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ABSTRACT

This thesis first presents a general formulation for
(discrete~time, time-invariant) linear systems over an
arbitrary ring with ldentity.

Secondly, the ascending chain condition (A.C.C.) is
imposed on the various rings and modules involved. The
result is a network of familiar relations comnecting
reachability, controllability, distinguishability,
realizability, and transfer functions. In general,
commutativity is not required of the underlying ring
at this stage. The results are later specialized to
the case where the ring is a Noetherian domain to obtain
a useful realizability criterion.

The development is further specialized to the case
where the state is a finitely-generated torsion module
over a principal ideal domain, e.g., a finite abelian
group. This section is motivated by an extension to the
B.C.H. coding scheme,

Fourthly, a series of decomposition results is
presented under three different levels of structure on
the state module. Finally, some applications and examples
are discussed, followed by suggestions for further work
and a sumary.
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1. INTRODUCTION

1.1 System-Theoretic Position

Throughout this work, discussion is restricted to the class of discrete-

time sequential systems. A system in this class can be described by equations

of the form

and

where ut(e U = some set of inputs), xt(G X = a set of states), and yt(G Y =
some set of outputs) denote the inputs, state, and output at time t; Xrl €X
denotes the state at time t+l, and £: X X U+ X, h: X * Y are functions.

Specifically, this class excludes systems operating in continucus time,
such as those described by differential equations., It also excludes systems
where concurrent activities may take arbitrary finite times to complete,
such as those described by Petri nets.

There is a qualitative division of the class of discrete~time sequential
systems (D,T.S.S.) according to the amount of algebraic structure afforded
the system. At one extreme is the theory of finite-automata as described by
J. Hartmanis and R. E. Stearns [ 1], H. P. Zeiger [ 2], and by K. Krohn and
J. Rhodes [3]. Here there is no algebraic structure placed on the input
and output sets; the only assumption is that these sets (and the state set)

are finite.

At the other extreme is the theory of finite-dimensional linear systems

over a field F, where F may be finite or infinite. Here the input, output



and state sets are finite-dimensional vector spaces over F, and all associated
maps are linear (i.e., are vector space homomorphisms).

What lies between these extremes is of considerable interest. One
research effort has imposed a certain amount of structure on the input, output,
and state sets and has required that the associated maps be 'compatible" with
that structure in an algebraic sense. This point of view is illustrated by
the work of R. Brockett and A. Willsky [ 4] and of M. Arbib [ 5 ] on group
homomorphic machines. Here the input, output, and state sets are required to
be groups, and the associated maps are all group homomorphisms.

Another line of research has relaxed the requirement that a linear system
be constructed of elements chosen from fields and vector spaces. The result
is the study of linear dynamic systems over a ring R; appropriate references
are Y. Rouchaleau [ 6], and Y. Rouchaleau, R. E. Kalman, B. F. Wyman [7 ].
Here the input, output, and state sets are finitely-generated uritary modules
over a ring R, and the associated maps are homomorphisms of R-modules,

Specifically, the dynamic equations take the form

X g = P+ ¥()
and

Yt = Tf(xt) ?

where Xy Xy € X = state module, u_ ¢ U = input module, ¥, € Y = output

t
module, and ©: X * X, ¥: U+ X, N: X + Y are all R-homomorphisms.,
It is proposed here to extend the study of (discrete-time) linear

dynamic systems over various rings, There are two major parts of this work.



The first examines the effects various assumptions on the underlying ring
have on important properties such as controllability, observability, decomposa-
bility, and realizability.

The second major part attempts to illustrate the usefulness of this
extended linear system theory, from both practical and theoretical viewpoints.
A great emphasis is placed on formulating a wide variety of interesting prob-

lems in terms of a linear system over some ring R.

1.2 Brief Historical Summary

The work of Rouchaleau, Kalman, and Wyman is eminent in extending conven-
tional linear system theory to the theory of linear dynamic systems over vari-
ous rings. Their emphasis, however, has been on systems whose input and out-
put sets are finitely-generated free modules over integral domains. In his
doctoral dissertation, Rouchaleau studied the problem of realizing linear
systems over Noetherian domains, integrally closed and unique factorization
domains, and principal ideal domains. This problem is briefly outlined below.

A linear system is completely specified by its impulse response, that is,
by the m output sequences resulting from a 1 applied to each of its m input
"ports". If there are p output "ports", these m semi-infinite sequences
can be combined into a semi-infinite sequence of p X m matrices; this seqeence
can be called the Hankel sequence of the system.

The realization problem is this: given a semi-infinite sequence of p X m
matrices, find a linear system for which this is the Hankel sequence. Such
a system is said to be a realization of the sequence. It is usually required

to find a "simple" or the "simplest" (in some sense) realization; it is always
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required that the state module be finitely generated.

One major result of Rouchaleau, Kalman, and Wyman is that a sequence of
P X m matrices over a Noetherian domain R is realizable if, and only if, it
is realizable over R's field of quotients, XK.

Another major result, one appearing in Rouchaleau's dissertation, is an
algorithm for computing minimal, canonical, free, realizations over a principal
ideal domain. This is a system-theoretic application of an algebraic procedure
for constructing a free set of generators for a module over a principal ideal
domain, given an arbitrary set of generators.

Since the idea of considering linear dynamic systems over rings that are
not fields is relatively new, the literature in the area is sparse., It is
probably safe to say that the work of Kalman, Rouchalean, and Wyman accounts

for a large fraction of it.

1.3 Motivation

Why extend linear system theory to cases where the underlying ring is
not a field? One way to answer this question is to exhibit linear systems
of practical or theoretical interest that fall into this class. Another way
to answer this question is to point to the success of others in the area,
and discuss questions raised by their work.

The next few paragraphs will present examples of linear dynamic systems
over certain rings that are not fields., These examples were chosen to be
as Interesting and varied as possible; hopefully, they will at least demon-
state the subject's versatility. (These and other examples are developed in

much greater deatil later).
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1.3.1 Encoders and Decoders for Certain Group Codes
The general idea of coding is to append some number r of check digits

to a message of k information digits thus forming a composite which is
hopefully "insensitive" to alteration by noise encountered in transmission.
The check digits are chosen td provide a certain amount of redundancy in the
transmitted sequence, so that even if a few errors occur during transmission,
the original message can still be recovered.

It is customary to view thedigits as belonging to some finite field F.

A message of k information digits can then be viewed as an element uof a
k-dimensional vector space over F, and the r check digits can be viewed as
an element ¢ of an r-dimensional vector space over F.

As explained by Berlekamp [8 ] or Gallager [ 9], it is convenient to
generate the r check digits by applying the k information digits in sequence
to a linear dynamic system over F. The dimension of the state space is taken
to be r, and the system is originally in the zero state. After all the infor-
mation digits have been applied, the system is in some state X s and the r
components of this state are taken to be the check digits. If the state is
represented by the contents of a shift register, it is then easy to shift
these digits one by one into the transmission channel.

It is clear that this general technique of jmplementation does not depend
on the vector space structure. Hence we may ask whether there are interesting
codes whose implementation requires a more general type of linear dynamic
system. A major part of research reported in this thesis deals with the
construction of error-correcting codes whose implementation requires linear

dynamic systems whose state sets are finite abelian groups. Such machines can
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be viewed as linear dynamic systems whose state, input, and output sets are
all torsion modules (over Z), and hence are called torsion linear machines

(or systems). These machines can also be viewed as finite gbelian group

homomorphic machines. A subelass of the codes discussed reduces to the

Bose-Chaudhuri-Hocquenghem (B.C.H.) codes when the digits are viewed as

elements of a finite field.

1.3.2 Certain Partial Difference Fquations and Systems

Consider the heat flow equation along a one-dimensional bar

a2

ox

3

ot

H

1
- = = g{x,t)
CL2 ’

N

where T denotes temperature, x denotes spatial extent, t denotes time, and
s(x,t) denotes the distribution of heat sources (in space and time) along

the bar. Assume that the bar is at temperature zero everywhere at time zero.
We can construct a discrete approximation to this system by letting T(i,j)
denote the temperature at integral positions i along the bar at integral
instants of time j. Although more complex approximations exist, for illustra-

2
tive purposes we can approximate %% by T(i,j) - T(i,j-1) and é—% by

ox
T(i,j) - 2 T(i-1,j) + T(i-2,j). The approximate equation becomes:

[T(L,1) - 2 T@E-1,9) + TE-2,D] - 5 [TE,5) - TA,5-1] = s(1,5).
a

Let y denote the shift operator y: T(i,j) * T(i-1,j), and let z denote

the shift operator z: T(i,j) = T(i,j-1). Then the approximate equation can

be written as
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(a9 - L a-21 - 14, = s@,p, 1,5,

a
or

[z-1 + o2 (19?1 - T(1,5) = o®s(1,1),  Vij.

To make contact with linear system theory over rings, let R*[y] denote
the quotient ring of R[x,y] modulo the principal ideal generated by (xy-1), |
where R is the real field. Clearly, y (i.e., class of y) is a unit of R*[y],
with inverse equal to x (i.e., class of x). We can represent the temperature
distribution along the bar at any instant of time by an element of R*Ey].

We will also represent the source distribution along the bar at any instant

of time by an element of R*[yI. It follows that the above approximate equation
represents a linear difference equation over the ring R*[y]; from another point
of view, the above approximate equation states that the polynomial

fz=1 + az(l-y)zl € (R*Ey}) [z] annihilates the state module of a discrete,
one~dimensional, diffusion system viewed as a quotient module of (R*[y]) fz].

Several points should be mentioned. First of all, any linear, constant-
coefficient partial differential equation may be approximated in this fashion,
and any linear, constant-coefficient, partial difference equation may be put
in this form, provided that the boundary conditions are simple enough. Second-
ly, the ring R*{y] is a principal ideal domain, thus we can expect fairly
detailed results. Finally, the step of forming R*[y] may be avoidable; it
may be possible to split the spatial effects into "causal™ and “anti-causal"™
parts, in which case we would deal with R[y] instead.

This last remark is purely speculative. In any case it should still be
clear that certain partial difference systems can be viewed as linear dynamic

systems over a ring R.
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1,3.3 Group Homomorphic Machines

As mentioned above, group homomorphic machines (G.H.M.'s) have been
studied by Brockett and Willsky and by Arbib. In general, a G.H.M. is

described by the dynamic equations

Xppp = PG - ¥Qu)
and

Yt = T}(xt).s

where u € U = the input group; x

= €Y =
o Xpyg € X = the state group, and Ve Y

the output group; ¢: X * X, ¥: U+ X, and N: X+ Y are all group homomorphisms.
For our purposes, all groups will be finite.

The study of linear systems can be helpful here in several ways. The
first is applicable when the groups are abelian. Such machines were mentioned
earlier in the context of coding. Here they can be viewed as special cases
of group homomorphic machines. 1In this sense, linear system theory is directly
applicable to a subclass of G.H.M.s.

Another way is via the theory of groups with operators, which applies not
only to modules over a ring, but to groups equipped with an endomorphism, At
least on an intuitive level, it seems reasonable to expect that certain tech~
niques are common to the linear case and the group case, since both involve
gfoups with operators. The major difference is that in the linear case, the
group (i.e. the module) is abelian.

A third way is applicable if the inmput to the G.H.M. were to be ignored
(or set to the identity) and only the free response were of interest. In this
case, one could ignore the group multiplication that takes place between

w(xt) and ¢(ut).



Under these circumstances, one could embed X and Y in the group algebras
k[X] and k[Y], respectively, where k is some field such as the complex numbers.
One would then extend ¢ and M to k-algebra homomorphisms. Then, as a result
of a cascade decomposition theory mentioned below, one obtains immediately
that k[x] is the direct product of two (Left) ideals, where the restriction.of
® to one is automorphic, and the restriction of ® to the other is nilpotent
This result provides a preliminary decomposition of k[X]. Further decomposition
can be obtained by exploiting the semisimplicity of k[x].

Naturally, this decomposition holds whether or not U is ignored, since it
involves only © and X. However, ignoring U allows the group algebra system to

be treated as a linear inforced system.

1.3.4 Some Theoretical Questions

The above examples were chosen from areas not immediately related to the

development of linear system theory over rings per se. The work of Rouchaleau,
Kalman, and Wyman, however, does pose several questions and problems that are
immediately related to the theory's development. Some of these points are
brought up below.

The first concerns decomposition; in particular it comcerns the lack of
a decomposition theory even in the cases considered by Rouchleau, Kalman,
and Wyman, where the input and output modules are free modules over some
Noetherian domain. Since decomposition ig an important system~theoretic topic,
it seems reasonable to pursue the goal of a decomposition theory for linéar
systems over such important classes of rings as unique factorization domains

and principal ideal domains. Of course it is also reasonable to expect that
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decompositions in these situations are not as readily forthcoming as in the
Vector space case, Nevertheless one might like to investigate Rouchaleau's
technique of comparing a realization over a domain with a realization over
that domain's field of quotients as a possible tool in developing decomposition
theories for these more general systems.

Another question concerns the preoccupation with finding canonical (i.e.,
reachable and observable) realizations of Hankel sequences, It seems that,
in general, a canonical realization may have a state set which is not a free
module over the underlying ring. On the assumption that this could be a
serious problem, it becomes reasonable to ask "when is there a free canonical
realization?™ and if no free canonical realization exists, ™what is a 'good'
free realization?™ even though it may not be canonical.

A final question deals with alternate methods of specifying linear
systems. Rouchaleau emphasizes Hankel sequences. One would like to have more
information about specifying systems by difference equations and transfer

functions or matrices.

1.4 Outline of Thesis

This thesis first develops the concept of a linear system over an arbi-
trary ring and then proceeds by adding more and more structure on the ring.
to obtain more comprehensive results. An outline of this process is as follows.
Chapter 2 develops the general concept of a discrete~time, linear,
time-invariant (D.L.T.I.) system over an arbitrary ring R, The notion of a
linear input-output map over a ring R is developed alongside. The treatment

is very brief, and tends to follows that in Kalman, Falb, and Arbib [10].
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Chapter 3 investigates the implications of the assumption that R satisfy
the ascending chain condition on ideals, at first without commutativity. A
web of relationships between reachability, controllability, finite-dimension-
ality, and monic ammihilators in R[z] of the state module, is the result.

It will appear that a linear system over R may be quite intractible unless

R satisfies the ascending chain condition (A.C.C.). The second part of this
chapter requires commutativityaswell. In other words, the rings discussed
are Noetherian. Fundamental realizability criteria are presented; from these,
some of Rouchaleau, Kalman, and Wyman's results can be derived immediately.

Chapter 4 requires that the underlying ring R be a principal ideal domain
(P.I.D.) and that the state module be a torsion module over R. (The case
where the state module is free is covered to some extent by Rouchaleau in
his dissertation and by Chapter 6 of this thesis). Such systems are called
torsion linear machines (or systems) over a P.I.D.. The first part of this
chapter develops an extensive class of error-correcting codes which are
implemented using these systems. The second part proceeds with the general
analysis of torsion linear machines.

Chapter 5 continues to exploit A.C.C. and ptovides a cascade decomposition
for any linear system over a ring satisfying this condition. The decomposition
is not thoroughly satisfying, however, since the state set is expressed as a
subdirect product of certain modules. The effects of imposing the descending
chain condition (on ideals or submodules) are then investigated. 1In this case,
a certain uniqueness can be proved for a "complete" parallel decomposition
of the original machine. Again, commutativity is not required. Finally,

a decomposition and representation is provided for systems whose state sets
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are semisimple modules. This last decomposition is considerably more detailed
and precise than others appearing here (except possibly for single input systems
over a unique factorization domain).

Chapter 6 presents an assortment of applications and examples, and finally,

Chapter 7 summarizes this thesis and suggests areas for further work.
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2. GENERAL FORMULATION

This chapter reviews the concepts associated with linear dynamic sys-
tems. The treatment is a minor extension of that in chapter ten of Kalman,
Falb, and Arbib [10]. All modules are assumed to be unitary left-modules,
that is, the rings always will have a 1, which acts as an identity operator:

on the module, and the ring acts on module elements from the left.

2.1 The Linear Dyngmical System T

Definition 2.1. A discrete-time, linear, time-invariant (D.L.T.I.) system

Z over a ring R is a triple of R=module homomorphisms, T = (p: X o X,
¥: U+X, M: X+7Y), where U (the input module) and Y (the output module)
are finitely generated R-modules. X is the state module.

The interpretation of this definition is that the triple I defines the

dynamic equations

Xip1 = cp(xt) + qr(ut) 2.1
and

AR ICHY 2.2

where u, € U denotes the input applied at time t; x € X denotes the

t? Fe4l
states at times t and t+l respectively, and yt € Y denotes the output at

time t. Note that in this formulation, an input u_ applied at time t has

t
no effect on the output at time t, although it does affect the output
put ¥, P

at time t+l. In other words, there is no "feed-through."
Secondly, each generator of U can be thought of as an input "port,"

If U has m generators over R, an input u_ can be specified by m elements of
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R, and so T can be pictured as having m input "ports.” Similarly, each
generator of Y can be thought of as an output port. This interpretation is
strengthened if U and Y are free modules, i.e., of the form R

When no confusion can arise, the dynamical system Z will simply be de-
noted by the triple (®, ¥, T). Similarly, the above dyn'amic equations will

sometimes be written

Xipl =<P°xt +\5'-.ut 2.3

and

v, = Tkx 2.4

There are several important maps that can be derived from £ = (9, ¥, 7).
Equation 2.3 describes the operation of ¥ under the gpplication of an input
at a single instant of time, and can be viewed as amap : X X U4 X. This

map can be extended to sequences of inputs of arbitrary but finite length:

*
Definition 2.2. let U denote the set of all finite length sequences of

elements from U. That is,

*
U = {(uo, Upsesss un) \ uy € U; n arbitrary)]

*
We will represent U by the finitely generated R[z] module (, where

= ulz] = {all polynomials in z with

coefficients from U}, 2.5

Given an element w ¢ (1, we will interpret the coefficient of z ' as the in-
put applied i instants of time before the present. Thus zW will denote the

input sequence w followed by a zero input; the inputs are pictured as being
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applied up to and including time = 0, and the output resulting from this se-

quence of inputs appears at time = 1.

Definition 2.3, Let £ = (¢, ¥, 7)) be D.L.T.I. system over R, If

n-1
. h ¢ 0 X is defined b
=L Wz ¢ ), the map ! X XQa X is defined by
1=
n-1
* n VU n-l-i
6 (x, ) |>qhx, +iéo ¢ Yeu, 2.6

*
e} (xo, w) is the state reached by starting I in state X s and applying the

sequence of the n inputs represented by w,

Definition. 2.4. EE : 04 X, the extended O-state transition map of I, is

defined by

GE s w |4 G*(O, w). 2.7

Defipition 2,5. let £ = (p: X*X, §: U X, O: X*Y) be a D.L.T. 1.

gsystem over R, and let GZ . 2+ X be its extended O-state tramnsition map,

Then Xr, the reachable set of X, is defined by

Xr =im GE

= '(';E(Q). 2.8.

Another map of interest derivable from 2.3 and 2.4 is the free response
map which describes the output of I started in some state x and supplied with

an all-zero input sequence. In general, this output sequence is semi-infinite.

dede
Definition 2.6 Let Y denote the set of all semi-infinite sequences of




22

Sk
elements dravm from the R-module Y. We will identify Y with the Rfz]-mod-

ule T where

I= [z ']

[+-]
v -1
= {L v,z | y, €Y. 2.9
i=1
I' is an Rfz]l-module under the following action of z: ordinary multiplica-

tion by z followed by discarding non-negative powers of =z.

Definition 2.7, Let Z =(p: X=X, ¥; U+X, M: X~ Y) be aD.LTIL

system over R. Then }LJ: x=+ T , the free response map of Z, is defined by

ﬁ)j: x I-bz (TkPi:]'x) 24 2.10

1

Thus, ﬁz(x) represents the sequence {N(x), TP(X), «v., Tppi(x), vesls

Definition 2.8, Let Z = (9, ¥, 7)) be a D.L.T.I. system over R and let
(-;z : Q2 X, }-Iz : X T be the extended O-state transition map and free re-
sponse map respectively.

Then f£y: (O I', the input/output map of I, is defined by

fE = HZ . G): 2.11
Proposition 2.1. Q = U[z} and T = Yf[z-l]] are both Rfz]-modules, as dis-

cussed agbove. X is also an R[z]-module with the action of z defined by
Vx ¢ X, zx = @p(x). 2,12

With this structure, -GE : Q-+ X and -l:lz : X+ T are both R[z]-homomorphisms,
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and hence so is fZ : 04 T
Proof. See Chapter 10 of Kalman, Falb, Arbib [10].

Thus, a D.L.T.I. system Z = (: XX, $: U+ X, N: X+ Y) over R
induces an R[z]-homomorphism fE: ufz] - Y[[z-ll]. The converse is also true,

as outlined next.

2.2 Linear, Zero-state, Input/Output Maps

Definition 2.9. Let U, Y be finitely-generated (F.G.) R-modules, and let

Q, I’ denote the R[z]-modules U[z], Y[[z-l]] as above. A linear, zero-state,

input/output map £ over R is simply an R[z]-homomorphism f: Q -+ T,

Proposition 2.2, Let £ : Q + I' be linear, zero-state, imput/put map over R.

Then f induces a D.L.T.I. system Ef =(p: XX, ¥:U~X, n: X+ Y).

Proof, Take X = {}/ker £ Let G, : Q0+ X be the canonical surjection and let

f
ﬁf : X 4 I be the canonical injection induced by £. The action of ¢ on X is
taken to be the action of z on X, viewed as an R-module. V is defined by
letting finding the images under éf of U's generators and extending this map
by R-linearity. 1 is defined by finding the images in I of X's generators
an R-module, retaining only the coefficients of z-l, and extending this map

by R-linearity. (For more details, see chapter 10 of Kalman, Falb, and

Arbib [ 10]).

Definition 2,10, . Zf, the D.L,T.TI. system induced by a linear input/output

map f: Q-+ T, will be called the canonical system induced by f.
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Notice that af and ﬁf are precisely the extended O-state transition map
and free response map of Ef' The facts that these maps are surjective and

injective respectively have several interesting interpretations and ramifi-

cations.

2.3. Reachability, Observability, and Realizability

3

Definition 2.11. Let X be the state module of a D.L.T.I. system z. I is

said to be completely reachable iff X =X, where X =im éE = the set of

reachable states.

Proposition 2.3 The canonical system Zf induced by a linear input/put map

is completely reachable. The proof follows from the fact that éf: N4+ X =

Q/ker £ is surjective.

Definition 2.12. TLet X be the state module of a D.L.T.I. system . A state

x € X is said to be indistinguishable from 0 iff Ez(x) =0¢ . The set of
all indistinguishable states is denoted Xi' A D.L.T.I. system is said to

be conpletely distinguishable iff Xi = (0).

Proposition 2.4. The set Xi of indistinguishable states in a D.L.T.I. sys-

tem © ig equal to the R{z]-submodule ker ﬁE' The canonical system induced
by a linear input/output map is completely distinguishable (since ﬁf is in-

jective and so X, = ker ﬁf = (0)).

Definition 2.14. A D.L.T.I. system T = (p:X+ X, ¢: U X, 7z X Y) over

R will be called a finite D.L.T.I. gystem iff X is a finitely generated R-

module. (This will be the usual case and the adjective "finite" will be
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dropped if there is no cause for confusion).

Defipnition 2.15. Let f: § 4 T be a linear imput/output map over R. f is

said to be realizable iff there exists a finite D.L.T.I. system ¥ such that
?2 (the input/output map of £) equals f. In this case, & is said to realize,
or be a realization of, f: Q-+ ['. Note that if Ef, the canonic system induced
by £, is a finite D.L.T.IL. system, then f is realizable. In other words, if
X =Q/ker £ is F.G. (finitely-generated) over R, then f is realizable, and
furthermore, Ef is a canonical realization of f.

This completes the basic formulation of D.L.T.I. systems of a ring R.
The treatment in Chapter 10 of Kalman, Falb, and Arbib, although developed

for the case where R is a field, is similar but more detailed.
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3, _THE ASCENDING CHATN CONDITION: EA NTROLLAR Y
AND REAT.IZABILITY

3.1 Introduction

The purpose of this chapter is to impose one of the mildest possible
conditions on the ring R underlying a D.L.T.I. system 2. Immediately, some
of the more familiar properties of D.L.T.I. systems over a field reappear in
this more general context. For example, a linear input/output map over a
ring R satisfying the ascending chain condition is realizable.if and only if
it has a description in terms of transfer functions. This holds even when
R is noncommutative.

Throughout much of this chapter, the ring R is not required to be
commutative, although it must satisfy A.C.C. (the ascending chain condition).
It will be shown, however, that if R is commutative, many of the results hold

without requiring A.C.C.

3.2 Properties of A.C.C.

(Recall: all rings have a 1, and all modules are unitary).

