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ABSTRACT

This study contains a new approach to the unconstrained minimization
of a multivariable function f(.) using a quasi-Newton step computation
procedure. The whole problem is reformulated as the control problem

of a linear system described by its state-space equations and having
unknown dynamical properties. First of all, an adaptive identification
problem arises and is solved by using set estimation concepts. The re-
sulting dynamics contain in particular an-estimate of the Hessian
matrix of f£(x), matrix which is used to regulate the system to zero.
Some matrix symmetrization methods are also studied and finally used

for generating a sequence of steps X41” ¥ by the classical Newton

k
method.
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CHAPTER I

Introduction

The gradient methods in Optimization have been of considerable
theoretical as well as practical interest for well over a decade.All
of them consist primarily of building a sequence of points (xk) using
the gradient of the function f(x), which is to be minimized. Diffe-
rent procedures arise in the literature, among them the oldest and
most interesting ones are the class of quasi-Newton methods. A parti-
cularly critical discussion of the evolution of the concept of quasi-
Newton algorithms can be found in the introduction to S.W. Thomas'
thesis [28]. In particular, he points out how loosely this terminology
has been used for a large variety of different algorithms. Thus, in
the present thesis, we shall understand it in the following sense.

Let £(.) be a differentiable function from R™ to the real line also
referred to as the objective function, and let Vi(x)= g(x) be its
gradient. We shall say that the iteration procedure for computing a
sequence (Xk) converging to the minimum x* of £(.), is a quasi-Newton
procedure , if

X T X < - Bl'(l g(x,) for all k = 0,1,..

The sequence (Bk) is a sequence of matrices of order n having generally

an interpretation in terms of the actual Hessian matrix of f(x).



Curiously, it appears that throughout the technical literature on this
subject within the last decade, the common feature of all such gradient

algorithms was to determine the sequence of matrices (B, , k=0,1,..)

k
by construction, after having defined some desirable algebraic property.
The case of anng's work is typical in this sense - see [10] - .

In the present thesis, a new point of view is introduced. The
idea is basically the following one: in most of the quasi-Newton

algorithms, the matrix B, is given an interpretation in terms of the

k
local Hessian matrix of the objective function. Thus, the quasi-Newton
methods become the original Newton method as soon as the Bk reaches
the value of the actual Hessian matrix of the objective. This gives
rise to a very fast convergence in a neighborhood of the optimum.
Consequently, our aim is to estimate the local Hessian from the last
points and gradients of the function, by introducing some random or
unknown but bounded quantities. In fact, this observation appears

in S.W. Thomas' work [28], although he did not fully exploit it, but
returned rather to a more conventional approach, close to Broyden's
method.

Thus, the algorithm is considered as a dynamical system described
by a set of state-space equations and unknown inputs. Since, some parts
of the dynamics of this system contain unknown parameters, an adaptive
identification problem is solved in order to estimate them recursively.
The Hessian of the objective function appears to be one of them. In a
second period, a regulation problem is solved since the ultimate goal

is to force the gradient of the objective function to zero. The resul-

ting regulator will simply use the output of the previous identification



process in order to perform its task.

In Chapter II, a study of different matrix symmetrization
methods is presented. Different matrix norms are introduced and their
relationship studied. Thereupon, a variational point of view is intro-
duced to find the symmetric solution of the simple algebraic problem,

b=Xa
where a and b are known n-vectors and X is an n X n unknown matrix.
Finally, the previous solution is generalized to the case where an
expansion of the previous solution around any given n x n matrix X
is desired. The results of this chapter will, therefore, prove to be
useful when studying the previously introduced regulation problem.

Chapter III deals with the construction of an appropriate
state-space model for the initial minimization problem. All unknown
quantities appearing as input terms of our system are modelled as
Gaussian random variables, although the original problem is perfectly
deterministic by nature. A filter is constructed at each step in order
to estimate the Hessian G(xk) = Gk = sz(xk) of the objective function.
A recursive procedure is given to propagate directly Hk= G;l and,
eventually, the initial problem of minimizing f£(.) is understood as a
stochastic regulation problem.

Chapter IV studies the same dynamical system but, instead of
assuming an a priori knowledge of the statistics of the input variables,
these quantities will be assumed to be constrained only to some finite
ellipsoid-shaped domains. A short review is done about the basic tools
needed for understanding the results of set estimation theory and three

types of estimation problems are recognized. Finally, a recursive



solution for estimating Gk is presented, its similarity with the
minimum mean squares estimate being briefly emphasized.

Chapter V presents the main articulations of the algorithm
proposed in this thesis. In particular, some new results are proved
about the convergence properties of such an algorithm, and some
singularity problems are also analyzed. Finally a short description
is given about some necessary tricks, which were actually used

when implementing this algorithm.



CHAPTER II

Matrix symmetrization methods under linear constraints.

I-Introduction and statement of the problem.

Consider the following problem:
Problem O:

Solve the equation b=Xa ,where b and a are known n-dimensional
vectors in R" and X is some n x n symmetric real matrix,element of

LR™).

Clearly,this problem is highly underdetermined,especially if n

is large,as it contains n(n-I) unknown variables-i.e. as many,as there
2
are different coefficients in a symmetric n x n matrix-,for only

n equations.

An other way of looking at this problem is to exploit the one
2
to one correspondence existing between elements of L(Rn) and R™ .Thus,

assume that X1

x=1. is an element of L(R"),

Xn
2 2

then, there exists X eR" and Ae L(Rn ,Rn) such that:



b=Xa =ﬁ [I]
[ 1 0
a
with A= : [2]
0 aT
[T
41
T n2
and X= |a; e R [3]
T
a
L. I nz
Now,as X must be symmetric,let S be the subset of R such that:
2
S={ Z_eRn s.t. Z=ZT element of L(Rn) }
then,
Claim I:
n2
S is a linear subspace of R of dimension n(n-I)
2
Proof:
Let ZI and 22 be symmetric matrices.Then,gIand 52 belong to S
and o_Z_ +o0,.7Z, remains symmetric for any real coefficients o_ and o,,
I'I 272 2 I 2
hence algi +u2§2 S and S is a linear subspace of R" .Its dimension

is clearly n(n-I) as n(n-I) coefficients are sufficient to determine

2 2
uniquely any n X n symmetric matrix. Q.E.D
n2
Consider now in R the set A consisting of all possible solu-

tions to the equation b=Xa.Then:

Claim 2:
n2 2
Let A={Z e R such that b=A X for be Rn,é_e LR" ,RM)}



- 12 -

be the set of all solutions of b=A X .Then A 1is a convex subset of

n2
R .

Proof:
For Z, and ZQ elements of A , b=__Z{ =§_§2.Choose then any

element o € [0,I],therefore §3=u gi +(I-a ) ZQ .Clearly this means
also that
= + - =
AZ =ahZ +(T-a) Az, = )
and that Z, belongs to A which is itself included in R" . Q.E.D

3

The goal of Problem 0 is to find any element in A A S.Generally
the set A will have as dimension n2 ,whereas § has dimension n(n-I):
this means that Problem O will have an infinite number of solutiois,
all belonging to A A S,of dimension smaller or equal to n(n-I).

In order to attribute to Problem 0 a more restrictivezmeaning,
a minimal norm condition is introduced.This is achieved in Section 2,
where first a quick review is done on some matrix norm candidates.
Finally a new formulation of Problem ¢ is given and henceforth is
refered to as Problem I.

In Section 3 a variational approach is used to find the solution
of Problem I.

In Section 4,the recursive symmetrization procedure due to Powell
is shortly discussed and compared to the previous result.

In Section 5,Problem I is slightly modified.Instead of looking

for the"absolute minimum norm" solution of b=Xa,we shall be interested

in discovering the symmetric solution "closest" to any given possibly



non-symmetric matrix. Finally, a geometrical interpretation of these
2
. . n
results is given, using the properties of the subspaces A and S of R" .

2-Matrix norms and reformulation of the initial problem.

Let A be some matrix, element of L(Rn).
T

_ X Ax

[[A[] = sup {7

n X X
xeR

} [41]

As ||A||is a scalar ang as xTAx = xTATx, it becomes clear that for
any square matrix A, ||A|| = [|AT|| .
2

Another possibility is to consider the Euclidien norm in RY s

sometimes also called the natural Frobenius norm, that is

T . L

|[A]|p = {Tr[ATA]} 2 [5]
which can be shown to be induced by the inner product < , > F
defined by

A,B L@RY) N <A,B>_ = <A,B> 2 T

’ >7F == Ry = Tr[A B]. [6]
Notice that as,
T
Tr[AB] = Tr[BA] < Hallg = [a™]lg

Finally, it is easy to show that none of these two norms
is sensitive to any change of basis in R". Thus, consider
AI - QAQT

where Q is nonsingular orthogonal n x n matrix,



T T T T T I
- = (X Q QAQ Qx VAV, _ 1
[[al] = sup 2%} = sup (LB - 5up (YT} = |[a7]]
n X X n x Q Qx vV
xeR xeR v=Qx

and

T
|1a] |52 = 1riaa"] = 1rQTqa"aa”] = TrioaQeaTo"] = Tra®a’ 1=][aT||2

These properties can also be used to derive the following

result:

Claim 1:

For any nonsingular matrix A of L(Rn),
HAall <llallp= va []a]] [7]
Proof:

If Algzkz > An is the sequence of eigenvalues of A, then

[al]= %,
But

2 2 o 2
Mo Iallg = 2 A

A

n il = [[al] 12
i=1 Q.E.D.

Of course, this Frobenius norm can be extended to the case
of any symmetric, positive definite metric induced by G > 0. Then

write ,

o1
1]l = {rr[a"caly2 [8]

and the previous result is generalized as follows:

Claim 2:

T

Let G = RR". As G is non-singular R is also non-singular



and
[lal = TRl = 1lally < 1Rl Gl [9]
1Bl

and also
lal| <l R'al] = [la]ly < allR]].[]a]] [10]
&7

Proof:

1 1 1
[ 1a] 5=t Tr(Rr7AAT1}Z < f{rrRRTVYZ.{ Tr[AAT]}§'=||R||F.|[A||F

and as Det G =[Det R]2 # 0 ,R is non-singular and R_l hence exists.

Now,
‘ T L T 7 L1 T

||a]lz= {Tr[aA7GAl} 2 = {Tr[A'RRA]}2 =[[R All g

The second equation follows immediately from [7].
As |[A|| =[|ARTR_T|| §:||ART||.[]R_T]] and therefore the lower
bounds are obtained. Q.E.D

It should also be noticed that though their bounds are the
same, ]|A||b: *!'ATIIE in general.

Because this norm [] 'Ilb will prove to be useless in the deri-

vation of a minimal norm solution to the equation b=Xa, the following

norm has to be introduced:

1
llal], = {Tricaca’™)y 2 [11]
for any matrix A of L(Rn),

where G is a given symmetric,positive definite matrix,element of L(Rn).



Obviously for this definition,

[allg =l1a%]1,

Claim 3:

If G commutes with the matrix A,then

T
ally =l1a%]], g2 (121

Proof:
The proof of this result is trivial,using the definition of the
previous norms. Q.E.D
Claim 4:
T 2
If G= SS  , Hallgs sl lg-11allg [13-a]

and if furthermore G commutes with A,

A 2
"*IlF <1allg < [IslI211all, [13-b]
Tl
Proof:
r 1 1 1 2
4]l = t<c,a08™> 12 <[ [e]],2 .| [aca®|| 2 <[ [a]| - lel < |Is]I5]l6l ],
and,
o1
-1 -1 -1 =
A1l =1 lace™ | < [1ac]| . 11674 =1 1672 |- t1r (acea™]) 2

and as A and G commute,

1
-1 . T..= -
[allg <l 167 |5 torieaca®™ya =[]e™ |, 1Al ],

Q.E.D



~

For fixed,bounded matrices G,Claim 2 implies that the G-norm
and the Frobenius norm of a matrix A are equivalent.This is however
not the case for G-norms,because for a given bounded matrix G,G-norms
and Frobenius norms are only equivalent on the subset of matrices in

n . .
L(R") commuting with G.

Finally,Problem O can be restated as follows,

Problem 1:

Given a positive definite,symmetric patrix G in L(Rn),find
the minimal G-norm solution X* in L(Rn) of the equation b=Xa, where
b and a are given n-vectors,with the constraint that X* must be

symmetric..

3-Variational approach:

Let G be some positive definite symmetric matrix which is an
n
element of L(R).

a) Problem 1 consists of minimizing %—Tr(GXGXT) over the admissible

set of values given that the constraints are:

X = XT

n

Xa with aeR® , beR

b

The easiest way to solve this problem is by introducing
Lagrange multipliers in order to form the following Hamiltonian:

H(A,B) = %Tr [GXGXT] + AT{Xa—b] + Tr[B(X-XT)], [14]

where,



H(.,.) ¢ R , A ¢R" and B ¢ LR™.

