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ABSTRACT

The problem of stabilizing by feedback an unstable
system is considered within the framework of stationary
linear systems. The concept of a simple feedback scheme
is introduced and the situation is considered where a
simple feedback scheme fails to stabilize the system.
In this case a more elaborate feedback scheme, with
finite memory, can be used to achieve stability. A study
in this direction was done by Krasovskii and 'his paper
is reviewed. Then a simple case of an oscillator is
considered and it is proved that a finite memory feedback
scheme can stabilize it. Some considerations follow on
the problem of determining whether a simple feedback
scheme is successful or not. Then the general case is
considered and the finite memory feedback is analyzed
as a perturbation of the system stabilized by recon­
structing the state by means of an observer. It is
proved that in this case too the finite memory feedback
scheme is successful provided an additional assumption
is made. Comments and suggestions for further research
conclude the study.
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1. INTRODUCTION

In this thesis we consider linear, autonomous

dynamical systems described in state-space form by

the equations

(1 .1 )

where X E Rn
is the state vector, U E: RYYl

is the

control vector. and 1j E. Rt
is the output vector.

The matrix A is V'\ x Y't , the matrix B is V1)( m

and the matrix C is t>( 'Y\ • It is also assumed that

A, B , C are constant matrices.

We want to study the problem of stabilizing an

unstable system by means of finite memory feedback.

For the purpose of this discussion, we will call a

feedback scheme simple if it can be represented by

the product of a constant matrix and the output vector.

(1.2)

We are interested in particular in dynamical systems

that cannot be stabilized by a simple feedback scheme
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and we will consider a more general feedback scheme that

will insure their stability.

By way of illustration let us consider the sysyem

•

(1.3)
•

)(.-2. = - X, + tl

<t = X,

It is easy to verify that this system is both controllable

and observable. Let us try to stabilize system (1.3) by

means of a simple feedback schemel

(1 .4)

We obtain:

!
)(.. = X, 2.

(1.5)

'X. 2. - ('k-\) X,

The characteristic equation in this case is

(1 .6) a



d = ~,
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and the system is unstable for all values of ~ • The

behaviour of system (1.) can be compared with the beha­

viour of the following two systems, which differ from it

in the choice of the matrices B or C I

(1 .8)

A simple feedback scheme applied to system (1.7) or (1.8)

gives the characteristic equation:

o

For proper choice of ~ this equation has roots with

negative real parts and the system is stable.

This example indicates that there exist systems
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which cannot be stabilized by a simple feedback scheme.

It also gives a hint that the failure of the simple feed-

back scheme is associated with the unavailability of a

derivative, or more generally of part of the state, for

control purposes. This fact is immediately obvious if we

consider the scalar differential equations equivalent

to system (1.3):

••

(1.10)

to system (1.7) I

..

(1.11)

x. + X -= t.l

and to system (1.8).

(1,12)

More generally we can consider the problem of stabi-
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lizing system (1.1) when A is not a stability matrix

(i. e. a matrix whose eigenvalues have negative real parts)

and when B and C are matrices that prevent a simple

feedback scheme from being effective. We can expect that

the failure of the simple feedback scheme will somehow

be related to the unavailability of some key state compo­

nents for control purpose, and that it will be necessary

to reconstruct these components if we want to stabilize

the system.

There are two basic issues at hand. First to chara­

cterize a system in such a way that it will be clear whe­

ther a simple scheme will work or not. Second, given

that a simple feedback scheme does not work, to devise

a more complicated scheme that will work. In this thesis

we will consider only the case of linear autonomous

systems. The first problem is at present unsolved, in

the sense that a general test, easy to apply, that will

indicate whether the simple feedback scheme is suitable

or not, is not available. The second problem was consi­

dered by Krasovskii (1963), who obtained some general

results. Additional results are reported here.

We will consider first the results of Krasovskii in

a brief review of his paper; then we will consider in

turn two different methods of solving the problem for

system (1.3) and for the general system (1.1). Specifi-
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cally we will consider a feedback of the type

o

u(r) = J k(~)~(t+{l) J&
-'L

and prove that it is possible to choose Y(({r) in such

a way that systems (1~3) and (1.1) are exponentially

stable. In both cases we will consider the effect of

the feedback (1.13) as a perturbation of a properly

defined, exponentially stable linear autonomous system.

Detailed mathematical developments are carried out in

the appendices.
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2. KRASOVSKII PAPER

Krasovskii considers the general problem of stabi-

lizing by means of feedback a system described by the

vector differential equations

(2.1 )

J Z :::

LW =

t[t,<:,u.]

around an unstable trajectory ZO(t) . He constructs

therefore the perturbed equations of motion around 'l°(e):

(2.2)

and seeks a feedback of type:

(2.) (-1' ~{J~ 0 J 1:'= eonst >0)

(where lJ is a vector whose components are functionals)
("WI )

which will make 'X =0 ,..{A.. = ...=t.l =0 stable, subj ect

to (2.2), while at the same time minimizing locally an

appropriate functional Jr of the perturbed motion.
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Under suitable differentiability conditions for F and

q ,system (2.2) can be approximated in the neighbor­

hood of the origin by a time varying linear system:

(2.4)
{

: ~ Am x + B(l;ht

(J cet) 1-

Therefore it is convenient to choose the functionals lfj
linear, and the performance functional J quadratic.

At this point Krasovskii splits the problem into two

separate subproblems. The first one is the usual linear­

quadratic problem with state feedback, a solution of

which will automatically insure stability. The second

one is the reconstruction of the state from the obser-

vation of the input and the output.

We will not consider here the first problem, whose

solution is nowdays well known (Brockett, 1970; Athans

and Falb. 1966); we will just mention that Krasovskii

enlarges the state to include the equation u,= <: and

introduces appropriate controllability conditions over

an interval of length ~ uniformly in t to insure

that a solution of this problem exists. More interesting

for our purposes is the problem of the reconstruction

of the state. Here again Krasovskii assumes suitable
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observability conditions over an interval of lengthL

uniformly in t and states the auxiliary problem of

finding a linear operator P[t,) ~(-&) )«..(i})] such that:

(- T ,-&~O)

(t ~T)

Clearly if xU:) can be reconstructed exactly from cr(t) ,

..u.(t) in [c -T, t,J , the original problem is solved.

The key result in Krasovskii's paper is his lemma

4.2 which states that if system (2.4) is observable over

an interval of length 1r uniformly in t then there

exists a linear operator P for which (2.5) is valid.