Definition 3.1 An R-module M is said to satisfy the ascending chain condition

iff every properly ascending chain of submodules is finite. That is, given

ény sequence of submodules
< = < < =
M M2 ces Mk ceey

where < denotes inclusion, there exists a k such that Mk = Mk+1 = aes
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Definition 3.2, A ring R is said to satisfy A.C.C. iff R satisfies A.C.C.
as a (left) module over itself, i.e., iff every properly ascending sequence
of left ideals is finite.

These definitions lead to the follwoing important properties (for proofs,

see Jacobson, N. [11]):

Proposition 3.1, (i) An R-module M satisfies A.C.C. iff every submodule of
Mis F.G. (finitely generated). In particular, R satisfies A.C.C. iff every
left ideal is F.G,

(ii) (Principle of Divisor Induction). Assume that the
R-module M satisfies A.C.C. and that P(X) is a proposition about submodules
X of M. Suppose the following is true (where X, Y range over submodules of
M):

[(X) ®x2Y = P(X))] = P(V).

Then P is true of all submodules X of M,

(iii) If R satisfies A.C.C. and M is an F.G. R-module, then
M satisfies A.C.C..

(iv) If the R-module M satisfies A.C.C., then all submodules
and homomorphic images of M also satisfy A.C.C..

(v) (Milbert Basis Theorem). If the ring R satisfies A,C.C.,
then so does R[z], the ring of polynomials in one indeterminate with coeffici-

ents from R.

Definition 3.3. A commutative ring satisfying A.C.C. is called Noetherian,
The class of rings and modules satisfying A.C.C. is quite broad. It

includes:



28

(i) all finite systems,

(ii) fields and vector spaces,

(1ii) principal ideal domains and their F.G. modules,
(iv) all polynomial extensions of the above systems,

(v) rings and matrices and endomorphisms over the above rings,
their ¥.G., modules and polynomial extensions.

3.3. Annjhilators and Dimensionality

The main result of this section is to establish the connection between
the realizability of an input/output map f: Q@+ ' over a ring R and the
existence of monic annihilators ¢ R[z] for each generator of Xf = Q/ker f.
These two features are shown to be equivalent if R satisfies A.C.C. or if
R is commutative. In either case, f is realizable if, and only if, for each
generator g4 of Xf over R[z] there exists a monic polynomial gi(z)é Rfz] such

that gi(z)-gi = 0. These realizability criteria are now proved.

Definition 3.4, Let S be a subset of the R-module M. Then A(S), the annihila-

ting ideal of §, is defined by
A(S) =(r €R | rs = 0, Vs €5}y
an element of A{(S) is called an annihilator of S.

Proposition 3.2. A(S) is in general a left ideal of R. If S is a submodule

of M, A(S) 1is a two-sided ideal of R.

Proof: clear
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Proposition 3.3, ILet g be a generator of the cyclic R-module M. Then

M >~ R/A(g).

Proof: define f£: M+ R/A(g) by

f: rg }*[r],

where [r] denotes the residue class of r modulo A(g). Note that A(g), being
a left ideal of R, is viewed as an R-submodule of R.

f is well-defined, for if Ty B =T,8, then (rl-rz)g = 0, so that
(rl-rz) € A(g); hence {rll = [rZ], and so f(rlg) = f(rzg). f is clearly onto.
f is injective, for if {rll = Er2], then T, € A(g) and so r8 =r,g. It
is easily verified that f is a homomorphism (of R-modules), and the claim is

proved,

Defini€ion 3.5. Let R be a ring with a 1. A monic polynomial in R[z] is

one whose leading coefficient.is 1.

Proposition 3.4, let X be a cyclic R{z]=-module with generator g, If A(g)

contains a moni ‘polynomial, then X is a F.C. R-module.

Proof: TLet q(z) € A(g) be a monic polynomial of degree n, and let f(z)-g
be an arbitrary element of X. Since q(z) is monic, we can write f(z) uwiquely

as (see Jacobson, N, [11]).
£(z) = m(2) q(z) + r(z)

where 3% < aoq = n.,
Thus f(z)g = m(z)q(z).g + r(z)-g

=r(z)eg,
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since q(z) € A(g). But r(z)+g is always a finite R-linear combination of g,

z‘g,...,zn-l-g. Since every element of X can be so expressed, X is an F.G.
R-module with a set of generators given by [g,z-g,...,xn-l-g}.

Corollary 3.4.1, 1Llet X be an F.G, Rlz]-module generated by [gl,...,gk]. If

for all 1 = 1,...,k, A(gi) contains a monic polynomial, then X is F.G. over R.

Proof: Since X is generated over Rl[z] by (gl,....,gk}, X is the sum of the
cyclic R[z]-modules <gi>, i=1,...k; since A(gi) contains a monic polynomial
for 1 = 1,...,k, the above proposition states that each <gi> is F.G. over R.

Since X is a finite sum of the <gi>, X is also F.G. over R.

Corollary 3.4.2, Let U = <g» be a cyelic R-module, and let Y be any F.G.
R-module. Let f: Ulz] -+ Y[{z-l]] be a linear input-output map (i.e., an
Ulz] * X

Rlz] homomorphism), and let G = U[z] /ker £ be the canonical sur-

£ £

jection.
If A(Ef(g)) S Rfz] contains a monic polynomial, then f is realizable,

and furthermore Xp = R{z] / A(éf(g)).

Proof: Since U is a cyclic R-module, Ulz] is a cyclic Riz]-module, also
generated by g, and hence af(U[z]) = Xf is a eyclie R[z]-module. Xf is

generated over R[z] by éf(g).

If A(éffg)) S R[z] , contains a monic polynomial, then the above proposi-
tion tells us that Xf is F.G., over R, Hence f is realizable. The isomorphism

result follows from Proposition 3.3.
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Corollary 3.4.3. Tet £: Q2T be a linear input /output map over R, and let

af: Q-+ Xf = (/ker f be the canonical surjection. TIf each generator of X

over R[z] has a monic annihilator € R{z], then f is realizable.

f

Proof: clear.

The above proposition establishes that the existence of monic annihilators
for Xf's generators is sufficient to guarantee the realizability of f. The
importance of monic annihilators is extended by the next few propositions

which show the necessity of their existence when f is realizable,

Proposition 3,5. Let X be an F.G. R[z]-module generated by {gl,...,gk} where
R satisfies A.C.C..

If X is F.G. over R, then A(gi) contains a monic polynomial for i = 1,...,k.

Proof: Let 8y be a generator of X over R[z]. Let <x1, XpsesosX > denote the
R-submodule of X generated by {xl, Xyy eney xh}. Consider the following

ascending chain of R-submodules:

2
<g;> ©<g,, Z°g1><:<gl, 28y 2 8> S e

Since R satisfies A.C.C. and X is F.G. over R, X also satisfies A.C.C..

Hence there exists an integer n 2 0 such that

n-1 n~1 n
<gl’ z-gl...‘,z . g1>= <g1’ z'gls°'°:z . g]_s z'gl>'

-1

Thus, z?gl €‘<g1, z-gl,...,zn- g1>, and we can write

n=1
n _ \ i
zegy = rij 2 gl, some rij € R.

i=0
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n~1

\

Hence, (zn -,
i=0

i
rij z) g = 0.
In other words, g, Possesses a monic annihilator € R[z]. By repeating this
process on each of the k generators, the proposition that each g; has a monic

annihilator qi(z)é R[z] is established.

Corrollary 3.5.1. Let R satisfy A.C.C. and let £: @ = ' be a linear input/
output map over R, Let Ef = {/ker f. Then f is realizable if and only if

each generator of X (over Rfz]) has a monic annihilator ¢ R[z].
Proof: by corollary 3.4.3.

= Xf is an F.G. R[z]-module because U is F.G. ever R and hence Q = U[z]
is F.G. over R[z]; Xf is the image of U[z] under the R{z]-homomorphism £,
50 Xf is indeed an F.G. R[z]-module. Xf is also F.G. over R by the realiza-
bility assumption. Proposition 3.5 then gives the result.

If R is commutative, the same result can be obtained without requiring

R to satisfy A.C.C..

Proposition 3.6. Let R be a commutative ring, and let £: 2 * [ be a linear

input /output map over R. Let X = (Qker £, Then, £ is realizable if and only
if each generator of Xf (over R[z]) has a monic annihilator € R[z] (in which

case A(Xf) contains a monic polynomial).

Proof: by corollary 3.4.3.
=: 1if £ is realizable, Xf is F.G. over R. Suppose then that Xf is
generated over R by {gl,...,gk}. Now, the action of Z on Xf is an R-endomor-

phism and is determined by its action on each of the generators. We can
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thus write for all i = 1,,..,k

k
-

z:g; = jél rji gj, some 1

ii ¢ R.

We can then construct the matrix ¢ € Matk(R):

o = [rji]
By the Cayley-Hamilton theorem, ¢ satisfies its characteristic polynomial
q(z) € R[z] (see Lang, S. [12], ch. 8) which is always monic. Hence, it
is easy to argue the q(z) is a monic annihilator of X.. Consequently, each

f
generator of X, has a monic amnihilator € R[z]. Q.E.D.

Corollary 3.6.1. Let R be a commutative ring, and let £: Q + I be a linear

input/output map over R. ILet Xe = Qfker £, Then,
f is realizable iff A(Xf) contains a monic polynomial,
Proof: clear.

It can be shown that even in some cases where R is noncommutative, f
realizable implied A(Xf) contains a monic polynomial. One such case occurs
when R is a finitely~generated algebra overa commutative ring T; for example,
if R is a matrix algebra over a commutative ring. Then f realizable implies
that Xz 1s F.G. over R; since R is F.G. over T, X; 1s F.G. over T as well.

Xf can be shown to be a T[z]-module, and by the Cayley~Hamilton theorem,
there exists a monic annihilator of X_. in T[z]. It will follow that there

£

exists a monic annihilator if Xe in Rfz] as well. This result is merely
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outlined here since it is not in the mainstream of the development.
The important thing is that if R satisfies A.C.C., or if R is commuta~
tive, £f: 0 2 T is realizable over R if and only if every generator of

X = Q/ker £ over R[z] has a monic annihilator in R[z].

3.4 Reachability and A.C.C.

Here the object is to show that if R satisfies A.C.C. or if R is commuta-
tive, and if £: Q4T is a linear input/output map over R, then: every state
of £f's canonic system can be reached in a maximum of N steps (where N is

some fixed positive integer) if and only if f is realizable.

Definition 3.6, Let X be the state module of & completely reachable D.L.T.I.
system Z = (p: XX, : U X, N: X Y), and let az: {1 » X be the extended
O-state transition map. ¥ is said to be reachable in bounded time iff there

exists an integer N 2 0 with the property that Vx ¢ X, @ ¢ Q such that
E;Z(w) =x

and the degree of w {s < N, (The degree of w ¢ {1 = U[z] 1is the highest power
of z occuring in w), In other words, X is reachable in bounded time iff

every state of X can be reached in £ N1 instants of time.

Proposition 3.7, 1Let £ be a D,L.T.I. system over R with state module X,

If T is reachable in bounded time, then X is F.G. over R.

Proof: Let T = (: X+ X, §: U= X, N: X ¥). Let O = Ulz] and ' = Y[[z 11]

as usual, We will view X as an R[z]-module, and let EE: {1 + X be the extended
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O-state transition map; Ez is an R[z] homomorphism.

If U is generated over R by {el,...,em}, then Q = U[z] is generated over
R[z] by {el,...,em}.

Let g = az(ek), k =1,...,ms Then EE(Q) is generated over R[z] by.
{gl,...,gm}. Since X is completely reachable, EE is surjective, and so X
is generated over R[z] by {gl,...,gm}.

Since Z is reachable in bounded time, there exists an integer N = 0 where

Vx ¢ X, W € Q such that

ézc») =x and % = N

Hence, Vx ¢ X, dw ¢ . where
m

Ww = E; ri(z) es aori(z) < N,
i=

such that .
Gy (W) = x.
Hence, every x ¢ X can be expressed in the form

m
z

x= ) (g, a°ri(z) <.
i=1

But this is precisely the same as saying that every x ¢ X is an R-linear

combination of
n Il
{gl, Zogysece3ZtByiese; oo zogm,...,x°gm}.

Thus X is F.G. over R. Q.E.D.
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Proposition 3.8. Iet I be a D.L.T.I. system over R with state module X.

Assume X is completely reachable and that X, viewed as an R[z]-module is
generated by [gl,...,gm}, where U is generated over R by [el,...,em} and
gi =Gz(ei), i = 1,..- ,m-

If A(gi) contains a monic polynomial, i = 1,...,m, then X is reachable

in bounded time.

Proof: Since I is completely reachable, every x ¢ X can be expressed

m
X = E: fi(z)°gi, fi(z) € R[z]

i=1

Let A(gi) contain the monic polynomial qi(z), i=1,i0.,m We can write,

for i =1,...,m.

o )
fi(z) = mi(z) qi(z) + ri(z): 0 ri < 9 qi
Then, since qi(z) € A(gi), we can write

o o
e
ri(z) g 3 r, <9 a

b
]
i

Let N = max{aoqi}, so that each ri(z) is a polynomial of degree < N. Thus

if we let

m
w = z ri(Z)'eio
i=1

we see that 3°w < N and Ezcw) = x,
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Hence, every x ¢ X is reachable in S N steps, and so £ is reachable

in bounded time. Q.E.D.

Corollary 3.8,1. Let R satisfy A, C.C., and let Z be a completely reachable

DoL.T.I, system over R with state module X.

Then % is reachable in bounded time if and only if X is F.G. over R.

Proof: =: is ¥ is reachable in bounded time, X is F.G. over R by proposition
3.7.

€: if X is F.G. over R and R satisfies A.C.C., proposition 3.5 yields
that A(gi) contains a monic polynomial for each generator 8; of X over R[z],

i=1,00.,ma By proposition 3.8, £ is reachable in bounded time.

Coroliary 3.8,2., 1Let R be a commutative ring, and let £ be a completely
reachable D.L.T.I. system over R with state module X.

Then Z is reachable in bounded time if and only if X is F.G. over R.

Proof: =: by proposition 3.7.
€: If Xis F.G. over R and R is commutative, then the Cayley-Hamilton
theorem guarantees the existence of a monic annihilator of X in R[z]. Hence
each generator of X has a monic annihilator in R[z], and the result follows
from proposition 3.8.
The above results establish a fundamental connection between realizability,
reachability in bounded time, and the existence of monic annihilators in R[z]

for the state module's generators.
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3.5 Controllability and A.C.C.

Results similar to the above can be obtained in terms of controllability.
Specifically, we have the result that if T is a completely reachable linear
system over a ring R satisfying A.C.C. whose state module is F.G., then I
is completely controllable and in fact there is a bounded N 2 0 on the
number of steps required to drive any state to 0. In other words, realizability
implies that every reachable state can be driven to O in a bounded number of
states, when R satisfies A.C.C.. This is explained in corollary 3.9.2., The
result is also true when R i1s commutative.

A converse to this theorem holds when R is commmutative; this is proved

in proposition 3,10,

Definition 3,7. Let Z = (9, ¥, M) be a D.L.T.I. system over R, with the
state module X viewed as an R[z]-module and éz: Q-+ x, ﬁt: X+ T viewed as
R z]-homomoxrphisms.

A state x ¢ X is saild to be controllable iff there exists w ¢ Q such that
2% + G, (@) = 0, 3% <n.

In other words, x is controllable if we can "transfer™ x to the zero state by
applying some input sequence.

The set of all controllable states will be denoted X IE X=X, X
will be called completely controllable.

A subset Y of X will be called controllable in bounded time if there

exists an integer N 2 0 so that for all x ¢ Y, Hw € Q such that
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2Nex + "c.z(w) =0, 3% N
In other words, every state in Y can be transferred to zero in at most N steps.

Proposition 3.9. Let I be a D.L,T.I. system over R with reachable and con-
trollable sets Xr and Xc respectively. Assume Xr is generated over R[z] by
{gl,...,gm], where U is generated over R by {el,...,em} and 8 = Gz(e]._),
i=104.,m,

If A(gi) contains a monic polynomial of Rfz], i = 1,...,m, then

{i) XrQXc, and

(ii) Xr is controllable in hounded time.

Proof: 1let x ¢ X., 50 we can write

x = 121 w(2) g, some w_(z) € Rlzl.

For each 8;> let qi(z) be a monic polynomial in A(gi). Let n, = Boqi(z),
i=1,...,m, and let N = max {ni}.

Now for each i, we can write
an (z) =m, (z) (z) + r, (2) 301: N
z2 yte) =myte) gy i\%7s i<
for some mi(z), ri(z) € Rlz]. Rewriting, we have
2w (2) = (z) =m, (2) q,(2)
i i i i .
Since qi(z)-gi =0, it follows that

(zN-wi(Z) - r;(2)) - g; =0, i=1,...,m
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@0y (2) = ¥ () g; =0, 3%, <N,

m

=2
18

AN wi(Z)'gi = Z ri(z).gi = 0:
i=1 i=1
m
A
Z «x = L I‘i(z)“gi = 0,
i=
=
W= - ri(z)“e. (e Q, °w < N)
i=1
m‘
Ez(w) = - z r,(2)°g;
i=1

Hence, we have found an input sequence w ¢ 0 with 3°w < N such that

ZN“X + az(w) = 0’

as required., Thus x € Xc, and we have proved Xr < XC. But we have proved

more, since N depends only on the degrees of the anmihilators qi(z). Thus

every x ¢ Xr can be transferred to zero in at most N steps, and Xr is con~

trollable in bounded time,
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Corollary 3.9.1. Let I be a completely reachable D.L.T.I. system over R
with state module X. Assume X is generated over R[z] by {gl,.,.,gm}, where
U is generated over R by {el,..,,em} and g = az(ei), i=1,...,m.

it A(gi) contains a monic polynomial of R[z], i = 1,,..,m, then £ (i.e.

X) 1is controllable in bounded time.
Proof: same as above, but here X% = X by assumption.

Corollary 3,9.2. Let R satisfy A.C.C., and let T be a completely reachable
D.L.T.T, system over R with state module X. If X is F.G. over R, then I isg

controllable in bounded time.

Proof: That X is F.G. over R and that R satisfies A.C.C. guarantee the
existence of the annihilators required by Corollary 3.9.1. Hence, by
corollary 3.9.1, £ is controllable in bounded time.

There is a partial converse to this theorem which holds when R is

commuiative:

Proposition 3.10. ILet X be a completely reachable D.L.T.T. system over the
commutative ring R with state module X. Assume X is generated over Rlz]
by {gl,..o,gm], where U is generated by {el,...,em} and 8; = GE(ei)’
i = l,anom.
If each g €X is controllable, then there exists a monic annihilator

of X in R[z] <(hence X is F.G. over R).

Proof: Since every 8; is controllable, there exists an integer n, and an

o]
W, € Q = Ulzl, 3 w; < m,, such that
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m
o
let we =/, T, '(z)oej, 3%, < n,
j=1 j |
m
- - . 0
Then GE(w:i,) = jZl rij(z) gj, 3 r; <o,

Hence, for each i = 1,.,.,m we have a relationship like

_ o
. ri.(z) gj =0, 9o Ty < n,.
] J

We can summarize these relations in matrix form:

n |
z ~ + rll(z) rlz(z) o rlm(z) 8y
b
rzl(z) z  + Ty (z) ... er(z) g,
: : -0
r 1(z) r_,(2) eee z 04 r () &

Let B(z) denote the matrix appearing the the above equation; B(z) can

be viewed as an element of the ring of m X m matrices over the commutative
ring Rfz].

Claim: (det B(z))°gi =0, 1=1y...,m, and hence, det B(z) annihilates the

module generated by the g,, i.e., det B(z) is an annihilator of X in R[z].
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Proof of claim: see Lang, S. [12], p. 335.

All we have to show is that det B(z) is a monic polynomial in R[z];

this follows immediately from the fact that d° r, (z) < n,. Thus, the highest

J
power of Z that will appear in the determinant expansion of B(z) is ny + n2'+
eee t 1, and the coefficient of this term is 1 because it is the product of
n,
1

the terms z ~,

Hence, det B(z) is a monic amnihilator of X in R[z]. Consequently, X
is F.G. over R, and in fact, T is controllable in bounded time. Q.E.D.

Unfortunately, this theorem does not seem to generalize to the case
where R is noncommutative, even when R satisfies A.C.C. This raises the
possibility of a linear system over a noncommutative ring R having states
that take arbitrarily long times to reach from 0, vet all of whose states
may be driven to O in N steps. On the other hand, it may be possible to
recover the result by imposing other conditions on R, such as requiring R

to be a F.G, algebra over some ¢ommutative ring.

Example 1. This is an example of a realizable linear system over a ring
that is noncommutative but nevertheless satisfies A.C.C.. The example
caleculates explicitly the control to bring a reacﬁable state to O,

Let R be the ring of 2 X 2 matrices over the complex numbers C; let X,
the state R-module, but the set of 2 X 3 matrices over C; let U, the input
R-module, be 02 = the two-dimensional vector space over C, and let Y, the

2
output-module, equal X. Thus the module of input sequences Q is C [z].

The system equations will take the form



=x *« 4+ u -V

xt+1 t t

where & is a 3 X 3 matrix over G, and Y is a 1 X 3 matrix over C. More

explicitly, suppose

- -
1 4 6

X1 =% 0 | 0 2 5 |+u. (7,8, 9]
0o 0 3

Let q(z) = 23+ q222 + q,2 + q, be the characteristic polynomial of &;
q(z) = (z=1)(2-2)(z-3). Clearly, q(t) is a monic annihilator of X € R[z]
if we view the coefficients q; as scalar matrices in R. Expanding q(z),
we get q(z) = 23-6z2 + 11z -6. Suppose two inputs, uy and-u1 are applied;
first g and then U Suppose ug = (1,2)T and u, = (3, l)To The input
sequence 1s thus

1 3 9

w(z) = vz - e ciz].

2 1

To find a control to take the state thus reached we calculate the "remainder"

mod q(z) of zsw(z). It can be verified that

1 .z4 + 3 .23 = q(z) 1 z +
2 3
43| 2 _ |93 z + 54
+ 66 13 78

The controlling sequence is: first apply (-43, -66)°, them (93, 131)T, and

finally (-54, -78)T. The system should be in the zero state.
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This example could be extended to show how a control Sequence can be

simply updated as each input is applied.

3.6 Distinguishability and A.C.C.

The duality that exists between controllability and observability in
the vector space case suggests that results similar to the above can be
obtained from the standpoint of distinguishability.

Recall the definition of distinguishability: if & = (@, ¥, M) is a D.L.T.I,
system, x € X is distinguishable (from the zero state) iff flz(x) # 0, where

I-.IZ:X#T'

o0

< el s
: X '—' L th lx)z 1,
5=

In other words, x is distinguishable iff &3 2 O such that cpJ x # 0, The
module X (or Z) is completely distinguishable if every nonzero x € X is

distinguishable, i.e., if ker -Hz = (0),

Definition 3.8. Let Z = (p, ¥, 1)) be a completely distinguishable D.L.T.I.
gystem. 2 or X is said to be distinguishable in bounded time (or distinguish~

able in time n) iff HN ~ 0 such that
Mgl x =0, j =0,1,...,81 = x =0,

Proposition 3,1l1. If R satisfies A.C.C., and £ = (9, ¥, M) is distinguishable

in time N, then X is F.G. over R.
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Proof: define

Obs: X = YN: X P’ (MNex, ﬂp-x,...,ﬂqﬁp?' x)

Clearly, Obs is an R-homomorphism. Since X is distinguishable in time N,
Obs is injective, Thus, X is isomorphic to an R-submodule of YN. Since YN
is F.G. over R and R satisfies A.C.C., YN satisfies A.C.C. and every
submodule of YN is also F.G. over R. Hence, X is isomorphic to a finitely-

generated submodule of YN, and so X is F.G., over R. Q.E.D.

Proposition 3.12, If I is completely distinguishable, and there exists

a monic annihilator of X in R[z], then Z is observable in bounded time.

Proof: let q(z) = 2N+ q'(z), Boq' < N, be a monic annihilator of X in R[z];

i.e., q(@).X = (0), Then Vx ¢ X,
cPNF'X == q'(cp)-X,

and in general, Vx ¢ X, and k 2 0,

N-1
k, 1, R
9 X jZ; Ty §lex  some T, ¢ R
N-1
Hence, il cpk.x = z r, 19 -x
j=

Thus, if Mg’ *x =0, j = 0,...,N-1, then

'ncpk-x=0 Yk 20,
Thus az(x) = (, By hypothesis X is completely distinguishable, and so Ez(x) =0

= x = 0. We have proved that if
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-nta-x =0, j=0,..., N1,

then x = 0. Hence, I is distinguishable in time N. Q.E.D.

3.7 _Transfer Functions and A.C.C.