Next, differentiating H(A,B) with respect to X, and using

the fact that,

AT [Xa-b] =Tr[(Xa-b)A ]

5 [TrlxM]] =M and 5 [Tr[X'M]] =M  [15]

53X %
one obtains that,

B X G+ ral 4B~ B =0

39X
or also, X _ —G-l [)\aT +BT -B ] G_1 [16]
But as, X—XT=O,

¢t [ral-ax® +28T —28B ] ¢t =0

|
BT ~-B =—E— [ a)\T —}\aT ].

Substituting this last result into [16],one gets,

-1
X = _ & [XaT +aAT] G 1 [17]
2
Furthermore,X must verify the original equation b=Xa,hence,
-1
b +~g— [A aT+aAT] G la =0

2
or,

2Gb +()\aT +a)\T )G_la =0.

Solving partially in ) ,the equations become,

—[26b +a(Te ta)] = aal ¢t a)

AL 1 [2¢b+al et al] [18]

(aTG—la) _T
and multiplying on the left by a ~,



T 1.0 1 [ 2 alh + ( aTG_la)(ATG_la)]
(a” 67N ==~ 73—
(a G "a)
the result becomes,
oTelay = - —1
(aTG_la)

Substituting again this expression into [18],\ becomes,

T
Ve - (26 -2 a]
(a"G ~a) (a”G "a)
and replacing A in [17],one obtains,
T
X* =X*I = '—T—fl_'—]_'— [ baTGn1 + G-labT - —3%—— G—laaTG—l 1
(2 G "a) (a’G "a)

which is the final result.

Of course,in the case where the Euclidien norm -i.e. only

Tr| XXT ] - of the unknown matrix X is considered, G = I = ¢t ;

therefore,the result becomes,

T
X% = ———- baT + abT - aT b .aaT ]

a a a a

[20]

b) Sometimes also,a slightly different result is sought,in which
case,the problem can be formulated as follows :

-Find the expansion of the symmetric matrix X* solution of

(0)

‘the equation b = X a ,around some known matrix X

(0)

,in order to

minimize the G-norm of the difference X* - X

(0)

This implies that X* = X" '+ D*¥ with D* symmetric and also

that in the previous computations X can be replaced by D and b by

[19]



Therefore, the result becomes in this last case,

pr =~ [ ®-xPaa%ct + ¢l - x(OHT .

T -1

a G "a
T 0)

.-ak-X a) G_laaTG_l] [21-a]
T.-1
a G "a
and  x* = x(O 4+ px [21-b]

In fact, this second version of the problem will be discussed
at length later on, when studying recursive procedures to perform

similar matrix symmetrizations.

4-A recursive procedure to symmetrize the matrix solution of a linear

equation.

The procedure below is originally due to Powell (1970) but has
been later slightly generalized by Dennis (1972). The purpose for.
its introduction was to generate approximations for the Hessian matrix
of a function; whereas, the previous variational method was intro-
duced by Greenstadt (1970) to approximate the inverse of Hessian
matrices.

In this paragraph it is shown, that,in fact, this recursive
method is equivalent to the previous one and that it also leads to

minimal symmetric solutions X* of b = Xa, with respect to some
well defined Euclidien-type norms.

The following procedure was proposed by Powell and Dennis:

Step 0: Let X(O) be any symmetric matrix such that b # X(O)a.

0)

Step 1: Construct the matrix X1 = X( + (b - X(O)a)cT, where



¢ is an n-vector verifying cTa = 1. T
X(l) = Xl + X1
Step 2: Construct the symmetric matrix ———?;———— .

Step 3: Restart atStep 1 until the procedure converges to X#*
given by,

= x = x® 4 - x0Tk ew - xDT - b - xDa)TaeT [22]

Remarks:

Let us make some comments before going any further.

a)-The equation b = Xa, where X is unknown, has a whole set of
possible solutions. It was Broyden's idea [2] in the case of the
"secant equation" to consider the general class of solutions of the
formX =M+ (b - Ma)cT.

Clearly, a sufficient condition to have b = Xa in this general

class is,
T T
b=Xa~> (1 -caMa+ (ca)b=>
T .
c’a =1> X solution.

or equivalently,

cTa = 1 <> there exists d such that ¢ = —%— , with d ¢ R
d-a c e R
a e R®

b)-All n x n matrices X© are solutions of b = Xa, but they are

not symmetric.

(n)

All n X n matrices X are symmetric, but they are not

solutions of b = Xa.



The geometrical interpretation given at the end of this para-
graph will reveal that as the procedure goes on, the image of the
matrix X in an jumps from the hyperplane S to the convex set A and
so forth, until it reaches their intersection. However, it is
remarkable that the point reached through this procedure will also
be the '"closest" one to the starting point X(O) ( in the G-norm sense).

c)-It is readily possible to verify that X* is effectively
the solution of the equation b = X*a, using especially the fact that

cTa = 1:

X*a = X(O)a + (b - X(O)a)cTa + (b - X(O)a)Ta -c( - X(O)a)Ta . cTa

=b + c(bTaA— aTX(O)a) - c(ﬂra - aTX(O)a) =b

*
> X

* *
X + M -X a)cT

* . * . n . (n)
But X 1is also clearly symmetric > X = lim X = 1lim X .
n>o n>®

Curiously, no constructive proof of this result exists in the
literature.

Finally, one can also notice that this procedure shows the

(0)

3

remarkable property, that for each symmetric starting matrix X

*
there exists a symmetric terminal matrix X , solution of b = Xa.

(0)

In particular for X =0

%
- XII = bcT + ch - (bTa)ccT .

Geometrical interpretation:

2
Consider once more the equation b = AX, where g.sRn and



2
é_eL(Rn s Rn). We have already defined in the first section the sym-

2
metry hyperplane S of dimension Bﬁﬁil_l) in R" , along with the con-
2

vex subset A of R" containing all solutions Z of equation [1].
Powell's symmetrization procedure can be given a nice geo-

metrical interpretation using these sets S and A. Consider the

(0) 2 0). (0

. . n .
point X in R, since X is symmetric, X' ‘belongs to S but

not to the convex set A, since it generally does not verify equation
0) . . . .

[1]. From X , using the previous recursion , one obtains the

point g}, which corresponds to Xl, a non-symmetric solution of [1].

g} belongs hence to A, but not to the symmetry hyperplane S. The trans-

T 2
posed matrix X1 , corresponding to Xl, has as "image" in R”  the

mirror image of g} in S. g} is then nothing else than the projection

of Xl on S. The matrix X(l) corresponding to g‘l)

is , therefore,
symmetric, but it does no longer verify [1], which proves that it

(1)

does not belong to A. The procedure starts again from X , until

3
it converges to X belonging to S A, or, equivalently, in matrix

*
form, until the matrices converge to X .

A of dimension n2

4/

S
X1 ‘ﬁr
Symmetry
hyperplane
of dimension )((1)
n(n - 1)

2 X:(O)



The last point which has to be discussed is whether or not
%
the solution X obtained by this method has some norm-minimality

property .

Comparison between the minimal G-norm solutions and Powell's solution:

*
The minimal G-norm solution will be referred to as XI 3 whereas,

*
the Powell-type of solution will be referred to as XII'
More specifically,

T

% - - - -
X = ——— [balet 4T - 2D el Te [23]
(a”G "a) (a G Ta)
and for X(O) = 0,
* T T T T
XIT = be® + cbt - (ble) . ccr. [24]

The similarity between these two formulas is especially striking
if one chooses,
G "a [25]
aG a
for which the condition c'a = 1 is obviously verified.
As X* is the minimal G-norm solution to Problem 1, it becomes

I

% %
clear that XI = X

IT for the particular choice [25], and it follows

%
that XII is also minimal G-norm. This result can be condensed in the

following Corollary.

Corollary:

. . 3 * . . 3 . .
There is a symmetric solution X to equation b = Xa minimizing



also Tr[GXGXT] , where G is agiven n x n positive definite symmetric

matrix.This solution is given by,

_l _
Xk = _—7EL———[ balec ~ + ¢ lapl -
(a"Ga) a G a

where a , b ¢ R" and G € L(Rn), and it is also the limit of the

following sequence as n goes to infinity:

X (0) —XO =0

ol _(n) (n) algl i (d) n

X =X + [ b-X""a] T -1 with, X~ , X e L(RY)
T aG a

X(n+l)= 0+ 50

for n=0,1,2,.

This corollary shows that basically,Greenstadt's variational
method and Powell's recursive method- are generating the same kind of

updates.

5-Expansion of a symmetric matrix solution of b=X a ,around any given

(0)

matrix X

Let G be some given positive definite symmetric n X n matrix.

It is then possible to consider in L(Rn) the following G-norm,

||A||G = —l—-Tr[GAGAT] for any matrix A element of L(Rn),
2
norm which also induces the G-distance

L A8 1 =[[a-8]] ;=—=Tr[cAa-B)c@-B"]
2



n
defined for any matrices A and B element of L(R").

A slight generalization of the initial problem is analyzed

in the following sectiomn.

Problem:

T
Given any n x n matrix X(O) - i.e. generally X(O)_ X(O) £0 -

s
*

find the G-closest symmetric solution XG

of the equation b = X a ,

where b and a are known n-vectors.

Solution:

Consider in L(Rp) the n x n matrix E defined as,

* *

X, =X =E+ x(©® [26]
and let

b=5b - X(O)a .

e e 1 T .
One has to minimize = Tr{ GEGE™ ] ,
2
given that,
T
b=Ea and ET + X(O) = E + X(O)

This leads us to the construction of the following Hamiltonian,

T
H=—=—Tr[ GEGE' ] + A\T(Ea-b) +1r[r ( Bx O -pTx(®y;
2
T
or H = Tr[ GEGE' ] + Tr[(Ea -b)A" 1+ Tr[ r( mx D= gf- x(O 7y
2

Next,differentiating with respect to E and using the property

that,

[27]



D[ AM] =M and Tr[ AM ] = M
5A 3A
B _GEG+ ral +TT -T =0

3E
GEG = - [ Aat + I'i-T ]

E=-GT[ rar +1° -1 J67¢ [28]

But as,
T
E + X(O)— ET - X(O) = 0
T
¢ el -t # orT 22 riet # x@x@
T
lere Lraaf o)+ e k@%@ [29]
2 2
Substituting this result back into [28],
T
E o= -0 x@xO@ e+ T - 0aT 167t
2 5 T2
T T
T -1, Ja +ar , -1
b oo L @@ - e 301
2 2

but still,E must verify

Ea=5»

T T T
Aa + ah ] G la + 1 [ X(O)—X(O) ] a =0
2 2

B+ el

T
2Gb + [ Aa’ + ant ]G—la + G[ x(0)_x (O ] a=0

Solving partially in ) one obtains,

_ - T
~126b + a(\ TG la)’+ ¢ ( x-x@7y 47 22T lay



T
X = - —TL?I' [ 266 +a(ae e +6(xPx@ a1 1
’ a G a

T -
If one multiplies this expression by a G 1 on the left,one

gets,
T
aTG_lA = - Tl—l [ ZaTb + ( aTG_la )( ATG_la ) + aT(X(O)—X(O) Ya ]
aG a
and as
T -1 T -1

aG A=xG a
. . . T -1
one can solve the previous equation in a G “) ,

aTG—l - aTE _ aT( X
A T -1 T -1
aG "a 2 (a7G Ta)

QINOR

[32]

Substituting this result,back into [31],

T
A _ 1 [ 26D - aTb a _ aT(X(O)—X(O) da
T -1 T -1

aTG—la a G "a 2(a"G Ta)

T
+ex@x® 7,

and replacing this value of A dinto [30],the expression becomes,

_ =
A\ = - Tl_l [ 26b - i%—%%~§-]
aG  a a G a
T T
=N (RN () HOMRO)
with, b=bpb+———— a =ph -—-——3
2 2
1 ) (7T 1 “ro1 . o A% a1 T
[30] +E=-— [ X"7'=X l]+————1[ba G +G ab-———C aa G ]
T -1 T -1
2 aG  a aG a
or finally, T T T
0) (0 (0) 0) (0),.(0)
% - + - -
o XX 1 X X7 yaTe! s laqpe X4 T
2 aTG—la 2 2
T
T x(0) 5 (0 ¢ LaaTct
. = a (b_ ) T _l ]
2 acG



Theorem:
Given any matrix X in L(R™), the G closest symmetric matrix

* . .
X solution of b = X a 1is also G~closest to the symmetric matrix

T
2£€§2£_ and, hence, is given by:

T T T
% : - -
R & SN L - BEX yTel ol XX 3T
2 T -1 2 2
(a”G ~a)
T X + X ¢ LaaTct

a (b - a). ]
2 T.-1
a G Ta

Geometrically this also means that the projection of any matrix

on SM A, the set of allsymmetric solutions of S = Xa is also equal

X + X%

to the projection of the symmetrical matrix — on the

same set.
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CHAPTER III.

State-space model and filtering for minimizing a function.

I-Introduction and statement of the problem.

