infimals (4.2-2') are controllable with res-

‘ pect to given Mi and (Xio’ Xid)'
(111) 328, (o, 5 x 1

J o+ D §.) = e/ (T if%Jnxiglz x

i 131 id

id

zpiruxidu -+ b1351) s ¢/ lQ(T)I 1fvailnxigl < lx

Proof Again it suffices to show that El%uxi(tnts t/ ha (T
for t € J, Using the notation in the proof of last
proposition, it suffices to show that

Mxsp (B & 29llxgl when e lx; 0l 2 Ixy4ll  or

Ixy gl when o« Wx, € xgqll. Let

n

g (6

o > . . s s

11NX10H > ”Xid“’ then condition (i) end (ii) ensure
that the trajectory xim(t) is contained in the tube

+ = _ .

R" x X, where Xi ={x; ¢ Xg "x{l & “1"X1Jﬂ’ i.e.,

s p 2 0, S

"Xim(t)" ail“‘id’ for all t 0., Similarly, if

a Nx, | € hx, then there is some m, € M, such that

11 ialls Y
=, (e € Hxi&l for all t % O, Consequently, condi-

iJ
tion (iii) assures the claim. This completes the proof,

éince the situvatlion considered 1in Proposition

k,2-3 is the most general case studied so far, & scheme
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of coordinstion can be proposed using Proposition 4,2-3

as a basis,

Scheme of Coordinates 4,2-4 The over-all goal of

the two-level linear dynamical system (4.2-1)(4.2-2)

will be achieved under the presumed conditions if the

supremal uses interventions to coordinate the behaviors
of the infimals in the following wayi

(1) the supremal exercises its image intervention by '
requiring that the infimals (4.2-2') be b.i.b.o.
stable,

(i1) the supremal commands the infimals to report the
constants @5 .

(11i) the supremal exercises the constraint intervention
by selecting for each infimel the set Xio of
admissible initiel states (by giving the constents
kio) so that the consistancy condition is satisfied.

(1v) the supremal exercises its 1nteraction intervention

by selecting constants 8i so that condition (iii)
in Proposition 4.2-3 is satisfied,

(v) the supremal exercises its goal intervention by
selecting‘the target state Xid for each infimal
and requiring that the infimals be controllable

. with respect to (Xio'xid)'
(vi) the supremal exercises its constraint intervention

by selecting the eppropriate spece Mi of admissible
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controls, which is accomplished by the assignment

of constants ki'

After the ebove development, it is a natural con-
sequence to consider the speciel class-of infiméls
in which feedback type control function is used. As
we have done previously, the mathematical model for the

infimals is given by
%q = Ay (E)x;(6) + Hy(t)xg(t) + £3(8)  (4.2-9)

where Hi(t) are unknown continuous matrices to be de-

signed,

We notice in this particular cese that the only
difference between the 2nalysis to follow and those in
section 3.5 is caused by the interaction function f, (t).
Therefore, the results obtained in section 3.5 for the
linear feedback control case can be directly applied to
the studies on behaviors of systems (4.2-9). Since the
previous results were centered around the requirement
thet trivial solution of the systenm

[ 3

X, = Ai(t)xi(t) + Hi(t)xi(t) be uniformly asymptotically

stable, we may use the. following general proﬁosition to

conclude the study of the two~level linear dynamical
system.when the first approach of desligning interaction

is employed.
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Proposition 4,2-5 Let supremel (4.2-1') be controllable

at some time T with respect to a given M and (xo, xd).

Then, given ¢ > 0, supremel (4,2-1) will be e-control-

lable at time T with respect to I and (XO, Xd) if

(1) the infimals are b,i1.,b,o, stable

(11) the feedback matrices Hi(t) are so selected that
the infimals (4.,2-2') are uniformly asymptotically
stable,

8. ) = e/WQ(T). Where «,. are

i 1371 1l
positive constants depending on Ai(t) and Hi(t)'

Ix b
(111) Eﬁi(aill}. oll +

Proof: Conditions (i) and (ii) ensure that

inm(t)u < «a Hxigl. The proof follows immediately from

il
the proof of Proposition 4,2-2,°

When the Secénd approach of designing interaction
for the infimals is adopted, the estimetion of the
amplitude of the state functions1]xi(t)llappears more
complicated because the matrices Dij(t) are continuous.
Let uvus also write down & simllar mathematical repre-
sentation for the imfimal when direct interaction does
not present:

X = (6)X(t) + 6 (t)m(t) (4,2-6)
Let us denote by xi(t)'the solutions of (4,2-2) and
by L(t) the solution of (4,2-6)., Then
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ol

2
(e = (sux, (00) & (3x, (6)0) (4.2-10)
1 i

Let us denote by &y (t) the solution of (4.,2-6') corres-
ponding to some control function M and by Xim(t) the solutions
of (4.2-2') corresponding to some control functions m, «

Then similar to (4.2-10), we have

N, (£l = i”xim(t)” , (4,2-10")

Suppose that supremal (4.2-1') is controllable at some
T with respect to a given M and (xo. xd). Then, given
e > 0, Proposition 3.4-1 assumes thet supremal (4.2-1) is
e;controllable at T, with respect to M and (xo, xd)
provided that '

Eﬁ”xi(tﬂls e/ o ()i for t € J (3.4-8)

ILet B= max(z%). Then, using relation (4.,2-10) inequality
1 .

(3.4-8) would become the following which provides a

similar basgis for coordination.
gL (¢ s «/la(T)l  for te J (4,2-11)

Comparing the system equations (4,2-6) and (4.2-6'),
we notice that the introduction of interaction matrix D(t)
is in effect a provision of additional feedback control

to the system (4.2-6"), With the understanding that the
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natrices A (t), C(t), O (t) are 8ll continuous, the system
(4,2-6) is well-behaved, Thus, as 1t was known in section
3.3, there exist constants xl and Kz' which depond only
upon A(t), @ (t) and O(t), such that

N (e € < KXW + « UML)} for t € J
1 o 2

Although the above inequality is too crude to uséful,

at least it has shoun that &(t) could be uniformly
bounded on a givé finite time interval. In order to
proceed further, it 1is not unreasonable to assume that
ﬁhe infimals (4.2-2') are all b.1l.b.o., stable, With
this assumption, it is clear thet the differential
system (4,2~6') is also b.,i.b.0. stable because (4,2-6')
is simply & direct product of the infimals (4.2-2'),

By Lemmal3.5~10, en interaction matrizx O (t) can be
designed so that system (4.2-6) is also b.i.b.o. stable,
or equi&alently, that the sutonomous system

K= MA(t) +D(£))® is uniformly esymptotically stable, And

Proposition 4,.,2-6 Let the supremel (4,2-1') be control-

).

lable at some T with»respect to a given M and (xo, X4
Then, given ¢ >0, the supremal (4.2-1) will be
e~controllable at T with respect to M and (xo, xd) if
(i) the infimals are b.i.b,0. stable

" (11) an interaction matrix L (t) could be designed with
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the property WO(t)I = Tl for t 2 0 such that
system (4.,2~6) is b,1.b.0, stable,
i { | < | » .
(113) B(b WX I 4 bIz(iki)) e/lla(T)l where b, end by,

are positive constants depending onWd(t) andhl (t).

Proof: It suffices to show that inequality (4,2-10)

is satisfied under the given conditions, condition (i)
assures that system (4.,2-6') is also b,i.b.0. stable,
Therefore, denotihg by Ei(t) the fundamental matrix of
X = (A(t) +0 (t) M, condition (ii) assure that there are

b | <
positive constants bIl and Iz such that | I(t)ll b1y

‘ t
and [ N§I(S)G(s)ﬂds € by, for t ¥ 0. Consequently,
o

e () € bnu:cou + bIleWz(t)”. Since A (t) is an element

of some subset of that set M as defined by (4.2-7),

it is clear that & (Tl = bIIL"xo” + bIZEiki' Obviously,

condition (iiil) assures the satisfaction inequelity

(4.2-11), This compiete the proof,

The ebove results was obtained by the use of
image intervention, constraint intervention, and interacﬁiOn
Intérvention, Similar ,to the first approach of deésigning
intéeraction, "the use of goal intervention might be employed

to strenghen the above result.
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Proposition 4,2-7 Let the supremal (4.,2-1') be control-
lable at some T with respect to a‘given M and (xo, xd).
Then, given ¢ > 0, the supremal (4.2-1) will be
e-controllable et T with respect to M and (xo, xd) ir
(1) the infimals are b, i.b,o0, stable,
(11) O(t) can be designed such that’
X = At)xe(t) + 0 (t)X(t) is uniformly asymptbtically
stable,
(111) the infimals (4.2-2) are controllable with respect

to given Mi and (xi 0).

