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ABSTRACT

This study contains- a new approach to the unconstrained minimization

of a multivariable function f(.) using a quasi-Newton step computation

procedure. The whole problem is reformulated as the control problem

of a linear system described by its state-space equations and having

unknown dynamical properties. First of all, an adaptive identification

problem arises and is solved by using set estimation concepts. The re­

sulting dynamics contain in particular an-estimate of the Hessian

matrix of f(x), matrix which is used to regulate the system to zero.

Some matrix symmetrization methods are also studied and finally used

for generating a sequence of steps ~+l- x
k

by the classical Newton

method.
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CHAPTER I

Introduction

The gradient methods in Optimization have been of considerable

theoretical as well as practical interest for well over a decade.All

of them consist primarily of building a sequence of points (x
k

) using

the gradient of the function f(x), which is to be minimized. Diffe-

rent procedures arise in the literature, among them the oldest and

most interesting ones are the class of quasi-Newton methods. A parti-

cularly critical discussion of the evolution of the concept of quasi-

Newton algorithms can be found in the introduction to S.W. Thomas'

thesis [28]. In particular, he points out how loosely this terminology

has been used for a large variety of different algorithms. Thus, in

the present thesis, we shall understand it in the following sense.

Let f(.) be a differentiable function from Rn to the real line also

referred to as the objective function, and let Vf(x)= g(x) be its

gradient. We shall say that the iteration procedure for computing a

*sequence (~) converging to the minimum x of f(.), is a quasi-Newton

procedure , if

for all k = 0,1, .•

The sequence (B
k

) is a sequence of matrices of order n having generally

an interpretation in terms of the actual Hessian matrix of f(x).
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Curiously, it appears that throughout the technical literature on this

subject within the last decade, the common feature of all such gradient

algorithms was to determine the sequence of matrices (B
k

' k=O,l, .. )

by construction, after having defined some desirable algebraic property.

The case of Huang's work is typical in this sense - see [10] -

In the present thesis, a new point of view is introduced. The

idea is basically the following one: in most of the quasi-Newton

algorithms, the matrix B
k

is given an interpretation in terms of the

local Hessian matrix of the objective function. Thus, the quasi-Newton

methods become the original Newton method as soon as the B
k

reaches

the value of the actual Hessian matrix of the objective. This gives

rise to a very fast convergence in a neighborhood of the optimum.

Consequently, our aim is to estimate the local Hessian from the last

points and gradients of the function, by introducing some random or

unknown but bounded quantities. In fact, this observation appears

in S.W. Thomas' wo~k [28], although he did not fully exploit it, but

returned rather to a more conventional approach, close to Broyden's

method.

Thus, the algorithm is considered as a dynamical system described

by a set of state-space equations and unknown inputs. Since, some parts

of the dynamics of this system contain unknown parameters, an adaptive

identification problem is solved in order to estimate them recursively.

The Hessian of the objective function appears to be one of them. In a

second period, a regulation problem is solved since the ultimate goal

is to force the gradient of the objective function to zero. The resul­

ting regulator will simply use the output of the previous identification
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process in order to perform its task.

In Chapter II, a study of different matrix symmetrization

methods is presented. Different matrix norms are introduced and their

relationship studied. Thereupon, a variational point of view is intro-

duced to find the symmetric solution of the simple algebraic problem,

b = X a

where a and b are known n-vectors and X is an n x n unknown matrix.

Finally, the previous solution is generalized to the case where an

expansion of the previous solution around any given n x n matrix xO

is desired. The results of this chapter will, therefore, prove to be

useful when studying the previously introduced regulation problem.

Chapter III deals with the construction of an appropriate

state-space model for the initial minimization problem. All unknown

quantities appearing as input terms of our system are modelled as

Gaussian random variables, although the original problem is perfectly

deterministic by nature. A filter is constructed at each step in order

to estimate the Hessian G(x
k

) = G
k

= V2f(x
k

) of the objective function.

A recursive procedure is given to propagate directly ~= G~l and,

eventually, the initial problem of minimizing f(.) is understood as a

stochastic regulation problem.

Chapter IV studies the same dynamical system but, instead of

assuming an a priori knowledge of the statistics of the input variables,

these quantities will be assumed to be constrained only to some finite

ellipsoid-shaped domains. A short review is done about the basic tools

needed for understanding the results of set estimation theory and three

types of estimation problems are recognized. Finally, a recursive
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solution for estimating G
k

is presented, its similarity with the

minimum mean squares estimate being briefly emphasized.

Chapter V presents the main articulations of the algorithm

proposed in this thesis. In particular, some new results are proved

about the convergence properties of such an algorithm, and some

singularity problems are also analyzed. Finally a short description

is given about some necessary tricks, which were actually used

when implementing this algorithm.
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CHAPTER II

Matrix symmetrization methods under linear constraints.

I-Introduction and statement of the problem.

Consider the following problem:

Problem 0:

Solve the equation b=Xa ,where b and a are known n-dimensional

vectors in Rn and X is some n x n symmetric real matrix, element of

Clearly, this problem is highly underdetermined,especially if n

is large,as it contains n(n-I) unknown variables-i.e. as many,as there
2

are different coefficients in a symmetric n x n matrix-,for only

n equations.

An other way of looking at this problem is to exploit the one
2

to one correspondence existing between elements of L(Rn ) and Rn .Thus,

assume that

X= nis an element of L(R ),

x n
2

then, there exists X ERn
2

and AE L(Rn ,Rn ) such that:
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with

and

b=Xa =AX [I]

T 0a

A = [2]

0
T

a

Ta
I 2T Rn [3]X = a. E
~

T
an 2

Now,as X must be symmetric,let S be the subset of Rn
such that:

2 T
S={ ERn n }Z s.t. Z=Z element of L(R )

then,

Claim I:
2

S is a linear subspace of R
n

Proof:

of dimension n(n-I)
2

Let ZI and Z2 be symmetric matrices.Then'~Iand~2 belong to S

and aIZ
I

+a
2

Z
2

remains symmetric for any real coefficients a
I

and a
2

,
2

hence aI~I +a2~2 Sand S is a linear subspace of R
n

.Its dimension

is clearly n(n-I) as n(n-I) coefficients are sufficient to determine
2 2

uniquely any n x n symmetric matrix. Q.E.D

2
Consider now in Rn the set ~ consisting of all possible solu-

tions to the equation b=Xa.Then:

Claim 2:

Let ~ such that b=A X
2

for bE R
n,! E L(R

n
,R

n
)}
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be the set of all solutions of b=A X .Then ~ is a convex subset of
2

Rn
.

Proof:

For ~I and ~2 elements of ~ , b=!~I =!~2·Choose then any

element a E [O,I],therefore 2 =a 2 +(I-a) 2
2

.Clearly this means
-3 -I -

also that

A ~3 = a! ~I + (I-a ) ~ ~2 =b

and that ~3 belongs to ~

2
which is itself included in R

n
. Q.E.D

The goal of Problem 0 is to find any element in ~ A S.Generally

the set ~ will have as dimension n2 ,whereas S has dimension n(n-I):
2

this means that Problem 0 will have an infinite number of solutions,

all belonging to ~ A S,of dimension smaller or equal to n(n-I).
2

In order to attribute to Problem 0 a more restrictive meaning,

a minimal norm condition is introduced. This is achieved in Section 2,

where first a quick review is done on some matrix norm candidates.

Finally a new formulation of Problem 0 is given and henceforth is

refered to as Problem I.

In Section 3 a variational approach is used to find the solution

of Problem I.

In Section 4,the recursive symmetrization procedure due to Powell

is shortly discussed and compared to the previous result.

In Section 5,Problem I is slightly modified. Instead of looking

for the"absolute minimum norm" solution of b=Xa,we shall be interested

in discovering the symmetric solution "closest" to any given possibly
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non-symmetric matrix. Finally, a geometrical interpretation of these
2

results is given, using the properties of the subspaces ~ and S of R
n

.

2-Matrix norms and reformulation of the initial problem.

IIAII = Sup
nxER

nLet A be some matrix, element of L(R ).

T
{x Ax}

Tx x
[4]

T T T
As I IAI lis a scalar and as x Ax = x A x, it becomes clear that for

any square matrix A, IIAII = IIATII .
2

Another possibility is to consider the Euc1idien norm in Rn ,

sometimes also called the natural Frobenius norm, that is

I
IIAII F = {Tr[ATA]} 2" [5]

which can be shown to be induced by the inner product < , > F

defined by

TTr [A B]. [6]

Notice that as,

Tr[AB] = Tr[BA]

Finally, it is easy to show that none of these two norms

is sensitive to any change of basis in Rn • Thus, consider

where Q is nonsingu1ar orthogonal n x n matrix,



and

IIAII = Sup
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T I
= Sup {v A v}

T
vv

v=Qx

These properties can also be used to derive the following

result:

Claim 1:

For any nonsingular matrix A of L(Rn) ,

Proof:

A is the sequence of eigenvalues of A, then
n

IIAII= ~l

But

n
I:
i=l Q.E.D.

Of course, this Frobenius norm can be extended to the case

of any symmetric, positive definite metric induced by G ~ O. Then

write ,

T- 1
IIAlle= {Tr[A GA]}2

and the previous result is generalized as follows:

Claim 2:

[8]

Let G RR
T

. As G is non-singular R is also non-singular
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and

[9]

and also

Proof:

[10]

1
IIAIIG~{ Tr[RR

T
AA

T ]}2"
1 1

< {Tr [RRT] f2. { Tr [AAT ] }2" = II R II F· II A II F

- 2and as Det G =[Det R] # 0

Now,

-1,R is non-singular and R hence exists.

1 1
IIAll e = {Tr[A

T
eA]}"2 =' {Tr[A

T
RR

T
A]}"2 =IIRTAII

F

The second equation follows immediately from [7].

bounds are obtained. Q.E.D

It should also be noticed that though their bounds are the

same, IIAIIe; IllATlle in general.

Because this norm II .IIG will prove to be useless in the deri­

vation of a minimal norm solution to the equation b=Xa, the following

norm has to be introduced:

1
IIAII G = {Tr [GAGAT]} "2 [11]

for any matrix A of L(Rn ) ,

where G is a given symmetric,positive definite matrix,element of L(Rn).
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Obviously for this definition,

Claim 3:

If G commutes with the matrix A,then

[12]

Proof:

The proof of this result is trivial, using the definition of the

previous norms.

Claim 4:

Q.E.D

If G= SST , [13-a]

and if furthermore G commutes with A,

Proof:

[13-b]

1 1 1 2
IIAIIG= [<G AGAT>Ff2 ~IIGIIF2 .IIAGATIIF2 ~IIAIIF·IIGIIF~ IlsllFllGllF

and,

and as A and G commute,

Q.E.D
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For fixed, bounded matrices G,Claim 2 implies that the G-norm

and the Frobenius norm of a matrix A are equivalent. This is however

not the case for G-norms,because for a given bounded matrix G,G-norms

and Frobenius norms are only equivalent on the subset of matrices in

L(R
n

) commuting with G.

