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ABSTRACT 

This thesis describes the use of linear regression 

models for' predicting the enrollment in required Electrical 

Engineering courses. A brief description of regression 

methods, and Kalman filtering is included. Reasonable mod­

els, to be used for prediction, are selected from the models 

that were tried. Predictions for second term 1971-72 are 

made, including 80%, 90% and 95% confidence intervals, and 

compared with the actual enrollments. Predictions for first 

term 1972-73 are also made and compared with intuitive es­

timates of the enrollment. The models worked reasonably 

well considering the extremely random behavior of course en­

rollment. 
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I INTRODUCTION 

I.a The Problem 

Every term, at MIT and all universities, decisions 

must be made that allocate resources for individual courses. 

Teaching Assistants must be hired, money allocated and rooms 

selected. It would be helpful, in making these decisions, 

to have predictions of the enrollments in these courses for 

one term ahead. The purpose of this thesis is to build a 

model for making one term predictions of the enrollment in 

required Electrical Engineering courses at MIT. The model 

is limited to Electrical Engineering courses because most of 

the resource allocation for individual courses is done at 

the departmental level. The model is further limited to re­

quired courses because they are generally larger and it was 

expected that required courses would exhibit more regular 

enrollment behavior than elective courses. This was assumed 

primarily due to the fact that all of the students in the 

department must take the required courses. 

Previous to this time estimates of course enroll­

ment were made by looking at the enrollment data for the 

past several terms and noting general trends. This method 
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works adequately well, but there is still some amount of 

dynamic reallocation required. That is, during the first 

week or so of the term, there is some shuffling of teaching 

staff, rooms, etc. 

There are many difficulties associated with pre­

dictory enrollments. The set of required courses is con­

stantly changing. The prerequisite structure is changing. 

MIT has a very flexible system in that courses do not have 

to be taken in any particular year of the student's course 

of study. It is a routine procedure to add or drop courses 

up until two weeks before the end of the term, and pre­

requisites are often waived or ignored. This flexible sys­

tem provides greater freedom for the student, however, it 

complicates the enrollment prediction problem. Another 

more particular difficulty is that the Electical Engineering 

department at MIT is really two departments. The student 

can select the Computer Science option, or the Electrical 

Engineering option, each of which has its own set of require­

ments. The computer science option has only existed for a 

few terms and its requirements are still very volatile, 

there are major changes almost every year, Some of the 
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courses have only been offered three or four times prior 

to second term 1971-72, and one was discontinued after sec­

ond term 1970-71. 

These difficulties not only add to the uncertain­

ty of the system, but in many cases they result in very 

little historical data for the same prerequisite and re­

quirement structure. In general, there was very little data 

to work with - eleven terms of total enrollment figures and 

five terms of more detailed data. Also, there was data from 

outside of, the department that might have been useful, such 

as enrollment figures for non-Electrical Engineering courses 

that are prerequisites of the courses under consideration. 

In addition to these data problems, the enrollment 

in courses changes so much during the term, that for each 

course each term, there are three values of enrollment: in­

itial registration, fifth term enrollment and final enroll­

ment. It is not unusual for these to vary 20-25 percent. 

The fifth term data was selected because the initial enroll­

ment is not very interesting. That is, allocation decisions 

should be based upon the number of students who actually take 

the course rather than the number of students who sign up 
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to take the course. The final enrollment was not selected 

because this data would not be available in time to make 

predictions for the next term. Also relevant in the selec-

tion of fifth term data, was that it was available. 

The basic assumption that was made for the con-

struction of the models was that enrollment in a course is 

linearly related to the enrollment in itself and its pre-

requisites during the preceding terms. Thus the enrollment 

in the subject Electronic Devices and Circuits, 6,02 for 

term k, S602(k) is assumed to be linearly related to the 

enrollment in Introductory Network Theory, 6.01, during term 

k-1, S60l(k-l), because 6.01 is the prerequisite of 6.02. 

Thus, 

S602(k) = aS601(k-1) +c + e 

where S60l(k-l) is the enrollment in 6.01 for 
term k-l 

S602(k) is the enrollment in 6.02 for 
term k 

a,e are constants to be determined by 
regression on data of 6,01 and 
6.02 enrollments during preceding 
terms 

e is an error term with zero mean, 
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This is a very simple model that actually fits 

the historical data fairly well and made a prediction of 

enrollment in 6.02 accurate to within 10%. The regression 

methods used to determine the constants of the model and 

the confidence intervals for the prediction are briefly 

discussed in section II-a. 
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I.b Other Educational Models 

There are numerous accounts in the literature of 

student flow models and enrollment prediction models. All 

of this work, to the best of the authors knowledge, has 

been done at a very aggregated level. That is, these mod­

els were designed to predict the total enrollment in the 

university or perhaps the enrollment broken down by depart­

ment and year. Thus the work was not directly relevant to 

the current problem of enrollment predictions for individual 

courses. It was, however, useful to see some of the ap­

proaches that are being taken in a closely related area. 

Some of this work was done at the University of 

California by Robert M. Oliver and Kneale T. Marshall. The 

models they used were probabilistic and were used both for 

one term and long range forecasting. The results they a­

chieved were quite good with their gross enrollment pre­

dictions to within about 5% of the actual values. 