O’
(1v) ﬁt&lﬂxoﬂ s e/lla(T), where “q > 0 is a constent
depending on A(t) andl (t).

Proof: It suffices to show that BX(t) € e/Ha(T)l
for t € J, Let us denote the solution of the autonomous

system &‘C-.: (At) + 0 (t))& by Lp(t), Condition (ii) ensures

- Y t
that I&p(t)l € a I e 12", for all t > 0 where

@1yt %o are positive constants depending‘on.ﬁ(t) and
A(t). This implies‘that there are positive constants

% 512 such that
-F %
hx, (el s = _lx, e 12

>
LI for t 0, where xiD(t) are

"solutions of ¥ = A (t t - .
" i( )Xi( ) + JiiDiJ(t)xj(t).

b |
xiD(t) & §1(t)xio + foﬁi(t, s)jziDij(s)xj(s)ds. Let the
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solutions of X. = Ai(t)x be Ei(t). Then condition (i)

1 i
ensures that there are positive constents ail' aiZ such
— -t
that Hx, ()M 2 o tix, yle 12 5 « ux W for t z O,
1 i1 o 31 io

In the mean time, condition (iii) ensures that there

are control functions mi(t) € Hi such thet

"xim(t)” s ME&(t)" 3 dilnxiou for t 2 0, where Xim(t)

are solutions of (4,2-2'). Let D(t) be chosen such that

Wx H(eN = lixiD(t)ll for all t Z 0 and 1 = 1, 2, sesy Do
Then, by choosing M(t) = (ml(t), mz(t), cony mp(t)ﬂ we have

lei(‘c)ll < for i =1, 2, see, Ppand t Z 0, In

11"X10”
other words |&X(t)}) € allﬂﬂ%ﬂ. Thus, condition (iv) ensures
the satisfaction of inequality (4.2-10). This completes

the proof,

Using procedure similer to the proof of Proposition
L,2-3 and the above result, we may modify conditions(iii)
end (iv) to gilve a stronger result, which we shall state as

& corollary without proof,

Corollary k4,2-8. Let the supremal (4,2-1') be controllable

at some T with respect to & glven M and (xo,.xd). Then,
given € >0, supremal (4.2-1) will be e-controllable at T
with respect to M and.(xo, xd) if

(1) the infimals are b,i.b.o, stable !

(11) A(t) cen be designed so the &= (A(t) +,0(t))_i is
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uniformly asymptotically stable,
(111) the infimals (4.,2-2') are controllable with respect
g end (kg0 Xy q)
: < Q fac I 2
(4v) B ap lae |l e/I(T)l  Af a g tzla i or
JESIE Mol it a_ xS Iz | vhere

to given M

-‘K‘.d = (de’ Xoqt *0° Xpd)', aIl> 0 depending ondd(t)

and D (t).

When the infimals are assumed to use only feedback

type controls, modification of‘system (4,2-6) leads to

x = A) + ¥ +RENHX ' (4,2-12)
HM(t) = {Hl(t) 0 ees O
0 Hz(t) eee O
Lo 0 veo H (%)
D

Following the line of analysis deplcted in the above,‘

it is essential to design both N(t) and D(t) in such =
way that the tri#ial solution of (4.2«12) is uniformly
asymptotically stable. We shall rule out the possibility
that H(t) = 0 and D (t) @ 0 as t - «, because this case is
unlikely to occur in practice., As a coﬁsequence, Lemma
345-10 seems to_be the only tool which is general enough
for our purpose, We shall use the following proposition

to conclude the study in this section.
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Proposition 4,2-9 Let the supremal (4.2~1') be control-

lable at some T wlth respect to given M and (xo, xd). Then,

given € > 0, supremal (4,2-1) will be s-controilable at T

with respect to M and (xo, xd) if

(1) the infim2ls eare b.i.b.o. stable

(i1) the feedback matrices Hi(t) in (4.2~9) are chosen
so that systems ii = (Ai(t) + Hi(t))xi are uniformly
asymptotically stable,

(ii1) A(t) is chosen so that system (4.2-12) is uniformly
stable,

(iv) ,Baillla:'oll s e/llQ(T) where a11> 0 depends ohﬂ(t),

H(t), D(t).

Proof: It suffices to show that inequality (4.2-10)
holds., Let solutions of ii = Ai(t)xi be denoted by
Ei(t). Condition (i) ensures that there are positive
constants ail' ai2 such that |

— t
X, (el 2 « lIx Qe 12 for t 2 0. By using  Leuuma
i i1 lo '
3.5-10, we may choose Hi(t) such "Hi(t)” s a13

for t 2 0 and to give

« a <L«
il i3 iz2
(e« - )t
! < o | 1113 12 ' -
xih(t)“ il"tio"e for t » 0 Where

gih(t) are solutions Of.éi = (Ai(t) o+ Hi(t))x1

Using these Hi(t)’ it 1s clear that
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Bty (6 = shx,, (E) = Zallx for t z O where

111 % 1ol
X,(t) is solution of = (A(t) +H(t)X. Let

—- 1 o ; Iz S « ., B
al - mix( 11), we have l|&y(t)ll lWEON By using

Lemme 3.,5-10 agein, & judicial choice of § (t) can be
mede so that Noe(t)l = aI])L]aeon for t ¥ 0. Thus condition
(iv) ensures that inequality (4.2-11) is satisfied.

This completes the proof.

A few remarks are pertinent-at the conclusion of
this section: (i) Although the heuristics of devising
an appropriate scheme of coordination is clearly contained
in the above results, the actual design procedure for the
selection of D(t) and/orH(t) is quite a different matter,
Even if the individusl subsystems considered are time-
invarisnt systems,'a general algorithm of design would
present itself as a major task, (ii) In this section,
D(t) is simply essumed to be some continuous matrix.

In other words, we have not studled the problem how

~different forms of interaction among the infimals, which

are represented by special classes of d(t), would affect
the system behaviors., In fact, different forms of inter-
connection among the infimals do have significent effects
on system beHaVior. Pgrtial solution will be given in

the next section.
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L.,3 Coordination and Uniform Controllsbility

As we have seen prevliously, the concept of uniform
controllability is quite useful in developing & scheme
of coordination., The basic requirement for the success
of employing such concept lies primarily on the restriction
that the stafe functions of the infimals have the expo~
nential-asymptotically stable property. When the general
case, in which interaction among the infimals .is present,
is considered, it 1is theréfore necessary to investigate
closely how this kind of interaction would relate to the
exponential-asymptotically stable property. To some
extent, one would expect that the configuration of
interconnection among the infimals will heve some effect
on the fullfilment of the above mentioned requirement,
For convenience, we shall again write down the system
equations as f0116WSx

The supremal.:

]
X

A(t)x(t) + c(t)n(t) + iBi(t)Xi(t) (4.3-1)

X

i

A(t)x(t) + Cc(t)n(t) ’ (Be2-11)

The infimels:

Xy = Ai(t)xi(t) + Ci(t)mi(t) + 521D1j(t)xj(t)

(’#.3—2)



163

xi = Ai(t)xi(t} + Ci(t)mi(t) (4.3-2")

where the equetions have the usual definitions as were

defined previously.