Consider the function £:R" > R having the property that it
is twice continuously differentiable in R™ and let g(x)=Vi(x) be its
gradient .Assume that the problem consists of finding the minimum of
such a function-we are not concerned here with any existence problem
and hence,we assume that at least in a certain domain D,such a minimum
exists~.This minimum will then be given by the solution of g(x)=0,
which corresponds to a Newton-type problem.

Assume now that a particular sequence of points (xk,k=0,I,2,.)
in R" has been found:the previous equation can then be decomposed
according to its Taylor expansion:

8 (1) "8 () =6 () Gy =3 )0 (g % |2) 1]

for k=0,1,2,.

where G(xk) is the Hessian matrix of f computed at point x ,and

k
2

O([xk+I—xk| ) is a second order term in (xk+I—xk),term which is constantly

equal to zero in the case of quadratic functions.

Now,in this equation [I] x, and Xk+I are assumed to be known

k
and the gradient increment g(xk+I)-g(xk) is supposed also to be exactly
computable,but neither G(xk),nor the correction term are known with pre-

cision.The next paragraph shows how to transform equation [I] into a

set of stochastic state-space equations and then how to'best' estimate



the value of G(Xk)'

2-Presentation of the model.

The state-space equations and the model presented in this section
were largely inspired by the work of S.W. Thomas [28] though their
interpretation slightly differs from his. A Kalman filtering approach
will be used to compute the leastsquares estimate of the Hessian
matrix of £(.). In the present case the Kalman filtering method
will be utilized as an identification step in the reconstruction of
the dynamics of a given system. Thereby, it will differ from Thomas'
interpretation since he viewed this method as a peculiarity generating
formulas similar to Broyden's, as far as the updating of the Hessian
matrix is concerned.

Consider now the following functions:

F i [0,1] - rR® for all k = 0,1,2,...

such that Fk(e) = F(xk + esk) = g(x + esk), where s, represents the

k
difference sk = Xk+1_xk

and G : [0,1] = LER™Y)

such that Gk(e) = F'(xk + esk) = g(xk + esk) for all k = 0,1,2,..

Now assume that F(.) and the points x, are such that
F'[xk + esk] for k = 0,1,2,... is a matrix valued Wiener process.
This means in particular that for all k = 0,1,2,...

Gk[xk + esk], V 9¢[0,1] is such that,



a) [Gk(e), 0e[0,1] 1] has stationary and independent increments,
b) for given 6 in [0,1], Gk(e) is normally distributed,

¢) it has zero mean, i.e. E«[Gk(e)] for all 6¢[0,1].
2
Now , using the isomorphism existing between L(Rn) and R s
2
that is between the set of all n x n matrices and R" , to compute the

covariance of G ( see also Parzen (1962)):
2

for each GaL(Rn), one can isomorphically associate a vector g_eRn

such that,
. B T _ T T T T
if G = 81 > G [8:7s 8y75 «-v 8 ]
Y
&n

where g; € R™ is the i-th row of G.

By definition, the covariance of a matrix valued process G is
also the covariance of its isomorphically correspondent vector valued

process G. Therefore,

Cov[G(8,) - G(8 )| = E { [6(8,) - 661 [G(8,) - G(6)1" }
2

. n
k[ez - ell with C; > 0, C eL(R" )

C
for all 92,618[0,1]
and all k = 0,1,2,...

To simplify the computations , assume that C is diagonal

k
and that it takes the form,



¢, = sl 1,2 (3]
which simply means that the rows of Gk(ez) - Gk(el) are assumed to be
uncorrelated with one another; therefore, because of the normality
assumption, they are statistically independent.

A state- space model can than be constructed to describe the
pair [F‘(xk), F(Xk+1) - F(xk)]. For this occasion , the previous

notation is simplified by using:
Y = By T & = B - F (O [4]

G, = G (0) = F (x)

then,
G TG T Vi
[5]
U = Gksk + w for all X = 0,1,2,.
where,
Vk = Gk+l - Gk = Gk(l) - Gk(O), for all k = 0,1,2,...,

is the matrix wvalued Wiener process previously described,

and,

k= 8kl T B TGSy

g
It

k= B @ l— F(0) -6 (0) s,

&
It

K ka(G) . Skde - Gk(O)sk
0



1

W, = f [Gk(e) - Gk(O) ]sk doe
0

- 34

for all k=0,1,2,. [6]

The mean of w, is,therefore, clearly zero since,

k

1
E(Wk) = J{ E[Gk(e) - Gk(O) ]sk d6 =0 for all k=0,1,2,.

0

and the joint noise process

where

with the property that

Yk

Y

2

Qk is an element of L(Rn +n) and where S

belonging to L(Rn ,Rn)

has the following covariance:

T
Sk
In2
- 2
el s, |12
I
2 3 n

equation [7]

K is defined by

2
for all k=0,1,2,.

(81



For more details,see the Appendix where the computations

to get Qk are explained.

To complete this model,some more assumptions are needed on the

statistics of the initial wvalue GO.In this model we shall assume that

. . . . . . n
G0 is a zero-mean, Gaussian matrix process taking its values in L(R")

and having as covariance HO such that

2

Ty 2 0 and o is an element of L(R" )

From equation [5] it appears that the state of the system

can be described as an element of L(Rn) ,0r equivalently , using
2
the isomorphism between L(Rn) and R® , by the nz—vector G, .
n

The true process noise is the’ sequence ( Vk k=0,1,2,.),sequence

which, because of the non-linearity of [1] induces an observation

3
noise ( wk,k=0,l,2,.) with covariance Ilskl| In and with a high

correlation with ( Vk). 3
The observed process is the gradient increment process (uk,k=0,l,2,...)
which according to equation [5] is corrupted by the cobservation noise

(wk). At this point, let us notice that, in fact, the set of equations

given at [5] can be rewritten as,

G. =
Srs1 Sy Ve k=0,1,... Vier Gy [9]

n
k Wk, uk R

]
[92]
(9]
+
=

Yk k—k

which resembles more the conventional vector-state and vector-obser—

vation models encountered in the literature.



Before discussing this model , let us regroup its assumptions

in the following manner:

Model:

il - G TV

Dynamics: G
{ [10]

G, s, +w

Observations: uk Sk K

n
s U, e R .

> L(Rn) , W "

with k=0,1,2,. ,and with V_, K

Cy

+~ G, 1s an n x n matrix valued, Gaussian random variable,with

0
mean,
E[GO ] = GO
and covariance, P 0
0
= - n
Cov [EO’EO 1= HO 1€ L(RY) [11]
0 P0

. . . .. . n
where PO is a positive semi-definite matrix in L(R").

Vk
- , k=0,1,2,. is a Gaussian random process taking its
Vi
0
values in L(Rn) X Rn , with mean and covariance,
ST 0
I k_
2 2
n n2+n
Q. = lls !l e LR )
T
3

In S.W. Thomas' model [ see pp. 42-43 of ref. 28 ], the state



is the couple (gk, Gk) element of R™ x L(Rn), and the observation
is a function erRn identically equal to the first component of the
state for each k = 0,1,2,..

The dynamics were described by,

B4l 8k Vi
= 12
G E% G ¥ V. 2]
K+l k N
for all k = 0,1,2,..., where (gk, Gk) eR" x L(Rn)
and,
I Sk
(I) =
k
0 I 2
n

and the observations were described by,

_ &
e = M [Gk]

and [13]
M

for all k

[I . 0]

eRn.

0,1,2,..., where Fk

At each point Xy Fk is measured with high precision and conse-
quently 81 as well. Thomas formulates his problem as consisting

A A

of estimating gk+l/k and Gk+l/k given all previous Fj (or gj) for

j =o0,1,2,...k. This is typically a singular filtering formulation,

where gk/k = 8

and strictly speaking, no Kalman Filter can be constructed.



The classical way,however, to transform this mathematically
ill-posed problem is to substract the deterministic -or known-
parts from the state.

This leads to,

G =G, + V
k1 k- k for k=0,1,2,.

W = By B TGSt

Consider now,that after having reached point X uk is
>
observed but is known to be corrupted by some observation noise
w, of known covariance. From this new observation u, and all the

k k

previous ones - which by simple addition reconstruct the gradient gk— ’

the least squares estimate Gk+l/k of Gk+1 is sought. This formulation
now perfectly fits into the standard Kalman filtering theory,which

will be applied in the next section.

In conclusion, consider again the Taylor expansion [1]

2
= u = Gksk + Q[I[skll ] for k=0,1,2,.

Er+l T Bk
Clearly if the function f(.) which has to be minimized ,

is quadratic , this expansion is reduced to its first term ,

u = st if f(x) = —%'XTQX + bTx + c

In the case of any twice continuously differentiable function
£f(.) , the model [ see equation 10 ] replaces the correction term
2
0[l|skl| 1 of order at least two in Sy by a Gaussian noise process

(wk) with covariance proportional to ||sk|[3 .This last indication



should reinforce our confidence in the consistency of the proposed

model.

Other remarks:

In some sense, one can consider that the covariance of the
observation noise is a relatively good measure of the distance

existing between f(xk) and its local quadratic hull.

\

The whole previous derivation was based upon the assumption
that the sequence of points (xk?k=0,l,2..) converging to the minimum
of the function was known. This conjecture allowed us to compute for
each wvalue of k, the step-length Sk’ as well as all the noise
covariances. However,this is not the case in general and one has
also to construct this sequence of points (xk) by using for instance

Newton's method ,
—x, = - [6(x) 17t for all k=0,1,2
xk+l Xk Xk gk slsss .

or, s, = -G

[14]



3-The Kalman Filter:

Claim:

Assume that the initial estimation error covariance is given by

~

[11]. The minimum mean squares estimate G, associated with the previous

k
model is then given by:
(u, - é s )sT s
S 5 k k"k’ Tk i| kll
Gk+l = Gk + T [Pk + 5 I] [15]
s. [P, + ||%k]]| 11s
k "k 3 k
éo given for k = 0,1,2,...
and its error covariance by:
s |1 s, |
k T k
) [Pk + ——E———-I] 8151 [Pk + 5 I]
P = Ils ||I + P - [16]
k+1 k k T sk
Sk [Pk + llg—LL I] S
P0 given for k = 0,1,2,.

Proof:
Considering the previous model in its vector form (i.e. with
state gkean instead of erL(Rn) )
S =& t %
e T SRS T % for k = 0,1,2,... .

Note that Hk = Cov[Gk,Gk] = Cov[gk,gk] = E[(_(_}k - gk)(

is the error covariance after the k-th step.



Using the notation,

Q) = [Is [T,
n
T gy _ L T
1
SHORS SICTIeN

the resulting Kalman Filter is, for instance, given by Theorem 6.42

in Kwakernaak and Sivan [14]. Applying it to this model,one gets,

A ~ A

§k+1 = gk + Kg(k)[uk - S, G, ]

ac

with

K (k) = [LSY + q..(k)] [Qu.(k) + s 1 st

. e T Qo 22 ke SE! o
and
_ ) T

Mepp = QO + I - K IQ, +sLT,

or also

_ 1 T 1 3 T,-1
R, () = [m + lesklllnz] 5, [3[lskl} In2 + 5 S, ]

starting with

0 2
HO = eL(Rn ) bloc diagonal, and assuming that

Hk has also the same structure,

k 2

= eL(R™ ), and that P T

_ n
k= Pk eL(R")

it follows that,



3

_ 1 T |1%k]] T -1
Kg(k) =[ 0 +35 [lskll I, 1s, [ Inz + s Ps, ]
1 T
[m +—5lls l11.2 1 s,
e | 1Pkl
T k
s [Pt e

3
and hemce that,

1 T 1
[ et s [T 188, [0k s LT o)
n n

=]
]

k+1 - Hk + HSkIlInZ -

T 1Pl
S [P ¥ 3 I, 1s

1 T 1
[ 2+ 5l s T, T2 + ==l s [T 1]

B e IlskllInZ -
T | %] ]
Sk [ Pk + 3 In ] Sy
It becomes clear that il K+l remains bloc-symmetric and that,
Pk+l 0
if Hk+l = , then ,
0 Pk+1
1 T 1
[+ 5 ls T I s DRy + 55— lls 11T 1
Pk+1 - Pk +l|skHIn B Ils II
ST [ P + k I 1s
k k 3 n k

hence:

1

K, (k) = [P +— ||skl|1n ]




T %] ]
S [ Pk + 3 In ]l s

and after rearranging the terms,

T 1
R n o s [ P+ ———1]5 [II ]
= - k k 2 k n -
Gk+1 Gk + [ U Gksk] |ls 1 for k=0,1,2
T k
s [ B * 3 T b sy Q.E.D

Notice that the Kalman filter formula [15] is a member of a

general class of updates of the form,

G .. =C +[u -Gs.lc [18]

S I L e M

These formulas have the advantage of being particularly simple,
however, they also offer the following major inconveniences.