The work done at the Western Interstate Commission 

for Higher Education, WICHE, has a significantly different 

flavor than that done at the University of California. The 

WICHE model is much more structurally oriented, in an 
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attempt to recreate the real situation. That is, to predict 

enrollments by department, the model traces the flow of stu­

dents through the system, the admissions module, enrollment 

module, etc. The other primary difference between the WICHE 

and University of California models is that the WICHE model 

is intended to be applicable to almost any university, after 

the parameters are determined for that institution. This 

would be done primarily by regression analysis of historical 

data. In addition to this general character, the WICHE mod­

el has been designed specifically to interface to other 

WICHE resource allocation models. 
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II, TECHNIQUES 

* II.a Regression 

Regression is a statistical technique useful for 

determining the relationship among a number of variables. 

The two variable cases will be covered in detail and then 

extended to the multiple variable case. 

Consider the variables S602(k), the enrollment in 

subject 6.02 for term k, and S60l(k-l), the enrollment in 

6.01 for term k-l. From Figure II~l, it is clear that 

S602(k) and S60l(k-l) are related, In fact, this relation-

is very close to a straight line, which is reasonable since 

it says that enrollment in 6.02 is proportional to the en­

rollment in 6,01, its prerequisite, for the previous term, 

Our problem now is to find the line that best fits these 

points. The best line will be considered to be the line 

that minimizes the sum of the squared errors. If these 

errors are independent and have finite variance, then from 

the Guass-Markov Theorem we know that for the class of lin­

ear unbiased estimators this solution has minimum variance, 

* This treatment borrows heavily from reference(6). 
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Thus if 

s 60 2 ( k ) = a" + b" S 60 2 ( k -1 ) 

we wish to find the values of a" and btl that minimize the 

sum of the squared errors. To simplify the mathematics, 

we will translate S60l(k-l) into variations from its mean, 

i.e. determine the new variable 

s601(k-l) = s601(k-l) - S60l(k-1) 

where S601(k-l) is the mean of S60i(k-l) 

We now have 

S602(k) = a' + b~.s601(k-l) 

where b ' = b" but at is a new constant 

Let S602(k)' be the fitted, or calculated value 

of S602(k), then the sum of the squared errors is 

L (S 60 2 ( k ) - S 602 ( k)' ) 2 

because each fitted value S602(k)' is on the estimated line, 

S602(k)' = a' + b',s60l(k-1) 

and we wish to find the a' and b' that minimize 

J(a,b) =~(S602(k) -ai-b'. s60l(k-l»2 

By setting 

C)J ()J 
~a'= ob'= o 

and solving, we get 
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ai, = S602 (k) and, 

b' = 1: S602 ~k~ · s601(k-l) 
, s601 k 2 

We have now found a relationship between S602(k) 

and s601(k-l) but we know that there is some error in this 

relationship. This error derives both from the fact that 

we probably have not found the true regression line and the 

system was probably stocastic anyway, due to measurement 

errors and so on. We will assume that the S602(k) are i-

dentica1 independant random variables whose means are on 

the true regression line 

S602(k) = a + b.s601(k-1). 

Thus, 

E(S602(k» = a + b.s60l(k-l) and, 

variance (S602(k» = S2 

Our least squares estimates of the coefficients, 

~ and b' , are then estimators of the true coefficients a 

and b. We can show that, 

E(a' ) = a 2 
var (a' ) =....§. 

n Where n is the number of 
observations 

-14-



For a' 

E(b') = b 
var (b'.) = S2 

~ s601 (k-1)2 

a' = S602(k) =~S602(k) 
n 

because the S602(k) are random variables, 

Thus, 

E(a·') = 1 ~ E (s602 (k) 
n 

E(a') = 1 ~(a + b.s601(k-1) , 
n 

E(a:'} =~ + b ~s601(k-1), but because 
n n 

s601(k-1) = S601(k-1) - S601(k-1), 

~ s601(k) = 0 

E(a'} = a. 

Because the S602(k) are independent, 

var(a) = 1 ~var(s602(k} = ns2 = s2 
n 2 ~ n 

Similarly for b', 

b' =~S602(k) • s601(k-1) 
X s601(k)2 

Since each s601{k-1~ 
%s601 (k) is a constant, 

E(b'} =Xs601(k-1) • E (s602(k) 
2: s601 (k-1) 2 
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E{bt.) =2:s601(k).(a + b.s601(k-l)) 
s:: s601{k-1)2 

E ( b ') = a E s 601 ( k -1 ) + b X: s 60 1 ( k -1 ) 2 
~ s601(k-1)2 

Thus, because 

~ s601(k-1) = 0 

E(b') = b 

Because the s602(k) are independent, 

var ( b·') = ~ s 601 ( k -1 ) 2 • var (S 602 ( k) ) 
( 2: s 601 ( k -1 ) 2) 2 

Thus a' and b' are unbiased estimators of a and b. 

Once we have found the coefficients a' and b', 

the best estimate of S602(k) for a new value of s601(k-1) 

is 

S602{k)' = a' + b'·s601(k-l). 

The variance of this prediction is 

var(a') + s601(k-1)2 var (b') + var (S602(k» • 

This is because 

var(a t
) + s601(k-l)2 var (b') is the variance 

of our estimate of E(S602(k» and to this we must add the 

variance of the S602(k). 