Here it is shown that the usual notion of a transfer function can be
defined over any ring with identity and still retain the basic properties.
In particular, it is shown that whenever the generators of a state module
all possess monic annihilators, the input/output map can be expressed in
terms of transfer functions. Thus, realizability is equivalent to the exis~
tence of a transfer function description of the input/output map.

Let U be an R-module generated by {el,...,em} and let Y be a F.G,
R-module; let 0 = U[z], I = Y[[zal]] and let £: O 4 T be a linear input/output
map (=R[z]) homomorphism).

Since {1 is generated over R[z] by {e1’°'°’em}’ f is completely specified

by the m sequences:
Yi. - f(ei) € T! i=1,...,m

Let éf: Q- Xp = (Mker f be the canonical injection, so that
f= Hf.Gf

We know that Xf is genmerated over Rfz] by

(g; | &, =8e)y £ = 1,0e,m)
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Suppose each g has a monic annihilator qi(z) € R[z],

i.e., qi(z)°qi =0, 1i=1,,..,m

Il

Then 4, @Y, =g @) fe,)

f(qi (z)).ei

He-Ge(qy (=) ey)

Hf(qi(z)«cf(ei)

ﬁf(qi(Z)-gi)

n

i (0)

0.

Consider the relationship qi(é)-yi = 0 Y; €T and qi(z) monic. Recall
that R[z] operates on I' by ordinary multiplication (which will be denoted by
"x") followed by deletion of nonnegative powers of z, If 3°qi = n, we can

write

qi(Z) X vy Bi(z) + qi(Z)-Yi

91(2),

where Bi(z) is a polynomial of degree at most n-1 in ¥[z]. Thus, a sequence
Y; € I' and a monic annihilator qi (z) of degree n uniquely specify a polynomial
Bi(z) ¢ Y[z]. However, it also true that qi(z) and Bi(z) uniquely determine

\
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Definition 3.9, Let Y be an R-module, and let ©(z) be a polynomial of

degree n-1 in Y[z]. Let q(z) be a monic polynomial in R[z] of degree n.

Then 8(z)/q(z), the quotient of &(z) by q(z), is that element of Y[[zbl]]
obtained by formal long division of 6(z) by q(z). (One must be careful in
performing this division to keep in mind whether Y is a left or a right
R-module),

For example, let 8(z) = Blz-+ 90 and let q(z) = 2+ ry- Then 8(z)/q(z)

can be determined by:

Blz-1+ 902-2 -1_~091z"3 - r0902-4 s
22+r0 )Glz + 90
912 + 1'091z"1
0 - roelz-l
90 + r090z_2
- r091z - roeoz_
- roelz-l - rgelz—3
- roeoz- + r§912-3
- roeoz-z _ rgeoz-!;
o ®

j= i=0
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Proposition 3.13. Let Y be an R-module, q(z) a monic polynomial in Rfz] of

degree n, 6(z) a polynomial in Y[z] of degree less than n, and y an element

of Y[[z-II ]. Then

q(z) Xy =68(=z) ¢ vy = 8(z)/q(=)

n=1
Proof: Let q(z) = z" + V rkzk, € R,
k=
n-1
and 8(z) = E gjz.’l, b, ¢ Y
j=
u -
Assume y = Z yjz j, Y £ Y.
3=1
n=-1 o
_ ,.n k -3
So q(z) Xy -—(z+2rkz)x Zyjz
k=0 j=1
e i ;
_ -j+n Y =jtnel =i
= z yjz +rn-1 Z.- V.2 + +1:'0 y.Z
j=1 j= j=1
n -}
-j4n z -j+n
= +
Z YJZ YJZ
j=1 j=n+l
n-1 ®
v =j+n-1 T -j+n-1
+n-1 (Lyjz +sz )
j= j=‘l'l
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=]
Z(y. +r__. Y +br Y. 41y, 2 d
T Tn=1 Yj+n-1 17541 T ToYy
-]
LI ) -j
2: (Yj+ﬂ +r o, Y -1 + +r, yj) z
=]

(y_ + +oeer + 1y yl) z0

n rn-l yn-l

(v +r

1
-1 + 2o 4+ rzyl)z

n-1 yn-2

n-2 n=-1
(YZ + rn-l yl) z + (yl) z
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= Bj z7, by hypothesis,

Equating coefficients of equal powers of z:

Y1 = %1
y. + T y, = 8
2 n-1°+1 n-2
Int ¥n-1 yn-l Foee t 1¥1 < e0
s 0 - v 2 (-]
yj+n+rn-1 yj-i—n-1+ -!-r.‘oyj o, j 1
Thus, Yy = en-l
Yo = QT Yy
Yo = 8 " Tpep gy Tttt - Ty ¥y

and for all j =21,

Vit = " el Yjm-1 T 777 T Fo Yy
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Thus, the equation q(z) X y = 6(z) has a unique solution y given by the above
recursion relations. Tt remains to show that the quotient ©(z)/q(z) is

the solution y found above., This will be done by obtaining recursion

- A
relations for w, where

3

8(z)/q(z) =

To calculate 0(z)/q(z), i.e., the Vg we write
8(z) = q(z) wyz L + ¢ (z)
1 1 4

where the highest power of z in tl(Z) is less than the highest power of z in

8(z). This is the first step in the long division process. To do this, we

must take

We then successively form

tl(z) = gq(z) sz-z + tz(z)

ti-l(z) = q(z) Wiz-i +t; (2)

and choose W, SO that the highest power of z in ti(z) is less than the highest

power of z in ti_l(z). This requires that we take w; equal to the coefficient

of the highest power of z in ti-l(z)' Thus we get
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n~-1 n n-1 -
+ +0) - (2 Fr gz T Aty W oz

1

(9=

t, (z)
L n-1

) zn-2

- N n-3
Th-1 ™1 h=3 “Tn-2"1)Z

- +..-

)

(9 -wl) zn-1 + (6
n-1 n~2

L (90 -y wl)z + oW,z 7,

and choose Wy = en-l’ as indicated above. We also get

]

t,(2) =t (2) = q(z) wy z

. - n-2 - R n-3
(en-2 Ta=1 Y1 WZ) z + (en-3 Tn=2 "1 "1 WZ) z Foeee

it

etk (rg Wy mory w,) clor w2

0 "2

and choose W, = en-2 - rn_1 wl.

Continuing in this way, we can show that the Wj satisfy the same recurrence

relations as the yj. Thus, the unique solution y to q(z) X y = 6(z) is given

by v = 8(z)/q(2), and so

qz) x vy = 8(z) © v = 9(z)/q(2). Q.E.D.

Corollary 3.13.,1., ©TLet U be an R-module generated by [el,...,em} and let
Y be a F.G. R-module; let O =TU[z]; T = YI[z-l]], and let £f: Q-+ T be a

linear input/output map.

If there exist monic polynomials qi(z) ¢ R[z] such that

qi(z)'f(ei) =0, i=1,...,m,
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then f(ei) = Bi(z)/qi(Z)

where 9. (z) ¢ Y[z] and a"ei < a°qi, i=1,...,n

Proof: follows directly from proposition 3.13.

Corollary 3.13.2. TLet £: Q4 T be a linear input/output map over R as in

corollary 3.13.1, and let R satisfy A.C.C..
Then f is realizable if and only if for each i = 1,...,m, f(ei) = ei(z)/
qi(z), where Si(z) is some element of Y[z] such that a°ei < aoqi, and

qi(z) € R[z] is monic.

Proof: = : if f is realizable, Xe = {ifker £ is F.G. over R. ILet éf: 0- Xe

be the canonical surjection. Then Xf is generated over R[z] by [gi = af(ei)l

*

i=1,...,m}. By A,C.C., there exist monic annihilators qi(z) for each Bge

Hence there exist monic polynomials qi(z) such that
qi(z)°f(ei) =0, i=1,...,m
The result follows from corollary 3.13.1.
& if f(ei) = Gi(z)/qi(Z), then
qi(z) X f(ei) = Gi(z)
by proposition 3.13. Hence qi(z)'f(ei) =0, i=1,...,m, and so-
qi(z)'af(ei) =0, i=1,...,m

The result follows from corollary 3.5.1. Q.E.D,
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Note that a result similar to corollary 3.13.2 can be obtained when R
is merely required to be commutative.
The quotients Bi(z)/qi(z) = f(ei) are also known as transfer funections.

Because f is an R[z] homomorphism, it is true that for u(z) ¢ R[z]

f(u(z)ei) u(z)‘f(ei)

u(z)- Bi(Z)/qi(z).

In other words, the response ggggglapplying input u(z)ei is simply given by
multiplying the transfer function by u(z). This multipiication is the "." or
"shift and truncate"™ multiplication. Hence this response is easily obtained
once given the transfer function, The system response during the application
of u(z) is simply the terms of nonnegative exponent in u(z) X Bi(z)/qi(z).
Suppose [" = Y[[z-ll] and Y = RP, some p » 0. Suppose that Gi(z) € Yizl.
Then Gi(z) can be represented by a "columm vector™ of p components drawn
from R[z]. Thus ei(z)/qi(z) can be represented by a column vector of p
components having the form Gij(z)/qi(z). Then m such vectors (one for each
input "port"™) can be arranged in a p X m matrix W called a transfer matrix,

with the usual interpretations.

3.8 linear Systems over Noetherian Rings

Corollary 3.6.1 stated that if R is a commutative ring and £f: Q @ R is
a linear input/output map over R, then f is realizable if, and only if,
A(Xf) € R[z] contains a monic polynomial (Xf denotes the R[z]-module

Q/ker f). If R also satisfies A.C.C., i.e., if R is Noetherian, some stronger
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statements can be made. In particular, if R is a Noetherian integral domain

we have:

Proposition 3.14. Let R be a Noetherian domain. Let Q = R"[z] and

T = Rp[[z-lll, some m, p >0, Let f£: Q-+ T be a linear input/output map
over R.
Then f is realizable 1iff A(Xf) # (0), (A(Xf) < R[z] is the annihilating

ideal of Xf = (/ker f).

Proof: = : if f is realizable, then A(Xf) contains a monic polynomial by
corollary 3.6.1. and is therefore non-zero.
< : Suppose A(Xf) # (0). Then A(Xf) contains some non=zero polynomial
a(z); suppogse such an a(z) is given by
n

a(z) = Z a, zi, a, # 0.
1=0

Let e;, 1 = 1,...,m denote the natural basis elements for (Q: ey = (1,0,,..,0)T

€ RP < ®P[z], and so on.
Let vy; = f(ei), i=1,.0.,m.
Since v, € [ = Rp[[z-ll], ¥; can be written
®
= ) @,y e
=1

Since a(z)-Xf =0, a(z)-yi =0, i=1,...,m. This is equivalent to saying

that
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a9 ¥; (1) + 2y xj(j;l) +oeee ta xj(j+n) =0

for each i = 1,...,m and for all j 2 1. If we define

Hj = [Il(j), ZZ(j)s"'SI m(j)] H j Z 1

= a p X m matrix over R

= the jth term of f's Hankel sequence,
then the above equation can be written

H,L 4+ a

LN 3 2
ag 1 IHj+1+ +anH 0, V 1

jin J

The first part of this proof will show that the entire semi~infinite sequence

Hy, Hysev. is uniquely determined by a(z) and Hip Hypess ,Hn:

Claim: let Kl’ KZ"“ be any semi-infinite sequence of p X m matrices over
R such that
(1) Kj = Hj: j = l,o-a s

(2) ag Kj + ay

and K,

gyt b Ko=0, Vi1,

j4n

Then K, = H;, Vj = 1.

Proof of claim: by induction on j, Take j = 1. Then

a0K1+a1K2+---+anK =0

n-1

and ag H1+aI Hz-l----+arl Hn+1=0
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Since Hj = Kj, j =1,...,n, subtracting those two equations gives

a_ (K

nEnp1 ™ Bpgg? = 0

Since Kh+1 - Hh+1 is a p X m matrix over R, and because R is an integral

domain, a_ # O implies that

Kt "B =0

Hence the claim is true for j = 1. The induction step is performed in exactly

the same manner. Q.E.D., Claim

Note: the assumption that R be an integral domain is crucial, for
it implies that the action of a on R is injective. This claim has shown
that the whole sequence HI’H2’°" is completely determined by its first
n terms and by a(z).

Define M by

=
t

= {(KO, Kl"”’Kn)l K]._ is 2 p Xm matrix over R}

(R?Xm)n+1

, and let
Mla(2)] = {(Kps Kyseee5K) €M | ay Ry+ =+ +a K =0}

Clearly, M is a finitely generated R-module. It is easily verified that

Mla(%)] is a submodule of M.

ver Vi =
Let Sj (Hj, Hj'l'l, »H ) € M, J 1

j+n

ntl consecutive terms of f's

Hankel sequence, beginning at the jth.
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Since a(z) annihilates the Hankel sequence, it is clear that
sj € Mla(z)], ¥y = 1.

Now let
8 = the R~submodule of M{a(z)]

generated by {Sjlj =1},

S is a submodule of M, and M is a F.G. module over a Noctherian ring. Hence,
S satisfies A.C.C.. Let <S].""’S£> denote the R~-submodule of S generated

by {sl, 32,...,s£} . By A.C.C., there exists an integer k » 0 such that
c< D E e © “s e > = ene = ese =
0 -31 <Sla > 5 <S]_’ sSka Sk+]_> S,

and so S is generated by [sl,...,sk}.

Now define the map 0: M+ M as follows:

o1 (Kgs KpsonesK) b (Ry, KypeesK 5 0
let V = ((0,0,...,0) € M | U is any p Xm matrix over R}.

In the same fashion as the above claim, it can be shown that for all x € §,
there exists a unique v ¢ V such that ox + v € S. Furthermore, it is clear

that if vj is the unique element of V such that

chj+'srj ¢S

then

USj+v. ¥i=1

j = Sj+1’

In any case, we can define the map
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z: § =+ 8§

4 }’ ox +v

in an unambiguous way. It is easily verified that z: S #+ § is an R-endomor~
phism of S, and S can be made into an R[z]-module. It can also easily be

shown that
A «5 =S.’ Vj 21.

Now S is F.G. over R, R is Noetherian, and S is also an R[z]-module. Hence

there exists a monic q(z) € R[z] that annihilates S, and hence S. Suppose

k1
q(z) = zk + §i q, z .
i=0

Then

k-1
Aa@s, = @4 ) q s,
i=0

+ e + 8,

9 S5+ 9 Sy &

]

0, Vi =0,
It follows from this equation and the definition of Sj that

LN — .2
Go By + g Hypy + o0t + 8, =0, ¥i 2 1.

This is equivalent to saying that q(z) is a monic annihilator of f's Hankel

sequence, and hence that q(z) is a monic annihilator of Xz Thus, f is

realizable, Q.E.D.
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This proof relied on the facts that R was Noetherian and the fact that
the action of any non=zero element € R on R itself was injective. That R =
a domain was merely sufficient to guarantee the latter condition. The
same result could be obtained by requiring A(Xf) to contain some polynomial
whose leading coefficient had an injective action on R, Expanding on this
idea would lead to a deeper involvement in Noetherian ring theory, and will
not be done here,

It will be shown later how this proposition leads to the theorem of
Rouchleau, Kalman, and Wyman that says ™if R is a Noetherian domain, f is

realizable over R iff f is realizable over R's field of quotients.™

3.9. Summary

The chapter has imposed A.C.C. on the ring R and has constructed a
network of relations connecting reachability, controllability, distinguish-
ability, realizability, and the existence of monic annihilators., Most of
these relations are familiar from the vector space theory of linear systems;
interestingly enough, most of the results hold when R is commutative, even
though R may not satisfy A.C.C.. A useful realizability criterion has been

presented in the situation where R is a Neetherian domain.
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4, TORSTON LINEAR MACHINES OVER PRINCIPAL IDFAL DOMATNS
WITH APPLICATIONS TO CODING.
4.1 Introduction

The theory of linear systems over fields is thoroughly developed partly
because of the great mathematical tractibility of vector spaces and their |
linear transformations. For example, the structure of such a system's state
set is completely determined by its dimension over the field involved. Such
state sets are finitely generated modules over a field F. Convenient gener-
alizations seem to be finitely generated modules over a principal ideal
domain J and semisimple modules.

Included in the class of linear systems over a P.I.D., are those whose
state sets are finite abelian groups. These groups are, in fact, torsion
modules over the integers. Intuitively, it appears that such systems would
be easy to build.using digital adders and counters. Furthermore, the fact
that finitely generated modules over a P.I.D, have a well~known structure
draws one to their study in the context of linear dynamic systems,

On the other hand, of what practical use could a linear system whose
state set forms a finite abelian group be?

This chapter (with some background material provided in Appendix 1)
motivates the study of systems over P.I.D.s by an applications to coding,

It will turn out that a broad class of codes can be constructed whose
encoders and decoders require linear machines having finite abelian groups
for state sets. Then it will be shown that a certain subclass of these
codes possesses some interesting error-correcting properties, and the

generic form of the encoders and decoders will be derived. The remaining
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problem will be that of simplifying and implementing the abelian group
machines involved.
Secondly, this chapter analyzes linear systems over P.I.D.s where
the state sets are required to be torsion modules. The result, though
not a complete decomposition, is nonetheless a considerable simplification,
Thirdly, these simplification techniques are applied to the imple-

mentation problem arising from the error-correcting codes developed above.

4.2 Coding

4,2.1, Linear Codes and the Parity Check Matrix

(The reader is referred to Ash [13], Berlekamp [ 8] in particular,
or Gallager [ 9], for extensive treatments of coding theory).

For our purposes, we will assume that at each instant of time some
commmication channel accepts any one of pm digits, where p is some prime
number and m > 0. Each of these p™ digits will be represented by an
element of me.

Assume that we want to represent each of (pm)k, k ~ 0, distinet
messages as a sequence of k digits drawn from Jﬁm. tHowever, in order to
minimize the effects of channel noise, we will append r check digits to
the k information digits determined by the message. Thus to send one of
pmk messages, we will actually transmit a sequence of length n = kir digits
drawn from Jﬁm, The question is how to choose the r check digits on the

basis of the k information digits.
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One of the simplest schemes is to generate the r check bits by a
linear transformation of the k information digits: thus if we represent
the r check digits by an element ¢ € (me)r and the information digits by

an element x € (me)k we would write

%y
— - — k -|
cy gome r X X,
c=le, _ matrix I-I1 X, - ng 41
with elements from
. me .
c
| * a 1] %

If we let y denote the complete codeword consisting of k information digits

followed by r check digits, i.e.,

14

o

then we see that

Hy = H eI y=0 4.3

where Ir is the r X r identity matrix. Thus each possible codeword y (of
length n = k + r) is such that Hy = 0 for some r X n matrix H; the matrix

H is called a parity=-check mairix.

Thus if a codeword is transmitted with no alteration by noise, the

received word y of length n must satisfy the equation Hy = 0. On the other
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hand, if the codeword is altered by noise, then the received word y may be
such that
s=H #£9 4.4

The r-tuple g € (me)r is called the syndrome of the received word y. If
s # 0 we are guaranteed that some error has occurred; the converse is not

true however.

4,2,2, Error-Correcting Codes over Jp"

In the case of error=correcting codes, it often turns out to be easier
to choose the parity-check matrix H rather than the matrix H1 appearing in
equation 4,1. We nmow construct a code that will correct any error that
occurs in any gne of the n digit positions of y. Suppose that individual
digits are chosen from me, and that the required block length n = pd-l.
Let 6 be a P-primitive element (see Appendix 1) in some local extension of
me of degree d. Since Gi can be represented by a d X 1 column vector Q?,

we consider the (1 + d) X (pd-l) matrix H (with entries from Jp) given by:

1 1 LA NN N 1 1 1

d d
[ - e RO LR SR |

— —

Let the codeword y be transmitted and suppose that the channel adds a noise
vector e to y. Assume that e has at most one nonzero component, i.e.,
an error occurs in at most one digit position, Then (y + e) is received

and we calculate s = H(y + ¢)

= He 4.6
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since y is a codeword. By the assumption on e, s has the form: a times

some column of H. That is

UO 1

s = = aj . 4.7
01 E 2]
L

where a € me is the value of the single nonzero component of g, Ob € me,
% € (me)d. The object is to solve 4.7 for the value of the error, a,
and the position of the error which is represented by Qi. Clearly, if

9 = 0, no error occurred. If % # 0, then an error of wvalue O =2 has

occurred, To find its position we solve
o, =af =0, 8" 4.8

for Bi. If exactly one error occurred, 4.8 will be soluble for i. By
Lemma A.7 (see Appendix 1) this solution is unique and the error occurred
at that component of y corresponding to the columm of the H matrix contain-
ing Gi. Thus we can completely determine the error g and can subtract e
from the received word to find the actual word y transmitted. If equation
4.8 has no solution for Bi, more than one error occurred.

Notice that 4.7 represents two equations; this is not surprising since
we have two unknowns, namely the error value and the error position. It
seems intuitively plausible that to correct errors in any two distinet
digits positions we will need four equations, since we will have four
unknowns: two error values and two error positions. So, to correct any

two errors we will try the (1 + 3d) X (pd—l) parity check matrix H given by
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6 g3

Suppose an error of value a, occurs in the position of 8" and an error of
value a, occurs in t he position of where 6 # 6'. Then we calculate

the syndrome of the received word:

% 1 1
% G e
8= =H(1+_e_-)=Hg=al + a, 4,10
2 2
% | &h (ed)
. . 3
% | ICeM KCoM
m m,d
where Tgs 1 2y € Jp and Oys Oyy Oy € ().
Let x = 8
. 4,11
and y = o)
Equation 4.10 then yields the following four equations:
9 = &g + ay . 4.12
op = a4x + ay , 4,13
2 2
Oy = ax + ay 4,14
3 3
and Oy = ax + ay 4.15
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These four equations must now be solved for 255 855 X, and y. We may

obtain a8y and a, in terms of x and y by viewing 4.12 and 4,13 as

= 4.16

The determinant {(over R = me[x]ﬁ<ﬁ(x)>9 of the matrix in this equation is

(y=x) = (ej-Bi). Since Gj and Bi are distinct, and since © is P-primitive

in R, 6} and ' 1fe in different cosets of the msximal ideal P of R. Hemce
Gj - Bi ¢ P, and so, because R is local, y-x is a unit of R, Hence the

above matrix is invertible and we can write

a; 1 1 Ob
a, X v oy
-1
= (y-x) y -1 |5 417
-x 1 (07

Remark: to do this we view aj, a, and Oy as elements of R as opposed to J
me, i.es, as d-tuples instead of scalars, We must be careful using this
notation because ars 3y and Oy are treated as scalars in equation 4.10; they
are so treated for the sake of economy of check digits, and because at this
stage no interpretation is attached to non-scalar errors. It appears possible

to consider non-scalar errors, but this is a subject for later study. In

any case, we should regard the scalars a and o

0 of 4.10 as being

1° %2
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shorthand for the d-tuples [a, O, 0,...,0]%, etc. Then if equation 7-38

results in elements a; or a, having nonzero components along coordinates

other than the first, we know a mistake has occurred = presumably the

assumption that we have no more than two errors has been viclated.

Returning to the main development, we can write 4.14 and 4,15 as

o 2 2
2 X y |
= 3 3
O3 X y a,
2 2
-1 | ¥ y v -1
= (y-x)
3
X vy =X 1
-1 [ 2 2 2 2 ]
= (y-x) X y=Xy v =x
3 3 3
X yxy ¥y =x
-
= | =Xy xty %
2 2
~xy (xty) x txydy o
-
where 4,17 was used to obtain 4.19,
Define z, = XY
and zZy = xhy
2 2 2
Note that -xy(xty) = z,2, and X 4%y + ¥ =32, = 2;:
0'2 -zl zZ 0'0
G. .

4.18
(s

0 4,19

%

o
%

4,20

4,21

4.22

We can rewrite 4.20 as
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or cz = =0z, + o‘lz 9 4.23
o = =0z Z + a (zz-z ) 4,24
172 71 *

3 07172

We can eliminate z, by multiplying 4.24 by % and then substituting 0;%, =

0, + %%1 from 4.23., After cancellation:
(o,C. -02) = (0,0 -02)2 4,25
13 72 072 171 *

In a similar fashion:

2
(05937019,) = (9y9,-0))z, 4.26
Now consider equations 4.21, 4,22; write y = x-lzl and substitute in 4,22:
-1
zZy =X + x 24
2
or, x =z,x+z = 0 4.27

Note from the symmetry of 4.21, 4.22, that y is also a root of 4.27.

