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Chapter 1

Intruduction

1.1 General Remarks

In recent years there has been impressive progress in the
theoretical understanding of the structure, representation and
control of linear multivariable systems. 1In contrast,workers
in the field have paid very little attention to the computa-
tional aspects of systems problems. This does not mean that
algorithms for the solution of systems problems have not been
developed. But most of the algorithms that have been proposed
have never been seriously studied as far as stability, conver-
gence and similar issues are concerned.

In this thesis we undertake a study of solution methods
for Lyapunov's equation

PA + A'P = -Q (1.1)
using the methods of modern algebra. The emphasis is on the
use of finite algebraic procedures which are easily implemented
on a digital computer and which lead to an explicit solution
to the problem.

1.2 Importance of Equation

It is well known that this is an important equation in the
study of stability of linear finite dimensional time-invariant
systems. If Q is symmetric and positive definite and if A is a
stability matrix (real parts of eigen-values of A strictly
negative) then the unique positive definite solution to (1.1)

is given by the convergent integral.
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P = f eA't.g.eAtgt, (1.2)
(o]

[4]
In Optimal Control it is frequently desired to evaluate

quadratic integrals of the form

00

J = ~/~ x'(t)-Q-x(t)dt (1.3)
)

under the constraint that x(t) satisfies
x(t) = Ax(t) x(0) = ¢
If P is the solution of equation (1.1) we have that
J =c'-P.c. (1.4)
Stochastic control is another area of importance in the
evaluation of covariance matrices in filtering and estimation
for continuous systems.
The need for solving this equation also arises when one
uses Newton's Method to solve the Algebraic Riccati equation

PA + A'P + c'c - PBRL

B'P = 0 (1.5)
where R is positive definite.

If (A,B) is a controllable pair and (A,C) an observable
pair then there exists a unique positive definite solution P to
(1.5).

In [uﬂ it is shown that if'Pk, k=0, 1,2... is the
unique positive definite solution of the linear algebraic matrix

equation

A];Pk + PkAk + c'c + L]’<RLk = 0 (1.6)




where recursively,

it

—1 ' =
Ly = R°IB'P k=1,2,...

A = A _BLk

where L, is chosen such that the matrix A, = A - BLg is a

stability matrix then

i) Pé_-Pk+l£.— Pké... k=20,1, 2,...
ii) lim Pp = P
K= o
Equation (1.6) with k = 0, 1, 2, ... is a Lyapunov equation.

1.3 Methods of Solution

The Lyapunov equation has many areas of application and
therefore a great deal of effort has been put in both the theo-
retical as well as its computational aspects. There have been
devised several methods of solution which can broadly be charac-
terized as either Direct, Transformation or Numerical. An
exposition accompanied by error analysis of several such methods
is contained in [1, 2 ] .

The basic drawback with such methods is the fact that the
solution obtained is an approximate one. This becomes frustra-
ting when the problem is ill-conditioned. Furthermore if a
Riccati equation is to be solved which requires the solution of
several Lyapunov equations the matter becomes even more compli-
cated. Not only is the solution an approximate one but nothing
is said about the accuracy of the approximation.

The need for improvement is quite evident and in certain
cases demanded. In this thesis we have developed new algorithms

for obtaining the exact solution of the Lyapunov equation.




1.4 Summary of Thesis

Let A'P + PA = ~() be a Lypuno? equation with A being a
stability matrix and both A and Q - n dimensional matrices
with real entries. Let R[x,y] be the ring of polynomials in
X and y over the reals R, and,M be the set of all nxn square
matrices over the reals. The solution P of this equation is
given by

P o= falalx,y),Q)

where q(x,y) in R [x,y]

and fat Rlx,yl x M—eM defined as
. k
falh(x,v},M) = h, (A')J-w (a)
A DR

jk

This method is based on an important paper by KALMAN
9] . Kalman's concern was the characterization of polynomials
whose zeros lie in certain algebraic domains (and the unification
of the ideas of Hermite and Lyapunov). In this thesis we clarify
and complete some ideas containéd in the paper and extend the
results by showing that the same ideas lead to finite algorithms
for the solution of Linear Matrix Equations.

The thesis is divided into four chapters. In chapter 2 we
introduce the algebraic structure in which we will be wdrking and
provide proofs of several theorems related to a linear matrix
egquation. This chapter provides the basis for chapter 3 where
the computational algorithms are presented. In chapter 4 we list
the computer programs used in implementing the algorithms and
present several numerical examples. In chapter 5 we present

some generalizations and extensions.

e e e e e S B e e e e
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Chapter 2

Algebraic Structure

2.1 Introduction

This chapter provides the theoretical basis on which our
method for solving the Lyapunov Equation lies.

There are two main themes. The first one is the association
of a unique matrix with every polynomial in R[x,y] and the notion
of a positive polynomial. Lemmata (2.1),(2.2),(2:3) and-part
(1ii) of Lemma (2.4) refer to this idea. The above four Lemmata
are stated in section (2.2) but their proof is presented in
Appendix A.

The second theme is that of the action fp which is examined
in section (2.3).

The above two themes are used in proving the two theorems in
section (2.4), which are related to the Lyapunov Equation.

2.2 Four Lemmata from the Theory of Matrices and Polynomials

Let R be the field of real numbers R[x] the ring of polynomials
in x over R and R[x,y] the ring of polynomials in x and y over R.
The elements of R[x] are denoted as p(x) and the elements of
R[x,yv] as h(x,y). R[x] is a subring of R[x,y].

Suppose that p(x,y) is in R[x,y] and 1(z) is the column vec-

tor

N

1(z)= .

én—l

where n is one plus the largest power of p(x,y), in either x or y.
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Then we can write

p(x,y) = 1'(y)-C(p)-1(x)

for some uhique nxn matrix C(p)=(aij). (The element aij is the
coefficient of the term xj'l-yi"l in p(x,y)). If n 1is allowed
to take a value larger than the one defined above for any par-
ticular p(x,y) the uniqueness of C(p) is lost.

We therefore can associate a unique matrix C(p) with any poly-
nomial p(x,y). The reason behind this association is the intent
of assigning polynomials to value classes.

Definition 2.1. A polynomial p(x,y) in R[x,y] is positive if

and only if C(p) is (i) symmetric and (ii) positive definite.
Let ® denote the ideal (o(x), o(y)) in R[x,y].

o ={ g(x,y)l g(x,y) = a(x,y)o(x)+b(x,y)o(y) for any}
a(x,y),b(x,y) in Rlx,y]

Let R[x,y]/® denote the associated quotient ring. The
elements of R[x,y1/® will be thought of as cosets or as equi-
valence classes (whichever is more advantageous at a given situa-
tion) denoted as &+ p(x,y) or [p(x,y)] respectively. We shall
denote by p(x,y)mod® the polynomial of minimal degree in the equi-
valence class [p(x,y)].

Let Ry (x) denote the vector space over R of all polynomials
of degree less than m in R[x].

Lemma 2.1 . Let p(x,y) be a polynomial in Rlx,y ] with C(p) being

an mxm matrix . Then p(x,y) is positive if and only if there

exist polynomials nl(x),....nm(x) such that
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m

p(x,y) = X, my(x)my(y)
i=1

1
where {ni(x)} are a basis for R(x) .

Definition 2.2. Two polynomials a(x), b(x) in R[x] are

called relatively prime if there exist polynomials Ty(x) and

Ay (x) such that Ty(x)a(x) + Ag(x)b(x) = u where u is a

unit in R[x].

Lemma 2.2. Let n be the degree of @(x). If p(x,y)mod® is
positive of degree n-1 in both x and y then (o(x)o(y)p(x,y))mod®
is positive of degree n-1 in x and y, if and only if o(x) and
@(x) are relatively prime.

Lemma 2.3. Let Al,kz,...ln be complex numbers which are

distinct and have positive real parts. Then the nxn matrix

1 ;
Ap= ( = ) is hermitean (Ap = Ag where (*) the hermitean
AitAy

adjoint) positive definite.

Definition 2.3. A polynomial g(x,y) is called symmetric if

C(g) is a symmetric matrix.
A polynomial g(x,y) is symmetric if g+(x,y) = g(x,y)
where g+(x,y) is that polynomial obtained from g(x,y) by

interchanging x and y.

lLemmata 2.1, 2.2 and 2.3 correspond to Lemmata 2, 3 and

Main Lemma in [9] respectively, 2.1 and 2.3 being the same,
with the idea of 3 being borrowed from KALMAN [9], to arrive

at the statement of Lemma 2.2. Lemma 2.4 captures the essential
idea of the Theorem in [9]. In Kalman's paper only sketches of proofs
are given., Here we provide complete proofs.
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Lemma 2.4. Let A be an nxn stability matrix with

®y(x) = det (Ix-A) and let & = (0y(x), @y(y)). Define
®1(x) = ©y(=x) _ (2.1)
02 (x) 02 (¥) =01 (x) @1 (¥)

P (x,y) = (2.2)
@ X +y

i) Polynomials @ (x), ®2(x) are relatively prime. That is there
exist T, (x), A,(x) in‘R[x,y] such that
Tu(X)ml(X) + Ay (X)oa(x) = u (2.3)
where u is a unit in R[x,vy].

ii) Pw(x,y) is an element of R[x,Yy]

iii) Let gqgy(x,y) = Tu(x)Tu(y)Pm(x,y)mon (2.4)

- Then qu(x,y) is positive of degree n-1 in both x and y.