Finally,Problem 0 can be restated as follows,

Problem 1:

Given a positive definite,symmetric 'matrix G in L(Rn),find

the minimal G-norm solution X* in L(Rn ) of the equation b=Xa, where

b and a are given n-vectors,with the constraint that X* must be

synunetric ••

3-Variational approach:

Let G be some positive definite symmetric matrix which is an

element of L(Rn).

a) Problem 1 consists of minimizing 1 Tr(GXGXT) over the admissible
2

set of values given that the constraints are:

Xa with aERn

The easiest way to solve this problem is by introducing

Lagrange multipliers in order to form the following Hamiltonian:

where,
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n n, A ER and B E L(R ).

Next, differentiating H(A,B) with respect to X, and using

the fact that,

T
~ [Tr [XM]] =M

aX

one obtains that,

and .LJTr [XTM]] =M

aX

[15]

~G X G + AaT +BT_ B =0

aX

or also,

But as,

X

TX-X =0,

-1 T T -1
-G [Aa +B -B] G [16]

-1 T T T -1
G [Aa -aA +2B -2B] G =0

T 1 T T
B -B = 2 [aA -Aa ].

Substituting this last result into [16],one gets,

G-l T T -1
X = - - [ Aa +aA] G [ 17 ]

2
Furthermore,X must verify the original equation b=Xa,hence,

G-l T T -1
b + - [A a +aA ] G a =0

2
or,

T T -1
2Gb +(Aa +aA )G a =0.

Solving partially in A ,the equations become,

T -1
-[2Gb +a(A G a)] T -1A(a G a)

A = _ 1 2 G b + a

(aTG-la)
-Tand multiplying on the left by a ,

[18]
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the result becomes,

(ATG-1a) = _ 1

(aTG-1a)

Substituting again this expression into [18],A becomes,

A = -
1

[ 2 Gb -
aTb

a ]
(aTG-1a) (aTG-1a)

and replacing A in [17] ,one obtains,

[19]

which is the final result.

Of course,in the case where the Euc1idien norm -i.e. only

T -1
Tr[ XX ] - of the unknown matrix X is considered, G = I = G

therefore,the result becomes,

1
X* = ----

I T
a a

aT b

T
a a

T
.aa [20]

This implies that

b) Sometimes a1so,a slightly different result is sought,in which

case,the problem can be formulated as follows:

-Find the expansion of the symmetric matrix X* solution of

-the equation b = X a ,around some known matrix X(O) ,in order to

minimize the G-norm of the difference X* - X(O) .

X* =X(O)+ D* with D* symmetric and also

that in the previous computations X can be replaced by D and b by

b - X(O) •
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Therefore, the result becomes in this last case,

and X* X(O) + D*

[2l-a]

[2l-b]

In fact, this second version of the problem will be discussed

at length later on, when studying recursive procedures to perform

similar matrix symmetrizations.

4-A recursive procedure to symmetrize the matrix solution of a linear

equation.

The procedure below is originally due to Powell (1970) but has

been later slightly generalized by Dennis (1972). The purpose for

its introduction was to generate approximations for the Hessian matrix

of a function; whereas, the previous variational method was intro-

duced by Greenstadt (1970) to approximate the inverse of Hessian

matrices.

In this paragraph it is shown, that,in fact, this recursive

method is equivalent to the previous one and that it also leads to

minimal symmetric solutions X* of b = Xa, with respect to some

well defined Euclidien-type norms.

The following procedure was proposed by Powell and Dennis:

Step 0: Let X(O) be any symmetric matrix such that b ~ x(O)a.

. 1 (0) (0) TStep 1: Construct the matrlx X = X + (b - X a)c, where
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T
c is an n-vector verifying c a = 1.

Step 2: Construct the symmetric matrix

Step 3: Restart at Step 1 until the procedure converges to X*

given by,

Remarks:

Let us make some comments before going any further.

a)-The equation b = Xa, where X is unknown, has a whole set of

possible solutions. It was Broyden's idea [2] in the case of the

"secant equation" to consider the general class of solutions of the

form X = M + (b - Ma)cT.

Clearly, a sufficient condition to have b = Xa in this general

class is,

b = Xa -+
T T

(1 - c a)Ma + (c a)b b

cTa = 1 -+ X solution.

or equivalently,

Tc a = 1 +-+ there exists d such that c

b)-All n x n matrices Xn are solutions of b

not symmetric.

Xa, but they are

All t · X(n) . b hn x n rna rlces are symmetrlc, ut t ey are not

solutions of b = Xa.
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The geometrical interpretation given at the end of this para-

graph will reveal that as the procedure goes on, the image of the
2

matrix X in Rn jumps from the hyperplane S to the convex set ~ and

so forth, until it reaches their intersection. However, it is

remarkable that the point reached through this procedure will also

be the "closest" one to the starting point X(O) ( in the G-norm sense).

*c)-It is readily possible to verify that X is effectively

*the solution of the equation b = X a, using especially the fact that

Tcal:

*X a
T

c a

T aTX(O)a) T aTX(O)a)b + c(b a- c( b a- b

* * * T-+ X X + (b - X a)c

* * Xn X(n) .But X is also clearly symmetric -+ X lim lim
n-+ CXl n-+ CXl

Curiously, no constructive proof of this result exists in the

literature.

Finally, one can also notice that this procedure shows the

remarkable property, that for each symmetric starting matrix X(O) ,

*there exists a symmetric terminal matrix X , solution of b = Xa.

In particular for x(O) = 0

Geometrical interpretation:
2

Consider once more the equation b = AX, where X ERn and
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2
A sL(Rn ,Rn). We have already defined in the first section the sym-

n(n - 1) n 2
metry hyperplane S of dimension 2 in R ,along with the con-

2
vex subset ~ of Rn containing all solutions Z of equation [1].

Powell's symmetrization procedure can be given a nice geo-

metrical interpretation using these sets S and~. Consider the
2

point ~(D) in Rn , since X(D)is symmetric, ~(D)belongs to S but

not to the convex set ~,since it generally does not verify equation

[1]. From x(D), using the previous recursion, one obtains the

point ~l, which corresponds to xl, a non-symmetric solution of [1].

1
~ belongs hence to ~, but not to the symmetry hyperplane S. The trans-

IT 2
posed matrix X corresponding to xl, has as "image" in Rn the

mirror image of Xl in S. ~l is then nothing else than the projection

1
of X on S. The matrix x(l) corresponding to !(l) is , therefore,

~, or, equivalently, in matrix

symmetric, but it does no longer verify [1], which proves that it

does not belong to~. The procedure starts again from x(l), until

*it converges to X belonging to S

*form, until the matrices converge to X •

2of dimension n

S

Symmetry
hyperplane
of dimension
n(n - 1)

2
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The last point which has to be discussed is whether or not

*the solution X obtained by this method has some norm-minima1ity

property •

Comparison between the minimal G-norm solutions and Powell's solution:

*The minimal G-norm solution will be referred to as XI ; whereas,

*the Powell-type of solution will be referred to as XII.

More specifically,

*X =
I

1 [23]

and for x(O) 0,

The similarity between these two formulas is especially striking

if one chooses,

[24 ]

c
-1

G a
T -1

a G a

[25]

Tfor which the condition c a = 1 is obviously verified.

*As XI is the minimal G-norm solution to Problem 1, it becomes

oJ~ *
clear that XI = XII for the particular choice [25], and it follows

*that XII is also minimal G-norm. This result can be condensed in the

following Corollary.

Corollary:

*There is a symmetric solution X to equation b Xa minimizing
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also Tr[GXGXT] , where G is agiven n x n positive definite symmetric

matrix. This solution is given by,

1x* = ---­
T(a Ga)

where a , b s R
n

and G s L(Rn), and it is also the limit of the

following sequence as n goes to infinity:

X(n+l)

2

T -1a G
T -1

a G a

for n=O,1,2,.

This corollary shows that basica11y,Greenstadt's variational

method and Powell's recursive method- are generating the same kind of

updates.

5-Expansion of a symmetric matrix solution of b=X a ,around any given

matrix x(O)

Let G be some given positive definite symmetric n x n matrix.

It is then possible to consider in L(Rn ) the following G-norm,

II AI IG = --.L Tr [GAGAT]
2

for any matrix A element of L(Rn),

norm which also induces the G-distance

dG[ A,B ] =1 IA - BI I = --.L Tr[ G(A - B) G (A - B)T]
G 2
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defined for any matrices A and B element of L(R
n
).

A slight generalization of the initial problem is analyzed

in the following section.

Problem:

(0) (0) (O)T
Given any n x n matrix X - i.e. generally X - X j 0 -

*find the G-closest symmetric solution XG of the equation b = X a ,

where b and a are known n-vectors.

Solution:

Consider in L(R
n ) the n x n matrix E defined as,

X* = X* = E + X(O)
G

and let

One has to minimize ! Tr[ GEGET ] ,
2

given that,

[26]

b = E a and

This leads us to the construction of the following Hamiltonian,

T
H = 1_ Tr[ GEGET ] + AT( E a - b ) + Tr[r ( E+X(O)_ET_X(O) )]

2

T
or H = 1_ Tr[ GEGET ] + Tr[(Ea -b~AT]+ Tr[ r( E+X(O)_ ET_ X(O))] [27]

2

Next,differentiating with respect to E and using the property

that,



~ Tr[ AM] = MT

dA

- 27 -

arid _d_ Tr [ ATM ] = M

dA

But as,

~ = GEG + AaT + rT - r = 0
dE

T T
GEG = - [Aa + r -r ]

-1 T T -1E = - G [Aa + r -f]G [28]

Substituting this result back into [28],

T
E = - ~[ x(O)_x(O) ] _ G-l [ AaT + aAT _ AaT ] G-l

2 2 2

[29]

E = 1__[ x(O)_X(O)T] - G-l [

2

but still,E must verify

E a = b

2
[30]

Solving partially in A one obtains,
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T -1

a G a

- 28

[31]

T -1
If one multiplies this expression by a G on the 1eft,one

gets,

T -1
a G A

1
T -1

a G a

and as
T -1 T -1

a G A = A G a

T -1
one can solve the previous equation in a G A,

T -1
a G A

T­
a b

T -1
a G a

[32]

Substituting this resu1t,back into [31],

A 1__
T -1

a G a
[ 2Gb

T-
a b a

T -1
a G a

T
aT(x(O)_x(O) )a (0) (O)T

T -1 + G(X -x )a
2(a G a)

and replacing this value of A into [30],the expression becomes,

1 (aTb) a
A = - T -1 [2Gb - T-1

a G a a G a
T T

X(O)_ X(O) X(O)_X(O)
with, b = b + a = b - a

[30] + E

2

1

2

2

T
[ X(O)_X(O) ] + --=1___

T -1
a G a

T-
baTG-1 + G-1a-b _ a b -1 T-1

T -1 G aa G
a G a

2

or finally,

*X

T T T
X(O)_X(O) 1 X(O)+ X(O) T -1 -1 X(O)+X(O) T

-----..,;;.:~- + _--=:..-_[ (b- ala G +G a(b- a)
T -1 2 2

a G a
T

T X(O)+X(O) -1 T-1
... _ a (b- a). G aa G

2
T -1

a G a
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Theorem:

Given any matrix X in L(Rn ) , the G closest symmetric matrix

and, hence, is given by:

*X solution of b = X a

X + X
T

2

is also G-c1osest to the symmetric matrix

*X +

T X + XT G-1aaTG-1
a (b - )2 a. T-1

a G a

Geometrically this also means that the projection of any matrix

to the projection of the symmetrical matrix

on S n~, the set of a1~Symmetric solutions of S = Xa

X + XT

2

same set.

is also equal

on the
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CHAPTER III.