Multiplying 4.27 by (UOUZ-GIZL) we obtain:

2. 2 2
(959, ""1)" - (0003-0102)x+ (0'103-02) =0 4,28

We have the following result (using Lemma A7): if two or fewer errors
occur in transmission and (Uocz-oi) # 0, equation 4,28 has exactly two
distinct roots of the form Gi. These two roots determine precisely the
location of the errors, whose values can be determined from 4.19. If
(cocz-oi) = 0, then all coefficients of 4.28 are 0 (because of 4.25 and 4.26)

and we obtain no information from 4,28,
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. . 2 - . .
Since the quantity (cbcé-a ) seems critical to this error=-correcting
1
2
code, we want to know under what conditions (cboé-oi) = 0, Substituting

from 4,12, 4.13, and 4.14,

2 2 2
(cboi-ci) = (a1 + az)(alx + azyz) - (alx + azy)

22 2+ 2 2 2
alx + alazy alazx + a2Y
_22_2 _22

alx alazxy a2y

= aya,7 4" = 2xy)

) |
= alaZCX'Y) 4,29

Since x = 6 # y = 93, (x-y) and (x-y)2 are units of R, Hence, (0b02~oi)

= 0 if and only if the two error values 8y, a, are such that aja, = 0.

Note that if a,, a, are elements of Jp instead of me, a = 0 implies

1? %2 1%2
either - a; = 0 or ay = 0 (or both)., Thus it appears in general that this
code cannot correct all errors in two or fewer positioms. On the other

hand, we could argue that a8y £ 0, a, # 0 and aja, = 0 is an event of low
probability in a code over Jﬁm, m > 1, and that the resulting decoder failure
may not be serious. This might be reasonable if we could detect the event

0.

a, = 0or a, = 0 whenever a

132 ©

In any case, the generalization of this scheme to codes that correct

1

errors in more than two positions appears straightforward but tedious. This
extension is not carried out here. It is sufficient for the purposes of

this chapter to motivate coding over me using parity check matrices H whose
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i

i, 2
columms have the form [1, €7, (91) ,...]T (where 8 is a P-primitive element

of R = Jp [x]/eq(x)>).

4.2.3 Iniplanenfa'tio.tl of 'Lihé'arr .deeé

Turning to the implementation problem, we can identify three main
subsystems of a coding/decoding system. The first is the encoder which
calculates the r check digits after receiving the k information digits,
The second calculates the syndrome s of a received word, and the third
processes the gyndrome to identify errors. The following discussion is
confined to the encoder and the syndrome calculator.

Suppose the parity check matrix H is an r X (k+r) matrix with entries
from me; the columms of H can be viewed as elements of the module (.Ipm)ra

Suppose further that the columns of H can be arranged in the form
#=|¢""b,...,0b, b 4,30

where b is an element of (Jﬁm)r and ¢ is an (abelian group) endomorphism

of (Jﬁm)r. Now let u denote the received word, u = [uo, Ujseensll _2,un_1]T.
Clearly,
n-1
s-m8 = ) ¢ iy ug 4.31
1=0

The important thing here is that now s can be viewed as the state of a

linear system

55 =0, : 4.32
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which is reached after the application of the n (scalar) inputs UgslUyseess
woq (in this order). In other words, the syndrome S can be calculated

by feeding the incoming digits u, into the linear system 4.3.2.. After

i
n imputs, the state 5, of the represented by the contents of r
registers say, is precisely the syndrome s. Now s can be used by the rest
of the error processor and the linear system can be reset to the zero state
prior to receiving more words.

This seems to be a practical scheme for calculating the syndrome, and
so it is worth some effort to put H in the form 4,30, (It may also be
possible to choose a specific endomorphism ¢ and then analyze the properties
of a code with parity check matrix given by 4.30.)

Given a parity check matrix as in 4.30, can we also calculate the r
check digits in a straightforward manner? ULet the rightmost r columns be

considered as a matrix 1-I2:

io= [ 1b,...,0b,b 4.33

Then the matrix H can be written

H= [0 beee ol B 4,34

where h=0h 4,35

Let the codeword y be [uo, Upsesesly 1 Cps o'h-.z,...,,cr]'11 where the u, are
information digits and the c; are check digits; it is required to find

the c; from Hy =0 from Hy = Q0 we obtain
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ey [,
02 o1 U.l

-HZ . =P LyesosPL, & . 4.36
e “k-£

We must now require that H2 be invertible. This can be guaranteed in

various ways: mnotice that if no r X r submatrix of H is invertible, then

in general H cannot uniquely determine r check digits at all. So we can

always assume that H contains an invertible r X r submatrix. To guarantee

that such a submatrix appears at the right of H, we only have to require

that ¢t = 1 for some t sufficiently large. This will always be the case
if ¢ is invertible - i.e., if ¢ is an element of the group of units in a

ring of r X r matrices over any finite ring. 1In practice, ¥ will always be

invertible, and hence Hz will always be invertible.

Given that H, is invertible, we can rewrite 4,36:

¢ Fuo 7]
c - _ u
= 2 = -H2 ! ‘Pk ]h"":tph: h 1 4,37
R -1

k-1
Hence, ¢ = —H;l ;E © -1 h,ui, ' 4,38
i=0

Consequently, the check digits ¢ can be viewed as the output [ at time k

of the linear system
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Tepr T 9% thu, 5=,
= -u! 4.39
S 2 % :

driven by the (scalar) sequence Ugs Uyseeesy ;. In other words the r
check digits can be calculated by the linear system 4.39, These r digits
can be placed in a shift register at time k and then shifted into the
channel sequentially immediately after the digits u, have been transmitted.

In summary, if the parity check matrix H of a Iinear code can be
put in the form 4.30, the encoder and syndrome calculator can be conveni-
ently implemented by means of linear systems whose state sets are finite
abelian groups, In particular, the error-correcting codes developed above
fall into this class: the matrix @ is simply related to the matrix repre-
sentation of a P-primitive element in a local extension of Jﬁm.

The next section of this chapter analyzes a general class of linear
systems that includes those described by 4.39. The following section will
apply these results towards implementing several error-correcting codes of

the type discussed above, These examples will be
(1) a single error correcting code over me

(2) double error correcting codes over Jn’ n not

a prime power.



77

4.3 Linear Systems over Principal Ideal Domaiﬁs J

4.311 queral‘Forhﬁlation

Definition 4.1: A (discrete-time, time~invariant) linear system X over

a principal ideal domain J is a triple Z = (¥, ®, M) where §: U - X,
9: X+ X, N: X+ Y are J homomorphisms. U, X, and Y are finitely generated
(F.G.) J-modules; U is the inmput module, X is the state module, and Y is

the output module. Z is interpreted as describing the dynamic equations
Xey1 = w(xt) + #(ut) 4,40
Y, = ﬂCxt) 4,41

where Xes Xpog € X are the states of ¥ at times t, t+l respectively, u, €U
is the input applied at time t, and Y € Y is the output at time t,

As discussed before, X can be veiwed as a J[z]-module and I induces
a J[z]~homomorphism £: Q * I' where Q = U[z] and I" = Y[[z-lll. f can be
factored as f = H°G where G: 0 X and H: X # T are also J[z]-homomorphisms,
% is reachable if € is onto and distinsuishable if H is 1-1; I is canonical
if it is both reachable and distinguishable.

One of the properties of a F.G. module M over a P,I,D, J is that M
is the direct product of a free module M; and a torsion module Mi, both
of which, of course, are finitely generated. (A torsion J-module Mt is
one in which every element x is a torsion element, i.e., there exists

r €J, r #0, such that rx = 0). Hence in the definition above, we can

write
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U= Uf &5U£
= &
X Xf Xt 4.42
and Y = Yf DY

where the subscripts f and t denote free and torsion medules.

The complete theory of such systems will be taken up elsewhere: roughly
speaking this study breaks up into the study of linear systems whose state
sets are free modules and the study of linear systems whose input, state,
and output sets are all torsion modules over the P,I,D, J. It is the latter

type that will be discussed in this chapter.

Definition 4.2: A finite abelian machine (F.A.M.) is a linear system

T=(y: U2 X, 0: XX, N: X*+y) over a P.I.D. J such that U, X, and Y
are all F.G. torsion modules over J. A F.A.M. will also be called a
torsion linear machine over a P.I.D..

Note that a F.A.M. over the integers is an exanple of a group homomor-
phic machine as defined by Brockett and Willsky [ 41 and Arbib [ 3].
Furthermore the encoders and decoders discussed in the previous section

are all F.AM.s.

4,3.2  Endomorphisms of F.G., Torsion Modules -over a P.T,D.

The problem of F.A.M. decomposition can be viewed as that of decomposing
a F.G, torsion J-module X over an endomorphism & where J is a P,I.D..
Equivalently, the problem is that of decomposing a J[z]-module X where J is
a P.I.D., and X is a F.G. torsion J-module, The starting point for our

analysis is the well-known decomposition of F.G. torsion module over a P.I.D.:
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Definition 4.3: Let J be a P.I.D., X = a J-module, and p = any prime

(irreducible) element of J. Then X[p] is defined by
Xlp]l = ({x € lerx = 0, some r > 0}. 4.43
A médule X such that Vx € X, prx =0, some r > 0 is known as a p-module.

Proposition 4.1  (Decomposition of F.G. torsion modules over a P.I.D.)

Let J be a P.I.D. and X be a F.G. torsion J-module.

Then

(a) X= & X[p] h.bh
P

where the direct sum is taken over all primes p such that X[p] # 0,

and

(b) each p-module X[p] can be written as the direct sum of certain cyclic

submodules mei-' m, >0,

X[p] = mei @ 'y} @ me3 4945

m,
Wh.ere mei : J/<p l> > i = l’eoc,s,

m, m,
<p '> is the ideal of J generated by p 1,

and mlsmzs-oo 'Sms 4.46

The sequence M5 Myseees, is uniquely determined.

Proof: see any algebra textbook.
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The state set of a F.A.M, is thus of the form described by 4.4%4 and
4,45, This theorem spells out the basic structure of the module upon

which the endomorphism ¢ operates. We will now investigate how ¢ interacts

with this structure.

Proposition 4,2, Let X be a F.G. torsion module over J = a P.I,D., and let
= EndJ(X). Thus each p-submodule X[p] of X is t¢-invariant. Thus the
action of @ on X can be completely characterized by its action onm each of

the direct summands X[p].

Proof: 1Let X[p] # O be one of the direct summands of X over J, and let
x € X[p]. Then prx =0, some r 21, Since ® is a homomofphism, pro(x) =

w(prx) = 9(0) = 0. Hence, 9(x)} ¢ X[pl, i.e., X[p}] is -invariant, Q.E.D.

In terms of a matrix representation for ¢, the above lemma states that

¥ can be represented as

93 0 0
o = 0 9, O 447
0 o -
q:‘q
L —

where each submatrix ¢i represents the action of ¢ on X[pil° This corres=
pbnds to a decomposition of X over J[z] into a direct sum of J[z]~submodules.
Hence our problem reduces to that of investigating the endomorphisms of
F.G. p-modules X[p] over a P.I.D. J.

The approach now taken relies on the theory developed in chapter 5
(below) for the general cascade decomposition of linear systems over rings

with chain conditions. Specifically it will be first shown that F.G.
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p-modules over a P.I.D. J satisfy both ascending and descending chain
conditions. From Chapter 5 it will follow immediately that if ¢ is an
endomorphism of X[p], then X[p] is the direct sum of two ¢-invariant

submodules Xa’ Xﬁ where the action of ¢ is an automorphism on Xa and is

nilpotent on Xn.

Proposition 4.3. Let X be a F.G. torsion module over a P.I.D. J. Then X
satisfies (a) the ascending and (b) the descending chain conditions on

submodules.
Proof. See Appendix 2,

Proposition 4,4, Let J be a P,I.D.; let X[p] be a F.G. p-module over J,
and let @ be a J-endomorphism of X[pl. Then X[p] = X @’Xﬁ where X_ and
Xk are @-invariant and

(1) the restriction of ¢ to Xa is an automorphism

and  (2) the restriction of ¢ to X, is nilpotent.

Proof: by proposition 4.3, X[p] satisfies both ascending and descending

chain conditions. The statement follows from the results of chapter 5.

010 .l. Let J be a P.I.D.; let X be a F.G, torsion module over J
and let ¢ be a J-endomorphism of X. Then X is the direct dum of certain
¢p=invariant p~submodules where the action of ¢ on each such submodule

is either nilpotent or bijective.

Proof: Combining propositions 4.2 and 4.4 yields the result immediately.
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The problem now breaks up into two parts: first, the analysis of
automorphisms of p-modules, and secondly, the analysis of nilpotent

endomorphisms on p-modules.

4.3.3 Automorphisms of F.G. p-Modules

As discussed previously, a F.G. p-module X contains a submodule Xb
consisting of all elements x in X such that px = 0, Xﬁ is a finite-
dimensional vector space over Jp = J/(p), and we know a great deal about
vector spaces. The general technique to be used will be to analyze how
Xb is related to X and, in particular, how the operation of the endomorpisn

@ on Xﬁ can be related to its operation on all of X.

Definition 4.3 Tet X # (0) be a F.G, p-module. The period of X is defined

to be pr where r is the least positive integer such that pr X = (0). The

exponent of X is defined to be the number r such that pr is the period of X.
Let x ¢ X. The period of x € X is defined to be pr where r is the

least positive integer such that prx = 0. The exponent of x is defined to

be the number r such that pr is the period of x.

Proposition 4,5: Let X be a F.G. p-module, X.p ={x € lex = 0}] Then
every non-zero submodule of X has a nontrivial (i.e., # (0)) intersection

with X .
P

Proof: Let Y # (0) be a submodule of X. Since Y # (0). ¥y € Y such
that y # 0. Since X is a p-module, y has a finite period r. Since r is
the least positive integer such that pry = 0, we have that pr-l y # 0. Since

yeY, prqu ¢ Y. But p(prnly) = 0, and so pr-ly € Xﬁ. Thus we have
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0fp-ty€yn X, Q.E.D.

Proposition 4,6: Let X be a F.G. p-module, XP ={x ¢ lex = 0}. Suppose

: X X ¢ EndJ(X). Then ¢ is an automorphism of X if and only if the

restriction of ¢ to Xp is an automorphism,

Proof: =: Let ® be an automorphism of X. Clearly, X is ®~invariant.
Thus © is an injective endomorphism of XP. Since cn-l exlists, © is also
an automorphism of Xp

Let the restriction of ¥ to Xp be an automorphism. Now suppose

® is not an injective endomorphism of X, so that ker ¢ # (0). By Proposition
4.5, ker ¥ must have a non-zero intersection with Xp; iec, Z0#£yE¢€ Xp

such that ®(y) = 0. But this contradicts the fact that the restriction

of ¥to XP is an automorphism.

Hence ®: X ? X is injective. So, 9(X) ~ X and ¢(X) € X. By the
descending chain condition, we have ¢(X) = X, and hence ¢ is surjective.

Thus ¥, being both injective and surjective, is an automorphism of X.

Q. E. D.

The above lemma has the practical consequence that to test whether a
given ® is an automorphism, where ¢: X -+ X, we only have to check whether
v is a nomsingular transformation of the vector space XP. If ¢ is given

as a matrix, then we merely reduce all its coefficients modulo p and

calculate the determinant of the result. This technique can be immensely

convenient if the exponent of X is very large.
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This last lemma also illustrates the usefulness of investigating

the action, of % on the vector space xp embedded in X,

Definition 4,4 Tet X be a module over J. A set E-gl,...,gs} of generators

s
for X will be called a t-basis for X iff X = & <gi>, where <g]._> denotes
i=1
the cyclic submodule of X generated by 8

Proposition 4.,7: A set of generators [gl,...,gs] for a J-module X is a

s
t~basis if Z aigi = 0 implies a;g; = 0, i =1,...,s, where a; €J,
i=1

i= 1,,,.,3-

s
Proof: = : Let {gl,...,gs} be a t-basis for X, so that X = 14_31 <gi> ?
s

and suppose N a,g, =0, a, € J. Suppose further that a,g, # 0, Then
Li 1" i 1°1
1=
]
== Z a8, # 0. But then <g
i=2

8
the fact that X = <g1> & ( i§__?2 <gi>). Thus a8y = 0. Continuing in this

s
>N @ <gi> # 0, which contradicts

a
1 1=2

151

way a finite number of times, we conclude that 2,8, = 0,1i=1,...,s.

: Let {gl,.., ,gs] be a set of generators for X with the property

that E a8, = 0 implies 2,8, = 0, i=1l,...,5. Since {gl,...gs} generate

i=1
8 8
)
X, we have X = E <gi>. Claim: X = <g1> & / <> Clearly,
i=1 i=2

s
X = <g1> + ( z <gi>). All we have to show is that <g,> n ( z <gi>) = (0).
i=2 i=2
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s

Suppose x € <g>ﬂ(z<g>). Since x € «g.>, x = a.g,, some a, € J.
1 & i 1 1°1 1
S H

Since x ¢ ( Z <gi>)’ X =
i=2

L a,g,, some a, €J,1=2,..,,s. Hence,

2

i
'8

v .
a8;5 and so a8, + j_éz (-ai) g = 0. By assumption then,

&
3
n
o
-
P;
n

8
l,00048. Thus x = 0; i,e., <g1> n( Z <gi>) = (0), and
i=2

<gi> =

1o

S
X = <g1> & E <g,> In a similar fashion we can show that
i * i
s

<8y> 55 z <gi>. Proceéding in this fashion a finite number of times, we
i=3
8
find that X = i@l <gi>, and hence [gl,.”,gs] is a t~basis for X. Q.E.D.

Proposition 4.8: Let X be a F.G. p-module over a P.I.D. J, and let
{f_i,...,fs] be a basis for the embedded vector space Xp. Then we can find

a t=basis [el,...,es} for X such that

Vi =1,...,8,

pl, e, =f, , forsomemi21 4.48

t
Proof: By induction on s. If Xp is s=-dimensional over Jp, then X ~ &

m i=1

mei, let {gl,...,gt} be a t-basis for X, and let p * be the period of

m_ =1 t

gy Then {p * gi}i=1 is a basis for Xp. Thus if Xp is s-dimensional,
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Suppose s = 1. Then X~ J i and X ~J . Let {£.] be a basis
=p 2

for Xp and let 8¢ be any generator of X. Then O # p 1 gy € Xp. But
. m, =1
X, ~ 3 vhich is a field. Thus we can divide £ by p 1 g, to obtain

m, -1
an element a € Xp such that a p 1 gy = fl' Clearly a # 0 {mod p). Let

b be any element of J such that b = a (mod p). Then let e = bgl. Then

ml—l m -1 ml

p e; = fl' Since p e # 0, ey has period p ¥, and so is also a
m1-1

generator of X ~ mel. Thus X = <e1> and p e = f1 as required. So

the statement is true for s = 1.
Assume the statement is true for all s = k, Suppose XP is of dimension

k+1, and let {fl,...,fk_l_l} be a g:l.;rlen basis for XP. let G.= {gl,...,gk_'_}_}

i .
- - - s .S .
be any t-basis for X; we can let p be the period of each Bgp Wy Seeo=mWy .4
k1
Let £, = N a.g a. ¢J 4.49
1 L, %1% i=v :
i=1
ktl
. s 0
Since pfl =0, . pa;g, = 0 4.5

Since G is a t-basis, pa;g; = 0, i=1,,..,k+l,

m, m -1
Thus ap =0 (mod p 1), and hence p L divides a;.
mi-l
Let ai = p bi i = 1,..0’“1 4.51.
We can then write
k+1
Z mi-l
fl = bi p g 4,52
i=1

Clearly, not all bi = 0 (mod p), or else fl would = O,
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Hence there exists a largest integer j < k+l such that:
i< j implies bi =0 (mod p).
Then we can write

fl = bip g, 4,53

By the ordering of the m, we have mj E A mer1? and so we can write

m,~1 k-\t.l mi-mj
f,=p7 , b, 8; b4.54
i=j
k:-_-—l mi-mj
Let e = bi p 8; 4,55
i=j
m.~1
By 7.62, we have - p I, e, = fl’ as required, 4,56
m,
Since pf1 = 0, we have p J 1= 0.

1
and <e1> is also isomorphic to <gj> » Which is one of the direct summands

Thus <e,” ~ J Inj s where <e.” is the cyclic submodule generated by e
1 - "p i

of X, Thus for some submodule X,y We can write X = <ce,> © Xz-

1

Now all we have to show is that {fZ""’fk-}-l} is a basis for the
embedded vector space sz of Xz. Then we can apply the induction hypothesis
and the theorem is proved. However, Xp was assumed to be (k+1)-dimensiona1,

and is easy to argue that sz is k~dimensional. Since <e;> NX, =0,

’.-.’fk-lnl}

<f1> N sz = 0 also. Therefore <f1

> @X, =X. But (f
2p P u[2
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generates a k-dimemsional subspace of Xb disjoint from'<f1>; hence
{f2""’fk+1} is a basis for XZp' By the induction hypothesis we can
] for X

find a t-basis {egs...,e such that Vi = 2,,,.,k+l

ktl 2

pl e, =f, for some m, =1

m, -1

Hence we have found a t~basis [el,...,ek+1} for X such that Vi, »p * e, = fi

some m, =1 Q.E.D.
The content of the above lemma is simply that a set of "axes" for X
can be extended to a set of "axes™ or "coordinates" for X. We can then
always embed a particular one-dimensional subspace of Xﬁ in a cyclic direct
summand of X. Thus a particular "orientation" of Xb can be extended to
a similar orientation for X,
This is important because we are able to find bases of X? with aggree-
able properties, such as invariance under ®. The above lemma will help
us extend these properties to all of X. A basis for Xp of particular
interest is that provided by the rational canonical form for a matrix
representing a vector space endomorphism. The results needed are summarized

below (see Herstein [1M4]):

Proposition 4,9: Let V be a finite dimensional vector space over the field

F. Let the matrix T represent an endomorphism ¢ of V. Then V is a F.C.
torsion module over the P.I.D. F[x] (with x.v = ¢(v) for v € V), and is

consequently the direct sum of certain p-modules V[p], (where p = prime =

irreducible polynomial € F[x], and pe Vip] = 0).  Each p-module V[pl is
e,

the direct sum of cyclic p-modules with periods p 1, e 2 g, A basis
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e,
can be found for each cyclic p-module of period p * such that T

(restricted to this subspace) takes the form:

0O ¢ 0 0 = a,

1 0 0 0 = a;

0 1 0 0 = a, 4.57
9 0 1 0 « a,

0 0 0 1 - an_1

e,
Here, a, is the coefficient of xi in the polynomial p *. Note that with

respect to this basis, say [fl"'°’fn}’ we have

£, = ¢, 1<icn 4.58
n-1

and P = (- Z a tpi)-f 4,59

? iv /°h ;
i=0
n~1
4 _.n i

Furthermore, P =x + }E ax’ ¢ Flx]. 4.60

i=0

Returning to our original problem, let X be a F.G, p-module over the
P.I.D. J and let X% be the vector space (over Jp) embedded in X. Let
% be an automorphism of X (and of Xb) as before. The above theorem

tells us that Xb can be written as the direct sum of Q-invariant subspaces,

k
X = X0 4.61

P j=
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and for each X i there exists a basis [fjl,...,,fj_n } with respect to which

p’ J
we have
_i-1
fji = @ (fjl), £.62
a 3
.y = = ) a or(E,) a, €7 %4.63
P Lo 3 ® Uyl i €% '
i=0
n
n, i1 *
and qj(x) =xJ+ E; a, < = (p(x)) 4.64
i=0

for some irreducible polynomial p(x) € Jp[x]. Tmplicit in this is the fact

that qj(x) is the polynomial of least degree such that quP)-fj1 = 0.

What we would like to do now is extend the basis found above for Xb to

a t-basis for X as in proposition 4.8 and next show that if [fjl,...,f. ] is

n
-
extended to [ejl,...,ejnj}, then the submodule generated by {ejl,...,ejnj}

is in fact a @-invariant direct summand of X, We would also like equations

similar to 4.62-4.64 valid for the submodule {e.,,...,e. 1.
jl jn.