The number of possible configurations of inter-
connection in the infimals are many. In order to limit
our commitment, we shall only consider the following
three general types. The simplest might be.called tanden

is described in Figure 4,1

Goq o G220 |—am — G2p
' Figure 4.1

In this case, the infimals are described by

ii= Ai(t)xi(t) + Ci(t)mi(t) +vD _l(t)xi_ (t)

i1 1
(4,3-3)

The second configuration might be called closed-loop
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is described in Figure 4,2

2p . et e eee s G23+]

Figure 4,2

The system equations which describe the infimels are
the same as in Equation (4.3-3) except the case when

i =1, In this case, we have

il = Ay (£)xy (8) + Cp(8)my (6) + Dy (b)x ()
' (4,3-4)

The third is the general configuration where the infimals

are described by (4.3-2) in general,

Using the notation defined in the previous sectlon,
the infimals may be combined to give the following system

equation

a(t) = AE)X(E) + 66)A(t) + D)X (t) (4.3-5)
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a':.(t) =A(E)X(t) + C(t)m(t) (4.3-5")

For the three different configurations mentioned above,
the interaction matrix D(t) will have consecutively

there representations:

n

Type 1 p(t) 0 0 ses e 0 . (“'03"6)

D21(t) 0 N NN 0

0 0 Dppap(t) 0

0 O ¢ 0008 000008000 Dlp(t)

Type 2 D (t)
. D21(t) 0 X EER R R R Y] 0

e 00 0 0 0O 60 08 Ve 0 e DQ DS LY 2 0

O O ss o Dp,p“l(t) O
()“'03"7)
Type 3 A(t) = [oO Dyp(t)  wevenedsses Dyp(t)
D21(t) 0 DRI S RN S S sz(t)
lel(t) Dpz(t) es 0000000 O
(4.3-8)

As‘we have seen previously, the design of matirx

D (t) will greatly affect the stable property of system
(443-5) when the system (4,3-5') is itself b.i1.b.o.

stable, We would ask the question: if the matrix D (t)

is described by either (4.3-6) or (4,3-7), would the
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situetion be a little different? to answer thils question,

we shall stete the following lemmas due to Beiley (31,

Lemma 4,3-1 Let system (4.3-2') be b.i.b,0. stable,

Then the system (4.,3-5) is also b.i.b.o, stable if the

metrix D(t) has the representation (4.3-6).

When the systems considered above are time-
invariant, explicit result can also be found. The

following lemma 1is well-known.

Lemma 4,3-2 Consider the system X = f(x, t). Then the

trivial solvtion of the system is exponential~
asymptotically stable if and only if there 1s & positive

definite function v(x, t) and positive constants Cqs

c such thet

2! %30 Oy

- 4
(1) cluxu s v(x, t) % czuxu

(11) v(x, t) & —c3uxu2

(i11) Hlvv] = e, xlt,

v ov v
where VvV = ( ==, ==, 40, =~— ) ,
0%y axz axn '

Let us define a gain constant for any b.i.b.o.
- stable system (4.3-2) as follows by neglecting the

transients
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sggl\xi“
N s
= Tsup im
t20

Lemma 4.,3-3[3] The b.i.b.o., stable system

X = f(x, t) + Dm(t) where m being the input, has e gain

=t

SEVETS

where ¢., C,, C., C; are e constants in Lemma 4,3-2.
1 2 3 L th toants in L Ly3-2

Lemmae 4.3-4 [3] Consider a set of time~invariant

infimals as described by (4.3-2'). Supose that these
infimals ere b.,i.b.,0o. stable with gain constents Wi
as defined in (4.3-9), Then the system (4.3-5) is also
b.i.b.0o. stable if '
(1) D(t) is given by (4.3-7)
(11) m2 < 1

1 1

Using the above lemmas it is now possible to

obtain the following results.

Proposition 4.3-5 Let the supremal (4.3-1') be controllable

at T with respect to a given M and (xo, 0). Then, the
supremal (4.3-1) will be €&-controllable for a given
€ >0 et some t 2 T with respect to M and (xo, 0) if

(1) the infimals (4.3-2') are b,i.b.0., stable
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(11) mi(t) Z0 fori=1, 2, «eey, P, £ 20
(i11) D (t) is given by (4.3-6)
(iv) the supremal is b.i.b.o. steble,

Proof: As & consequence of Proposition 2.4-14, it
suffices to show that the state functions xi(t) all

have the exponential-asymptotically stable property.

it is knowm from Lemma 4,3~1 that condtions (i) and (1i)

and (111) imply that the solution X(t) of system (4.3-5)

hes the exponential-asymptotically stable property.

This in turn ensures that its components xi(t) have the

same property as required., This completes the proof.

Propostion 4,3-6. Let the supremal (4,3-1') be control-

1éble et some T with respect to a given M end (xo, 0),

Then the supremal (4,3-1) Wiil be ¢ -controllable for

a gilven ¢ >0 at some t 2 T with respect to M and (xo, 0)

if

(1) the infimels (4.,3-2') are b.,i.b,0., stable and
time-invarient,

(11) 'mi(t) 0, for 1 =1, 2, eee, P @8nd tZ O

(111) D (t) is given by (4.3-7) and is constant.

(iv) H73 <1
i

(v) the supremal is b,i.b.o. stable.

Proof: Again it suffices to show that the stete functions
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xi(t) have the exponential-asymptotically stable property.
It is known from Lemmsa 4,3-4 that conditions (i),.(1i1),
(1i1) and (iv) guarantee the solution &L(t) of (4,3-5) to
be exponential-asymptotically:. stable., This ensures that
xi(t) have the same property as required, This completes

the proof,

Proposition 4.,3-7 Let the supremel (4.3-1') be controllable

at some T with respect to a given M and (XO, 0). Then,
the supremal (4,3-1) will be e—conﬁrollable for a given
e >0 at some t 2 T with respect to M and (xo, 0) if
(1) the infimals (4,3-2') are b.i.b.o. stable
(iy) mi(t) 2 0 fori=1, 2, ees, P and t 2 0
(111) D (t) is given by (4,3-8) anda UD(t)Il £ > for

t 2 0 where «, is a constant depending on A(t)

3
(iv) the supremel is b.o,b.0, stable,

Proof: It suffices to show that Xi(t) have the expo-~
nential asymptotlically stable prbperty. Condition (1)
implies that the system (4.,3-5') is also b.i.b.o, stable.
Let the solution of & = A(t)X be denoted by &(t).

| Then there are positive constants al, a2 such that

-a t
e (t)l 5 « e 2 for t 2 0, where ¢, ¢ depend
1l o 1 2
only on A(t). Let o be so chosen that 7 % < e

Lemma 3,5-10 and condition (ii) ensures that the
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solution &(t) of (4.3-5) has the exponential~
asymptotically stable property, which in turn implies
that xi(t) have the same properties as required. This

completes the proof.,.

The three propositions stated above have eﬁcompassed
the assumed configurations of interconnections among
the infimals. As we can see, the design of interéction,
which must be done by the supremal,presents no problem
when type 1 configuration is used., In this case the
interaction matrices Di, i_l(t) cen be practically anyz
continuous matrix. When type 2 configuration must be
used, in which the infimals must be time-invariant
systems in order to apply the proposition, the design
of interaction is still relatively easy. For this

particular case, we may devise a scheme of coordination

for the supremal as follows.

Scheme of Coordination 4.3-8

(1) The supremal commands the infimals to sent in in-
formations concerniné the constants cl, 02, 03, 04 as
glven in Lemma 4,3-2,

(11) The supremal designs the intereaction matrices

D D sesy D so that the inequalit
1p, 21' L p’p-1 . q y

?ﬂi < 1 is satisfied by using the information that
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W=

4\ [ %2
1, <« [LX)0 -2=).]|lp | for any typicel infimal,
i 013 cil i,i-1

When the general configuration type 3 is necessary,
the design of interaction to be performed by the supremel
maey become véry involved., We may proceed as follows 1n

order to provide a solution

e ()0 = 3, (£)]
1

< =%t
-EfalﬂxiéLe for t 2 0
Let
El = m?X( “11""10")
%n = mi
az min( aiz)
Then -
1%t & nae 2 (4.3-10)

Clearly, the constants nEi and Eé are those required

in determining an appropriate D(t) which satisfies
Proposition 4.,3-3, Based on inequality (4.3-10), the
supremal could design Dij(t) for the 1nfima;s following

a procedure essentially similar to Scheme of Coordination

“’.3"‘8.

In the above séheme of coordinatlion, only twd
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types of interventions are employed by the supremal,
namely image intervention which requires the infimals
to be b,i.b.o. stable and interaction interventlion
which is done by choices of Dij(t)' If the additional
goal intervention and constraints intervention are used
we should obtain results similar to those. obtained in

section 3.6.