State-space model and filtering for minimizing a function.

I-Introduction and statement of the problem.

Consider the function f:Rn
7 R having the property that it

is twice continuously differentiable in Rn and let g(x)=Vf(x) be its

gradient.Assume that the problem consists of finding the minimum of

such a function-we are not concerned here with any existence problem

and hence,we assume that at least in a certain domain D,such a minimum

exists-.This minimum will then be given by the solution of g(x)=O,

which corresponds to a Newton-type problem.

Assume now that a particular sequence of points (~,k=0,I,2,.)

in R
n

has been found:the previous equation can then be decomposed

according to its Taylor expansion:

[I]

for k=O,I,2,.

where G(~) is the Hessian matrix of f computed at point xk,and

2
O( I~ -~ I ) is a second order term in (~+I-xk),termwhich is constantly

k+I k k

equal to zero in the case of quadratic functions.

Now,in this equation [I] x
k

and ~+I are assumed to be known

and the gradient increment g(x )-g(x
k

) is supposed also to be exactly
k+I

computable, but neither G(x ),nor the correction term are known with pre­
k

cision.The next paragraph shows how to transform equation [I] into a

set of stochastic state-space equations and then how to"best" estimate
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the value of G(x
k
).

2-Presentation of the model.

The state-space equations and the model presented in this section

were largely inspired by the work of S.W. Thomas [28] though their

interpretation slightly differs from his. A Kalman filtering approach

will be used to compute the leastsquares estimate of the Hessian

matrix of f(.). In the present case the Kalman filtering method

will be utilized as an identification step in the reconstruction of

the dynamics of a given system. Thereby, it will differ from Thomas'

interpretation since he viewed this method as a peculiarity generating

formulas similar to Broyden's, as far as the updating of the Hessian

matrix is concerned.

Consider now the following functions:

g(x + es
k
), where sk represents the

Fk : [0,1]

such that Fk (8) = F(x
k

+ 8S
k

)

for all k 0,1,2, ..•

difference

and Gk : [0,1]

such that G
k

(8)

+ L(R
n )

F'(xk + esk ) = g(xk + es
k

) for all k = 0,1,2, ..

Now assume that F(.) and the points are such that

F'[xk T 8Sk ] for k = 0,1,2, ••. is a matrix valued Wiener process.

This means in particular that for all k = 0,1,2, ...

Gk[xk + 8sk ], V9s[0,1] is such that,
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a) [G
k

(8), 8s[0,lJ] has stationary and independent increments,

b) for given 8 in [O,lJ, G
k

(8) is normally distributed,

c) it has zero mean, i.e. E [Gk (8) J for all 8s[0,lJ.
2

Now , using the isomorphism existing between L(Rn ) and Rn ,
2

that is between the set of all n x n matrices n compute theand R , to

covariance of G ( see also Parzen (1962)):
2

for each GsL(Rn), one can isomorphically associate a vector G sRn

such that,

if G

g~
n

where g. s Rn is the i-th row of G.
1

By definition, the covariance of a matrix valued process G is

also the covariance of its isomorphically correspondent vector valued

process G. Therefore,

Q(81 )]T}

2
with Ck ~ 0, CkSL(R

n
)

= E { [Q(8 Z) - Q(8
1

)] [Q(8
Z

)

ckl82 - 8
1 1

for all

and all k 0,1,2, ...

To simplify the computations , assume that C
k

is diagonal

and that it takes the form,
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which simply means that the rows of G
k

(8 2) - Gk (8l ) are assumed to be

uncorrelated with one another; therefore, because of the normality

assumption, they are statistically independent.

A state- space model can than be constructed to describe the

I
pair [F (xk), F(xk+l ) - F(~)]. For this occasion, the previous

notation is simplified by using:

gk Fk(O), gk+l= Fk+l(O) = Fk(l)

uk gk+l - gk = Fk(l) - Fk(O)

G
k

(0)
I

G
k = F (~)

then,

Gk+l
G

k
+ V

k

uk Gks k + w for all K 0,1,2, .•.
K

[4 ]

[5]

where,

is the matrix valued Wiener process previously described,

and,

w
k = Fk(l) - Fk(O) - Gk(O) sk

1

wk JF~(e) . skd8 - Gk (O)sk

0
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for all k=O,I,2,. [6]

The mean of w
k

is, therefore, clearly zero since,

o for all k=O,I,2,.

and the joint noise process

(W
Vk

k
)

has the following covariance:

ST
T T k

VkVk Vkwk I 2
n 2

Qk
E II sk II

T T Sk II sk 112
wkVk wkwk

I
2 3

n

equation [7]

2
where Q

k
is an element of L(Rn

+n) and where Sk is defined by

[:~

with the property that

2
belonging to L(R

n
,Rn) for all k=O,I,2,.

[8]



35

For more details,see the Appendix where the computations

to get Q
k

are explained.

To complete this model, some more assumptions are needed on the

statistics of the initial value GO.In this model we shall assume that

GO is a zero-mean, Gaussian matrix process taking its values in L(Rn
)

and having as covariance ITO such that :

o and
2

ITO is an element of L(Rn
)

3

F~Dm equation [5] it appears that the state of the system

can be described as an element of L(Rn
) ,or equivalently , using

2 2
the isomorphism between L(R

n
) and R

n
, by the n -vector ~ .

-~

The true process noise is the'sequence ( V
k

k=O,l,2,.),sequence

which, because of the non-linearity of [1] induces an observation

II sk" 3 Inoise ( w
k
,k=O,l,2,.) with covariance n and with a high

correlation with ( V
k
).

The observed process is the gradient increment process (~,k=O,l,2,•.. )

which according to equation [5] is corrupted by the observation noise

(wk). At this point, let us notice that, in fact, the set of equations

given at [5] can be rewritten as,

2

l~+1 ~ + ~ k=O,l, ••• ~, ~ Rn

= Sk~ + wk wk ' uk Rn
~

which resembles more the conventional vector-state and vector-obser-

vation models encountered in the literature.

[9]
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Before discussing this model , let us regroup its assumptions

in the following manner:

Model:

{

Dynamics:

Observations:
[10]

with k=0,1,2,.

+ GO is an n x n matrix valueQ, Gaussian random variable,with

mean,

and covariance,

Cov [20,20 [11]

where Po is a positive semi-definite matrix in L(Rn).

is a Gaussian random process taking its

I 2
n

covariance,

+ (::). k=O,1,2,.

values in L(Rn ) x Rn , with mean (0) and

ST 0
k

2

I
n

3

In S.W. Thomas' model [ see pp. 42-43 of ref. 28 ], the state
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is the couple (gk' G
k

) element of Rn
x L(R

n
), and the observation

is a function FksRn identically equal to the first component of the

state for each k = 0,1,2, .•.

The dynamics were described by,

[::::] = ~ [::] + [~] [12]

for all k

and,

<Ilk

n n
0,1,2, ... , where (gk' Gk ) sR x L(R )

[
I Sk]
01

2
n

and the observations were described by,

and [13]

~ [I· 0]

nfor all k = 0,1,2, ... , where Fk sR .

At each point ~' F
k

is measured with high precision and conse-

quently gk as well. Thomas formulates his problem as consisting

of estimating and Gk+l/k given all previous F. (or g.) for
J J

j = 0,1,2, ...k.

where

This is typically a singular filtering formulation,

and strictly speaking, no Kalman Filter can be constructed.
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The classical way,however, to transform this mathematically

ill-posed problem is to substract the deterministic -or known-

parts from the state.

This leads to,

for k=0,1,2,.

Consider now, that after having reached point ~ , uk is

observed but is known to be corrupted by some observation noise

w
k

of known covariance. From this new observation uk and all the

previous ones - which by simple addition reconstruct the gradient gk- ,

the least squares estimate G
k
+

l
/
k

of G
k

+
l

is sought. This formulation

now perfectly fits into the standard Kalman filtering theory,which

will be appl~ed in the next section.

In conclusion, consider again the Taylor expansion [1] :

for k=0,1,2,.

Clearly if the function f(.) which has to be minimized,

is quadratic , this expansion is reduced to its first term ,

if f(x) = 1 T T
2xQx+bx+c.

In the case of any twice continuously differentiable function

f(.) , the model [ see equation 10 ] replaces the correction term

2
0[/ Iskl I ] of order at least two in sk by a Gaussian noise process

(wk ) with covariance proportional to I Iskl 1
3

.This last indication
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should reinforce our confidence in the consistency of the proposed

model.

Other remarks:

In some sense, one can consider that the covariance of the

observation noise is a relatively good measure of the distance

existing between f(~) and its local quadratic hull.

\

____f(x)

The whole previous derivation was based upon the assumption

that the sequence of points (x
k
,k=O,1,2 •• ) converging to the minimum

of the function was known. This conjecture allowed us to compute for

each value of k, the step-length sk' as well as all the noise

covariances. However,this is not the case in general and one has

also to construct this sequence of points (~) by using for instance

Newton's method,

or,

-1
~+l-~ = - [G(~)] gk

-1
sk = - Gk gk

for all k=O,I,2,.

[14]
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3-The Kalman Filter:

Claim:

Assume that the initial estimation error covariance is given by

[11]. The minimum mean squares estimate G
k

associated with the previous

model is then given by:

[P +.lL.tlL I]
k 2

[15]

Go given

and its error covariance by:

for k 0,1,2, •.•

l
pk+1 = II sk II I

Po given

Proof:

for k = 0,1,2, .•.

[16]

Considering the previous model in its vector form (i.e. with
2

state ~ERn instead of GkEL(Rn ) ):

~~+1 =~ + ~

~ = Sk~ + wk for k 0,1,2, ...
[17]

Note that

is the error covariance after the k-th step.
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Using the notation,

Qll (k) = II sk II I 2
n

Q12 (k) = Q~l (k) = til sk II S~ ,

Q22 (k) = t II sk 11
3
In'

the resulting Kalman Filter is, for instance, given by Theorem 6.42

in Kwakernaak and Sivan [14]. Applying it to this model,one gets,

A A A

~+l = ~ + Kg(k) [Uk - Sk~]

with

K (k)
g

and

or also

starting with [
Po

II =
o 0

2
sL(Rn ) bloc diagonal, and assuming that

IIk has also the same structure,

2
sL(R

n
), and that Pk = P~ sL(Rn )

it follows that,
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3

K (k) [II +; II sk II I 2 ]ST lLtil I 2
T ]-1[ + sk Pkskg k n k

3 n

K (k)
[ Ilk + +II sk II In2 ] S~

-7- =g T [P +Illilsk k 3
In ] sk

and henee that,

[ Ilk+ +II sk II I 2] S~Sk [II k+ +II sk II I 2]
II
k

+
l

= Ilk + II sk II I 2 - ~n~ . n_
n

T [P +illJl I ]sk k 3 n sk

-7- IIk+l = Ilk + II sk II I 2 - ---------------- I 2
n n

P + l.lJU1 I ] sk
k 3 n

It becomes clear that II K+l remains bloc-symmetric and that,

if o ) , then ,

Pk+l

hence~

[ Pk + -+llskIIIn]sks~[ Pk + +llskllIn ]

T Ilskll
sk [ Pk + 3 In] sk
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II + 1LtlL I ] ST [ u, - S G]
k 2 2 k K k·=k= G + -....:n~ _

-=((

T [p + ~II ] s
sk k 3 n k

and after rearranging the terms,

G = Gk + [k+l
for k=O,1,2.