-16-



Therefore, the variance of our prediction is 

S2( 1 + s60l{k-l)2 + 1 ) 
n rs60l(k-l)2 

We can now derive the expression for the 90% con-

fidence interval for the prediction. If we assume that 

S602 (k)", our predicted distribution for S602 (k) is gaussian, 

we can normalize S602(k)' to 

Z = S602(k)~ - S602(k) 

S2( 1 + s601(k-l)2 + 1) 
n %,s60l (k-l)2 

Now Z is a normal distribution with a mean of zero 

and a variance of 1. Because we do not know S2, the vari-

ance of the S602(k), we estimate it with S,2 where 

S·.2 = -LE(S602(k) _ S602(k) 1.) 2 
n-2 

The ~(S602(k) - S602(k) ,)2 is just the sum of the squared 

errors of the regression, and the 1 is used to make S·2 
n-2 

an unbiased estimator of S2. When the S·2 is substituted 

into the expression for Z , the result is no longer normal 

but has the t distribution, 

t = S602 (k)" - S602 (k) 

J S12 ( ~ + ~~~Mfk:I~2 + 1) 

where2t has n-2 degrees of freedom, the same 
as S' • 
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If we let t,05 be the t value that cuts off 5% 

of the distribution in both tails, then 

substituting for t 

and, 

Pr(-t,05 <S602{k) - S602(k) "t,05)= . 90 
S·,2 (1 + s601(k-l)2 + 1) n ~s601 (k-l)2 

Pr(S602(k)' -t. 05·S· 1 + s601(k-l)2 +1<s602(k) 
• n ~s601(k-l)2 

< S602(k)~ + t 05'S· 1 + s601(k-l)2 + 1) = .90 
• n 2:,s601 ( k-l) 2 

Therefore the 90% confidence interval for a prediction of 

S602(k) is: 

s602(k) = S602(k)' ± t.05·S~ 1 + s601(k-l)2 +1 n ~s601 (k-1)2 

Now that we have considered the two variables 

case we can easily extend the ideas to the multiple variable 

case, which is called multiple regression. For example, we 

may wish to consider S602(k) as a linear combination of 

S601(k-l), S602(k-l), and S601(k-2), 

Plus an error term e(k), 
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If we let 

Y = column vectors of the observed S602(k) 

x = an (n x k) matrix where n="the number of 
observations 

x = 1 S601(2) 
1 S601(3) 
· • • 

• • • 

and k= the number of 
independent 
variables 

S602(2) 
S602(3) 

S601(l) 
5601(2) 

• • .. • • • 
1 S601(n+1) S602(n+1) S601(n) 

B = a column vector of the bi's, and 

~ = a column vector of the e(k)'s 
with E(~) = 0 and cov (~) = E(eet )=S2 ,then 

Again, to calculate the coefficient vector, B, we minimize 

* J, the sum of the squared errors. 

J = (Y - X~)T (Y - XB) 

J = yTy _ 2yTXB + BTXTXB 

Setting the vector of partial derivatives of J with respect 

to the coefficients to zero, 

* Superscript T indicates transpose. 
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where B' is our estimate of the coefficient vector 

To show that B' is an unbiased estimator of B, 

we note that 

However, because 

E(Y) = XB 

E(B') = (XTX)-lXTXB = B 

Thus Bt is an unbiased estimator of B. 

The covariance of B' is just 

But 

cov (Y) = cov <.~) = s 21 so, 

cov (Bt) = S2(XTX)-1 

If we now obtain a new set of values for the in-

dependent variables, n and wish to calculate the mean and 

covariance of the prediction Yo corresponding to n, we get 

E (Y ) = n B' o --

var = !l cov T 2 (B')!l + S 
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SimilarlY to the two variable case we substitute 

for S2 

to get the 90% confidence interval for the prediction Yo, 

Yo = n B' ~ S' t. 05 jn (XTX)-lnT + 1 

where t has n-k degrees of freedom, the same as S'. Note 

that n is the number of observations and k is the number of 

independent variables. 

We now know enough about linear regression for 

the purposes of this thesis. 

All of the regressions done for this thesis were 

done with the Econometric Software Package, ESP, available 

at the MIT Information Processing Center. 

ESP contains standard features that do multiple 

regressions, giving the vector of coefficients B' the stan-

dard errors and t statistics for B', the covarience matrix 

S,2(XTX)-1 and S', the standard error of the regression. 

In addition to this, a special program was written that 

calculated the 80%, 90% and 95% confidence intervals for 

the predictions of the models. 
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II.b * Kalman Filtering 

The basic idea behind the Kalman filter is to 

update the estimate of a state vector on the basis of a 

noisy measurement of a known function of the state vector. 

The new estimate of the state vector is to be optimal. We 

will first consider the case of a static system and then 

extend this for single-stage linear transitions, and linear 

multistage processes, The possible application of Kalman 

filtering to the enrollment prediction problem will then 

be discussed, 

Consider a static system with the n-component 

state vector x, We have an estimate of x with 

E(x) = x and, 

E(x-x) (x_x)T) = cov (x) = M, a known (nxn) 
positive matrix 

We then wish to get a new estimate for x based 

on the old estimate and a p-component measurement vector 

z, where, 

z=Hx+v 

* Knowledge of the material contained in this section is 
not necessary for understanding the rest of the thesis, It 
borrows heavily from reference (I), 
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H is a known (p'Xn) matrix 

is a p-component error vector for the 
measurement, with 

E (v) = 0 

E(vvT) = cov (v) = R a known (pxp) matrix. 

A good estimate of x is the weighted-l east-

squares estimate. Thus our new estimate of x, which we call 

x" will be the value of x that minimizes 

Note that as M, the covariance of x gets large 

the error, (x-x) becomes less important. Similarly, as R 

gets large, the measurement error v = z-Hx becomes less im-

portant. 