2.3 Defining the action fp

Let A be some nxn matrix over R with ¢(x) = det (Ix-A)
being its characteristic polynomial. Let M be the set of all
nxn matrices over R.

We define the action f,: R[x,y1xM+} in the following
manner. |

fa(h(x,y),M) —Z hjk(A')j‘ M'(Z—\)k (2.6)
.k
These are some properties of this map.
i) fA(u,M) = uM (u a unit in R[x,vy] )
ii)  fa(9(x,y) + h(x,y),M) = fa(g(x,y),M) + f5(h(x,y), M)
iii) falg(x,y)a(x,y) M) = fa(9(x,y),fala(x,y),M))

= fa(a(x,y),falg(x,y) M)
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iv) fA(h(x,y),M) = fa(h mod®, M)

v)  fa(h(x,y),Mp+Mp)= £, (h(x,y) ,M)) + £a(h(x,y),Mp)

Property i) follows directly from the definition.

Property ii) is shown as follows:
Let p(x,y) = g(x,y) + h(x,y)
+ hij
£A(P(x,y) M) = Z 'pys AL M- @)]

Pij = 9ij

1]
=D (ggy + byy) (ANE K @)
i3

=:E:‘9i- (a)yi. M . (a)3
J
i3

+ :E: h,. (aA1)i. M -(a)3

1]
1]

= fa(g(x,y),M) + fp(h(x,y),M)

Property iii) is shown as follows:
Let p(x,y) = g(x,y)a(x,y)

p. = E ging
Ik ih41lm

i+l=j
h+m=k

EApGy) M) = Y by AT @k

jk

il

i+l=j
h+m=k

jk

il

falg(x,y),M)

Z (Z gihqlm) CORE
' i. . h
g;: g, (A1 w @)

M - (A)
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- — rylom.
£, (aix,y) M) = }: qy, (ANL1-Me@am

Now Im - |
, _ i 1... m\ . h
falg(x,y), fala(x,y),M) = E gih(A') ( E qyp (A') 710 (R) ) (A)
ih 1m ‘
= 2 :(§ :qihq]_m (Al)i+l.M. (A)m"!*h)
ih 1m
suppose that we write this sum differently
let j o= i+l k = m+h
Then
| - ) ' j. . k
£ (90, y), £ (alx,y),M)) E E 9in91m (A') 7 M- (A)
jk | i+1=3
h+m=k

i

similarly f,(p(x,y) ,M) fala(x,y), fu(g(x,y),M))
Property iv) is shown as follows:
Let  h(x,y) = hy(x,y)o(x) + ha(x,y¥)oly) + r(x,y)
This is obtained by first dividing h(x,y) by o(x) and fol-
lowing that dividing the remainder by o(y). This means that
the degree of r(x,y) in both x and y is less than n. This
decomposition of h(x,y) is unique, and we also have that
r(x,y) = h mod @
falhix,y), M) = fp(hy(x,y)0(x)+h,(x,y)0(y)+r(x,y),M)
= falhy (x,y), £y (0(x),M)) +E5 (ha (x,¥), £, (0(y),M))
+Ea (rx,y) M)
fA(w(X), M) = M-@(A) = O
fA(@(y), M) = @(A')*M = O

by the Cayley-Hamilton Theorem.
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Therefore
fA(h(x,y),M) = fA(h mod o, M)
Property v) is shown as follows:
- y i j
£, (h(x,y), My+My) = E hij (A") = (Mg +M,) aJ
ij
Z imM.ad+h. . (A")iM_ad
hij (A') "M;A +hlJ(A‘) M2A

ij

£,(h(x,y) , M)+ £ (h(x,y),M,)

The definition of fA paves the way for the construction
of a particular module. Define the product (*) between cosets
® + h(x,y) and nxn matrices M by:
(O+h (x,y)) * M =§ h, | (a') tmal
with the outcome in M.
Property iv) ensures that the product is well defined since
it does not matter which element in ®+h(x,y) we use.
Square nxn matrices under addition form an abelian group.
Préperty v)‘makes certain that
o+ h(x,y)* (A+B) = (®+h(x,y))*A+(d+h(x,y)*B.
Property 1iii) ensures that
(@+h (x,y))* [(o+g(x,y)*M ] = [ (®+h(x,y)) (®+g(x,y)) ] *M.
And propefty ii) ensures that
[(e+h(x,y))+(0+g (x,y)) ] *M = (®+h(x,y))*M + (@+ g(x,y))*M.
The ring R{x,y]/® has a nuit element ®+1 and we have from
property i) that
(O+1)*M =M.

The above can be summarized in
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Lemma 2.5. The set M of square nxn matrices is a module over
the quotient ring R[x,y]1/®.

Even though Lemma 2.5 will not be explicitly called upon
in any of the subsequent proofs it none the less gives great
insight in what is essentially taking place and the rationale
behind this method of approach to the solution of

PA + A'P = -Q.

The matrix P is operated on by the matrix A. This can be

expressed as
’((D + (x+y))* P = PA + A'P = -Q.
Suppose that a multiplicative inverse of element &+ (x+y)
is found in R[x,y]/® denoted by <I>+(x+y)""l such that
(@ +(x+y)) (& +(x+y)™1) = o+l
We would then have the following:
(O+ (x+y) "L)*[@ +(x+y) *P]1 = (0+(x+y) ~1)*(-Q)
Because of the pr;perties mentioned above this can be written
as
[(@+(x+y) ™1 - (04 (x+y) 1*P = (0+ (x+y) 1) * (-0)
and therefore
P= (0+ (x+y) "1) *Q

2.4 Algebraic proofs of two theorems related to a Linear Matrix

System.
We now have all the necessary algebraic construction to
prove the following two theorems.

Theorem 2.1. Let A be an nxn square matrix over the reals.

A is a stability matrix if and only if for any symmetric positive

definite matrix Q there exists a unique symmetric positive
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definite solution P to the matrix equation
PA + A'P = -Q (2.7)

Theorem 2.2. Let A be an nxn square matrix over the reals.

If A is a stability matrix and (A,C) is an observable pair
then the matrix equation

PA + A'P = =C'C (C is pxn) (2.8)
has a unique symmetric positive definite solution P.

Proof of Theorem 2.1. Suppose that A is an nxn stability

matrix. We claim that for any Q;
L ,

P =':l"é‘ ° fA(qu(XIY)le)
is the unique solution of PA + A'P = -Qy. where fA is defined

as in (2.6) and q,(x,y) as in (2.4). Using the properties of
action fA we have

PA + A'P = - (Fp{ay(x,y),Q1) A + A'-fa(q,(x,y),01))

* (fA(xrfA(qu(er) rQl))

s |- gl
V] N

+ fa(y,fa(qu(x,¥),0Q1)))
© (fa((x+y) , £a(Qy(x,¥),07)))
© (£a((x+y)ay(x,¥),0Q;))

- (£, ((x+y)q, (x,y)mod®,Q,))

 (-u?.0)= )

]
& Il—' ] ‘l—-‘ e lf—-' C-'N!f—‘
© N N

Uniqueness follows by observing that the linear operator

2

L:RM%—+ R1? defined by

L(P) = PA +A'P
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is onto since no restriction was plaéed on Ql' Thig implies
that L is one-one.
We now show that P is positive definite.
Since qu(x,y) is positive (Lemma 2.4) this implies that
(Lemma 2.1) there exist polynomials {ni(x)} such that
q,x,y) = (%) (y)

where {ni(x)} is éz%asis for Rn(x).

Therefore
- 1
P = _=_ f ’ ’
| = A(qu(x y),Q)
. 1 E
= ._.5. fA( ' T[i (X)T[l(Y) IQ)
u i=1
n
R l___ [] . ' A
= Mu2 ny (A') Q-1 (A)
i=1

Since Q is symmetric ffom the uniqueness of the solution
P we also have P being symmetric. Since Q >0 we have from
the last éxpression that P is at least positive semi-definite.
Suppose therefore, that there exists an n-vector z#0
such that z'Pz=0. this implies that ni(A)'z=0 for all 1<i<n.
The polynomials {ni(x)} form a basis for R (x). Therefore

there exist constants kl'kz""kn such that
4

n .
E kini(x) =1
i=1
n
=> f»( E kini(x), I)=I (I nxn identity matrix)
1],
n

o e e . 0000
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Since ni(A) = 0 for all i, the left hand side of the
above equality is zero. This is a contradiction since I is
positive definite. Therefore P is positive definite.

