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ABSTRACTY

The duality approach to solving convex optimization
problemz i3 studisd in detail using tools in convex analysis
and the th2ory of conijugate functions. Conditions for the
duality formalism to hold are devesloped which require that
the optimal vzius of the original problem vary continuously
with respect to perturbations in the constraints only along
feasible directions; this is sufficient to imnly existence
for the dual problem and no duality gan. These conditions are
alsc posed as certain local compaciness regquirements on the
dual feasibility seit, bassed on a characterization of locally
compact convex sets in locally convex spaces in terms of non-
empty relative interiors cf the corresponding polar sets.

These results are apvlied to minimum norm and spline
problems and lmTrove previous existence results, as well as
expressing them in a duz2lity framework. Related results in-

it = sum of two closed convex sets to be
i

tc an extended separation principle for closed

. The conitinuous linezr programiing problem is also studied.
in extended dual problem is formulated, and a condition suffi-
cient for dual solutions to exist vith no duality gap 13 given
which is natural in the context of sevaral examples. Moreover
the dual solutions can be taken to be extreme points, which
suggests the vossibility of a simplex-like algorithm.

Finally, the problem of characterizing optimal gquantum
detection and estirmaticn is studied using duality techniques.
The duality theory for the guantum estimation problem entails
studyving ceprator-valued measures, developing a generalired
Riesz Reprasantation Theorem, and locking at the approximation
property for the space of linsar operatcrs on a 'lilbert spaca.
Thesis Supervisor: Sanjoy X. Hicter
Title: Professor of Electrical Enginsering
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I. Overview of Thesis



Overview of thesis

The idea of duality theory for solving convex opti-
mization problems is to transform the original problem
into a "dual" problem which is easier tc solve and which
has the same value as the original oroblem; constructing

the dual solution corresponds *o rormulating extremality

(9]
@]
3
s
b

tions which characterize optimality in the original
problem. This thesis investigates and extends the

duality approach tc optimization and applies this approach

Chapter II defines basic concepts and develops basic
technigques in convex analysis and the theory of conjugate
functions which are relevant to studying the duality
formalism. It includes an investigation of the relation-
ships between nonempty relative interiors. of convex sets
and local compactness of the polar sets, which culminates
in 2 characterization of relative éontinuity points of
convex functions in terms of local compactness properties
of the conjugate functions.

Chapter III presents a detailed study of the duality

approach to optimization using the techniques developed

in Chapter II. Conditions for duality to ho.l are derived

N - 1

which reguire that the optimzl value of the original problem



&.

vary "relatively continuously" with respect to perturbations
in the constraints only along feasible directions; this is
sufficient to imply existence for the dual problem and no
duality gap. These coaditions are also posed as certain
local compactness reguirements on the dual feasibility
set, based on the work in Chapter II.

Chepter IV applies the duality approach of Chapter IIX
to mininmum norm and spline problems, thereby yielding im-
proved existence results as well as expressing them in a
dvuality framework. Related results include conditions for
the sum of two closad convex sets in a Banach space to be
closed, extending Dieudonne's results and leading to an

extended separation princ

=N

ple for disjoint closed convex
(possibly unbounded) sets.

Chapter V studies the continuous-time linear programming
problem. Previous results in the literature have formulated
the cdual linear programming problem in too restrictive a
space, so that conditions guaranteeing dual solutions are
not satisfied in interesting cases. By imbedding the dual
problem in a larger space, it 1s possible to get dual solu-=
tions wiht no duality gap under assumptions which are
natural in the context of a2 communications network problem
and a dynamic economic nodel. Moreovar, the dual solutions
may be taken to be extreme ncints of the (possibly unbounded,

()

but locally compact) feasibi

~—
[
(as

ity set; a simple example is
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presented which shows how this might lead to a "primal-dual®
type of algorithm (in analogy to the finite dimensional
simplex algorithm) for solving the linear problem. How-
ever, much work remains in investigating this approcach

and in understanding the extreme point structure of the

The remaining chapters consider the problem of
characterizing optimal guantum detection and estimation.
The guantum nature of these statistical problems recuires
the use of operator-valusd measures; a chapter is devoted
tc developning general integration theory for operator-valu=d
measure and proving an extended Riesz Representation Theorem
for duality purposes. The estimation problem also entails
loocking at certain somewhat esoteric prcperties of tensor
product spaces, needed to properly formulate the problem;
however, the actual duality results then follow without

too much difficulty.



II. <Convex Analysis

Abstract. Technigues in convex analysis and the theory

h

of conjugate functions are studied. & characterization

O
rh

locally compact convex sets in locally convex spaces
is given in terms of nonempty relative interiors of the
corresponding polar sets. This result is extended in a
detailed investigation of the relationships between
relative continuity points cof convex functions and local
compactness préperties of the level sets of corresponding

conjugate functions.



Ii.
1. DNotation and basic definitions

This section assumes a knowledge of topological
vector spaces and only serves to recall somre concepts in
functional analysis which are relevant for optimization
theory. The extended real line [-=,+=] is dencted by R.

Operations in R have the usual meaning with the additional

convention that

(32} + (=) = (-=) + (4=) = +o,
Let X he a set, f: X > R a map from X into [-=,+=].
The ~picraoh cf £ is
fa
enif = {(x,r) e XxR: r > £(x)}.

-3
lag
()

effective comain of f is the set

I B

donf {xe ¥: £({xX) < +=}

The function f is proper iff £ % += and £(x) > -« for

every X € X, The indicator function of a set ACcX 1is

+= if x§A
§,(x) =

o

0 1if weA

Let ¥ be a vector space. A map f: ¥ > R 1is convex

iff epif is a conven subset of XxXR, or ecuivalentlv if

(e}
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QN .
f(exl+(l-s)x2) < ef(xl)+(l~s)f(x

2)

for every x,,x,€ X and ¢ € [0,1]. The convex hull of £

is the largest convex function which is evervwhere less

than or equal to f; it is given by

(cof) (x) supl{f'(x):

h
-

is convex X -+ R, f' < f}

v

I
-

supif'(x): is linear X » R, f' < F}.

Equivalentlyv, the epicrarh o

th

cof is given by
epi(cof) = {{x,r) € ¥XxR: (X,s) € ccepif for everv s > r},
7 - 4

where coepii denotes the convex hull of epif.

Let ¥ be a topological

n

Q

pace. A rmap £f: X > P is

9]

lowver semicontinuous (lsc) iff epif i
€ Xz

rh

a closed subset
o) }

¥XxR, or eguivalently iff {x

P

£(x) <r s a closed

subset of X Zor every r ¢ R. The map £:X » R is 1sc at X

iff given any r € (-=,=2 xo)) there is a neiachborhood N of

X, such that r < £{x) for every x€N. The lower semi-

continuous hull of f is the largest lower semicontinuous

functional on X which everywihere minorizes f, i.e.

(1scf) (%) = supif'{x): £" is 1sc X - R, f' < f}
= linm inf £(x).
x'=x

Ecuivalently, epi(lsc?i) = cl(epif) ia ¥xR
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A duality <X,X*> is a pair of vectocr spaces X,X*

with a bilinear form <»+,+> on XxX* that is separating,

i.e. <x,y> = 0Yv e€X* => x = 0 and <x,y> = 0bYxe X => x = 0,

Every duality is ecquivalent to a Hausdorff locally convex

space X paired with its torological dual space X* under

A
the natural bilinear form <x,v> = v(x) for x € X, v € X*,

We shall also write xv =

<x,y>

1

v{x) when no confusion
arises,

Let X be a (real) Hausdorff locallv convex space

(HLCS) , which we shall always assure to be real. X*

3N

cdenotes the topological dual space of X. The volar of

a set A< X and the (pre-)polar of a set BT X* are

defined by

o &,
AY = {ye¢¥*: sup <x,y> < 1}
X€ A
o. &
B = {x€X: sup <x,v> < 1}.

yveB

The conjugate cf a functional f: X » R and the (pre-)conjugate

of a functional g: X* > R are defined bv

f*: X* > R: vy » sup[<x,y>-£(x)]
xe X
g*: X » R: x » supl<x,v>-g(y)].
x/QY
¥ ) . . 0
We use the convention sup @ = -», inZ @ = +eo, tence g = X*



If ¥ is a HLCS there are several topologies on ¥
which are important. By T we denote the original
topologv on X; by the definition of.equicontinuity,

T 1is precisely that topology which has a basis of
0-neighborhoods consisting of polars of egquicontinuous

subsets of X*. Tke weak tovclogy w(X,X*) is the weakest

topology compatible with the duality <X,X*>, i.e. it is
the weakest topolégy on X for which the linear functionals
X = <x,y>, v € X* are continuous. Eguivalently, w(X,X*)

is the locallv convex topotogy on X generated by the
serminorms x v |<x,v>| for vy € X*; it has a basis of
O0-neighborhoods civen by polars of finite subsets of X*.

The Mackev torologv m{(X,X*) on X is the strongest topoloay

- - . . kT s
on X corpatible with the duality <¥X,X*> ; it has a

0-neighborhood basis consisting of polars of all w{X*,X)-

Tt

compact convex subsets of X*. The strong topcloay

s(¥%,X*) is the stroncest locally convex topologv on X

tnat still has a basis consisting of w({X,X*)-closed sets;

'A topologv ‘TO on the vector space X is corpatible with the

i

duality <X,X* 1iff (X,Tb)* X*, i.e. the space of all con-
tinuous linear functionals on X with the Té—topoloqy may be

icdentified with X*.

- X . - . -

T ohe word “convex" here nav not be onitted unless X is a
barrelled space. In general there rav be w(’*,X¥)~compact sub-
sets of ¥* whose clecsed conver hulls are not

comvact for the

wi{*,X) topologv,
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it hac as 0O-neighborhood basis all w(X,X*)-closed convex
absorbing subsets of ¥, or equivalently all polars of
w(X*,X) -bounded subsets of X*. Ve shall often write

m (X, X,
w,m,s for w(X,X*),.s(¥X,X*), and also w* for w(X*,X).
The strong topology need not be compatible with the
Cuality <X,X*>, 1In general we have w{X, *)cTcr(¥,X*)c
s(X,X*). TFor a conwvex set A, however, it follows from

-

the Hahn Banach separation theoren that A is closed iff

P

A is w(X,X*)-closed iZf 2 is m(X,X*)-closed. 1iore cenerally,

‘wiien A is convex. Sirilarly, 1if a convex function

th
"
VS

> R is m(Y,*)-1sc then it is lsc and even w(X,X*)-lsc.

pd

t is also true that the bounded sets are the same for every
corpatible topology on X.

Let X be a ELCS and f: X = R. The conjugate Ffunction
f*: X* > R is convex and w({X*,X)-1lsc since it is the
suprernur: 0f the w(X*,X)-continuous affine functions
vy ¥ <x,y>-£(x) over all xe¢ domf. Similarly, for g: X* >~ R
it folleows that the preconjugate *g: X - R is convex and
lsc. The conjugate functions f*, *g never take on -« values,
unless they are identically -« or eguivalentlv f = 4= or

g I 4=, Finally, from the ilahn-RBanach separaticn theorem



*{£*) = lsccof (1)

whenever f has an affine minorant, or eguivalently when-

ever £*¥ = +wo; otherwise lsccof takes on -« values and

f*% = 4o, *(£*) = -

The following lemma is very useful.

1.1 Lemma Let ¥ be a HLCS, £f: X - B. Then

0
0
JQ.J
0

3
o
~

I
fu
0
£
0
o
th
.

4
-h

I£ £* % +w, then clcodomf = cldom* (£*).

Proof. MNow cof < £, so dom(cof)> domf and hence (since
Com cof is convex) dom(cof) > codomf. Conversely, cof +
& . 1s a convex function everywhere dominated by £
codonf ' noeverywae ¥
hence by cof, and so codomf >dom(cof). Thus dom{cof) =

co (donf).
Similarly, *(£*) < f so dom*(f*) > domf and hence
cldom* (£*) 2 clcodonf (sirce dom* (f*) is convex). Conversely,
*(E*)+ i nvex functi evervwh :in
(£*) 6clcodomf is a convex lsc ction ervvs e;e dominated
by £, and since *(f*) is the largest convex lsc function

dominated by £ (in the case that £*  +=, by (1)) we have

*(£*) + & - < *{f*) and clcodomf 2 dom*(f*)., Thus
cldom*(f*} = clcodomf and the lerma is proved. R®

A barrelled space is a HLCS X for which everyv closed
convex absorbing set is a 0O-neighborhood; eauivalently,
the w(X*,X)-bounded sets in X* are conditionallw

w(X*,¥)-compact. It is then clear that the n(¥,X*) topoloay
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is the original topology, and the eqguicontinuous sets in
X* are the conditionally w*-compact sets. Everv Banach
space or Frechet space is barrelled, by the Banach-
Steinhaus theorem.

Ve use the following notation. If AC X = HLCS,
then intA, corA, riA, rcorA, clA, span A, affa, coa
denote the interior of A, the algebraic interior or
core of A, the relative interior of A, the relative core
or algebraic interior of A, the closure of A, the span
of A, the affine hull of A, and the convex hull of A,

By relative intzrior of A we mean the interior of A in
the relative topology of X on affaA; that is x e riA iff
there is a O-neighborhood ii such that {(x+N) O affAac A,
Similarly, x € rcord iff x € A and A-x absorbs affA-x, or
equivalently iff x+[0,=)*ADA and x¢ A. By affine hull
of A we mean the smallest (not necessarily closed) affine
subspace containing A; affA = A +span(A-A) = Xq + span(A-xo)

where Xq is any element of A.

Let A be a subset of the HLCS X and B a subset of X*,

Ve have already defined AO, 3. 1n addition, we make the

following useful definitions:

A
at = {y e X¥: <x,v> > 0 YxeAn}
- A .
A" = -a = {y €X*: <x,y> < 0 YUxen}
A — bl
At = A+(\ A = {yvex*: <x,y> = 0 Yxenl,



-~

2.
L * + - &k
Similarly, for BC X* the sets B, B,

B are defined in X

in the same way. Using the Hahn-Banach separation theorem

it can be shown that for Ac X, °(a% is the srallest closed

convex set containing AU{0}; T(a) = T(A7) is the smallest

o N -
closed convex cone containing A; and —(A*) is the smallest

closed subspace containing A. Thus, if A is nonempty+ then

3‘«"0
it

clco(au{ol
(A) = cl!10,=)e+coa
+(aY) = cilspana

A+ (a-a)"~) = claffa.

<4 P
Tf A =g, then (2% = "(a7) = Y

it
fdam Y
o
Myt
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2. Recession cones, lineality subspaces, recession functionals

Let A be a nonempty subset of the ELCS X. The

recession cone of A is defined to be the set A of all
half-lines contained in clcoaA; that is, a vector x is in

A_ iff for any fixed point a ¢ the half-line a+[0,®)-x
starting at a and passing through x is entirely
contained in clcoA. A_ 1s a closed convex cone with
vertex at 0; in fact A_ = “(a°%). ror consistency we

define g_ = {0}. The folloving proposition (rodelled after

[R66]) provides a detailed characterization of 2 .