To minimize J and find x", take the differential 

of J 

and set the coefficient of dxT equal to zero 

collecting the x" 
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= M-1x + HTR-1Hx + HTR-1z _ HTR-1Hx 

= (M-1 + HTR-1H) X + HTR-1 (z-Hx) 

let P = (M-1+HTR-1H)-1 and premultiply 

x" = x + PHTR-1 (z-Hx) 

We have found x", the new estimate of the state 

vector, the claim now is, that the covariance matrix of 

the new estimate is just P where again, 

P = (M-1+HTR-1H)-1 

To show this, let 

e = x"-x, the error in the estimate 

e = x - x + x" - i 

using our equation for x" and letting K = PHTR-1 

e = x - x + K (z-Hx) 

using the definition of z 

e = (x-x) + K (v+Hx-Hx) = (x-x) + k(v -H{x-x» 

e = (I -kH) (x-x) + Kv 

because (x-x) and v are independent, 

cov(e) = E(eeT) = (1-kH) M (1-kH)T + KRKT 

Remembering that 

p-1 = (M-1 + HTR-1H) 
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and premultiplying by P and postmultiplying by M, yields 

M = P + PHTR-1HM = P + K:HM 

or, 

(I -KH) M = P 

Substituting for (I-~q) M in the equation for cov(e), 

cov(e) = P(I-KH)T + KR T 

= p 

= P 

PHTT + PHTR-1RR-1HP 
K 

Thus oov(e) = P 

From P = (M-1 + HTR-1H)-1 

T -1 . . . . and the fact that H R H 1$ at least a pos1t1ve sem1-

definite matrix, it is obvious that P the error covariance 

matrix after measurement is never larger than M, the error 

covariance matrix before measurement. It is interesting 

to note that it can be shown that e and x" are uncorrelated. 

To extend these results for single-stage linear 

transitions, consider then a system which experiences a 

discrete change from state 0 to state I, described by the 

equation 

x1 = i x + F W o 0 0 0 

-25-
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0 
is a known (nxn) transition matrix, 

F is 
0 

a known (nxr) matrix 

E(Wo) = w 
0 

cov(Wo) = E(W -w )(W -w )T = Q o 0 0 0 0 

The state Xo is a random vector with mean xo'· and 

covariance Po' This, along with the fact that Xo and Wo 

are independent permit us to write 

= ::t x" + F W 
~o 0 0 0 

cov (xl) = Ml = ;t P :t T + F Q F T 
~o o~o 0 0 0 

If we make a measurement, zl' after the transition 

to state 1 we can update the estimate of xl on the basis 

of zl and the results we obtained before, to get 

- T -1 - ) xi = Xl + PIHIR1 (zl - H1x1 ' 

P1 = (M1 + MiR- 1Hl)-1 

Noting that xl and Ml are the estimate and co-

variance matrix of xl before measurement and xl" and P1 are 

the estimate and covariance matrix of x1 after measurement, 

we can easily see how, for a multi-stage process, xl" and 

PI could be used to find x2 and M2• With another observa-

tion z2 we could get x2" and P2 and the procedure could 
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continue as long as we had measurements. 

It was originally hoped that this technique of 

Kalman filtering might have been used to update our pre­

dictions of enrollment. We soon realized, however, that 

in order to use Kalman filtering, we would have to have a 

measurement of the enrollment after the system had changed 

to that state. For example, suppose it is now term 12 and 

we want to predict S602(13). We can find an estimate based 

on S60l(12), but we cannot use a Kalman filter to improve 

this estimate of S602(13) until we have a measurement of 

S602(13) which of course cannot happen until term 13. Thus 

the Kalman filter cannot improve the estimate of the state 

for future time periods. 

In order for the use of Kalman filters to make 

any sense at all we would have to hypothesize a variance 

for the observed value of S602(13). This is reasonable, 

since some errors are likely to be made in the collection 

of the data. This variance is,however, much less than the 

variance of our prediction, so that once we have a measure­

ment of S602(13), that measurement is essentially our best 

estimate of the state. For these reasons, it was decided 
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not to use Kalman filtering techniques in the rest of the 

thesis, The Kalman filter is especially useful in appli­

cations where the measurement errors are of the same order 

as the prediction errors, which is not the case for the 

predictions of the models of course enrollment, 
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III THE MODELS 

III.a Introduction 

This section describes, by course, the models 

that were constructed. For example,' the models of 6,01 are 

presented, along with the values of these coefficients, and 

the standard error for each regression. The possible phys­

ical meaning of each model is considered, In some cases, 

the signs of the coefficients are not what would be expect­

ed from the physical situation. In other cases, the co­

efficients are exactly what one would expect. In the light 

of this physical interpretation and consideration of the 

standard error of the regression, good models are selected 

for predicting the enrollment for the second term 1971-72. 

III.b 6,01 

Introductory Network Theory, 6.01, is the first 

required electrical engineering course. It has two pre-

requisites, Physics II, 8.02 and Differential Equations, 

18.03. Both 8.02 and 18,03 are very large courses, 8,02 

is an institute requirement and 18.03 is required by a lot 

of departments, thus they would not be expected to closely 
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correlate with 6.01. For this reason, and the fact that the 

data for 8.02 and 18.03 were not readily available, 6,01 

was not regressed with either 8.02 or 18.03. The enroll-

ment in 6.01 would be likely to be correlated with its en-

rollment the previous term, however, because an approximate-

ly constant number of people take the course each year. 

Most EE students take the course in the first term of their 

sophomore year, which results in a large first term enro11-

ment and a small second term enrollment. That is, S60l(k) 

oscillates with a period of one year. This oscillation re-

f1ects itself in other courses for which 6.01 is a pre-

requisite. 