Suppose now that for any symmetric positive definite
matrix Q there exixts a symmetric positive definite solution
P of (2.8).

Let z be some eigenvector corresponding to the eigenvalue A.

- z'-0.z<0 (z denotes complex conjugate)
= z'(PAa+A'P)z ( O
= Z'P(Az) + (A2')Pz ( O
= (A+X) 2'Pz O

Since P > 0 this implies that A+A { 0 (ie that
Re(A) ¢ 0. Therefore A is a stability matrix. This completes
the proof of Theorem 2.1.

Qfooimgf Theorem 2.2.

Suppose that A is an nxn stability matrix. Using Lemma 2.4
this implies that
q, (x,y) = Tu(x)Tu(y)PcD(g,y) mod @
is positive. By Lemma 2.1 q,(x,y) can be written as:

gy (x,y) = S :ni(xmi(y)

i=1
with {n;(x)} being a basis for Ry(x). In a way similar to

the proof of theorem 2.1 the solution P of (2.8) exists and can

be written as
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fA(qu (le) ,C'C)

S . (A') C'Cny(A),

' i=1
Since C'C 2 0 we have that for any n-vector z and 1<¢1i 4 n

il

av}

i
o ’}—-‘ QJI—-‘
N

z'*n. (A')C'CH (A)z = ” Cni(A)zll 20
where "z" = ( E ziz)% . This means that P 2> 0.
i=1

Suppose then that there exists z#0 such that z'+P-z = 0.

This. implies that

i

n

0 for 15 1

IA

llCﬂi(A)z‘
—— Cﬂi(A)z

Since {ni(x)} are a basis for R,(x) there exists an nxn

0 for 1 < 1ifn

matrix K such that:

[y (%) C 1]
nz(x) X
K . = )
Ty (%) ] xn_l

which is shorthand notation for the n equations
kjgmp (%) + Kiph (x) +...+ kypmy (x) = x1-1

for 1 € i< n

with (kj;.kj5,...kin) being the ith row of K.
Now then
£ (kj My (X)) + kiong(x) +... + kypmp(x), I )=ai~l
n
= z :ki_j-C'n:j (a) = cai-l 1<i<n
j::l

by multiplying both sides by C.

A £ e e e e e e e
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Define the operator H : RPN —eRN'P by:

- -

c
CA
H(w) = ca? - w

.
.

éAn-l

3 -l

Since (A,C) is an observable pair the null space of H

is {o}.
Since C * m;(A) =0 , 1< i< n , this implies
n ,
Zkianj(A)=0 for all l1£&icén
j=1
s H(z) = 0.

This is a contradiction since z # 0 and the null space
of H is {0} . This completes the proof of Theorem 2.2.

Theorem 2.2 is not an if and only if statement. But ad-
ding the condition that matrix C'C is invertible we have.
Lemma 2.6. Let A be an nxn square matrix, over the reals.
Let P be the unique positive definite solution of the matrix
equation

PA + A'P = =-C'C (2.9)

where C'C is invertible. Then A is a stability matrix and
(A,C) is an observable pair.
Proof: We have that the eigenvalues of C'C are non-negative.
Since C'C is non-singular this implies that none of them is
zero and threfore C'C is positive definite. It then follows
as in the proof of Theorem 2.1 that A is stability matrix.

We now show that (A,C) is observable.
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‘The solution P of (2.9) can be written as:
I '
P = v fa (qu(x,y). c'c)
where q (x,y) as in (2.4), is positive. From Lemma (2.1) we
have that there exists {n_(x)} which is a basis for R, (x) and
i

I

q, (x,y) = E Ttj(x)"#j(y)
j=1
==> p = " fA( L (x)ﬂj (y), c'C)
j=1
] n

= ..11-2 . E fA(nj (X)nj (Y): cC'C)
Jj=1

R T Yy -

= — SE:T5(A ycren, (A)
=1

Since P >0 we have that

Il

z'Pz = Z Z TE (aA)'C! Cn (A)z -~L“Cn (A) z" > 0

j=1
Thereforeif z # 0 we must have ||Cn (A)z|‘> 0 for at least one

'j in the range 1 & j&n. Suppose that ||an(A)z||)o which
implies that an(A)z # 0.
Now { nj(x) } is a basis for Rn(x),therefore there exists

an invertible nxn matrix K such that-

TLl(X) 1
nQ(x) X

K : = :
iy, (%) xn-1
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The above represents n equationsof the form

kipmy (%) + Kyl (x) oot kyomo(x) = xi-1

with (kjj, k ,,+.-kip) being the i*? row of K.
Therefore:
£, (ki1 (X) 4o otk (x),1) = At
= kiqmy (A) + K;oMp(A) +...+ kypmy (A) = AX7
Multiply both sides by C.
= ki1C-y (B) +kjpCemp(A)+...+ ky Comp (A) = cal-l
for 1 <1i<n
Let A be the matrix
k,,Ip k,,Ip .o k1nIP
11 12 In
k21Ip koo Ip .o k2nIp
A =F.
kni1Ip an'Ip .o KnnIp

where Ip is the pxp identity matrix. ( Matrix C is pxn) .

We then can write the abgve set of equations as:

Cnl(A) C
Crs (A) CA

A . = . :L
Cr, (B) can-1

We can think of mé%rix L as a linear operator from R? to
RP*P, We wish to show that L is one- one, (i.e. that the
null space of L is {0 b.

By construction matrix A is invertible since K is in-
vertible, which means that if w # 0 an n-pxl vector then

A-w # 0.
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Let w be the vector:
Crny(A)z
Cn2 (A) z

énn(A)z

where z # 0 is an nxl vector. We do have that w # 0 and

therefore Aw # 0. But

C -z
CA-2z

can-1.;

!

which implies that the null space of L is {0}and that (a,C)

o

is an observable pair.
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Chapter 3

Computational Algorithms

3.1 Introduction

The proof of Theorem 2.1 is constructive and purely
algebraic. It therefore gives great insight into how a com-
putational algorithm should be constructed, for obtaining the
solution P of an equation of the form

PA + A'P = -Q (3.1)
where A is an nxn stability matrix. The algorithm so con-
structed, basically involves obtaining ©, (x) the character-
istic polynomial of A. Using the Extended Euclidean algorithm
a polynomial T,(x) as in (2.3) can be obtained. Having these
polynomials, the polynomial Pw(x,y), qu(x,y) and the solution
P are formed.

By restricting the field of interest R, to that of the
rational numbers F, the procedure for obtaining the exact
solution of (3.1) is fully implementable, using the remark-
able facilities provided by the computer programming system
MACSYMA available at M.I.T.

Three algorithms are presented here, the Rational, Integer,
and Modular, which are based on the constructive proof of
Theorem (2.1).

MACSYMA (Project MAC's SYmbolic MAnipulation System) is
a large computer programming system used for performing sym-
bolic as well as numerical mathematical computations. This

would easily allow us to make parametric studies.




~27-

3.2 The Rational Algorithm

This algorithm is a mere implementation of the steps
outlined in the proof of Theorem (2.1).
Rl) Obtain ¢,(x), the characteristic polynomial of A.

¢, (X)0y(y) ~ 0 (%)@ (y)

) =
R2) Set Iw(x,y) x +y

R3) Using the Extended Euclidean Algorithm obtain T, (x) and u.

R,) Set g, (x,y) = T, (X) T, (¥) Py (x,y)mod®

4

Rg) Form P, = fa(qy(x,y),Q)
. - L.

Re) Set P == 2 Pu

3.3 The Inteyer Algorithm

Multiplying A and Q in (3.1) by a suitable positive integer
an equivalent Lyapunov equation
+ A'P = - .
PAl AP Qq (3.2)
is obtained with Ay, Ql having integer entries. Suppose
that @5 (x) is the characteristic polynomial of A;. It is clear

that mé(x) has integer coefficients and it can therefore be

considered as an element of Z[x,y] (the ring of polynomials

in ¥ and y over the Integers).

Let

@{(x) =05 (-x)

03 (x) oy (y) = o] (x)0f (V) (3.3)

Py (x,y)
L X +y

We claim that P&(x,y) is an element of Z[x,y]l. Suppose
that n is odd. It is clear that for n=1 or n=3

x +y | xB + yn

s g 7 e e £ S g e T e S
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and that the quotient is an element of Z[x,y] . Suppose
then that for all m<n-1 we have that x+y x2m+1+y2m+l
and that the quotient is an element of Z[x,y]l. Show that
hypothesis is true for m=n.

x2n+l+y2n+1 = (x2+y2) (x2n-liy2n-1) - x2 y2(x2n-3 + y2n-=3)

From the induction hypothesis we therefore have that

X2n+l 2n+1

X +vy + v and that the quotient is an element
of Z[x,y]l. For the case when n is even we have that
X +y xN - yn
and that quotient is an element of Z[x,yl]. Following the proof
of Lemma 2.4 ii) we have that P&(x,y) is an element of 2[x,y].
It is also clear that there exist polynomials T&(x), Xé&x)
and integer u' such that
TL(x) 0] (x) + AL (x)ey(x) = u’' (3.4)
with T!(x) Aj(x) having - integer coefficients.
Since the leading coefficient of ®5(x) is unity division
by ©5 (x) is possible. If we then let @' be the ideal
(04 (x), ©5(y)) in z[x,y] we have
qy (x,y) = T&(X)T&(Y)Pé(X'Y)mod¢'
being an element of Z[x,y]. Consequently
PY = fAl(q&(x,Y), Qq) (3.5)
has integer entries with the solution of (3.1) now being

expressed as:

_ 1 .
P = PX
(u')? "

In (3.4) it is required that polynomials T}(x), Xﬁ(x) and

integer u' be found such that (3.3) is satisfied. Existence
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can be shown in the following manner.