2.1  Propocsition. Let A be a nonemptv subset of the

4+

iLCS X. Then the following are equivalent:

1) x& A

@

2) A+ [0,®)+xCclcon

3) x € N\ N te{clcoa-a)
t>0 a¢€a

4) 3 aenr st a + [0,®) *x cclcoA

5y 3 aen st x€ (O te(clcoar-a)
£>0

6) 3 nets of scalars ti > 0 and wvectors
X. € st t. > 9, t.x. * x
Xy € coa i A R 1

7) x € () [cl(0,c) ~conl
€20

- *
8) x¢& (domﬁA)

9) x € (2%



10) A + X C clcoi.

Proof. 1) <=> 2) is the definition of A_. 2) <=> 3),

2) => 4), 4) <=> 3) are trivial.

4) => 6). Let & be a basis of O-neighborhoods in X
and consider the directed set & x(0,») with the ordering
(B,e) > (B',e') iff BCB', € < e'. For everv B ed3 , E>0
take tB,a = ¢ and XB,se coA(\(a+s~lx+B), wvhere the

h)
intersection is nonemptv since a+g "X & clcod hy

hypothesis 4). Then t -+ 0 and ty X

B,e e AB'SG X+e+a+e*B,

. +
6) => 7). By hypothesis 3 t, > 0°, x; € coA, tix, > x.

Given any € > 0, the ti eventually belong to (8,€), so

tixie (0,c) *coa. But then x = lin tixie cl(0,e) *coa.

7) => 6). Again, consider the directed set & x{0Q,=).

For every 0O-neighborhood Bed , € > 0 take ty gE,(O,t-:)

1

an 3 A such that t .3 € x+B; this is ssible

a XB,e COA suct a B, XB'e H PO

since x¢€ cl(0,e).cor by hypothesis 7). Then

T - 0 and t .3 -+ X.

B,c B,c xB,s
* - 3

6) => 8). Suppose vy €& dom ép' i.e. M = sup<a,y> 1s

: aeh

finite. DNow <i;,y> < 1 since X; € CoA, sO <X,v> =

lim <t.x.y> < lim t. ! = 0. Thus <x,v> < 0 whenever
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*
8) <=> 9). By definition dom GA = [O,m)'Ao; hence

- 0 % =20
(dom OA) = (a7).
9) => 10). Suppose A+x ¢ clcoA; then Jae€er st
a+tx ¢ clcoA. By the Hahn-Banach separation theorem
there is a separating linear functional v € X* for which

*
sup <x,y> < <a+x,y>, i.e. SA(y) < <a+x,y>. Clearly
xeclcoA

*
y € dom GA. Also <a,v> < <a+x,y>, so <x,v> > 0 and

x § T [doms}].

10) =>1). Take anv a€ A. By hypothesis 10),
a+x € clcoa, But then, by repeated application of 10),
atx+x € clcoa, etc.,so atnx€ clcoA for n=1,2,...,

and by convexity 1) follows. K

Remarks = poom 5) it is clear that A_ = (clconr)_, since
A_ = 1 tr(clcoa-a) for any fiwed a€ A. Similarly,
t>o

3) implies that A = (O(Ao))m, since (°(a%))° = a° ana
A_ = “(a%). Thus A, clcol, °n%) = clco{(AU {0}) all have

the same recession cone. Applying 10} to clcoA also yields
clcoA + A_ = clcoa.

The lineality space of ACX is defined to be the set
A

of 211 lines contained in clcoA, i.e. linA

"‘

} =

[+2]

A, O(-

M\ te(clcoa~a) where a is any fixed elerent of A. Lin A
teRr



A

is a closed subspace; in fact it is the annihilator

i X . s
(spanAO) of the smallest subspace containing A°.

2.2 Corollarv. Let A be a nonempty subset of the HLCS X.

The following are eguivalent:

1) x € 1inA

2) Y aen, at(-=,+=)+x € clcoAr

3) 3 a¢A st at(~=,+»)-x C clcoA
4) xe*a%) = ""(dom:?;) = (span 2°)
5) (a+x) U (A-x%) € clcoa.

Proof. Simply apply Prorosition 2

The recession function £_ of a function f: X > r

is defined to ke
D <X,y>. (1)

This is defined in analogy to the concept of recession

cones; f£_(+) is that function whose epigraph is the

recession cone of epif,

epi(f_) = (epif) . (2)

<

Since £_(+) is the suprenum of continuous linear functionals

on X, it is convex, positively homogeneous

{£_(tx) = tf_(x) for t > 0}, ana lsc. The followina
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proposition provides alternate characterizations of f
o

when f is convex and lsc. 1In general f_ = (*(f*))_, since

£* = (*¥(£*))*.

2.3 Proposition. Let £: X * R be a convex lsc

proper function on the HLCS X. Then £_(x) is given by

each of the following:

1) minf{reR: (x,r)e (epif)_}

2) sup sup [£(a+tx)-f(a)]l/t
aedorf t>o

3) sup [fla+tv)-£(a)]l/t for any fixed a € domf

t>o

4)  sup [fE(at+x)-£(a)]
aedonf

5) sSup <R,v>.
yedonf*

In 1) the minimum is always attained (whenever it is not +«),

since {epif)_ is a closed set.

Prcof. It suffices to show that for any r e R, the

following are equivalent:
1) (x,r) & (epify

-[&O

2') Yaedomf, Yt > 0, [fla+ttu)-fla)]l/t <r

P

3') dacdomf st Yt > 0, [fla*rtx)-fla)/t < r

4'y Y aedonf, flatx)-f(a) < r
5') sup <x,v> < r.
védomi* -




Z4.

Using the fact that epif contains all points above the
graph of £, it is easy to see that 1"} through 5')
are respectivelv equivalent to

1") (x,r) € (epif)

o

2") VY(a,s)€ epif, Yt > 0, (attx,s+tr) ¢ epif

3"y H(a,f(a)) € epif st Yt > 0, (attx,fla)+tr) € epis
4") Y (a,s) & epif, (a+x,s+r) € epif
57) sup <x,y> < r.

o7 1"} through 4") now follows directly

. If 5") holds, then Y a €dom?,

fla+xz) = *(£*) (a+x) = sup [<a+x,v>=-f*(y)]
vy € domf*
< sup <x,v> + sup [<a,v>-£*(v)]
yedomi* vedomE*
< r+*(f*) (a) = r+f(a),

and hence 4') holds. Conversely, if 4') holds then

f*(y) = sup [<a,v>-£(a)] < sup [<a,y>r-f(a+x)]
aecdomi aedonf
< r + supl<a,y>-f(a+x}]l = r + supl<a-xn,vy>-f(a)]l
aeXx a€x
= r - <x,vy> + £*%(y).

 llence <x,y> < r whenever I£*(y) < +« ana 5") holds. ®
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3. Direction derivatives, subgradients

1)

o
finite, then the directional derivative f'(xo;') of £

Let X be a HLCS, £ a function X » R, If £{x ) is

at xo is defined to be

A
£ (x ;x) = lir, [£(x +tx)-f(x )1/t,
o toot o o

whenever the linit exists (it mav be +=), In the case

that f(-) is convex, t > [f(xo+tx)~f(xo)}/t is an increasing
function for t > 0, so that f'(xo;') exists whenever
f(xo)E-R and is given by

f‘(xo;x) = inf {f(xo+tx)-f(xo)]/t.
t>o ‘

Convexity of £ also implies that f'(xo;-) is positively
homogeneous and convex (equivalently, sublinear), and
f(«) is linearlv minorized by its directioral derivative
in the sense that f(x0+tx) > f(xo)+tf'(xo;x) for every

x€X, t > 0.

The subgradient set of f: X -+ R at x € X 1is defined

to be

>

If (%) {fvex*: £(x) > £(x )+ex-x_,v> & xeX}.

Mlote that af(xo) is always the emptv set wvhenever

f(xo) = +» (assuning £ } +«). Then f(xo) is finite,
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yéaf(xo) iff the functional x - f(xo)+<x~xo,y> is a
continuous affine minorant of £(.) exact at the point x_.
Since *(f*) is the suprenum of all continuous affine
nminorants of £, it is clear that af(xo) # P implies that
f(xo) = *(f*)(xo) and af(xo) = a*(f*)(xo); the latter
follows since £ and *(£*) have the same affinre minorants

which are exact at X, - The subgradient set is alwavys

convex and w(X*,X) closed.

3.1 Proposition. ©Let f: X - R be a function on the

HLCS X. The following are equivalent:
1) vye Sf(xo)
2)  £(x) > £lx )+<x-x_,y> YxeX.
3) X, solves igf[f(x)-xy], i.e. f(xo)-—<xo,y> =
i;n? LE(x) - <xy2l
) £7(y) = <x_,y>-f(x)

5) xoeaf*(y) and f(xo) = *(f£*) (XO).

If £{-) is convex and f(xo);‘é‘R, then each of the above

is equivalent to

-

6) f° (xo;x) > <x,y> YxexX.
Proof. 1) <=> 2}, This is the d=finition of Z)f(xo).
2) => 3) => 4), Trivial,

4) => 5). Since *(£f*) < f, 4) implies
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I*(y) < <X .Y - *(f*)(xo). But the definition of
*(f*)(xo) vields £*(v) > <X _,y> - *(f*Xxo), so that
f*(v) = <X ey - *(f*Kxo). Comparison with 4) now
yields f(xo) = *(f*)(xo). Also f*(v) = <x0,y> - *(f*)(xo) =
<X PY> - su?[<xo,y'>—f*(y')] so that f*(y) < <X _,¥> -
<xo,y'> + %*(y‘) for every y' and xoe:af*(y).

5) => 2). Since xoe df*(y), the implication
1) => 4) applied to £* yields *(f*)(xo} = <X _,v> - £%(v),
and hence that f(xo) = <x_,v> - £*(y) by 5). But then by
definition of £*, f(xo) S SEGY> - <x,y> + £(x) Y x and

2) follows.

6) <=> 2). Assuminc f(+) convex and finite at X
the directional derivative is given by f'(xo;x) =
%zf [f(xo+tx)—f(xo)}/t. Clearly 2) implies that for
;vgry t >0, {f(xo+tx)—f(x0)]/t > <x0+tx—x0,y>/t =
<xX,y> and hence 6) holds. Conversely, if 6) holds then
[f(xo+tx)-f(xo)]/t > <x,y> for every t > 0, and setting

t = 1 yields 2). X

Rernark. Since it is always true that f£*(y) > <x_,y>-f(x )
¥ v) > <x_,y 5

we could replace 4) by 4') £*(y) < <X P Y> - f(xo).

From condition 4) it follows that if af(xo) # g for

a convex function f: X - R, then the directicnal derivative
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f’(xo;-) is bounded below on some O-neighborhood in X,
i.e. the value of f at x does not drop off too sharply
as X moves away from the point X The following
theorem shows that this property is actually equivalent

to the subdifferentiabilitv of f at %, when f is convex,

and also provides other insichts into what af(xo # ¥ means,

3.2 Theorem. Let £: X + B be a convex function on
the HLCS X, with f(xo)finite. Then the following are

equivalent:

’

1 af (x #
) ( 0) g
2) f‘(xb;-) is bounded below on a O-neighborhood
in X, i.e. there is a O-neighborhood N such that
inf £'(x_;x) > -
. o
XeN

fx +tx)-F({x )
3)) 3 0-nbhd N, § > 0 st inf Ot °_ >
X €N
0<t<s

4) linm inf £'({x_;x) > -=
o
x>0

fix +tx)~-f(x)
5) 1lin inf 2 = S > - =
X0
t+o

6) JdyexX* st f(xo+x) —E(x ) > <x,y> dx ex,

If X is a normed space, then each of the above is

eguivalent to:
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7) 31> 06 st £lx +x)-£(x]) > -Mix] UxeXx

8) 3Ji >0, € >0 st whenever |x| 2 e, £(x_+x)-f(x]) >
-M{xl
fx +x)-£(x_)
9) lim inf ° 2> —w,
[x|-o [}

Proof. 1) => 2). This follows directly from Proposition 3.1
1) => 6).
2) => 1). Let REY be a convex 0O-neichborhood in X

such that inf f’(xo;x) > -c, where ¢ is a sufficiently
X&Hl

large positive constant., Let N = lN,;/c and define tf : set E

in XXR bv

L

A
E = {(x,-t)€& XxR: t>C, x/t €},

Since N is convex it follows that E is convex; for if
Xy = tlnl and X, = ton, and ¢ € [0,1], where nl,nzeII
and tl,t2 > 0, then €x1+(l—a)x2 =

stl {(l-e) t

2
= il +

€t1+(l—g)t2n2}e let;+(1-e) T, ] N

[stl+(l~e)t2}°[

) (exl+(1~e)x2,~£tl—(l-s)tz)E E. Since N 1is a U-neigh-
borhood, E has nonemptv interior; in fact, E contains
nx([4,=) . Horeover, Bf\epif'(xo;-} is enmpty; for otherwise
it would contain a point (x,-t) satisfying

-t > f'{(x ;%) = Ef'(x ;Ei) > E°(—c) = -t, a contradiction.
- o c o't c
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4

Hence it is possible to separate E and epif‘(xo--) by a
ciosed hyperplane, i.e. there is a nonzero (v,r) & X*xR
such that

inf <x,v>+terr > sup <X, y>+{-t) °r,

(X,t)éepif'(xo;-) (x,-t)€E

Since epif'(xo;-) is a convex cone (f’(xo;-) is convex
and positively hormogeneous), the infimum on the LHS can
remain bounded below only if the infimum is 0 and (y,r)
is nonpositive on epif'(xo;-); in particular <x,v> +
f‘(xo;x)'r > 0 for every x¢€ domf'(xo;'). Moreover it
must be true that r # 0; for if r = 0 then in particular
0 > <x,y> for every x &N (taking t sufficiently large in
the RIS so that %e.N and (x,-t) ¢E), implying the
contradiction that 'y 1is also 0 (since ! is a O-neighbor-
hood). Thus <x,%> + f'(xo;x) >t for every

}cedomf'(xo;x), which by Proposition 3.1 6) => 1) vyields

- 7
= eaf(xo).
2y <=> 3)., If f£f(+) is convex and f(xo)& R, then
. . f(x0+tx)-f(xo)

T is increasing in t > 0. Hence,

for any § > 0,

_ f(xo+tx)—t(:o) . r(x0+tx)~r(xo) ) f(xo+tx)—f(xo)
inf T = inf - = 1lim T .
t>0 o<t<$ - t»>o
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It is now irmmediate that 2) <=> 3).

2) <=> 4). This follows directlv from the definitjon

of lim inf, since

lim inf f‘(xo;x) = sup inf f'(xO;x)
X+o N=0-~nbhd xe€&N

is bounded below iff there is a O0-nbhd M such that 2) holds.

3) <=> 5). This is immediate as in 2} <=> 4}, since

fx +tg)-f{x ) fix +tx)-£{x )
lim inf o T 2 = sup inf o T o .
X+0 N=0-nbhd x €N
oot é>o t&(o,d)

1) <=> 6). This is just the definition of sub-

gradient as in Proposition 3.1, 2j).
6) =>7) => 8) <=> 9). Immediate.