Proposition 4,3-9 Let supremal (4.3-1') be controllable

at some T with respect to a given M and (xo, 0). Then,
given ¢ > 0, supremal (4,3-1) will be e~-controllable

at some t = T with respect to M and (xo, 0) ir

(1) the infimals (4.3-2') ere b.i.b.0. stable,

(11) the infimals (4.3-2') are controllable with respect

to given M, and (Xio’ 0).

i
(1i1) A(t) is given by (4.3-6)

(iv) the supremal is b.i.b.o. stable,

Proof: As a consequence of Proposition 2.4-14 and
condition (iv), it suffices to show that xi(t) have

the exponéntial-asymptotically stable property. From
conditions (i) and (ii), we:may choose a control function
m, for each infimal such that xi(t) =0 for'some T, and

t > Ti and all i, Let X,(t) denotes the solution of
(4.3-5'). This fact implies that I, (t) = O for some

T and 211 t > T, In other words &M(t) has the exponential-
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asymptotically steble property. Consequently, as a
reéult of Lemma 4,3-1 and condition (iii), this property
is retasined by the solution X(t) of (&4.3-5), which
implies that the stete functions Xi(t) have the same

property. This completes the proof,

Using essentiélly the same proof, we may prove

the following two statements,

PfOpostion 4,3-10 Let supremal (4.3-1') be controllable

at some T with respect to a given M and (xo, 0). Then,

givene » 0, supremal (4,3-1) will be ¢ ~controllable

at some t 2 T with respect to M and (xo, 0) if

(1) the infimals (4,3-2') are b.i.b.q.‘stable snd time-
Inveriant, ] |

(1i) the infimals k4.3-2') are controllable with respect

i a c
to given hi nd (yio’ 0),

(111) D(t) is constent and is given by (4.3-7),

(iV) on < 1,
!

(v) the supremel is b.i.b.o, stable.

Propostion 4,3~11 Let the supremel (4,3-1') be controllable

at some T with respect to & given M and (xo,,O). Then,
givene > 0, supremel (4.3-1) will be £ -controllable at
" some t 2 T with respect to Y and (x,, 0) if

(1) the infimels are b.i.b.o. stable,
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(11) the infimals (4.3-2') are controllable with respect

to given M, and (xio, 0).

i
(111) D (t) is given by (4.3-8) such that ID(t)ll & a3
for t 2 0, where a3 is & constent depending on (t),

(iv) the supremal is b.i.b.,o. stable.

The basic idea underline the above propositions
is still the concept of uniform controllability; It
becomes therefore necessary to extend the results to
more-general cases, In the mean time, we notice that
the major requirement in the design of interaction 1s
to ensure that the resulting system (4.3~5) be b.i.b.o.
stable, Clearly, type 1 and type 3 configurations of
interconnection .ere only special cases of the general
type 3. Therefore, from now on, we shall only deal

with the general case where D(t) is described by (4.3-8)

Propostion 4,3-12 Let supremal (4.3~1') be controllable

at some T with respect to given M and (xo, xd). Then, .
glven ¢ » 0, supremal (4.3-1) will be e-controllable

at some t 2 T with respect to M and (xo, xd) if

(1) the infimals (4.3-2') are b.i.b.o. stable

,(ii) the infimels (4.3-2') are controllable‘with respect

to given M and (x 0),

io!

(231) WD (£ s “3 for t 2 0 where % is a constent

depending on A(t),
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(iv) den+ supné(t)xon k3 min e ()

Tst 6(T)eaL(T,M)

(v) the supremel is b.i1.b.,o. stable,

Proof: Conditions (iv) and (v) ensures that the supremel
(4,3-1") is uniformly controllable for t 2 T with
respect to M and (xo, xd) as a consequenc¢ of Corollary
2.3-20, Therefore, by Proposition 2.4-15, it suffices to
show that the staté functions xi(t) all have the
exponential~asymptotically stable property. But this

fact waé demonstrate in Proposition 4.3-11 following

conditions (i), (ii) and (iii). This completes the proof.,

The case when infimals use feedback type controls
is a logicel step to be studied next. However, since it
is essentially the same as we have studied previously,

we shall not repeat the same study here.

L., 4 Coordination and Redundant Control Energy

As was demonstrated in the last chapter,‘the
idea of using redundant control energy is a powerful
tool to improve system performance consideréd in this
report. When the general case, in which interaction

among infimals is not severed, is studied, one -would

also expect the same merit of using redundant control



176

energy. This 1s the primary objective to be achleved
in this section. For convenience, we shall write down
agéin the system equations for the two-level linear
dynemical system being considered.

The supremal:

x = A(t)x(t) + c(t)m(t) + siBi(t)xi(t) C (4.4-1)

e
L]

A(t)x(t) + c(t)m(t) (B 4=2")

X, t € J)

in

M={n(t) : HmH2 op o

1A

M= () vlimp =k, teJ}), k'>k

The infimals:

X
1

fl

Ai(t)xi(t) + Cl(t)ml(t) + jiiDiJ(t)xJ(t) '
(4.’4’"2)

Me
It

Ai(t)xi(t) + Ci(t)mi(t) (4. 4-27)

It well be assumed in the ebove definitions that k < k'.

'For the study to be conducted in this section,
we should consider the two basic types 6f deslgning
interaction for the infimals namely: the saturation
approach for Which the interaction term ln the system

equation (4.4-2) is given by formule (4,2-3), and the
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approach in which the interaction is representable by

a set of continuous matrlces Dij(t)'

In the first epproach, the interactlion term

S D, .(t)x.(t) can be considered as additive distur-
g1 19 J

bance to any particular infimal, Therefore, when the
fundemental inequality (3.4-8) is used as the reference

" of coordination, one would expect the same results as
derived in the first portion of section 3.7. Consequently,
we shall only conslder the case when the second approach
is taken., In this case, system equations (4.,4«1) and

(4,4=2) completely represent the system to be studied,

When the system equations of the infimals are

combined, as it was done in section 4.2, we have
X = A)R(E) + C(EIM(E) + P (5)X(t) (4,4-3)
& = AER(E) + C(6m(s) . (b3t )

vwhere £(t), A(t), B(t) b(t),7n(t) have the usual definition.

.Using the notatlions defined in seétion .2, we

have the following basic statement,

Proposition 4,4~1 Let supremal (4,4-1') be controllable

-at some T with respect to a given M and (xo, xd). Then,

the supremal (4.4-1) will be controllable st T with
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respect to M' D M and (xo. xd) if
plae(t ) = v(k* - k) for t & J

Proof: As & consequence of Proposition 2.#-16, we
need only to show that IIEBi(t)xi(t)H £ y(x* - k)

= b s 1 o
for t = J,. But HEBi(t)xl(t) = ipiuxi(t)' s anxi(t)n

And (el = Ellxi(t)ll. Therefore, if
pix(t) = v{k'- k), the requirement ls satisfled. This

completes the proof,
This proposition leads to the followling:

Proposition 4.4-2 Let supremal (4,4-1') be control-

lable at some T with respect to a given M and (xo, xd).
Then, supremel (4.4-1) will be controllable at T with
respect to M'D® M and (xo, xd) if
(1) the infimals (4,4-2') are b.i.b.o, stable,
(11) an interaction matrix P(t) can be chosen such

that the system (4.4=3) is also b,i.b.0. stable,

(111) p(blluxzu + b3k )) £ v(k'" = k) where b b

12354 1’ °12
are positive constants depending on A(t) and D(t).
Proofs Condition (1) implies that the system (4.4-3%)

is also b.i.b.o..stable. Combining this clainm and

condition (ii), two bositive constants bIl' by, can be
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found such that n§1(t)u < bIl for t 2 0 and

t
I°H§I(S)C(S)Hds = bIZ !
the fundamental matrix of the system % = (M(t) + D ()},

for t 2 0, where §I(t) denotes

<
Consequently NX(t)l = b & I + by, (3k, ). Thus condition
(111) ensures that BIX(t)M £ y(x* = k). By Proposition

L, 4-1, the conclusion follows,

The above result was obtained by the use of image
intervention, cbnstraint intervention, and interaction
‘intervention., The additlional use of goal intervention

might be employed to strengthen the above result.

Proposition 4.,4-3 Let supremal (4,4-1') be controllable

at some T with respect to a given M and (xo, xd). Then
supremal (4,4-1) will be controllable at T with respect
to M'> M and (x, x,) if A
(1) the infimals (4.,4~2') are b,i.b.,0, stable,

(11) the infimals (4.,4=-2') are controllable with respect

to given M, and (x 0),

1o’
(111) the interaction matrix D(t) is designed so that
-the system (4.4-3) is b.,i.b.o. stable,

(1v) ﬁaIIHKg" < v(k' - k), where a__is & positive

Il
constent depending on A(t) and H(t).