Let
' = n n-1 :
| wz(x) aox + alx | +o..+ an. Define S to be the
nxn matrix.
- -
a.l aO O O O 0 «c o 0
aj a,  ap a, 0 0 o 0
a a a a a a 0
3 o o e
s =] .° A ] L2 A .0 ) (3.6)
-azn_l azn_z o e oo oo ceo e oo an )

where ak

polynomial,S is positive definite ( cf. BROCKETT). Since

0 for k>n and a; = 1. Since wé(x) is a stability

det S > 0 it is clear that for each allowable integer value
of u' there exist unique polynomials T, (%) A&(x) of degree
less than n such that

Ty (X) e (x) + Al (x) #5(x) = u'

If T, (x) = d;xP1 o+ dzxn"2 +...+ d, then
Mni- u' .
. = —ni_ U L ig
di = 3 ¥eT s l<1éen

where M .=det Spj with S,; the (n-1)x(n-1l) matrix obtained from
S by deleting the nth row and itP column.
By letting u'=k- (2 det S), with k an integer greater than zero
we have u' in Z and T} (x), A&(x) in z[x,vy].
The Integer algorithm proceeds as follows.

I;) Obtain A;, Q3

I,) Find wé(x) the characteristic polynomial of Ay

I3) Set P! (x,y) =03(x)ej(y) - oi(X)ei(y)
X + y
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- 14) Find Tﬁ(x) and u'
Ig) Set qj(x,y) = Tj(x)T§(y)P;(x,y)modo’
Ig) Py = fa, (ai(x,¥), Q)

I,) Set P =_3J _ px

Doing all calculations in integer arithmetic may save
time since greatest common divisor computations will not be
performed in intermediate steps.

3.4 The Modular Algorithm

The integer algorithm paves the way for a modular approach
to the solution. Suppose that p is a prime that does not di-
vide 2-det S with S defined in (3.6). If A} = (ajj) and
Qp = (qij) let
pA = (aij mod p)

pQ = (qij mod p)

both pA and pQ being considered as matrices over 2 the field

pl
of integers modulo p. Let Zp[x,y] be the ring of polynomials

in x and vy over Zp.

Let

il

p®2(x) = det(Ix- A) o5 (x) in Z,[x,y]

and (x) = pwa(-x)

p°1
It can be easily shown that
_ L
pwZ(X) = ©5(x) mod p
pcpl(x) = wi(x) mod p
where the notation mé(x) mod p means: reduce each coefficient of

@é(x) modulo p considering the derived polynomial as an element

of Zp[x,y].
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Let :
pP2 (%) p®2 (y) - Pml‘X)PwliZ)

P ==
p w(x,y) x +y

where x+y is now thought as an element in Zp[x,y] , the div-

ision done modulo p and pPw(x,y) being an element of Zp[x,y].

It follows that there exist polynomials Tu(x),plu(x) in

p
Zp ix,y ] and pU in Zp such that:
pTy (X) poy (x) + pku(X)pwz(X) = pu
where:
pTu(x) = T&(x) mod p
pAu(x) = A4 (x) mod p
p4 = u' mod p
Let p® be the ideal (pwz(x),pwz(y)) in Zp[x,y]
and
pqu(X:Y) : pTu(X)pTu(y)me(x,y) mod p®
= . -1l,n-1
= eoo + eloy-l- eol X +...+ e(n__l) (n*l)xn yn

we have that
pdy (x,y) = q' (x,y) mod p
Let
p = Eek-(A')k Q  (LA)J
p u ik j'pP p p
with all operations done modulo p.

If
P* = in (3.5) then
s (qij) (3.5)
pPu = (gij mod p).
Now if pPu’ pu are obtained {or a sufficient number of

primes, the Chinese Remainder Theorem (cf. Knuth) can be

used to find PS and u' making it possible to obtain the solution
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P = 12'91*1
(u')

The Chinese Remainder Theorem is used in the following
manner. Let m; and m, be relatively prime so that
ml> m, . Let uj=u mod my and ujz=u mod mj rwhere 0< u<mm,.
If c,k are integers such that
cemytk my, = 1
then
u = m ([c- (up-uj) Jmod m,) + u,.

Suppose now that m_ 2 = Py P2°+-+Pn-1s M2=Pp where Ph is the nth

1
prime used. If u is some integer for which we have u1 and u,
then we may obtain u mod my *mp by the above procedure .

The way by which we ensure that Pa has been constructed
is, by checking element wise at each iteration whether
P:‘;A + A'P:; = -0 .

The reason why the selected primes p must not divide
2.det S is because this guarantees that p(Dl(x), pwz(x) are
relatively prime over Zp[x,y].

Since considerable coefficient growth: takes place in
intermediate computations of the Integer Algorithm it may be
advantageous to implement the Modular Algorithm.

The Modular Algortithm
Ml) Obtain pA,pQ

MZ) Let pwz(x) = det (Ix—pA)

M3) Set pP‘P(x,y) =
X +y




My)
M)
M)

M)

Obtain

= P Q
Set ,q, (x,y) pTu(x)pTu(y)p © modp

Obtain

and by use of the Chinese Remainder Theorem find P},

Set

p

P u .
Repeat steps Ml-M6 for a sufficient number of primes

Tu(x)

P

p

u

- -33-

u'.
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Chapter 4

Computer Programs and Numerical Results

4.1 Introduction

The three algorithms presented in chapter 3 have been pro-
grammed on the extremely versatile computer programming sys-
tem MACSYMA available here at M. I. T. Each algorithm has
been programmed as a FUNCTION on MACSYMA. The function
SLEAMR (N, PA, PQ) corresponds to the Rational Algorithm, the
function SLEAMI (N, PA, PQ) corresponds to the Integer Algorithm
and function SLEAMM (A,Q,PR,NPAPQ) to the Modular Algorthm.
Evaluating each function at some arbitrary values of their
arguements one obtains the solution of the corresponding
Lyapunov Ejuation. We proceed now to explain this in more
detail. (SLEAM stands for, Solution of Lyapunov Equation using

Algebraic Methods.)
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4.2 The Function SLEAMR

Purpose:
The value of this function is the solution of the
Lyapunov Fquation
PA +A'P = 0 (4.1)
where A and é have rational entries, with A being a stability

matrix and Q symmetric.

The arguements of the function

N = the dimension of the A matrix
PA = the A matrix
= the Q matrix

PQ
By\evaluating SLEAMR at N,PA=A and PQ=Q (ie SLEAMR(N, A, Q))
one obtains as the value of this function the solution of (4.1).
This is done using the Rational Algorithm.
The definition of function SLEAMR(N, PA, PQ)

is shown in Table(4.1)

Figure 4.1
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4.3 The Function SLEAMI

Purpose:
The value of this function is the solution of the
Lyapunov Equation
PA + A'P = Q (4.2)
where A and Q have integer entries, with A being a stability
matrix and Q symmetric.

The arguements of the function.

N = the dimension of the A matrix
PA = the A matrix
PQ = the Q matrix

By evaluating SLEAMI at N, PA=A,PQ=Q (ie SLEAMI (N, A, Q))
one obtains the solution of (4.1). This is done using
the Integer Algorithm.

The definition of function SLEAMI (N, PA, PQ) is given

in Table (4.2).
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4.4 The Function SLEAMM

Purpose:
The value of this funcion is the solﬁtion of the
Lyapunov Equation
PA + A'P = Q (4.3)
where A and Q have integer entries, with A being a stability
matrix and Q symmetric.

The‘arguements of the function

N = the dimension of the A matrix
PA= A = the A matrix
PQ= Q '= the Q matrix

PR = A LIST containing primes.