8) => 2). Set & = L. Then for t <1, [x| < e, it

follows from the hypothesis 8) that

Y o D -F
f(xo+tx) £(x)) ) £{x +tx) &(XO).{v
T 1 tx| -
> —Me x| > =Me.

Hence 2) holds, &

Pemmarks. Scme parts of Theorem 3.2 are implicit in

Rockafellar's formula




] eo)* = Q& .
£ {x 7)) oaf(xo)( )
where f: X +» R is convex and f(xo)& R [R73, Theorem 11].
In the finite dimensional case X = Rn, it is actually true
that Bf(xo) = g iff f'(xo;x) = - for some x € X, assuming
f: X > R convex and £(x_) € R. There is also a closely-
related formula Bf(xo) = af‘(xo;‘)(O) given by [IL72}.
Condition 8) is a kind of "local lower Lipscihitzness”
crequirement which is easy to verify in optimizaticn
problems in which "state constraiats"™ are ahsent, as we

shall see. The standard example for which the sub-

. . . -/z, x>0
gradient set is emptv is £(x) = & ’ - for x€ R,
-=, <0

where o¢f(9) = J, £'(0;x) - whenever x > 0, and the

supporting hyperplane to epif at (0,£(0)) is vertical.
R In the finite dimensional case, every convex

é;? function has a derivative almost everywhere

%X on its domain. There is also an interesting
result in [ET 73] which sta*tes that if X is a Ranach space,
then the set of points where a convex lsc function
£: X > R is subdifferentiable *s dense in donrf.

The following thecrerm provides the simplest and
most widely used condition which guarantees that the

subgradient set is nonerpty.
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3.3 Theorer. Let f: X - R be a convex function on
the HLCS X. If £(+*) is bounded above on a neighborhood
of xo€ X, then £(+) is continuous at X af(xo) £ 8,

and (assuming f(xo) > -=) Si(x]) is w(X*,X) -compact.

Proof. This is a corollarv of the more general Theorem 5.3

which we prove later, <here af(xo) is the level set
ly X*: £%(y) - <x,y> < -f(x)I. ®

Renark. Convex functions which have -» values ars very
special and are generally excluded fror consideration in
meaningful situations. In particular, lsc convex

functions wiih - valuses can have no finite values.

It is also a standard result that under the conditions
of Theorerm 3.3, there is’a sensitivity interpretation of
the subgradient set given by

b (xo;x) = nax <x,v>,
ve3£(x)
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4. Relative interiors of convex sets and local equicontinuity

of polar sets.

The relationship between neighborhoods of 0 in a
locally convex space and equicontinuous sets in the dual
space is well known: a subset which is a neighborhood of 0
has an equicontinuous polar, and an egquicontinuous set in
the dual space has a polar which is a neighborhood of 0.
Hence, a closed convex set which contains 0 is a 0O-neighbor-
hood 1iff its polar is eguicontinuous. We wish to extend
this result to show the eguivalence between convex sets
with nonempty relative interior with respect to a closed
affine hull of finite codimension, and local equicontinuity
cf the corresponding polar sets in an appropriate topology.
This will also lead to a characterization of locally compact
sets in locally convex spaces.

Throughout this section we shall assume that (X,1) 1is
a real Hausdorff locally convex topological linear space
(HLCS) with topclogy t and (continuous) dual space X*.

For x€ X, yv € X* we write <x,y> or simply xy to denote y(x).

By a t*-topology on X* we mean a Hausdorff locally convex

topology T* on X* which is compatible with the duality
. . + . . e .
<X,X*>, i.e. (X*,7t*)* is again X, and which is sufficiently

weak so that every equicontinuous set in X* has T*-compact

More precisely, we mean that (¥X*,t*)* = JX, where J 1is the
natural imbedding x - <x,-> of X into the algebraic dual (X*)°*

of all linear functionals on X*.
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closure. For example, given any topology T on X we may
always take 1* to be the w(X*,X) topology on X*, since by

the Banach-Alaoglu Theorem every t-equicontinuous set is
w(X*,X)-relatively compact. Conversely, a given (compatible)
topology T* on X* is a "t*-topology if Tt is any compatible
locally ccnvex topology on X which contains the Arens
topology a(X,X*) given by uniform convergence on t*-compact
convex sets of X* (with a basis of O0-neighborhoods being

the polars of t*-compact convex sets in X*). This generality
allows us to specialize to various interesting cases later.

The polar cf a set A in X is defined to ke

fe) t

AT = {y €X*: sup xy < 1}.
X&A

Similarly, the polar of a set B in X* is

°B = {x¢ X: sup Xy < 1}.

veB
The following properties of polar sets are well known,

where A <X and BTCX*:

. o) o .
i}. A~ and "B are closed, convex, and contain 0.

ii). %1% = cl coauiol), (°B)° = c1 co(BuU{0}).

t The supremum over a null set is taken to be supf = -=.

Thus # = x*, 2(g°) = {0}.
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.. a . . -
iii). O € intA => A~ 1s eguicontinuous {and hence
compact) .

iv). B is equicontinuous <=>(JeiatOB.

Thus, we see that the closed convex 0-neighborhoods in X
are precisely the polars of closed convex equicontinuous
sets containing 0 in X*, and vice versus.

It is also knwon that sets with nonemptyv interior in X
have polars which, though not necessarily equicontinuous
or even bounded, are nevertheless w(X¥*,X)-locally compact
in X* (cf. {Fan 65]). Recall that a set B in X* is locally

compact (resp. locally equicontinuous) at a point yOE.B

s e

iff there is a neighborhood W of Yo in X* such that BnW
is compact {resp. equicontinuous). We shall characterize
local compactness and local equicontinuity in X* by showing
its relation to nonempty relative interiors of polar sets
in X. To provide some preliminary results {(of interest

in their own‘right), and to get a feel for what is going
on, we first consider the case of locally eguicontinuous

convex cones.

4.1 Theorem. Let X be a HLCS, X* its dual with a 1*-top-
ology, and C a convex cone in X* with CN(-C) = {0} Then

PIY

the following are eguivalent




37.

i). C has an eguicontinuous base.
.. . . O .
ii). intC # # in X.

iii). C is locally equicoentinuous.

iv). O has an equicontinuous neighborhood in C.

Proof. We assume C # {0}, since othesrwise the theorem

is trivial.

i) => ii}. Rec¢all that B is a base for C iff there
is a closed affine set H such that B = CnH and [{,x)+BDC;
it is then true that every nonzero v € C has a unigue
revresentation t-yo where t > 0 and yoe;B- Let B be an
eguicontinuous base for C; then there exists an x_¢€& X
with B = Ca {y: Xy = 1} and [0,®)+B2C, and mcreover

. .0 . . o
0 €int B. Now for any t > 0, y€B, and x € B we have
{-xo-!-x) (ty) = t(-1+xy) < t(-1+1) < 0; hence
, O - - N o - = .
(-xOT Blc ([0,») B)c C. Thus C = C contains a
c vy . . : o ;
neighborhood of X, l.e. —xoé int C. We remark that

x_ is strictly positive on clCN\{0} = C_~\{0}.

ii) => iii). Suppose —xoe.intoc; then Caeint(xo+oc),
50 (XO+OC)O is equicontinuous. Given yoe C, we wish to
show that Yo has a 7* neighborhood W such that CAW is
equicontinuous. Let W = {y: X ¥ < l+xoyo}; W 1s clearly
a naighborhood of ¥ But CnW = {y: yv&cC, Xy < 1+xoyo}
C{y: (xo+x)y < l+xoyO for all x & C} = r-(xo+oc}o, so

Cn W is eguicontinuous.
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iii) => iv). This trivial.

iv) => 1i}. This is the difficult part of the proof,
but the idea is well-known in the literature. Let W be a
O-neighborhood in X* such that CAW is equicontinuous. In
particular, clco{Cn¥) is egquicontinuous and hence

g): note 0 € clD. We claim

1*-compact. Let D = C n{W\int
that 0 € clcoD. For suppose 0 € clcoD; then C € extD
since 0€ extC and DcCC, and hence 0 € clD by the
Krein-Milman Theorem on extreme points of compact sets,ﬂlL
which is a contradiction. Since 0 é clcoD there is a
closed affine set H which strongly sevparates 0 from
clcoD. But then B = CnNH 1s a base for C (since

[0,=)*DDC, so [0,=)+HDC) and BcCnaW, so B 1is

eguicontinuous. A

Note that in Theorem 1.1 we assumed that C contained

no lines, so that spanOC = ¢ - ¢ was all of X and °c
had nonempty interior. If however we allow L = C N(-C)
to be a (finite dimensional) subspace, local equicontinuity
of C would no longer imply int% # #, but it would still

be true that ri°c # @ with respect to spanOC = J'L, a

fThis is the basic tool here, namely that if a set D in a

HILCS has compact closed convex hull then ext(clcoD)< clD.
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closed subspace of finite ccdimension. In fact, these
results remain true for the case of an arbitrary convex
set in X*. The basic idea is as follows: if C is a
nonempty convex locally equicontinucus set in X*, then

the (finite dimensional) subspace L = C_n(-C_) of all
lines contained in clC is precisely the annihilator of
sganoC = *L in X; and those elements of X which are strictly
negative on all the remaining half-lines contained in clC
(that is, on C_nM~{0} where M is any closed complement
of L in X*) are relative interior points of °c (Lf there
are no such hatf-lines, i.e. C_ is itself a subspace and
c_aM = {0}, then 0€eri®C).

Before proceeding, we require some lemmas concerning

decomposition of finite dimensicnal subspaces.

4.2 Lemma. Let X be a HLCS. If L is a finite dimensional
subspace of X, then there is a closed subspace M of X such

that X = L+M and LM = {0}.

Proof. This 1s a standard application of the Hahn-Banach
Theorem. Let {x ,...,xn} be a basis for L and define
the continuous linear functionals Yyre--1¥, O0 L by

<xi,y.> = < 1,3 < n. By the Hahn-Banach Theorem

§.., 1 3
3 1] -
we may extend the functionals yj so that they are elements

1 )
of X*. Let M = {y},...,yn}. Clearly M is a closed
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subspace of X. Moreover, LAM = {0}; for if x € L, then

X = Zajxj for some aje R, and if x is also in M then
3 :
g = <x,yj> = aj for every j. Finally, any x €X can

be (uniquely) expressed as

X = (§<x,yj>xj) + (x - §<x,yj>xj) € L+M. A

4.3 Lemma. Let X be a HLCS with X = L+M, where L is a
finite dimensional subspace, M is a closed subspace, and
LaM = {0}. Then X* = r*+M*, where IL*AM* = {0} and

M* is finite dimensional.

(D

a base for L. Note that

Proof. Let {x1,...,x“} b
— - i3
the projection of X onto L is continuous since it has

finite dimensional range and its null space M is closed.

Hnece, for i = 1,...,n we can define the continuous linear
functionals Y3 b <m+§ajxj,yi> = a; whenever m€ M and
aji R, L < j < n. Cle;rly M C*Tyl,...,yn}; moreover
Lf\*{yl,‘--,yn} = {0} so MZDA{yl,.-.,yn}. Hence

M = *{yl,...,yn} and M* = span{yl,...,yn}. Also
L"nspanfy,,...,y } = {0}, so L'aM* = {0}. Finally,

X* = IL*+M* since for any v € X* we have

= 3 < 4 'L_,_-L
y = {y - §<xj,j>yj) , (§<xj,y>yj)e LT+M™ L

We remark +that for a convex subset C of X*, local

equicontinnity at a single point of C is sufficient to
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imply local equicontinuity of the entire set, in fact of

the closure of the set; later we shall see that it also

implies local eguicontinuity (and hence local compactness)

of (°c)°.

4.4 Proposition. Let X be a HLCS, X* its dual with a

T*~topology. Suppose C is a convex subset of X* and C

is locally equicontinuous at a point Y& C- Then C is

locally equicontinuous and clC is locally egquicontinuous

{hence locally compact).

Proof. We may assume without loss of generality that

Yo = 0 (otherwise simply replace C by C—yo)- Let W be

an open 1* 0Q-naighborhood such that CnW 1s equicontinuous.

Now C/tC C for any

t > 1 by convexity, hence

CntWct{CNnW) 1is eguicontinuous. Given any V€ C,

we simply take t sufficiently large so that y/t €W; then

CntW 1is an eguicontinuous relative neighborhood of y in C,

so C is locally egquicontinuous at every point in C.

To show that clC
only show (by what we
convex) that 0 has an

in c¢clC. But we clain

is locally eguicontinuous, we need
nave just proved, since clC 1is
eguicontinuous relative neighborhood

that clCnW is a subset of

ci(CAW) which is equicontinuous since CNW 1is; hence

clC AW is an eguicontinuous relative neighborhcod of 0 1in



4% .

clC and we are done. To show that clCAWccl(CnWwW), let
yeclCAW; then yeW and there is a net {yi}ieI in C
such that y; > Y- But W is open so eventually the y; are
contained in W, i.e. eventually the Y; belong to CnW.

But then y = limyiﬁ cl{CnW). A

We now proceed to the main results. First, a lemma
adapted from Dieudonne [D66] to show when a locally

equicontinuous set is eguicontinuous.

4.5 Lemma. Let X be a HLCS, X* its dual with a t*-topology.
A nonempty convex locally equicontinuous subset C of X* is

equicontinuous iff C_ = {0!.

=

Proof. If C is equ

continuous, then it is certainly
bounded, so C_ = {0}. Suppose C is not eguicontir ious.

We show that there is a nonzero xoe C_- Without loss

of generality we may suppose that O0E€C. Let W be a
0-neighborhood witn CN W equicontinuocus. Now for

t>1, CatWct(CaW) by convexity of C and hence CntW
is equicontinuous; but C itself is not egquicontinuous, o
we must have CNtW # § for all t > 1. For t > 1, define
the sets Dt = ([0,=2)(CNEW))ACNAWNiIint{W/2); note that
CnWNint(W/2) intersects any half-line which intersects C,
so that Dy is nonempty since CNtW 1is nonempty. The

Dt are equicontinuous (Dtc C nW), hence relatively compact,
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and decrease as t increases; thus their clc¢sure must have

nonenpty intersection, i.e. there is an x_ € {(\ clp, .
t>1

Clearly x, # 0, since xoe.w\.int(W/Z). All that
remains is to show xoé.cm, i.e. r~xoe.clc for every
r > 0. Take any r > 0. Now x_€ 1[0,=)-(C\tW) for

o
t >1 and xoe W; hence rxoe clif,=) + (CN\NtW) NtwW

whenever t > r, i.e. rxoe c1[0,1]°C € clC. Thus Xq

is inC_. &
<0

4.6 Theoren. Let X be a HLCS, X* i1ts dual with a

T*-topology, C a convex set in X*. Then the following

are equivalent:

s locally equicontinuous.

ot

iy. €
. .0 On .-
iiy. ri’C # g, where span C is closed and has finite
codirension in X.
Moreover if either of the above is
o] & . O .
true then span C =7(C_n{-C_)), and O€riCc iff ¢C

o«

. . . o L .
is a subspace, in which case span C = (). If - 1is

closed, it is also complete and locally compact.