Q.E.D

Notice that the Kalman filter formula [15] is a member of a

general class of updates of the form,

[18]

These formulas have the advantage of being particularly simple,

however, they also offer the following major inconveniences.

In the case of function minimization problems ,where f, the

function to be minimized is assumed to be continuously differentiable,

G
k

has the meaning of being the Hessian of f(.), and hence should be

symmetrical. Consequently, it is somehow disturbing to construct a

family of non-symmetrical estimates G
k

•

A second property is also usually required in the gradient

algorithm literature. At each step k, the estimate G
k
+

l
is usually

required to verify the so-called "secant equation",

for all k 0,1,2, •.. [19]
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Now,forgetting for a moment the previous results obtained

by application of the minimum mean squares filtering theory, and consi-

dering the following new updates,

Attempting to also verify the secant equation , it is possible

to write,

A T
+ ~ = GkSk + [Uk - Gksk]cksk

T
cksk ]

[20]

which means , also, that there exists some vector ~kERn verifying,

[21]

Moreover, this condition appears to be necessary and sufficient

for any matrix update Gk+l obtained through the class [18] to verify

also the secant equation.

As the Kalman filter [15] belongs to the general class [18], but

with a vector c
k

equal to,
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it implies that the secant equation [19] is not verified.

In Chapter V , it will be demonstrated , using the results

of Chapter III, how to best approximate in the Euclidien norm sense

the least square estimate G
k

+
l

' previously derived, in order to

construct symmetric updates which also verify the secant equation [19].

4-Inversion of the Kalman filter.

In the previous section, we saw that the least squares estimate

of Gk+l ,the Hessian matrix of a function f(.) computed at the point ~+l

was given by,

where Pk is generated by [16].

[22]
for k=O,l, ..

Let us assume for a moment that G
k

is non-singular and that

-1
its inverse ~+l = [ Gk+l ] exists ,then,

Claim:

If ~ exists ,then

1\+1 H + -1
k uk ----------- [23]
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where, T P + 1Lill Isk k 3 ] sk
> 0 [24]a

k II sk IIT I ]sk Pk + 2 s
k

is the inverse of Gk+l .

Proof:

[25]

Our proof is based on an identity due to Sherman and Morrison

which can be written as follows:

l·f B-1 . heX1sts, t en ,

[ B - T -1 -1 -1 T -1oxy ] B - TB xy B
[26]

_1_ + _I_ T -1y B xT 0

Some straightforward algebraic computation would be needed in

order to verify the previous result , but being irrelevent to the

subject , it will not be attempted here.

Now, consider the following correspondences between [22] and [26]:

-1
B G

k
0 a

k
~

d
k
~ d

k x ~ Gksk -~

-1a
k 0

T =

-1 T T -11 + ak dk[sk-l\uk ] oy B x-I
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and hence from [26] , one obtains ,

l\:+l l\:+ [23]

Q.E.D

Of course there is no more reason now for deciding that l\:+l

should be symmetric in [23] , nor to have ,

s =
k

the secant equation, verified. Consequently, the updates given

by [23] do not belong either to the class of Broyden's formulas

described by

with

l\:+l = l\: + [ sk - Hk~

T
c

k
uk = 1 .

5-A nonlinear stochastic regulation problem.

Consider once more the problem of minimizing a function f:Rn
+ R

*which is assumed to be twice continuously differentiable and let x

The problem consists then

be its minimum. A necessary condition of minimality for such a

* *Vf(x ) = g(x ) = O.function is that

of building a sequence [~,x ~ 0] starting at some point xO' such

*go and converging to x. A necessary condition to

obtain such a sequence is clearly through the corresponding sequence

of gradients [gk,k ~ 0], that converge also to zero as k goes to
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infinity_

The state space equations [10] representing our system are:

Gk+l = Gk + Vk

uk = Gksk + wk

for all k ~ 0

[27]

where [V
k

] and [w
k

] were two Gaussian perturbations, and uk represented

the gradient increment at point x k ' that is, uk = gk+l - gk- An

equivalent representation of the same system is then the following:

( ~+l)
gk+l

+

( 0
I ) (~)

[28]

for all k = 0,1,2, _

in which no perturbation alters the output Yk-

(:) is the input noise with given covariance - see Appendix 1.

( 2o
g0

) is also Gaussian with mean

A

(~) and covariance
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Yk takes value gk at each point ~ and can be interpreted as the

output of our system.

Apparently there is no deterministic input to the system, but

only noises; this is not quite so since sk or equivalently Sk

(remember that by definition Sk~ = Gksk ) is a multiplicative input

to the system. Consequently, the problem can also be viewed as consisting

of finding the function ~(.)such that sk =~k[Gk'Yk] and, which stears

the output to zero. In fact we have a regulation problem in the sense

that the output Yk must go to zero as k increases, but perhaps a better

appelation would be a zero-target problem, as we are interested in only

*the first time (or point x ) the system reaches a level zero.

One possibility, as usual, is to restrict ourselves to linear

feedback laws for ¢k(.) of the form,

[29]

In order to achieve this goal, the classical method consists of linea-

rizing <I>k( ) around the estimates of its arguments, estimates

which are usually obtained through a filtering stage.

A

Sk = <I>k[Gk,gk Yk] - ~k[Gk,gk]Yk

This leads to:

[30]

By comparing now this result with Newton's method which uses

the fact that,

*x
-~

-1= - [G] g
k k

a reasonable guess for ~k[Gk,gk] is the following,
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[31]

if Gk is non-singular

for each k =0,1,2, ...

This whole last dicussion then can be condensed in a bloc

diagram:

UTPUT

Gk+1
1 G

k
~

Uk gk+l gk
";",+", sk ;+ - ~-- ~~... .-

'-oj'

~ ~ - ~

a

I ... I -.......

-I
.... <I>- K

,.. uk

•..... "-r sk "., ';J

A

Go
A

l Gk+l
A

-0+-G
k ~

-'" :~

I..... K ."g
KALMAN FILTER

I I --
'"
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CHAPTER IV

The set estimation approach applied to function minimization.

I-Introduction.

In the previous chapter we presented a Gaussian model to describe

the evolution of the Hessian of a function along each point of a mini­

mization algorithm, and then used the techniques provided by linear

filtering theory to construct a recursive sequence of estimates (G
k
).

Probably a more realistic method would consist of considering that

Vk and w
k

' respectively the input and observation perturbations of

the system considered, have unknown statistics but remain bounded.

This will be achieved by using the so-called recursive set estimation

procedure originally due to Schweppe [26] and applied later to the

control field mainly by Bertsekas [3].

The basic idea of this procedure is to combine knowledge of

the systems dynamics with the observations, as well as the bounds, in

order to specify a time-varying set in the state-space, which always

contains the true state of the system. Hence, the actual estimate

consists of a set in state-space rather than a vector ( or a matrix

as in the case we considered). Unfortunately, this set is usually

too hard to characterize and this led Schweppe to introduce the concept

of minimal bounding ellipsoids containing the previously obtained

set.
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The idea of applying the set estimation technique to obtain

new gradient algorithms is not new, since it was introduced for the

first time by Thomas (see 28); nevertheless, for the sake of completeness

we shall devote a whole chapter to it, emphasizing more the model

building aspects than the derivation of each result.

In section 2, a short review of some useful concepts, such as

the one of support functions for closed convex sets will be intro-

duced and particularly applied to the case of ellipsoidal sets.

In section 3, a discussion will be directed around the correspon-

dence between unknown but bounded models and ordinary linear Gaussian

ones. The analogy between correlated Gaussian noises and unknown

perturbations bounded by skewed ellipsoids will be particularly

emphasized. This last part of the discussion will enable us to choose

a model of the skewed ellipsoid type to represent function minimization

problems.

Finally, in section 4, the sequences (G
k

) and (TI
k

) will be

derived according to Bertsekas [3] and Thomas' works [28].

2-The basic concepts of set estimation theory.

nConsider any subset Q of R. The first notion which we will

need is that of a support function.

Definition:

Given a non-empty set n in Rn , the support function of Q, is a

mapping from Rn to R defined by:
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Sup
zd1

T
<y,z> [or just Sup y z]

zd2 [1]

and the following Lemma, due to Rockafellar (see Rockafellar p. 113),

Lemma 1:

n
Let n CR be non-empty, closed and convex. Then S1 is completely

determined by its support function. In particular, S1 may be defined by,

n(y)

ZER
n

: <y,z> ~n(y) for all YER
n !

Now, consider the case of a closed, compact ellipsoid S1 with

equation,

S1 = 1 x : (x - x ) T r-
l

(x - x ) ~ 1 l
c c - ~

where x is the center and r is a positive definite, symmetric matrix
c

describing its excentricity. The support function of S1 is given by

the following Lemma.

Lemma 2:

The support function of the ellipsoid S1 [3] is given by,

1
<y,x > + <y, ry> 2

c

Proof:

From the definition of n one may write,

[2]

[3]

[4]

n(y) Sup
XES1

<y, (x - x ) > + <y , x >
c c

As
1

r Z s.t.

r is a positive definite matrix, there is a self-adjoint
1 1

r = rz rz .
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From [3] and the Cauchy-Schwartz inequality, one now deduces

that,

1 1
<y,x - x > <fZ y, (f) -2" (x - x »c c

1
-1< <y, fy> Z < (x - x ), f (x - x »

1 c c

< <y, fy> Z

n
for all y sR.

_1
Now by [3] z = <y,fy> 2 fy + x is contained in Q, and hence

1 c

verifies <Y,z - x > = <y,fy> Z Q.E.D. [5]
c

Lennna 3:

The support function of the vector sum of two closed, convex

sets Q
i

and Q
Z

is the sum of the support functions of each of them.

Proof:

then S has as support ,

T
Sup v Y =
vsS

T
Sup (xly
xlsQl

xZsQZ Q.E.D.

Consider now the following linear system:

dx(t)
dt

Xo given

F(t)x(t) + G(t)u(t) [6]

y(t) = H(t)x(t) + w(t) [7]
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where u(t) and w(t) are unknown but bounded perturbations belonging

respectively at each instant t to the closed, convex sets D
l

and D
2

and where also the initial state xo belongs to some given closed, con­

vex set DO. If, furthermore, ~(t,s) corresponds to the transition

matrix associated to the matrix F(t), the solution of equation [6]

can be written as,

~(t,s) E L(R
n

) for (t,s) E [O,T]
t

x(t) = ij>(t,O)x
O

+ f ij>(t,s)G(s)u(s)ds,

o
t ~ 0 [8 ]

As we implicitly assume that F(t) is such that ~(.,.) is a

bounded linear operator, the set,

being the image of a compact set, remains closed and convex for

any instant t.