By evaluating SLEAMM at N, A, Q PR (ie SLEAMM (A, Q,PR,
N, PA, PQ)) the solution of (4.3) is obtained as the value of
the function. This is done using the Modular Algorithm.
As the computation progresses an integer is printed out show-
ing the number of primes used so far. One should make sure
that PR contains enough primes for the computation. |

A List of primes is given in Table(4.3). The definition

of the function is given in Table (4.4).
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4.5 A Numerical Example

The example corresponds to the evaluation of

[0}
G = j[ x'"(t): Q -(t)dt
0
where x(t) 1is a solution of
x(£) = Ax(t) x(0) = c (4.4)

The system modeled by (4.4) is given in Figure (4.1)

The A matrix of a system with five blocks evaluated at
{=1, E=1 and M=10000 (a vaue assignment which forces the system
to have characteristic roots close to the imaginary axis) the
matrix Q, and the solution P of the equation PA + A'P = Q

are given in Tables (4.5), (4.5), (4.6), respectively.
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4.6 The Parametric Case

With some minor alterations to the function SLEAM(N, PA, PQ),
the function PRMTRC (N, PA, PQ) was defined for the purpose of
obtaining a parametric solution to equation PA + A'P = -(Q.

The definition of PRMTRC (N, PA, PQ) is given in Table (4.7).

The following example corresponds to the evaluation of

[+ ]

G = / x'(t) - Q - x(t)dt
o

where x(t) is a solution of
X(t) = A x(t) x(0) = c .
The‘A matrix for a system as in Figure (4.1) with two
blocks, the matrix Q and the parametric solution P are given

in Table (4.8).

e e o e Sy a1 i g 1 S e i i e o <521t vn s e eeares s - Rt R



L'y d1qeL (zt"
n4
z
(((2Z9)I8N4SHYMT + 20 + D) === : A9y
t
[SER Y 11 ‘il 11 ‘r
1m0 nDAY ¢ 19 3ISTT 9 2 rD NI4L (D) Ivy = ANdd 41 ‘(19 * 1vd 2 19 ‘29 + 19 Mgy ¢ 9 eI 9
1y ‘e
ERER I A 1) BATALE ADAY A1) NI L = 11 avnn D onad SCEDXIMIIRIND ¢ 1Y ‘Y4 C 1Y 2 1) N9 N omet Zoanwd 1 vnd
. ’ 1 “t
“na ANAY 2 1D ASTT (L L 0 SN SN 2 1D ML (D) 1YY = D43 4T (1 °L 60 S SNXIMLYY 2 ZD ‘g 2 1T
(B w4 1
‘N4z 1y g e anAd (L A+ X) M3 = NDA)ANVIXILYS = NDd “( VERULEIE R L IR AT anay
1=y 1o~y (Y
w6 R A
: ANAD) NG N MLz owd MY wd (! A X + A X) MNAY = M)
P -2 1 - t =¥ 1 -2
%y ) Y. A
: N4 ST (1 X) ANAY = ANA 2 ADA NI N = MY 3T 4 A X ‘anA)1Inonmne e My
t - Wy L= 1=
nN 4oy
: ANAD) A N ALY UN NS DY MAY) DN ML Z M N wng SNy 1T 2 A

SO TESAGNINE 1 IV S((R CAZAA SANANIPITYIT) NI 1 AN X XZAA Cdad (X = X CNDAT AL SR 2 eng

P INYNMITMTIINN IV £ AL 00 L ML | = 1S 1 =t untg Y an

‘L €LY )
1 - N

Cnt (M)ISYI LZYIYY 3~ (N SR SRR ) BT II) IV 1 0L S(CCCOM YT IS (T Q) 1S Ty

SnnuOVITY s W SVIE 4 oMz M SIT Z = N W) ST ((((A SISV S0 S ISTY Iy

GOpeauegy s S1T 7 3 W LT 2 - Mr f) NTHL X => L] 4T) 0 M Mnfl 7 amed 11wy

HECGARRR RS .AN.- ANCSYT) ISV IV IASIY NIV S 2 0 SO 1YN] CaT)ONAY 2 1T C(D(0 X fxz 1ndraLy] YT .
z z 4 z
s YT 07 N AMHL ©ownd 0T r 37 STO(XZAIISYI)IVMT 2 YT feme-e 2 MO3STA - o2 M N (ST = - T
1 - N Mo * "
. Lo N 2 (R X A+ L AL HId = ATAA NZAINITIOND @ 44 (A - = X NZOA)A 2 ada

U= CHZINAY AT (Y - = DXL SO0 - () INITL XN IMTIIN PO s VT

quLvy C0IIMI00T =z (N fvd v (11T)

e 2

Cinrgyan 47 Sreprevan 43 fregigiag S)eyl33g o0 e

9¥




47

[ P Fann Nonm Fomn N Wi Wi Nine N o Naun |
~N
Q N - o~

~N
[ e
—_ N QO N =
|
uJ:__
O NI o Wi

Vo bond fod e Ld L ad bl e ok ed

o

[b]

"y
[&]

[auTanTon ne Yo Yo Fam |

2 2 2

2 o 2

2 b 2

2 < 2

——

Q9

o

o

e Ve Lok o bk L L

(C24) g3
(L24)

[T e Yo Yane Fasn ¥ Ko Yosn ¥ ous Nons Noun ¥aun Ko Nous Ko §

N 1N
= = -
=) 1 Q0 ] L on
1 1
(]
TR
3 2 (] 2
1
’__:N __:N
) T m o T 1w
1 '
N
us 4
1o o (=) o

Cad o Gt toed nd ed L ' o bl o el td Ced Lnd

o ~
a <

~
-~ —~
N n
~ ~
%) o
e e

(C26)

Table 4.8




-48-
Chapter 5

Generalizations and Extentions

[ ]
.
—d

The Matrix Equation PA+BP=-C

We now employ the ideas developed in Chapter 2 to show

Lemma 5.]. Let A be an nxn matrix over the reals and B an mxm

matrix over the reals, and C an mxn matrix over the reals. Let

0y (x) = det(Ix-A)
by (x) = det (Ix-B)
®p (x) = 0y (=x)

UJ]_ (x) = \Dz (-x)

- Suppose that ¢;(x) and ¢,(x) are relatively prime such that

Ay (X)) (%) + uy (%) 0p (%) u
AL () (x) + ui(x)ep(x) = u

for Ay (x),ug(x) A4 (%), u4(x) polynomials in R[x,y] and u ih R.

And let
0 (x5 (Y) = 0y (Y) Uy (X)
de(p(XIY) = < + v
i) wa(x,y) is an element of R[x,vy] .
ii) Let  fg, : RIx,yl x MN—MN be the action defined by
j k
fralg(x,y) M) = .. B° M A
BA 'Y Y %; g]k
where M\ is the space of all mxn matrices over the reals.
Let
g, (x,¥) = AL (x)uy (¥) Py, (x,y) mod¥
where ¥ is the ideal (02(x),V5(y)) in R[x,y] .
Then
PA + BP = ~C (5.1)

has a unique solution given by
1
P = ? fBA(qu(X'Y)'C)
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it

“GZ(X) anxn + an_lxn l+ s + a; = foxn + flxn"l+...+ fn

¥ (v)

m-1

i

m - m-1
(~1) bpy + (-1)m lbm_ly +++++ by

i

eoym + elym-l+---+ e,

In a similar manner to the proof of Lemma 2.4 , let

i

> gykx™y]
ik

14
2. hyyxy?
il

g(x,¥) = ¢y (x)¥p(y)

i
il

h(x,y) = 91 (¥) ¥ (x)

. _ i+l
It is clear that gjk = akbj ’ hil = (=1) aibl

Let b(x,y) = g(x,y) - h(x,y) which can be written as

b(x,y) = 2; Ik xKyJ - hygy xJyk
]
0<i<m
Nk €n
- =3 kK, j k+j jok
= % akbj x"yd - (-1) akbj Xy (5.2)
3

Now if k+j is even then the corresponding term in the above sum

becomes:
if k = min(j, k)
akbjxkyk (yj"k - xj"k)
if j = min(j,k)
| atkb:-'xjyj(xk_j - yk-3)

And if k+j is odd then the corresponding term in the above sum
becomes:
if k = min(j, k)
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if J = min(j,k)

akb-xjyj (xk=3 + yk~3

j )

But in any case x+y will divide each term (as in Lemma 2.4)

aﬁd the quotient of b(x,y) divided by x+y will be the sum of

the quotients obtained by dividing each term in the sum (5.2)

by

X+y.

Proof of ii). The proof will proceed in three steps.

Step 1. We list some properties of action fBA

i)
ii)

iii)

iv)

V)

fa

fBA(g(X,Y) + h(x,y) , M) = fBA(g(X,Y) IM)+fBA(h(XIY) M)

(u,M) = uM . where u is a unit in Rx,Y]

fBA(g(XIY)h(XrY) M) = fBA(g(XIY) lfBA(h(le) IM))
= fpa(h(x,y),.fBAa(g(x,y) ,M))
fpalg(x,y), M) = fpa(g(x,y)mod¥,M)

fgplg(x,y) ,M+N) = fpal(g(x,y),M) + fpalg(x,y),N)

All the above are analogous to the properties of the action

fa and in the case when B = A' then

for all g(x,y) in R[x,y] and M in M.