TABLE III-l 

The Models for 6.01 

Model De:Qendent Inde12endent Coefficients Standard 
No. Variable Variables b1 122 b3 Q4 Error,S 

1 S601(k) = b1·S601(k-l) • 535 227 

2 S601(k) = b1+b2·S601(k-l) 95 -,168 .696 + b3,S601(k-2) 35 

3 S601(k) = b1+b2S601(k-l) 401 -.901 34 

4 S601(k) = b1+b2S601(k-2) 24 ,857 32 
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Model 1 in Table III-l has an extremely large 

standard error. This is reasonable because the model claims 

that S60l(k) is proportional to S60l(k-l). In fact, be­

cause there is no constant term in the model, the constant 

of proportionality must be positive. It is absurd, however, 

to claim that S60l{k) will be larger if S60l(k-1) is larger. 

Model 1 is therefore rejected. 

Model 2 is much more reasonable. It makes physi­

cal sense insofar as S601(k) is negatively correlated with 

S601(k-l), which would be expected. Because it has a larg­

er standard error and is more complex, Model 2 was rejected 

in favor of Models 3 and 4. 

Model 3 makes good sense in that it reflects the 

idea that the total number of people taking 6.01 over two 

terms is a constant, with a magnitude of about 400. Model 

4 is good also, however, and it has a smaller error term 

than Model 3, Because Models 3 and 4 were both reasonable, 

they were both used for prediction. 

III,c 

As mentioned in Section I, 6.02, Electronic 

Devices and Circuits, has only one prerequisite, 6.01. 
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Thus it is reasonable to assume that S602(k) is correlated 

with S601(k-1). 

TABLE 111-2 

The Models for 6.02 

Model DeJ2endent 1nde12endent Coefficients Standard 
No. Variable Variable b 1 b2 b

3 
b4 Error,S 

1 S602(k) = b1S601(k-l) .698 18 

2 S602 (k) = b1+b2S601(k-l) 7 .673 19 

3 S602(k) = b1+b2S601(k-l) 150 .337 -.470 16 
+b3S602 (k-l) 

4 S602(k) = b1+b2S601(k-l) 
+b3S601(k-2)+ 
b4S601 (k-3) + 54 1.022 .574 -.066 
b.ss602(k-l) + 
b6S602 (k-2) + 
b7S602(k-3) -1.720 -.108 .948 15 

5 s602(k) = b1+b2 ,S601(k-l) 
+b3·S601(k-2) 
+b4· S602 (k-l) -17 ,261 .106 -.036 
+b5,S602 (k-2) .592 11 

6 S602(k) = b1+b2S601(k-1) 
+b3S601 (k-2) -19 .704 .069 14 

7 S602(k) = b1+b2S601(k-l) 
+b

3
S602 (k-l) 

+b4S601 (k-2) 14 .633 -.395 .266 12 
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From Table 111-2 we see that S602(k) and S601(k-l) 

are indeed related. Model 1 demonstrates that S602(k) and 

S60l(k-l) are very highly correlated because of its low 

error term. Despite the fact that Model 2 has a higher 

error term than Model 1, it is favored because it is quite 

likely that there are factors not considered with such sim­

ple models that would create an error term with non-zero 

mean. 

Model 3 was introduced to see what effect adding 

S602(k-l) to the regression would have. In that it lowered 

the error term, the addition was helpful. The 4th and 5th 

models were tried to see if a lot of variables was better 

than a few. It appears, though, that the added complexity 

and loss of useable data points more than counteracts the 

slightly lower error terms. Note that both models have 

coefficients that are close to zero. Those terms could 

probably be ignored. In Model 6, again, one of the coeffi­

cients was very close to zero, implying that term was prob­

ably insignificant. It was concluded that Model 7 was prob­

ably the best, because it has enough complexity to have a 

low standard error, but none of its coefficients are close 
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to zero. Models 2, 3, and 7 were used for prediction. 

III.d 2.....QJ. 

Electromagnetic Fields and Energy, 6.03, has one 

prerequisite, 6.01. However, it is almost always taken im-

mediately following 6.02. 

TABLE 111-3 

The Models for 6,03 

Model Dependent Independent 
No. Variable Variables 

Coefficients 
b1 b2 b

3 

Standard 
~ Error, S 

1 S603(k) = b1+b2·S60l(k-l)·171 -.106 -.553 15 
+b3•S603(k-l) 

2 S603 (k) = b1+b2'S60l(k-l) 162 -.321 16 

3 S60J(k) = b1+b2'S60l(k-2) 
+b3' S603(k-l) 82 .195 -.305 15 

4 S603(k) = bl+b~S601(k-2) 30 .297 14 

5 S603 (k) = b1+b2,S60l(k-l) 
+b

3
S601 (k-2)+ 

b4S603 (k-l) -45 .604 .516 -1.056 14 

6 S603(k) = b1+b2S602(k-l) 24 .459 7 

We can see from Table 111-3 that Model 6 has a 

significantly lower standard error than the other models. 

The first two models, 1 and 2, have S603(k) negatively 
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correlated with S601(k-1). This outcome does not make much 

sense physically because courses should be positively corre-

1ated with their prerequisite. Models 3,4, and 5 all make 

physical sense, but Model 6 is better because of its lower 

error term, thus Model 6 was the only 6.03 model used to 

make predictions. 

rII.e 6.04 

Electrodynamics, 6.04, recently replaced two EE 

core subjects, 6.06 and 6.07. Thus there are only 4 terms 

of data for the course prior to second term 1971-72. 6.04 

is the only required EE course that has two prerequisites, 

6.03 and 6.05 within the department. Thus, S604(k} was re-

gressed against S605(k-1), S603(k-1}, and both of them 

together. 