Proof. i) => ii). Since c¢lC 1is locally eguicontinuous
iff ¢ is by Proposition 1.4, and since (clC) = C_, we
may assume C is closed. Let L = C_n(-C_); L is a subspace,

and since a translate of L lies iIn C, L 1s locally egui-

continuous, hence locally totally bounded and finite
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dimensional. By Lemmas 1.2 and 1.3 applied to L in X*,

there is a closed complement M of L in X* with X* = L+M,

LAM = {0}, X = *L+*M, *LA*M = {0}, and M finite dimensional.
If C is a subspace, i.e. CcL, then we are done; hence we
assune C is not a subspace and CnM #{0l. Now c_nM is a

convex cone which contains no lines, and since a translate

o}
h

it lies in C it is locally equicontinuous. Applying
Theorem 1.1, we see that if C_n M # {0}, there is an

x, € X such that xg is strictly negative on C_nM\{0};
if C_aM = {0}, i.e. in the case that C is a subspace and
L =C , we simply take Xy = 0. We may assume that xoe L

by taking its projection onto L.

Consider the sets B, = {y€CnM: xy> r} for ré&R.
Each B is a subset of C, hence locally eguicontinuous.
Now (B.) =C nMn{x } is {0} since x_ is strictly
N r o« =) o - o]
negative on C_n M\ {0}; thus the B_ are actually equi-
continuous by Lemma 1.5 and hence compact. Clearly

N B is enpty, and since the sets B_ are compact and
r>0

monotone in r there is a finite T, > 0 for which

B, 1 = #, so that sup x vy < r_-l.

o] yeCnM
Take B to be any of the sets B which are nonemnpty;
. B . O - : 3 N
B is equicontinuous so B is a O-neighborhood. We shall

o o . . ..
show that (x + B)n‘z,cro- C, i.e. that x_ is in the
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interior of °C relative to the subspace ‘L; since *L

clearly contains OC (a transliate of L lies in C), we
L o .0

then see that —L = span C and X, € ri1 C. Moreover,

codin*lL = dim X/*L = dim L is finite. So, all that

. . o
remains is to show (xo+ B) r\"‘LCrO~OC.

Take x €°B  and y € C with x tx etL. Now
y =A4+m where 1€ L and meM; note m 1is alsoc in C
since m = y-4 €C-LCC (recall LEC_}, i.e. meCnM.
15 + = = - :
But then (xo X}y (x0+x) (2 +m) (xo-!-x)m < (ro 1)+xm <
o

+1-1 = r . Hencs w ave show + r - for
rol o enc e have shown xOXEOC;o

o} L o
every such x, so (xo+ Bya"LcC.

Concerning the remarks at the end of the theoren,

. 2 e aa o, _ L. - - .0

we have already shown that span C =L and 0 = xoe ri-C
if C_ is a subspace. To cocmplete the remarks, we nesed

only show that O e ri°c implies that C_ 1s a subspace.

. . , o ; o}
But if 0€ri®c then C absorbs span C = 11,  and hence

c_ = (°c)” = (span®c)” = (*1)” = L.
ii) => i). In the next theorem we prove that for
a = %, ii) implies that 2% = (OC)o is complete and

locally equicontinuous. But C is a subset of (OC)O, so
C is locally eguicontinuous, also complete and locally

compact if it is closed. A

We remark that in Theorem 4.6 we have C = L + (CnM),




where L

1l
@]
8
)
n
@]
8\—1
=N
n
th
=
jn]
[w'e
ct

e dimensicnal and M is a
closed complement of L. Moreover CnM 1is equicontinuous
i1ff its asymptotic cone is {0}, i.e. iff C_ is a subspace

or eguivalently O € ri°c.

4.7 Theoram. Let X be a HLCS, X* its dual with a

T*-topology. Suppose A< X has ridA # g, where affA is

closed with finite codimension in X. Then A° is complete

and locally equicontinucus (also convex, closed, and hence
o

locally compact). Morsover, (A7) = A 'Ao}mr\h—AO)oo = AT

© LA ’

< .Q,.0 . . .
and QOerxi (A7) i1ff (A7) is a subspace.

Proof. Let xo€ riA, or eguivalently O Eri(A~xo). Define

M= span(A~xo) = affA-x , a closed subspace of finite

0

codimension. Let N be any (algebraic) complement of M
in X; N is finite dimensional {(hence closed) since it is

isomorphic to X/M and <Qim X/M = codim M is finite. Let

{xl,...,xn} be a basis for M. Note M¥*= (aff:'f-‘x--xo)'L =
i

(A-x )7
We frist prove that = is complete. Let {yi}ieI

5 . @] . . ~ .
be a Cauchy net in A~, and define the linear functional £

on X to be the pointwis= limit £({x)

Il

lim Xy, - We will
show that f i1s continuous {i.e. can bz taken as an element
_ . . - 2O N .. .
of X), and hence lies since A~ 1s closed. Now the

Y are bounded above by 1 on a, and (xoyi) is Cauchy in R
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SO X Y, is bounded by some r > 0; hence the y; are bounded
above by l+r on A-x,, SO f is bounded above by l+r on A-x -
But A—xo is a O-neighborhood in M, so f is continuous on M.
Since f is certainly continuous on the finite dimensional

subspace N, and since the projections from X onto M and N

are continuous, f is continuous on M+N = X.

We now show that A° is locally eguicontinuous, i.e.

that given any yéiAO there is a 1* neighborhood W of y

L O 0 s . . -
for which A NW 1is eguicontinuous. By Proposition 1.4
we may simply take Yo = 0. Thes basic idea is to choose W

. . - - . . [e]
so as to eliminate all half-lines in (A )m. Hence, we

set W= {y: -x_y <1 and max lx.y! < 1} =

1<i<n
{*xo,ixl,..,,ixq}o. Clearly W 1is a 0O-neighborhocod in X*.
Now we claim that U = (A-x ) + {2 ajxys !aj| < 1} is a
J

0-neighborhood in X, and we will show that 2°n wer-u®
for r sufficiently large, so that 2°Aw is eguicontinuous;

this finishes the proof that a° is locally equicontinuous.

Tc show that U is a O-neighborhood in X, we note

that (A-x) is a 0-neignporhood in M and {Z ayxy: }aj{ < 1}
J
is a O-neighborhood in M. But the projections of X onto M

and N are continuous, and U is simply the intersection of
the inverse images of the two sets under the corresponding

projections.
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We now show that A°Nwe?2 (1+n) -U°. Take any yeé a°n W;

then sup xy <1, -x_y < 1, and max {xiy{Af 1, so in

X€A 1<i<n
particular sup (x-x_ )y < 1+1 = 2 and max Ix.v|l <1 < 2.
XeA 1<i<n
Hence vy/2 E(A—XO)O(\{ixl,...,ixn}oc:(1+n)-U°.

All that remains is to verify the ceoncluding remarks
in the theorem. To show (AO)co = A , we have
y e(a®), <=> tyea® Vi > 0 <=> x(ty) < 1 ¥ > 0,
X €A <=> xy < 0 Yx€A <=>y €a . Finally, the fact that

)

o}

(a is a subspace iff © erio(Ao) follows from

Theorem 1.6 i) => ii) applied to C = A

We now summarize our rasults for the w(X*,X) topology
on X*, in which eguicontinuous sets are always relatively

ceompact.

4.8 Corollary. Let (X,t) be a HLCS with dual space X¥*,

and suppose ACX, BCX*.

If A has nonempty relative interior, and if affaA
is closed and has finite codimension in X, then a® is
complete and locally eguicontinuous (also closed, convex
and hence locally compact) in the w(X*,X) topology on X*.

°y - a", (a°

o
Moreover (A7) _ =4A , (A7) _n(-A7) = A", and

0 &rio(Ao) = rcoro(Ao) iff (A7) = A is a subspace.
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Conversely, if B is convex and locally t-equicontinuous
in the w(X*,X) topology on X* then °8 has nonempty reslative
interior, spanoB = JYBm(W(—Bm)) is closed with finite
codimension, and 0€ ri®B iff B_ is a subspace. More-

over c¢lB and (OB)O are complete and locally compact

in the w({X¥*,X} topology.

Prcof. This is just a direct consequence of Theorems 4.6
and 4.7, where we take 1 to be thc criginal topology on X

and T* the w{X*,X) topology on X*. []

We remark that if X 1s a barrelled space (i.e. every
closed convex absorbing set has nonempty interior, for

example any Banach space or Frechet space), then the given

o

topology on is the m(X,X*) topology and moreover every
bounded set in X* is relatively sompact in the w(X*,X)
topology. In this case locally equicontinuous simply means

w{X*,X})~locally bounded in Corollary 4.8.
In the general case, we can still imbed X* in the

algebraic daul X' to characterize local boundedness in X*.

4.9 Ccrollary. Let X be a HLCS with dual space X*, and

supoose ACX, BCOCX*,

If affhA 1is closed and has finite codimension, and

-
rh

. o . 5
A has nonempty relative core, then A~ 1s locally bounded




=0.

in the w(X*,X) tooology on X*. Moreover (A.o)co = A—,

(A% _n(-2% _ = a%, and 0ercor®a® iff %) _ = a

is a subspace. If X 1is a barrelled space, then A° is
closed, convex, complete, and locally compact in the

w{X*,X) topology on X*.

Conversely, if B is convex and locally bounded in
. . o, . .
the w(X*,X) topology on X*, then B has nonempty relative
O., . . L.
core, span B = *(er\(—Bm)) is cloced with finite codimension,

and 0 € rcor’B iff B_ 1is a subspace. If X is a barrelled

Ne) G

space, then ri~“B ¥ &, and (8°) is complete and locally

ceormpact in the w({X*,X) topologyv.

Proof. Let X' be the algebraic dual of X, put the "convex
core"” or strongast locally convex topology on X (i.e. every
convex absorbing sst is a 0-neighborhood), and let 2% denote
the polar of A with respect to the duality between X and X'.
Of course, X* X', the w(X*,X) topology is the restriction
of the w{X',X) topology to X*, and A° = A°nx*. Moreover
we note that X* is w(X',X)-dense in X', since

wiX',X)-cl(x*) = (®x%)? = {0}® = X', sSimilarly, we have
the decomposition X' = MY + w(X',X)-cl(N )} with M* finite
dimensional, whenever X = M + N and M is a closed subspace

of X, N is a finite dimensional subspace of X, MnN = {0}.



The results then follow by a straightforward application

of Corollary 4.8 to X and X'. O

Finally, we characterize local compactness in a
HLCS in terms of the Arens topology a(X*,X) on X* of
uniform convergence on compact convex sets in X {a basis
of Ofneighborhoods for a(X*,X) being the polars of all
compact convex sets in X; note this depends on the topology
cn X, not just on the duality between X and X*). 1In
particular, we characterize weak local compactness in
terms of the Mackey topology m(X*,X) on X*, which is the
strongest lccally convex topology on X* which still has

dual space X.

4.10 Corollary. Let A be a closed convex subset of a
HLCS X. Then A is locally compact iff a° nas nonempty
~relative interior in the a({X*,X) topology on X* and
span(Ao) is closed with finite codimension, in which case
A is also complete. A is weakly locally compact iff a°
has nonempty relative interior in the m(X*,X) topology on

X* and span(Ao) is closed with finite codimension,

in which case A is also weakly complete. 1In either case,
oy _ L
span(A”) = (A_N(-A_))".
proof. This is a direct consequence of Theorems 4.6 and 4.7

where © 1is taken to be the a(X*,¥X) topology (resv. the



=

m(X*,X) topolog ) on X* and t* is the original topology

(resp. the weak topology) on X.

An interesting consequence of this corollary is that
if A is a closed convex locally compact subset of a
HLCS X, then it is actually weakly locally compact. For,
a° has nonempty relative interior in a{X*,X) by Corollary 1.10,
so a° certainly has nonempty interior in m{X*,X), hence A
is locally compact and complete in w(X,X*). Note it is
obvious that compactness always implies weak compactness;
nowever it is not so obvious that local compactness implies
weak -local compactness (for closed convex sets). However
the proofs of the theorems show that the compact relative
neighborhocods of any X, in A can be taken to be of the
form A:\(xo+o{yo,tyl,...,tyn}) where, for a complement L
of the finite dimensional subspace Amfﬂ(—Am), Vo is
strictly positive on 2 _nLN{0} and {yl,...,yn} forms

. i
a basis for L.
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5. Continuity of convex functions and equicontinuity of

conjugate functions.

We wish to describe here the relationship between
continuity of a convex function and eguicontinuity of level
sets of the conjugate function. Moreau [M64] and
Rockafellar [R66] have shown that continuity of a convex
function at a given point is equivalent to equicontinuity
of certain level sets of the conjugate function. We shall
complete this result and also extend it to show the equi-
valence between relative continuity of a convex function
with respect to a closed affine set of finite codimension
and local eguicontinuity of the level sets of the conjugate
function. We then examine relative continuity in a more
general context using guotient topologies.

We recazall some basic definitions about conjugate
functions. Throughout this section we shall again take
{X,T) to be a HLCS with topology 1 and (continuocus) dual
space X* topologized by a t*-topology, 1.e. T* 1s compatible
with the duality <X,X*> and t-eguicontinuous sets in X¥*
have t*-compact closure. Let R = [-w,+»]; if S is a set

and f a function £:S5 -+ R, we define the effective domain

of £ to be

domf = {s€ S: f(s) < +w}




and the epigraph of f to be
epif = {(s,r) € sxR: £(s) < rl.

If f£:X > R and g:X* - R, the conjugate functions

*

f*:X* > R and ¥“g:X » R are defined by

£*(y) = sup(xy-f(x)})
x€X

*g(x) = sup (xv-gl(v)).
yEX*

The conjugate functions are always convex and lower semi-
continuous (in fact, weakly lsc), being the supremunm of
continuous afiine functions (e.g. £* is the supremun of
the functions y » xy-r over all (x,r) € epif), and they
never take on - values except in the case they are

identically -=, 1llote that the conjugate of an indicator

. € 3 - . .
function 6A(x) = {+m' ¥ 8 for acx is precisely
0, xg¢»A
the support function SA*(y) = sup xy of A, Finally, it
XE€A
is well known that
*(£*) = 1sc co f

unless lsc co £ takes on -= values {(or equivalently

tit

£* © +»), in which case *(f£*) -, Bv cof we mean the

largest convex function cominated by £, and by lscf we
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rean the largest lower semicontinuous function dominated

by £ (i.e. (1lscf)(x) = lim inf f(x')), so that
®'>x
epi(lsccof) = cico(epif). And since £* 1is convex and

l1sc, we have (*(f*))* again equal to f*.

We recall the following important proéerty of
convex functions: if f:X - R is convex, then f is
éontinuous relative *o affdomf (that is, the restriction
of £ to affdomf with the induced topclogy is continuous)
at every point of ridomf whenever f is bounded above on
any relative neighborhood in affdomf, or equivalently
whenever riepif is nonempty., Ve shall consider the
relationship between points of continuity of £ and

equicontinuitv of level sets of £* of the form
{y€x*: £*(y)-xv < r}, x€ X, T€R.