Properties 1i),ii) and v) are quite clear. We now show

that property iii) holds.

Let

g(x,y) = 3 gjkxky3 h(x,y) = Y, hjjxly?
ik il
q(x,y) = g(x,y)h(x,y) = 2, qgpxty®
st
= ¥ (¥ 94khin)xtyS
st i+i=s

k+l=t
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Suat
Epp(A(x,¥) M) = 3 qg B MA

st
- suat
= 2 (25 g4xh;;) BSMA
st i+j=s
k-1t
£pal9(x,y) M) = 3 gy, BIMAS
jk
' _ ~ ..k
£ (h(x,y) , Epala(x,y), M) = ¥ byt 3 g5kl yal
i1 Sk
_ i+jyaktl
=2 2 hj194B MA
il Jjk
let s=i+j , t=k+l
— smat -
= 20X hyy9508ma
st 1+3j=s
k+l=t

=fpa(a(x,y) ,M)
We now show property iv).
~Any polynomial h(x,y) in R|x,y] can be uniquely written as:
hix,y) = a(x,y)oy(x) + b(x,y)b,(y) + r(x,y)
where the degree of r(x,y) is less than m in vy and less than n
in x , by first dividing h(x,y) by @, (x)and then dividing the

remainder by ¢, (x).Therefore

fBA(h(k,y),M) = fpa(a(x,y) oy (x),M) + fpa(b(x,y)b2(y) M)
+ fgal(r(x,y) M)
= fppla(x,y),fpa (02 (x),M))
+ fpa(b(x,y),fpa (b2 (y) M) +fga(r(x,y) M)
= fpala(x,y), Moy (A)) + fpal(b(x,y), b2 (B)M)
+fa(r(x,y) ,M)

= fBA(r(X'Y) M) = fBA(h(X,Y)mOdW,M)
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because of the Cayley-Hammilton Theorem.
Step 2. Since

gy (x,y) = lu(x)uﬁ(y)wa(x,y)modW
we will have

(xHAV)(Ay (K g (VI Py (x,¥)) = A, (x)ug (¥) (02 (x) Uy () =07 (Y)W (%))

A ()i (Y) 0 (x) Wy (y)
= Ay (X (y) ey (V) (x)

AU(X)uﬁ(Y)wZ(X)wz(y)
- (umny (xX) 0, (%)) (u=A, (Y) Uy (¥))

Ay ()1 (Y) @ (%) Uy (v) —u?+ud ! (y) ¥, (v)

+ Uy, (X) @y (%) =1y (X) AL (¥) 0 (X) Uy (y)

which implies that

(x+y)q, (x,y) )mod¥ = -u?.

Step 3. We now show that

P = “iz' fBA(qu (le)lc)

is the unique solution of (5.1).

PA + BP = —— (fpa(qy(x,¥),C)A + BEgy(q, (x,y),C))

(£gp (%, fpa (Ay (X,¥),C)) + £paly,fpa(q, (x,¥),C)))

(fgp (x+y,fpp(q, (x,¥),C)))
(fpa ((x+y)q, (x,y),C))
- (fpa ((x+y)q, (x,y)mod¥,C))

(~u2C) = =~C

|
G'HC'HC'HGI!—* c-"s-—-' ]
(N [ N N N




Uniqueness follows by observing that the linearyoperator
L: Re—sR™ defined by
L(P) = PA + BP
is onto since no restriction was placed on C. This implies
that . is one-one. This completes the proof of Lemma 5.1.
We have shown that PA + BP = -C has a unique solution if
wl(x) and @, (x) are relatively prime where

det (Ix-B)

i

d)z (x)

¥y (x) det (Ix-A)
w1<x) = Yy (-X%)

The usual statement of this theorem [cf. Bellman]
is as follows.

The equation PA + BP = -C has a unique solution for all
C if Ai+uj # 0 where Ai are the characteristic roots of A
and i the characteristic roots of B.

We end this section by showing that these two statements
are equivalent.

Assume that wi(x) and ¢, (x) are relatively prime.
Suppose then that therebexist i,j such that Ai+uj = 0. This
means that Ai = —uj which implies that wl(x) and wZ(X) have at
least one rootincommon. This in turn implies that wl(x) and
©,(x) have a nontrivial common divisor which is a contradiction.

Assume on the other hand that hi+uj # 0 for all i,j.
Suppose then that there exists a k(x) of degree greater than
or equal to one, such that k(x) wl(x) and k(x) @Z(X).

This would imply that wl(x) and wz(x) have at least one root

in common which contradicts our initial assumption.
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The above suggests an algorithm for obtaining the sol-
ution of equation (5.1). As in the case of the Lyapunov
equation (3.1) Rational, Integer and Modular versions of
the algorithm can be constructed in a similar manner.

Algorithm for solving equation PA + BP =-C.

Aq) Obtain ©q (x), wz(x) the characteristic polynomials of

A and B respectively.

_ 92 (x)ua(y) - 01 (y); (x)

A2) Set y)

P, (x,
12 X + y

A_) Using the Extended Euclidean Algorithm obtain
Ap(x), Al(x), v (x), Wi(x) and u.

A,)  Set qu(x,y) = Ag(x)u)(y)P o (¥rY) mod ¥

v
As) Form P = fp,(q (x,¥),c)

A.) Set P = _1 .
6 = Py
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5.2 Conclusions

In closing we wish to comment on what has been accom-
lished by this thesis, point out some disadvantages associated
with the method used in solving the Lyapunov equation and dis-
cuss several possibilities that can be persued in the future.

We have constructed purely algebraic algorithms for obtain-
ing the exact éolution of the Lyapunov equation. The algebraic
structure on which the methods are based is quite rich and can
further be exploited. The algorithms are quite simple requiring
no obscure aluebraic constructions, (the Extended Euclidean
Algorithm providing a basis building block) and as demonstrated
fully implementable on existing computers.

The price we héd to pay for an exact solution takes the
form of coefficient growth, creating space requirements. The
critical parameters which dictate the amount of storage required,
arc: dimension of the A matrix as well as the size of the entries
in both.the A and the Q matrices. The problem of space has
quite adequately been dealt with by the introduction of the
Modular algorithm. But in doing so the excecution time is in-
creésed. In this thesis no serious time complexity evaluation
is presented.

In most engineering situations an exact solution is not
required, but merely a five or ten digit approxiﬁation. Exist-
ing methods completely neglect the question of accuracy in the
approximation to the solution of the Lyapunov equation. Because

of the nature of the method presented, which results in an exact
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solution, it is quite possible that a cloéer examination may
reveal a scheme by which some control can be exercised on the
accuracy of the approximation. As exhibited by the parametric
example’included in chapter 4 our method offers great possibil-
ities for parametric Studies.

We have. extended the results and suggested algebraic methods
of solution for the more general matrix equation

PA + BP ==C,

The Riccati equation did come under consideration and some
less important 2x2 examples were soved by Newton's Method with
our method being employed in the solution of the intermediate
Lyapunov equations. The problem encountered hindering further
progress was again that of coefficient growth. It was felt
that that in order to attempt more realistic examples it would
be wise to either first devise a method for obtaining appoxi-
mate solutions with controlled accuracy or re-examirne the
Riccati equation under the light of the present work.

Finally we have gained great insight from all this work.
We feel that this is only the begining of a more serious study

on the computational aspects of Control Theory.
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APPENDIX
This Appendix contains the proofs of Lemmata (2.1), (2.2),
(2.3) and (2.4) found in section (2.2).
Lemma 2.1. Let p(x,y) be a polynomial in RIx,y] with C(p)
being an mxm matrix. Then p(x,y) is positive if and only if

there exist polynomials m(x),...,7,(x) such that
m
P(x,y) = 2, W(x)my(y)
i=1
where {ni(x)} are a basis for R, (x).
proof: Suppose that p(x,vy) is positive. This implies that
C(p) is positive definite and symmetric. From linear algebra
[ 7] we have that
C(p) =V - V!

for some real mxm matrix V=(v;.:). This implies that det V # 0

j

and therefore V is invertible.

since p(x,y) = 1'(y)C(p)1l(x)
= (1'(y) V) - (V'. (x))

-1
let nl(y) = Vi1 f VoY + v3ly2 I vmlym
and my (y) = vyi + v2iy + ... + Vpiy™ol

14 i4m
and we have
m
p(x,y) = 25 my(y) m, (x)
i=1

Let g(x) be a polynomial in Rm(x).
g(x) = g + gpx t... gmxm"1
Since V 1is inverible it has m linearly independent columns

{ \ } which form a basis for all vectors of length m.