Proof: This proposition is the consequence of

Proposition 4.2-7 and Proposition 4.,4-1,
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Corollary 4,4-L4 Tet supremel (4.4-1') be controllable

et some T with respect to a given M and (xo, xd). Then

supremal (4.4-1) will be controlleble at T with respect
"D l

to M M and (xo, xd) if

(1) the infimals (4.4-2') are b,1.,b.0. stable,

(11) the infimals (4.4-2') are controllable with respect

to given M, and (Xio’ X

i 1d)' _
(111) D (t) is designed so that the system (4.4=3) is
b.i.b.0, stable,

« -— LI, a l =
(iv) B Hx i 'Y(k k) if Illx Iz "xd\‘ or
Xl =& - s
i a (k' k) if O’Il“x i “Xdu .

Proof: This propositlon is & consequence of Corollary

k,2-8 and Proposition 4,4-1,

When feedback type controls are employed by the
infimals, similer results wlll be obtained. Thus, we

shall not treat this case here,

When the concept of uniform controllability is
combined with the idea of using redundant control energy,
similér results as those obtained in section 3.7 ere
. possible in the present case, The baglec statement 1s

the following

Proposition 4.4-5 Let supremel (4,4-1') be uniformly
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controllable for t = T with respect to & given M and
(xgs xd). Then, supremel (4,4-1) will be controllable
at some t =z T with respect to M' 3 M and (xo, xgq) Af

&(t) has the exponential-asymptotically stable property.

Proof: Let &(t) has the required property. This implies
thet the state functions xi(t) have the same property.

The conclusion follows &s consequence of Proposition

3.7"'60

The following results are direct consequences of

the above staetenment,

Corollary 4.,4-6 Let supremal (4,4-1') be controllable

et T with respect to a given M and (xo, 0). Then,
supremel (4.,4-1) will be controllable et some t = T
~w1th respect to M' > M and (xo, 0) if

(1) the infimals (kob=21) are b.i.b.o. stable,

(11) the infimals (4.4-2') are controllable with respect

to glven Mi'and (x 0),

io’
(111) AD(t) is designed so that system (4.,4-3) is also
b.i.b.o. stable,

(iv) the supremal is b.il.b.o, stable,

Proof: Conditions (i), (1i), (1ii) ensure that &(t)
has the exponential-asymptotically stable property, &s
was demonstrated in Proposition 4,3-11, Condition (iv)
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and Proposition 2,3-16 ensure that the supremal is
uniformly controllable, The conclusion follows from

Proposition 4,4~5,

Corollary 4,4-.7 ~ Let supremal (4,4-1') be controle
laeble at T with respect to a given M and (xo, xd). Then,
supremal (4,4~1) will be controllable at some t = T
with respect to M'D> M and (xo, xd) Af

(1) the infimels (4,4-2') are b.,i,b.0, stable, ,
(11) the infimals (4.4-2') are controllable with res~

pect to given M, and (xio' 0).

1
(111) OH(t) is designed in a such a way that system
(b.4=3) is b.i.b.o. stable,

(iv) Nxgll + sup N&(t)x I = min He(m)
t2T 6(T)edL(T,M)

“(v) the supremal is b.i.b.o., steble,
Proof Condition (v) and Corollary 2.3-20 ensure thet
the supremal (4,4-1') is uniformly controllable, The

rest of the proof follows from the previous corollary,



CHAPTER V

DISCUSSIONS

5+1 Introductlion

The objective of inclusion of this chapter is
primerily to correlate the present research to some of
thg previous studies on the same subject of multi-level
control systems. In order to do so, it would be most
fruitful to 1list categorically the differences and simi-
larities which exist between the present research and
previous studies. Hence, we shall divide this‘chapter

‘further into three section.,

In section 5.2, we shall use & classification of
multi-level systems, which was previously proposed és
e basis of comparison and we list three principal_
differences between the present research and previous

studies,

In section 5.3, & previously proposed eapproach
of solving:the control problem of multi-level system
will be explained. We also demonstrate that this approach

is in essense the baslic method used for solving the

183
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.

control problem of two-level linear dynamlcal system in

the present research.

In section 5.4, a non-iterative scheme of co-
ordination, which was used in one of the previous studies,

will be adapted to fit the present problems,

5.2 Discussions with BReference to Previous Studies

The study on the theory of multi-level systems
has been carried on for some time, Tekahara's doctoral
dessertétionIBUJ more or less summarized previous studiles
on this subject, and it will be used here as a basis of

comparison,

First of all, we shall discuss how the two-level
linear dynamical system studied in thlis report can be

categorized using Tekahara's classification.

Since multi-level systems are characterized by
thé existences of internal disturbances and interactions,
Takahara classified the class of multi-levelisystems_
into four sub~classes according to its interactioms
emong the subsystems. For simplicity, we shall not use
the.mathematical notations he used., In-stead, an

equivalent verbal classification 1s given as follows:
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Type 1: In this sub-class the multi-level system 1is
a collectlion of 1ndépendent control sub-
systems, No coordination is needed,

Type II: In this sub~class the multi-level systems
have their lowest level composed of inde=~
pendent control subsystems which are isolated
from each other but there may be interactions
through the over-all performance criterlion
or goal, Coordination 1ls necessary,

Type III: In this sub~class, the subsystems may not be
isolated but the over-all performance cri-
terion has a simple relstion to the performance
criteria of the subsystems., Coordintion is
necessary.,

Type IV: In this sub-class, the multl-level systems
are composed of control subsystems which
Interact directly with each other and also

through the over-all performence criterion.

Using thils classification, we observe that the
two=level linear dynamlcal systems studled in this report
fall in two sub-clesses., The systems studied -in Chapter III,
in which no direct interaction among infimals is alloﬁed,
are those belongling to Type Il1. The systems studied in
Chapter IV, in which direct interactions among infimals
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are represented by additive time functlons, are those
belonging to Type IV, One might feel & little discontented
about why multl-level systems of Type III were not studiled,
The reeson. lies in the differentiation of definitions
between Type III and Type 1V systems. We notice that

Type I1I systems 1s only & speclal class of Type IV
systems in the sense that the systems of Type III must
satisfy an addtional specification. In this present
research, the performance criterlie we chose for the
infimals did not have the speclal property required for
Type II1 systems defined by Takahara, Consequently, the
study of Type III systems was In fact embeded in the

study of Type IV systems,

Most of past studles on multi-level systems were
concerned with Type III systems., One of the principal
reasons for this limitation was that the over-all
pérformance criterion chosen for those studles could
be decomposed to accommodate the simple mathématical
relationshlp defined by Takahara for Type III systems,

This 1s clearly impossible in the present reSearch.

After some consideration. we may observe several
fundamental differences between the present research

and previous studies on the same subjedt.
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Perhaps the most signiflicant difference is that
qualitative properties of multl-level control system
have been the primary concern of the present research,
while the previous stdules concerned with themselves
primarily on quantitative properties of multi-level

control systems.

The second significant differnce lies in the
general phllsophy of viewling any multi~level systems,
In the past, the studies of milti-level systems started
usﬁally from the consideration of & single integrated
system problem, The needs for a mult-level modelling for
such problem then arised because of the requirement
in division of lsbor. Thls requirement led naturally to
the decompostion of the integrated system into & group
of subsystems, Coordinstion was then introduced, and
the result was a multli-level system, In the present
research, we feel that the decomposition step is arti- .
ficial and quite unnecessary in many cases, For instance,
the natural boundarles between subsystems of many physical
systems are qulte evident which may very well be considered
&s lines of decomposition, Consequently, we started from

the outset by developing the requirements of coordination.