Its form is as follows:

o

(2.6) P [I:; , ~({} ),iL ({7)J=f [L(t.,&)~( iT) + K(t ,~) «.(-8')} d3-
-'t'

where all the elements of L and k are continuous and

bounded for t ~ 1:' • In order to prove this lemma,

Krasovskii considers the auxiliary problem of finding

an

that

matrix Vet )~)

for all vectors Xo

defined for

Rn.
in

such

o

(2.7) X o =1 V(G,{7)C(t+1]) <P(G+-8'Jt) X o dB-
-'t'

Where¢(t)to) is the transition matrix of (2.4).
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equation
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is the solution of the matrix

(2.8)

o

JV(t,.\7)C(t+1T)t(t-t~,t) dll - I
-1:"

where I is the n-dimensional identity matrix. he assumes

the form of V (t,~) to be

with 1\ a constant unknown Vl x n diagonal matrix. Then

(2.8) becomes

(2.10)

o

1\JStl (hli71t)CT(t +17)C(c+ \7) ¢ (t+-\7) t.) d~ =- I
-'1:

and the assumed observability condition insures that a

solution for /\ exists. It should be noted that equation

(2.10) would nowdays be written as

(2.11 )

is the observability gramian over the

easy to obtain the operator

where M (t. -T, t.)

interval [t: -1: ) tJ • Once 1\
p

is found, it is very

in the form (2.6) by

means of a few manipulations which are carried out in
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detail in the paper. The solution so obtained is not

unique, and Krasovskii suggests a couple of different

ways for obtaining the matrix V(t. ){T) as a matrix with

piecewise constant or impulsive elements, Taking into

account the solution of the linear quadratic problem and

the expression for the operator P , the closed loop

system, stabilized by this technique, assumes the follow­

ing form:

(2,12)

o

it. - D(I::) u. +J[I<, (t,,'})~(/;t~)+k2.(t,&)u.(I::+,5-~d-&
-~

The pa~er then concludes with applications of this result

to the study of system (2,1) and the specialization to

the autonomous case.

For the purpose of this thesis there are two points

which should be emphasized. The first is the form of the

control law which results from (2.12), In (2.12) either

«Co) is assumed differentiable or the functional equation

for .u(.) has to be interpreted in the integral equation

sense a the control ute) is given implicitly as the solution

of a functional differential equation. In this thesis
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the control «~) is given explicitly by the equation

o

(2.13) -IA- (t) :: f k(i}') ~ (I: +fr) d.:J
-1:

which is different from (2.12) though very similar to it.

The key issue is that both (2.12) and (2.13) use the

whole output from t - T' to t to produce the control

signal. The second point is the technique used to obtain

the result. While Krasovskii obtains (2.12) from (2.5)

which gives an exact reconstruction of the state at time

t ,this thesis uses a technique which does not recon­

struct the state X (t) exactly from the output ~ (t) ,

but reconstructs it approximately, giving in addition a

perturbing term.
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3. THE OSCILLATOR PROBLEM

Let us start by considering the simple two dimensio-

nal system:

•
1v. = ~z

(3.1 )
•
~2- == - 'X, I + 'U,

This system is controllable, observable and unstable. We

want to stabilize it by means of feedback, but a simple

feedback scheme does not work, as was pointed out in

the introduction. On the basis of Krasovskii's results

we can try a solution of the type:

o

u(t) =1 ~(-&)~(t+{7)d&
-'T

,

consider the existence of ~ and 't which will solve the

problem, and investigate ways of specifying them.

Let us expand ~ ( t of- {l) = -;(.1 (f:; + t>') in t;

by means of Taylor's theorem:
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where " is a point in the interval [t) I:: + ~ ]
• ••

We note that (3.1) allows us to express X, and XI

in terms of X, , so that (3.3) becomes:

We can see now that (3.4) allows us to introduce in the

feedback a term in ~ 2. ( t) so that we have somehow

reconstructed the state for feedback purpose~ However

we have the additional term Xz. (l::: + yt) which can

be considered a perturbation. The feedback term then

becomes:

o 0

(J.5) 1.l(t):= Xl (b)1'k({1) d-ll + Xz.(t)J-&'k(ir)d~ +
-L -T

o
+f ~2.~(-\})iz.U:+11)de-

-T 2..

Let us define:

(3.6)

o
ko 6 j 'k ({})d{7

---r"
o

~I b. f -B're{iJ)d0'
-T

Then we can write (3.1) as:
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•

We can treat (3.7) as a nonhomogeneous system with

associated homogeneous system

(3.8)

and forcing term or perturbation ;01.' k({r) x.~(t+"\..) d~
-'"r 2-

The coefficients "leo and 1'<1 depend on the choice of the

function 1-< ({T) • Let us assume for the time being that

it is possible to choose ~o and "k, so that (3.8) is

exponentially stable. It will be proved later that this

is in fact possible. Then we are led to consider the

stability of a perturbed system, with a perturbation in

the form of a functional. To system (3.8) we can apply

theorem 4.6 of Halanay (1966) which is repeated here for

convenience.

Theorem: Let us consider the system



where A ( t )x. (t: +s))
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is for every t a vector whose

components are linear functionals in the space of the

functions continuous in [-'t J oJ (with norms bounded

as functions of l:. ), and the components of vector f
are for every t continuous functionals in the same

space. with the property that

0" being sufficiently small for II X (l: +5)11 ~ H
If the trivial solution of the first-approximation

linear system

(3.11)

is uniformly asymptotically stable, then the trivial

solution of system (3.9) is likewise uniformly

asymptotically stable. II
Note I means euclidean norm, II \l means uniform

norm in Halanay, 1966.

In our case the conditions on system (3.11) are verified

by assumption. If we can prove that (3.10) is valid, then

we will be insured that our system will be uniformly

asymptotically stable, in fact exponentially stable

due to linearity and stationarity.
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Let us define

o

(3.12) ~ 2. Co J 1-3'?~ (,5')1 d{1
-"t" 2..

It is proved in appendix 1 that our perturbing term

satisfies (3.10) provided we redefine the functional

on [C -2.1:) t] by setting k(tT)=O on [-Z'"t J -'T] .
This does not change the problem and allows application

of the theorem. The constant cr is given by the

expression

with

o

(3 .14 ) 1<0* A f I'k (-&) \ d{}
-'"t

The problem is therefore completely solved if, chosen a

priori three numbers ~D' 1e, , 1e~ , we can find a

function 1:<.(17) satisfying (3.6) and such that

with ~; small enough to insure a satisfactory D .
Let us now choose 1t(~) in the form of a piecewise
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constant function. Let us divide the interval [- 't , 0]

in N equal subintervals and let "Y<. t{}) be constant

in each one of them. It is proved in appendix 2 that

given a priori three numbers 1eo , te, , ie: , and the

number of intervals Np 2 , it is always possible to
C)choose the memory interval rr and the values re.)

that Y<. t{T) assumes on the a-th subinterval in such

a way that (3.6) and ().15) are satisfied. The problem

is thus completely solved.