Now the set,

[9]

, t

of ij>(t,s)G(s)uds, u£Q1 f [10]

remains also closed and convex for all t because of the linearity

of the mapping u + t, and if D(t) represents the set of all possible

reachable states, we clearly see that,

[11]

Consider now also the set of all possible states which are coherent

with the observation y(t) at time t,

[12]
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By definition the set estimate will be the intersection,

n (t) = net) n n b (t)ss 0 s
[13]

If n
l

and n
2

are ellipsoids, it is easy to verify that n (t)
u

and n~(t) are also ellipsoids, but unfortunately, as the use of Lemma

2 proves it, net) has no reason for remaining also an ellipsoid ( the

sum of the support functions of the two ellipsoids does not conserve

T T 1:-
the structure y X o + [y ry] 2, except for some very special cases).

In the same way, although n
2

(t) is taken to be an ellipsoid,

n b (t) is no longer an ellipsoid, nor the intersection n (t).o s ss

However, if one bounds each of these sets by bigger ellipsoids, Schweppe

[see 26] proved that a recursive formula could be carried out for thp

centers xt and the kernels ret) of the ellipsoid

the "true" set estimate n (t).
es

n (t) containing
ss

Now, before starting to compare ordinary linear Gaussian models

with such unknown but bounded perturbation models, a last comment

must be made about the case when no perturbation affects the obser-

vation variable yet). In this case, in fact, the set of all possible

states coherent with the observations yet), that is

to a hyperplane of equation,

>lobs(t) = I x : y(t) - H(t)x = 0 !
Sl b (t) reduceso s

[14]

We shall see in the next section that this case is of particular

interest as the intersection of the set net) with the hyperplane n b (t)o s

will be much easier to compute. Furthermore, if net) is included in

'"
an ellipsoid net), the intersection net) n n b (t)o s

will also be
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an ellipsoid (the intersection of an ellipsoid with a hyperplane of

lower dimension always being an ellipsoid), but possibly degenerate.

[see Appendix 2]

Finally, in the remaining part of this chapter, we shall consider

the case where t is a discrete variable taking values 0,1,2, ...

3-Three types of estimation problems on unknown but bounded models.

Take the case of a linear discrete-time dynamical system described

by,

k = 0,1,2, ... [15]

on which noise-corrupted measurements are performed,

[16]

~ERn is the state of the system, UkERr is an input disturbance vector

and WkERP is the measurement noise vector. ~,Bk,Ck have the appro­

priate dimensions and N corresponds to the time horizon of this problem.

In this section, the recursive ellipsoidal state set estimates,

n (k), shall be constructed, with the following three different typeses

of constraints on the unknown quantities xO,wk,u
k

.

The first type of constraint is the "energy constraint" type

described by,
N

[17]~lL
k=l

where ~,Qk'~ are given positive definite symmetric matrices for

all k = 0,1,2, ....
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Practically, the second type is the more important case, which

will be designated as the "separate, instantaneous, constraint type".

The uncertain quantities are constrained at each instant of time to

lie within the ellipsoids,

T T
uk_l Qk-l uk- l ~ 1

T -1
wk Rk w

k
~ 1 k 1 ••• N

[18]

Finally, the third type, which will be necessary to study a

gradient algorithm, will be referred to as the "global instantaneous

constraint" type described by,

[19]

T

~) is required to be globally positive definite

for each instant of time k.

The first two types have already been studied by Bertsekas in his

thesis [3, see in particular Chapter IV]. He was able to derive in

both cases a recursive procedure to construct at each time k an

ellipsoidal estimate for the set of all states, consistent with

the measurements zk. Furthermore, his resulting estimator, though

similar to the one proposed by Schweppe [26], has two advantages-
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his gain matrices are precomputable , and a time invariant structure

exists to the problem, obtained as the limit, when N the time horizon

becomes infinitely long.

The third case shown to be related to the correlated Gaussian-

input, Gaussian-observation noise model. The estimation problem corres-

ponding to this case will be solved by noticing that such systems are

in fact equivalent to perfect observation situations with, however,

noisy inputs driving them.

a) The energy constraint case:

The way to solve the problem is to consider at each instant

f . k h 1· Lk:Rn+N(r+p ) ---'-- Rn and Dk:Rn+N(r+p ) ---'-- Rkpo tlme , t e lnear mappings ~ ~

such that,

for

and

T
v T... ~) [20]

[21]

[22]

for all k 0,1,2, ... N

The energy constraint [17] implies that the vector v belongs to

the ellipsoid,

\¥Q 0

R ] £L(Rn+N<r+p»

0

V vsRn+N (r+p) : T -1 Mv M v ~l = Qn-l

0 R
l

n
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Calling V
k

the set of all possible vectors v consistent with

the measurement vector ,

One can notice that as V is an ellipsoid and V
k

is the intersection of

V Wi~h manifold A {V: !;k = DkV} , V
k

is also an ellipsoid, as well

as Qes(k) = LkVk obtained through the linear mapping Lk ·

The final result can be found in Bertsekas [3, for example, see

Proposition 4-2],

Q (k) = 1x:es
A '1'

(x - ~) L~I(X - xk) ~ I - 6
2(k)!

k 0,1, .•• N

[24 ]

where L
k

is given recursively by the Riccati equation,

-1 CT R-l T BT ]-1L
k k

C
k

+ [~-l Lk_l Ak-l + Bk- l Qk-l k-l

La \l!

and

~xk + Lk+l
T -1

[zk+l - Ck+lJ\xk ]
{ ~k+1

Ck+l ~+l

X o 0

for

[25]

[26]

...+
[27]
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b) The separate instantaneous, constraint problem.

Contrary to the previous case, the problem becomes very difficult

when instantaneous constraints defined by inequalities of the form [18]

are given for each of the unknown perturbations, and, at least for the

moment, no exact solution to this problem has been worked out.

In Schweppe's work [26], the main idea for solving this problem

is to bound recursively by ellipsoids the convex sets of all reachable

states defined for every instant k in time by the conditions [11-12-13].

In Bertsekas' work [3], however, the same problem is transformed in a

first stage into a problem of the energy constraint type, and then,

solved by the same methods as in part a). Although the last method

leads to some nicer results than the first one, especially in terms

of their aSYmptotic behavior, their exact form will not be discussed

here, since their relevance to the present function minimization is

quite questionable.

c- The global instantaneously constrained set estimation problem.

Problem:

Consider the dynamical system described by,

{ "Ie+1_= '\"Ie + Bk~

zk - Ckxk + wk

with

k = 0,1, ... [28 ]
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and, where ~,Bk,Ck are known matrices of appropriate dimensions.

The initial state Xo is unknown but bounded by the ellipsoid,

r20
[29]

where ~o is a positive definite symmetric matrix.

The perturbations uk,w
k

are jointly bounded for each instant in

time k, by the ellipsoids,

[30]

k 0,1, ...

Q
k

ST

)k
where

11\
> 0 for all k.

\ Sk

Find the recursive procedure to build the ellipsoid set estimates

of the state x
k

for each time k, given the previous observations

Equations [28] have to be transformed, by defining zk such that,

k = 0,1, ...

and [31]
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The equation describing the dynamical evolution of the system

is now,

(~+l)
Yk+l

k=O, I, 2, .. [32]

whereas, the observations are described only by,

[ 0 and k=0,1,2, •..

The state-space has a dimension augmented from n to n+p. Thus

also the problem which has been initially formulated, in equations

([28] - [30]) is now transformed into an "instantaneous constraint"

type of problem but with perfect observations.

Assuming that at time k,

as support function,

T T
(~, Yk) belongs to an ellipsoid having

[33]

The support function of the set containing all possible values taken

by T T T
(~+l' Yk+l) , can be computed using Lemma 3,

I
2
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Using now a majoration technique also used by Thomas [28] ( see

T T T
equation 2.38), the result is that all possible states (xk+I'Yk+l)

are also contained in an ellipsoid with support function ,

nk+l (vl ,v
2

) = «v
l

,v
2
); (~~, Ckxk + Yk » [34]

~ :J Ek [:

CT T

~]
I

k BkQkBk 2
. .. + «v

l
,v

2
);

lC
k I J

+ (vl ,v
2
»

l °
In order now to obtain the set estimate of (~+l ' Y~+I)T which

is also the set of all possible values consistent with the observation

8k+1 (taken at the same instant of time), one has to compute the

intersection of the ellipsoid defined above, with the manifold,

8 - { 8ERP : 8- Y }k+l - - k+l

This intersection is also an ellipsoid with center defined by,

[35]

where,

for k=O,I, ••.

and

'¥O > O.

[36]
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The ellipsoid itself can be described by,

{X£R
n

: < (X-~+l)' [El1-E~lE;~E12 ]-1 (x-~+l» ~l-Yk}

where, [37]

These equations can be derived directly following the method

indicated here or they can also be derived as a limiting case , when

the observation noise becomes zero, of Schweppe's results ( see [26]

pp. 168).

4- A set estimation problem for minimizing a function.

In this section we review, following Thomas' work [28], how the

stochastic model of equations (Chapter 111-10,11) can be transformed

into an unknown but bounded noise model with global instantaneous

constraints. Finally, a recursive solution for the estimates G
k

is

stated.

Consider once more the case of a function f: Rn+R twice

continuously differentiable, such that, Vf(x) = g(x) and Vf 2 (x)

*Let x be its (possibly local) minimum and let D be some convex

*neighborhood of x. It is finally assumed that,

G(x).

L>O [38]
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Let us introduce also the continuous mappings:

G
k

[0 1] -r L(Rn)

gk [0 1] -r Rn

uk [0 1] -r Rn

such that for each k = 0, 1, 2 •••

G
k

(8) G(x
k
+ 8s

k
)

gk (8) = g(x
k

+ 8sk), and uk (8) = gk-l(8) - gk_l(O)

The there exists (see Lemma 1.1 in [28]) a Lebesgues integrable

functiol1 Uk

and

[0 . 1]

[39]

for all k=O,l, ... and all 8E[0,1]

On the other hand,
8

gk (8) = gk (0): JGk (t) skdt

or uk- 1 (8) = ~ Gk(O) skdt

o 8

uk_1(O) GkOsk + ~ [Gk(t) - Gk(O)]skdt

o
for all 8E[0, 1]

Computing the expressions in [39] and [40] at point 8= 1, one

gets that,

[40]
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for k=O,l, •.•

[41]

Let GO be the unknown but bounded initial state of the system

belonging to the set,

[42 ]

which represents its set estimate with ITO>O.

Comparing equations [41] to [9] we notice that the input noise V
k

and the observation noise w
k

have for expression,

1

Vk = J Uk(t)dt

o 1

wk = f [Gk(t) - Gk(O)]skdt

o

The set of all possible values taken by these two perturbations

can be determined through condition [39]. However, using the result

of Claim 1 in Chapter II, it becomes also clear that [38] is

equivalent to,

[43]

[44]

for k 0,1, ...