In the case of function minimization problems ,where f, the

function to be minimized is assumed to be continuously differentiable,

Gk has the meaning of being the Hessian of £(.), and hence should be

symmetrical. Consequently, it is somehow disturbing to construct a

A

family of non-symmetrical estimates Gk'

A second property is also usually required in the gradient

algorithm literature. At each step k, the estimate G " is usually

k+1
required to verify the so-called "secant equation',

A

U = Gk+lsk for all k = 0,1,2,...

[19]



Now,forgetting for a moment the previous results obtained
by application of the minimum mean squares filtering theory, and consi-

dering the following new updates,

A .
Gty = G F [y — Gysple

Attempting to also verify the secant equation , it is possible

to write,

~

U = CrSe

> A T
T = Ges + Ly - Gspleg s
A T _
+'[uk - Gksk] [1 - cksk] =0

or ¢;s, =1 [20]

. . n R
which means , also, that there exists some vector uksR verifying,

u
_ k
k T [21]

M Sk

Moreover, this condition appears to be necessary and sufficient

for any matrix update Gk+l obtained through the class [18] to verify
also the secant equation.

As the Kalman filter [15] belongs to the general class [18], but
with a vector ck equal to,

- Ilzkll .

= T
k T ]| T et L

kv 3 L 1sy




it implies that the secant equation [19] is not verified.
In Chapter V , it will be demonstrated , using the results
of Chapter III, how to best approximate in the Euclidien norm sense

previously derived, in order to

stima
the least square estimate Gk+l .

construct symmetric updates which also verify the secant equation [19].

4-Inversion of the Kalman filter.

In the previous section, we saw that the least squares estimate
of Gk+l ,the Hessian matrix of a function f(.) computed at the point X4l

was given by,

" T HSkH
[ u ] Sy [ Pk + 7 I]

Kk~ CkSk
Cppr = G F (221 ¢or =0,1
T s, ! e
Sy [ Pk + —;————-I ] Sy

where Pk is generated by [16].

A

Let us assume for a moment that Gk is non-singular and that

exists ,then,

A

its inverse ﬁ£+l = [ Gk+1 1

Claim:

If ﬁk =[G ] exists ,then

— _T_
_ _ [ s - 14
Fy = o 1 kT R !9 B (23]

_1— —
1+ o dk S, Hkuk ]




where, s
ST[P +_[_L£U_

I] s
o = k k 3 ko 0 [24]
. [ls I
s, [P +—5—11] s
s, |1
k
_ [ P+ I]s

k s
T |kl ]
sl Pp ¥ 1l osy

is the inverse of Gk+l .

Proof:

Our proof is based on an identity due to Sherman and Morrison
which can be written as follows:

if B exists, then ,

[ B - nyT ] L. B~ - 1B xyT B
[26]
1 1 T -1
T o

Some straightforward algebraic computation would be needed in
order to verify the previous result , but being irrelevent to the
subject , it will not be attempted here.

Now, consider the following correspondences between [22] and [26]:

-1 ~
o <> ak B <> Gk
d = dy x = Gesypomyy
u—l
k o
- <> T =




and hence from [26] , one obtains ,

= =T

B =Bt [23]

o + Ei [ s - ﬁk"k 1 Q.E.D

Of course there is no more reason now for deciding that Hk+1

should be symmetric in [23] , nor to have ,

S = Bern U
the secant equation , verified. Consequently , the updates given
by [23] do not belong either to the class of Broyden's formulas
described by

— — — T
B =B+ D =By 1o

with ci uk =1.

5-A nonlinear stochastic regulation problem.

Consider once more the problem of minimizing a function £:R" » R
which is assumed to be twice continuously differentiable and let x*
be its minimum. A necessary condition of minimality for such a
function is that Vf(x*) = g(x*) = 0. The problem consists then
of building a sequence [xk,x:; 0] starting at some point X such
that g(xo) = 8, and converging to x*. A necessary condition to
obtain such a sequence is clearly through the corresponding sequence

of gradients [gk,k > 0], that converge also to zero as k goes to



infinity.
The state space equations [10] representing our system are:

Gpy1 = G T Vi

k- CSk T

[27]

[=
It

n
Gk e L(RY)
uk € Rrl
Gy ~ N[GO,HO] for all k > O
where [Vk] and [Wk] were two Gaussian perturbations, and uy represented

the gradient increment at point x that is, u An

Kk’ k  8k+1 T Bk

equivalent representation of the same system is then the following:

Gy - )G - ()

k

G [28]
._.k_
yk=(0 I) ( ) for all k = 0,1,2,...

&k

in which no perturbation alters the output Vi

v
is the input noise with given covariance - see Appendix 1.
w

G G 1 0
(_0> is also Gaussian with mean (_0) and covariance ( .
go 0 0 0



Vi takes value 8y at each point X and can be interpreted as the

output of our system.
Apparently there is no deterministic input to the system, but

only noises; this is not quite so since s, or equivalently S

k k

(remember that by definition S is a multiplicative input

1k = G
to the system. Consequently, the problem can also be viewed as consisting
of finding the function P(.)such that Sy =<bk[Gk,yk] and, which stears
the output to zero. 1In fact we have a regulation problem in the sense
that the output yk must go to zero as k increases, but perhaps a better
appelation would be a zero-target problem, as we are interested in only
the first time (or point x*) the system reaches a level zero.

One possibility, as usual, is to restrict ourselves to linear

feedback laws for CDk(.) of the form,

Sk = %8Bk [29]

In order to achieve this goal, the classical method consists of linea-
rizing <bk( ) around the estimates of its arguments, estimates

which are usually obtained through a filtering stage. This leads to:

s, = ® G ,g y.] .®DIC g1y
ko OkURBK T~ FlPio Bk [30]

By comparing now this result with Newton's method which uses

the fact that,

* 1
x -x =- 1061 g

a reasonable guess for <bk[é

k’gk] is the following,



- c -1
P68 ] = - 1G] [31]

if Gk is non-singular

for each k =0,1,2,...

This whole last dicussion then can be condensed in a bloc

diagram:

OUTPUT

KALMAN FILTER




CHAPTER IV

The set estimation approach applied to function minimization.

1-Introduction.

In the previous chapter we presented a Gaussian model to describe
the evolution of the Hessian of a function along each point of a mini-
mization algorithm, and then used the techniques provided by linear
filtering theory to construct a recursive sequence of estimates (é;).

Probably a more realistic method would consist of considering that

V. and w, , respectively the input and observation perturbations of

k k’
the system considered, have unknown statistics but remain bounded.
This will be achieved by using the so-called recursive set estimation
procedure originally due to Schweppe [26] and applied later to the
control field mainly by Bertsekas [3].

The basic idea of this procedure is to combine knowledge of
the systems dynamics with the observations, as well as the bounds, in
order to specify a time-varying set in the state-space, which always
contains the true state of the system. Hence, the actual estimate
consists of a set in state-space rather than a vector ( or a matrix
as in the case we considered). Unfortunately, this set is usually
too hard to characterize and this led Schweppe to introduce the concept
of minimal bounding ellipsoids containing the previously obtained

set.



The idea of applying the set estimation technique to obtain
new gradient algorithms is not new, since it was introduced for the
first time by Thomas (see 28); nevertheless, for the sake of completeness
we shall devote a whole chapter to it, emphasizing more the model
building aspects than the derivation of each result.

In section 2, a short review of some useful concepts, such as
the one of support functions for closed convex sets will be intro-
duced and particularly applied to the case of ellipsoidal sets.

In section 3, a discussion will be directed around the correspon-
dence between unknown but bounded models and ordinary linear Gaussian
ones. The analogy between correlated Gaussian noises and unknown
perturbations bounded by skewed ellipsoids will be particularly
emphasized. This last part of the discussion will enable us to choose

a model of the skewed ellipsoid type to represent function minimization
problems.

Finally, in section 4, the sequences (Gk) and (Hk) will be

derived according to Bertsekas [3] and Thomas' works [28].

2-The basic concepts of set estimation theory.

Consider any subset { of R". The first notion which we will

need is that of a support function.

Definition:
Given a non-empty set © in Rn, the support function of {2, is a.

mapping from R" to R defined by:



n: R© =R s.t. n(y) = Sup <y,z> [or just Sup yTz]
zefd zef [1]

and the following Lemma, due to Rockafellar (see Rockafellar p. 113),

Lemma 1:

Let&?g;Rp be non-empty, closed and convex. Then @ is completely
determined by its support function. In particular, @ may be defined by,
n n
Q= ; zeR™ : <y,z> <n(y) for all yeR 2 [2]

Now, consider the case of a closed, compact ellipsoid & with

equation,
Q0 = 3 x + (x - xc)T T_l (x - xc) <1 s C R" [3]
where X, is the center and T is a positive definite, symmetric matrix

describing its excentricity. The support function of Q@ is given by

the following Lemma.

Lemma 2:

The support function of the ellipsoid & [3] is given by,

1

n(y) = <y,x > + <y, Iy>2 [4]
Proof:

From the definition of n one may write,

n(y) = Sup <y,(x - x )> +<y,x >

C C
xXef
As T is a positive definite matrix, there is a self-adjoint
1 1 1

2 s.t. T =T2T2.



From [3] and the Cauchy-Schwartz inequality, one now deduces

that,
1 21
<y,x = x, >= <2y, () 2 (x-x)>
z -1
< <y,l'y> 2 <x-%x), T 7 (x-x)>
= 1 c c
<y’ry>-2-
for all y ¢ R".
1
Now by [3] z =<y, Ty> 2 Ty + X, is contained in @, and hence
1
verifies <y,z - xc> = <y,l'y> 2 Q.E.D.
Lemma 3:

The support function of the vector sum of two closed, convex

sets Qi and 92 is the sum of the support functions of each of them.

Proof:
Let S = Ql + 92 = z : z = Xy + X, with xleﬂ, and xzeﬂz
then S has as support ,
T T T T T
ns(y) = Sup vy = Sup (xly + xzy)= Sup X7y + Sup X,y
veS xlte xlte xzeﬂz
x,elly Q.E.D.

Consider now the following linear system:

Qg%El = F(t)x(t) + G(t)u(t)

XO given

y(t) = H(t)x(t) + w(t)

for t > 0, u(t)te, w(t)st, erQO,

[5]

[6]

[7]



where u(t) and w(t) are unknown but bounded perturbations belonging
respectively at each instant t to the closed, convex sets Ql and QZ

and where also the initial state X belongs to some given closed, con-

vex set QO. If, furthermore, ®(t,s) corresponds to the transition
matrix associated to the matrix F(t), the solution of equation [6]

can be written as,
o(t,s) € L(Rn) for (t,s) ¢ [0,T]
t
x(t) = <I>(t,0)x0 + “/ﬂ ®(t,s)G(s)u(s)ds, t>0 [8]
0

As we implicitly assume that F(t) is such that &(.,.) is a

bounded linear operator, the set,

Qé(t) = ; x s.t. x = ®t,0)z , zeQO € s [9]

being the image of a compact set, remains closed and convex for
any instant t.

Now the set,

g t
2 (t) = 3}( S.t. x = / o(t,s)G(s)uds, uteg , [10]
0

remains also closed and convex for all t because of the linearity
of the mapping u ~> t, and if Q(t) represents the set of all possible

reachable states, we clearly see that,
Q(t) = Qu(t) + QQ(t) [11]

Consider now also the set of all possible states which are coherent

with the observation y(t) at time t,

Qobs(t) = x : y(t) - H(t)x(t)eﬂz(t) [12]



By definition the set estimate will be the intersection,
= 1
2 (e) = a(t) N 2 ps () [13]

If Ql and QZ are ellipsoids, it is easy to verify that Qu(t)
and Qé(t) are also ellipsoids, but unfortunately, as the use of Lemma

2 proves it, Q(t) has no reason for remaining also an ellipsoid ( the
sum of the support functions of the two ellipsoids does not conserve

the structure yTxo + [yTPy].%, except for some very special cases).

In the same way, although Qz(t) is taken to be an ellipsoid,
Qobs(t) is no longer an ellipsoid, nor the intersection Qes(t).
However, if one bounds each of these sets by bigger ellipsoids, Schweppe
[see 26] proved that a recursive formula could be carried out for the
centers it and the kernels F(t) of the ellipsoid 6€S(t) containing
the "true" set estimate Qes(t)‘

Now, before starting to compare ordinary linear Gaussian models
with such unknown but bounded perturbation models, a last comment
must be made about the case when no perturbation affects the obser-
vation variable y(t). In this case, in fact, the set of all possible

states coherent with the observations y(t), that is bes(t) reduces

to a hyperplane of equation,
8 st = x : y(t) - H(t)x = 0 [14]

We shall see in the next section that this case is of particular

interest as the intersection of the set Q(t) with the hyperplane Qo

bs(t)

will be much easier to compute. Furthermore, if Q(t) is included in

an ellipsoid Q(t), the intersection Q(t) N Qobs(t) will also be



an ellipsoid (the intersection of an ellipsoid with a hyperplane of
lower dimension always being an ellipsoid), but possibly degenerate.
[see Appendix 2]

Finally, in the remaining part of this chapter, we shall consider

the case where t is a discrete variable taking values 0,1,2,...