TABLE III-4 

The Models for 6,04 

Model De}2endent Inde:aendent Coefficients Standard 
No. Variable Variable b1 be b

3 ~ Error,S 

1 S604(k) = b1 +b2S60 5(k-1) 179 -.778 26 

2 S604(k) = b1 +b2S603(k-1) 3 .762 5 

3 s604(k) = b1 +b2S603 (k-1) 
+b3S60 5(k-1) -40 .878 .240 3 
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As can be seen from Table 111-4, Modell, with 

just S605(k-l) and a constant for the independent variables 

is not very good. That is, it has a high error term and 

it says that S604(k) is negatively correlated with its pre­

requisite, S605(k-l), This does not make physical sense, 

so Model 1 was rejected. Both Models 2 and 3 make good 

physical sense, so they were both used to make predictions. 

III.f ~ 

Despite the fact that 6.05, Signals and Systems, 

is a required EE course, and has a prerequisite, 6.01, it 

was very difficult to find a model that fit the data reason­

ably well. This is due in part to the large proportion 

(20%) of enrollment from outside of the department, as well 

as the fact that 6,05 is generally not taken the term im­

mediately following 6.01. 
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TABLE 111-5 

The Models for 6.05 

Model De12endent ,lnde]2endent Coefficients §tandard 
No. Variable Variables £1 b2 b 3 ~ Error 

1 S605{k) = b1·S601(k-l) .529 74 

2 S605(k) = b1+b2'S601{k-2) 
+b

3 
'S601 (k-3)+ 

b4 ·S601(k-4) 714 -.633 -1.272 -.706 20 

3 S605(k) = b1+b2·S601(k-l) 
+b

3 
.S601 (k-2)+ 

b4• S60 5{k-l) 159 -.022 -.138 .134 34 

4 S605(k) = b1+b~S601(k-2) 
+b3·S601(k-3) 506 -.873 -.79 21 

5) S605(k) = b1+b2·S601{k-l) 
+b3·S601 (k-2) 187 -.059 -.150 31 

6 S605(k) = b1+b2'S601(k-l) 122 -.095 28 

7 S605(k) = b1+b2·S602(k-1) 175 -.198 25 

8 S605(k) = b1+b2 'S601(k-2) 
+b

3
·S601(k-3)+ 

b4•S605(k-1) 411 -.106 -.830 1.07 12 

Table 111-5 shows that Modell can be rejected 

just from its large error term while Models 3, 5 and 6 can 

be rejected for the very small coefficient for S601(k-1). 

Model 2 does not seem reasonable since it implies that 6.05 
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is negatively correlated to its prerequisite for the last 

four terms (except the most recent), The same negative co-

efficients appear in both Models 4 and 8. The error term 

for Model 8 is significantly lower than for any of the oth-

er models, hence it was selected for prediction, as was 

Model 7, Model 7 was formulated in recognition of the fact 

that it is quite often the case that 6.05 is taken the term 

after 6.02. The coefficient for S602{k-1) is negative how-

ever, which is odd, but the error is relatively low, 

IIl.g 

Like 6.01, the prerequisites of 6.08, Statistical 

Mechanics and Thermodynamics, are outside of the EE depart-

mente They are 8.04, Principles of Quantum Physics, or 

8,211, Introduction to Quantum Physics, The same arguments 

hold in this case as for 6.01, so 6.08 was regressed against 

itself and against a constant. 

TABLE 111-6 

The Models of 6.08 
Model De12endent Inde12endent Coefficient Standard 
No, Variable Variables b

1 
b2 b

3 
b4 Error,S 

1 S608 (k) = b
1

+b2,S608{k-l) 
+ b3 S608{k-2) 59 ,059 .034 10 

2 S608(k) = b1+b2,S608(k-l) 72- -.121 9 

3 S608(k) = b1 67 9 
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Table 111-6 shows that while the error of the 

regression is about the same in the three cases, two co­

efficients in Model 1 are almost zero. Thus Models 2 and 3 

were used for the predictions. 

III,h 6,231, 6,232, and 6,233 

6.231, Programming Linguistics, 6.232, Computation 

Structures, and 6.233, Information Systems, are relatively 

new series required by all computer science option students, 

6,233 had only been offered four times prior to second term 

1971-72. 6,231 was the prerequisite for 6.232, which in 

turn is the prerequisite for 6,233. This would probably 

make for meaningful and accurate models of these courses, 

But recently 6.231 was discontinued; 6.251, the new pre­

requisite for 6.232, has been around a long time and has a 

farily large student population that will not take 6,232, 

There was no point in trying to model 6.231 since it doesn't 

exist anymore, There is also not much point in modeling 

6,232 either, because there are only one or two terms of 

data available with its new prerequisite. 6.233, however, 

had a couple of nice models using 6,232 from prior terms. 
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Modell: S6233(k) = bi+b2'S6232(k-l) 

where bi = 1, b2 = ,962 and 
the standard error, s = 20 

Model 2: S6233(k) =bi+b2,S6232{k-l)+b3,S6232{k-2) 

where bi = 7, b2= .360 ,b
3 

= ,794 and 
the standard error = 2. 

Because Modell had such a small constant, almost 

zero, and because the error of Model 2 was so much smaller, 

Model 2 was selected for prediction purposes, 

III.i 6,261 

Introduction to Modern Algebra, 6.261, has no 

prerequisites other than 18,03, and is required for all 6-3 

students. The only model tried was 

where bi = 79, b2 = -.206 and 
the standard error, S = 43 

Because of the exceptionally large error term 

(50%), this model would probably not predict very well, It 

was not used in the predictions, because 6.261 wasn't offer-

ed second term 1971-72. 
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III.j 6,262 

The big problem with building a model of 6,262, 

Computability, Formal Systems and Logic, was that it was 

only offered for three terms prior to second term 1971-72. 