1 Lwhere , for example, L = - > 0
III

This implies in particular that,

for all k = 0,1, ... and 8£[0,1] [45]

if we simplify the notation by calling Ll , L.
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Now clearly, this last condition means that U
k

(-) remains in a

bounded set which constraints not only V to another bounded set
k

but also w
k

- One can also say that [45] is the coupling equation

Similarly, on the Gaussianrelating the perturbation noises Vk,w
k

­

model a correlation appeared between V
k

, w
k

- This means also that

"global instantaneous constraints", have to appear on those pertur-

bation terms and, therefore, following the conclusions of the previous

section,that a realistic model for the system has to include perfect

b Od f dO ° 2o servatl0ns an a state 0 lmenSlon n x n,

r: 1+1 = [In2 0] (Q} fi~k(t) ) [46]

I g k + [Gk(t)-Gk(O)]sk dtSk ,\
k 0,1, __

a
G \., ,

Zk (0 I) ~47] I
\g I k

with

with still,GOEQO defined by [42]

and

II U k (e) II F < L IIsk II k 0,1, _. _ [48]

Let us compute the ellipsoids defining the "global instantaneous

constraints"_ Equation [46] can be written in differential form,

using [39] and [40],
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d~ [~J
\0 a

(8)

lSkgk a

with gk(8)ER
n

,
n2

~ (8) ER

or

[G
k]d (8) [ AkC:} (8)

+ [k:
8

)] [49 ]
d8

gk

with G
k

(8) E L(Rn), for each k = 0,1, ... , and 8E[0,1]

Let,

~A,k (T,O)" = L(R
n

) x R
n

+ L(R
n

) x R
n

for all (T,O) E [0,1] x [0,1]

be the state transition mapping of this system corresponding to A.

The solution the differential equation [49] is given by,

Uk(0))
<]iA,k (8,cr)\ 0 dcr

Gk \

~A,k (8,0) \ +
gk

a
for all 8E[0,1],

which for 8 = 1 is equivalent to [46].

8

[50]

Let us define the two projections of ~A,k(.'.) :

a
~A,k(.'.) : [0,1] x [0,1]

[0,1] x [0,1]



70

then,
( Gk(a)0 (8,0) . Gk(o)<PA k,

gk(O)

(6, a) . (k(a)
[51]

1
gk(o) + (T-O) Gk(o)sk<I'll. ,k

gk(o)

Let Uk denote the set of all mappings U
k

(.) verifying condition

[45]. The support function of the set containing all possible values

is obtained.by taking,

[53]

[52]»
T

« (H, h) ,Sup
UEJ\

nk(H,h)

0
where « , » is the inner product on L(Rn) x Rn defined by,

T

(A,a) (B,b) T [ATB] + aTb« , » = < A, B>F + a b = TrT

for all A,B in L(Rn ) and all a,b in Rn •

*Defining also by <PA,k (T,O) the adjoint mapping of <PA,k(T,o)

in terms of this inner product, it is easy to verify that,

*
(T,a) () =

0
H+ (t - 0) HS

k( <PA k,

~~,k(T,a) C) =

1 *
(T,a) C)I

h<I'll. k =,
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Using this equation [52] becomes ,

supf ~< (H ,h ) , iP
Ark

(l,a) [U(O)] »T do

lJEll k 0 0

Sup f 1 *0
u;:llk «q)J\,k ( 1, 0)

o
» do

T

and applying Schwartz' and Holder's inequalities,

1
*0 [1 ,nk(H,h) Sup f < CPA k (1,0) U(o) > do

US 11 k 0
, F

~ fll *0 [:J II II U(o)"q)J\, k (1,0) do
0 F F

using condition [48] ,

1 2 2 T
3 II sk II II h II + h HSk + [54]

Defining now the mapping,

and its projections,
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such that,

n n
for all HEL(R ), hER

one finally obtains that,

1 T2" RSk + H

1 2 2 1
3 II sk II . II h II + 2" HSk

[55]

and inequality [54] becomes,
1

nk (H, h) ~ L II sk II { «C), Qk C) »T J 2

It is easy to verify that Q
k

is a positive definite operator from

L(Rn ) x Rn to itself, for each k 0,1, ••.

Now, the choice of

U(8)

verifies condition [45]. Therefore, the previous majorant is

effectively reachable and

To conclude this discussion , these results can be condensed

[56]



73

in the following Proposition:

Proposition 1:

The set estimation version of the stochastic problem defined

by equations (III - 10,11) is a set estimation problem with global

instantaneous constraints described by,

Gk+l
G

k + V
k

(u Gksk + w
kk

with Gk,Vk
E L(Rn

) ; sk,wk,uk E Rn
for k 0,1, ...

~ EL(Rn
)

A -1G
O

ES1
0 = GO I <GO - GO I ITO (GO - GO) > < 1 >

F= \

and

[57]

/
[58 ]
~

[
V- E rl1{

wJ k

n ni Z EL (R ) x R 1\9],

with Qk defined as in [55] .

Proof:

Since Q
k

is positive definite it is also non-singular and hence

its inverse does exist.

Equation [56] clearly defines the support function of an

ellipsoid in L(Rn
) x Rn

- see for instance equation [5] - : this

ellipsoid S1k is centered at (0,0) and has as kernel Qk.

Q.E.D
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Finally , a solution to this problem can be derived by

using equations ( [35]-[37] ) of the previous section and by

noticing the following correspondences ,

I 2
n

B
k

C
k

++

Qk S~J_
Ls

k
R

k

'¥O

I 2
n

the operator Q
k

The result one obtains is the following -see also Lemma 1.8

in Thomas f281 -

where the operator ITk+l verifies

[60]

for all k= 0,1, ...

and P
k

is defined by,

2
Pk + L II sk II I -

[61]
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and
uk-Gksk

T L211skll
I]sk [ Pk + 2

Gk+1= Gk +
L211skllT

P
k I ]sksk + 2

[61]

[63]

In fact, we will usually use L

constant.

1 as value for the Lipschitz

The comparison between equations [61] and [62] with the

result of the Kalman filter is striking . In particu1ar,for a

Lipschitz constant L equal to 1 , the only difference -see equation

[16] of Chapter III - occurs in the generation of the sequence

(Y
k

) , factor characteristic of the set estimation approach. In

particular, this means also that the inverse formula for G
k

will be

the same as (III - 23,24,25) if one does not forget to generate

P
k

according to (63) instead of (111- 16).

This result is now condensed in the following Proposition.

Proposition 2:

If [G ] -1 exists and if
k

to equations- (61) and (62), then

Gk+1 is generated according

1\+1 l\ + [64]
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where
ST JJ.:ill
k [Pk + 3 l]sk

1 [65]a
k [P + rTS0l <T

sk k 2 l]sk

JJ.:ill
d

k

[Pk + 2 I] sk
[65]

T JJ.:ill
sk [Pk + 2k l]sk

is the inverse of Gk+l ·

Proof:

The proof is clear using the Sherman-Morisson formula (see

equation 111-26). Q.E.D.
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CHAPTER V

A new quasi- Newton type of algorithm.

I-Introduction.

In his thesis [28] Thomas studies an algorithm based on the set

estimation ideas of Chapter IV, but without really using the correct

gains or using the actual estimates. Instead, he starts by simplifying

them to the Broyden type of update (see 111-18) and by taking their

symmetric version according to Powell's symmetrization technique

(see Chapter II, section 3); finally, in order to be sure that the

corresponding sequence is non-singular a parameter Sk must be computed

at each point x
k

' as the solution of a quadratic equation. The

updating formulas he obtains with this method are:

Broyden: = k 0,1, ... [1]

modified Powell:

A T A T

Gk+l Gk + Sk
(uk- Gksk)dk + Sk

dk(uk- Gksk )
[2]T T

sk dk sk dk

T ~

S2
dk (uk- Gksk ) T

k T 2 dkdk
(sk dk )
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where GO is taken to be symmetric and the sequence ( Pk ) is

updated as

II sk II I + Pk - ( 2 - 8k ) 8k
[3]

[4 ]

G
k

is then inverted at each step according to :

[6]

- s
k

for all k 0,1,2, .. [7]

and finally, Powell's II dog-leg" strategy [see 22] is used to compute

the next point x
k
+l such that sk belongs to the plane spanned by gk

and by - Hkgk .

The purpose of this chapter will be to present a new method

for updating only ~and P
k

' in order to avoid the lengthy equations

( [5]-[6]-[7] ). Furthermore, our solution will at each step

rigorously verify the secant equation

The main articulations of this new algorithm can be described
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as follows:

a) ~ and P
k

are updated according to equations (Chapter IV­

equations [61] and [64]) and the non-singularity of ~ tested for

each step K.

b) ~ is symmetrized so that the result verifies the secant

equation (see Chapter II.). The resulting matrices will be noted ~

and will be considered as the actual estimates of the inverse of the

Hessian matrix for each point x
k

.

c) The last step,finally, is the same as in Thomas' algorithm;

that is, the next step is computed also according to a "dog-leg"

strategy and no linesearch is necessary for each step k.

This algorithm can be visualized as:

STEP UPDATING

REGULATION

INVERSE OF FILTER
OUTPUT

f ( .) , g ( . ) "dog-leg" or simple Newton

IDENTIFICATION

Propagate (P
k

)

---. ....

g SYSTEM
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where (~), (~), (x
k

) are the sequences of points which would be

generated using respectively

s = -
k

to compute the next step.

In section 2 , the convergence properties of the sequence (~),

as well as (~) , (xk ) are analyzed.

In section 3 a short discussion will be held on the singularity

problems arising when propagating the sequence (G
k
).

In section 4, a global description of the algorithm is

presented with some partial numerical results interpreted.

2- Convergence properties of the set estimation filter.

For definition of the rates of convergence and a precise treat-

ment of the Q-order convergence, we refer the reader to Ortega and

Rheinholt [19-Chapter 9].

For our purpose it is enough to know that a sequence (xk)C R
n

*converges Q-linearly to x , if there is some r in [0,1] and some

kO ~ 0 such that,

11~+1 - x* II *< rll~-xll for each k ~ k
O

[8]

where II. II is an arbitrary vector norm in Rn - usually this will be

the Euclidien norm - or the corresponding induced operator norm in

L(R
n
), the space of real matrices of order n.

Similarly, one says that (~) C Rn converges Q-superlinearly to
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*x if

lim
k~

*11~+1 - x II
*II xk - x II

= 0 for each k ~ kO
[9]

The results of this paragraph will treat the updating of the

matrices ~ according to,

~+1 ~ + for k = 0,1, .. [10]

where,

and

d =
k

[11]

T
[P

k
+

II sk II
I]sk 3 sk

a. = < 1k T lL!ill I]sk [P
k

+
2 sk

and the sequence (P
k

, k~O ) is generated by,

[12]

[Pk + IIsk II I - [13]

for k = 0,1, •.•

and Po is chosen to be proportional to the identity matrix -

[14]
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Of course equation [10] has been shown to be equivalent in the

case where G
k

in non-singular to:

k 0,1, .. [15]

an equation which will be also very useful.

Recall, finally, that to each iteration k, we associate a step

sk I 0 such that ,

and

[16]

[17]

with also,

)

Consider then the following sequence:

[18]

(2a
k
-l)

T

\ IT
k

+1

(1 + IIsk II) [Ilk + Ilskll
dkdk [19]2 Ta

k skdk

2 I for k 0,1, ...ITO (J

Lemma 1:

If (P
k

) and (IT
k

) are two sequences in L(Rn ) generated according

to equations [3] and [19] with

IT > P > 0
k - k

2ITO= PO= (J I, then for each k ~ a

[20]
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Proof:

Consider the difference,

T
between sOdO > 0 and 0 < a O < 1 --r III >P1> 0, the last inequality

-1
stems from the fact that [PI] ,kernel of the set estimation ellipsoid

at time k = 0 is positive definite.