The third significent difference is in the mathe-

matlcal structure of multi-level systems considered in
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this research and previous works. In general, the multi-
level systems studled in previous works have the schematlc

structure as shown in Figure 5,1,
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A hierarchy is defined among the conrollérs following

the indicated directions. We notice that only the first
level controllers have direct contact with tﬁe controlled
subsystems, On the .other hand, the two-~level llnesar

~ dynamical systems studled In this report have, in general,

the schematlic structure a&s shown in Figure 5.2,

S . —— — — S—— S——— — ——— ———  u—— SeneTmG  GTew——— ey  Gatmnn  Sm———  owey  a

Gy I— Sq Supremal

Figure 5.2
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In Figure 5.2, the blocks Gl’ G21, G22 represent.

the controllers, the blocks S.,, S S,.. represent the

_ 1’ C21' P2z

controlled systems, the arrows indicate the dlrection of
interactlons, The differeﬁce from the system described.
in Figure 5,1 is obvious because the controller Gl in
Figure 5.2 has its own directly controlled subsystems

in addltion to its duty of coordinating the activitles of
controller G21 and G22. The fact that many complex
physlical systems can be constrﬁcted as two-level linear
dynamical system will be demonstrated in next chapter

on appllcations,

5.3 Setlsfaction Approach

For any true multi-level control.systems,.whether
it be a Type II, Type III, or Type IV systems, the most
significant characteristib fop its ovm identification
.1s the.existence'of interactions. A direct consequence
of this charecteristic is the arising of internal

disturbance (34 ], which may otherwlse not arise for

ordinary systems. The solutlion of multl-level system
control problems can only follow after the successful

treatment of internal disturbances,

One of the epproaches in dealing with the problenm



191

of internal uncertainty was the satisfaction approach

[34], which may be defined in following way:

Given:

(1) A system x = ¢(m, f)
where x, m, f are state variable, control varlable,
and disturbance respectively, and ¢ 1s & mapping of
the input space M x F into the state space X,
'where m, f, and x ére elements of M, F, and X.

(11) A performance functional Q = Q(x, m)

(111) Aset M of admissible control functions

(iv) A set F of uncertainties

(v) . A functional V(f) defined on F

~(vi) A relation R(V(f), Q) between V(f) end Q.

Find:

An element of M which will satisfy R(V(f), Q) for f € F,

Let us now write down the mathematical model of
the two-level linear dynamical systems consldered in
this réport:

The supremal:
% = A(t)x(t) + C(t)n(t) + 3B, (6)x, (¢) (5.3-1)
M= {m(t) ¢ hmy, Sk teJ)

The infimals;
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>’:1= A, (t)x, (8) + C4(8)m, () + inij(t)xj(t)

J#£1
(5-3"’2)

My, ={m, (t) : lim sk, teJ}

2 or = = F1

Since we have defined that the over-all goal of the
two-level linear system (5.3-1) (5.3-2) is to coinclde
with the goal of the supremal, we may use the foilowing
interpretation to show how satisfaction approach might
be adapted to the study carried out in the present research.
Given:
(1) The system is supremal (5.3-1).
(11) Let ¢ > 0 be given, Let x(t) be solution of (5.3~2),
Then, the performance functional 1s defined té be
Q =Ix(T) - xdﬂz for some T < *, where X4 is the
desired state,
(112) ¥ = {m(t) + im1, orwsk,tEJ} |
(1v) Fisthe set {f(t) -.-.EBi(t)xi(t)}, where x, (t)
are generated by the infimals,
(v) Vv(f) = 52 for all f € F,
(vi) R(V(f), Q) is defined &s Q = V(f) for all f € F,

Based on thils satisfaction approach, the control
problem of the two-level linear dynamical system may be
solved by selecting appfopriate constraints on the

uncertainty set ¥, Takahara did obtaln some genersl



193

results related toithe ebove mentloned problem. The
basic heuristic in his approach of utilizing the setis-
faction approach was the‘followingz By selecting any

f € F to be imposed on the system, he then tried to

find a control function m € M whlch extremizes the
performance functional Q@ under the influence of the
perticular f. If such m exists, then, for certain'classes
of systems, this m will satisfy the relation R(V(f), Q).
In other words, this control function m will be the
soiution to the control problem of the system with
uncertainty. However, he a2lso established that, for
certain other class of systems, the failure of the

ebove approach, i.e., the finding of nm yia optimizsetion,
does not necessarlly imply that e solution to the satis-
factlion approach does not exist, The systems under
consideration in the preéent research belong in general

to the latter case,

In addition to the above observation, there are
two major differences in the problems consldered by
Takahara end the present study. First of all, theré is
the difference in éystems structure, As it can be seen
in Figure 5.1, there exist‘no direct influence from-the’
lower level subsystems to the higher level subsystems

in Taekaehsara's model of multi-level s&stems. On the
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other hand, as 1t can be seen from equations (5,3-1)

| (5.3-2), the infimels are directly influencing the supre-
mal via the state functions xi(t) as represented by the
term EBi(t)xi(t). Secondly, the success in solving the
coordination problem of the present case depends heavily
on establishing an a priorl bound as a constraint on the
uncertainty set F. On the contrary, sucﬁ constraint was
not established a prioril in Takahara's approach, However,
for certain class of systems, a limit on F would emerge
lteratively 1In his work. By comparing these two sﬁudles,
lif appears that unsurmonteble computationel difficulties
might be encountered in trying to find the & priori
constraint on F if hls approach 1s~fbllowed strictly.

5.4 A Scheme _of On-line Coordination

As we had pointed out, 1nternal'disturbance is
the most Important characteristlic which distingulishes a
multi-level system from other types of systemé. Hence,
coordination under the influence of internal distur-
bance becomes the primary concern in the study-of multi-

level systems,

Iteration techniques were adopted as one method

of coordination in most of the previous studies on
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g

.multi-level systems. But this approaéh can be used only
for a design problem, and thus off-~line, from which a
fixed system structure would be the result. In this report,
since we &re primarily concerned with certaln béhavioral
properties of multl-level systems, & scheme of coordination
which brings about a prescribed behavior pattern becomes
essential, Apparently, such precribed behavlior pattern
will change from time to time, often, as practical re-~
gqulrements dictate., Consequently, the iterative techniques
are no longer satlisfactory. Ap on~line coordination
scheme in the sense that adjustments be made from time

to time without altering basic systems structure seems

to be necessary.

Such & scheme was proposed'by Takaharal[ 34, we
shall see how his scheme can be adapted to.solve the

on-line coordination problem in the present case,

Let us introduce tvwo index sets J = [0, T] and
I = [1, 2, seey NJ. The index set J represents the set

of real time and I the adaptation stages of the supremal,

‘A, The two-level system is given by the equatlons
(5.4~1) and (5.4-2),

The supremal:

%= AEIX(6) + Olb)alt) + 1p, (b)x, (5] (5.4-1)
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X = A(t)x(t) + C(t)m(t) - (5.4-1")

The infimals:

x, = Ai(t)xi(t) + Ci(t)mi(t) + jiinij(t)xj(t)'
1 - 1' 2' .ooo, pc (5.’4’"2)
ii = A ()%, (t) + C, (t)m, () (5 4-2")

The over-all performance criterion is glven by

2

Q = x(T) - x,iI (544=3)
where x(t) is the solution of (5.4~1) and X4 is a desired
state, And V(f) = ez.

- The solution of (5.4-~1) is given by
| K
x(t) = 2(s)x_+ [ 2(t, s)C(s)unls)ds
t H
+ Ioe(t.‘S)iBi(S)xi(s)ds (5¢4-4)

Similarly, for the infimals:

. |
+ Io§i(t, S)Ci(s)mi(S)dS.

xi(t) = §1(t)xio

t .
+ 1021(tf S)JziDij(S)xJ(S)ds |
(5.4=-5)
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Let us éttach e supersoript'i on each variable to denote
the i-th adaptatioh stage; For 1nstan¢e. the desired state
xd at i-th adaptation stage is x;. Let us assume that the
adaptation stages are sequential and continuous by defining

the followlng:

Jl == [O, Tl:l, J = (T '} T ], L3N Y J = ( 2 T K] TiJ. sop
k=1
N o N-lyx «x
J = ( 5T ’ T ] . (504"'6)
k=1
Then

x{t) = x(t) fort €J = (=T, Ti]

- i-1 :
('™ = x5 1) (5.4-7)

14
X
° k=1

il
11

Similarly

xi(t) = xi(t) for t € J

1-1 4

: )  (5.4-8)

i-~-1
= = 3
xio xi(T ) xi( 5

Using previbus notations, we have also

i i i i i
M = | <
{m(t):lmﬂzOrw k', t € J}
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R AT P ¢ gt
Moo= {mgte) ehmpn, oSk, b€ }
i i i i
X, =% & X elx k)

B, The control problem for the i-th imfimal at
the j-th adaptation stage 1s the followlng: Glven the
system (5.4-2'), the space Mi of admissible controls,

J J

the target state xid' end the set Xi

o of admissible

initial conditions . Find & control function mi(t) for
t € JJ such that the system (5.4-2')_1s transferred

from & selected initial state xio to the targét states

h|

J
Q L]
xid for some t J
Cs The control problem for the supremel during
the j-th adaptation stage is the following:
Given:
(1) The system equation {(5.4~1),

3

(i1) The space M of admissible controls, .