Note that by definition of *(f*) the level set is non-
erpty whenever r > -*(£*)(x) and empty whenever

r < -*(f*) (%) (the latter entails x edon*(£*}). We
remark that the level set is precisely the e-subgradient
afe(x) of £ at x when r = ¢ + f(x) and preciselv the
subgradient set when r = f{x), assuming £{(x) € R.  In the
case that 6A is the indicator function of a set ACK,
then the level sets of §,* are precisely r-(A-x)© when

A

r > 0; thus we have a generalization of the notion of
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polarity. More generally, the level set for a given
r € R consists of all continuous linear functionals ve X*
for which f(+) dominates the affine functional xr xy-r,
i.e. it is {ye X*: £(x') > (x'-x)y-r YUx'e X}.

We first prove two lermas which relate polars of

leval sets of a function with level sets of the conjugate

function.

5.1 Lemma. Let X be a HLCS, f:X—~> R, Then

{y€x*: £*(v) < s}C (r+s)-{xeX: £(x) < r}°

whenever r+s > 0,

Proof. Let A denote the set {xeX: £(x) < r}. Clearly
£ < r+5A, so taking conjugates yields £* > -r+6A*. Hence

{y: £*(y) < sl<{y: ~r+8_ *(y) < s}C {y: sup xy < r+s} C (r+s) -a°.
- ) AT - XEA - u

5.2 Lemma. Let X be a HLCS with dual X*, g convex

X* - R. Then for any € > 0,
e+%{y e x*: gly) < e+g(0)} < {x€X: *g(x) < e+*g(0) }.

Procf. Let £ = *g, B = {y€ x*: g(y) < e+g(0)}. The
trivial cases g{0) = += or g(0) = -» are easily checked,
so we assume g(0) is finite. In particular, £(x) > -=
for every x. If £{(0) = += the result is also trivial,

so we assume f£({0) finite,
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We shall first show that g(y) > ~f(0)—€+£50 *(v)
B

for evexry y € X*. Now if vy¢€ (°B)°, i.e. & *(y) < 1,

°B

and so gfly) > ~f(0)—s+€60 *(v),
R

On the other hand if

then 0 > —e+ed_ *(y)

since £(0) > -g{y) for everv y.

v § (OB)O, i.e. 60 *(y} > 1, then y/r¢B

whenever
B

1l <r < 60 *{y), i.e. gly/r)-g(Q) > e. DMNow
B

gl{y)-g(0) > re(gly/r)-g(0})) since r > 1 and

(glty)-g(0))/t decreases as t ¥+ 0 by convexitv, so
we have g(y) - g(0) > €+*r. Taking r + 8, *(y), we
B

get gly)-g(0) > €6 *(y), so gly) > g{0) + €8 *(y) >

— [o) _— o) —

B B
-f{0)-e+ed  *(v).
op -

Thus g > —f(O)—€+€50 *:; taking conjugates yields
B
£ix) < f(0)+a+6o (x/€). Hence if x¢& £-°8B  we have
B
60 (x/€} = 0 and so £(x) < £{0)+e, proving the lemma. [
5 =

WVe are now in a position to use the results of
Section 4 on polar sets to show the correspondence bstween

continuity and equicontinuity of level sets,

5.3 Theorem. Let (X,t) be a HLCS, ¥* its dual with

T*-topology, and let f:X > R. If affdonf is closed with

finite codimension, and if £ is bounded ahove on some

relative neighborhood of affdomf, then cof is continuous
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on ricodomf and the level sets

B = {ye&Xx*: £*(y)-xy < r}, x€X, reg,

are complete and locally equicontinuous (also closed

convex and hence locally compact). Moreover if B is

nonempty then B_ = (domf~x) ~, B,Nn(-B ) = (domf-x)L,

B = (do:zlf--x)'L + {(BALY) where L is any (finite

dimensional) complerment of span(domf-x) in X, and the

following are equivalent:

i}. X € rcor co domf
ii). cof is finite and continuous at x
iii). B, is a subspace

iv). BaL* .s compact.

We remark that B is always empty 1in the degenerate case

f* = 4o and *{(£*) = -=, Otherwise £* ¥ +» and *(f*) and

cof never take on == values, and *(f*) = cof except possibly

on relative boundary points 0of codomf.

Proof. We assume f* $ +«, since otherwise B is always

erpty and *(f*) = -=

Take x_ € X, and let B = {vex*: f*¥{y)-x y < r} bhe

nonempty. Define £(x

S

O
!
L

= f(x+xo) and A = {x: f(x

~—

< s} =

{x: f(x+xo) < s}, where s is sufficiently large so that

s+r > 0 and A contains a point in ridomf. Ve then have
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riA ¥ @, where affa = affdomf—xo is closed with finite

codimer.sion. By Lemma 5.1 we have
B = {y: £ (y)-x v < rl = {y: £*(y) < r} ¢ (r+s) -a°.

But then by Theorem 4.7 we know that B is complete and
locally equicontinuous, since it is & closed subset of

(r+s) -a° and ria # 8., A straightforward calculation

shows that B_ = (domf-xo)- when B 1s nonemnpty, and hence

that B_N(-B) _ = (domf-xo)l. Now span(domf—xo} is a
closed subspace with finite codimension, since it ecuals
affdoaf-x,) + (-w,+®)°(xl~xo) for any x, ¢ affdonf and
hence is the sum of the closed affine subspace affdomf
and the subspace (—®,+m)~(xl—xo) of dirension at most one
(note span{domf-x} = affdomf—xo precisely in the case
X € affdomf). Thus by Lermma 4.3 we have the decomposition
X* = (domf-xo)L + L* where L is any (finite dimensional)
complement of span(domf—xo) and LV is then a closed com-
plement of (domf—xo)L. But then B = (d<>r:1f--xo)'L + (Br\LL)
since (domf*xof'c:Bm. It only remains to show the
eguivalence of i) through ivj.

lote that since f is bounded above on a relative
neighborhood in affdomf, cof is also bounded abcve on the
same neighborhood (and of course affdomf = affdonm(cof}),

so that cof is continuous in ricodomf (note

co donf = dom cof by Lemma 1l.1) and i) is equivalent to 1ii)
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by convexity. Moreover, BnL“- is compact iff

(BaLY)_, = B_aL" is {0} by Lerma 4.5; but B_AL> = {0}
precisely in the case that BmCZ(domf—xo)‘L =B_N(-B_},

i.e. B_ is a subspace, so that iii) and iv) are equivalent.
Now if xO& rcorcodomf, then codomf—xo absorbs affdomf-x ,
so that (domf—xo)— = (codomf—xo)- is actually (domf-xoYL;
thus B_ = (domf—xo)'L and i) => ii). Conversely, suppose
XOE rcorcodomf; since codomf has nonemptv relative

interior in affdomf, there is & separating y & X* such

that either v = 0 on span(domf—xo) and sup Xy SRy

xeédonf
(in the case xoesaffdomf), or v = 0 on affdomf—xl and
(xl-xo)y < 0 for some xlézdomf (in the case xoé,affdomf).
But in both cases we then have y e(domf-xo)- = B_, with
y’é(domf~xo)‘ = B_N(-B_), so that B_ is not a subspace

and iii) => i). QO

5.4 Theorem. ILet X be a HLCS, X* its dual with a
T*-~topology, and suppose g is convex X* + R, *g I +=,

If the level set B_ = {y e x*: gly)-x v < so} is nonerpty
and locally eguicontinuous for some xoeAX, S, € R, then
affdom*g is closed with finite codimension and *g is
finite and relatively continuous on rcordom*g ¥ J. !ore-
over all the level sets B = {yv: g{v)-xy < s}, x€X, s€R
are locally eguicontinuous, and if nonermpty

B = (dom*g-x) , affdom*g = x + LTBQ(\(—Bm)) if

x € affdom*g, and *g is finite and relatively continuous
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at x iff B_ is a subspace.

Proof. First, let us note that if BO is locallv equi-~
continuous then epig is locally equicontinuocus (in the
product topologies on XxR and X*xR) and hence all the
level sets B are equicontinuous. For, if yOE:BO and
W is a YooR ighborhood with BO(\W egulcontinuous, then
g(yo)-—l,xO xW is a neighborhood of (g(yo),yo) whose
intersection with epig is contained in (g(yo)-l,so)X(Bor\W)
which is equicontinuous. Since epig is convex, we have

by Proposition 4.4 that all o

Hy

epig is locally ecguicontinuous,

and hence all the lewvel sets B are locally equicontinuous.

Mote also that *g never has -= values, since epig # 4.

We wish to show tnat *g has relative continuity points.
Now *g # +» by assumption; since all the level sets B are
locally equicontinuous we may assune that xOE-dom*g in the
definition of B . Let yoE:Bo and take some € > 0 such

that v }J=X v < s -c¢, and define B, =
g(*o) [oRie) o ' 1

v ~-xX v < e+g(v )=-x v }. clearlv contains and
fy: g(y) o¥ S EFaly)-x v, By ¥y <o Yq

is locally eguicontinuous since BlC.B . low define

o)
v; then B,-v_ = {v: glv) < €+g(0)} and
p: 1 D, Y > -

3(¥) = ely +y)-x Yo

o]

applving Lermma 5.2 vields

£:9(By-y ) C {x €X: *g(x) < e+*g(0)} = {x€x:



64 .

But (Bl—yo) is convex and locally equicontinuous, so by
Theorem 4.6 O(Bl-yo) has noneripty relative interior with

respect to L, where L = (Bl—yo)mf\(—Bl+yo)m. This means

that x ¥ *g(xo+x)—xyo is bounded above on some relative

neighborhood of L, so that *c¢ is bounded above on some

relative neighborhood of x  + L. Ve need only show that

X + L contains affdom*g. !ow since

° I.C(Blnyo)m, e see

that é(yo+ty) < £+§(0) for every t > 0, vé€ L and so
*g(x) > sup (x(y +ty)-gly +tv)) > xy
— ['e) ‘o - —
VAR
>0

0-8—;(0) + sup texy
vVeL
£>0

. S L iR .
is +» unless x € *L. Thus dom*g ¢ L, i.e. dom*g xO+LL, so

we see that *g is bounded above on some relative neighbor-

hood of xo+*L = affdom*g and hence 1is relatively con-

tinuous on rcordom*g.

To prove the remarks at the end of the theorem, we

show that the level sets B = {y: gly)-xy < s} have closures

which contain and are contained in the level sets of (*qg)¥*,
anéd then we simply apply Theoren 2.3 to £ = *g. Since
(*g)* < g, it is clear that BC{y: (*g)*(v)-xy < s}, hence

Bq}C(dom*g—x)- by Theorer 2.32. On the other hand, for any

e > 0 we have {y: (*g)*(y)-xy < s-c£} CclB since (*g)* = 1lscgqg,
and hence (taking € sufficiently small so that the level

set of (*g)* is nonempty) (dom*a~-x%) C B_ by Theorem £.3. Thus B =

(dom*g-x) , and *g is relatively continuous at x iff B_ is a subspace

.
We note in particular that for any HLCS X Theorems 5.3 and

5.4 are true for the w(X*,X) tooology on ¥*, in which
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equicontinuous sets are always relatively compact.

If X is a barrelled space, then the equicontinuous sets
are precisely the w(X*,X)-bounded sets in X*, so that
locally equicontinuous simply means locally bounded in
the w(X*,X) topology. If X is not a barrelled space,

we could still characterize w(X*,X)-locally bounded level
sets of a convex function g: X* - R in terms of

rcordon*g ¥ 4 and affdom*g closed witn finite codimension,

by imbedding X* in X' just as in Corollary 4.9.

Yle surmarize the results for convex functicons with

locally compact level sets in a HLCS.

5.5 Corollary. Let X be a HLCS, £:X > R convex and lsc,

g = £*. If one of the level sets B = {x€X: E(x)-xy < s}

is locally compact (resp. weakly locallv compact) for some

yoe X*, So > inf(f(x)~xyo) = —g(yo), then affdomg is closed
with finite cogimension and the restriction of g to

affdomg is continuous on rcordomg (which is nonempty

unless g = +=) in the a(X*,X) topology (resp. the m(X*,X)
topology) on X*. Conversely, if affdomg is closed with
finite codimension and g has finite relative continuity
points in affdomg in the a(X*,X) topologv (resp. the
m{X*,X) topology), then all the level sets

B =

{xe¥: f{x)-xy < s} are closed, convex, complete, and

locally compact in X (resp. in the weak topolcogy on ¥),
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and if B is nonempty, B_ = " (domg-y) , affdomg = v +

(er\(-—Bm))'L if ye affdong, and g is finite and relatively

continuous at v iff v € rcordomg 1£ff B_ is a subspace.
b Y - 3

Proof. This is a direct consequence of Theorems 2.3 and

2.4 where 1 is taken to be the a(¥X*,X) topologv (resp.
the m(X*,X) topologv) on X*, 1* is the original topology

(resp. the weak topology) on X, and the roles of ¥ and X*

have been reversed. 0




&2

6. Closed subspaces with finite codimension,

This section serves only to provide some very basic
results about what it rieans to be a closed subspace with
finite codimension; the ideas are simple but it is
important to be careful here,

Let X be a HLCS. Let M be an affine subspace of X;
the subspace parallel to M is M-M = N—mo where m_ is any

fixed element of M. We have
M= affdM = (M=M)+1 = (M- )+

The dimension of M is defined to he the dimension of the
subspace M-!1, More generally, if CCX t n the dirension

of C is defined to be the dimension of affC:
dim aff ¢ = din span(C-C),
where of course

aff C

i

(C=C) = -
C + span{C-C) e, * span(C c,)

= {

' 1% i, tieR, }:iEC,
1

1 1

s
ot
X
o]
m
¥

1R =]

. ti=l}.

If ¥ is an affine subspace of M, then we say ¥ has finite

codimensicn in M iff the subspace l-Il parallel to M has

I

finite codimension in the subspace M-} parallel to M,

i.e. if dim (=-M/2-11) is finite.




2778

6.1 Proposition. Let X be a HLCS, M an affine subspace

of X, N an affine subspace of M.

Let ! have the topology
induced by that of X. Then the following are equivalent:
1) N is closed with finite codimension in M

2} HN-N is closed with finite codirension in M-M

3) N is closed in M and M-M/N-N is finite dimensional

4) N is closed in M and M/N-I is a finite dirensional

affine subspace of X/i-N

5) N is closed in M and J afinite dimensional subspace

L such that N+IL = ! and (i-N)nL = {0}
6) N is closed in M and Jd a finite dimensional subspace

L. such that N+L 2> M

7) 3 finite subset FCX* st N

il

(no+*F)r\M for sorme

{and hence every) n_e N

n
. . -1
8) dry,eee,T €2, Yysee.,y € X* st N = Mni{;\l vy {r;t.

Proof. Throughout the proof we shall assume that n_ is a

fixed element of N; in varticular, N-IMN = N-n_and !-M = M-no.

1) <=> 2}, YN is closed in M iff N-no is closed in
M—no by translation inwvariance of vector topologies. The

result now follows from the definition of finite codimension.