Assume now that 0 ~ P
k
~ II

k
for k=O,l, ...m-l , then,

ddT
m-l m-l (

T
s . d
m-l m-l

1- a
m-l)

2a
m-l

which proves the recursion. Q.E.D

Notice that equation [13] is nothing else than equation (IV-6l)

and that, consequently, it defines ellipsoids n
k

containing all points

G
k

, or, in other terms, all the possible values of the Hessian of the

function to be minimized. These ellipsoids can be in particular

inscribed in bigger ellipsoid such that,

A { n A --1 }nk C nk = GkEL(R): < (Gk- Gk), II
k

(G
k

- G
k
» F ~l [21]



see for instance equation [60] in Chapter IV for the definition of nk •

Recall also that

[22]

and that,

It is now possible to prove the following result:

Corollary 1:

that

n *Let D C R be an open, convex set containing the point x such

* ng(x ) = 0 and let g:D + R be (Gateaux) differentiable. Assume

that the sequence (~, k ~ 0) obtained through [18] is completely

contained in D and that g is Lipschitz. Let G
k

verify [15] and P
k

be generated according to [13] with GO given, and with some given

sYmmetric, positive definite matrix Po > 0; then there exists a

constant ~ > 0, such that,

A 2
II Gk - Gk II ~ ~ II Pk II

for all k ~ O.

Proof:

From the set estimation theory presented in Chapter IV, we

already know that if G
k

and P
k

are generated via [15] and [13]

then GOEnO implies that Gksn
k

.

Therefore, it is possible to write for each k that

[23]
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hence,

[24]

with the notation, [25]

Now,as

~ Tr [26]

But P
k

is a positive definite and symmetric matrix for each

k ~ a -see for instance Lemma 1- ; therefore, there exists a non-

singular ( for example triangular) matrix ~ such that,

n -1 -1 -T
with ~sL(R ) ++ Pk = ~ • ~

[26] ~ Tr ~l

but

or

and using the fact that,

Tr [A] > IIAII = SUR
xsR

, if A non-singular,
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one obtains that,

< < for each k ~ °
from Chapter 11- Claim 1.

Q.E.D.

Consider now the sequence (i
k

) generated according to ,

[27]

the next theorem deals with its convergence properties:

Theorem I:

Let
n ng:R + R be (Gateaux) differentiable in an open convex

* * * *neighborhood D of x for which g(x )= ° and Vg(x) = G(x ) is non-

singular.

verifies,

Assume that for L ~ 0, the derivative Vg(x) = G(x)

II G(x) - G(y) II < L Ilx - y II for all x,y in D [28]

Therefore,for each y ~ ° and r s [0,1], there exist positive constants

*o = 0 (y,r),E = s(y,r), such that for I Ix
O

- x I I ~ 0 and for as[O,s]

such that IIGo- GO II ~ ya, the iteration

~+l
x -

k
[29]

with (Gk ) generated according to [15] and Po is well defined

*for each k ~ ° and the sequence (~k) converges to x .

* *Moreover, //xk+l - x II ~ r II~ - x II for each k ~ 0, and the

sequences ( IIG
k
II) and '( 11\II) are uniformly bounded.
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Proof:

The proof of this theorem is very similar to the one of Theorem

3.1 in Thomas' thesis [28], but it needs an intermediate result called

the Perturbation Lemma (sometimes attributed to Banach) which we first

introduce for the sake of completeness.

Perturbation Lemma:

Let A,CEL(R
n

) and assume that A is invertible with I lA-II I ~ a .

If II A - CII ~ (3 and Sa < 1 then C is also invertible and

Proof:

see Ortega and Rheinholt pp.45 [19].

Proof of Theorem I (conti.):

The main steps of the proof are the following ones:

choose s>O and OE[O,O] for ~ = max [y, L,1n ] such that

they satisfy,

n(l+r) [Lo + 2~E] < r

(1 + 0 + 4s2) 0 .i+r 2
< s

l-r

for rs[O,l] and y~O given.

[30]

[31]

[32]

* A

Then starting with II Xo - x II ~ 0 and II GO - GO II ~ yo ~ 2~s

one can easily show that Ilx
l

- x*11 ~ rllxo - x*/I. [33]
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Now, if Po =r (J2 ~ r s2 , then as lipk II has the same type

of bounds as I Inkl I , we get the following,

2
4s -r

2
~ 4s [35]

due to the choice of constants in [31] and [32].

From Corollary 1,

A 2
II Gk - Gk II < n II Pk II

hence, as

[36]

and this concludes the induction on

for all k ~o •

The last point deals with the sequence itself. Assuming that,

II~ - x*11 < 8 for all k = 0,1, ... m-l,

from IIGk - G
k

II ~ 211s , and from the fact that II G~lll is bounded,

by application of the Perturbation Lemma the following is obtained:

and hence,

Ilx - x*1I <m Q.E.D.
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At this point, only the Q-linear convergence of the sequence

(x
k

' k~O) defined through [29], with Gk and Pk

to equations [13] and [15] has been proved.

generated according

In his thesis Thomas [28] has also proved that a sequence defined

by,

~+l = x -
k

[38]

and generated according to equation [1] and [19] instead of [15] and

[29] was not only Q-linearly, but also Q-superlinearly convergent (see

in particular Theorem 3.4 and Corollary 3.5 of [28]).

We shall now prove that the same result is true for updates of

the form [29], and hence also, that the use of the true set estimate

given by the results of Chapter IV also conserves this former property.

In order to show that our updates lead to a Q-superlinearly

convergent method, it will be convenient to apply a result proved by

Dennis and More -[6]-. For completeness we present it here:

Theorem II:

Let g:Rn
~ Rn be differentiable in the open, convex set D of

Rn and assume that G = Vg *is continuous at some x in D and that *G(x )

is non-singular. nLet (G
k

) in L(R ) be a sequence of non-singular

matrices and suppose that for some Xo in D the sequence (~) where

~+l [29]

*remains in D and converges to x. Then (x
k

) converges Q-superlinearly

* *to x and g(x ) = 0 if and only if ,
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II [Gk- G(x*)] [~+l- ;Zk] II

1I~+1 - xk II
o [39]

The following sufficiency condition will lead to the sought after

result.

Theorem II:

n nLet g:R -+ R . be a differentiable function on an open convex set

D and assume that for some L ~o and any X,YE D the derivative

g' (x) = G (x) obeys the condition II G(x) - G(y) II ~ L II x-y II. Assume

also that are contained in D and that with some

and positive definite symmetric POEL(Rn), (Gk) is updated according to

[15]. Then,

lim
k-+<x>

A

II [Gk - G(xk)]sk II

II sk II
o [40]

if is convergent. [41]

Proof:

It is important to notice first the equivalence of [40] and

[39] as ,

II [Gk - G(x*) ] sk II

/I sk 1/
<

II rGk- G(~)] sk II
Ilskll

*II[G(xk ) - G(x )]skl I

II sk II
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II [cik - G(xk)]skll
~ + L II ski'

Ilskll

k * and consequently, forBut II sk II ~r (r+1 ) II Xo-x II
*

lim II ski Ibounded II xO-x I! = ,0 •
k-+oo

lim
II [Gk- G(x*) ] sk II

< lim
II [Gk-G (xk ) ] sk II

[42]
k-+oo Ilskll k-+oo II sk II

hence, if the right hand side converges to zero , the left hand

side will also converge and Q-super1inearity will be obtained

through Theorem II.

Now, as we know that (P
k

) is updated according to [13], by

Corollary I ,

for each k ~ O.

From [13] the following inega1ity is true,

and, since

Now let

[44]

llk+l =

k
IT

j=O
(1 + lis. II) ~ 1

J
[45]
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k
L: log (1 + II s . II ) <

j=O J

k
L:

j=O
II s .11 < 00

J

or if,

<

1:> k+l

and after summation,

k
L:

k=O
II s.1I

J
[46 ]

As by hypothesis the sum [41] converges, it is possible to

conclude that (1:>k) is bounded as well as (Tr[P
k
]), because of the

boundedness of the Hence, (~) must be convergent-unicity is also

clear- as well as (Tr[P ]). Assuming T to be the limit of this last
k

sequence consider equation [13] and choose a
k

S [0,1],

lim
k-+<x> <

lim
k-+<x> [47]

and as Tr [Pk] -+ T and II sk II -+ 0 as k -+ 00

lim
k-+<x> o [48]
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Finally, remembering the definition of d
k

-see [11]- the

Cauchy-Schwartz inequality provides:

< <

00

as the right hand side converges to zero when~1 Iskl I converges,

it can be concluded that, k=O

lim
k-+oo

Corollary II:

o Q.E.D.

n nLet g:R ~ R be (Gateaux) differentiable in an open, convex

neighborhood * * * *D of x for which g(x ) = 0 and g'(x) = G(x) is

non-singular. Assume that for L ~ 0, the derivative Vg(x) = G(x)

verifies,

II G(x) - G(y) II < L II x-y II for each x,y in D,

then for each y~o and rE(O,l), there exist positive constants

*o = o(y,r), E E(y,r) such that for IlxO - x II ~ 0 and for OE(O,E),

II Go - Goll ~ yo the iteration,

(l\]gk = ~
A -1

~+l ~- [Gk ] gk

A

with (Gk ) generated according to [19] and P
k

to [13] is well defined

for each k and the sequence - *(xk) converges Q-superlinearly to x .
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Proof:

We have only to verify that E II sk II < 00

k=O
converges in this

case; however,

by Theorem I

-+ *~ (1+r) II~- x II
k * k< (l+r)r Ilxo-x II~ (l+r)r <S .

00 00

(l+r)<S L r
k

k=O

and as by construction r C [0,1] ,
00

0 L Ilskll
(l+r) <S

< <

k=O (l-r)

k
The sequence (8 ) with 8 = L: lis. II

k k k=O J

and has an upper bound; hence, (8
k

) converges.

By Theorem III it becomes clear that (~)

is monotone1y increasing

is a Q-super1inear1y

. Rnconvergent sequence ln . Q.E.D.

Up to this point, we succeeded only in proving that a sequence

(i
k

, ~Q) of points x
k

generated when using directly the output of the

filter as actual estimate of the Hessian matrices, was Q-super1inear1y

convergent. The second half of this section will deal with the sequence

(see also Fig. 2).Hessian inversefor the

(~, ~O), that is , the sequence of points generated with as estimate

1\+1\
2

For this purpose let us introduce the following notation:
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-All variables indexed by a will refer to the previous construc-

tion, i.e. (~, k ~ 0) for example, corresponds to using Gk and ~

generated by [10-15].

-All variables indexed by 1 will refer to the same type of

~ -T - -0
construction but with Gk and Hk instead of Gk and ~[ex(xk)] other-

wise, G
k

and ~ will still be generated according to [10-15].

The following result can be then derived:

Theorem IV:

Rn -'- RnLet g: -r be (Gateaux) differentiable in an open, convex

* * * *neighborhood D of x for which g(x ) = 0 and for which g'(x ) = G(x )

is non-singular. Assume that for L~ 0, the derivative g'(x)=G(x) verifies:

II G(x) - G(y) II ~ L II x-y II for any x,y in D

then, for each y~O and rs(O,l), there exist positive constants

o = o(y,r), s = s(y,r) *such that for I Ixo -x II ~ 0 and for os(O,s),

II GO- GO II ~ yo, the iteration

[49]

where l\. is generated according to [10] with

2
Po = 0 I, being well defined for each k~ a and for the sequence (~)

*converging to x .