J
Unfortunately, we will not be able to guarantee the P-invariance of the

direct summands of X so generated. The exact result is:

Proposition 4.10: Let © be a automorphism of the F.G. p-module X. Then

k
(i) X can be written as the direct sum © X, of certain submodules Xj where
j=1
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(ii) i <j implies: exponent of Xj < exponent of Xj; 4,65
n,
(Gii) X~ Um)J, somem,n, >0, j=1,...,k 4.66
J pj 1”3

n,

]
(iv) each X, has a t-basis (g, .} such that
i ia

g.. = @ »gjl, i= 1,...,nj 4,67

(v} k = the number of @-invariant subspaces in a rational canonical

decomposition of Xp over 9,

(vi) for each j =1,...,k, theme exist polynomials qji(x) € J[x] with

aoqji < n, such that

i -
P o8y < z 9 ® - gy 4.68

(this follows directly from (i) and (iv) above, since

n k

h| €Ev =
P --g X= & X.)
il j=1 |

(vii) Finally, for each j = 1,...,k, if all the coefficients of

n
X j-qjj(x) are reduced modulo p, the result equals a power

of some irreducible polynomial € Jp[x]. In particular, the

constant term in qjj(x) is nonzero modulo p.
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Proof: We start by putting the restriction of ® to XP in rational canonical

n-
form, i.e., we find a basis {f,,} J for Xp so that equations 4.61-
j=1, i=1 L oa
4.64 are satisfied. We extend this basis to a t=-basis {e.i} J for X;
j=1, i=1

now relabel the k subspaces as follows: choose any generator L having

. m- ,
maximal exponent m, and observe that p L e . must be a basis vector f,, in

st Jji

some P=invariant subspace of Xpo Call this the kth subspace of Xp so that

j is replaced by k. Replace s by k, and let m, = m. We then have

mk-l r

P e = fki.’ where e is of maximum exponent. Now fki =0 'fkl for

some r, 0= < n, . Hence fkl =00-r-£ki, since © is an automorphism. Then

take

By = ® ey 4.69
and let By = q9:’.--1.81{1, i= 1"°"n'k-1 4.70
Clearly, Pmk_l Bri = “*’i-l‘l’mk-l 81

]
A=
r

=
ot

= . i=l,em g 4.71
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So we now have a set {gki} where
i=1l

and {fki] is a basis for a P-invariant subspace of XP. Clearly, each
i=1

i is of maximal exponent m in X. Let Xk be the submodule of X generated

by {gk.]nk . We will now show that {g .}nk is in fact a t-basis for X
Yiml ki1

so that Xk is the direct sum of the cyclic submodules generated by the pi®

Since i is of maximal exponent m , We will have Xk ~ J mk)nk. To show
P

this, suppose that

"k
z 2, 8. =0, a; €J 4,72
i=1
" S
Multiplying by p —1, we obtain L2y fki = 0. Since the fki's are

i=1
linearly independent, we must have a, =0 (mod p) for i = 1,...,nk, i.e.,

a; = bip for some bi' Substituting in 7.37 for the a; and this time multi-

N

plying by pmk-z, we obtain Z b:’. fki = 0. Hence bi 0 (mod p), and thus
i=1

2 .
a; =c;p for some ey L= 1,,,.,n.k.
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Continuing in this fashion a finite number of times, we conclude that

"

a; =0 (mod p M), i=1,..,n. Hence a, g, = 0, tl'.=1,...,nk. This

"
shows that {gki} is a t~basis for Xk’ and hence that Xk ~ (J mk)rlk
i=1 p

Since Xk is of maximum possible exponent m, in X, we know that X ~

el

n
(® JIm, ) & (Um )°  for some s, where m_ < m for all i. Then X
i=1 P i p k i k

~ (Jp)s. If s < my ; then pmk-l X, = (Jp)rlk = (.IP)S, which is impossible

because (Jp)S is a vector space and (Jp)mk a subspace. Therefore s 2 o

and Xk is a direct summand of X.
Thus we can write X =Y & Xk for some submodule Y of X. Now the

embedded vector space in X.k is precisely the ®-invariant subspace of Xp with
"
basis (£

).
Kiia

Clearly, Y must contain the remaining @-invariant subspaces

k
of Xpo Hence we may proceed by induction and show that X = & Xj' This
j=1

decomposition has been shown to satisfy properties (i)-(v) given in the
statement of this theorem.

n,
Because of the relationships amongst the generators {gj.] 3 of a sub=-

is1
module Xj as above, any element xj € Xj can be written in the form
iy
X, = z a CDi-g 4,73
] i~ j1
i=0

- - . 4. 74
qJ@D) ng
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where qj(x) is a polynomial of degree less than n, (whose coefficients

J
k
can be considered elements of J). Since X = ® X, any element x € X
=1 3
can be written in the form
k
x=z NL 3%, <n, 4.7
}® ey, gy <ny ’

j=1
Consequently, for each j = 1,...,k we can write

nj k °
[] = . <
i=1

n
Note that @ j.gjl is not restricted to lie in Xj' We do not know at this
point if Xj is ®-invariant; however we do know that the vector space embedded
m,~1
in X, is, by comstruction, @-invariant. Thus ifwe multiply 7.41 by p J
and transpos ;. - f, we get
anspose qJJ(Cp) j1° g
k
% 3-1 y
LRSIV P R 91 =P 154 @8y 4.77

i=1
i#j

n,
where J-qjjﬂp))‘f,l € Xj and the right side is contained in & X,
. 1]

Hence, because X is a direct sum,

n,
J . . = o <

n,
Consequently, @ J~qjj@p) annihilates that @-invariant vector space over Jp

that contains fjl' But we know this space has a unique polynomial € Jp[x]

of degree nj, vhich happens to be the power of some irreducible polynomial
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n,
€ Jp[x]. It follows that when the coefficients of @ J-qjj@p) are reduced

modulo p, the result must be this unique minimal polynomial.

Furthermore if the constant term in qijP) were = 0 (mod p), then the
minimal polynomial would have a constant term of 0 € JP. But this would
imply that the polynomial of which it is some power also has a constant term
of 0, contradicting its irreducibility. Hence the constant term in qijP)
is non-zero modulo p (i.e., it is not divisible by p). This completes the

proof of all statements in Proposition 4.10. Q.E.D.

Corollary 4.,10,1 TLet @ be an automorphism of the F.G. p-module X. Then
.,
. k 3

a t-basis (g, ]

ji

can be found for X with respect to which @
i=1 , i=1

has the matrix representation shown below:

(0) (0)
911 921
(1) (1)
931 999
(2) (2)
11 q27
4.79

(nl-l) (nl-l)
L oayy 991
(0) (0)
912 432
(L) (1)
912 922

(n,~1) . q(nz“”
95 | 22
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In other words, the matrix is divided into blocks where the diagonal blocks
are in companion form and the off-diagonal blocks are zero except for their

right-most columns.

k u
Proof: By theorem 4.10, X= 6 Xj where Xj ~ (J mj) J and each Xj
n. j=1 P
has a t-basis {g,.} J such that
|
g =qoi—1g i=1,.0.,u 4,80
3t it S
We also know that
nj. =m- = é{:-‘ (Cp)' ao < n 4 81
i=1
. . L, (2) .
Let the coefficient of ¢~ in qji(tp) be called qji . We can then write
k ni-l
R N ¢
® gjl‘l. T Y41 Y4 4.82
# i=1 4=0
Writing out the effect of ¥ on each of the t-basis elements:
ey = 2
@.gl’nl_l = ﬁnl 4.83
o8 _ O M . (=D 0) )
Solmyp = dpy Bpy F Ayt @y et agyt g Ry b odyy 8y Hdyy 8yt ee
P8y 822 822
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If we write each element of x as a column "vector" with components in Xl
at the top and components in Xk at the bottom, we see after a little
thought that ¢ can indeed be represented by a matrix in the form of 4.79.

Ql E. D.

One must be careful in using this matrix, since the various direct
summands are not necessarily isomorphic; in particular the period of one
block may well be different from that of another. It is well to think of
each column of this matrix as a 'vector" in X with the top n, components
describing a ™vector" in Xl’ where X1 has period pml, etc, It magy also
be helpful to write down beside the matrix the extent and period of each

direct summand Xj as shown below:

A matrix in the form 4,79 will be said to be in quasi rational form.
Unfortunately, writing a matrix in this form may not always be helpful.
In fact it hardly represents a decomposition of X over ¥ at all, it is
not even in block triangular form which would lead to an acceptable cascade
machine decomposition, much less is it in block diagonal form which would

represent a parallel machine decomposition. The problem is that the blocks

n, k
X.(where X, ~ (Jm.,) J and X = & X.) are not ®-invariant.
j j p j=1
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On the other hand, the process that leads to a quasi~rational matrix
for ¥ establishes a t-basis with respect to which @ has a standard simpli-
fied form. From the point of view of implementation, the quasi rational
form is very simple:rthe only thing missing is the complete independence
{p-invariance) of the direct summand subsystems. The fact that the quasi
rational form consists largely of zeroes is a feature of this simplicity
relative to ©'s original representation.

Note that if the matrix representing the action of ¥ on X,p € X has only
one companion block, then the same is true of the matrix representing the
action of ® on X. In other words, if Xp is a cyclic JP[z]-module, then

X is a cyclic J[z]-module. The converse may not be true, however.

4,3.4, HNilpotent Endomorphisms of F,G. p-Modules

The study of nilpotent endomorphisms of F.G. p-modules appears to be
more difficult than that of automorphisms. At least the idea of extending
knowledge of ®'s operation on the embedded vector space does not seem to
carry over to the case where @ is nilpotent,

Furthermore, nilpotent endomorphisms do not occur in the examples
considered here. For example, the transformatioms ® that are used to
implement the encoders and decoders discussed in section 4.2.3 are always
automorphic. In at least one other situation of interest (to be discussed
below), the same is true.

For these reasons, the study of nilpotent endomorphisms of torsion modules

will not be pursued here.
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4.3.5 Tmplementation of Torsion Systems

The ease with which an automorphism of a F.G. p-module can be imple-
mented is illustrated below by an example. Let X be an abelian p-group

isomrophic to J 2 & J 2 e J 2 @7 P ®7J 3s Or more compactly, (J 2)3 &
p P P P P P

2
) 3) . where J denotes the integers. If® is an gutomorphism of X,
P
then Lemma 7.17 tells us that there exists a t-basis for X with respect
to which ¥ can be represented in quasi-rational form (Q.R.F.). One

possibility is that ® assume the form

~
0 0 ag 0 co
1 0 0 2
ay 1 P
P = 0 1 a 0 ¢ 484

Suppose that @ is the state transition matrix (homowmorphism) of a F.A.M.

with state set X, With O input, we can write

xl(t+1) 0 o a, 0 g Xy (t)
2
xz(t+1) 10 a; 0 5 x2 () P
X, (t+1) - 0 1 a, 0 Cy Xy (t) 4,85
x, (t+1) 0 0 b, 0 d, x, (t) 3
Xy (t+1) 0 0 b1 1 d1 Xg (t)
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where state components X1y Xy Xy will be contained in "mod p2 registers™
while state components X3 Xg will be comtained in "mod p3 registers", A
schematic diagram of a circuit that implements this transformation ig given
below.

Note that the circuits are basically shift registers with provision

between stages for adding in scalar multiples of the contents of certain

other registers.

| s T - 5
X a, X aq X 2,
+ e
mod p’ [, (0) b 2 }—Tx, ) %, (£)
+ “+ '
X co X c1 X c2
| ) | ) | ><
X by
mod p° %, ©) ] x (t)
X d0 X d1

Figure 4.1 - Implementation of a Finite Abelian Machine in Q.R.F.

A potentially simpler implemeutation may be obtained by performing a
similarity transformation on @, The form of the resulting matrix is the

transpose of Q.R.F.. This transformation is obtained as follows.
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Consider a diagonal block of a matrix in Q.R.F., and its rightmost
column, say (ao, al,...,an)T. By the construction of Q.R.¥., the poly-

. nt+1l
nomial x

+ Z a; xi yields a power of some irreducible polynomial in
Jp[xlu This means, in particular, that a, # 0 (mod p), for otherwise 0
would be a root of this polynomial. Hence, if ag € me, ag must be a uwnit,

and so must be any power of a4 in other words in any ring of the form me,

there exists an element aal such that a8 -1 =1, It follows that the matrix

0
2, 0
(] ag a1 0
a a a 0
Y = L 0 . 1 L 2 4,86
a
ag a, a, n=1 0
0 0 0 ... O 1

is always invertible. Now it can be verified thatif A is a diagonal block
of Q.R.F, whose rightmost column is (ao,...,an)T, then it is always true
that

AY=YAL 4.87

Since Y is invertible, we have that

v iy =T 4.88

This is a similarity transformation. If our matrix @ in Q.R.F. has several

diagonal blocks, then we can perform the similarity transformation consisting
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cf diagonal blocks, each one of which will transpose a given diagonal

£ .

block of ®. It is easy to verify that the resulting matrix is in the

form of Q.R.F. transpose; it is not equal to the transpose of ©. However,

the diagomal blocks of the result arg the transpose of the corresponding

blocks of ¢,

To exhibit the difference in implementation, suppose

is in Q.R.F.T.

X, (t+1; :
X, (t+1)

x3(t+1)

X, (t+1)

Xg (£+1)

This form will be denoted Q.R.F.T.

I

0 1
0 0
0 %
0 o
o

0 1
0 o
ao a1
0 o
fo £y

|_.xl(t)
xz(t)

x3(t)

x, (t)

X (t) E
| -

A circuit that implements this transformation is:

4.89

4.90
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X ao
F
mod p2 —_—
X
fa
mod p3

Figure 4.2 - Implementation of a Finite Abelian Machine in Q.R.F.T.

Practically speaking, this machine may be simpler because it can be

built with shift registers that have no provision between stages for addition
of external values. Note this diagram is only schematic and does not
explicitly show how values in mod pm registers can be multiplied and added
to a value in a mod ﬁm register.

One final point. The reduction of an antomorphism @ to Q.R.F. simplifies
its matrix representation but requires a "shift of coordinates", i.e., a
similarity transformation ¢ ¥+ Q= Y-l ¢ Y to do so, Thus if a finite

abelian machine is originally described by
X - w.ﬁt + lqr.gt 4091

ﬂ'gt 4,92

44
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and we change coordinates via Y, we obtain a new machine

2,44 = Qz +Y¥ ﬂr-y._t 4,93

Y, = MYz 4,94
where Z = Y-lx 4.95

=t -t ‘

Here Q is in Q.R.F. The point is that by simplifying the state transition
matrix @, we may well have complicated the input and output matrices ¢ and
N respectively. Consequently it may not always be clear a priori whether
reduction to Q.R.F. or Q.R.F.T. actually leads to a more economical imple-
mentation.

In summary, an attempt has been made to simplify the representation
of an automorphism operating on a F.G. torsion medule X over a P.I.D. J.
It has also been shown that if ® is any endomorphism of X, then X is the
direct sum of a submodule Xa where ®'s action is automorphic and a suI;-
module Xn where ©'s action is nilpotent., The nilpotent part has not been

considered here.
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4.4, Fxamples

4.4.1. A Single-error-correcting Code Over J3E

Problem: (1) with p = 3, construct a code capable of correcting any error value

in any single digit position. Minimize the block length, so that this error
correction capability will have maximum effect (note: there is no need to
specify the m of J3m)°

(2) give a schematic diagram of the encoder and syndrome calculator
after simplifying their dynamics:

(3) 1illustrate the error-correction procedure by example,
Solution: (1) the first step is to settle on the block length n, i.e., the
degree of d of the extension we will be using. To correct a single pesition,
we need r=d+l check digits. However in any local extension of me of de-
gree d, we have at most pd-l useful powers of a P-primitive element, and the
block length n must be greater than r. Here we are trying to minimize the
block length, so we want the smallest d such that pd-l ~ d+1. Clearly, if
p = 3, d must be greater than 1, However d = 2 will do, since 32-1 ~ 3.

Thus we can work over J3m[x][<x2 + }>, which is a local extension of
degree 2 (since x2 4+ 1 is irreducible over J3). Hence we will have d + 1 = 3
check digits. The shortest block length we can have is therefore n = &,

This will give us a single information digit.

The second step isto find a P-primitive element g of R = J3m[xI[<x2+1>.
This is done by first finding a primitive element w of F = 33[xlﬁ<x2+1>, and
choosing O so that [8]p = w, where P 1s the maximal ideal of R. To find
the primitive element W all we need do is consider the (p2_1)th = (32-1)th =

th
8" cyclotomic polynomial fs(x) whose roots are precisely the primitive
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2
elements of F = GF(3"). Now fSCx) = x4 + 1, and we must find one of its
roots in F. If we let i denote a root of xz +1inF ¥=J3[x]ﬂ<x%+b>, we will

be looking for a root of f8(x) in the form ag +a i, where a A

1t 0* 1 € V3
little calculation shows that (1 = 1) is a root of fs(x) in F, and hence

eJ

w = (1 ~-1i) is a primitive element of F, The column vector representation
T
of w is [1, ~1]", Clearly, a representative g for w in R is [I, -l]T.
The third step is to explicitly give the parity-check matrix H, which

will be a 3 X 4 matrix over me. To do this, we comstruct the operator rep-

resentation H of 8. We recall that if 8§ = [T, -l]T, then

-
H = |8, o8 4.96
B
where 0 =q, 0o -1
cp - -
1 -q, 1 0 4.97

where q(x) = xz +qX +q4 = x2 + 1 and R = me[x]/-<q(x)>° Thus

1 0 -1 1 1 1

-1 1 0 -1 -1 1

In this case, the 3 X 4 parity check matrix H is given by

4,99

@&
Ihfo
@
=
&
I=
Ji=



Note that if we let

and b = [1, 1, 017,

we can then write

H =

b

>
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o

b

1 1
1 1
-1 0
1 0
= 0 1
0 -1
¥, b

il

4,100

4,101

4,102

4.103

(7o explicitly calculate the check digits [cl, Cys c3]T based on the single

information digit u, we can form the equation H fu, ci, Cys c31T = 0;

using 4,103, this yields:

0

4. 104

'The next step is to invert the matrix H2 (being careful to perform operations

mod pm, not mod p !).

It turns out that

4.105
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[T - T o
Hence, < 1 -1 0 1 0

<, = =11 -1 -1 1 u=i1u

<, -1 2 1 1 -2 4.106

I-.—] - ,__J e b d

part (2): according to 4.106, the encoder is trivial and need not involve

any dynamics at all. A diagram is given below (the check digits c, are

contained in a shift register).

u ~ o . . to channel
-
~ X! L
x-2 X1 X 0

to channel

3 5 2 : 1 =

Figure 4.3 Encoder for single-error-correcting code

According to 4.103, the syndrome calculator can be implemented by the

systen

=@§t+_b_u s =0 4.107

Se41 er %o
where s € X ='{J3m)3 and §, b are given by 4.101 and 4.102. The problem
now is to simpiify ¢ by putting § in quasi-rationmal form (Q.R.F.) by an
appropriate gimilarity transformation. Note that § is already in block
diagonal form, where the upper block is trivial. So we only have to sim-
plify the lower block 69.

To do this, we must investigate the operation of H on the embedded

2
vector space of (J3m) . A step in this direction is to obtain the char-

acteristic polynomial of @ﬂ when its coeffients are reduced mod p = 3:
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x=1 -1

2 2
1 x-1 =(x-1)" +1=x-2x + 2

det (I - @a) = det

It easily verified that this polynomial is irreducible over J3- Conse-
quently, H has only one block in its rational canonical form. It fol-

lows that H has only one block in its quasi-rational form over J3m, namely

@)= 0 "2
1 +2 4.108

-1
We must now find a similarity transformation A such that A (:)A = Q@ ‘s
the basic method of doing this in the vector space case is explained in

books on linear algebra. The reader can verify that if we choose

1 1 - 1 1
A = A 1 =
0 -11! 0 -1 4.109
then
-1 1 1 1 1 1 1 0 -2
A @ A = = - @f
0 -1 -1 1 0 -1 1 +2
4.110
From 4.110 e have (@ = A (@)*A™". From 4.101 we obtain
1 0 0 1 o of:1 o of|1l © O
8 =10, 5.1 = A o g- 0 -1
0 0 ) 0
R J L AL gL —
Substituting this in 4.107 and performing the transformation
1 0 0
x —3
t 0 4! 4.111
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we get — ] B = [ 7
1 0 0 1 0 0 1
§t+1= 0 0 -2 X, + |0 1 1 1 u
0 1 +2 0 0 -1 0
po— L 1 e el
and - - ]
1 0 0
'§'t =10 1 1 ?it Y
0 0 -1
or - _ _
1 0 0 1
X1 = |0 0 -2 X +|1 u,
' 0 1 +2 0 4,112
and B ]
1 0 0
it = [0 1 1 Et
0 0 -1

Equations 4.112 and 4.113 are the dynamic equations in Q.R.F. for the syn-

drome calculator. Writing out equations 4.112 and 4.113 in terms of com-

ponents:
xl(t+1) = xl(t) +1.1t
xz(t+1) = -2x3(t) +ut
x3(t+1) = xz(t) + 2x3(t)
sl(t) = xl(t)
sz(t) = xz(t) +x3(t)
SS(t) = -xs(t)-
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The circuit corresponding to these equations is:

+ xl(t)
hH ! Xl -'-_hsl(t)
+
__fsT
. Z
x
2
XZ(t) S sz(t)
Lol X 2 + %
X4
x3(t)
et 4 x-1 - 83(t)
v

Figure 4.4. Syndrome Calculator; Single-error Example

This completes the first example of an error-correcting code over J m

where p = 3 in this case. Note that the entire procedure is independent

of the value of m.

4.4.2. Double-error-correcting codes over J , and n.
3

1 s . . m
The possibility of constructing error-correcting codes over p allows
us to comstruct error-correcting codes over the integers modulo g, where
q is any integer. The idea of course is to factor q into its prime-power
_ my my mk . .
factors, say q = Py ~ Py & «-- Py S By the Chinese Remainder Theorem,

we know that J is ring-isomorphic to J m J m e J my-
q 4 P pl]_@ p22@ Gapkk
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We can now construct appropriate codes over each of these direct factors,

each code having the same block length n. To illustrate, suppose a code over

Jq’ g =675 = 33-52, is required that corrects any two errors al, a, as long
3 2 .

as a; a, £ 0 mod 37 and a 8, # 0 mod 5°. We can obtain a code of block

length n = 8§ = 32 -1z 52 - 1 with local extensions of degree ¢ = 2, This

will require r = 3d + 1 = 7 check digits. Again, we get only one informa-

tion digit in this example.

It turns that q(x) = x2 - x + 2 is irreducible over J3 and over JS'

Thus R1 = J33[x]A<q(x)> and R2 = J52[x]ﬁqq(x)> are both local extensions of

degree 2. We chose a polynomial that was "irreducible over both J3 and J5"

for convenience; not out of necessity. (As usual, considerable care may
have to be exercised to keep track of the ring or module under discussion).
The next step is to find primitive elements of F1 = J3[x]ﬁ<x2-x+2> and
of F2 = Js[x]ﬁqxz-x+2>. It turns out that wl = [1, -l]T is a primitive
element of F

this can be verified by showing that w, is a root of the cye-

N 1
lotomic polynomial f23(x) = x4 + 1 in J3[x]ﬂcx2-x+2>. We can then take as

our P-primitive element 8y = (i, -I]T € Rl' The operator representation

@Dl for 91 is

0 -2—| B 0 -2_1 L
e 1= |

! 1 1 i-l 1 li -1

L

S0

L
1 2

Gp 1 -
"’1 0 ll'. 114

We must now find a primitive root w, of Fz, i.e. a root of the cyclo-
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4 4 4
tomic polynomial f24(x) = f23.3(x) = f2_3(x ). YNow, f2-3(x ) = f3(-x )
= M () 1
= x8 - x4 +1

(The cyclotomie polynomials were calculated according to Lang [1971, p.

206]). After a search for a root of this polynomial, we obtain wz =

{0, 1]T € F2 for example. We can then take as our P-primitive element

_ T ; s
32 [0, 11" ¢ Rz. The operator representation @@2 for 92 is

0 -2 0 2|
®2 = %, 1 207 10 | 1]’
B
S0 0 -2
T2 4.115
The 7 x 8 parity-check matrix H1 for the J33 part is:
T 1 1 1|
® 1 @1 1
S (@17)21 @12_ 1
(@17)3_1_ @1 1 4.116
. -

The 7 ¥ 8 parity-check matrix H

2
! 1 1]
®"1 §1 1
LTl @hh @ 1
@&hH% @1 1

for the Jsz part is:
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The implementation proceeds as follows. A single information digit

ue J33.52 is presented to the system. One circuit calculates [u]33, the

class of u mod 33. The digit [u]33 g€ J_3 is then presented to a circuit

3

which calculates the 7 check digits ¢ J_ 3 according to H,. Another cir-

3 1

cuit which calculates the 7 check digits ¢ J52 according to H2' The two
sets of 7 check digits can then be combined to form a sequence of 7 check

{ 2
digits ¢ J33.5 preparatory to transmission.

Similarly, the decoder will first split a received sequence of 8§

digits ¢ J33.52 into two sequences of 8 digits, one consisting of digits

€ J52. These two sequences would be decoded according to the general
ideas of section 4.2.2, and then combined to give the decoders best es-
timate of the transmitted message.

This discussion is only an outline, so as not to obscure the simple

ideas involved and thus to suggest the plausibility of constructing error-

correcting codes over Jn, n = any integer.
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5. CHAIN CONDITIONS AND DECOMPOSITION

5.1 Introduction: Machine Decompositions

The main result of this chapter provides a "cascade™ decomposition of
an R{z)-module X satisfying A.C.C. over R (i.e., every R-submodule of X is
F.G.). This result can be viewed both (i) as a strictly algebraic result
concerning the decomposition of a module over an endomorphism and (ii) as a
system-theoretic method of decomposing a linear machine into some intercon-
nection of "simpler'" machines. Increasingly more detailed results are obtain-
ed as further conditions are imposed on R or X.