3-Three types of estimation problems on unknown but bounded models.

Take the case of a linear discrete-~time dynamical system described
by,

X = AX T Bu k =0,1,2,... [15]

on which noise~corrupted measurements are performed,

zk = Ckxk + Wk [16]

n . r ., . .
xksR is the state of the system, u, ¢eR™ is an input disturbance vector

k

and wkeRp is the measurement noise vector. ’Bk’Ck

have the appro-
priate dimensions and N corresponds to the time horizon of this problem.
In this section, the recursive ellipsoidal state set estimates,
d;S(k), shall be constructed, with the following three different types
of constraints on the unknown quantities X(sWy oty
The first type of comnstraint is the "energy constraint" type

described by,
N

T -1 T -1 T -1
X ¥ X * § : (e Qg1 T 9Re ) 21 [17]
k=1
where ‘P,Qk,Rk are given positive definite symmetric matrices for

all k = 0,1,2,... .



Practically, the second type is the more important case, which
will be designated as the '"separate, instantaneous, constraint type'.
The uncertain quantities are constrained at each instant of time to

lie within the ellipsoids,

T -1

XOW XO <1
T T

Weep Qg Y1 £ [18]
T -1 _

W Rk W <1 k=1...N

Finally, the third type, which will be necessary to study a
gradient algorithm, will be referred to as the 'global instantaneous

constraint' type described by,

Q S u
xg ! x, <1 (ui, WE) ( k k > ( k) <1 [19]
Sk Ry e

Q S
where ( k k> is required to be globally positive definite

S R
for each instant of time k.

The first two types have already been studied by Bertsekas in his
thesis [3, see in particular Chapter IV]. He was able to derive in
both cases a recursive procedure to construct at each time k an
ellipsoidal estimate for the set of all states, consistent with
the measurements z) - Furthermore, his resulting estimator, though

similar to the one proposed by Schweppe [26], has two advantages-



his gain matrices are precomputable , and a time invariant structure
exists to the problem, obtained as the limit, when N the time horizon
becomes infinitely long.

The third case shown to be related to the correlated Gaussian-
input, Gaussian-observation noise model. The estimation problem corres-
ponding to this case will be solved by noticing that such systems are
in fact equivalent to perfect observation situations with, however,
noisy inputs driving them.

a) The energy constraint case:

The way to solve the problem is to consider at each instant

of time k, the linear mappings Lk:Rn+N(r+p) + R and Dk:Rn+N(r+p) > Rkp
such that,
T _ ,T T T T T T T
for v o= (xo, Ugs Ulsee- uN-l’ wl, Wos e w&) [20]
T. ,T T T
and Ek = (zl, Zos +e- zk) [21]
Xk=Lkv [22]
Ck = Dkv [23]
for all k = 0,1,2,...N
The energy constraint [17] implies that the vector v belongs to
theellipsoid,
Yy
Qo 0
v = ver?™N @) (Tl <1 M= Q4 eL(Rn+N(r+p))
0 R



Calling Vk the set of all possible vectors v consistent with

the measurement vector ,

A

ck: Vk = { v:z;k = Dkv, veV }

One can notice that as V is an ellipsoid and Vk is the intersection of

V with manifold { v ck = Dkv} s Vk is also an ellipsoid, as well

obtained through the linear mapping L

A

as Qes(k) = Lka

K
The final result can be found in Bertsekas [3, for example, see

Proposition 4-2],

é;s(k) - 3 x: (x - é#)T Z;l(x - ££> <1 - 62K [24]

where I is given recursively by the Riccati equation,

K
1 T -1 T T -1
e T G RTUC A IAL T A By Qg B4l
[25]
) 5, = v
and
¢ =Ax + I Cl_ BRI | -c ]
X1 T A%k kbl Gl Rt [Zemn ™ Gk
. [26]
XO = (
for
2 2 AT T T
+1) = -
ST = 870D+ {2y - Cen i) O BBl R
[27]

1

TT .- -
ot G A A ) P T G AXe]

§2(0) = 0



b) The separate instantaneous, constraint problem.

Contrary to the previous case, the problem becomes very difficult
when instantaneous constraints defined by inequalities of the form [18]
are given for each of the unknown perturbations, and, at least for the
moment, no exact solution to this problem has been worked out.

In Schweppe's work [26], the main idea for solving this problem
is to bound recursively by ellipsoids the convex sets of all reachable
states defined for every instant k in time by the conditions [11-12-13].
In Bertsekas' work [3], however, the same problem is transformed in a
first stage into a problem of the energy constraint type, and then,
solved by the same methods as in part a). Although the last method
leads to some nicer results than the first one, especially in terms
of their asymptotic behavior, their exact form will not be discussed
here, since their relevance to the present function minimization is

quite questionable.

c~ The global instantaneously constrained set estimation problem.

Problem:

Consider the dynamical system described by,

{xk+1 = Az + Bpuy

- - [28]
zy Ckxk + Wy k=0,1,...

with



and, where Ak’Bk’C are known matrices of appropriate dimensions.

k

The initial state x. is unknown but bounded by the ellipsoid,

0
_ n _= T 1 _ =
QO = {x e R :(x X, ) YO (x X, ) <1 [29]
where TO is a positive definite symmetric matrix.
The perturbations U W, are jointly bounded for each instant in
time k, by the ellipsoids,
Qe SE B %1
Q = zt—:Rp+r : (zT zT) <1
1k ) 1°72 = [30]
St R 23
k =0,1,.
T
% S
where ( >0 for all k.
VS Ry
Find the recursive procedure to build the ellipsoid set estimates
of the state X for each time k, given the previous observations
Zgs Zys eee Zygq-
Equations [28] have to be transformed, by defining zk such that,
z, =y -y RP k =0,1
k k+1 k 2t
and [31]
6, = eRP

k- Tk



The equation describing the dynamical evolution of the system

is now,
(Xk+1 ) b O ( Xk) By 09/ %
= [ ] + [ ] k=0,1,2,.. [32]
Y+l Ck I Vi 0 I Wy

whereas, the observations are described only by,

xk) and z, = S -0 k=0,1,2,...

6, = [0 I](
Ii

The state-space has a dimension augmented from n to n+p. Thus
also the problem which has been initially formulated, in equations
([28] - [30]) is now transformed into an "instantaneous constraint"
type of problem but with perfect observations.

Assuming that at time k, (xi, yg) belongs to an ellipsoid having

as support function,

A

X v 1
nk(vl,vz) = <(vl,v2) ; (Ak/ > + [<(v1,v2); Zk( l)> 12 [33]
Yk

The support function of the set containing all possible values taken

T T T .
by (xk+1, yk+1) » can be computed using Lemma 3,

T T 1
A, 07 Xk A, 01 A, C v 2
et (V10V5) = <(V5vp)4 ( . ) >t vy ot ( ) g
¢, I Tk ¢, L Lo 1 A
B, 0119 S7[3 O v 3
oot <(Vl,V2); ( ) >
0 I S, Ry 0o 1 [\V2




Using now a majoration technique also used by Thomas [28] ( see
. . . T T T
equation 2.38), the result is that all possible states (Xk+l’yk+1)

are also contained in an ellipsoid with support function ,
nk+l(vl’vz) = <(vl’V2); (A-k}(k’ Ck.xk + Yk)> L [34]
T T T
A 0 A S BB O

.+ <(vl,v2); l Zk J + [ (vl,v2)>
Ck I 0 I 0 Rk
. . T T T .
In order now to obtain the set estimate of (Xk+1 s yk+l) which
is also the set of all possible values consistent with the observation

ek+l (taken at the same instant of time), one has to compute the

intersection of the ellipsoid defined above, with the manifold,

= p . =
011 { 6eRF : © yk+1} [35]

This intersection is also an ellipsoid with center defined by,

. ) _1 _1 s
{ K1 = D Zyg = Tpp8o0%n] 2p5T5%p [z - Gxl

A

*0o T ®o
where,
T T T
211 12 A O Ac G BB O
b1 = = Ly + >0
Ly Iy ¢, I 0 I 0 R,
for k=0,1,...
and [36]

N



The ellipsoid itself can be described by,

n . - R | -1, 7 _

where, [37]

A~ 1 %

= <[z, =Cxp 15 [2p=21 5070501 (7= Cpxp) >

Yk

These equations can be derived directly following the method
indicated here or they can also be derived as a limiting case , when
the observation noise becomes zero, of Schweppe's results ( see [26]

pp. 168).

4- A set estimation problem for minimizing a function.

In this section we review, following Thomas' work [28], how the
stochastic model of equations (Chapter III-10,11) can be transformed
into an unknown but bounded noise model with global instantaneous

A

constraints. Finally, a recursive solution for the estimates Gk is
stated.

Consider once more the case of a function f: R™R twice
continuously differentiable, such that, Vf(x) = g(x) and sz(x) = G(x).

%
Let x be its (possibly local) minimum and let D be some convex

*
neighborhood of x . It is finally assumed that,

[16Gg, + 818, = Gx + 0,5))]] ;:Llﬁl -6, ] . |ls 1] 100 [38]

for all xk,xk+ske D and all 9§ 62 e[0,1].

1,



Let us introduce also the continuous mappings:

G, :[0.1] » LERM
n

gk : [0.1] - R

w :[0.1] > R

such that for each k = 0, 1, 2...

G, (8)

+
k G(xk Bsk)

(6) = g(xk + esk), and

&x

uk(e) = 8._1(8) - g ;0

The there exists (see Lemma 1.1 in [28]) a Lebesgues integrable

function Uk : :

Gk(e) - Gk(O) = ka(t)dt
0

and
o @] < tllsl|
On the other hand,
6
g, (6) = g, (0) + G, (t)s dt
6
or uk_l(e) = ka(O) skdt

u _1(0) = G6s, +

Computing

gets that,

[0 . 1] » L(R™) defined by,

for all k=0,1,... and all 6¢[0,1]

8
X / [Gk(t) - Gk(O)]skdt
0

for all 6e[0 , 1]

the expressions in [39] and [40] at point 6= 1, ome

[39]

[40]



1
Cryy = G + /Uk(t)dt
0” ,1 [41]
w = Gksk + j{[Gk(t) - Gk(O)]skdt for k=0,1,...
0
Let G0 be the unknown but bounded initial state of the system
belonging to the set,
2, ={AGOEL(Rn)l <6y - 6 | M (6, - 6 >y 1 ) [42]
which represents its set estimate with HO>0.
Comparing equations [41] to [9] we notice that the input noise Vk
and the observation noise vy have for expression,
1 . 1
v, = j Uk(t)dt
07,1 [43]
W = ]( [6, (£) - G, (0)]s, dt with V) eL(R"),w eR"
Q
The set of all possible values taken by these two perturbations
can be determined through condition [39]. However, using the result
of Claim 1 in Chapter II, it becomes also clear that [38] is
equivalent to,
[eGxy + 013 = 6l + 0,50 | < Lllel' 0, o [Is [l [44]

for k = 0,1,...

where , for example, Ll =L >0

Vn

This implies in particular that,

oo [y < Tlls, | for all k = 0,1,... and 6¢[0,1]  [45]

if we simplify the notation by calling Ll, L.



Now clearly, this last condition means that Uk(.) remains in a
bounded set which constraints not only Vk to another bounded set
but also W - One can also say that [45] dis the coupling equation
relating the perturbation noises Vk,wk. Similarly, on the Gaussian
model a correlation appeared between Vk’ v . This means also that
"global instantaneous constraints', have to appear on those pertur-
bation terms and, therefore, following the conclusions of the previous

section,that a realistic model for the system has to include perfect

. . . 2
observations and a state of dimension n”~ x n,

rl
G 1 0 G U (t)
=z 2 =z
( - [n ] + K at [46]
& fern B TI\Bk (6, ()6, (0) sy ‘= o1 N
b b .
G %
z, = (0 D ~J471
\e/,
with 5
2 n n -
Ek R gkeR s gkeR , and Skg = Gksk
with still,GOeQ0 defined by [42]
and
o @l < Tls || k=0,1,... [48]
Let us compute the ellipsoids defining the 'global instantaneous
constraints'". Equation [46] can be written in differential form,

using [39] and [40],



< L - 5 (0
a
< = 8) +
=5 [g] (8) [ I (6)
k S, 0 8 0
ith g (8)eR®, G (e)eRn2
wit 8, eR", G
or
Gy G (0)
q Kk k
S @ =080 1@ + [49]
By Ex 0
with G (0) e L@RY), for each k = 0,1,..., and 0e[0,1]
Let,
) 4 (1,00 = LR™ x " > L@®™ x R"
1

for all (t,0) e [0,1] x [0,1]

be the state transition mapping of this system corresponding to A.