*Moreover, II xk+l - x II
the sequences

*< r II xk - x II , for each k~O and

(I IRk+ ~ II) and uniformly bounded.

2
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Proof:

- [A ]-1 ::1' [G""kT]-,1The first points to remark are that if ~ = Gk ,then Hk =

and also that IIAII = IIATII for all A£L(Rn). This means in parti-

::1'cular that if (G
k

) verifies the conditions of Corollary I, so does (G
k
).

Furthermore, consider the two sequences generated respectively as,

and

x
o

[50]

using then Theorem I with. 0= Inf(oO,ol) and ° 1£= lnf (£ ,£ ),

[51]

such that equations [31,32] are still satisfied, the two sequences

and
-1

(x
k

) will verify,

-1 *II xk+l - x II < rll [52]

II -0 x* IIxk+l -

so equivalently,

< -0 *rll~ - x /I [53 ]

1I~+1 - ~Il
k

< r (1 + r)o

1I~+1 -~II
k< (1 + r)r °

-0 -1

Now, starting at k=O and choosing for it =
~+ xk , at each stepk 2

k, if the recursion defined at [49] is used to generate (x
k
), it is

[54]

[55]
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clear that,

and as X o

*IIx 1 - x IIk+

is such that *- x II ~ 0

[56]

,we have the desired result.

Now, the boundedness of ( I IGkl I ) has been already proved

by Theorem I as well as by the uniform boundedness of ( ~ ). Since

II l\ + ~ II s 111\11 < 00

2

At this point , only the convergence of the sequence (~) and
K

(x
k

) has been proved • Unfortunately, the proof of the convergence

of (x
k
), when using the updating formulas:

Q.E.D.

and

l\+l

- - T
[l\+l+l\+l] Hk+l+Hk+l

2 + [sk - 2

k = 0,1, ..

T - - T

~]
uk uk

[sk
l\+l+l\+l T

T
+ T uk] ..

ukuk ukuk
2

T
ukuk k = 0,1, ..T 2
(ukuk )

becomes terribly complex and , therefore, the result that the convergence

of (x
k

) is effectively preserved can only be assumed. The early numerical

results show a relatively slow convergence of such a sequence in the
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case of a symmetrization procedure using a natural Frobenius norm

-that is G = I , following the notations of Chapter 11- . Some

trials were also done by changing at each step the local metric

and by using instead of G = I , G = Gk ' where Gk is the true

Hessian matrix of the objective function f(.) , at each point ~.

The updating formula for ~+l thus becomes ,

- -T - -T T - -T
T~+l+ Hk+l ~+l+ Hk+1 sk s ~+l+lIk+l

Hk+1= 2
+ [s - 2 uk] -T- + +[sk 2 uk] ..

k
skuk skuk

for k 0,1, ..

In some cases the speed of convergence could be increased by

this means, but in the general case no conclusion could be carried

out. The conviction of the author is, however, that a variable

metric method, very similar in essence to the Fletcher-Powell method,

should give rise to fairly good results.

3- Singularities arising in the computation of the sequence (x ).r-=-
One of the problems arising when propagating the inverse H

k
of

the minimum mean squares estimate G
k

is that for some values of the

coefficient a
k

this inverse becomes quite large:

1\+1 1\+ k 0,1,2, ..



99

The method used in the algorithm is to compute at each step the

denominator of the previous formula, to compare it to some fixed level

-for example 0.1-. If this denominator is larger than the prefixed

level, the coefficient a
k

conserves its previous value. If the denomi­

nator on the contrary, becomes smaller or equal to the previous level,

a
k

is given the new value a
O

solution of,

This means also that the updating procedure for the matrices P
k

, corres­

ponding to the covariance during the estimation phasis, is restarted

in this way.

4- Description of some computational tricks.

All computations should be carried out using double precision

arithmetic.

The structure of the algorithm is the following one:

1) Given xO,sO,PO= 1, compute analytically go and uO. Then

determine HO which should verify the corresponding secant equation.

2) Propagate the matrices P
k

and H
k

.

3) Test the singularity of H
k

and modify a
k

, if necessary.

4) Compute ~ depending on the procedure chosen (simple sym-

metrization, or closest symmetrized version using the "natural"
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Frobenius norm or closest symmetrized using a variable metric method.)

This ends the identification step of the system. The regulation

part uses the classical dog-leg method (see Powell [19]), that is:

5) Compute T =
k

if T < a
1Sk - tg t~P

fk k

if T >0
1Sk - tg ():::=t<=Tk !u 1 Sk - (l-A)T g - AHkgk : 05-=A~J !k= k k k

6) Go back to step 2, unless the length of the gradient obtained

is smaller than some prechosen level.

Of course, in order not to have instabilities for functions

studied in the neighborhood of some local minimum, the step length sk

should be constrained to remain bounded within some fixed length ~.

For the purpose of the experimentation, three different compu-

tations were_run_~tartingat the same initial condition. The first one

used only ~+2Hk as the estimate of the inverse of the Hessian of

the function, the second one used ~,and finally the third one used

a variable metric version of H
k

, with Gkthe true (but unknown) Hessian

matrix of f(.) used in the Frobenius norm. The algorithm was run on

a simple two-dimensional quadratic function. Convergence was observed

in each case, but the relative speed of convergence of each method

varied depending on the initial point chosen, no serious conclusion

could be carried out relatively to their particular advantages or

inconveniences.
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Lastly,no special problem was noticed when propagating sYffi-

metric matrices like P
k

or H
k

. If this should arise one of the safest

ways of avoiding any numerical instability would be to use a square
1

root filter to propagate P
k

2 instead of P
k

. Unfortunately, as

~ could not be constrained to remain non-negative definite along

the propagation, this method does not work. The only possibility

is then to propagate directly the vector Hkg
k

instead of the whole

n x n matrix H
k

•
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CONCLUSION

Let us conclude this thesis by two short sections. The first

one deals with some advantages of the algorithm previously described

as well as with some of the performances one could expect from it

when implemented on "difficult" test functions. The second sec­

tion emphasizes the most interesting conceptual aspects of this

work, by discussing some of the perspectives it opens for future

research.

A-Discussion of the algorithm

Several attractive features are seen in the proposed algorithm.

The first one is its simplicity of implementation, especially compared

to the algorithm described by Thomas [28]. The second advantage

seems to be the fact that no linear search is needed from one step

to the other. This means in particular that this algorithm does not

converge in n steps for a quadratic function, like the classical

conjugate direction algorithms, but rather that it implies an

aSYmptotic convergence to the optimum. Hence, not having at each

step a one dimensional minimization to perform, the computational

load is also somewhat lightened.

Several numerical tests were performed on a simple, two

dimensional quadratic function. Different initial points, as well
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as initial steps sO= xl - xo' were successively chosen. Even in the

case of initial guesses starting in the wrong direction, that is

starting in directions which increased the objective function, the

minimum was obtained in about five to ten steps with a good precision.

Furthermore, this precision seems to be rather sensitive on the

maximal step-length allowed for each iteration, as this step-length

plays an important role in the actual implementation of the dog-leg

procedure.

Finally, the same program was run but with different sequences

of estimates for the inverse of the Hessian matrix. The first one was

Hk+ H~
the usual sYmmetrized matrix 2 ' the second one was the closest

sYmmetrized version of the estimate using the natural Frobenius norm

as measure of the distance separating two matrices, and ,finally, the

third one used the same type of updating formula but with the G
k

- Fro-

benius norm instead , with G
k

being the true Hessian matrix of the

objective function. In the case of the particular quadratic function

which was tested, all three behaved similarly and no criterion, except

perhaps the one of simplicity, could be used to decide which of them

was the best.

Of course, many other computational tests are needed before

one could draw any definite conclusion on the performances of the al-

gorithm contained in this thesis. In particular, more difficult

functions should be used and the performances of the algorithm should

be closely compared to the behaviour of some other gradient procedures.
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B-Some of the new concepts introduced in this thesis and some suggestions

for future research.

The main concept introduced in this thesis is the possibility

of representing a minimization algorithm which uses the gradients of

its objective function, as a system described by some state-space equa-

tions. A particular emphasis was made on the identification step

needed to determine satisfactorily all parameters of such a model.

The associated regulation problem, however, has not been considered

in its generality, since we already started by restricting ourselves

to Newton-type algorithms,and consequently, in terms of the regu-

lation problem, to linear output feedback policies.

An interesting possibility for future research would be to

treat this problem in a more general framework, that is by really

associating to the previous regulation problem some explicit cost

functional. Of course, this functional should depend at each step

on the gradient, possibly last two gradients, of the objective func-

tion, and should also contain some kind of penalty depending

either on the step-length or on the gain in the objective. A propo-

sition would be,

c
N
L:

k=O

or if Y(x) represents the positive step-function defined as.

for x positive

otherwise



c
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E

k=O
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The problem could therefore be represented as the regulation

problem of a system in which an adaptive identification procedure

is necessary. In particular, it seems that the use of some of the

techniques introduced by Ljung ans his colleagues in the study of

self-tuning regulators should be useful.
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APPENDIX I.

Computation of the covariance of the

noisy process.

Before really computing this covariance, first one can check

matrixthat it is possible to find a matrix Sk and a

and this for all indices k= 0,1,2, ..

Proof:

~such that

2 2
, ~ L(R

n
), Sk L(R

n
,R

n
)

o
Q.E.D
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The covariance of the observation noise process ( wk ) can be

now computed using the previous notation

1 1

E [wkw~ =f JE { [ Gk (6) - Gk(O)]sks~[Gk(a) - Gk(O)]T }d6 do

o 0
1 1

and similarly ,

for all k = 0,1, ..

and hence the covariance of the joint noise process (::) is

described by equation [7] in Chapter III.
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APPENDIX II

Intersection of an ellipsoid

with a hyperplane

Consider in Rn+p the ellipsoid Q having as equation,

Q = 1 x E Rn+P: (x-xc) TIT (x-xc) < 1 f ,with IT> 0 ,

as well as the lower dimensional hyperplane

Q = 1 x C R
n

obs

The intersection of

y = A x

Q with

where y is an element of Rm•

Q is the set defined by,
obs

Q r =1 x : (x-x)T II
c

(x-x ) ~ 1 and xc -
*A Y

~
if A- represents the Penrose pseudo-inverse of the matrix A.

o 1 0 1
Now,let x , x and xc' Xc be the components of respectively

x and x on the subspaces Rn and RP . The matrix II can also be
c

decomposed as follows,
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Clearly, a necessary and sufficient condition for having a

non-empty intersection Q I is that,

* 0Ay-x)~ 1,
c

furthermore the set Q
I

can be represented in this case as,

1 RP * o 1

1 T ITol] [<A:Y-X
0
~j !Q

I x E [(A y- x ),(x - xc)] IIOO ~1c

II10 II11 (x - xc)

-0 * 0Call x A y x . It is easy to show after some trivial
c

computations that Q I can also be described by,

Q I 1
1 -l.T- 1

(x - Xc ) II 11 ( x
-1

- x
c

) ~ 1 I
-1

where x is the center of the new ellipsoid,
c

-1
xc

1
x

c

and

II 11
- OT -1 - 0 -1

= [ 1 - x (II 00 -II01 II 11 II10 ) x] II 11

is the positive definite matrix describing its excentricity.
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