2} <=> 3). The codimension of M-XN in M-M is precisely

dim (M=M/N-N).

3) <=> 4), In 4) we are using the following notation:
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if CCX and 1if L is a subspace of ¥ then C/L is the image
of C under the canonical gquotient map of X into X/L. Now
M/N-N = [no} + (M-M)/2N-M is an affine subspace of X/N-N
which is a translation of the subspace M-M/M-N (here [nO]
denotes the eqguivalence class of n, in X/N-N)}:; hence
dim (M/N-N) = dim (M=-M/N-N).

3) => 5). Let L be an algebraic complerment of N-N
in M=M, i.e. L+(N-M) = M and LNN-1) = {0}. Now L is
algebraically isororphic to M-M/t-N under the quotient
map Q: L + (M=M/N-2): £ = [I]; for C ié linear, one-to-one
since L Nn(~-N) = {0}, and onto since L+{N-N) = M-M_ Thus

"bv hypothesis 3), dim (L) = dim {(M-}M/t-N) is finite,

Finally, we have

1 = + (M=) = + N-1) = L+N.
M ng {M=11) n L + ( L+N

S5) <=> 6)., Triviallv 5) => 6}. Suppose 6) holds.
Let L' be a complement of (IN-N) in (M-=M). Then

L' N (N=1)

{0} and L'+MN = 1. But L' C (N-N)+L; since

L'N(N-N)

{6}, L'*c L. Thus L' is finite dirensional

and 5) holds for L'.

5) => 7). Define the projection map P: (}-M) -~ L,
where P 2 0 on (¥-M), P = I on L. ZLet {¢;.,,,.0 } be a

hasis for L*. P is a continuous map (I'-I1}) -~ L since

]

has finite dimensional range and the null space (N-N) of P
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is closed in (M-M). Hence each 0;° P ¢ (M-M)*, By the
Hahn-Banach extension theorem we may extend each d)i e D

to an element v of X*, so that v; = @io P on (M-M).

Let F = {Yl""'yn}’ Clearlv N-N, which is the null

space of P, is contained in*F. Conversely, (M-M)AN™"F cN-N;
for if x € {}1-M) then x = n+l where n ¢ (N-N) and 4% € 1,

and if also x €*F then £ = 0 (since ne¢tF and F spans L¥*),

Thus (N-N) = (M) n*F. Equivalently, (N-no) = (r-!—no) At E

i.e. N = LG(no+*F).

7) => 8). Assume 7) holds, i.e. F = {yl,...,yn}c:x*

7 N = M y - 3 = w
and XN J(\(now- F}. 3et ry vy (no). Then
A ¢ .
n +'F = {n_+x: yi(x)=0, i=l,...,n}l =

n
{x: vi(x-n ) = 0VYi =1,...,n} = f\y—.'l{r.}, and 8) follows.
i o jop i TE

8) => 9). Cleariy I is closed in M, since each v, is
continuous on M. HNow yi(n) =r; for everv n&€ Nl and
i=1l,...,n, so v.(n-n) = 0 and N-n_C > {y.,...,v. }

r ’, 14 <1 o o) 41' I__n -

But then dim (M-MfN-n_) < din (=1/Hy ,...,y 1) <

. . L
dlm(X/J'{yl,...,yn}) = dim (‘L{yl,...,y N=

n

dir span {yl,...,yn} < n, o
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7. Veak dual topologies.

Let (X,T) be a HLCS, and suppose 1 is a subspace of

X with the induced topology MNT. By the Hahn-Banach
theoren we may identify M* with X*/Mt, vhere <x,([yl> = <x,y>
for x€ M and [yl the eguivalence class y+M*e X*/M of

v € X*, We shall be concerned with various topologies
pertaining to the duality between M and X*/M*. The
following notation will be used: if B CX*, then B/M™ denotes
{[bl:be B} = {b+M*':b ¢ B}, a subset of X*.

Ve have already definedé the w(X*,X) topology,

with O-neighborhood basis

=

@]
(X
11y
a1
]._l
o
i.J.
Ing
[
n
>
et
[l

A net {y,} converges to 0 in w(X*,X) iff <x,y;> > 0 for

every x€ X. A set BCX* is bounded in w(X*,X) iff for

conditionally

evervy x € ¥, sup <x,y> <+w, B is w{¥X*,X),compact whenever

yEeR
. . T . . Q.
B is equicontinuous, or eguivalently 0 € int 3,

A weaker tepelogy is the w(X*,M) topology, with

O-neighborhood basis

{FC:F finite c i},

A net {yi} converges to 0 in w(X*,1) iff <x,y.,> = 0 for

every X €, or eguivalentlv iff eventually vi’e{x}o =
.\0 . \ e .
{x}7+11* for every x €. tote that the w(X*,M) toroloqgy
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need not be Hausdorff; it is Hausdorff iff M* = {0}, iff
M is dense in X. Since the closure of {0} in w(X*,M)

is M*, the associated HLCS is X*/M with the w(X*/M>,M)

topology; hence v, > 0 in w({X*,M) iff [yi] - 0 in

w{X*/M ,M). Sinilarly, a subset B of X*¥ is w{X*,M)-bounded

iff MY x€M, sup <x,v> <+, iff B/M is w(X*/M
veB
conditionally

B is,compact in w(I*,!) whenever B is eguicontinuous as

M) =bounded;

a subset of M*, or eguivalently B/M* is equicontinuous

as a subset of '*, Of course, (X*,w(X*,M}))* mav be

identified with M; for if z € (X*,u(X*,2))* then there is

a finite subset F of it such that |z(y}| < 1 wvhenever

i

y € °, hence {v:z(v) 0} N {y:<x,v>

XEer

i

C} and

z €span F <l

Jle say that a subset B of X* is !~equicontinuous iff

the restri. _on of the continuous linear functions in B

to the subspace i 1s eguicontinuous for the induced topologyv

MNT on M.

7.1 Proposition. Let (X,1) be a HLCS, M a subspace of X

with the induced topology ¥MnT, and BCX*, Then the following

are equivalent:

1) B is M-eguicontinuous

2) B/MY* is equicontinuous as a subset of 11%F T X*/pM
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3) ©3 contains a relative 0-nbhd in M, i1.e.
3 0-nbné U st 9BDUAM
4) 3 0-nbhd U st sup sup <x,y> < 1, i.e.
xeUnM yeB -

Bc (UnaM°
5) 3 0-nbhd U in X st B < U+

6) 3 0-nbhd U in X st B/M*c (/.

Proof. 1) <=> 2}). This is simply the definition of
M-eguicontinuous.

2) <=> 3). This is what eguicontinuity means,

for linear functionals,

3) <=> 4), 1If U is a closed convex 0-nbhd, then

°Bota M <=> BC(tAM? since 2((uam® =vamn.

4) => 5). This is the only nontrivial part.

o

Suppose BC(Un!M . Let V be a closed convex O-neighbor-

hood such that VvVcint U, Then cl{lNM2vVvnclM; for if

x€V is the limit of a net {xi} in ¥, then the {xi}

eventually belong to U (since x €int U) and hence

. o . . o, .
x &cl(unM)., tow VvV is w{X*,X)-compact, 30 V +M* is a

w(X*,X) ~closed convex set containing v°U 1*; thus

1 4

vO+u*= clco(VPU %) . 1But then °2(vo+u* = %(wCuut =
v nut) = vacly, ané so
BC(unm)® = (c1tnm)®c (vacim® = (° ) ° = vO4t

-
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Thus 5) holds for the O-neighborhocd V.

5, => 4). Immediate, since t° + M*c(unmM)°.

5) <=> 6). Immediate, since B/M* c U°/M* <=> Bcu®+M™.

It is also natural to consider the quotient topology
of w(X*,X) on X*/M% i.e. the strongest topology on
X*/M‘L for which the canonical quotient map
Q: (X*,w(X*,X)) > X*/M* is continuous; we denote this

topology by w(X*,X)/M*. A basis o

h

0-neighborhoods for

w(X*,X)/M* is given by all sets the form

o]
rh

e} 0 . .. .
Fo/mt = (FP+M*) /MY, where F is a finite subset of X;

1~

fe

n w(X*,X)/;I'L iff eventually yie {x}o + Mt

for every x &€X. We shall

w

lso use w(X*,X)/MY to denote
the topologyv on X* with 0-neighborhood basis all sets of
the foxrm F +M™, F finite €X (it will be clear from
‘context whather the topology is on X* or on X*/MY), that

. " mdt AT os . - .

is w(X*,X) /M~ = Q “(w{X*,X)/H™). Of course, {yi} > 0 in
w(X*, X)/M* iff {[y,]} » 0 in w(x*,x)/Mm> iff Yxex,
eventually vy, € {x}°+M . A subset B of X* is bounded

in w(X*,x)/M* iff for every x€X, sup inf <x,y-y'> <+,
véB y'eM™*

The w(X*,X)/M" tooology is closely related to the

w(X*,M) topology.

7.2 Proposition. Let (X,7) be a HLCS, M a subspace of X.

Then W(X*,X)/ML = w(X*,M), where M denotes the closure

of M in X.
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Proof. Let F be a finite subset of M. Since FCo rlsmt,

it is clear that e

has nonempty w(X*,X)/M*-interior;
hence w(X*,X)/M'D w(X*,M). Conversely, let F be an
arbitrary finite subset of X. Since F is finite, it is

S 3. & . N
traightfcrward tc see that

73]

clco(FU{0})n M = clco((FnM) vigl),

. [ Ry o —
or eguivalently “(F%)n % = P((Fak)

- O = O . O
FaD® = CEDYNAM = wi-cleo(FPUM*) C wr-c1(FO+m ) ©
w(X*, %) /MY - cl(FP+mty),

where the last step follows since clearly the w* = w(X*,X)

3

topolugy is stxe

(8}
0]

r than the w(X*,X)/M> topology. Hence

the closures of s in the 0-neighborhood base of

0
cr
0

. 4 B byt . . R
w(X*,X)/MT have nonempty w{X*,M)-interior, so

w(X*,M)D w{X*,X)/M . O

3

7.3 Corollary. Let X be a ELCS, M a subspace. Then
w{X* M) = w(X*,X) /M on X* iff M is closed. Equivalently

. . - % BN s e N e
w (XF /MR M) = w(X*,X)/M* on x¥/1 iff M is closed.

Procof. From Propositizsn 7.2 we have w(X*,X)/”L = w(X*,M).

VR

N e

1

But w(X*,M) = w{X* M) 1iff M = M, since (¥X*,w(X*,M)}*
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8. Relative continuity points of convex functions

The relationship between continuity points of a
functional f: X -~ R and local eguicontinuity of the level

sets of the conjugate function f* has been thoroughly in-

ve

in
()

Saction 5 for

+

igated in he cas

(D

that affdomf is closed
with finite codimension. We may still ask what happens in
the case that affdomf does not necessarily have finite
codimension; note that the level sets will contain the

infinite dimensional) subspzace (domf—domer and we cannot
hope for local eguicontinuity. However, by characterizing
the level sets cf £* modulo their behavior on (domf-domf)L,
i.e. by considering the duality between affdomf (the natural
space determined by f) and X*/(domf-domf)*, we obtain a
generalization of the vrevious results.

For simplicity we consider only the original topology
on X and the wesak * dual topologies. We consider the
following propositions about a function f: X » R and an
affine subspace M of X which contains domf. Of course,

M-i1 is the subspace parallel to M. We shall often
specialize to the case M = affdomf, or M = domf +

- 4 - -
(omf~domf)” = claffdomf.

la. Hd open set U, Yyre--s¥, €X%, ro,...,x €R st

n
-1 . .
TaMA 0N v {ri} # @ and f(-) is bounded
i=1
LS |
above on UnMn 0\ ¥y (rl)-




1b.

2a.

2b.

3a.

7=.

£(-) is bounded above on a subset C of X,
where riC # § and affC is closed with finite
codime: .on in M.

ricoepif # F and affdomf is closed with finite
codimension in M.

rcorcodonf # @, cof P rcorcodomf is continuous,
and affdomf is closed with finite codimension

in M.

2

£* = 4w r bq 1 > —f{x st

+o, O 3o€ r Ty (o)
{y € X*: f*(y)—xoy < ro} is w(k*,M»xO)—locally
E~XO)—equicontinuous.

f* = +=, or one M, y, €domf*, r_ > f*(yo)~xoyo,

finite FCM-x , O0-nbhd U st

mn
>

* o f*(y)—xoy < ro} ﬂ(}'O+FO)CUO+(M~XO)‘L
Ux € 3 finite FeM-x st Yy _e x*, b’roé R
{yex*: £5(y)=x_v < ro}f\(yo«:»E‘o) is (M-x_)-
equicontinuous, i.e. & u® + (M—xo)i for some

J-nbhd U.
£% = 4=, Or 3x0£ M5l -f(xo) st

{y ex*: £x(y)-x v 2 r } is w(X*,M-x)-

locally compact.

L

f* = 4+, or xoé M, yoé domf*, r, > f*(yo)~x0yo,
- . k4 Y O

< M- t {y €X*: E*¥{(y)-x < ; +F
finite FC M-x_ st 1y €X Ex (y) Xy < r talyy )

is w(X*,M—xO)—compact.




4c.

4d.

5a.

5b.

5d.

S5e.

6a.

6b.

T6

UXOQM d finite FCM"XO st Uyoé X%, ‘Gro& R,
€ X*: £*(v)- 1 Oy

{yex £ (y)-x )y < rg (\(yo+F ) is

w{X* ,M—xo) -conmpact.

affdom*(f*) is closed with finite codimension

in M, rcordom*(f*) # @, and *(f*) } rcordomf is

continuous for the topology M+m (M-M,X*/ (M-M)>) .
* = - F .

f* = +», or S'xoé X, ry > L(xo) st

{y € X*: f*(y)—xoy < ro} is w(X*,X)-locally

(M-M) ~equicontinuous.

£f* = 4+», or Exoé X, y, € domf*, ry > f*(yo)—xoyo',

finite FC€X, 0-nbhd U st {y € X*: £ (y)-x Y < ro}r\

(v +F2) € U+ (-t

b’xoe X 32 finite FCX st Uy € x*, r €R,
{y € X*: f*(y)—xoy < ro} (\(yo-t-FO) is w(X*,X)~
locally (M~-M)-~-equicontinuous.

E)xoé X, rge r, {y éx*: £¥(y)-x_y < ro} is
w(X*,X)-locally (M-M)-equicontinuous.

epif* is w(X*xR,XxR)-locally (M-M)x R-egquicontinuous.

£% = 3 r S -
£*¥ = 4o, or 3xoé X, r f(xo) st

{y € x*: £*(y)-x_y < r } is w(X*,X)/¥ -locally

compact.
£* = 4o, or 3x0€ X, yo& domf¥*, ry > f*(yo)-—xoyo,

<

finite FCX st {y €X*: £%(y)-x vy < ro} f\(yO+FO) is

w(X*,X) /M‘L—compact .




bCc.

6d.

6e.

Ta.

7b.

Tc.