The solution the differential equation [49] is given by,

0
Gk(e) Gk\\ Uk(O) -
@A K (6,0) + do

o, . (8,0) [50]
Ak
8, (9) \ 8, . \ 0

for all 06¢[0,1],

which for © = 1 is equivalent to [46].

Let us define the two projections of o, k(.,.)
1

QR'k(.,.) : [0,1] x [0,1] -+ L [ L[R"] x R" ; L[R"]]

% (o) 3 0,11 x (0,11 4 L [LIR") x R® 5 K]



then, . Gk(o)
?A,k (8,0) . ( ) = G (9
8, (9)
) G, (9 [51]
QA,k (6,0) . ( ) = gk(o) + (t-0) Gk(c)sk
g, (0)

Let Ukvdenote the set of all mappings Uk(.) verifying condition

[45]. The support function of the set containing all possible values
(VE, wi ) is obtained by taking,
1
U, (9)
nk(H,h) = uSup << (H,h), @A'k(l,o) do > [52]
ell 0
0 n n
where << , >>T is the inner product on L(R) x R defined by,
T T T
<< (A,a) , (B,b) >>T = <A,B>F +ab="Tr [A'B] +ab [53]

for all A,B in L(R™) and all a,b in R".

*

Defining also by & (t,0) the adjoint mapping of &, . (1,0)
Ak Ak

in terms of this inner product, it is easy to verify that,

* H
0
o) (t,0) ( )
( Ak h

H+ (t - 0) Hsk

>-e
- %
e
~
=)
Q
N
N
s
SN
1]
=



Using this equation [52] becomes ,

1 U(o)
nk(H,h) = Sup »J/. «<(H ,h) , @A,k 1,0) [ ] >0 do
=, 0

Sup 1 40 H U (o)
IEL’[k << @/\.,k (1, o) . >0 do
0 h

and applying Schwartz' and Holder's inequalities,

1 5 q

n, (H,h) = Sup < 0 (1,0) 1 » U(o) >, do

k et Ak ) F
- kO

1
0 H
< firg o [] . ol e
0 ' h F F

1 H 1 11

%0 2 ‘ = }(l 2 =
< 1o . (1,0) do | 2 x |luCo)||% do ¢ 2
Ly/r A [h] ||F é- F )

using condition [48] ,
1

2 2 2 3
> @m) < pllsd1] 3 s 17 Il 1%+ wlhs + gt

- K

Defining now the mapping,

Q :L®" xR > LEM x R"
and its projections,

QLM x R" > L®Y

kazL(Rn) x RP , RO



such that, a:
H le hJ n n
Qk = - for all HeL(R'), heR

h N

Q H

k2 By

one finally obtains that,

()
al,)-

and inequality [54] becomes,
H H
nk(H,h) = LHSkH <<(h>, Qk(h) >>T

It is easy to verify that Qk is a positive definite operator from

N

RSE + H
[55]

2 2
s 1™ - nl]” + 3 us

Wl

k

1
2

L(Rn) x R" to itself, for each k = 0,1,.

Now, the choice of ,
-1

(6) =L||s || { <H> ! }5 ' ’
U() = L||s << , Q >> ) (1,6)< ) s
k h k(h) T Ak h

verifies condition [45]. Therefore, the previous majorant is

effectively reachable and

s my L
newm = wllell fe (7). g )} 156
h

To conclude this discussion , these results can be condensed



in the following Proposition:

Proposition 1:

The set estimation version of the stochastic problem defined

by equations (III - 10,11) is a set estimation problem with global

instantaneous constraints described by,

G = G T Vg
e T OGS v

with G, ,V, ¢ LR™) ; s e RY for k = 0,1,...

K’k k> k> Uk

ceo = e eL®RY) | <6

» -1
0% 0 - GOI L (GO -G

0

and

w ] x

with Qk defined as in [55] .

Proof:

Since Qk is positive definite it is also non-singular and hence

its inverse does exist.

Equation [56] clearly defines the support function of an

ellipsoid in L(Rn) x R - see for instance equation [5] - : this

ellipsoid Qk is centered at (0,0) and has as kernel Qk.

Q.E.D

[571]

/7
[58]

’ |
[ ¢ = e @ x ] |s | 1175<z, o (2)>> < 1 [%\91



Finally , a solution to this problem can be derived by
using equations ( [35]-[37] ) of the previous section and by

noticing the following correspondences ,

n
Bk <> 12
n
Cx - Sk
T
% S
<> the operator Q
Ls R k
k k
¥0 > HO

The result one obtains is the following -see also Lemma 1.8

in Thomas [28] -

~ Ve ~ 1 A

1) 6 C6=Gg) by (6 -G )>pels Ykg [60]
where the operator Hk+l verifies
Hk+1 G =G Pk+l for all k= 0,1,...
and Pk is defined by, Lzllskll T Lzllskll
2 [Pt =5 TIs 8 [Pt =
P g = [+ ][sk]|] P+ L7 ]s [T - )
: 2|]s,|]
Sk [ Pk + 5 I] Sk

[61]



and ,: T Lzllskll
é ) é . [ uk—Gksk ] Sy [ Pk + 7 I
k+1l Tk 2
] 2o, ||
s [Py 2 T lsp
" 2
v _ H[ uk_GkSk ]||
k 2
L[ ]s, ||
2 T k
L |!sk||[ 1+ I[skll]sk[ Pk + —5 I]sk

In fact, we will usually use L = 1 as value for the Lipschitz
constant.

The comparison between equations [61] and [62] with the
result of the Kalman filter is striking . In particular,for a
Lipschitz constant L equal to 1 , the only difference -see equation
[16] of Chapter III - occurs in the generation of the sequence
(yk ) , factor characteristic of the set estimation approach. 1In

A

particular, this means also that the inverse formula for Gk will be

the same as (III - 23,24,25) if one does not forget to generate
Pk according to (63) instead of (III- 16).

This result is now condensed in the following Proposition.

Proposition 2:

= _ e q -1 . . . . .
If Hk = [Gk] exists and if Gk+l is generated according

to equations~ (61) and (62), then

— .—T_.
[Sk - Hkuk] dk Hk

B = B+

_T —_
o T dy sy - Byl

[61]

[63]

[64]



where s
T k
S [P Ils,
o = < 1 [65]
k T + 1Is ]
Sic [Pk k 1s
2 k
s
B e, + J_I_Lsz 1 s,
d = [65]

is the inverse of Gk+1'

Proof:
The proof is clear using the Sherman-Morisson formula (see

equation III-26). Q.E.D.



CHAPTER V

A new quasi- Newton type of algorithm.

1-Introduction.

In his thesis [28] Thomas studies an algorithm based on the set
estimation ideas of Chapter IV, but without really using the correct
gains or using the actual estimates. Instead, he starts by simplifying
them to the Broyden type of update (see III-18) and by taking their
symmetric version according to Powell's symmetrization technique
(see Chapter II, section 3); finally, in order to be sure that the

corresponding sequence is non-singular a parameter 6, must be computed

k

at each point X, 5 as the solution of a quadratic equation. The

updating formulas he obtains with this method are:

" T
A A (u, - G, s, ) d
) ~ k ~ k°k’ %k _
Broyden: Gk+1 . + ST p k =0,1,... [1]
k "k
modified Powell:
T " T
é ) é ‘o (uk Gksk)dk . e dk(uk- Gksk) 2]
k+1 k k ST d k ST d tot
k k k 'k
T N
g2 d (o= Gesp) 4 47
o k T 2 Tk k



~

where GO is taken to be symmetric and the sequence ( Pk ) is

updated as ,

o
Pryl = !isklll +P - (2 - 6, )ek T [3]
Sk%
P =1
15,11 )
4 =[P +—5—1] 5, [4]

Gk is then inverted at each step according to :

o -
[hy 4 Hk+dekhk]dkayk by by (dkad )- B dkdkahkyk

B = B+ [5]
( h )( at de ) - ( at Hkyk 2

s~ T
R [uu - G s 17s.d R
k k k' "k k
= - - -c
Vi U + (1 ek)e K . ( u ksk) [6]
Sd
h, = ﬁ%yk - s for all k = 0,1,2,.. [7]

i

and finally, Powell's " dog-leg " strategy [see 22] is used to compute

the next point x such that sk belongs to the plane spanned by gk

k+1

and by - Hkgk .

The purpose of this chapter will be to present a new method

for updating only ﬁ%and Pk , in order to avoid the lengthy equations

( [51-[61-17]1 ). Furthermore, our solution will at each step
k- Pt

The main articulations of this new algorithm can be described

rigorously verify the secant equation s



as follows:

a) ﬁ% and Pk are updated according to equations (Chapter IV-
equations [61] and [64]) and the non-singularity of ﬁ? tested for
each step K.

b) ﬁ? is symmetrized so that the result verifies the secant
equation (see Chapter II.). The resulting matrices will be noted ﬁk
and will be considered as the actual estimates of the inverse of the
Hessian matrix for each point X -

c¢) The last step,finally, is the same as in Thomas' algorithm;
that is, the next step is computed also according to a "dog-leg"

strategy and mno linesearch is necessary for each step k.

This algorithm can be visualized as:

IDENTIFICATION

(x,) &)

INVERSE OF FILTER
OUTPUT

Closest Sol.
of

1 Sp = Xu

k

Propagate (Pk)

N REGULATION

>

k+1

SYSTEM

STEP UPDATING

£C¢.) , 8(.)

"dog-leg'" or simple Newton



where (ik), (ik), (xk) are the sequences of points which would be

generated using respectively

Sk = __}ikgk s Sk= - [—_—_] gk s O Sk = - H-kgk

to compute the next step.
In section 2 , the convergence properties of the sequence (ﬁ#),
H+ H

[ _EET_JS ] as well as (Ek) , (ik) are analyzed.

In section 3 a short discussion will be held on the singularity
problems arising when propagating the sequence (Gk)'
In section 4, a global description of the algorithm is

presented with some partial numerical results interpreted.

2- Convergence properties of the set estimation filter.

For definition of the rates of convergence and a precise treat—
ment of the Q-order convergence, we refer the reader to Ortega and
Rheinholt [19-Chapter 9].

For our purpose it is enough to know that a sequence (xk)(: R"
converges Q-linearly to x*, if there is some r in [0,1] and some

kO > 0 such that,

Hx o ~x || < |l x - x| for each k > k [8]
*k+1 = Tk =0

where |]|. l is an arbitrary vector norm in R" - usually this will be
the Euclidien norm - or the corresponding induced operator norm in

L(Rn), the space of real matrices of order n.

Similarly, one says that (xk) CjRn converges Q-superlinearly to



*
vim g - x
o -x ||

for each k £=k0 [9]

| =,

The results of this paragraph will treat the updating of the

matrices Hk according to,

Hk+1 = Hk + — — for k = 0,1,.. f10]

where, [|sk[|
_ [P, + I] s
dk _ k 2 _ k [11]
T | k]l
Sk [Pk + > 1] Sk
e s, 1|
T "k
s [P 1] s
o = ——k : k < [12]
T || k]
Sk [Pk + 5 1] sk
and the sequence (Pk, k > 0 ) is generated by,
4 dy
PH1=G+|bUD wk+H%H1- :j:] [13]
kKk k

for k = 0,1,...

and Po is chosen to be proportional to the identity matrix -

_ 2
PO =g I [14]



Of course equation [10] has been shown to be equivalent in the

case where Gk in non-singular to:

—T
. [u, = G5 1dy k=0,1,.. [15]

-1
Geyy = Mgl 7= 6 O

~

an equation which will be also very useful.

Recall, finally, that to each iteration k, we associate a step

S € R", Sic # 0 such that ,

T [16]
and

WS g -8 T VEGe,) - VEGR) [17]

with also,

S T T g [18]
/

Consider then the following sequence:

T
(20, -1) d.d
- _ kK “kk
Moy = (1 + ||skH) [r[k + ||sk|| ~ T | [19]
k Sk
2
I, = o I for k = 0,1,...

Lemma 1:

If (Pk) and (Hk) are two sequences in L(Rn) generated according

to equations [3] and [19] with HO= PO= 021, then for each k > 0 :

L >P 20 [20]



Proof:

Consider the difference,

T
2. -1 d.d
B 0 1 0%
Pp- My =+ syl 2 o ] T
0 0do
T
d o, - 1
=2 W+ |lsylD = (=5—)<0
sO d0 aO

between s’gd0 >0 and O0< g <1l = Hl >Pl> 0, the last inequality
stems from the fact that [Pl]_l, kernel of the set estimation ellipsoid

at time k = 0 1is positive definite.

Assume now that 0< P, < II. for k=0,1,...m-1 , then,

k =k
T
d d 1- a
_ m-1 m-1 m-1
no-P=(Q +]|sm_l|[) [n _,-P ,+2 7 ( ; )
Sn-1%m-1 *m-1
> (1+ ]]sm_1|j)[ n,-P ;1 >0
which proves the recursion. Q.E.D

Notice that equation [13] is nothing else than equation (IV-61)

and that, consequently , it defines ellipsoids Qk containing all points
Gk’ or, in other terms, all the possible values of the Hessian of the

function to be minimized. These ellipsoids can be in particular

inscribed in bigger ellipsoid such that,

A

- "y <(e- Gy, Tt (c- 6
QkC Qk —{ erL(R) : <(Gk Gk), Hk (Gk Gk)> F ;1} [21]



see for instance equation [60] in Chapter IV for the definition of Qk.