(111) The initial state xg = x(pd7ly;

(1v) The target state xg.
Find: -

(1) A control function mj(t) € M1 which transfer the
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System (5.4-1') form xi to xg in some time t € J°

(1i) Choosing an appropriate 1\'1‘1 for each infimal

i
according to the results obtained in previous

chapters,

J
id

according to previous results,.

(111) Choosing an appropriate x for each_infimal

(iv) Choosing appropriate amount of interactions among
the 1nf1mals by determining the matrices

J

Dij(t) for t € JY according to previous results,

D. On=-line coordinastion scheme: Suppose we are

at j-th stagé:

J-1 -1 _§-1

i atio i M
(1) Previous info?m ns concerning M, v Xiq 0 Xio
J-1
Dij (t) are sent to the controller of the supremal,

(11) The supremel solves its control problem as defined

in Co

(111) The supremal uses 1ts own control function mi(t) € Mi

and, at the same time, sends orders regarding to -

M‘Jj,'x‘1

i 1a’ Dij(t) to the appropriate infimals,

(iv) The‘infimalé solve their control problem as defined

in B by choosing an appropriate mi(t) € Mi.
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(v) The resulting informetions for the period JJ are
stored end ready to be sent to supremel's controller
at (J+1)=th adaptation stage,

When the above coordination scheme is followed, the over-~

all performance criterion will be satisfied, i.e.,

Nxd(rd) - xglls o forall jeI



CHAPTER VI

APPLICATIONS

Almost 1nvar1ably, complex industrial systems
are constructed using many smaller components or subsystems.
For instance, in e power-generation plant.there are steam-
generation units, turbine.generator units, and electricity
dispaetching subsystems; in a refinary there are.reactors,
distillation columns, etc; in an integrated steel processing
plant there are blaest furnaces, soaking pits, rolling
mills, etc. More or less, the operating characteristics
of these components or subsystems are known, For & suc-
cessful operation, one of the problems to be answered
is how the integreted system behaves when the subsystems
are put togather or interconnected, At the present
advanced stage of technology in computer control, there
are propositions of using on»line‘muﬂa~computer systéms
to control such complicated processes., One way of doing
this is to use separate computers to conduct the be-
haviors of individual subsystems or group of components
while another computer situated on a different level of

hierarchy 1s employed to coordinate the control strategies

201
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of the other computers., In such cases, the understanding
of the operating characterlstlcs of the over-all systems
as‘a function of the operating characteristles of the
interconnected subsystems 1s extremehy important. We
feel that the results developed in the present study

will partially answer the questlons posed above,

in the following, we shall work out one numerical
example intended to illustrate how the results developed
so far may be used to practlcel sltuations. It is to
be understood, however, that the system described in
the followlng exmple is highly ideslized and thus do
not necessarlly represent the mathematical model of
any particulér system in real ﬁorld. At the same time,
since we do not consider a quaentltative theory, such
as the case of optimal control theory, the Justification
on whether an actual systen should be buillt in the wey

described in the examples can not be provided here,
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6-1 Example

Let us consider the application of the two-level
linear system model to the control of a four-stand

rolling mill as described in the followlng schematic

diagran,
G G
M M

O?O%%

Figure 6.1
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Let us assume that the rolling mill 1s & high
speed hot rolling mill for the production of sheet=-
steels from steel slabs. One of the most important
factors which controls the quality of the final pro-
ducts is the tension and its variation on steel strip
between stands. In practlce, the tenslion in steel
strip can be controlled by adjusting the slack control
devices (rollers Yyr Yoo y3) and the angular speed of
the rollers 1, 2, 3, 4. In order to produce & product
of uniform quality, it is necessary to control the
roller speeds at all rolling stends so that the sen=-
sltivity of slack varlatlon due to extroneous distur-

bances could be minimized.,

One_common practive in solving such control_pro—
blem is to select & stend as the reference, whille the
roiling speeds of other stands are adjusted and con-
trolled with reference to this selected stand. At the
same time, the slack control devlices are soﬁe fixed
mechanism, e.g., spring loaded rollers with & pre=-
determined spring rate, However, no dynamical control
action, e.g., continuous adjustment of positions or
spring rates, 1is realiZed‘on the slack éontrol devices
during the operatioh of the system, The fact that the
above control scheme‘hés not been always successful

is witnessed by the sometimes looping of the steel
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.

strip durling operation in meny actual cases, Conse-
quently, it is perhaps worthwhile to suggest & new
control scheme which would yleld better control quall=
tatlively in ﬁhe abbve case, This, we feel, might be
accomplished by introducing the two-level linear

system model developed in the present thesis,

As we find from the dynemical property of the
steel rolling mill, the two controlling factors of
strip tension between stands are the position of the
slack control device and the relative rolling speeds
of the adjacent stands. In the previous practices, the
only control variabie which has been explolited in
developing the control scheme is actvally the rela-
tive rolling speeds. Unfortumately, due to factors
such as dynamic interactlon between stands, time lag,
and sensitivity to external disturbances, people do
not always get satisfactory performance..Suppose now
that we start to explolt the second controlling veria-
ble, the slack control device, via the introduction
of the two-level linear system model, would this at
least gqualitatively improve system performance? Would
the introductlon of & second control aétioh simplify
the modeling for control ore reduce.system sensitivity
to external disturbance or improve system performance

in eny other way? These questions can not be answered
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quantitatively &s in the simple and ldeallzed example
presented in the following. Nevertheless, we shall

show that the task could be tackled via the theoreéibél
analysis developed inthe main body of the present e
thesis, We shall demonstrste such possibility ysing a

modified model given in Cooperman 10 ,

Let us assume that Y112 y3 represent the con-
trollable positions of the slack-control rollers, Let

us also denote by x, the deviation of rolling speeds

i
of rolling stands 1 from thelr nominal values. Let us
assume that the rolling speed of each stand is controlled
by independent control mechanisms so that, for each

stand, its system may be described by equation (6,1~1)

. bi 1
Xy == — X3 # —2 , 1= 1,2,3,4 (6.1-1)
I Iy ‘

where bi ere rolling frictions of the rollers; I1 are

the moments of inertla of the rollers; and m, ere the
control function for each stand, We shall assume thet
each rolling-stend will have its own power source, thus
no dynamic interaction 1is direétly coupling the rolling-'
stands, In this way, the xj term wlll not appezr in the
i-th equation.

at the same time, let us assune that the positions
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Y1r Yoo Y3 of the slack control rollers are controlled

by & linear model described by the follwwing equation

Yy = &1 = Ay(t) + Cnm(t) (6.,1-2)
Vo '

3
where A, C are constant matrices,

In order to form &n integrated control system, which

will simdltaneously adymst the variables x, and yj, e

1
two~level linear dynamical system may be formulated in

the follwing way:
Supremal -

y = Ay(6) + on(t) + 3Byx, (8) (6.1-3)
Infimals

ii = A3, (8) + Cymy(t) , 1% 1,2,3,4 (6.1-k)

where A, = -bi/Ii, cy = 1/11.

In equation (6,~-1-2), the last term indicstes
the dynamlc interaction between the control meecanisms

of the slack~control device and of the rolling-stands.

Pnysically, the above model indicates a form of

dynamlcal Interaction among the sybsystems (6,1-1) and
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(6.,1-2), wﬁich may be interpreted in this way: The
deviations of rolling speed Xi are sensed by the contol
mechanism of y‘1 such that the supremal may not only
adjust its oﬁn contovol functions accordingly but also

impose constraints on the roller speed control mech-

anisms .