We can remark that in order to apply theorem 4.6

of Halanay, we must insure that 1ez is sufficiently small,

in particular we might see what happens for 1<.2.-+ 0

Let us assume in addition that we choose 1<.0= 0 ,

N=2 • Then 1e (-&) must have positive and negative

values, so that the area under it is zero, and will

assume the shape of a doublet (two pulses of opposite

polarity side by side). In order for k 2 to tend to zero,

we must have the two pulses as close as possible to the

origin, so that the interval over which the doublet is

different from zero tends to zero. We see therefore that

~(~) tends to a multiple of the derivative of the unit

impulse distribution. This we should expect, since

(3.16)

o

J X(c+{}) 81

(t}) d&
-'1'

•
- X (c)



23

and we are just trying to reconstruct the derivative

of xCt) in the differential equation

••
(3.17) 'X. + X U

which is equivalent to system (3.1).

The theory just developed substantiates the expecta-

tions of intuitive reasoning and insures that an imperfect

realization of a differentiator, within limits, will not

impair stability. It also gives a basis for considering

tradeoffs in the choice of '1-<0' ~I 1<.2. ,1: ,since

we must choose a large enough ''k, \ and a small enough

'k, to insure stability. It is clear that ~'Z. will be

kept small if L is small, while the maximum value of

, ~ (V') \ must increase as 1:' tends to 0 in order to keep

~, constant. More precisely the functional dependence

~- ~- A.... .A... (j)of Ro' R, , ~2 on the values ~ is of the type

(3.18)
{

1<0 == \ :n Lj aoj ~u)

R1 ==--Z(~t Lj d,j'k(j)

~ 2 == .1 (L:")3 L. d · l 'kej) I3 N J 2j

where dOj , ci'j ,a2.j are appropriate constants. The
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values ~ ti) as determined by (3.18) are linear in -leo.

~, so they are of first and second order in (~)

while (3.19) is of third order in (~) • So it is possi­

ble to have 1<.2.~ 0 while ~D' ~, remain constant,

by choosing shorter memory intervals. At the same time

equations (3.18) can be written as

(3.20)

so. clearly. for constant ~o, '\e" and "t tending to

zero the solution 'k ti) must have components increasing

in absolute value.
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4. THE GENERAL PROBLEM

Let us turn now to the general case of system

(4.1 )

x-Ax+Bu.,

{1j-=CX

where A, B • C are constant matrices and the system

is controllable and observable. The first thing that

should be settled is how to characterize systems for which

the simple feedback scheme fails. As a first step in this

direction let us transform system (4.1) so as to reduce

A to a canonical form. Brockett (1970) states in his

theorem 4 of section 12 that it is always possible

to reduce A to a block-diagonal form where the blocks

corresponding to realeigenvalues have the usual Jordan

form, while blocks corresponding to complex eigenvalues

have the following forma

(4.2)

5-1.-

o

o

1
5~

a

a
I

o

. . . o
o
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with

(4.3)

and

(4.4)

1 - [~ ~]

Brockett refers to Gantmacher (1959) for the proof, how-

ever Gantmacher does not have a proof for the part

relative to complex eigenvalues, the reduction to canoni-

cal form being considered over the complex field. In view

of the interest of the canonical form claimed by Brockett

for the characterization of linear systems, a proof of

it is given in appendix 3. which moreover is applicable

to the more general situation of a reduction to cano-

nical form over a field more restricted than the reals.

Let us assume then that system (4.1) has been tran-

sformed to canonical form

A

with A in block-diagonal form according to Brockett.
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We can now investigate the relation between controalabi­

lity/observability and the problem of stabilization by

a simple feedback scheme. To this end, let us partition
/.'. A A

conformally A , B ,C into blocks. The problem then

is reduced to that of finding a matrix K such that each
[A '" A 1one of the blocks A· + B·KC· is a stabilityj J )

matrix. If we can find such a matrix K that stabilizes

each block, then the problem is solved. If such a matrix

does not exist we will have to have recourse to more

complicated feedback schemes, in particular we might

try a feedback of type

, C controllable/
A A

Bj , Cj is control-

6). We can consider

o

-I.de) == J k(~)~(t.+-&)d&
-'t

We first note that f\ ,~
A

observable implies that each Aj ,

lable and observable (see appendix

(4.6)

the elementary divisors of A (Gantmacher,1959) and

we can distinguish two situations. First: the elementary

divisor is a linear monic polynomial over the realsl

(A - Aj)tY\j . Then the block Aj assumes the form

Aj a 0

a Aj \ 0

o o o . . .A.j
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Its powers up to the nj-th are upper triangular
A'e A

matrices, all linearly independent. The products Aj Bj
"'\c-

are linear combinations of the columns of A j by
A

means of coefficients of Bj , In order to have the

last row of

(4.8)

different from zero it is necessary that
A

B· has a nonzero
J

entry in its last row, The independence of the first nj

A~·powers of J then insures that the condition is also

sufficient for controllability. Similarly, for observa-
A

bility it is necessary and sufficient that C j has a

nonzero entry in its first column. In order to stabilize

~j we must consider the matrix

A A A

A·+B·kC·
~ ) J

........ A

Let us assume that Bj and Cj satisfy the minimum

requirements for controllability/observability i. e.

just one nonzero entry in the appropriate column and

row.
A A

Then B· KC·J J will have just one element determi-
A '"

ned by the row of Bj and column of Cj with a nonzero
A

entry. Since A j is upper-triangular, in order to change
A

its eigenvalues by addition of E>i K Cj it is necessa-
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A A
ry that the nonzero element of Bj K Cj be a subdia-

gonal element. Moreover it must be impossible to decom­
A A A

pose A j + Bj K Cj in blocks so that it is block-

upper-triangular with some blocks upper-triangular them-

selves, since these will still have the same eigenvalues.,
A

Since this impossibility depends on which row of Bj and
A

column of Ci have the nonzero entry, we can construct

examples of blocks that cannot be stabilized by a simple

feedback scheme while being controllable and observable.