6.262 has one prerequisite, 6,261, 

The only model tried, 

S6262(k) = bi + b2 'S6261(k-l) 

where bi = 42, b2 = .168 and S = 31, 

made use of this fact, This model was used for the pre-

dictions, 

III.k 6,253 

6,261 is also the prerequisite tor 6.253, Theor­

etical Models for Computation, 6-3 students are required 

to take one of 6.253 or 6.262. The two models tried for 

6.253 where 

Modell: S6253(k)=bi + b2,S6261{k-l) 

where bi = 47, b2 = -,160, and S = 15 

Model 2: S6253(k)=bi + b2·S261{k-l)+b
3

.S6261(k-2) 

where bi = 20, b2 = .023, b3 =.269, and S= 9 
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No prediction was made because 6.253 was not 

offered second term 1971-72. 

III.l 6,28 

Probabalistic Systems Analysis, 6,28, has no pre­

requisites other than second term Calculus, 18.02. Thus, 

it was merely regressed against itself for one, and two 

terms previously. The resulting models were: 

Model 1: S628=b1+b2·S628(k-l) + b
3
S628(k-2) 

where b1=48, b2=,683, b
3
=.019 and S=12 

Model 2: S628(k)=b1+b2·S628(k-1) 

where b1=25. b2=.865. and S= 13 

Because the b
3 

coefficient of Model 1 was so close 

to zero, Model 2 was selected for the predictions of the en­

rollment for second term 1971-72. These pre~ictions are 

treated in the following section. 
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IV PREDICTIONS 

IV.a Second Term 1971-72 

In Table IV-l of this section, the models used 

to predict the enrollments for second term 1971-72, the 

predictions and the 80% 90% and 95% confidence intervals 

are compared with the actual enrollments for the same period. 

TABLE IV-l 

Predicted vs Actual Enrollments for 2nd Term 1971-72 

Model Course Independent 
No. Variables 

1 
2 

3 

4 
5 

6 

7 
8 

9 

10 

11 
12 

13 

14 

15 

6.01 1,S601(k-2} 
6.01 1,s601(k-l} 

6.02 1,S601(k-l}, 
S602 (k-l), 
S601(k-2} 

6.02 1,S601(k-l} 
6.02 1,S601(k-l), 

S602(k-l) 

6.03 1,S602(k-l) 

6.04 1,S603(k-l) 
6.04 1,S603(k-l), 

s60 5(k-l) 

6.05 1,S601(k-2), 
S601 (k-3), 
S605(k-l) 

6.05 1,S602(k-l) 

6.08 1,608(k-l) 
6.08 1 

6.2331,S6232(k-l}, 
S6232(k-2) 

6.262 1,S6261(k-l) 

6.28 1,S628(k-l) 

Enrollment Confidence Intervals 
Act *Predct t80% 90% 95% 

149 * 123 +20 
149 * 197 ~15 

143 * 156 ±29 
143 * 159 ± 8 

143 * 188 ±24 

74 * 61 + 4 

76 * 79 + 5 

76 * 93 t18 

158 * 238 ±35 
158 * 159 +14 

85 * 65 + 4 
85 * 67 ~ 5 

83 * 112 ±12 

50 * 56 ±65 

138 * 171 t12 
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27 
20 

39 
11 

32 

5 

8 

38 

49 
19 

6 
7 

24 

135 

16 

34 
25 

50 
14 

39 

7 

12 

77 

64 
24 

7 
8 

48 

271 

20 



It may at first seem unusual that of the fifteen 

predictions, for only seven the actual value fell within 

the 95% confidence interval. This is easier to take, how­

ever, when one sees that three of the actual values just 

missed the 95% confidence interval by a few students, and 

three of the remaining five "bad" predictions had claimed 

95% confidence intervals of 7, 8, or 14. These small con­

fidence intervals seem a bit preposterous considering the 

stocastic nature of the enrollment process. That is, fluc­

tuations of 10-15 would not be unusual for a class with 

around 70 people in it. 

The predictions of the two remaining models, 

S602(k) = bt +b2 • S601(k-l) and 

S628(k) = bt +b2·S628(k-l), 

just seem to be bad. There is always, of course, the 5% 

chance that the actual value will fall outside of the 95% 

confidence interval. But, at least for the 6.01 model, I 

do not think that this was the case because the 95% confi­

dence intervals for the predictions of the two 6.01 models 

do not overlap. At least one of the 6.01 models had to be 

outside of its 95% confidence interval. This is probably 
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due to the inability of the models to fit the real situation. 

There are other places where error has crept into 

the calculation of the confidence interval. For example, 

the errors ei (difference between fitted and actual value) 

are assumed to be normal which may not be true. And, the 

enrollments in a particular course, for different terms, are 

assumed to be independent. That is, S60l(k) is assumed to 

be independent of S60l(k-l), S601(k-2), etc., which is clear­

ly not the case. This inaccuracy in the assumptions neces­

sary for regression could well have reflected itself in the 

confidence intervals for the predictions. There are no pre­

dictions for 6.261 or 6.253 in Table IV-l because they were 

not offered second term 1971-72. 
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IV.b First Term 1972-73 

Predictions for First Term 1972-73, with their 80%, 

90%, and 95% confidence intervals, are presented in Table IV-2. 