We therefore have real numbers Qg 0g. .-y such that

(]]
92
. = Qg + GoVy L. F amvm
Im
-~ o
and that
B B
1 x x2 ...x017 | g3 [ x x2... x™13
(32
. = G,l'Vl.-i-az
|

which equivalently is written as:

g (x) Qg °Ty (X)) + AT, (X) ... ap T (X)

m
= 3 oy T (%)
i-1

therefore {ni(x)} form a basis of R (x).
Suppose now that there exist polynomials ni(x),nz(x),

forming a basis for Rm(x) such that
m

Vot ...apve

...nm(x)

p(x,y) = 3 mi(x)-n;(y)
i-:1
- 1

— m-1- -
i=1 ii2 X
Tim Lxm—l
) - m-1
where ni(x) = Ty + nizx + ...nimx
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We can therefore write p(x,y) as:

p(x,y) =[1, y ... y™1li1m.- m 1
X
;m—l
where the ith column of II= (nij) is
i1
2
n, = .
i
Wm
i ]

Since {ni(x)} form a basis we must have{nii being linearly
independent and detll # 0.

I also claim that the largest power of p(x,y) in x or y
is m-1. Since if we assume that there are no terms‘in p(x,y)

which are of degree m-1 in either x or y we must have

implying that ni =0 , 1<% i & m 6 and therefore a contradiction
to the hypothesiz that{ni} are linearly independent.
This ensures that C(p) = o - 1I' ana that it is symmetric
and pwsitive semidefinite.
Assume now that there exists some vector z # 0 such . that
z'MN'z = 0
Since 1 is inverible this cannot happen and therefore C(p) = m.mn'

is positive definite.
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Lemma 2.2. Let n be the degree of @(x). 1if p(x,y) mod?®
is positive of degree n-1 in both x and y then o(x)o(y)p(x,y)mod®
is positive of degree n-1 in x and y , 1if and only if o(x)
and 0(x) are relatively prime.
proof: The proof will proceed in three steps.
step 1. We first show that there exists a vector space iso-
morphism between R, (x) (the vector space over R of polynomials
of degree less than n under addition) and the quotient space
R[x]/m(where o= (9(x)) considered as a vector space over R
under addition. (R[x1/¢'is actually an algebra if we also include
multiplicity.)

Let t: R (x) — R[x1/@ be defined by

t(g(x)) = o+g(x).
It is a vector space homomorphism since
| t(aggy,(x) + aygy(x)) = a;t(g; (x) + azt(gz(x))
Let ¢+ g(x) be an element of R[x1/¢. if g mod¢ denotes the
polynomial in ¢+g(x) of minimal degree (whiéh must be less
than n) we have
t(g mod @) = ® + g mod ® =@ + g(Xx)

Let g (x) # gz(x) be elements in R, (x). Then it is clear that
® + gy(x) # © + gp(x) and this shows that t is an isomorphism.
step 2. We now show that if {ni(x)} 1< i <n 1is a basis
for R, (x) then {a(x)ni(x)} is also a basis for R,(x) if and
only if O(x), ®(x) are relatively prime.

If {ﬂi(x) }is a basis for R, (x) then @ + m;(x)

is a basis for R[x]/®.
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Suppose that o(x), ®(x) are relatively prime . This
implies that there exists A(x) in R, (x) such that
(@ + A(x) ) *» (¢ + O(x)) = ©+ 1
where ©+1 denotes the multiplicative indentity in R[x1/®

For any coset ¢ + a(x)there exist Xkj in R such that

n
(@ + A(x))* (@ + a(x)) = 3 k; (®+ T (x))
i=1
. n
= (@ + 1) ¢ ( 3 ki(®+1m 4 (x)))
i=]1

n
(@ + A(x))( Y kj(o+o(x)my (x)))
i=1 '

n

(@ + a(x)) = 3 k(0 + o(x)n, (x))
i=1 1

and therefore{w + o(x)ni(x)} is a basis for R[x1l/® . By
step 1 we have that
{(o(x)m, (x))mod ©} is basis for Rp(x) .
Suppose that o(x), ®(x) have a nontrivial factor in common,
ie there exists T(x) in Rn(x), (e+T(x))# 0 such that
| (@ + T(x))" (o + o(x)) =0 + 0
where ¢+0 is the additive identity in R[x1/o.
Suppose then that {o(x)ni(x) mod w}is a basis for Rn(x).
(0 + T(x)) = (0 + x ) (0 ; 1)

= (@ +T(x))* D kj(® + o(x)1; (x) mod )
i:’:l .

ki (o + T(x)o(x)M1M4 (X))
1

0
"M s




which is a contradiction. This proves:. ' step 2.

Step 3. We now prove the lemma. If pmod® is positive then

n
pmod® = 2: ms (y)my (%)
i=1 n
—> o + pmodd =0+ ( Y i (y)m(x))
i=1 N
® + o(x)o(y) (pmod®) = @ + 2, (o(y)mn;(y)) (o(x)mn; (x))
i=1
n
® + o(x)o(y)p(x,y) = & + 2: (o(y)mj (y)) (o(x)mny (x))
i=1

. n
(o(x)o(y)p(x,y))modd = Y ((o(y)mn;(y)) (0(x)ny (x)))mode
i=1

n
o(x)o(y)p(x,y)modd = 2: o(y)n; (y)mod®o (x) nj (x)mod®
i=1

From Lemma 2.1 and step 2 o(x)o(y)p(x,y)mod® will be
positive of degree n-1 in x and y if and only if o(x)nj (x)mode

form a basis of R,(x). This completes the proof of Lemma 2.2.

and have positive real parts. Then the nxn matrix A, = l,

is hermitean (A, = Af where (*) the hermitean adjoint) positive

definite.

. . . 1 .
proof: We first show that if the mxm matrix Ay = ( ) is

. . . CciC .
positive definite so is the mxm matrix Sp =:(—3;%—- provided
AjtAy

that each ¢y # 0.

Let Sl be defined as:

c1 0 0... O c;0 0 ...0
0 cp ... O 0 c 0 ... 0
S1 =10 0 c3 ... Ayl O ? c3 ... 0
o 0 ... cy 0 0 0 ...¢cp
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where 1<1<m. In order for S, to be positive definite we must

have detSl> 0 for 1<1<m (Sylvester Criterion).

1 1 _
dets; = ( [] ejldetay ¢ [] ey)
i=1 i=1
Since Icil # 0 and Ap is positive definite we have that

detsy > 0 for 1£1<m
This therfore ensures that if A,_; 1is positive definite

so is the matrix

xi-xn)(xj—xn).
Aj*thn/

« B ( 1 AntAg )_ A +Rn
n-1 7 - = -
Ai+Xj (Aj+An) (A5+An) (Ai+A5)

We now prove the Lemma by induction on n.

It is true that An=Aﬁ for all n since

1 1
Aﬁ""(cij):(———:—) = ( _)=(aij)=An
AytAg Xi+kj
where Ciy = Eji . It is clear thgt Ay >0 since
1
>0
AptAy

Suppose that Ap>0 for all m<n-l. Applying the Sylvester
Criterion on A, we see that all determinants of intermediate
minors are positive, by the induction hypothesis. We just have
to show that ‘detAn:>O. By observing the structure of K, -1 and

using elementary properties of determinants we now show that




1

( —) detK, _4, = detAn.
Kn+An. n-1
Let
- m - (A +An) ] 1]
A1+Xi (Kl+xn)(xi+kn) A'l'*':tn
N -(An+kn) 1
bi o= A2+Xi Ci = (k2+xn)(xi+kn) an = X2+Xn
An-1+Ai _(An—l+xn)(xi+kn) L}n—l+in
Then
Kn—l = [b1+cl, b2+021"' bn-l+cn—l]
and

+... +[det by,by,... bp_11

det [bl,bzlooo bn_l]

An+kn
+ =
Al+}”n

det Ean, b2,b3...bn_l]

X_+h
+ Xp**n det [by, -ap/b3s.-.bp-1]
X1+An

+."

.

A A
+:——Ei—2'det [bl, bz,...bn_z, “an]
An-—l+ln




pomnl — det Kn—
xn+xn

Expanding det An

det A
n

and therefore

-+

+
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1 .
o det [by, by, b3,...bp1]
n .

1 get [-a,, by,...by 1]

_.——-.]-———-— det [bl, b2,c ocbn_zl _an]

(-1t 1 det [b,, by,...by 1, aj]

1 "n
(-1)7"2 1 get [by, by,...byo1, a,]
—L1__ det [by, by,...b 1]
A,

by the last row gives:

1 1

-1yt det [b,, by,...b 1

(-1) T 27 P30 n-1’ @n

(-1)0+2 =31 det [b., b b a ]
X2+An 17 ¥37°*"%n-1’ “n

(-1)2n _ 1 get [by, by,...b,]
An*An

1 det K = det A
= n-1 n
AntAg

o e e e S

e
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Since K,_; is positive definite and An has positive

real part we have that
det A > 0

and that Ap> 0.