Second: the elementary divisor is a quadratic monic

polynomial over the reals:

(4.10)

A

Then the block J\j assumes the form:

a; wi 0 0 0 0 0
j

-Wi 0"5 0 0 a 0 0

0 0 0" c.J' 0 0 0
J j

0 0 -Wi (J. 0 0 0
(4.11 ) J

o
o

o
o

a
o

o
o

o
a

a
o -w,i

w·.)
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This is block-upper-triangular and we can repeat for it

the discussion done before, working with blocks instead

of matrix elements. Controllability/observability give
.A

again conditions on the last block-row of Bj and
.A

first block-column of C.) • If
'" AB·KC·.) J has only one

nonzero block, we can construct again examples of control-

lable and observable blocks for which the simple feedback

scheme fails to stabilize.

It is unfortunate that our knowledge of this problem

is at present very poor. There is no general theory

available, in particular there is no simple test for the

feasibility of a simple feedback scheme. Considering the

system in block form, as is. done here, helps to visualize

the mechanism of stabilization from an algebraic point

of view, and might give suggestions for theorems or methods

of proof, but it represents only a starting point and a

lot of work still remains to be done.
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5. RELATIONS BETWEEN THE FINITE MEMORY FEEDBACK AND

THE OBSERVER

Let us consider now the problem of stabilizing

system

X, Ax +B-u-

{~~
with A, B , C constant matrices, under the assum­

ption of controllability and observability. Let us consi­

der the observer (Mitter and Willems, 1971), described

by the equations

.
~ - A ~ + Bu. + HC(x.-~)

~ = (A - He) ~ + B tA. + HC~

The observer is a system of same dimension as system (5.1)

and is coupled to system (5.1) through the term I-4C,c =H~
We assume that X. is not available, but ~ is, for

control purpose. Let us close the loop coupling system

(5.1) to the observer (5.3) by means of
~

(5.4) -u.. == k ~
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We obtain this way a complete system, composed of the

original system (5.1), the observer (5.3) and the

feedback (5.4). Defining the error between system (5.1)

and observer (5.3) as

we obtain the following description

-x, = (A+Bk)X-BKe

t=(A+BK)~+HCQ

e= (A - ~\C)Q

This can be interpreted as two nonhomogeneous equations

with forcing terms determined by the third, homogeneous

equation. Let us consider then the homogeneous system

?t - (A+BK)X

~ ; (A+ BK)~

Q =(A - HC)Q
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The controllability/observability hypothesis insures that
A

it is possible to choose K and H so that (5.6) is

exponentially stable (-Mitter, Willems, 1971), moreover

its eigenvalues can be chosen at will.

System (5.6) can also be written as

A

{

: __ AX+8K~

~ (A + BK - He) ~ + \-\Cx

We can impose the condition that ~ (0) -= 0 • Then we

obtain from the variation of constants formula

t

(5 .9) ~ ( b) = l ql+ll~- He ( t - 5) HC :( (5) d.s

Let us change variables by setting

(5.10) ~=s-t.

which implies

(5.11)

so that

d& = ds



(.5.12)

o

C" (I::.) ==1 ¢A+6K-IIC (- %) He x. (t + {t)d&
-t.

Defining now

we obtain

(5.14) K~(I::.) = fO k({]) '21 (I:: + {t) dB'
-t

Let us compare now this expression with the proposed fi-

nite memory feedback scheme

o

(5 .15 ) -u. == J k ({l) ~ (t -dl) d {}
-"t

and let us choose K({T) = k({l) in [---r J 0 J
In (5.14,) we can split the integral from -t to 0 in

two integrals: one from -l; to - -c , the other from - 't'

to 0 . The second one will give the same contribution

to (5.8) as the finite memory feedback, which is therefore

equivalent to the observer except for the missing contri­

bution

-'C

(5.16) J K(ft) "<!(1:: + iT) d8'
-t
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This last term can be considered as a perturbation on

the observer stabilization scheme. More precisely we

can say that the finite memory feedback scheme is

equivalent to perturbing the observer stabilization

scheme by means of the perturbation

a

This equivalence allows us to represent the finite

memory scheme, with the choice (3.13) for k (iT) ,. by

means of the equation

(5.18) i = (A + B K)X

which is derived from (5.6) by adding the perturbing

term The problem is then reduced to the study of

perturbations on an exponentially stable system. Appen­

dix 4 has the details of the proof that the perturbed

system will be stable under appropriate conditions if
A

we make the assumption that the matrix A + B K- He
is itself a stability matrix. Then the perturbed

system will be exponentially stable if
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(~- v) 1:
Q. -oc<O

where ex. , ~ t r ' V are obtained from bounds on

the norms of transition matrices:

and ~ is chosen so that in addition V > <X • It is

clear that the exponential factor in (.5 .19) with (V- O{), L >0

will allow the inequality to be satisfied for proper choice

of 't .

At this point we can also consider the problem of

perturbing K({t) in the interval [-..,; ) oJ . That is

let us assume that the implementation of the ideal K(fr)

has some errors. Consider first the system

corresponding to the case in which there is no truncation

error but only imperfect realization of K(~) in the

interval [- L) 0] . Then it is proved in appendix .5 that
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the system (5.22) is exponentially stable if

<po <

where

(.5.24)

and

(5.2.5)

o
<po !:>. f II cpCB')\\ d&

-""t

is a measure of the error in implementing k (iT) • As

long as the error is small enough, the system (5.22) is

exponentially stable. Then we can consider again the

effect of truncation as was done before. The only change

due to the imperfect realization of K (15') is in the num-

bers used to bound exponentially \\ X \\ so it amounts

and the sameto just a redefinition of ~ and

arguments carry through.

We have been able then to prove that for an appro-

priate choice of the kernel, a finite memory feedback is

equivalent to introducing perturbations in a system sta-

bilized by an observer. There are two kinds of pertur­

bations, one due to imperfect realization of k'({7) in
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[ - T J 0] ,the other due to truncation. Neither one

will impair stability for an appropriate choice of the

""parameters in the problem provided A + BK - He is a

stability matrix. This additional assumption is satis­

fied by a class of control systems. Relations (5.19),

(5.23), (5.24), and (5.25) are the basic equations to

be used for determining the memory length and the margin

of error in the implementation of K(-fr) •
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6. SPECIAL PROBLEMS AND SUGGESTIONS FOR FURTHER

RESEARCH

We will consider now several problems related to

this thesis which could be the objects of further research.