Recall also that 11 was defined such that , nka =GP

k k k
- = - 2
> L6 -6l =16 -GIlP [22]
and that,
T
<A,B>F = Tr [AB]
1
T 2
[|allg = [Tr [aA7] ]

It is now possible to prove the following result:

Corollary 1:

*
Let D C:Rn be an open, convex set containing the point x such
*
that g(x ) = 0 and let g:D > R® be (Gdteaux) differentiable. Assume
that the sequence (xk, k > 0) obtained through [18] is completely

contained in D and that g is Lipschitz. Let Gk verify [15] and P

k
be generated according to [13] with é6 given, and with some given
symmetric, positive definite matrix P0 > 0; then there exists a
constant u > 0, such that,
o, - 6 017 < w2l [23]

for all k > 0.

Proof:
From the set estimation theory presented in Chapter IV, we

already know that if Gk and Pk are generated via [15] and [13]

then GOEQO implies that erﬂk.

Therefore, it is possible to write for each k that



o 0 k
hence,
< A6, T ta, > <1 [24]
k> 'k Tk F=
with the notation, 4G, = Gk - 6 [25]
Now,as
<AG , T YAG > = <AG, ,AG P Ts
k> "k k'F K> kk F
-1 T
> Tr [ 4GP " AG ] <1 [26]
But Pk is a positive definite and symmetric matrix for each
k > 0 -see for instance Lemma 1- ; therefore, there exists a non-

singular ( for example triangular) matrix Rk such that,
T . n -1 _ -1 _-T
Pk = RkRk with RkeL(R ) Pk = Rk . Rk

[261 ~Tr [(a6,R) (46,R DT <1

-1,,2
<> AG < 1
e, R <
but
2 -1,,2 2 2

oo, 17 < Ve M1 IR I1 < 11,

or
T
Tr [AGk.AGk] < Tr [Pk]

and using the fact that,

TAx
Tr [A] §:|IAII = SUB = T » if A non-singular,
xeR X X



one obtains that,
2
[[AGk|| < Tr[Pk] < n|[Hk|l for each k > 0

from Chapter II- Claim 1.
Q.E.D.

Consider now the sequence (E-) generated according to ,

k
Kl T ¥ T 7 iy [27]

the next theorem deals with its convergence properties:
Theorem I:

Let g:Rn +R" be (Gdteaux) differentiable in an open convex

* * % %

neighborhood D of x  for which g(x )= 0 and Vg(x ) = G(x ) is non-
singular. Assume that for L > 0, the derivative Vg(x) = G(x)
verifies,

[lex) - e || < L||x - y]] for all x,y in D [28]

Therefore,for each vy > 0 and r € [0,1], there exist positive constants
*
§ =68 (y,r),e = e(y,r), such that for I]xo - X || < § and for o0e[0,¢]

such that IIGO— G < Yo, the iteration

o Il
a1~ e T [éﬁl-lgk [29]

with (Gk) generated according to [15] and P0 = 02I is well defined

— *
for each k > 0 and the sequence (xk) converges to x .

Moreover, - X*!I izrllxk - x*ll for each k > 0, and the

L
sequences (lle||) and (]|ﬁk]|) are uniformly bounded.



Proof :

The proof of this theorem is very similar to the one of Theorem
3.1 in Thomas' thesis [28], but it needs an intermediate result called
the Perturbation Lemma (sometimes attributed to Banach) which we first

introduce for the sake of completeness.

Perturbation Lemma:

Let A,CeL(R") and assume that A is invertible with ||A_l|| <o .
if ||a - CI[ < B and Ba< 1 then C is also invertible and
-1
[ S [30]

Proof:

see Ortega and Rheinholt pp.45 [19].

Proof of Theorem I (conti.):

The main steps of the proof are the following ones:
choose €>0 and 6¢[0,8] for u = max [y, L,vn ] such that

they satisfy,

n(l+r) [LS + 2ue] < r [31]

1 +65+4ch) 6 P < 2 [32]

for re[0,1] and v>0 given.

. . * -~
Then starting with ||x0 - x || < § and IIGO - G0|| < Yo £ 2ue

one can easily show that ||xl - x*ll < rllxo - x*ll. [33]



Now, if P, =102 i:Iez, then as IlPkIl has the same type
of bounds as [|Hk|| , we get the following,
2 2
el 4e® > |l |l < 4e (351

due to the choice of constants in [31] and [32].

From Corollary 1,

: 2
116 = Gl17 < nllp, [l [36]

hence, as

" 2
w=max [y, L /a1 > |le -6 1% < [[p || u< ew) [37]
and this concludes the induction on
lle, -6 11 < 2ue for all k >0 .

The last point deals with the sequence itself. Assuming that,

— *%
REEE S I S for all k = 0,1,... m-1,

from Ilék

by application of the Perturbation Lemma the following is obtained:

- Gk|| < 2ue , and from the fact that ]|G;l|| is bounded,

lle, 7 Il < n@o) > |5~ % || < nQ+o) [Lot2uel ||z - x ||

and hence,

- x|l < eflx -] Q.E.D.

m—1



At this point, only the Q-linear convergence of the sequence

~

(x, , k>0) defined through [29], with Gk and Pk generated according
to equations [13] and [15] has been proved.

In his thesis Thomas [28] has also proved that a sequence defined

by,
A1
e T % - G gy [38]

and generated according to equation [1] and [19] dinstead of [15] and
[29] was not only Q-linearly, but also Q-superlinearly convergent (see
in particular Theorem 3.4 and Corollary 3.5 of [28]).

We shall now prove that the same result is true for updates of
the form [29], and hence also, that the use of the true set estimate
given by the results of Chapter IV also conserves this former property.

In order to show that our updates lead to a Q-superlinearly
convergent method, it will be convenient to apply a result proved by

Dennis and More -[6]-~ . For completeness we present it here:

Theorem ITI:

Let g:Rp + R® be differentiable in the open, convex set D of
R™ and assume that G = Vg 1is continuous at some x* in D and that G(x*)
is non-singular. Let (é#) in L(Rn) be a sequence of non-singular
matrices and suppose that for some XO in D the sequence (§£) where

R ]—l

M T 5 (6] gy [29]

. . * —
remains in D and converges to x . Then (Xk) converges Q-superlinearly

* *
tox and g(x ) = 0 if and only if ,



] 16, 6D Tx, - =111

1im
k>

— — =0 [39]
e

The following sufficiency condition will lead to the sought after

result.

Theorem II:
Let g:Rn > R™ be a differentiable function on an open convex set
D and assume that for some L >0 and any x,ye D the derivative
g' (x) = G (x) obeys the condition ||G(x) - G(y)|| < L||x-y||. Assume

also that (x, ), (x,+ s,) are contained in D and that with some G
/e VT Sk 0

and positive definite symmetric POEL(Rn), (&k) is updated according to

eL(R™)

[15]. Then,
116, - 6x)ls, ||
iiz k k” Tk =0 [40]
I
if 5 Ilskll, is convergent. [41]
k=0
Proof:

It is important to notice first the equivalence of [40] and

[39] as ,

* * ~
16 eGDIs 1 1116, 66015, ] . eey - c(xls, ||

s, 11 - fs, I s, 1




6 - Gx®)]s, || 16, - 6(x)1s, ||

H k k < I k k" k + LlISkH

™ ™
But Ilsk|| ;;k(r+l )||x0-x*l| and consequently, for

*
bounded ||xo—x || 1lim ||sk|[ =.0.
k>

116, - @) 1s, || 116, -6 0 s ||
lim — & S PN i S e [42]
T T

hence, if the right hand side converges to zero , the left hand
side will also converge and Q-superlinearity will be obtained
through Theorem II.

Now, as we know that ( Pk) is updated according to [13], by

Corollary I ,

> 2 : P12
116, G121 < 116,- G 112 < w 117,]]
for each k > O.

From [13] the following inegality is true,

d, 12
Tr(P, 1< 11+ [|s [[] [T [P] +nlls || - —i— L%l [43]

T
k dk sk

and, since dT s, >0 and o, > 0,

k "k k
TrlP, g1 < @+ [[s D [Tr[P, ] +n||sk|l] [44]
Now let
k
Mg = I @+ ||sj||);1 [45]

j=0



k k
+~0¢< log (y) = I log (1+ Hs.lD < = ||sj|| <
3=0 ] j=0
then,
Tr[P 1 Tr[P, ] nl|s ]I Tr[P, ]
k+1 < k + k < k + nl lskl l
M1 s M H
or if,
Tr[P 1
o SR 5 2 S <o + ||s ||
k+1 n uk+1 k+1 k k
and after summation,
k
hp % *F I syl [46]

As by hypothesis the sum [41] converges, it is possible to
conclude that (@k) is bounded as well as (Tr[Pk]), because of the

boundedness of the u Hence, (Qk) must be convergent-unicity is also

e
clear- as well as (Tr[Pk]). Assuming T to be the limit of this last

sequence consider equation [13] and choose ak e [0,1],

2

im 19 -

1 k 1

B, o o @+ [ls I DRIl ] + nlls, [T - Tr[Pk_l_l]} [47]
Kk

and as Tr[Pk] -+ T and l[sk|| »~0 as k »

2
o Hld ]
lim ___%%___ 0 [48]

koo
4k



Finally, remembering the definition of dk -see [11]- the

Cauchy-Schwartz inequality provides:

T T 2
0 < Sk . Sy . a1
S = 2 = T
s 12 s, ] d, sy

o

as the right hand side converges to zero when E ||sk|l converges,

it can be concluded that, k=0
m TG - 661517
=0 Q.E.D
koo 2
s, ||

Corollary II:

Let g:Rn > R" be (Gateaux) differentiable in an open, convex
% * % %
neighborhood D of x for which g(x ) =0 and g'(x ) =G(x ) is
non-singular. Assume that for L > 0, the derivative Vg(x) = G(x)

verifies,

lle(x) - ey || < L||x-y]| for each x,y in D,

then for each >0 and re(0,1), there exist positive constants
*
§ = 8(y,r), e = e(y,r) such that for ||x0 -x || <& and for 0e(0,¢),

[Ié -G [| < Yo the iteration,

0~ 70
- _=- = e P |
X1 = % - g = x - (6] gy

with (Gk) generated according to [19] and P, to [13] is well defined

k

— %
for each k and the sequence (xk) converges Q-superlinearly to x .



Proof:

@
We have only to verify that I ||sk|| < « converges in this
k=0

case; however,

— * —~ %
g - = 1]zl [Re"]]
by Theorem I

->

*
Hsll= Hxgm %] £ @]l <]

) []xgx | | @)eSs

[

©

Do llsdl < ams
k=0

k=0

and as by construction r € [0,1] ,

0 < D lls ] ¢ G
k=0

(1-r)

I/\

k
The sequence (Sk) with §, = I l[sjll is monotonely increasing
0

k K=
and has an upper bound; hence, (Sk) converges.
By Theorem III it becomes clear that (§£) is a Q-superlinearly
convergent sequence in R", Q.E.D.
Up to this point, we succeeded only in proving that a sequence
(x, , k20) of points x, generated when using directly the output of the
filter as actual estimate of the Hessian matrices, was Q-superlinearly

convergent. The second half of this section will deal with the sequence

(ik, k>0), that is , the sequence of points generated with as estimate
for the Hessian inverse — 5 (see also Fig. 2).

For this purpose let us introduce the following notation:



-All variables indexed by 0 will refer to the previous construc-

tion, i.e. (;ﬁ, k > 0) for example, corresponds to using Gk and ﬁk
generated by [10-15].
-Al11 variables indexed by 1 will refer to the same type of
construction but with éT and ar instead of é and —'[ex(Eo)] other-
k o i and H lex(x
and ﬁ% will still be generated according to [10-15].

A

wise , Gk

The following result can be then derived:

Theorem IV:
Let g:Rn +R" be (Gateaux) differentiable in an open, convex
* * * *
neighborhood D of x for which g(x ) = 0 and for which g'(x ) = G(x )

is non-singular. Assume that for L> 0, the derivative g'(x)=G(x) verifies:

[lex) - ey || <1||xy]] for any x,y in D

then, for each v>0 and re(0,1), there exist positive constants
%
§ = 8(y,r), € = e(y,r) such that for leo -x ]I < § and for oe(0,¢),

Iléo- GOII < y0, the iteration

— -
L H +Hy
Tg =% -

K+ - Rk 18, [49]

where ﬁk = [Gk]_l and (ﬁ%) is generated according to [10] with

P, = 021, being well defined for each k> 0 and for the sequence (ik)

*
converging to x .