For details regarding the notions of cascade, serial, and paraliel
machine decompositions, see Hartmanis, J., and Stearms, R. [ 1}, Arbib, M.
{15], and Kalman, R., Falb, P., and Arbib, M. [10]. Roughly speaking, how-
ever, a parallel decomposition of a machine corresponds to a decomposition of
the state set into "direct summand machines," each "summand" operating in-
dependently of the others; i.e., the next state of a direct summand machine
depends only on the ipput and its own current state. The current state of
the original machine can be reconstructed by some functions of the current
states of the component machines. For linear systems over R, this means de-
composing the state module into a direct sum of R[z] modules.

A cascade decomposition of a machine, however, corresponds to a simula-
tion of the original machine by simpler machines that do not necessarily
operate independently. In particular, the component machines are to be
thought of as arranged in a chain, where the next state of a given machine
may depend not only on the input and its own current state, but also on
the current state of the machine preceeding it in the chain. Intuitively,

it should seem reasonable that a serial decomposition can be achieved under
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conditions weaker than those for a parallel decomposition, since the fea-
ture of complete independence is lost. To show that this is the case is
one of the objectives of this chapter.

The basic decomposition of a F.D.L.T.I. system over R with R satisfying
A.C.C. will be achieved by embedding the state module X in a direct product
of "simpler" R-modules where the action of z is more easily described. In

other words, ¥ will be viewed as a sub-direct product.

Qutline of this Chapter

Section 5.2 discusses certain basic features of decomposing a linear
system z into simpler linear systems. The idea is to first find submodules
P and Q of the state module X such that PN Q = (0). Subsequently, X is
embedded in X/P @ X/Q, and a new system £  is constructed with this state
set. The input/output properties of L and ¥ are to be identical.

The problem is thus to find P, Q (where P N @ = (0)) that lead to sim-
plifications in the description of Z°. Section 5.2 suggests particular
choices for P and Q.

Section 5.3 establishes that when the state module satisfies A.C.C.,
then the program suggested in 5.2 can be repeatedly carried out so long as
the next state endomorphism of a component machine is neither injective nor

nilpotent. Specifically we have

Theorem: Let ¥ be a D.L.T.I. system over a ring R, where ©'s state module X
satisfies A.C.C.. If ¢. the next-state endomorphism of T is neither injective
nor nilpotent, then a finite cascade ¥ of linear systems can be found with
the same input/output properties as ©. The next-state endomorphism of the

head machine is injective, while the next state endomorphisms of other
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systems in the cascade are equal to 0 (i.e., the other machines are "resets').
The practicality of this decompositiom is severely limited by the need
to find explicit formulas for reconstructing the original state from a sub-
direct product. On the other hand, the decomposition provides a conceptual
canonic form for all linear systems whose state sets satisfy A.C.C.
Section 5.5 imposes the descending chain condition on the state module

in addition to A.C.C. An immediate result is Corollary to Theorem (above):

Under the same conditions as in the above theorem and if X also satisfies
D.C.C., then the next-state endomorphism of the head machine is an automor-
phism.
This result is interesting because it suggests a connection with the de-
composition of a finite automaton into "permutation' and "reset" components.
However, the main interest in requiring A.C.C. and D.C.C. is that Jor-
dan-Holder and Krull-Schmidt theories apply to the state module. The pre-

cise result appears as corollary 5.6.1 below, but is stated here as well:

Theorem: Let I = Q?: X X, o) ﬂ) be a D.L.T.I. system over R, where X
satisfies both chain conditions. Then ¥ can be expressed uniquely (in the
Krull-Schmidt sense) as a parallel conmection of D.L.T I. whose next-state
endomorphisms are either automorphic or nilpotent.

This theorem is given a categorical interpretation in terms of factoring
certain diagrams. In any case, the theorem provides a certain uniqueness to
the "finest" possible parallel decompositon that can be applied to a linear
system. It also provides the form for the next-state endomorphisms of these
"finest possible” parallel componrents.

Section 5.6 then requires that the state module X be semisimple (in the
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sense of Lang, S. [12]). "This implies that'X satisfies both chain con-
ditions. The decomposition results obtained here are the most important

in this chapter. They are

Theorem: Let ¥ = Qp, ¥ 7) be a D.L.T.I. system over R whose state module is

semisimple. Let

£=5;@---01_

be a paraliel decomposition of £ into indecomposable component systems
zi = Qpi, ¥yo ﬂi) with state modules Xi’ i=1, ..., n. Then Xi is the

(finite) direct sum of isomorphic simple modules, and 94 is either nilpotent

or automorphic, i =1, ..., n.

Theorem: Let ¥ = Qy, M ¢) be an indecomposable system in the above de-

composition, where ¢ is nilpotent. Then
p P P

ksl  j
=% <g (g) > , some g ¢ X;

here <¢J(g)> denotes the (cyclic) R-submodule of X generated by ¢J(g). (Thus
X, viewed as a R[z]-module is cyclic. Furthermore, the action of ¢ an X can

be represented by a nilpotent companion matrix of order k).

Theorem: Let ¥ = Qp, P ¢) be an indecomposable component system in the
above decomposition, where ® is an automorphism.

(1) If X, viewed as an R[z]-module is cyclic, then

X =§@% <¢j(gx>, some g ¢ X.
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(Thus the action of @ can be represented by an invertible companion matrix
of order k}.

(2) In general, p can be represented by a block triangular matrix whose
diagonal blocks are invertible and in companion form. (This leads to a

unique, irreducible cascade decomposition for T).

5.2. General Requirements for Cascade Decompositions

The systems discussed here are those describable by
X = ;p(xt) + ,l,(ut) 5.1

where oo Xogq € X, ut € U; X and U are both F.G. R-modules, and

p: X X, ¢+ U+ X are both R-homomorphisms. It will be convenient to define
v, = sp(ut). 5.2

Proposition 5.1. Let P and Q be two submodules of an R-module X. Suppose

ENQ=(0).

il

If x = and x then x = y.
pY qYa y

(x Ep y means that x - y ¢ P).

Prooi. clear.

This trivial proposition turns out to be most important to the process
of finding cascade decompositions. The crucial implication is that if a
coset of P and a coset of Q overlap (i.e. have a non-empty intersection), then
there is 2 unique element x £ X in that intersection. Hence, if we formed

the direct sum Y = X/P @ X/Q, we could define a function
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£:Y 5 Xy {¢} by

£:([x1,, [y1) |- (x]0 Iy],

Furthermore, if we let T be the subset of Y = X/P @ X/Q such that ([x]P,

[y]q € T iff {x]P n [y]q ¥ ¢, we see that fIT (the restriction of f to T) is
a well-defined function flT: T3 X . In fact, T is a submodule of Y which

is isomorphic to X; we say that T is a subdirect product isomorphic to X,

or that X can be embedded in the direct sum X/P g X/Q. We will denote the
inverse of f T by f-l.

Suppose that P and Q are two R-submodules in the state module X of the
linear system 5.1. such that P Q = (0). Consider the possibility of
"simulating" = that system by two "smaller" systems with state modules X/P
and X/Q respectively. The above arguments are meant to suggest that in cer-
tain situations we can reconstruct the current state in X given the current
states in two systems with state modules X/P and X/Q by means of the function
fIT' In order to do this, we must require that if 8, is the current state in
X, then [xt]p and [xt]q are the current states in X/P and X/Q respectively.
Hence we insist that the (yet to be found) dynamics of the quotient machines
have the following property: . if [xt]p and [xt]q-are the current states in

the quotient systems, then the next states must be [x and [x

e+1p e+11q

respectively, where x is given by equation 5.1. Thus, the next states
P y 1 q

-

in X/P and X/Q must somehow satisfy

[xtﬂ]p = lpx)) }p + [vt]P . 5.3

and

[xt_,_llq = [:p(xt)]q + [vt]q . 5.4
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The problem now is to find &p(xt)}p and Lp(xt)]q using only information

given by the current states in X/P and X/Q.

Definition 5.1. Let yp and Yq denote the canonical surjections

:X X/p
Vpi¥ 2 /

and
X o X/Q-
Yq

Now, using the fact that ([xt]p, [xt]q) ¢ T, we can rewrite 4.3 and 4.4

as follows:

[xe4qd, = vp'cp-f|T (b= 15, e 1)+ v(v), 5.5
and
[Xpy1lg = Yoo £l plx 1,0 Ix 1D+ Y (7)) 5.6
We can now view X/P and X/Q, along with the dynamic equations 5.5 and 3.6
as two coupled dynamic systems. These two systems can simulate the original
system in the sense that they contain enough information to calculate the
motion of X,
The next step is to find a more explicit form for flT ([xt]p’ [xt]q),

or perhaps for ¢-flT ([xt]p, [xt]q). It would be convenient, of course, to

_be able to write

£l p (EX]P, [Y]q)= o ([X]p) +a ([Y]q) 5.7

where 0%: X/P 3 X and GE:X/Q.+ X are R-homomovphisms. Unfortunately, this is

not possible unless X =P g Q:
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Proposition 5.2, Let P, Q be two submodules of X such that P n Q = (0).

There exists two R-homomorphisms

ap:X/P 4+ X 5.8
and
such that o ([x + = [x 5.10
P([ }P) . ([qu) [ ]p N [y]q
it and only if, X =P g Q.

Proof: «= : if X

P @ Q, then X/P ~ Q and X/Q ~ P. 1In this case, Ozp and
o&q are just the canonical injections. =: If Otp and th are as in 5.8 and 5.9
then ¥ %, v, aP([X]P> + ctq([y]q) € X. 1f equation 4.10 is satisfied, we have
that [x]p N [y]q € X, for all x,y. In other words, every pair of cosets
[x]p, [y]q has a non-empty intersection. Since this intersection is unique,
we have that X =P g Q. Q.E.D.
80 it is not always possible to write f]T in the form 5.7. On the other
hand, if X = P ¢ Q, equations 5.5, 5.6 become
Lepgpdy = %o (I 1) + v e (Ix, 1) + Y, 5.11
and

Xepqlg = Tq'cp'ap([xt]p) + vq'q;'aq([xt]q) v v 5.12

More compactly, they become:

ey dy =0 (= 1) + o CIx,1) + v (v

5.13

and

]

[ ]

X1 q aqp([xt}p) + yqq([xt]q) + yq(vt). 5.14
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For example, if X is a vector space over F, then for any convenient
subspace P of X, we can always find another subspace Q such that X = Q g Q.
Hence we can always decompose a linear system over a field F into two coupled
systems as in 5.13 and 5.1l4, and continue this process until each state space
is one-dimensional.

Returning to the general case, we can exercise some of our options in

choosing P and Q. It would seem reasonable to try
P = ker ® = {xeX I w(x) = 0}.

The effect of this choice is important: the next state in X/P no longer
depends on the current state in X/Q. ©Not only that, the next state in X/Q
no longer depends on its own current states. Thus, choosing P = ker @

PN Q = (0) effects a partial decoupling of the quotient systems. This

can be illustrated by the diagram

X/q
Yq
X (°;t°) > imgp c X
w o\
P B (1-1, onto)
XIkEr cp
Figure 5.1.

The point here is that the next state in X can be determined by knowledge of

the current state in X/ ker ® (and the input), because .

olxg) = By () = B(lx,1)-
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In terms of the above notatiocn,
o | (0= T per o’ [x 1) = B(lx.1) 5.15
The previous dynamic equations become (with P = ker @):

[::H_l]P = YP'B([xt]p) + vp(vt) 5.16
and

[xp4p1q = Vg BUIE) +Y (7)) 5.17

Note that the current state in X/Q is irrelevant to determining the next
states in both X/P and X/Q. A machine diagram of the decomposition is given
in Figure 5.2, where the boxes marked D represent "delay elements" with unit
delay; they merely indicate the separation of events by one unit of time

in the intended interpretation.

The machine with state module X/ker p 1s known as the head machine; its
next state is independent of the current states of other machines. The machine
with state module X/Q is known as a tail machine. It should be emphasized
here that the tail machine's next state is independent of its current state;
in the language of fimnite-state machine theory, this tail machine would be
called a reget machine. In the language of linear system theory, the action
of Z on X/Q is nilpotent of index 1, i.e., is the zero endomorphism. In any
case, the original linear system described by 5.1 has been decomposed into a
cascade comnection of the two machines described by 5.16 and 5.17 under the
assumption that a submodule Q £ X could be found such that ker P Q= (0).

Clearly, if © ig injective, this approach cannot be used. However, if
P is not injective and ker o) % {(0), we must find Q such that ker @ nao=(0.

So one question is: when does such a @ exist? Another question is: how
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Figure 5.2: One Step in Cascade Decomposition
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far can this cascade decomposition process be carried out in successive

head machines?

5.3 A.C.C. and Cascade Decomposition

Proposition 5.3. ILet P be an endomorphism of the R-module X where X satis-

fies A.C.C. Assume ker o ¥ (0). Then either there exists a non-zero sub-
module Q such that ker P N Q = (0), or else there exists an integer n > 0

such that mn(X) = (0).

Proof. Ilet Q$k) denote ker ¢k ={zx¢X | @k(x) = 0}. Clearly, G) = sz) =P
is an ascending chain of submodules of X. By A.C.C., there exists a (least)

integer n such that Q?n) = QPH+1) = .... Consider im wn =-¢n(X).

Claim: (") N img" = (0): Proof of claim: x¢ (") Ne (X) =g (x) =0

and x = @n(y), some y ¢ X. But then ¢2n(y) =0, i.e., y € szn)é But

@) =G ) = e = (™) = ... Hence ye (g, so that o"(y) = 0. Thus

x=g (y) =0 Q.E.D.
However, ker 9 = Qp) & Q$n), and wn(X) n Qpn) = (0); therefore,

ker o N mn(X) = (0). Thus we can take Q =tpn(X), unless ¢n(X) = (0). Q.E.D.
The above proposition tells us that we can continue the cascade decom-

position until the endomorphism of the head machine is either injective or

nilpotent. In any case, the first step in decomposing X over ® yields a

head machine with state module X/ker P and with next-state endomorphism

* B. Since = . and is an isomorphism,
YPB o =B Yo B P
-1
YP"BQP)
and L
Yo "B =B o B. 5.18
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In other words, the action of YP‘B on X/ker P is similar to the action

of ¢ on CP(X): they are related by the similarity transformation B. Hence

x ¢ ker Y B x g ker B gp
o B B =0
@ pp(x) =0
@ P(x) ¢ ker g
o x ¢ B (ker o)

Since the domain of B-l is cp(X) , we can also write

x € ker yp'ﬁ & X€ B-l(ker o NoX)

Hence,
ker yP'B = B-l(ker o N
Thus,
(X/ker o) /ker YP‘B ~ g (X) /(ker o N 5(X))
~ X/fker ¢2, 5.19
as is easy to demomnstrate.

The next step in the decomposition of (X/ker CP) requires us to find a
submodule Q of (X/ker cp) such that Q N ker YP‘B = (0). Hence we must find
_a submodule Q" of p(X) such that Q" n (ker o N q,(X)) = (0). It is easy to
show that we can take Q° = cpn(x) € (X). Hence

9 (X)/Q ~ () " (X)

~ X" ® 5.20

We have now decomposed the original machine into a cascade of three
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machines: the first or head machine has state set X/ker @2; the next has
state set Xﬂyn-l(x), and the third has state set Xﬁyn(x). This can be in-

dicated schematically by

X/ker CPZ + X/q,n-l(x) -+ X/cpn(x)-

Figure 5.2,

Clearly, this process can only be carried until the head machine has
state module X/ker ¢n, for then the action of ® induced on this module is
injective and therefore has kernmel = (0), and the decomposition process stops.

The overall result is:

Proposition 5.4, Let y = Qw:X.+ X, ¢:Us X, :X 5 ¥Y) be a D.L.T.I. system

over R, and let X satisfy A.C.C. over R.

Then § can be simulated (i.e., fE can be realized) by a cascade connec-
tion of D.L.T.I. systems over R where the next state endomorphism of the head
machine is injective, and all other machines are reset machines. The state

modules appearing in the decomposition are arranged in the sequence
n 2 n
X/ker o X/p(X) » X" (R) 5 ... 5 X/ (X)

where n is the least integer such that ker Qn = ker wn+1 = ...; If @ is
injective or nilpotent, no decomposition can be carried out. Each step in
the decomposition embeds the state module of the head machine in a direct
product of two other modules; to obtain a practical decomposition, explicit

formulas for the inverse of this embedding must be found.
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5.4. Discussion

The difficulty with the above aecomposition is finding formulas for
the inverse embeddings. The problem arose because this decomposition is
based on ideas from finite-state machine theory, where these inverse maps
can always be calculated explicitly. Proposition 5.2. states that the inverse
map is a homomorphism if, and only if, X =P g Q. In general, this will not
be the case; thus, a practical decomposition in the above form will not
always be possible.

On the other hand, the decomposition gives some theoretical insight
into the operation of a large class of linear systems. Perhaps more im-
portantly, the technique can be used as a starting point for investigating
systems with more detailed structure. Furthermore, the technique .can al-

ways be used in the situation where X is finite.

5.5, The Descending Chain Condition and Decomposition

Definition 5.2. An R-module X is said to satisfy the descending chain con-

dition iff every descending chain of submodules

DM L 2 * &
MO 1::) o Mi:a

- ig finite, i.e., there exists an integer k = 0 such that

A ring R satisfies D.C.C. iff it satisfies D.C.C. as a (left) module over
itself,

The class of modules satisfying D.C.C. indlude finite modules, vector
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spaces, and semisimple modules {(which are discussed below). It is easy to
show that if X satisfies D.C.C., then so does every submodule and homomorphic

image of X.

Proposition 5.5. Let X be an R-module satisfying both chain conditions.

Let ¢:X.4 X be an R-endomorphism. If o is either injective or surjective,

@ is an automorphism.
Proof. see Jacobson, N. [11], p. 154.

Corollary 5.5.1. Let ¢ = (‘p:X_. X, :U+ X, n:X Y) be a D.L.T.I. system

over R, and let X satisfy both chain conditions. Let 3 be decomposed as
in proposition 5.4. Then the next-state endomoxphism of the resulting head

machine is in fact an automorphism.

Proof. by the facts that this endomorphism is injective and the head machine's
state module satisfies both chain conditions, and by proposition 5.5.

This last result only serves to solidify the connection between the
above decomposition and the decomposition of finite state machines into
permutation and reset machines. However, more powerful decomposition re-

sults can be obtained:

Proposition 5.6. ILet X be an R-module satisfying both chain conditions, and

let Q:X.¢ X be an R-endomorphism.
Then X can be expressed as the direct sum of ¢-invariant submodules Xi’
i=1, ..., s where the action of @ on Xi is either automorphic or nilpotent.

This decomposition is unique in the sense specified by the Krull-Schmidt
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theorem (see Jacobson, N. [11]. pp. 156-158).
Furthermore, these modules Xi are indecomposable in the sense that Xi

cannot be expressed as a direct sum of (non-zero) ¢-invariant submodules.

Proof., view X as an R[z]-module, with the action of z defined by the action
of ¢. Since X satisfies A.C.C. and D.C.C. as an R-module, it certainly
satisfies A.C.C., and D.C.C. as an R[z]-module. By the Krull-Schmidt theorem,
X can be expressed "uniquely”™ as the direct sum of indecomposable R[z]~-modules
Xi’ i=1, ..., s. The fact that Xi is an R[z]-module means that Xi is
g-invariant.

The fact that Xi is indecomposable over Rfz] means that Xi cannot be ex~
pressed as the direct sum of two (non-~zero) ¢-invariant submodules. Let Qi
denote the restriction of @ to ;e It can be shown that if D is neither
nilpotent nor automorphic, then Xi is the direct sum of ker ¢in and win(Xi)
where n is the least integer such that ker ¢in = ker ;in+1 = ... ; for a

proof, see Jacobson, N, [11], p.155-156. Hence, if Xi is indecomposable,

g must be either automorphic or nilpotent. Q.E.D.

Corollary 5.6.1, Let = = (&:X + X, §:U > X, n:X 2 Y) be 2 D,L.T.I. system

over R, where X satisfies both chain conditions. Then I can be expressed
uniquely (in the Krull-Schmidt sense) as a "parallel"™ commection of D,L.T.I.

systems whose next state endomorphisms are either automorphic or nilpotent.

Proof. follows directly from proposition 4.6 by defining the parallel con=-

nection of two D.L.T.XI. systems
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and
Qyz'X -+ X ¢2:U.+ Xz, nzzxz 4 Y)

to be the D L.T.I. system

2105, “ gy wp,) t X0k + X 0k, 1 (5,%) | ), glx,))
(yyo99) 2 U2 X 0% u v (@), y,(0)

A parallel decomposition into two systems corresponds to factoring the dia-

gram

v ¥ x9x 0 «x

as

91
K xl—-—-r- X]-,n\A
U 1 1 -E
. .
€2 My
Moo %
P2
where X = Xl ® X,
The main effect of this theorem is to provide the "finest" possible
parallel decomposition of a linear system. Further decomposition must pro-

ceed by different techniques; in particular, any further decomposition will

probably be in a strictly cascade form.

5.6. Semisimplicity: Introduction

The decomposition of corollary 4.6.1 can be carried further if the R-
module to be considered here is one in which every submodule can be viewed

as a direct summand. Such modules are called semisimple. A ring is said
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to be semisimple if it is semisimple as a (left) module over itself. Exam-
ples of semisimple modules are vector spaces, group algebras, and any mod-
ule which is the direct sum of a family of simple submodules. The group
algebra case is of particular interest andrwill be discussed later.

Details concerning semisimple modules can be found in Lang, S., [12],

chapter 18, Herstein, I.N. [14], and van der Waerdem, B L. {17], chapter 13.

Definition 5.3. A unitary R-module X is said to be semisimple iff X is the

sum ¢f a finite number of simple submodules.

Proposgition 5.7. Let X be a unitary R-module.

(i) X is semisimple iff X is the direct sum of a finite number of
simple submodules

(ii) X is semisimple iff every submodule F of X is a direct summand,
i.e., X =F ¢ E for some submodule E.

(iii) if X is semisimple, every submodule and homomorphic image of
X is also semisimple.

(iv) if X is semisimple, X satisfies both A.C C. and D.C.C.

Proof. (i) - (iii): see lang, 5. [12], p. 442.

(iv): if X is semisimple, X is the direct sum of a finite number of
simple submodules. It is easy to show that a unitary simple module is cyclic
so that X is F.G. over R. By (iii), every submodule of a semisimple module
X is a direct summand of X, and must therefore be a homomorphic image of X.
Every homomorphic image of an F.G. R-module is also F.G., so every submodule

of X is F.G. Thus X satisfies A.C.G.
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To show that if X is semisimple then X satisfies D.C.C., assume the con-
trary. Let XO:D XI:D Xz «--+ be an infinite descending sequence of sub-
modules in the semisimple module X, ordered by proper inclusion. Since every

Xi c X is also semisimple, we can find Yi + (0) such that

X=Xy v, 20

Yi % (0) because the inclusion Xi+1 c X, is proper. Hence

i

(Yo) o (YO, Yl) c (YO’ Yl, Y2) C esas

is an infinite properly ascending sequence of submodules. This contradicts

A.C.C. Hence, no infinite properly descending sequence of submodules can

exist in a semisimple module X; i.e., X satisfies D.C.C. as well. Q.E.D.
Thus, if 3 is a D.L.T I. system over R whose state module is semisimple,

the decomposition of corollary 4.6.1 applies. The next gtep is to analyze

the action of automorphisms and nilpotent endomorphisms ¢ on semisimple

modules. We only have to consider modules that are indecomposable in that

they cannot be expressed as the direct product of w-invariant submodules.

Proposition 5.8. ILet P be an endomorphism of the semisimple R-module X.
I1f X is indecomposable over R[z], X is the direct sum of isomorphic simple R-

modules.

Proof. Suppose not all of the simple direct summands of X are isomorphic.

Let Xl be one of the simple direct summands and let Y = é

X, be the direct
i=] 1

sum of all summands isomorphic to Xl' Consider ¢(X1). Since Xl is simple,

either ¢(X1) =0 or w(Xl) ~ Xl, and ¢(X1) is also simple. 1If qJ(Xl) =0,
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Q(Xl) = Y.‘ Now suppose cP(Xl) £ 0. Since ¢(Xl) is simple, Y N $(X1) =0
or w(Xl). If¥Yn m(Xl) = ¢(Xl), ¢(Xl) S Y. Suppose Y N m(Xl) =0, Then X

can be expressed as X =Y X.) @ Z, for some module 2Z

]

Y
( & X)oeRX) o2

i=1 *
However, in this decomposition there are r + 1 direct summands isomorphic
to Xl.