We have seen how one can choose a matrix K(~) and

scalar L so that the system can be stabilized. The

choice however is not unique, so that it is possible to

investigate optimality criteria for the choice and their

implications. The problem requires the selection of appro­

priate optimality criteria and then the solution of the

optimization problems thus generated. The task is not

easy since one would work in the context of nonlinear

functional differential equations, K({1) being a

multiplier of the state X . There could be two diffe­

rent ways of attacking the problem, corresponding to the

approaches used here for the oscillator and the observer.

In particular it would be very fruitful to find an opti­

mization scheme of recursive type, which would improve

at each step an appropriate performance index, while

always giving stable solutions.

One could also examine the following suboptimal

problema consider the optimal solution of the linear­

quadratic p~oblem and find the optimum cost under the

assumption C = I
A

• Choose k on the basis of this
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solution and compare the optimum cost with the cost

obtained with the finite memory feedback for C as

given. Then see if there are possible tradeoffs in the

choice of T and k'({}-) •

A deeper understanding of the requirements for the

feasibility of a simple feedback scheme could also be

a useful subject for research. The starting point could

conceivably be one of the canonical forms for matrix A
and the type of result sought would be a test for feasi­

bility to be done on the original matrix as given.

A related problem of independent interest is the

study of the effect on the spectrum of a change of a

sUbdiagonal element in an upper-triangular matrix, in

particular a Jordan matrix.

In the course of this investigation the author

has been confronted at times with problems where the

unknown is a matrix X which appears implicitly in

some matrix equation of the type ~ ( X) A ) B J C) = 0

where A ,B C are known matrices • Quite often

~ is linear in X ,however the matrices are not

necessarily square. An extensive research, even if not

deep~ of the existing literature on matrices has failed

to reveal any systematic tretment of this type of

problems, which are of great practical interest in

the study of dynamical systems. This is another area
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of more fundamental mathematical character, that would

be worth exploring.

A related field of research is the study of the

geometrical properties of the set of stability matrices

in matrix space. It is shown in appendix 4 that this

set contains a convex cone of dimension Yl)( n An

interesting question then is what type of set we obtain

by transforming this cone with all possible similarity

transformations. It is easy to see that the diagonal

stability matrices with equal eigenvalues are invariant

R"''lC n
under similarity and belong to a line in Then

R Y\ 'X Yl can be decomposed into the direct sum of 2

invariant subspaces, one of which is this line, and the

other is a hyperplane. This decomposition can be utilized

to study properties of the set of stability matrices under

similarity transformations. The study of the precise

structure of the set of stability matrices in R h )( n

is an interesting topological problem, whose solution

is likely to shed light over many areas of control theory.

In the same vein it is possible to consider more

general problems associated with stability matrices, in

particular the effects on the spectra of the operations

defined for matrices. Very few results are available

at present along these lines. More generally one should

consider elementary divisors rather than eigenvalues,
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and see if it is possible to extend to the elementary

divisors the results known on eigenvalue assignment and

the effects of addition and multiplication on the

elementary divisors. The problems can then be compli-

cated by introducing an inner product in ~nxn In

fact, since matrices form not only a vector space, but

rather an algebra, the resulting structure must be very

rich and the possibility of variation of the problem

very great.
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7. CONCLUSION

We have considered the problem of stabilizing an

unstable system by means of finite memory feedback in

the event that a simple feedback scheme fails to achieve

this goal. We obtained a solution for a two dimensional

example (oscillator). We considered the characterization

of general systems with respect to the feasibility of

stabilization by means of a simple feedback scheme. At

present this characterization is not satisfactory and

it should be improved. We obtained a solution of the

stabilization problem in the general case under an

additional assumption, using the theory of the observer.

Finally we have given suggestions for further research

in this area, specially with respect to the problems

that are not fully understood at present. Some of this

suggested research has independent interest from a

strictly mathematical point of view.
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A.I. APPENDIX 1

Given the system

(A.l.l)

which can also be written as

with we want to prove that

with y arbitrarily small

Let us substitute in (A.l.) the expression (A.I.I)
•for X 2.

We obtain

0 0 0

(A.1. 4) ~1-l}21q({l) xC t+'l1) d-8' :: if -W1e(tl) ~XI(t+'Vn 1~W?(I(t+yt+A.)d~a&
-~ -~-~
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., -il~2k(~)X,(t+'Vd& + ~f~\(MU~(lL);(I(t+'l+A)dA1d~
-'t -'"'C-'t

The terms on the right hand side can be bounded as

follows:

= "kz S~ \\ x.(l= +s)(1
5E;[:'''t Jo1

(A.1 • 6) kL;1«i}l(f5(A.h:,(t+'1+A)d~d~ ~S~~'[~I\~(t+s~€h(~r'(().)\~dfl'

with 1e2. defined by ().12).

Define

o

(A.1- 7) 1e: ~J \'kC>.,) \dA
-1:

Then we obtain

This is identical to (A.1.) with
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It is pointed out in appendix 2 that 1eo , and

therefore also -'leo*" , is of first order in 'l: while

1e2. is of third order in 't Therefore, for small

enough 't' , T can be made arbitrarily small.
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A.2. APPENDIX 2

Given numbers 'ko , ie, • ~z*, we want to find

a piecewise constant function such that

o

ito = f k (&l d B-
-'t

o

'hI = J -0' n(it) d{1
-'"t

'" 2-h1. = f {1 I'teC{}) Id& ~ k:
-"t

Let us ignore for the time being the inequality

determined by k~ and let us consider more generally

the problem of finding k,C{}) when

o

(A.2.2) ize. =! ,flt h({}) d&
-'1:

equal subintervals and let us consider

is given for

Let us divide the interval in N> L

1-< (il) as

a piecewise constant function in each subinterval, i.e.

Then
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This system of L +, equations in N ~ L

unknowns can be written

with

(A.2.6)

Let I::::::. be the matrix with elements 6,lj

System (A. 2.5) has solution if Y'"dn ~ 6. = L + \ .

Let us consider the first L + I columns of ~

and form with them the (L+I)( (L+I) square
I""'-J

matrix ~ • We will prove that

I""'-J L- L-I 2-
del::.L = 2-3 ... L·(L+t)f.O
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49

and a solution exists.