According to the theoretical analysis developed in
the thesis, such a control scheme is possible, There-

fore, 1f certaln constraints on x, and yJ could lead

i
to a product of uhiform quality, the control function
developed in the two-level linear dynamicel system model

will fulfill the requirement,

For convenience of illustratlon, let us make the

following assumptions:

(]
4
N
o
=

(1) I, =3, b =1, ¢ = (1), 1=1,235k

According to Cooperman, we may have the matrices Bilas
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]
>

1 bll ' 2 21\’
0 b,,
0 0
B3 =r [0 , Bu =0
b32 0
P33 Py3

where r is the radius for &8ll the rollers,

(111) r = 1, bij =1, 1=1,2,3,4 3 =121,2,3.

Then, equations (6.1=3) and (6,1=4) may be written

respectively as

y= [-1 0 0 v\ + [1) =)
0 -2 0 Yo 1
0 0o - | 1
3 y3

+ [1\ x(E) + [1\x,(t) + fO x3(t) + [0 1 (t)
0 l 1l (o}
0 0/ . ] ' 1
A l _»‘ . .A".. (601"“;)

y= [-1 0 0\ [y\ 4 [1\n(t) (6.1-5°)
| 0o -2 0 Yo 1
0 0 = ' 1
3 y3

x1= "xi + mi(t) ] i = 14,2.,3,1*,' ‘ (6.1"6)
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4

The control problem of the two-level linear dynamical

system can thus be defined as follows:

(1) Supremal is described by (6.1-5).
(11) Infimals are described by (6.1=6).

(111i) Over-all Goal of the System: Let ydbe some desired .

position of the slack control devices which gives
product of desired quallty. Let the supremal be started
from somne initlal position Yoo Let the desired position

yd be reacheable et T = 1.0 second under the condition

that the rolling=-stand speed devistions x, are zero,

i
with respect to a glven control space
M={m: Jlm),< 100, t % 0} , The over-all goal of
the two-level linear control system is defined to be
the conservatlon of e-controllabllity, for some £> 0,
of system (6.1-5) at T with respect to M and (yo, )

when xi are identically zero,

'(1v) Control Problem of the Supremal: To achieve the

over-all goal as defined by the use of coordinative

interventions.

b AFor convenlence of illustration, let Vg = k0,0,0),
Yo = (1,0,0). The fact that system (6.1-5') and (6.1-6)
ére completely controlleble can be essily demonstrated
by standard test. Whether system (6,1=5') is controllable

with respect to Yor Yy and M as glven can be tested
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by direct computation as follows. From formula (2.2-6),

we know that
m(t) = =C'E* ()W (D)7,

is a control function which will trensfer system (6,1-=5')

from Yo to the desired state Ygr where

" T
W (T) = J B(t)ccg (t)at

In the present, $(t) = exp(At). Therefore, we have

W(T) = W(1.0) = Ii'o exp(At)[1\(1 1 1)exp(At)dt
1
\ 1
= (48 .33 .25
33 .25 .20
25 .20 ,17
From which we have A
WH1.0) = | Bo.k -98.4  56.4
-98.4 308  =217.5

56,4 -217.5 179

Consequently,
m(t) = <404 ™% & 98.4e™20 o 56,467 (6.1-7)

Now, we should check whether mo(t) is admissible, which
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is done by direct computation, Since

1 .
o . = follmo(t)llzdt = 27.4 < 100 (6.1-8)

ollo
we know that m is an adnissible control function,

Now, the task left to be finished is to show how
the supremal could use the four types of'coordipative
interventions to coordinate the behavior of the infimals,
i.e., the control @f deviations of roller speeds.
Interactlion intervention is will not be uselul because
interaction in the present case is assumed to be absent.
As has been developred in the main body of the thesls,
the use of image intervention 1s to require the infimals
to be b.i.b,0. stable, By examining equation (6.1-6)
we see that this requirement has already been satlisfied.
This leaves constraint intervention and gozl inter-

vention for the use by the supremal, Since x, represent

i
the deviations of roller speed from some nominal speed
settings determined beforehend, we may assuhe that

- the desired state for each infimal is xi = 06, Conse-
guently, we must show that the supremal willl achieve
the over-a2ll goal as defined by the use of constraint

intervention only.

In the present case, the supremal has evidently

a large amount of redundant control energy for his use
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as it has been demonstrated by formula (6,1-8). Then,
.according to Proposition 3.,7-1, the supremal may even
achieve the over-all goal when e = 0, In order to show
this, let us essume that the constraint intervention
will teake the following form:

(1) The supremal selects the set of admissible

initial states for eech infimal by defining
Xio ={xo€ R Mz i s 1}, 1 =1,2,3,4

(11) The supremal commends the infimels to use
only feedback type controls so that
my (6) = h,%, (t) (6,1-9)

with hi < 0.

When these constraints are lmposed, the deviatlion
of roller speed generated at the rolling-stends will
take the form

xio(t) o= xioexp(wl -+ hi)t | (6,1-10)

Since -1 + hi'< 0 under the given constraint, we know

that
lx, (6)l £ 1 forall t=o0

Then, according to Proposition 3,7-5, the over-azll goal
is indeed achievable when ¢ = 0, This can be effectively

demonstrated by actual computation as follows:
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Suppose that the infimals pick any feedback

constants, say h1 = -1 , and some inlitlal state
Xjo = 1. Then
-2t
x,(t) = e for all t 2 0 (6,1-11)

Under this circumtances, the supremal may put in some

extra effort by eadding the control function

-2t
m*(t) = - 2e
to the original'mo(t) so that the control function 1is
now m(t) = mo(t) + m*(t). The fect that the presence of
(6,1-11) in (6.1=5) will not afffect the achievement
of over-all goal 1s simply demonstrated by the fact that

IBx, (8) = (2 2 2)‘e_2t. Thus

i
¥

|

By(t) + € (m(t) & m'(8)) 4 3Byx, (&)

AY(t) + Cmg(t)
thich is controllable at T = 1.0 second., Since

1 o
hm, + m*n2 = I Wmy(t) + n*N%at = 28.6 < 100

o

. .
* we know that m(t) = mo(t) +m (t) is again an admissible

control function in the control space M,

Although the computation done for a single set of
values (X3¢, hi) only, it should be quite obvious that~

the result will be valid for any chosen X5 0 and hi 80
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long as they satisfy the gilven constralnts imposed

by the supremal,

In general, the steel~rolling mills are batch
probessis. The conditions and settings may be changed
from time to time, In this case, the on-lline coor-
dination scheme as outlined in section 5.4 can be

employed to solve the control problem of the subremal.

In the above example, we have delt with & highly
simplified and idealized problem. In practice, we
wéuld expect much more compliceted situation and thus
much complex modeling proble to take care factors
such as external dlsturbances, dynamic interaction
between stands due to strip tension, etc. Nevertheless,
the purpose of this example is simply to propose &
new way to look at the control problems of complex
physical systems. We can claim with considerable condi-
dence that many complex processes might be modeled
via the two~level linear dynemical system which we

advocate in the present thesis,



CHAPTER VII

CONCLUSIONS AND EXTENSIONS

The two-level linear dynamicsal systems studied in
the present research represents only & small portion
of the entire cless of multi-level systems, At the same
time, controllablility 1s but only one of the many
gqualitative properties important to any control system,
Conséquently, the present research can only be conslidered
as & limited exploration In pursuing knowledge relating
to multi-level systems theory, and extenslions to the

present knowledge can be, and have té be @one,

One of the possible extensiong to the present

" study stems from.the main weakness in the theory de-
veloped so far, namely: the stringent constraints in
meny ceses on the state functions Xi(t) of the infimals,
This limitatlion 1s the result in the way "set of admls-
ssible disturbance functions" are defined, Nevertheless,
this limitation does not seem to be easily 11ftedvif
fhe above definition is not more carefully explored,

In other words, studies will have to be conduted in

216



217

order to determine the relation between more réstrictive
classes of edmissible disturbance fundtions and system

dynamics,

As we cen see from the previous studies and the
mathematlcal structure of the two-level linear dynamical
systems, so long as the stete functions Xi(t) satisfy
certain properties the results obtalined will not be
affected whether the infimals ere linear or nonlinear
systems., Thus, enother possible extenslon is to study
the case when some nonlinearitles present in the sub~
systems. We should note, however, that this would become
a very difficult problem when decomposition is the mein
concern, because the presence of nonlinearities will

impair the effort of reticulation,

In the present research, we explored only the dy-
namlcal relationshlips between the sets of admissible
control functlions, system dynamics, etc., Further studies
on the computationsal problems of actually finding
appropriate control functions, constants, etc., will

be highly desirable,.
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