Now each direct summand of X, being simple, is indecomposable as an R-
module. By the Krull-Schmidt theorem, these indecomposable direct summands
are unique in number and are uniquely specified up to isomorphism. It is
therefore impossible that X has two decompositions into indecomposable sub-

modules, where one decomposition has exactly r simple modules isomorphic to

. Thus

X, and the other has exactly r + 1 simple modules isomorphic to X1

W(Xl) € Y. Since this is true for every direct summand of Y,
q,(Y) c Y.

Thus, if @ 1s an endomorphism of the semisimple module X, every submodule

Y consisting of the direct sum of all isomorphic simple direct summands of

X 1s p-invariant. Hence, if the simple direct summands of X sre not isomorphic
to each other, X is decomposable over R[z]; that is, X is the direct product

of two (non-zero) p-invariant submodules. Q.E.D.

Coreollary 5.8.1. Let y = QP, ¥ n) be a D.L.T.I. system over R whose state

module X is semisimple. Let
L=Z210%,® - 8L

be a parallel decomposition of § into indecomposable components Iy < Qpi, AE
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'qi) with state module Xi, i=1, ..., n. Then Xi is the (finite) direct sum
of isomorphic simple modules, and 95 is either nilpotent or automorphic,

i=1, veor Ile

Proof. follows from corollary 4.6.1 and proposition 4.8.

Proposition 5.2. Let X be a semisimple R-module, and let 4:X 4 X be a nilpo-
tent endomoxrphism of index k.

If X is indecomposable over R[z]. then

X = Eé1'< wl'g >
i=0

where g is some element of X, and « w-"g > denotes the cyclic R-submeodule of
X generated hy q,i(g). (These cyclic direct summands are isomorphic because

of indecomposability).

Proof. (i) Since o is nilpotent of index k, there exists a g ¢ X such that

th:l + 0. Let M be the submodule generated by {g, PeBs sevs q,kfl g}.

Claim: M = kél < cpl.'g .
1=0

Proof of claim: suppose
k-1
T 0. 5.21

o k-
Operating on this equation by o) 1 yields

k-1 k-1
T, - 8 g (rog)=0.

k=
Hence, rog ¢ kernel of (‘P 1 restricted to «g>). It is easy to show that,
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because X is semisimple, any cyclic submodule is simple (and conversely);
consequently, <g> is simple. Thus,
k-1 \
kernel of QP restricted to «g>) = 0;

otherwise would contradict fact that cpk- 1g # 0. Hence r,8 = 0. Then,

equation 5.21 can be rewritten

Z 1 eg=0 5.22

k-2
Operating on this last equation with o vields
1'1 cp s B = 0.

By the same argument as above, r,g = 0.
Repeating this process enough times will yield that r.g = 0, and hence
that T, q)l. g§=0,1=0,1, ... k-1. We have proved that

i i ,
riCP .g=0=ari¢.g=0, 0< i< k.

50T

Thus every element of M can be expressed uniquely as a sum of elements from

<<P1' £, 0 < i< k. Hence

M= 551 < - & Q.E.D. Claim.
=0

ke .
So, if ¢ is nilpotent of index k, there exists a submodule M =g§1 <(P1' 2,
i=0

for some g ¢ X such that cpkjl g+ 0.

(i1) The next step is to show that if X is indecomposable over R{z],
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then in fact M = X. This proof is carried out for the vector space case in
Fiokbeiner, D.T. [18], pp. 146-148, but applies equally well to nilpotent
endomorphisms of semisimple modules. The actual statement there is that
there exists a w-invariant module N of X such that X =M g N. This con-
tradicts indecomposability unless N = 0, in which case M = X. Q.E.D.
The matrix interpretation of this theorem is that, under the conditions
specified, a set of independent generators can be found for X with respect to

which the representation of © is

-----

A linear system having a next-state endomorphism in this form is simply a

shift register with no feedback.

Proposition 5.10. Iet X be a semisimple R-module cyclic over R[z], where

k-1 i
the action of z is given by an automorphism.w. Then X = ¢ ‘q?l. £>, some
i=0

g € X; all direct summands are isomorphic to each other and any minimum

degree monic annihilator g(z) of g has degree k.

Proof. Let g be a generator of X over R[z], and let Xi =«q$1. g, 1 z20.

Hence Xi+1 ==¢(Xi)’ i 2 0. Since Xo =g is cyelic, XO is simple. Since
is an automorphism, X, is also simple, for all i. Hence, X. N X, = (0) or
? P i 0 1

Xl. If XO N Xl = Xl’ then Xl c Xo, in which case zg- ¢ Xo and X = XO. If
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XO N Xl = (0), let Yl = X0 D Xl and consider X2' Again, XZ is simple, so
Yl g X2 = (0) or X2. Continue in this way until the least value k is found
such that
X, S kél X .
i= 1?
k-1 k-1 i _
Then, clearly, X = g X, = 'g <¢ - &». Furthermore, by the method of
i=0 * i=0 |
m-1
rl -
construction, ¢mg ¢ /. <¢1. &> for any m< k. Hence every minimun degree
i=)

monic annihilator of g has degree k. The summands are all isomorphic to

each other sgince tp 1s an automorphism. Q.E.D.

The matrix interpretation of this theorem is that, under the conditions
specified, a set of independent generators can be found for X with respect to

which a representation of P is

0 -ro

1 Ty 5.24
1 -rz

B LT

A linear system having a next-state endomorphism in this form is simply a
shift register with feedback from the '"last" component. This theorem is
restricted to the case where X is cyclic over R[z]; this situation occurs,

for example, when the input module of a linear system over R is cyclic. 1In
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this case, all R[z]-indecomposable factors of X are also cyclic since they
are homomorphic images of X. Thus, if the input module is cyclic {(i.e.,
a "single-input" system), the system can be decomposed into a parallel con-
nection of systems whose next-state endomorphisms can be represented by
either 5.23 or 5.24. By the Krull-Schmidt theorem, if these systems are
indecomposable, they are unique in a certain sense.

If X is not cyclic over R[z] and the action of z is automorphic, the
situation seems considerably more complicated. Imn the vector space case,
a component of X which is indecomposable over R[z] must be cyclic; this may
not be so here. The problem seems to be that we do not have unique factori-
zation in R[z] and that X is not necessarily a free R-module. Hence, with-
out further information about decomposability, it is necessary to look for
different kinds of state-module reductions.

In particular, a cascade decomposition can always be achieved whose
components are unique in a sense specified by the Jordan-Holder theorem.

This is proved below.

Proposition 5.11. Let X be a semisimple R-module which is indecomposable

over R[z], where the action of z on X is given by an automorphism P Then
an independent set of generators for X can be found with respect to which ®
can be represented by a block triangular matrix. The diagonal blocks are

invertible and in companion form (5.24).

Proof. The fact that X is indecomposable over R[z] simply implies that X is
the direct sum of gimple R-submodules that are isomorphic to each other (by

proposition 5.8}.
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Since X satisfies both chain conditions as an R-module, X certainly
satisfies both chain conditions as an R[z]-module. The Jordan-Holder theorem

then states that X has a composition series of R[z]-submodules

X=XODX1:>X2:)...DXtDXt+1=(0) 5.25

whose factors Xi/Xi+ are simple R[z]-modules; the theorem states that any

1
other composition series for X will have exactly these factors (in some order).
Assume that 5.25 is a composition series of R[z]-submodules for our

original module X. Since Xt is simple over R[z], it is necessarily cyclic.
Since X is semisimple, we can find an R-submodule Yt such that X = Xt e;Yt.
Since Xt is an Rfz]-submodule, it is closed under the action of P- However

Yt will not be m-invariant if X is indecomposable over R[z]. Suppose

n

n
Xt ~ 8 1 and Yt ~ 5 2 where S is the simple R-module component of X. Then

the action of @ on X can be represented by a matrix of the form

] )
oy EP11 P12 X,
n, ° 22| ¥,

where P11 describes the action of g on X , and P12° ©g9 together describe

t
the action of p on Yt. Since ® is an automorphism, it follows that both
P11 and gy, 2TE invertible. Since Xt is cyclic over R[z], it follows that
®yy 4 be put in the form 5,24 (companion form).

This procedure can now be repeated by considering the action of the

automorphism PR Y o Yt; this is equivalent to decomposing the R[z]-

t
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module X/Xt' Eventually, the representation of P will be in (upper) block
triangular form whose diagonal blocks are invertible and in companion form
as required. Q.E.D.
The decomposition given by 4.26 has an interesting system-theoretic
interpretation. If P is the next-state endomorphism of a linear system E.

satisfying the conditions specified, T is equivalent to a cascade of two

machines Iy 22:

2 P12

P22}

P11

One-step Decomposition of Semisimple System

Figure 5.3

This concludes the preliminary decomposition theory for linear systems
whose state modules are semisimple. The potential applications and ex-

tentions of this theory will be discussed in chapters 6 and 7, respectively,
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6. APPLICATIONS AND EXAMPLES

6.1. Introduction

This chapter introduces some applications of the theory developed so
far and formulates some interesting systems to be eventually analyzed by
this theory.

Section 6.2 presents an alternate proof of the Rouchaleau-Kalwan-Wyman
realizability result for Noetherian domains. This follows almost trivially
from proposition 3.14, which states that: if R is a Noetherian domain,

f: Rm[z] -+ Rp[[z-ll] is realizable over R if, and only if, A(Xf) $ (0), where

X, = R”[z]/ker £ and A(X.) = R[z] is the annihilating ideal of X

£
Section 6.3 considers the problem of digitally implementing a system
with a given transfer function over Q, where Q is the field of quotients of
some unique factorization domain. Section 6.4 considers the problem of de-
composing a linear system over a unique factorization domain.
Section 6.5 interprets realization theory over a P.L.D. in the context

of a partial difference system. Finally, section 6.6 considers a potentially

important type of semisimple system.

6.2. Alternate Proof of the Rouchaleau-Kalman-Wyman

Result on Realizability over Noetherian Domains

Theorem: Let R be a Noetherian integral domain, and let K be R's field of
quotients., Let f: Rm[z] - RP[[z_l]] be a linear input/output map over R.

Then, f is realizable over R if, and only if, £ is realizable over K.

Proof. = : if f is realizable over R, then since R is embedded in K, f is

a forteriori realizable over K.
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<& : Assume f is realizable over K. This says that f's Hankel sequence

i1 = tHj ¢ RPXT | 5 2 1} can be constructed as Hj =0 - ¢J“1 Ty vy el

]
t
KPXH; here, K*" denotes the set of

where ¢ € prn, y € prm, and 1| €
8 ¥ €t matrices over K.

Since f is realizable over K, H posses a monic annihilator q(z) ¢ K[z].
Now we can multiply q(z) by some r ¢ R to eliminate the denominators of the
coefficients in q(z); the result is that rq(z) ¢ R[z]. Clearly, rq(z) ¢ R[z]
is a non-zero annihilator of H. Thus, A(Xf) = A(Rm[z]/ker f) + 0. By proposi-

tion 3.14, f is then realizable over R. Q.E.D.

6.3. Example for R = Unique Factorization Domain

Suppose that from frequency response considerations we are required
to implement a single input-single output filter with z-transform (transfer

funection)

W(z) = p(2)/q(2)

where p(z), q(z) ¢ Q[z], Q = the rational numbers, and a°p<< aoq. The filter
is to be implemented on a digital computer, and as a first approxzimatien,
we will assume that computations are to be performed with integers omly.
In other words, to avoid problems with multiple precision and arithmetic
underflow, we will want to perform all calculations using integer arithmetic.
The inputs to the filter are to be discretized and represented as integers.
The outputs are to be integers as well.

Clearly, this is possible if and only if W(z) = p(2)/q(z) ¢ JHz_l]L
where J = the integers. The question is then, '"what conditions on p and q

are necessary and sufficient to have p(z)/q(z) ¢ J[[z-l]]?“ It is certainly
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sufficient to require that p(z) ¢ J[z] and q(z) = monic ¢ J[z]. However this
is also necessary, as will be shown below. The point is that unless these
criteria are satisfied, then there is no way to exactly implement W(z) using

integer arithmetic alone.

Claim: if p(z), q(z) are polynomials ¢ Q[z](aop;< aoq and q(z) monic)
with no common factors and such that p(z)/q(z) ¢ J[[z’l]], then p(z) and

q(z) are both elements of J[z]-

Proof. Suppose p(z)/q(z) ¢ J[{z-l]], where p(z) and q{z) have no common
factor. Then q(z) is an annihilator of least degree for p(z)/q(z). Let
r ¢ J be such that rq(z) ¢ J[z). Now the annihilating ideal of p(z}/q(z)
¢ J[z] is principal and generated by a monic polynomial a(z) (Rouchaleau,
Y. [71], p- 30, shows that this ideal is principal (J[z] is a U.,F.D.); the
ideal contains some monic polynomial because the sequence is realizable
over Q and hence over J: this monic polynomial is a multiple of the ideal's
generator, which must therefore be monic itself). Hence, rq(z) ¢ <a(z)>;
a(z) cannot be of lower degree than q(z), for q(z) is an annibilator of
minimum degree over Q, and hence over J. Thus, rq(z) = ka(z), some k ¢ J.
Since q(z) is monic, r = k, and hence a(z) = q{z). In other words, q(z) is
a monic-polynomial in J[z], as required.

To show that p(z) ¢ J[z}, consider applying the sequence q(z) ¢ R[z]
as input to a system with transfer function p(z)/q(z) ¢ Jﬂznlﬂ. By a pre-

vious theorem,

q(z) x -p(2)/q(z) = p(=).
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Consequently, p(z) is the output sequence occurring during the time that
q{z) is applied. Since the output at every instant of time is to be an

integer, it follows that p(z) € J[z]. Q.E.D.

6.4. Restricted Decomposition over a U.F.D.

Under certain restricted conditions, we can obtain a direct sum decom-
position of the canonic system associated with a linear input/output map
over a U,F.D. Let R be U.F.D., and let £: R[z] 4 Rp[[z-l]] be an input/
£ = R{z]/ker f. Then Xf is cyclic over R[z], gen-
erated by g, say, and Xf ~ R[z]/A(g). If R ig Noetherian and f is realizable,

output map over R, with X

we know that A(g) =<q(z)>, for some monic q(z) ¢ R{z]. Since R{z] is also
a U.F.D., we can write
El Ek
q(z) =p,(2) © ... " p (2),
where the pi(z) are distinct irreducible (prime) elements in R[z], i =1, ...,

k. It is easy to show that

kK g
<qz)> = \ <p, (2)>;
i=1l
this is a primary decomposition of «q(z)>. Since R is also integrally closed
the pi(z) are also irreducible over K[z], where K = R's field of quotients.

e e
Working now over K, we can express the g.c.d. of {pi 1, cees Py k} (which is

1) as follows:

L=r () p, (), 1 (2 p (2,

with ri(z) € K[z}, i=1, ..., k. We can multiply both sides of this equa-
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tion by some h ¢ R to eliminate the denominators of coefficients in rl, ceay

s to obtain

el 1
h =hr1(z). Py (z) 4o +hrk(z)- Py (z),

with hri(z) € Rlz}, i =1, ..., k.
It will sometimes happen that we can take h = 1. 1If this occurs, we

have ri(z) € Rlz], 1 =1, ..., k, and (in R[z])

k
€4
le z <Py (z)>, 8o that
i=1
k
ey
Riz] = Z <p; (2>
i=

Under these circumstances,
k e
Xf:R[Z]kQ(Zb ~ @ R[Z]/<Pi (z)>
i=1

This is a direct sum decomposition of the state module Xf

Whether or not h = 1, we have the fact that

ei €r
Rlz]*h =<h> < <Py (z}, +eu, Py (z)>.

This says that if we restrict instantaneous input values to multiples of h,
e er

then the set of reachable states lies entirely within <Py s ces Py >

This latter submodule is now decomposable as a direct sum. Restricting in-

put values to multiples of h corresponds to multiplying the input matrix of

a realization by h. To recover the original imput/output map, we must multi-
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ply the output matrix by h-1 (if this is allowed, for the result will not

strictly speaking be a realization over R).

6.5. Realization Example Over a P.I.D.

Ag discussed in chapter 1, certain partial difference systems can be
formulated as linear systems over the ring R{Q], where R = the real numbers
and the circumflex over the £ merely indicates that x is invertible; in
other words, R[Q] ~ R[x, ylkxy - I». It is easily shown that R[Q] is a P.I.D.
(by noticing that every element in R[Q] can be written xj-p(x) where p(x)
€ R[x] and j is some positive or negative integer.)

We can then think of realizing a (Hankel) sequence of maps Hj: (R[Q])m N
®REDP[[=1).

Consider the scalar Hankel sequence

-1 -jt
B, = ey 5w, 21,
where S5(x) is any element of R[Q]. This sequence can be interpreted as two
"patterns' (distribution of coefficients) moving in opposite directions

along a one-dimensional bar. We will show that this sequence is realizable

and find a minimal realization.

. . ) -1
Consider the expression Hj+2 (x+x7) Hj+1 + Hj :
HJ+ ~(x +x ) H [ J+l -J-l -(x + x-l)(xJ + x )
+ xj_l + x-3+1 *S(x}

s . i .
j-1 x_]-i-l s ] 1 < 1
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- x_J-l + xj_1 + x-j+1]- 5(x)

Thus, z2 - (x + x-l)z +1¢ (R[Q])[z] is a monic anmibilator of the sequence,
and so Hj is realizable over R[Q]. Note that the above polynomial can be
factored into irreducible components as (z - x)(z - x-l). A realization for
Hj is given by

j-1

x 0 S(x)
H, = [1, 1] '

0 x 8(x)

This is a free, two-dimensional, realization over R[Q]; we know that every
canonical realization over a P.I1.D. is free. This realization is canonical
and minimal.

Hopefully, this approach could be helpful in solving discretized ver-
sions of constant-coefficient partial differential equations. It will be
an interesting problem to somehow incorporate boundary conditions into the

formulation.

6.6. Finite Discretization of Partial Differential Systems.

This example shows how certain partial differential systems can be dis-
cretized and formulated as linear systems over a group ring (or group alge-
bra). The approach seems particularly relevant to systems with periodic
boundary conditions or forcing functioms.

Consider the wave equation in two spatial dimensions
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2 2 2
_ 2 E E
- (2 i)

assumed to hold throughout the (xi, x2)-p1ane for all time t. Suppose that

the (x,, xz)-plane is discretized, i.e., replaced by a two-dimensional grid

1
=J g J, where J = the integers. Then at any instant of time, the states of
the system are represented by maps Et: JoJ+ R, where R = real numbers.

Now suppose that the system has periodic boundary conditions or forcing
functions so that the states have the same values every n grid points in
either the %) or x2 direction. Such a situation might model a crystal, an
antenna array, an interdigital filter, or periodically loaded beam.

In any case, we only have to know the value of Et’ say, at n2 points

to know Et throughout the two-dimensional grid. We see that we can represent

states as elements of the ring

n

K = R[Zl’ zz]ﬂczln-l, Zy -

where R = the real numbers, R[Zl’ zz} = ring of polynomials in two indetermin-

n
ates z_, 3 -1, =z

1" 2 1 2

z n-l. Here the coefficient of z1r22

2
the state at the point (r,s) in the n x n representative subgrid.

over R, and <z n-t> is the ideal generated by zln—l and

]
(0 £ r, s « n) represents the value of

Define El(t) E(t) ¢ K

and Ez(t) E(t+l) ¢ K

We can represent the Laplacian operator as

2 (9 3 2 -1 2, -1 2
o (g;;z + g;;z) L+ a [zl (zl-l) + z, (22-1) 13
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. _ 2. -1 2 -1, .2 ,
define: q(zl, zz) = [z1 (z1 D™+ z, (z2 1)"] ¢ XK. This means that
the action of the Laplacian on a state E(t) € K can be modelled by the mul-
tiplication of E(t) byq(zl, ZZ) in the ring K.

We can approximate azE(t)/at2 by
E(t+2) - 2E(t+1) + E(t).
The wave equation is thus approximated by
E(t+2) - 2E(t+1) + E(t) = q(zl, 22) * E(t).

In terms of E, and E, we can then write

1 2
. — - {— "
E1 0 1 [El'
i t+1 i t
[ e —_—

This is a linear system over the ring K with state "gpace" (module) equal to

K@ K. The formulation is directly analogous to the usual field formulation.
One of the main points of interest here is the fact that K is (isomor-

phic to) the group ring (or algebra) R[Jn] where R = the real numbers and

Jn = the integers modulo n. This is interesting because K and K ¢ K are

semisimple and finite Fourier techniques are applicable. In particular,

the Fast Fourier Transform algorithm may be used to implement the various

multiplications of elements in the group ring. Furthermore, it is to be

hoped that the techniques of semisimple system decomposition developed in

the last chapter can be specialized to this commutative situation. In some

sense, this formulation is even "richer" in structure than the usual field-
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type linear system; this richness is a result of imposing a multiplica-
tive structure on the basis elements of the state space.

A serious omission in the discussion so far is the question of boundary
conditions. Only some general comments can be made here. However, a pre-
liminary investigation suggests that some boundary conditions can be met by
(1) caleculating the next state without constraint or contrel, (2) calcula-
ting a control that forces this next state to meet the boundary conditions,
and (3) calculating the next state using this control. The control term
so generated will probably have a physical interpretation such as an elec-
tronic charge or current, an addition of heat, or the reaction of a mechan-
ical support. This general technique has been successfully applied to dif-

fusion systems.
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7. SUGGESTTONS AND SUMMARY

7.1 Suggestions for Further Work

The extensive structural knowledge of semisimple modules would justify
further study of linear systems whose state modules are semisimple on theor-
etical grounds, at least. The connection between group algebras (which are
semisimple) and group homomorphic machines suggests that such a study would
be of more than intrinsic interest, however. Particular questions that could

be asked are:

(1) When can an automorphism of a semisimple module be represented in block

diagonal form, instead of just block triangular form?

(2) If the semisimple module is a group algebra and there exists a faithful
matrix representation (over a field) of this algebra, what can be said

about module endomorphisms?

(3) What simplifications occur when the state module is semisimple over a
commutative ring? In this case, what are the comnections with finite

Fourier expansions?

A second area for further investigation might be the one introduced in
Chapter 6, where probability distributions on an abelian group G were viewed
as elements of the group algebra R[Gl, R = the real numbers. One goal in
this direction would be to develop a state observer for a linear system
whose state set is a finite abelian group, much like a Kalman filter. The

object here would be to reconstruct the initial state of a linear gsystem from
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noisy measurements on the output., If the initial state is viewed as an
encoded message, such an observer would have a strong interpretation as
a decoder.

A third area for potential investigation is the connection between the
B.C.H. decoding algorithm and the theory of partial realizations in the case
where the state set is a finite abelian group. It is known, for example,
that the B.C.H. decoding algorithm over GF(q) is more or less equivalent
to the problem of finding a minimal partial realization for a scalar sequence
over GF(q). The question can be put: given that the B.C.H. decoding algorithm
can be applied over various finite rings (other than fields), is the connec-
tion maintained with partial realization theory over these rings?

A fourth area for investigation concerns the problem of machine verifi-
cation, or checking sequences. The partial realization problem for a linear
system is to infer a complete description of a system given the first few
turns of its impulse responses (Hankel sequence). In some cases, the
partial Hankel sequence has a unique, minimal (in some sense) realization.

One could think of this process as an experiment to determine the inmer
workings of a physical system: a 1 followed by some 0's is applied to an
input port and the first few outputs are recorded. Suppose realization of
this output sequence leads to a unique, minimal, canonical linear system.
Then, either the physical system is accurately described by this realization,
or it is non-minimal or non~linear (i.e., not in the class considered). It
would be interesting to see if this technique could be applied to the problem

of determining whether a physical system conforms to its design specifications.
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Finally, a topic of theoretical interest is the further decomposition
of linear systems over Noetherian Unique Factorization Domains and Principal
Tdeal Domains (where the output module is free). A major question might be:
to what extent is the rational canonical decomposition over this field of

quotients relevant to decomposition over the domain?

7.2  Summary

Chapter 2 presented the basic notion of a discrete-time, linear, time~
invariant system over a ring R. The equivalent concept of a linear input/
output map over R was discussed,

Chapter 3 established the importance of the ascending chain condition
(A.C.C.) on the state module. It was shown that A,C.C. is fundamental to
recovering familiar system-theoretic properties in this more general context.
The result was a metwork of implications commecting A.C.C., reachability,
distinguishability, controllability, realizability, the existence of transfer
functions and the existence of monic annihilators. An effort was made to
show that most of these results are valid even when the ring is noncommutative.