In particular if N > L+ \ there will be

infinite solutions so that it might be possible to

define an optimality criterion that will give a unique

optimal solution: this problem however is not considered

further.
~

Let us consider the matrix ~. It can be expressed

as the product of 2 matrices

with

100

-\ I 0

(A.2.10) e lJ. 0 -I

o 0 0

o 0

o 0
o 0

-\

I 2 3 (L+\)

/2 2'2- 32
• (L + \)2

fA .
J (L.I) iL~') 3(H'). ( )(L.f.I)

(A.2.11) L+l
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Since e is lower triangular its determinant is the

product of the diagonal elements, hence

(A.2.12) de.c 6 = dete det r = de~ r

The matrix r- is of the type

a 6 c . t
a2. ~ cz. e'Z.

(A.2.13)
(L+I) ~L+\) c.(L.+.') •

.e(LTI)

d

Let us reduce (A.2.13) to upper triangular form by row

operations (Frame, 1964). Let us first subtract in turn

from each row the preceding one multiplied by d , and

get the new matrix

(A.2.14)

Then

o

b c

b(b-~) C(C.-d) •

~(b-d) e,"l.(c-J) •
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with

0 () 0 0

-d 0 0 a
(A.2.16) l-I(I) - 0 -d 0 0

. . .
0 0 0 -d

so that and de!:. 1= deerc,).

We can continue this procedure by multiplying

successively by the matrices

0 0 0 . 0 0

0 0 0 0 a
(A. 2.1 7 ) H(:l)= 0 -6 0 0 0

0 0 -6 0 0

. . .
0 0 0 0 -6
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0 0 0 0 0

0 0 0 . 0 0

0 0 \ 0 0 0

(A.2.18) H(3) = 0 0 -c 0 . 0 0

o 0 o 0 • • ·-t

and so on, each one with determinant equal to 1,

We obtain eventually an upper-triangular matrix

which has the upper triangular forma

d b c d

0 bCb-d) C (C-d) ded-c\)

(A.2.19) r(L) = 0 0 c(e-b)(e -.)) d (d -b)(d-d)

0 0 0 cJ (c.I- c)~-Io)(d-~) •

. . . .

and such that

(A,2.20)

Therefore

,...,
deb D,. - de;t r = del:; f(l-)

( A, 2 • 21) d ~t r = de t {(L.) =- d· 6 (b - d) . c (c - b Xc - d) . . . . .
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In particular for ~ =1

we have

C ::: 3 ) ...

(L+I) L (L.-l)

(A. 2. 22) clet r = I . 2 .:3 .

Therefore it is possible to solve (A.2.2) for any

arbitrary set of numbers "lee •

Suppose we have specified ko and 'k. and found a

solution ~ ( f})

requirement that

We still have to satisfy the

o

(A.2.23) 'Ie; ~ 'k 2 :: J ~~I1e(19')1 d&.
-"t'

Since equations (A. 2.5) are linear we see that k (j)

are at most of second order in 1J... on account of (A.2.6)
1:'

for fixed values of ~o and "kt • On the other hand

(A.2.24) 1e2. = _.1 (1:')3 r [(j_l)l...1- jt...IJ \-k(jll
3 N j=1

'k
2

~ J- (1:')3) i [( i _1)£ ... 1 - /"")\ M'\ax Ik(jll
.3 N j=1

But ~dX. 11e CD' = 0 [ (NI'""CY-J at most, so

that for fixed N) 1(0 and k. , 1e 2 =0 ('t) and it will

always be possible to satisfy (A.2.23) by choosing ~

small enough. More generally we should choose among
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the infinite solutions of (A.2.5) a solution that will

have large values of ~(j)onlY near zero in order to keep

1ez small. This consideration should be kept in mind

in the choice of the optimality criterion if such criterion

is used to specify
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A.3. APPENDIX 3

We want to prove that in the case of complex conju­

gate eigenvalues, the matrix A is similar to a block­

diagonal matrix where blocks corresponding to real

eigenvalues have the usual Jordan form, while blocks

corresponding to complex conjugate eigenvalues of

multiplicity 1e ~ have the block-structure

5c: I 0
A 0 Si I

(A.3.1) A· -c..

0 0 0

a
o

I

A

In (A.).l) A~ is in block form, I is the 2 x '2.

identity matrix 0 is the 2x2. zero matrix, and

Similar matrices have the same elementary divisors

(Gantmacher. 1959) so it is necessary and sufficient to
A

show that matrix A~ corresponds to the elementary

divisors
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where At J Ai. are the ~-th complex conjugate eigenvalues

and ~l is the degree of the elementary divisors correspon­

ding to them. (Notel we label with a different index

eigenvalues associated with separate elementary divisors

even though they might be numerically equal). In other

words we must prove that (A.).)) is the minimal polynomial
A

of Ai . Let us consider a factorization of the minimal

polynomial in polynomials irreducible over the reals.

Then to the polynomial (A.).)) will correspond the poly-

nomial with real coefficients

More generally we might consider a polynomial

irreducible over a more restricted field than the reals.

The problem is to construct a matrix that will have

(A.).5) as its minimal polynomial. Therefore we require

that

(A.).6) [ ,h A J~~
'ri (A~) =0
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while

for all

block-strictly-upper-

1""1

N

K

o

Each of its powers has one more line of zeros parallel

to the main diagonal, so that H~ satisfies the requirement

that its ~~th power is zero while its ~-th power,

for , is not zero. It is therefore 6uffi-
/'to.

cient to choose Ai. so that

'"Choose now any f\~ with minimal polynomial

and form the matrix
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""'J

I 0 0At.
,.."

I
/\ 0 At. 0

(A.).10) A~

~

0 0 0 A;.,

~

It is easy to verify that each power of At will be

block-upper-triangular with diagonal entries the corre-
A A

sponding powers of At , and therefore "-Pi. (A ~ )

will be block-upper-triangular with diagonal entries 'f~(A~).

By construction '\.fJz ()...) is the minimal polynomial of

Al. so that by the Cayley-Hamilton theorem ~c: ( A~) =0

and will have the required property (A.3.9).

With this construction then one is insured that the
A

block Ai. will have the correct minimal polynomial and

hence there exists a similarity transformation that will

put the original matrix into the form claimed. In

particular if the field considered is the real field,

the irreducible polynomials will have degree at most 2
'"so the blocks A~ will be 2. x 2 matrices and can be

chosen in form (A.3.2) or, if preferred, in companion

form.
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A.4, APPENDIX 4

We want to prove that. given the system

(A,4,1 )

with

(A,4.2)

{

X.e"" __ (A+BK)~ - BRe-'Y\.

(A-HC)f2.

and A t B ,C )a controllable and observable
A

triplet, it is possible to choose 1:", \--\ ,k so

that the systems

(A.4.)