17

Y

Ny

X, € X 3 finite FCX st Yy € X*, r € R
o, .
. ‘*: f* - < + RS
{vex (v) xoy__ro}('\(vo)? ) is
w (X*,X) /}i"‘—compact.
n * o * - < 1
b’xoex, r € R, {ly X*: £*(v) x v < ro} is
w(X*,X) /M‘L—-compact.
epif* is locally compact for the w(X*,X)/M“xR
topology.
£* = +o, or oné ¥, gy > -f(x]) st
{y ex*: £*{(y) -x v < ro} is wiX*,X) /M =locally
bounded.
f* = +», or 3x06 X, y & conf*, r_ > f*(yo)-—xoyo,
finite FC X st Yx¢ X,
sup{ inf <x,y-v'>: y €y +F°, f*(y)-x y < r_} < +=m,
grent 74 7 " “o : o — "o
iaxoe X, d finite FCX st ‘ayoe X*, roé R, x€¥%,

sup{ inf <x,v-y'>: vy €y +F°, FX(y)=-x v < r_ } < 4=,
y'eﬁ‘ ) O O A 0

8.1 Theorem. Let X be a ELCS, f: X - R, M an affine

subset of X with the induced topology, MDdomf. Then we

have the following relations:
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la = 1b
l!' ﬂif f convex
2a = 2b
Hif F=* (£%) /* if M has its mackey topology
323 = 3b = 3¢ = 3@ % 4a = 4b = 4c = 44
m ’
!;lf M closed
Sa!E 5b = 5¢c = 54 = 5e
’!al closed QM closed and has its mackey topclogy
6a = 6b = 6c = 64 = Ge
i
!E HM closed and barrelled
4 ‘

'7al‘=‘ 7b = 7Tc
Remarks. The degenerate case £* = += is usually excluded
‘in applications. Ve have M>domf if (iff, assuming M closed)
M= x + 1% where X, € domf and N is a subspace satisfving
M é(dc»mf—xc)“’é {y €eX*: vy = const on domrfl} =
{yex*: (£%)_(-v) = -(£*)_(v)}. 'In particular, if 1 =N

where 1 C (domf)”", then M 1is closed and M 2 domf.

8.2 Corollary. Let X be a metrizable HLCS, f: X =+ R
proper convex lsc, ! an affine subset D domf., If M is
closed, then all hut 6 are ecquivalent. If M is complete,

then all of 1-6 are eguivalent

Tis e
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Proof of Corollarv. Since M is metrizable in the

induced topology, its parallel subspace M-M has the Mackey
topology m{M-M,(M=-M)*}, If M is complete, then M-M is

also complete, hence barrelled. 0

Proof of Theorem.

n
la => 1b. Take C = UnMn F\y;l{ri}. Then affC =
i=1

-]

-1 . L. .. . .
N v. {r.} is closed with finite codimension in  bv

i=} "t 7t ”
Proposition 6.1,8). lMoreover UnaffCcC, so UnaffC cricC
and riC # g.

l1b => la. 1liote CcCdomZCM. By Proposition 6.1,8)
there are v,,...,v_€ X* and TyreseerT €R such that

1 -1. )
affCc = M ! v. {r.}. Moreover riC # #, so 3 open set

U such that C3UnafiC # 4. BRut £(-) is bounded aktove on C,

2
hence on UnaffC = tnatnNn N
i=1

-1
v. {r. .
71 i
lb => 2a. This is essentiallv the sarme arcurent as
that used to prove that every nonermptv finite dirmensional
convex set has nonempty relative interior. ¥e argue by

induction on the (f£inite) dimension of a complementary

suhspace of affdomf

=
o]
.

I,et us first note that
affdomf is closed with finite codinension in M; for

affCC affdomf €M, so that affdonf is the algebraic sur of
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the closed (in 1) f£lat affC and an at rmost finite dimensional
subspace of (M-M), hence closed and finite codimensional.
Eguivalentlyv, affepif is closed with finite codimension

in MxR. UlNow by hvpothesis 1b, epif C¥xR and epif contains

a set B with nonemptyv relative interior and with affB

closed wvith finite codimension in MXR; for if f is bounded

above by r on C, set 3 = Cx[r ,«) and affB_ = affCxR,
o o o o
If affepif = affBo we are done, for then riepif Drie pi # 9.
hal

. - - -~ -
Otherwise dz,€ epif\affp . lNow B, = co({zl}L)Bo) is a
subset of coepif, and roregver Bl has ncnerpty interior in
the flat aff3, = aff({zl}d B,) € affepif. »roceeding, if
affepif = affs

we are done; otherwise Jz,¢ epifiaffB,

co({z,}UB,) is contained in coepif and

[N

for which B,
has nonempty relative interior in aL_-2 Eventually we

obtain a linearly independent set {zl,...,zn}c:coepif

for which B_ = co({z,,...,2_}UB ) is contained in
n 1 n o
coepif and has nonemptv relative interior in’

affB_ = aff({zl,...,zn}kJBo)D epif. Fence ricoepif # f%.

2a => 1b if f conve:x. Take any (xO,rO)é riepif;
. N . = .
since (xo,ro)é riepif, 1 open set U, € > 0 such that
(xo,ro)€ {(Un affdonmf) x (rO—e,ro+£)C:epif. Sirply define

C = Un affcomf; then f{(s) is bounded akbove bv r, on C,

and affC = affdomf is closed with finite codimension in M,
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2a => 2b. Epicof D coepif and affepicof = affcoepif, so
riepicof ¥ #. It is now a well-known result in the litera-
ture that cof is relatively continuous on rcordomf, since
cof is of course convex X - R. MNote that if cof takes on

-» yvalues, then cof = -» on ricodonri.
2b => 2a. Trivial.

2b => 3a, 3a => 2b when £ = *(£*), Suppose f£* Z +w;

in particular £ cannot take on -= values. Take any-’

ot

X €M, r > —f(xo). Let L = M=x be the subspace varallel

to M, with the induced topolocy and associated dual space

x*/t*., on L define the function f: L - R: £ ~+ f(xo+£).
Then domf = domf-x_, £*(lv]) = £*(v)-xv. Clearly
affdonf = affdomf-x_ is closed with £finite codirmension

o]

in L = M—xo iff affdorf is closed with finite codimension
in M, and £

has relative continuity points in L 1iff f has
in M (using translation invariance of vector topolocies).
Applying Corollarv 5.5 we see that the level set |

{lyvle x*/L : §*([yl) < ro} = {[vl: X (y)-x v < ro} is
locally (L-) eguicontinuous in the w(X*/L ,L)-tovology

if (iff when £ = *(f£*)) f has relative continuity points
in L and affdomg is closed with finite codirension in L.
But the former conditicon 1is ecuivalent to the local

L-eqguicontinuity of {v: Ex(v)-x v < ro} in the w({X*,L)

topologv by Proposition 7.1.
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3a <=> 3b. Condition 3b simply states that
{y € x*: E*(y)-x_y < ro} is w(X*,L)~-locally L-equicaontinuous
at the point y_. Since {y e X*: £X(v)-x v < ro} is convex,
1t follows that 3b is eguivalent to local L-equicontinuity
at every point y €{y € X*: £x(y)-x_y < ro}; simply apply
Proposition 4.4 to the set {[y] € X*/L : E*(Iy]) < ro}.

Hence 3a <=> 3b,

3a => 3¢, Ve first note that all of the level sets
{vy: f*(y)-xoy i'ro} are w(X*,L)~-locally L-equicontinuous --
this is just a direct application of Theoren 2.4 to %*
jusc as in the proof of 2b => 3a, where one of the level
sets of £* being w({X*,L)~locally L-equicontinuous irplies
that all of them are. 1Yote also that *(f*) has relative
‘continuity points and affdom*(f*) is closed with finite

codimension from 3a => 2b. Now given xoe M, let

{xi,...,xn} be a basis for a cormplerent of affdonf in M,

let L = M—xo, and let i1 be an elenent of L which 1is

strictly positive on the w{X*,L}-locallv equicontinuocus

. -, A .
convex cone (aomf—xo) /L. Take P = {ixl,...,:xn

Since {[y}] € X*/L : f*(y)~x0y < ro} is w(X*/L™,L)-locally

. : . . . . o .
L-equicontinuous, its intersection with (yo+F ) /L™ is for
every yoé X*. But the recession cone of

- * * - 3 (o} . P . X

ly €x*: £ (y)~Aoy < ro;r\(yo+F ) is contained in L7,

T ’
-

N 5 O - .
hence ([yl: £*{yv)-x v < r rN{v +F ) /L™ has recession cone
4 of =~ To ‘o
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{{01} and is actually L-eguicontinuous by Lemma 4.5. But

this 1s precisely condition 3c by Propositicn 7.1.

3c => 3a. If all the level sets are enmpty, then

=
*

= +». Otherwise there 1s a nonempty level set for

which 3a is true.

3a => 4a, 3b => 4b, 3c => 4c. This is immediate
since (M~-M)-egquicontinuity implies w(X*,M-M)-compactness

by the Banach-Alaoglu theorem applied to (M-M)* = X*/(M—MYL.

4a => 3a, 4b => 3b, 4c => 3c when the induced topology
on M~M is the mackey tooology o (M-M, X%/ (M-M)"), since then

(M-M) -equicontinuity is eguivalent to w({X*,M-M)-compactness.

133

4a <=> 43. Put the m(M-M,X*/(M-¥)T) topology on M-M;
this induces 2 topology on M by transiation. But now

4a <=> 44 is eguivalent to the result 2b <=> 3a.

3a => Sa, 3b => 5b, 3c => 3¢. This is immediate since

w(X*,X) Dw{X* M-M).

fa => 3a, 5b => 3b, 5c => 3c if M is closed. Suppose

{y € Xx*: f*(u)ﬂxoy < ro} is w(X*,X)-locally (M-M)-equicon-
tinuous. Since M Cdomf, we have M- C{y € X*: f*(y)—xoy < ro}w;

nence {y € X*: f*(yj-x v < IOE/HJ‘ is w(X*,X)/(M~MYL—locally

(M~-M) —eguicontinuous. But

.

M is closed, so w(x*,X)/(:-I—M)'L =

w(X*,M-M) .
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5¢ => 54 => 5e => 5a. Imnmediate.

fod

5 => 6 1if M closed. Suppose 5 holds. Define

L = span M = M+(—m,®)'{mo} where m_€ M. Clearly L is
closed since it is the sum of the closed flat M and a
l-dimensional subspace; moreover affdomf is closed with
finite codimension in L since M is closed with finite
codimension in L. Now 5 implies (since M is closed) that
. 3 and hence 2a holds for *(f*) and M; thus 2a also holds

~

for *(f£f*) in L. But then 5 holds for L replacing M, that
is {yéex*: EX(v)-x_V < ro} is w(X*,X)-locally L-equicontinuous,
hence w(X*,X)/I* ~locally L-eguicontinuous. Since L-egui-
continuity implies w(X*,L*)—compactness and w(X*,L*) =
T cax . L X
w(X*,X)/L* by Proposition 7.2 (L is closed), and L™ = M7,

6 follows.

6 => 5 if M closed and has its mackey topology. As
in 5 => 6, define L = span M = (M%), a closed subspace.
If the level sets {y € X*: E*(y)-x ¥ < ro} are w{X*,x)/L>-
locally compact, they are w(X*,X)/(M~MYL—locally compact
since LM and hence w{X*,L) 2 w(X*,M). But M-M has 1its
mackey topoclogy, SO w(X*,X)/(M-M)"-local compactness is
equivalent to w(X*,X)-local (M-M)~eguicontinuity and 5

follows.

6 => 7. Trivial since local compactness implies

local boundedness.
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7 => 6 if M closed and barrelled. In this case
‘;I(X*,X)/M'L = w(X*, ‘*‘(M*)) since M is closed and
w(x*/M*, *(M*)) ~boundedness is eguivalent to compactness

since M 1s barrelled. a
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9. Determining continuity points

In Theorem 8.1 we have given several conditions which
characterize when a convex function f: X » R has relative
continuity points, or equivalently when riepif # g. In

this section we characterize those points at which f is

relatively continuous assuming that £ has such points.

9.1 Theorem. Let X be a HLCS, f: X - R convex. Assume
riepif # #. Then £(°) is continuous relative to affdomf

on rcordomf, and the following are eguivalent for a point

XOE X:
1. £(-) is relatively continuous at x € dom£
2. xoé rcordomf
3. domf—xo absorbps xo—domf

4. VYxedomf, dec > 0 st (l+e)x —ex € domf

5. {domf~xo]—CI[domf—xo]L = {y €X*: v = constant on domf}
6. [domf—xo}_ is a subspace
7. Ay €x*: (£%) _(y)-x_ ¥ < 0} is a subspace

8. x €domf, and {y €X*: f*(y)-x_y¥ < r}_ is a subspace

for some r > -f(xo)

S. df(x) # ¢ and (3E(x ), is a subspace

10. 3f(x_ ) is nonempty and w(X*,?ffdomf—xo)—compact.

Proof. 1 <=> 2. Standard in the literature.
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2 <=> 3 <=> 4. Definition of relative core (relative

algebraic interior).

2 <=> 5. Let C = domf—xo; C is convex and has nonempty
relative interior. Hence by the Hahn-Banach separation and

‘extension theorems, 0§ riC if and only if 3Jy € X* such

that y is not constant on afiC = affdomf—xo and

sup <x,y> < 0; equivalently, y€C = {domf—xoj_ and
xeC N N

ygCT = {domf—xO] .

5 <=> 6. Immedizate.

6 <=> 7. {yex*: (£5) (¥y)=x_ ¥y < 0}

= {y € X*: sup <X, Y>-<x Y>> < o}
x€dom* (£%)

i

{dom*(f*)-xol

ax (L% mI, sSir *{E*) (-} + 6§ )
Now dom* (£*) < cldomf, since *(f*) (-) 8 1dome (7)) is 2

convex lsc funzction dominated by f and hence
*(£f*) + § < *(£*). 0Of course, *{f*}) < £ so
(£%) cldomf = (£*) bl , *(E*) < _

domf € dom*(£*). Thus
domf—xo < dom*(f*)—xo C cldomf-x

and so

idonf~xol = Zdom*(f*)—xci— = {cldomf—xo}_

C 3 fﬂf‘“ 3 tL"_':"‘X =
[cldo xO] , so [dom o}

Il

But {domf—xolﬁ

Idom*(f*)-xo]~

il

fy € x*: (£%) _(y)-x_ ¥ < 0} and 6 <=> 7

holds.
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7 <=> 8. Suppose XOE domf and r > —f{xo). Then
{y € x*: EX(y)-x ¥ < r} contains an element Yo and has

cone
recession,given by

{y € X*: EX(y)-x_y < rt_ = {y € X*: E* (y Fty) -<xg,ytty><r Ye>0}

£x(y rey) -E* (y ) Er(y ) —r-x_y

= {y € X*: sﬁp{ + 2] < x v}
f*(yo+ty)—f*(yo)
= {y € X*: supl| re J< x v}
£>0 -

= {y€x*: (£*)_(y) < xoy}.

Thus 7 <=> 8 holds.