TABLE IV-2 

Predictions for First Term 1972-73 

Model Course Independent 
No., Variables 

1 6.01 1,S601(k-2) 
2 6.01 1,S601(k-1) 

3 

4 
5 

6 

7 
8 

9 

10 

11 
12 

13 

6.02 1,S601{k-1), 
S602 (k-1) , 
S601 (k-2) 

6.02 1,S601(k-1) 
6.02 1,S601(k-1), 

S602 (k-1) 

6.03 1,S602(k-1) 

6.04 1,S603(k-1) 
6.04 1,S603(k-1), 

s605(k-1) 

6.05 1,S601(k-2), 
S601 (k-3) , 
S605(k-1) 

6.05 1,S602(k-1) 

6.08 1,S608(k-1) 
6.08 1 

6.28 1,S628(k-1) 

Enrollment Confidence Intervals 
Proj*Predct 80% 90% 95% 

210 * 220 ±14 19 23 
210 * 262 !17 23 28 

100 * 106 +11 
100 * 106 t 9 

100 * 113 +18 

90 * 91 + 3 

60 * 59 + 4 

60 * 59 + 6 

140 * 217 +46 
140 * 147 +11 

65 * 63 + 9 
65 * 68 ~ 5 

140 * 160 !13 

15 
12 

24 

5 

6 

9 

62 
14 

12 
7 

15 

19 
15 

29 

6 

8 

13 

78 
17 

14 
8 

19 

These predictions were based on all of the data avai1-

able through second term 1971-72, as opposed to the predic-

tions of the last section which were only based on the data 

through first term 1971-72. That is, all of the coefficients 
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of the models were redetermined from this larger data base 

and, of course, the predictions had to use the second term 

1971-72 enrollment figures for all of the (k-l) terms in 

the prediction equations. It is suggested that, should 

these models be used for further predictions, the co­

efficients of the models be redetermined each term to take 

into account the extra data points. 

At the time of this writing there are no actual 

enrollment figures for first term 1972-73 to compare the 

predictions with. Instead, there is an item in Table IV-2 

called "Projected Enrollment". These are my guesses for 

the enrollment, obtained by noting general trends in the 

enrollment patterns. It is interesting to note that the 

projections and predictions for Models 2, 9, and 15 differ 

significantly and that it was just these models that made 

"bad" predictions for second term 1971-72. These predictions 

could probably be ignored. It seems like a good idea to 

compare common sense projections with the calculated pre­

dictions in order to detect wildly aberrant predictions. 

Except for Models 2, 9 and 15, as previously noted, the 

predictions of Table Iv-2 seem very reasonable. Predictions 
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were not made for 6.233 or 6.262 because they are second 

term courses, and predictions were not made for 6.253 or 

6.261 because 6.261 was not offered the previous term. 
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v CONCLUSIONS 

This thesis has shown that despite the extremely 

random nature of the enrollment process, reasonably good 

predictions for required courses can be made using linear 

regression techniques. The best predictions can be made 

for the courses such as 6.02, whose prerequisites are us­

ually taken the term immediately before the term of interest. 

This is reasonable because it is in these cases that the 

models make the most sense. Not suprisingly, the worst pre­

dictions are made for courses such as 6.01, or 6.28, which 

have no prerequisites, or at least no specific prerequisites. 

That is, both 6.01 and 6.28 have prerequisites which are 

institute requirements. 

It is not likely that useful prediction models 

could be built for most non-required Electrical Engineering 

courses. There are two reasons for this; the enrollment 

in most of these courses is very small (i.e., less than 50), 

which would make them subject to much larger percentage 

fluctuations; and, so far as resource allocation is con­

cerned, it does not matter whether 20 or 25 people are ex­

pected to take the course. There are a few non-required 
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courses, such as 6.00 or 6.14, for which the enrollment is 

large enough that an accurate enrollment prediction could 

help the resource allocation problem. The difficulty with 

these courses is that they usually don't have specific pre­

requisites, which, as was mentioned earlier, would cause 

difficulties in finding physically meaningful models. 

An interesting possibility for further research 

would be to fit the WIeHE student flow model to MIT, (if 

this has not already been done), and use its predictions of 

Electrical Engineering enrollment, in addition to the methods 

described in this thesis, to predict course enrollment. This 

would be especially helpful in the case of a course with no 

prerequisites. Another possibility for further research 

would be to build a model that uses the predictions of course 

enrollment to make resource allocation decisions. 
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A APPENDIX - The Data 

The enrollment data used in this thesis came from 

Electrical Engineering Memorandum 40l7E, April 10, 1972. 

Only the relevant portions of that document are reproduced 

here. 

TABLE A-I 

Enrollment Data 1966-72 

Qourse 1966-67 1967-68 1968-69 1969-70 1970-71 1971-72 
1 2 1 2 1 2 1 2 1 2 1 2 

6.01* 361 59 382 93 346 94 327 92 310 115 226 149 

6.02* 25 286 42 269 62 235 75 205 89 195 81 143 

6.03* 180 32 164 49 151 60 129 56 116 64 100 74 

6.04* - 101 41} 91 57 76 

6.05* 64 189 95 162 132 143 III 136 131 168 193 158 

6.08 92 57 68 73 62 59 52 63 61 83 65 85 

6.231 23 65 52 36 141 92 131 78 

6.232 18 23 70 59 54 68 95 103 67 

6.233 14 49 72 96 1 83+ 

6.253 41 44 62 71 63 38 29 22 51 22 59 -
6.261 31 64 - 111 34 137 49 85 -
6.262 44 86 49 50 

6.28 74 73 98 130 122 132 125 130 146 157 168 138 

* Includes enrollment for 6.0X3, the 6-2 version of 6.ox. 
6.01 includes enrollment in 6.001. 
+ Correction to Memorandum 4017E 
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