(A.4.4)

. "'"x: =(A+8K)X:

Q = (A -HC)e

are exponentially stable and the choice



60

makes (A.4.1) exponentially stable.

On account of (A.4.2) we can consider only the case

C~'t'. We note that the controllabili ty/observability

hypothesis enables us to place at will the eigenvalues

of (A.4.3), (A.4.4) (Mitter and Willems, 1971), in par-

ticular we can choose them with negative real parts.

Equation (A.4.4) is homogeneous, hence we can bound etc)

as follows

(A.4.6)
_~t;

l\ .Q ( t) l\ ~ flo Q.

,8 positive numbers. We can

choose (A.4.3) exponentially stable so we can bound its

transition matrix as follows:

with 0(.. ~ » 0 . The norms 1\ 1\ must be

interpreted as follows: in Rn
they indicate any con-

. t . RhKn •ven1en norm, 1n they 1ndicate norm induced

by the R~ norm by means ef

(A.4.8) \\ A \\ rmax \\ A "n
\\'1'11=1

Because of linearity, the solution of (A.4.1) can be
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expressed as the sum of two terms 'XI and Xz satisfying

the equations

{

'XI:: (A ... BK)X , - 8 R.e
(A.4.9)

X, (0) :: X.o

{

;:2. = (A + BK:)?(.2. - '1
(A.4.10)

X2. (0) = 0

To these equations we can apply the variation of constants

formula and obtain the bounds.

We can choose ()(, and
"'"values of A + BK

choose S > D<,

8 at will by placing the eigen-

and A - He If we

then

(A.4.12)

where A is a positive number of the order of Il'X.o\\+.eo.
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Next we want to bound the term ~2 • In order to

consider the transition matrix used to define

do so we must find a bound for '1. ' so we are led to
'"K({f)

i. e. the matrix epA + SK _He (l: ) • Because of linearity

we can bound e:pA + &.< _He (t) as follows a

(A.4.1)

A A

with ~ > 0 • Let us assume first that A .... B K - He

is a stability matrix so that V/'O. Then we can bound

the kernel k(%)c. as follows:

with )A')) >0 and

(A.4.15) ?- A ;.., II RII .\\ H\1-\\ C1\

Now we can use (A.4.7), (A.4.12) and (A.4.14) to obtain a

bound for '1((->' From the definition (A.4.2) of 'Yl we

obtain

-T

( A•4 •16 ) 1\ yt ll:) II ~ f 1\ k ({}) cII . l\ ?< (l:. + it) II d-& ~
-t
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~L~ kCi})e ~ ·1\ x. 1 (t+&)I\ d{h-J~lk({})CII·IIX1. (l:+{})II d&

We introduce (A.4.12) to bound II x ,(1:)11 , and the variation

of constants formula for equation (A.4.10) to bound ((Xz(~)11

and obtain I

Let us consider now the second term on the right hand

side of this inequality, and let us change in it the

order of integration keeping in mind that the domain

of integration for the double integral is as shown in

figure A.4.1. We obtain

(A.4.18) f-;(V-")lT[j~~SI~(S)lldsJd& -
-t 0

(: - "t -'t

=i .e«5 /1,(5)11 [ f d"-"')~d.f}] ds
o .s-t

t-'l"

= --L f QDt'S Ihl (5)11 [d",-vn- d,,-<tXS-C)]ds
v-~ 0

We can assume that v>lX because (A.4.12) will remain

valid if we replace ex with ()( '*< ex . Then we can

write:
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JI' 5

, t;
/,

/
/

/

/:. - - - - l; - 'T

/1////

A//////

-\; -1:

Figure A.4.1

o

(A.4.19)

By hypothesis (X-v <: 0, t ~ "t >0 and 5 ~ t - ~ ,so the

expression (A.4.19) gives the simpler bound:
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Let us define now the quantities

(A.4. 21 )

(A.4.22) '> 0

(J >0

Then (A.4.20) can be written as

t

(A.4.24)f(t)~ ~ + crifCS)ds

To this inequalityw.e can apply the Gronwall-Bellman

lemma (Halanay, 1966; Bellman, 1953) which is repeated

here for convenience.

Lemma: If .u.(t) J 1.T{\:)~O, if C is a positive constant

and if

t

(A.4.25) -\.l(I:) ~ c + f M.(!i» V($) ds
o

then

t

(A.4.26) -u.(c) ~ c Up{i 'Ir(S) dS}
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In our case we obtain

from which follows

(A.4. 28) 1\ 'Yl (t: )\l

We can use now (A.4.28) to obtain a bound for II x'z.(I::) II
by means of the variation of constants formula for

equation (A.4.10). We obtain

We can express ~ and (J by means of (A.4.22) and

(A.4.23) and obtain

Taking (A.4.23) into account we see therefore that it

is possible to choose 'T so that x,2, (t) is

exponentially stable.
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Combining now (A.4.12) with (A.4.30) and noting that

ex > ()(, - cr since () "7 0 we conclude that

It 1,-./ 2. '\ e (c:s - ~) t
(A. 4.31 ) x:. (t ) , A

and system (A.4.1) is exponentially stable.

If we consider now the case when " ~ 0 the

preceding approach fails to prove the stability of ~(c)

since the bound obtained for 'l{t) becomes a growing

exponential. For lack of an alternate approach we will

"'"make the assumption that A+ B K - He is a stability

matrix and show that the set;J of matrices A J B J C

""such that there exist K and H which make all three
A A

matrices A + B K, A -I-t C and A + BK - \-\C stability

matrices, is nonempty. Marcus and Minc (1964) contains

the following theorem due to Gersgorin.

Theorem: The characteristic roots of an n-square complex

matrix A lie in the closed region of the z-plane con..

sisting of all the discs

We can use this theorem to prove some properties of the

set of stability matrices in Rt'\xn Let us consider

R n){t"\
in the set of diagonal matrices with all
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sion one (line) in

the norm:

68

They form a linear variety of dimen-

R "'" X'Y'I • d . RVlxn
Let us ~ntro uce ~n

r'I

(A.4.)1) II A II - ~ I dljl
L,~=l

Gersgorin theorem then implies that given a diagonal

stability matrix A and a matrix E with all elements

different from zero. the matrix A + E will be a

stability matrix provided

(A.4. 32) /I E II < IYYt iY1 t\I<e (~~eMA) \}

In particular if A is a point in the half-line ~ of

diagonal stability matrices with all eigenvalues equal

there is a ball of dimension Y)2 centered on A and of

radius equal to the eigenvalues of A whose interior is

formed by stability matrices. On the other hand multi­

plying a matrix by a positive scalar has the effect of

multiplying by the same scalar all its eigenvalues so

that if A is a stability matrix then all matrices AA
with A» 0 are also stability matrices. We can

therefore associate to the ball a conecr of dimension

nxn composed of stability matrices, which moreover

is convex since the ball is a convex set. Let us
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'"consider now the expression A + B K The matrix A

R V'\)(V'\

represent a point in
.......

and B K represents a

ThenR nxn K'"subspace of if we consider variable.