I * . *
Moreover, lxk+l - X ll < rl] X —x Il , for each k>0 and

the sequences (llell) and (] |H + ﬁill) and uniformly bounded.
2



Proof:
The first points to remark are that if o = [é ]—l then T [GAT]--1
Hk k i Hk k'’
and also that ||AI| = ||AT|| for all AEL(Rn). This means in parti-

cular that if (Gk) verifies the conditions of Corollary I, so does (éi).

Furthermore, consider the two sequences generated respectively as,

-0 = -0 _E (o]
X+l kT "k
2= x (501
o o)
and
1 _ ﬁT 1
e+l T %k kPk
[51]
= = x
0 0
. . _ 0 .1 _ 0 1
using then Theorem I with .68= Inf(§ ,8") and &= Inf (e ,e ),
such that equations [31,32] are still satisfied, the two sequences
(Ez) and (;i) will verify,
-1 * -1 *
%y -x 1l < =ll x -x [ [52]
-0 % -0 *
g - 1< ellx - =[] [53]
so equivalently,
—0 =0 k
ey - %]l < 7@+ [54]
_l _ll k
gy -0l < @+o)r's [55]
ot
Now, starting at k=0 and choosing for ik = 5 at each step

k, if the recursion defined at [49] is used to generate (ik), it is



clear that,

% % L 14 -1 k
|lxk+l— inl = §1l§§+1_ Ezll + §"1I 41T * I!;:r (1+r)s
oo . *
<~ and as x;, = x, 1is such that ]]xo -x || <8
IR [ ER S 56]

Now, the boundedness of ( ][Gk|| ) has been already proved

by Theorem I as well as by the uniform boundedness of ( ﬁ% ). Since ,

= =T
Il Hk + Hk H < Ill'_LkH < ,we have the desired result.
= Q.E.D.

At this point , only the convergence of the sequence (gé) and

(xk) has been proved . Unfortunately, the proof of the convergence

of (xk), when using the updating formulas :

Sl T 1B k=0,1,..
and = =T = = T = =T

~ + s - B en ] S (s - B

M1 2 K 2 T_ T % )

Wk "k
S s - M1 e ] "k k= 0.1
: k Tk ) Uk Wl )2 2laee
k k

becomes terribly complex and , therefore, the result that the convergence
of (xk) is effectively preserved can only be assumed. The early numerical

results show a relatively slow convergence of such a sequence in the



case of a symmetrization procedure using a natural Frobenius norm
—that is G = I , following the notations of Chapter II- . Some
trials were also done by changing at each step the local metric

and by using instead of G =1 , G = Gk , where G, is the true

k
Hessian matrix of the objective function f(.) , at each point Xk'

The updating formula for Hk+l thus becomes ,

R T )
Bt iy Sk 5k Bt
~ > u + [s, - —

— =T
i
=gt s

k+1 k k] STu oIy k
kk k'k
— i § T
- UT[S Hk+l+Hk+l 1 Sksk for k = 0,1
: k""k 2 k T 2 2Tt

In some cases the speed of convergence could be increased by
this means, but in the general case no conclusion could be carried
out. The conviction of the author is, however, that a variable
metric method, very similar in essence to the Fletcher-Powell method,

should give rise to fairly good results.

3- Singularities arising in the computation of the sequence (x, ).
n

One of the problems arising when propagating the inverse Hk of

the minimum mean squares estimate Gk is that for some values of the

coefficient o this inverse becomes quite large:

—_— __T__
[s, - By 1 4B

_T —_—
ot 4 I8y Huy ]

k =0,1,2,..

e



[Is, |1
k
[Pk+ > I ]sk

k - T s
Sk[Pk+ l g I I]sk

The method used in the algorithm is to compute at each step the
denominator of the previous formula, to compare it to some fixed level
—for example 0.1-. If this denominator is larger than the prefixed
level, the coefficient ak conserves its previous value. If the denomi-

nator on the contrary, becomes smaller or equal to the previous level,

o, is given the new value o

k

0 solution of,

= - 3L -F
ay = 0.1 dk [Sk Hkuk] .

This means also that the updating procedure for the matrices P, , corres-

k
ponding to the covariance during the estimation phasis, is restarted

in this way.

4- Description of some computational tricks.

All computations should be carried out using double precision
arithmetic.

The structure of the algorithm is the following one:

1) Given XO’SO’P

= 1, compute analytically go and u Then

0 0°
determine ﬁb which should verify the corresponding secant equation.
2) Propagat i H, .
) pagate the matrices Pk and Hk
3) Test the singularity of ﬁ? and modify ak, if necessary.

4) Compute Hk depending on the procedure chosen (simple sym-

metrization, or closest symmetrized version using the '"natural"
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Frobenius norm or closest symmetrized using a variable metric method.)
This ends the identification step of the system. The regulation

part uses the classical dog-leg method (see Powell [19]), that is:

TA
g H 8
5) Compute Tk= __523_52
g, ||
if Tk§0 g S, T T tg ¢ t>0 f
if Tk;O S, = " tg ¢ 0< 1 <T, g ] % S, = (1'—)‘)Tkgk- AHkgk: Xl

6) Go back to step 2, unless the length of the gradient obtained
is smaller than some prechosen level.

Of course, in order not to have instabilities for functions
studied in the neighborhood of some local minimum, the step length Sy
should be constrained to remain bounded within some fixed length A.

For the purpose of the experimentation, three different compu-
tations were_;in_§tarting at the same initial condition. The first omne
used only EE—EHE- as the estimate of the inverse of the Hessian of
the function, the second one used ﬁ#, and finally the third one used

a variable metric version of Hk’ with G, the true (but unknown) Hessian

k
matrix of £(.) used in the Frobenius norm. The algorithm was run on
a simple two-dimensional quadratic function. Convergence was observed
in each case, but the relative speed of convergence of each method
varied depending on the initial point chosen, no serious conclusion

could be carried out relatively to their particular advantages or

inconveniences.
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Lastly,no special problem was noticed when propagating sym-

metric matrices like Pk or Hk' If this should arise one of the safest
ways of avoiding any numerical instability would be to use a square

1
root filter to propagate Pk 2  instead of Pk' Unfortunately, as

A

Hk could not be constrained to remain non-negative definite along

the propagation, this method does not work. The only possibility

is then to propagate directly the vector Hkgk instead of the whole

A

n X n matrix Hk'
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CONCLUSION

Let us conclude this thesis by two short sections. The first
one deals with some advantages of the algorithm previously described
as well as with some of the performances one could expect from it
when implemented on "difficult" test functions. The second sec-
tion emphasizes the most interesting conceptﬁal aspects of this
work, by discussing some of the perspectives it opens for future

research.

A-Discussion of the algorithm

Several attractive features are seen in the proposed algorithm.
The first one is its simplicity of implementation, especially compared
to the algorithm described by Thomas [28]. The second advantage
seems to be the fact that no linear search is needed from one step
to the other. This means in particular that this algorithm does not
converge in n steps for a quadratic function, like the classical
conjugate direction algorithms, but rather that it implies an
asymptotic convergence to the optimum. Hence, not having at each
step a one dimensional minimization to perform, the computational
load is also somewhat lightened.

Several numerical tests were performed on a simple, two

dimensional quadratic function. Different initial points, as well
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as initial steps SO= X~ X, were successively chosen. Even in the
case of initial guesses starting in the wrong direction, that is
starting in directions which increased the objective function, the
minimum was obtained in about five to ten steps with a good precision.
Furthermore, this precision seems to be rather sensitive on the
maximal step-length allowed for each iteration, as this step-length
plays an important role in the actual implementation of the dog-leg
procedure.

Finally, the same program was run but with different sequences

of estimates for the inverse of the Hessian matrix. The first one was
T
H + Hk
the usual symmetrized matrix —5 the second one was the closest
symmetrized version of the estimate using the natural Frobenius norm
as measure of the distance separating two matrices, and ,finally, the

third one used the same type of updating formula but with the G, - Fro-

k

benius norm instead , with G, being the true Hessian matrix of the

k
objective function. In the case of the particular quadratic function
which was tested, all three behaved similarly and no criterion, except
perhaps the one of simplicity, could be used to decide which of them
was the best.

Of course, many other computational tests are needed before
one could draw any definite conclusion on the performances of the al-
gorithm contained in this thesis. In particular, more difficult

functions should be used and the performances of the algorithm should

be closely compared to the behaviour of some other gradient procedures.
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B-Some of the new concepts introduced in this thesis and some suggestions

for future research.

The main concept introduced in this thesis is the possibility
of representing a minimization algorithm which uses the gradients of
its objective function, as a sfétem described by some state-space equa-
tions. A particular emﬁhasis was made on the identification step
needed to determine satisfactorily all parameters of such a model.
The associated regulation problem, however, has not been considered
in its generality, since we already started by restricting ourselves
to Newton-type algorithms,and consequently, in terms of the regu-
lation problem, to linear output feedback policies.

An interesting possibility for future research would be to
treat this problem in a more general framework, that is by really
associating to the previous regulation problem some explicit cost
functional. Of course, this functional should depend at each step
on the gradient, possibly last two gradients, of the objective func-
tion, and should also contain some kind of penalty depending
either on the step-length or on the gain in the objective. A propo-

sition would be,

T

_ T
C = [gk gk + sk Sk] .

k=0

or if Y(x) represents the positive step-function defined as.

Y(x) = for x positive

0 otherwise
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N
. g, 8 + Y[EGx,) - £Gx)]. a ]

The problem could therefore be represented as the regulation
problem of a system in which an adaptive identification procedure
is necessary. In particular, it seems that the use of some of the
techniques introduced by Ljung ans his colleagues in the study of

self-tuning regulators should be useful.
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APPENDIX I .

Computation of the covariance of the

noisy process.

Before really computing this covariance, first one can check

that it is possible to find a matrix Sk and a matrix gksuch that
n n n2 n2 n
G 8. = S G with G L(RY) , s, R, gk LR" ), S, LR ,RM)

and this for all indices k= 0,1,2,..

Proof:
1 1 12 In 1
By & & & %k
- 1 - il i2 inf i] _
Ce Sk 8 | Sk I - 8 15k | =
n nl n2 nn n
&k 8 8 & I8¢
2 13 oJ 1TS T 1
2 B Sk &k %k k Bk
j=1
_ 0oij o] - it ST _
£& B Sk Br Sk k Bk
i nJ sj nTs
28k Sk 8k Sk Sk Bk
j=1
T 1
_ 0 il
gk = Sk gk Q.E.D
0 T n
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The covariance of the observation noise process ( W ) can be

now computed using the previous notation

E [ Wkwi 1 =/ fE { [ 6 (0) - Gk(O)]sksE[Gk(a) - Gk(O)]T }de do

T.T
/ / S, [ () - Ek(O)]ng(c) - 6 (178, }de do

142
f f(e-o) I|s||ss ae do=21|sk||skslT{U[Tde

! s |1
= %k s st = LS I
3 k'k 3
and similarly ,
1
T, _
E[ Wka 1= }[ E { [Gk(e) G (0)]sk x }de
0
1 T
- / E {sk[ck(e) - 6, (0116, (1) - 6, (0)] }de
0
s
o Pl s,
2
E[VVk]=Ck =Hsk|| i for all k = 0,1,..
Vk
and hence the covariance of the joint noise process is
Yk

described by equation [7] in Chapter III.
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APPENDIX II

Intersection of an ellipsoid

with a hyperplane

+ . . .
Consider in RMP the ellipsoid § having as equation,

Q = i X € Rn+P : (x—xc)TH (x—xc) < 1 z ,with 1> 0 ,

as well as the lower dimensional hyperplane

y=AX i , where y is an element of R".

The intersection of & with Q obs is the set defined by,

- . - I _ - AF
QI 3 x : (x xc) T (x xc) <1 andx=Ay

£
if A" represents the Penrose pseudo-inverse of the matrix A.

0
Now,let x , xl and xg, xi be the components of respectively
X and X, on the subspaces R" and RP . The matrix 1 can also be

decomposed as follows,
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Clearly, a necessary and sufficient condition for having a
non-empty intersection Q I is that,
* 0 .T * 0
- - <1
(Ay-x ) Mgy (Ay-x )< 1,

furthermore the set {_ can be represented in this case as,

I
_ 1 _p . * 0 1 1,,T * 0
QI = xeR : [(Ay- xc),(x - Xc)] HOO HOl Ay-=xc) <1
1
Lo T || & - =)
—0 % 0 . -
Call x = Ay - X, - It is easy to show after some trivial
computations that Q I can also be described by,
_ 1 _p . 1 A T 1 =
Q I x & RY : (x X, ) I 11 (x - X ) <1
where ;i is the center of the new ellipsoid,
-1 _ 1 =0
Xc = xC Hllx R
and T
— 0 -1 -0, -1
Tgp =0l=x" Mgy Mgl gy M) x 71 71y

is the positive definite matrix describing its excentricity.
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