Chapter 3 also investigates systems over Noetherian rings, particularly
integral domains. The results were similar to those of Rouchaleay, Kalman,
and Wyman, but were approached in an entirely different way.

| Chapter 4 discussed linear systems whose state sets were torsion modules
over a P.I.D., e.g., finite abelian groups. Consideration of these systems
was motivated by construction of a large class of error~-correcting codes
similar to the B.C.H. codes., It was shown that these codes could be conveni-

ently implemented by using linear systems with finite abelian groups for state
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sets. This class of machines was then analyzed., Next state endomorphisms
could always be put in a form reminiscent of rational canonical form, and
thus be implemented rather easily with shift registers.

Chapter 5 continued to exploit A.C.C., but from the viewpoint of decompo-
sition. Eventually, some effects of the descending chain condition (D.G.C.)
and semisimplicity on decomposition were discussed. In particular, chapter 5
gave an automaton-theoretic cascade decomposition for systems with A.C.C.,
established the uniqueness of a parallel decomposition for systems with A,C.C.
and D.C.C., and gave a detailed decomposition of linear systems whose state
modules are semisimple.

Chapter 6 presented a diverse collection of dynamic systems, that could
be formulated as "D.L.T.I. systems over a ring'. Chapter 6 may contain the
most important contributions of this thesis.

Finally, a summary of this thesis and suggestions for continuing the

investigation were given in Chapter 7.
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Appendix 1. The Rings me and me[x]

In this section and the next the letter J denotes the ring of integers;
p denotes a prime € J and me denotes the ring of integers modulo pm, m> 0
(i.e., me = JA<p¥>, where<<pe> denotes the ideal generated by pm). An ele-

ment of me is denoted [x]Pm, and <X, , X 3 «-v, xﬂ> denotes the ideal gener-

1" "2

ated by x., ..., X in some specified ring.

1

Definition A.1. A ring baving a unique maximal ideal is said to be a local

ring.

Iemma A.]1. Let M be the maximal ideal of a local ring R. If x ¢ M, then

X is a unit of R (i.e., gy ¢ R such that sy = 1)

Proof. Suppose x ¢ M. If x is not a unit, then x generates a proper ideal
I of R. Now I must be contained in some maximal ideal of R {provided R has
an identity). But R has only one maximal ideal M, so I ¢ M. Thus x ¢ M,

contradiction. Hence x ¢ M implies x is a unit of R. Q.E.D.

Lemma A.2. me is a local ring (for any prime p and integer m> 0) with

maximal ideal P =<<[p]Pm>.

Proof. Since p generates a maximal ideal of J, [p]pm certainly generates a
.maximal ideal of me. Let M’ be another maximal ideal of me. Then M” is
the image of a maximal ideal «q> £ J, where q is some prime q # p. But then
< q> must contain.<p2> <J, i.e., pm must be some multiple of q, which is

impossible. Thus P =<:[p]pm> is the unique maximal ideal of me. Q.E.D

Notation: (1) with reference to the ring me, P will denote <[p]pm>.
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2) vc me is defined by
U={rcg me | r¢ P} = me -P

Lemma A.3. Ug me is an abelian group under multiplication of order

o

Proof. by lemma 7.1, U is the group of units of me, and since multiplication
in me is commutative, U is indeed an abelian group under multiplication with
identity [l]pm.

To prove the second part, note that me/P is (isomorphic to) the field
Jp, having p elements. Since J m contains pm elements, it follows that P
contains #(me)ﬂ#(Jp) = pPﬂl elements. Hence U = me - P contains p':':l - Pm—l -

(p-l)'pm-l elements. Q.E.D.

Definition A.2. A coset of P <[p]pm> < me will be called a primitive coset
if it is a primitive element of the field me/P = JP. An element of me will

be called P-primitive if it lies in some primitive coset of P. Note that if

. o 2 -2 -1
g if P-primitive, theng, 9 , ..., ep s ep all lie in distinct cosets of

p-1 p-1

B and furthermore, ¥ x ¢ P, x = [1]pm mod P; i.e., lies in that coset
of P containing [1]pm, namely [I]Pm + P.

Although the fact is not required here, it is useful teo know that if
p % 2, the group U of units in me is cyclic. This means that U is the
direct product (as an abelian group) of a cyclic group of order (p-1) and
a cyclic group of order pm-1 (which happens to be generated by [1 + p]pm).
If p=2, and m =2 3, U is the direct product of a2 group of order 2 and a

cyclic group of order 2m-2.
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We now consider ways to extend the ring me by forming me[x]ﬁ<q(x)>,

where <q(x)> is the ideal generated by a monic-polynomial q(x) ¢ me[x].

Lemma.A.4. Let g: me.+ JP be the canonical ring homomorphism mapping
J m onto J , where 5: [x] m |3 [x] . Then o, can be extended to a homomor-
P P ot belpm |» el ?

phism mapping me[x] onto Jp[x] by defining

n jal
o () leglpx) = ) ie =t )
i=h i=0

The kernel of this homomorphism is the principal ideal P of me[x] generated

by [p]Pm, and P 1s a prime ideal of me[x].
Proof. Obvious.

Lemma A 5. Every ideal of R = me[x] that properly contains P =<<[plpm> is
generated by two elements, one of which is [p]pm and the other of which can

be chosen as a monic polynomial.

Proof. Let ® be the canonical homomorphism mapping me[x] onto Jp[x] as in
equation 7.1. Let I be an ideal of R properly containing P. Then w(I) is a
non-zero ideal of Jp[x], and since Jp[x] is a P.1.D., ¢(I) = <q (x> where

g (x) can be taken as a monic polynomial ¢ Jp[x]. Clearly, we can find a
monic-polynomial q(x) ¢ ¥ of the same degree as g (x) such that ¢(x) =q'(x).
By assumption, I contains <[p]Pm>, so-<[p]Pm, q{x)> ¢ I.

Now let f(x) ¢ I. Since g(x) is monic, we can write

f(x) = m(x) q(x) + r(x), (2)
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where 3% (0) < 3% (0 =3%" (). Sstnce £ € T, g(E®) € (D) =<a”GI>-
Since p(q(x)) = q°(x), p(m(x) a(x)) € <q’(x)> as well. Hence (x(x)) ¢

<q (x)> where aor(x) < aoq’(x). But q”(x) is 2 polynomial of least degree in
<q’(x)>. Thus ¢(r(x)) =0, and r(x) ¢ P. So r(x) = [p]Pm * r’(x), some
r’(x) ¢ R. Thus £f(x) = m(x) q(x) + [p]Pm,- r’(x). But this is equivalent to '
saying that £(x) ¢ <[p]pm, q(x)>, and so we conclude that I ;-<[p]pm, q(x)>.

Hence T E<Ip]Pm, q{x)>. Q.E.D.

Corollary A.5.1. Let M be a maximal ideal of the ring me{x]. Then M =
<[p]Pm, q{x)> where q(x) is a monic polynomial such that ¢(q(x)) is irredu-

cible in Jp[x]. Furthermore me[x]/M ::Jp[x]ﬁqw(q(x)h>.

Proof. we first show that any prime ideal I of me[x] must contain P =
<[p]pm>. Otherwise, there is some polynomial of the form [p]pm-r(x) not
contained in I, and must therefore be a non-zero element of me[x]/I. Since
I is a prime ideal, me[x]/I is a domain. However, ([p]Pm'r(x)P = [pm]pm-rm(x)
= 0, contradicting the fact that me[x]/I is a domain. Thus any prime ideal,
and hence M, must contain P. By lemma 3, M is of the form-:[p]pm, q(x)>
where q(x) is a monic polynomial of me{x]. Since M is a maximal ideal of
me[x],tp(M) =<<¢(q(x))> is a maximal ideal of Jp[x]. Hence ¢(q(x)) is ir-
reducible in Jp[x].

It can be shown that me[x]/M ~ Jp[x]ﬁ:w(q(x))> in the usual manner.

Q.E.D.

Corollary A.5.2. (Converse to above corollary). Let q(x) be a monic poly-

nomial ¢ me[x] such that ¢(q(x)) is irreducible in Jp[x]. Then M =
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<[p]pm, q(x)}> is a maximal ideal of me[x].
Proof. because w(M) is a maximal ideal of Jp[x].

Lemma A.6. 1Let q(x) be a monic polynomial ¢ me[x] such that ¢(q(x)) is
irreducible in Jp[x]. Then R* = me[x]ﬂ:q(x)> is a local ring with maximal

ideal P’ =« {p]Plrb.

Proof. Let ¢:me[x] -+ me[x][<q(x}> be the canonical epimorphism. Since
M =<<[p]pm, q(x)y> is a maximal ideal of me[x], ¢(M) is a maximal ideal of
R® = J mixlkq(x)>. But y(M) =<¢([p]Pm), y (a(x))> =<¢([p]pm)>, since
§(q(x)) =0. But ¢([p]pm) = [p]pm if we view me as embedded in R*. Thus
P’ =-<[p]pm> is a maximal ideal of R’ = me[x]ﬁzq(xl>, and ¢_1(P') =
<[P]pm, q(x)>.

We must now show that P’ is the unique maximal ideal of R*. Iet I” be
any maximal ideal of R. Then ¢—1(I') is a maximal ideal of me[x] containing
<q(®)>. By corollary 7.5.1 ¢-1(I') =<<[p]pm, S(x)>, where 8(x) is monic and
Q(S(x)) is irreducible in Jp[x]. But q(x) ¢ ¢-1(I'), 50 ¢_1(I') contains
the idea1.<[p]pm, q(x)> which is maximal by corollary 7.5.2. Therefore
¢”1(I') =‘<[p]Pm, q(x)> for otherwise ¢-1(I') = me[x] contradicting fact
that 1” is a proper ideal of R”. But this means that ¢-1(I') = ¢-1(P'), and
hence that 1° =P*., Thus P’ is the unique maximal ideal of R’ = me[x]/

<q{x)>. Q.E.D.

Definition A.3. A monic polynomial q(x) ¢ me[x] will be called P-irreducible

if the image ¢(q(x)) € Jp[x] is irreducible.

Corollary A.6.1. Let q(x) ¢ me[x] be a P-irreducible polynomial of degree
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d. Let P’ be the maximal ideal of R’ = me[x]/<q(x)>, and let U =R” - P*.
Then U” is the group of units of R’, and forms an abelian group (under

d -
polynomial multiplication modulo q(x)) of order (p -1) - p(m Ld

Proof. that U” is the group of units of R” is clear from the fact that R’
is local with maximal ideal P°.

Now R* = me[x]ﬁ:q(x)> consists of all polynomial residues under di-
vision by q{(x), i.e., polynomials of degree less than d. Since any one of
pm elements ¢ me can appear at any of d coefficient positions, R” consists
of ‘pmd elements. Furthermore R*/P’ is a field, and is isomorphic to
JP[X]AQ$(Q(X))>- Since q(x) is monic, ¢(q(x)) is of degree d as well, and
Jp[x]ﬁ:m(q(x)k> therefore contains pd elements. Thus P’ contains pmd/pd =

(m-1)d d  (m-1)d _
p - p =

elements. Consequently, U =R’ - P’ contains pm

{(m-1)d

d
(P -1) 'p elements as claimed. Q.E.D.

Definition A.4: (extension of Def. 7.2.) let R* = me[x]ﬁcq(x)> where
q(x) is P-irreducible, and let P’ be the maximal ideal of R”. A coset of P’
will be called a primitive coset if it is a primitive lement of R*/P* .
Jp{x]ﬁqp(q(x))>. An element of R” will be called P-primitive if it lies in
some primitive coset of P*. Note that if g is P-primitive and aoq(x) =d,

2 pd-1 ) - ,
then 8, 8 , +oe, 8 all lie in distinct cosets of P”.
Discussion:; The rings me[x]l<q(x)>, q(x) P-irreducible, have been developed
to provide number systems with which to comstruct certain codes and their
encoders/decoders. Study of these rings is a necessary preliminary to study-

ing error-correcting codes over me (or Jn, n = any integer).
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In the process of constructing error-correcting codes over me, it is

helpful to consider equations of the form:

t
) & EhH =0 »
k=0

where § is a p-primitive element of R = me[x]ﬁ:q(x)>, q(x) = P-irreducible,
and a € R, k=0,1, ..., t. Solving equation 7.3 consists of finding
those powers ei of g that satisfy 7.3. Another way of looking at it is:
given any polynomial f(x) ¢ R[x] and a P-primitive element § of R =
me[x}ﬁ:q(xx>, for what values of i does f(ei) = (0? These equations occur
because we will represent each digit position i in a code of block length
n by ei, where § ié a P-primitive element of some local ring me[x]ﬁzq(x)>.
Finding out at what positions errors occurred will then be equivalent to
solving equations of the form 7.3. Note that 7.3 is really an equation for
i, where 0 g i < pd-l and d is the degree of q(x) in R = me[x][:q(xk>.

The reason that we represent digit positions by ei is given by the

lemma below. First, we have

Definition A.5. If q(x) is a P-irreducible polynomial (of degree d) in

me[x], then R = me[x]A:q(x)> will be called a local extension of me

(of degree d}.

Lemma A.7. Let f(x) be any polynomial of degree t in R[x] where R is a
local extension of me (of degree d, say). Let § be a P-primitive element

i d
of R. Then f£(x) has at most t distinct roots of the form el, O<cicp -1,

k
Proof. Suppose f£(x) has more than r distinet roots, say @ 1, gkz, ca gkr,
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gkr+1, ... where §* 4 ej

if 1 ¥ j. Then write

EGO =a, () (- D) +x @)

where aorl =0 and aoml(x) =t - 1. Since f(ekl) = 0, we must have r, =0,

and we can write

£G) =1, (x) (= - 8°D) )

Since ekz is also a root of £(x), we have
k k k k
£(2) =m (82 (@2 -01) <=0 (6)

k
Now, since g 2 + ekl, and 0 <« k1, k2.< pd -1, ekl and ekz must lie in
different cosets of the maximal ideal P of R, because § is P-primitive.
This means that ekz - ekl ¢ P. Because R is local, ekz - ek1 must be a

unit. Then from 6 we obtain
k
m (82) =0 (7)

k
i.e., that § 2 is a root of ml(x).

Now write ml(x) = M2(x) (x - ekz) + T,, (8
and conclude that ml(x) = mz(x) {x - ekz), aom2 =t -2,
Thus f(x) = mz(x) (x - ekz) x - Bkl) (9)

Continuing in this way t times, we find that
k k
E) =m, (x - 8°F) ... (x - 8'2) (x - 8°D), (10)

where m_ is of degree 0, i.e., m, € R. We now use the fact that f(gkr+1) =

m, (0 T*L - ¢f7) ... (6"rtl - ¢"1) - 0. (11)
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We argue, as before, that since all the roots eki are distinct, (ekr+1 - ekr)
‘e (ekr+1 - ekl) is a unit. Equation 11 then forces m_ = ¢, contradicting
fact that f(x) is of degree t. Hence if f(x) is of degree t, f(x) has at
most t distinct roots of the form ei, 0<ic pd -1, § = P-primitive,.

Q.E.D.

Thus if we have t distinct roots of a degree 't polynomial f(x) € R[x]
in the form ei, 0= 1« pd -1, =P-primitive, we know that we have them
all. Furthermore, we know that f(x) can be factored into a constant times
t distinct linear factors of the form (x - eki). What happens if £(x) has

multiple roots, i.e., if f(x) can be written
kl e k..e;
f(x) = mt(x -l ., (x-06 12 (12)

The same arguments used above will show that we again have all the roots
having the form gi, 0« i< pd - 1.

The relevance of this result to coding is simply that, under certain
conditions, we will be able to identify precisely the locations of errors in
a trapsmitted word by finding the roots of polynomials having the form in 3.
The significance of this result may be further brought by realizing that,

in general,if £(x) ¢ me[x], aof = t, f may have far more than t roots in some
extension of me. In the coding context this would had to unacceptable ambi-
guities in error locations with any scheme that tried to identify these
locations by finding the roots of polynomials in me[x] or R[x].
There is one more facet of local extensions of me that we should con-

sider; we will see later that it is rather crucial to the convenient
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implementation of encoders and decoders over me. Specifically, the question

is one of representing elements in an extension R = me[x]ﬂ:q(x)>. Suppose

R = me[x]ﬁ:q(x)> is a local extension of degree d. On one hand, R can be
viewed as free module of dimension d over me, generated by {1, x, xz, .
xd_l}. On the other hand, R is a commutative ring with multiplication modulo
q(x). Thus R is an algebra over me. In this sense, R, as a ring, oper-
ates on itself as a module. Thus, each element of R can be represented by a
d x d matrix over me as well. Hence we have a representation (homomorphism)
mapping R into a commutative subalgebra of the algebra of endomorphisms
End[(J_m)"].

P

It will be of particular interest to represent a P-primitive element g
in a degree d local extension me[x]ﬁqq(x)> by a d x d matrix. We will
then be able to calculate powers ei by matrix multiplication. To see what
the calculation of such a representation involves, let

d-1

a@ =x'+ ) q = (13)
i=0

and suppose that the P-primitive element § is given by
d-1
i
6= ) 8 x (14)
i=)

We know that @ can be represented by the column vector



e =1 {15)

- -

To represent § as a matrix, we must calculate the effect of multiplying

2 d-1 - -
each basis element ¢ {1, x, X , ..., X } by g. We represemt xd 1, xd 2

d-3
X

; 1eny 1, by
e - e -
] 0 1
0 0
’ I e iy essany . | 5 respectively

0
1 0

1 0: 0 ] 1o} (16)

These column vectors will be called gé-l, §§-2’ eeey 1.

Clearly, g 1 = ¢ which can be represented by @ as in equation 3. Now
d-1

o= (T o)

i=0
d-1
Z' 8. xl+1
1
i=0

d-1

[}
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d-1
n
- +
84-1 (z 9% )
i=0

d-1

il

i-1

e
i [~
D
»

1

]

d-1
- i

25 o419 *05.) ¥ +eg 9  AD
=1

8x can now be represented as the column vector

“83-191 * 9

- +
84-1% T 854

®g-1%-1 T 84y (18)

i
L -t

Continuing in this way we can eventually represent § as the d ¥ d matrix

H = g, 8%, ..., ggd-l (19)

i, . i
where gx~ is the column vector representation of gx . (Note, in passing,

that if we define the matrix « by

0 -qo
1 -q1
1 -q2
L S (20)
| .

then we can calculate H as
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d-1
H = (9,0, ..., @ §. (21)

In any case, we obtain the matrix H as a representation of the action
i i
of g on R. Note that we can obtain § by calculating H 1, and that since

6 is a unit of R, H 1is invertible.
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Appendix 2. Finitely-Generated Torsion Modules Satisfy Both Chain Conditions.

Proof. (Of Proposition 4.3)

(2) Since J is a P.I.D., it is clear that every ideal of J is finitely
generated. Hence J is Noetherian. Since X is F.G. over J, X is a Noetherian
module; i.e., X satisfies the ascending chain condition on submodules.

(b) Since X is a F.G. torsion module over J, we know from Theorem

7.1 that X = g X[p], where for each ;, X[p] = mel - mes, some

P
Mys ooy Do Suppose Y is a submodule of X. Then Y =g Y[p], and Y[p] =
P
Jpnl B vee B Jpnt, for certain primes p and for some Dy ceso nt' It is

easy to show that Y[p] ¢ X [p] for each prime p. We first will show that
if Y{p] ¢ X[p], then there is only a finite number of modules having the

form é J np to which Y[p] can be isomorphic. In other words, every sub-
i=l

module of X[p] must fall in one of only a finite number of isomorphism
classes (each class being characterized by an expression of the form
t
j=1 P
We will do this in two steps: the first step will show that if Y[p] ¢

X[p), X[p] ~ & Jomis and Yip] o ethPnt, then t < s. The second step will
=1 5=1

show that if m, < ... g w andn, £ ... < n , thenn <m. Tt will follow
1 s 1 t t 8
t
that E:nj < t.n < s.ms (22)

t
j=1
Since there are only a finite number of ways of choosing t and {nj}

ju1 B

satisfy (22), we will have the result: a submodule Y[p] of X[p] must belong
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to one of a finite number of iscmorphism claeses.
First step: let XP = {x ¢ X[p] | px = 0} and let YP ={y ¢ Y[p] |
t
py = 0}. Clearly ¥ ¢ X . Claim: X ~ (J )% and Y ~ (J); Proof:
p P P P P P

Since X[p] ~ é mei’ X[p] contains a submodule X

~ {(J )s, gince each
i=1 P

1

direct summand mei contains a submodule of the form Jp generated by pmiflgi
where g; is a generator of the cyclic module mei' Similarly, Y[p] contains
a submodule Yl ~ (Jp)t. Clearly, le = (0); hence X1 c Xp' Now let

X € XP, and write x as a direct sum

+...+ag (23)

X =218 %

where a, € J and 8, generates the :i."-:"ll direct summand mei' By definition
of Xp’ px = 0. Hence Pa, g, + ... + pa_g = 0, which implies that pa g, = o,
i =1, ..., s (otherwise would contradict the fact that X[p] = direct sum of

0 (mod p™i™Yy,

0l

the cyclic submodules generated by the gi). Hence a,

i=1, ..., 8, and we can write ak = bi pmi_l for all i. Thus, x =
bl(pml_lgl) + ... +b ¢ ms-lgs). But Xl is the submodule of X[p] generated
by {pmi“lgi]izl, and so x € Xl. Hence Xp = Xl, and consequently Xp = Xl'

t
Similarly, Y[p] contains a submodule Y1 ~ (Jp) where in fact ¥, = Yp.
8
In summary we have Y ¢ X where Y ~ (J )t and X ~ (J ) . However,
p P P P p
‘it is easy to show that Y and XP are vector spaces over the field Jp of
P
dimension t and s respectively. Hence Yp is a subspace of Xp and must be
of lower dimension. Thus t £ s, as required.
Second step (to show that n < ms): thig is trivial, because if X[p] =

é mei and m; < ... < m it follows that PmS.X[p] -0,
i=1
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t
Since Y[p] € X[p], then obviously pms. Y(ip] = (0). If Y[p] = o Jpnt,
j=1
where n1 < -.eS M, then if r <« n_, pr Y(p] ¥ (0). Hence m_ zn .
t
Thus, §:nj < t.nt < s.ms, and we have proved that a submodule Y([p]
i=1

of X[p] must £all in one or only a finite number of isomorphism classes;
Taking into account the other p-modules in a direct sum decomposition of
a F.G. torsion module X, we can prove the same result for submodules of
X.

The last piece in establishing the descending chain conditions for
F.G. torsion modules over P.I.D. consists of showing that: Y S X and Y ~ X
= Y =X. Thus if we have an infinite descending chain of submodules, then
beyond a certain point in the chain all submodules must fall in the same
isomorphism class. Applying the result that Y X and Y~ X =2 Y =X will
then establish our objective.

So assume that Y ¢ X and thit both Y and X are isomorphic to

o (o J mi). Choose any direct summand J m and write X ~ Y~ J mag Z,
p i=1l P P P

Let Yz be the submodule of Y isomorphic to Z. Since Y & X, Yz ie also a
submodule of X. Comsider X/Yz ::Y/YZ ~ me, and let B be the canonical
epimorphism B:X 4 X/Yz. Now B(Y) « B(X) = X/Yz ~ me . But B(Y) ~ me;
in other words we have a module B(X) isomorphic to me which contains
a module B(Y) also isomorphic to me.

We will show that B(Y) = B{X). Both of these modules are cyclic
since they are isomorphic to me: let g1 generate B(X) and let gz generate

B(¥). Since B(Y) ¢ B(X), we can write 8, = ng_ for some n ¢ J. Suppose p

1
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were a divisor of n, so that n = kp. Then pm-lgz = pm-lng1 = pm-lkpgl =
kpmg1 = 0, since g € B(X) ~ me. But pm-lg2 = 0 implies that pm—IB(Y) = (0)
contradicting the fact that B(Y) ~ me. Hence p is not a divisor of n.
Since p is prime, we have g.c.d.{n, p} =1, and also we have g.c.d.[n, pm}
=1, 8ince J is a P.I D., there exist a, b ¢ J such that an + bpm = 1.
Now consider the equation g = ngl; we see that ag, = ang, = (l-b.pm)g1 = gl
_bpmgl =g Thus gl = ag,, some a ¢ J, and so g, € B(Y). Hence B(X),
which is generated by g , is a submodule of B(Y). Thus B(Y) = B(X).

We now can show that Y = X, for otherwise (since Y < X) there exists
x € X such that x ¢ Y. Consider B(x): B(x) € B(X) = B(Y), and so B(x) = B(y)
for some y ¢ Y. But then B(x-y) = 0, which implies that x-y ¢ ker § = Yz'
But Yz c Y, so x-y ¢ Y, and this implies that x ¢ Y, a contradiction.

Hence Y = X.

In summary, we have just proved that for R.G. torsion modules over a
P.I.D., if Y< X and Y . X, then Y =X. This last fact coupled with the
result that the set of submodules of a given F G torsion module X over a
P.I.D. J is partitioned into a finite number of isomorphism classes, yields

the descending chain condition on such submodules. Q.E.D.
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