We can also note as a consequence of this lemma that if
AjAry...A, are complex numbers with negative real parts then

. ~u2

the matrix T_. = ( )

n
Ai+X
i

positive definite. This completes the proof of the Lemma.

where u # 0 is a real number is also
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Lemma 2.4, Let A be an nxn stability matrix with

@?(x) det (fx - A) and let @ T;(wz(x), ®,(y)). Define

®y (x) = 0y (=x) (2.1)
Oy (X) Py (y) = @y (x)@, (Y)
P (x,y) = —2. 2 11
® X +y
i) Polynomials wl(xxwz(x) are relatively prime. That is

there exist Tu(x),ku(x) in Rlx,y]1 such that
T (x)o,(x) + A (X)0,(x) = u (2.3)
u 1 u 2
where u is aunit in R[x,y].
ii) Pw(x,y) is an element of RIx,y].
iii) Let qu(x,y) = Tu(x)Tu(y)P@(X,y) mod @ (2.4)
Then q,(x,y) is positive of degree n-1 in both x and vy.
Proof of i). Suppose that there exists a k{x) of degree
greater than or equal to 1 such that
k(x) 1oy (x) ) k(%) I@z(x)
@y (x) = 1;(x)k(x) 0y (x) = 1y(x)k(x)

this implies that ¢;(x) and 0,(x) have at least one common

root. This cannot happen since ©qy (x) = 9y(-x) and wz(x)

is a stability polynomial. Therefore no such k(x) exists and

wl(xxwz(x) are relatively prime.

Proof of ii).

Let

— n
wZ(X) = ag + a;x + ...+ apx

@1 (x) = ag + (-l)aix + ... + (-1)"a x"

Let

gx,y) = 0,(x)o,(y) = > g xKy?

k%
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h(x,y):“(%}X)wl(y) = 2? hilxlyl
1
b(x,y) = g(x,y) - hix,y) = 3 bg.xty®
st

where bgy = g, - hge = agag - (-1)tay - (-1) Sag

s
- _ ., t+s
= ataS atas( 1)
Let s=t=m 0L m&n
. - 2m -
bmm = adn (1) anan 0 for all m.

Let s=m,t=k, 0 <£m<n 0 <k < n , m#¢k

b

= 0 if mt+k even

= 2

b = apa, -(-1)0*Ka
Amdy if m+k odd
It can be shown by induction that
1) xry | x"ty if m is odd

ii) x4ty | X -y if m is even .

With this in mind and that b(x,y) is symmetric the
division of b(x,y) by x+y 1is performed by summing the quotients
obtained from the divisions of all terms of the form
quxkym + qkmxmyk by xty.

Proof of iii}).

The proof will proceed in three steps.

step 1: Assume that the'eigen-values of A A A ce WA

= 1’ 727 n
are all distinct. Show that qu(x,y) is of degree n-1 in
both x and y and that it is positive.

Since Pw(x,y) is symmetric so is

dy (x,y) = Ty (x)T (V)P (x,y)) mod &




-69-

On the other hand

(x+y) * (T ()T, (Y)Pp(x,y)) = Ty (x)T,(y) [wz(x)@z(y)~®1(x)wl(y)j

i

Ty (X)T _(¥) 0y (x)@, (y) = Ty (x)Ty(y)o) (x) @ (y)

il

(Ta ()T _(¥) = Ay (X)X (¥)) 0y (x) 0, (¥)
+uA (x)0,(x)  + ud (v)e,(y) - u?
which implies that
((x+y) -q, (x,¥)) mod ® = -u? (2.5)

In order for this to happen the degree of qu(x,Y) in both
x and y which is less than or equal to n-1, must actually be
n-1.

On the other hand

- . X
A+ X)) g Ay, X

i j J
and therefore

) = -u

qu()"ir }\‘J) =

Since we have assumed that the Ai's are distinct then
1A, 1(A2),en 1 (A)) by the Van-dermonde determinant
theorem must be linearly independent vectors.

We now wish to show that C(qu(x,y)) is positive - definite.

Let z # 0
n _ _ - n
2' (@) z = ( F K1) @y 3 kylg)
i=1 J:l
n n _ _
= 2 X kiky 1'(X3) Clag)1(ry)
i=1 j=1
n n -
= X X kikya (. A
i=1  j=1

T R S



-70-

= [k Koo M k.
[kl, k, En1 hn k)
2
kn
- wd
ith K. = Asy, A =
wi n (qu( 5 J)) (x.+i )
173

Since z # 0 not all of the ki's are zero. Lemma 2.3

ensures us that Knis positive definite and therefore
E;C(qu)z> 0 if z#0

making C(qu) positive definite.
step 2. Since ml(x)wl(y)Tu(x)Tu(y)Pm(x,y) modd = Pp(x,v) modo
we also have Pyu(x,y) mod o = P,(x,y) being positive as a
consequence of Lemma 2.2.
step 3. Suppose now that the eigen-values of A are not distinct.

Show that q,(x,y) is positive.

In order to simplify the notation we let

il

W (x) 05 (x)

Ut (x)

@l (x)

All we have to do in showing that q,(x,y) is positive is
to show that Pw(x,y) is positive. Then by Lemma 2.2 it is
assured that qu(x,y) is positiVe.

We prove that P, {(x,y) is positive by showing that it
©

can be expresses as:
n

Py (x,y) = .2% m.(x)my (y)
; i=]

where {n.(x)} is a basis for R (x).
1 n
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Write
bx) = ¥ (x) ¥y (x) .. Vg (x)
where each wi(x) has distinct zeros and

T KT A R A2

We then have

P (x,y) =x1uy) = o Y.
X +y

We know that the degree of Pw(x,y) is less than n in both
x and vy.

Let ny(x) = 07 GO (0 «eabl_y (0 g, (%) ey (x)

for 1 € j <€ s.

If we let

+ +
lb_i (X)w-] (y) - ll’_] (X)\U_i (y)

Pw.(x,y) =
J X +y
it can be shown that
s

Po(x,y) = 3 nj(X)nj(y)ij (x,¥)
j.".‘.:l

by substituting in the expression what nj(x) and Py (x,V)

J
are and cancelling terms.

From step 2 we know that each Py (x,y) is positive and

J
therefore by Lemma 2.1
n .
P, (x, = Zf m.. (x)T,
wj( y) ]k( ) Jk(y)
k=1

where njis the degree of wj(x) and {njk(xﬁ are a basis for

Rn.(x)’

!

e e e e e s L 1 i e e e . R g 58 S £ PR R



I
~J
[yS

!

Therefore
S nj
Polry) = L 2 Mg G Ty () Ny () g )
J.:: =

we show that{n;(x)n, (x)} is a basis for R, (x) .
J Jk

Suppose that there exists real numbers mjk not all zero

such’ that
S ny
j=1 k=1
We can write this as
s-1 nj Ng
Y X m N (KN (%) = YD digng (%) Ty (x)
j=1 k=1 ~ k=1
if all Mg 1 € k< are zero we can proceed by writing
s-2 n. Ng-1
) fmjk”j ()myy () = 3 Mg-1kNs-1 (K) g 1c (%)
j=1 k=1 k=1

and continue. Suppose then that j=s' is the first time that

we encounter non zero elements in {ms'k} 1 < k< ngr. Then
' Ngr

My Ny (X) gy (x) = kzl Mg Ngr (X) g ay (%)
1 =

M

\ s'-1
(*) >
j=1

Multiply both sides by bs.(x) = Y1 (x)Uy(x)..bgrog (x).
The right hand side of (*) can then be written as:
p(x) *®(x)
for some p(x)

and

nNg
by (%) 37 mgipngr (X)Tgiy (X)) = p(x)-0(x)
k=1
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if p(x) = 0 we then have that

nsv
ngt (x)*bgr(x) * 2 mgrikngrk(x) = 0

k=1
But since {ns.k(x)} are a basis for Rns,(x) this would

imply that Mgvy = 0,1< k < ng contradicting the assump-

tion that j=s' is the first such j for which notall ms'k=0'

Suppose then that p(x) # 0.

This would mean that

ng?!
©(x) | bgi(x) 2 mgigngr (X)mgyy (%)
k=1
or that
+ + + Ng:1
ber (1) | (@1 (x) b2 (x) e bgro1(x) P mgrgmgrg (x)
k=1

+ .
But b, (x) and Uy (x)V3(x) ... w;-_l(x) are relatively

prime threfore

Ve () | 20 m oy (%)

n )
Since the degree of 3 ms'k“s'k(x) is less than ng:!
k=1
ng:
this can only happen if 2: mgrgtk(x) = 0 or
k=1

equivalently, when mgip = 0 for 1 € k £ ngs.
This again leads to a contradiction since we have assumed
that j=s' is the first time we have Morg s 1 £k <ng: not all

being zero.
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The process is repeated until all m are shown to be
Jk

zero contradicting our original assumption.

Therefore {n_ (x)m, (X)}

_ 3 jk

is a basis for Rn(x), and Pm(x,y) is positive. Since
n=n1+n2+...+nS we also have that Pw(x,y) is of degree n-1 in
both x and y.

This completes the proof of step 3 and the proof of

Lemma 2.4.
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