A + BK represents a linear variety As in RnxY'\

through the point A Similarly A - l-\C generates

a linear variety Ac through A as H varies. In

"" "'"order to have A+BK ,A-He ,A+BK-\-\C sta-

bility matrices it is sufficient that one of the sets

AB ncr, Ac n <r be unbounded, or equivalently it is

sufficient that there exist K* or H* such that for

all positive scalars E. , A + E B K*

be contained in the convex hull of ·A

or A- E. H~C

and cr This

will be true if As or Ac have a nonempty intersection

with the set A €a Q'" where EB denotes direct sum of

sets. Since A E9 () has dimension ., x n it is clear

that the set J is nonempty.
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A.S. APPENDIX S

We want to prove that I given the system

{
Q;. -= (A - He) e

(A.S.l)

(A +BK)X - BKe + £

with A -He and
A

A+ BK stability matrices

only in the interval

and £ a perturbation due to the imperfect realization
........

of k ({J) in the interval [- "t j 0] , if the

perturbation is small enough system (A.S.l) will be

stable. (Notel in this case we assume no truncation
""

error; in other words kC{7) is assumed to be in error

[ -1: J 01 and to coincide with

in the interval [- t. )-L] J

so that its effect is taken into account by the form

assumed for (A.S.l».

Let us define a measure of the error as follows I

Then the term £ in (A.S.l) is

o

(A.5. 3) £ =f cp (-&) x. ( t + {}) d {]
-'1:'
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Linearity allows to express 'X as the sum of :3 contri­

butions due to initial conditions, the input Q and

the perturbation £

of these 3 terms upon E

We are interested in the effect

The first two terms in X

are exponentials decaying at a rate 0'" - oc, , for 8> 0(,

as seen in appendix 4. When multiplied by 'f ({}) and

integrated over [- L J 01 they give a total contri­
(0'" - 0<) t.

bution to E. bounded in norm by Co Q

where Eo is a certain positive number which can be made

arbitrarily small by the choice of the initial conditions.
- OGt .

Let us for convenience write this bound as Co e
by redefining ex. • This new value of ex.. can also used

in (A•4 •7) s inc e ot - cr < ot We can express the

third term in 'X (t) by means of the variation of

constants formula and obtain the bound

Let us interchange the order of integration taking into

account the domain of integration which is shown in

figure A•.5.1
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j 5

/
/

/

"/

"/
/

/

"

We obtain

-t; -'t

Figure A. 5.1

o

e--"'t' 0

(A.5. 5) II t: (dl ~ coe",t;-+ ~iOt.1 Q."'s lIE (5)1\ [LI\<p(~)1\e"'~.fr]ds -+

+ f Q-"'t~~"'SI\E(S)11 [L~ q>({})lli"'~dlTJ ds ~
t:-~ 0

~ Eo Q"",t+ ~ Q"''t'.iOt.t;-l.e'''S"E(S)UU~ <pC&)~d~] ds +

-+ ~ Q"''tfi lltl:t~"'S1\ E(S)I\Ujl q>({})i1d&] ds
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Let us now define

o

( A •5•6 ) % Ii J 1\ cp ({7) II d-&
-'1:

Then we can write

This can also be written as

t-
. Olt oct: ( 0'5

1(A.5.8) Q l\ul:)l\ ~ Co + ~e CPOJO Q 1E.(S)l\ ds

Let us define now a new function

( A •5•8 ) TC (t) t:. .Q.ex t II E (t ) 1\ '7 0

For TI ( l: ) we obtain from (A. 5 . 8 )

t

(A.5.9) 1\ C1:.) ~ Eo + ~<foQoc.'l:l f((s)ds
o

To this function we can apply Gronwall-Bellman Lemma

(see appendix 4) and obtain



Therefore we deduce that

If q(o is sufficiently small the exponent will be negative

and II E(t) \\ will tend to zero exponentially. We

can now use bound (A.5.11) to obtain a bound for the

third term in :x.

t

(A.5 .12) 1\ ?C3(t-)11 ~ ~i.Q ot (I; -s)Co Q1td~q'o ec{'t"_ 0(.) 51 ds -

t .

== Pcoi"'\;iMf\ ~~od"\1ds = ~~~"'~~~lf.e~~ '1
Since we have chosen already gJo so that

we are insured that ?C (t) is exponentially stable
"'1:

with rate of decay ()(, - (3 <po f2 With the nomen-

clature of appendix 4 (A.5.13) is written as

( 0(. - <r) 1:'
ex - cr > rcpo Q

and the rate of decay is
(0£- 0-) 't'

ex - cr - r<foQ
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A.6. APPENDIX 6

We want to prove that if A, B , C is a

controllable observable triplet, so are each of the
"'" "" .......

triplets of conformal blocks Aj , Bj , Cj obtained

by putting A in Jordan form.

Let us change frame of reference by setting

which implies

with 5 nonsingular. Then

.
+ B t.A.1~ = A x

(A.6.3)
~ =C~

becomes

• "" ""'"

{:
= A; + B-<..t

(A.6.4)

- C~
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with

........
B - S8

c = C S-l

Then the conditions for controllability/observability,
become.

"'"c
CA

= n

A A IC A h
-

Let us fix our attention on controllability. Substi­

tuting (A.6.5) in (A.6.6) we obtain

Since 5 is nonsingular and [ B J ABJ ••• An-I B 1
has rank n by hypothesis, we see that (A.6.6) is

A

verified. Now )\ is in block-diagonal form so that

its powers are also block-diagonal of the same type •
........

Using the partition of E3 we obtain
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'" "'" A
A A

B, A,B, A~-'B,

A A A Ai-'B2B2. A2. B2

)
. . . )

(A.6.8) rdnk =n. .
A A A ;"\ ~_, A

Bk Ai< BIC A K BK

This is verified if and only if all the rows are linearly

independent. In particular the rows of the matrix

A """
must be independent. so that A j • B j must be a con-

trollable pair. An analogous proof is valid for

observability.
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