7 <=> 8. This 1is a special case of 7 <=> 8, since

n

i

Af(x )

o {y €x*: £%(y)-x )y < ~£(x

O)} and 3L (x) F B8 =>

xoé dorf.
9 => 10. Let M = affdomf—xo, the subspace parallel
to affdomf. By Theorem 8.1, 3f(x,) = {y €&X*: f*{y)—xoy§-f(xo)}
is w{X*,M)-locally compact; equivalently af(xo)/M'L is |
w (X*/M, M) locally~compact. But we have shown in 7 <=> 8§

and 6 <=> 7 that

3f(xg)m = {y x* (E%) () -x ¥y < 0t = [dOﬂf—xo} .
But then 9 implies Sf(xo)m = [c.‘cm\ff~><o}“L = M+, so
(Bf(xo)/Ml')Oo = af(xo)m/M* = {[0]!; hence by Lemma 1.5

af(xo)/M* is actually w(X*/M*,H)—com;act and hence 10 follows.

10 => 9. Immadiate. =
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IIT. Duality Approach to Optimization

Abstract. The duality approach toc solving convex optimi-
zation problems is studied in detail using tools in convex
analysis and the theory of conjugate functions. Conditions
for the duality formalism to hold are developed which
require that the optimal value of the original problem
vary continuously with respect to perturbaticns in the
constraints only along feasible directions; this is
sufficient to imply existence for the dual problem and

no duality

[V¢]

ap. These conditions are also posed as
certain local compactness regquirements on the dual
feasibility set, based on a characterization of locally
compact convex sets in locally convex spaces in terms of

nonempty relative interiors of the corresponding polar

sets.




q9c

1. Introduction

The idea of duality theorv for solving optimization
problems is to transform the original problen into a "dual”
problem which is easier to solve and which has the sare
value as the original problem.+ Constructing the dual
solution corresponds to solvinc a "maximum principle”

for the probklem., This dual aprproach is especiallyv use-

£

fd

ul for solving problems with difficult implicit constraints

ané costs (e.ag. state constraints in optimal control
problems), for which the constraints on the dual ﬁroblew
are much sirpler (only explicit "control" constraints).
Morzover the dual solutions have a valuahle sensitivity
interpretaticn: the dual solution set is precisely the
subgradient cf the change in rinimum cost as a function
of perturbations in hte "implicit" constraints and costs.
Previous results for establishing the validity of

the dvality formalisr, at least in the

}-.lo

nfinite-dirensional
case, generally recuire the existence of a feasible

interior point ("Kuhn-Tucker" point} for the irplicit

constraint set. This requirerment is restrictive and

+ . < fates) 3
Rasic references are [R73], [TZ7T761. A rore elerentarv
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difficult to verifyv. Rockafellar {R73] has relaxed this
to require only continuity of the optimal value function.
In this chapter we investigate the dvality approach in
detail and develop weaker conditions which require that
the optimal value of the minimization problem varies
continuouslyv with respect to perturbations in the irplicit
constraints onlv along feasible directiaons (that is, we

require relative continuity cZ the cotiral value function);

icient to imply existence for the dual probhlem

it

this is suf

and no dualitv capn. !oreover e pocse the conditions in

ﬂ
)
t
©
0
rh
o)
o

rt2in local corpactness recuilrenesnts on the

dual feasibilitv set, based on the results cf Chapter II

characterizinc th

<8
m

duality hetween relative continuity
points and local corpactness.

To indicate the scope of our resulits let us consider
the Lacrangian formulation cof nonlinear prograrming problerms

with generalized constraints. Let U, X be norred spaces

and consider the prorlem
P = inf{f{u): uecC, clu) < 0}

where C 1is a convex subset of U, £

and «: C =+ X is convex 1in tne sense thnat

altu+(1-tiu,) < tg(ul)+(l—t}g(uq), ey, €C, &0,




2

e are assuning that X has been given the partial

ordering induced kv a nonenptv closed convex cone O of

"positive vectors"; ve write x, > X, to rean x, - x,€0

i R 1 2 et
The dual problem corresvonding to PO is well-known to be
Do = sup, inf [f(u) + <g(u),v>];
+ C
veQ uel
this follows from ecuation (2.4) below by teliine L = 0,
Xo = 0, and
£{u) if ue C, gfu) < x
Flu,x} = (1)
+oo other-ise .

‘e also rercari that it is nossibhle to vrite

PO = inf sup (u,v)
u Y

D = sup ini (u,v)

o v u

where we have defined the Lagrangian £function bv

+ 1z ué(’l
2{u,y) = ¢ £{u)-<g(u),v> i€ uwecn, veo
- 14 -
—o if uecC, véo |
Tn analvzing the prehler D we irbed 1t in the
. - - o

h
o7}
'3
t
'...J
4
Q
th

3 b 5 3 --
perturbed prohlers
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It then follows that the dual probhlen: is preciselv the

secC

(0]

nd cenjugate of P_ evaluated at 0: D = *(p=*) (0).
Moreover if there is no duality cap (P_ = D ) then the
cdual solution set is the suzgradient 35P(0} of P(-)

at 0. 7T

s

1e following thecrer surmmarizes the duality

results for this problei.

1.1 Theorer. IRssure P is finite. The “ollowing are

eguivalent:

2) 5P{0} # £

+ . C stz
3) 3%e0” st P = inflZ(u)+<g(u),¥>]

°© ueC "~
4y 3de >0, >0 st £(u) > Po~ﬁ'x[ whenever
wecC, izl <=, c(u) < =
If 1) is txue then 0 is a solution for P iff R ec,
g{u) < 0, and there is a & en” satisfyving
A N

£{u) + <gfu),y> > f{u} Yuec,

in which case complerentarvy slackness holds, i.e.

~
< (a) :}) = { and Xy soalvrecs D)
g{u),v ’ o olves
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Proof. This follows directly from Theoren 24 with F

defined by (1). A

Ve remark here that criterion 4) is necessary and
sufficient for the duality result 1) to hold, and it is
critical in determining how strong a norm to use on the
perturbation space X (ecuivalently, how large a dual
space X* is required in forrwulating a well-posed dual
probler).

The rost familiar assumption which is race to

insure that the dualitv results of Theorer 1.1 hold

is

the existence cof a Kuhn Tucker point:
Jddec st -g() € int O

{see Corollary 3.2). This is a very strong reguirerent,
and again is cften critical in determining what topology
to use on the perturbation space X. More generally, we
need only require that P{.) is continuous at 0

(Theorem 3.1). Rochafellar has presented the following
result [R73]: 1if U is the norred dual of a Banach space V,
if ¥ is a Banach space, if o 1is lower sernicontinuous

in the sense that

epig {{u,x): glu) < x}




is closed in

U X

)
(43

(e.c. i

=

)

g 1is continuous), then

the dualitv results of Theorer: 1.1 hold vhenever

0 ¢ corel{g(C)+Ql.

i1t then

follows that P(+) 1s continuous at 0.

following theoren relawes this result to relative

continuity and also provicdes a dual characterization in

terms of local compactness reguirements which are
generally easier to verifv.
1.2 Theorem., Assume P < +=; U 1is the normed dual

of a nornmed

closed in U

1)

2)

atff

Then the followinc are eguivale

3
ot
o

{g(C)+0] is closed; and 0 € rcor{g(C}+0},

or ecuivalently

YueC, Yx >glu) 3= >0 and

u; € C st q(ul) + gx < 0.

0 N g’

is a subspace M; and

there is 2n € > 4, an xle ¥, an r, ¢ B such

that {veEQ

+

£ supl(f(u+c{u)v-uvl > r,} is
1<z ueC -

v
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continuous at 0 and hence Theorent 1.,1.1) holds.

Moreover the dual solutions have the sensitivity inter-

pretation
P'(0;x) = max{<x,y>: y solves Do}

where the maximum is attained and P'(0;-) denotes the
directional derivative of the ontimal value function

P(+«) evaluated at 0.

Proof. This follows directlyv £fron Theorem 3.6 where

dom P = g(C)+) and (r*)_(v,v) = 6<O(y)'+ sup {uv+g (x) v}

~ — u€C
{y X*: (F%)_(0,y) <0} =0  g(o) . &
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2. Problen formulation

In this section we sumnarize the duality forrulation
of optimization problems. Let U be a HLCS of controls;

X a HLCS of states; u» Lu + X, an affine map representing

the system equations, where X, € ¥, and 1v- U > X 1is

linear and continuous; F: U x X > R a cost function.

e consider the ninimization problen

P = 4inf F{u,Lu+x ), (1)
o N o

ues
for which feasibility constraints are represented hv the
reguirerment that (u,Lu+xo)€ dorE Of course, there are
many wavs oI Zormulatinag a given optimization probler in
the form (1) bv choosing different spaces U,X and maps

L,F; in general the

| d

cea is to put explicit, easilv
characterized costs and constraints into the "cc..trol"”
costs on U and to nut difficult implicit constraints
and costs into the "state" part of the cost where a
Lacrange nultiplier representation can be very useful in
transforming implicit constraints to explicit constraints.

The dual variables, or nultipliers will be in X*, and the

5

dual problen 1s an optimization in X*




3%

P(x) = inf F(u,Lu+x
ue U

where x € X. Dlote that if F: U x X » R is convex then

P: X » R 1is convex; however F 1lsc does not iroly that

P is 1lsc. Of course PO = P(xO). 7’2 calculate the con-

jugate function cf P:

P*(y) = sup(<x,v>-P({x)] = supl<x,y>-F(u,Lu+:)]
x u,x

= F*(-—L*y,y) .

The dual proclem of P = P(x_ ) 1is given by the second

lo! o)
conijugate of P  evaluated at Xgr i.e.
D, = *\P*)(XO) = sup [<x_,v>=F*(~L*y,v)]

The feasibility set for the dual problem is just

domP* = {y ¢ X*: (-L*v,vy) € domF*}. Ve irmediately have

P = P(x ) >D = *¥(P*)(x
o O) 2 5 (P*) O).
Moreover, since the primal problem ?o is an infirun,
and the dual problen Do is a suprenun, and PO > Do’
- A 'A
we see that if uweUy, v ¢€¢X* satisfy
A A A
Fla,Lu+x ) = <Xo'y> - X (=L*% )

t
o)
11
o3
1]
o
I
L |
>
T
o>
’.
K9
]
8!
ﬁ).l
oY)
n
(4]
[
,ﬁh
o)
L
i)
0]
m
d
i d
-l

{
3

(2)

(3)

)
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. A N L. . .
optimal for P, v is optimal for D. Thus, the existence

~ . P . - - ~ s .
of a y€X* satisfving (6) is a sufficient condition for
N . A b g ]
optimality of a control u€ U; we shall be interested

conditions under which (6) is also necessarv. It is also

clear that ary "dual control™ vy €& X* oprovides a lower

pound for the original problen: By 2 <X ,¥y> = F*({-L*y,v)}

for everv v € X%,

is essentiallyv to varv the constraints slightlv as in the

1S

glv. In the case that F 1is conve::,
Po = DO or no "duality cap" means that the perturbed
rinirum cost function P(«) is lsc at X . The stronger

—

reguirement that the change in nininun cost does not drop
0ff too sharplv with respect tc perturbations in the con-
straints, i.e. that the directional derivative P'(xo;-)
is bounded below on a neighborhood of %, s corresponds to
the situation that Po = Dg and the dual probler D

has solutions, so that (6) bhecomes a necessarv and
sufficient condition for optirality of a control u. It
turns out that the solutions of DO when P, =D
precisely the elerents of :P(x_), so that the dual
solutions have a sensitivit

v interpretation as the sub-




too

to the chance in censtraints.

Before stating the ahove remarks in a precise way,
we define the Hamiltonian and Lagrangian functions
associated with the problem P . Ve cenote bv Fu(-)

the functionai F(u,sj: x > F{u,x): X~ R,

The Hamiltonian function H: U x X* =+ R is defined by
. *
t(u,v) = sup [<x,v>-F{u,x)] = Pu (v). (7)
xeX
2.1 Provosition The iHamrmiltonian ! satisfies:
1) (P ) (x) = *{F _*) (%)
u u

2) (*H)*(y) = H (v) = T _*(v)
3) Fr(v,y) = supl<u,v>+E(u,v)] = (=E(-,y))*(v).
u

toreover H{u,+«} 1is convex and w*-lsc X* - R; H({*,v)
is concave U + R if F 1is convex; if F(u,.) is convex,

proser, and lsc then H{-,v) 1is concave for every vy 3iff

Procf. The egualities are straightforivard calculations.
{u, ) is convex and lsc since (* )* = [i
straightforvard to show that =H(-,v)

F{-) 1s convex, On the other hand 17 *(r *) = r

ti{-,v) 1s concave for every v &X*, then




F{u,x)

supremunn of the convex functionals

-

&

and hence

The Lagrangian function

* (F %) (x)

10}

*H, () sup [xv-¥{u,v}] 1is the

v

L

(ulx) g <X,}’> - H(uvy)

is convex.

X

2: U

Z(u,v) = inf[F(u,Lu+xo+x)—<x,v>}
X
= <Lu+x_,v> - F_*(v
or? u (v}
= <Lu+xo,y> - "H({u,v).
2.2 Prorosition The Tagrangian . satisfies
1) inf L{u,v) = <x_,v> - F*(-L*v,v)
u
2) D =z *(r*)(x ) = sup inf 2(u,v)
c o) =
y u
* (e vy = *¥(fF *) (Lu+x +x
3) ( “u)( ( u ) ( o )
z pP{x = i ¢ iE P = % *
4) P, = ‘(ko) inf sup %(u,y) if Fa (Fu )
u v ;
for every ut€duU.
Yoreover L(u,-) 1is convex and w*-isc X* > R for everv
u€U; 2(*) is convex U x X* = R if F 1is cecnvex; if
Fa = *(F,*) for every wu&U then 1 is conve: iff T

i1s convex.




toz,

Proof. The first eguality 1) is direct calculation; 2) then
follows from 1) and (4). Egualtiv 3) is imnediate from (8);

4) then follows from 3) assuming that *(F %)

¢ u
final remarks Tollow from Proposition 2.1 and the fact that
2{u,y) = <Lu+x_,y> - E{u,v). O

Thus from Prooositicn 2.2 we see that the duality

theorv bhased on conjugate functions includes the Lacoranaian

-

formulation of dualitv for inf-sup proklems. For, civen a

Lagrancian functien ~: U X X* - R, we can cdeline
F: U x X >R by Flux) = *{-2)(x} = supl<x,v>+ilu,x)],
v
so that
P = inf sup {u,v) = inZ ©(u,d)
O - -
U ¥ u

which fits intc the conjugate duality Iramework.

For the following we assume as hefore that U,X

are
HICS's; L: U » X is linear and continuous; g he

F: U x X -~ 7. Tlle cefine the farilv of optirization problems
P{x) = inf P{u,Lu+x), _ = P(x ), D = supl<x,v>-F*(-L*v,v)]

“ o) o o v

= *{?*)(XO). e shall he egnecially interested in the case
that F{+) is convex, and henca D(-) 1is caonve:.

2.3 Propcsition {(no dualitv cap). It is al-ravs true that




u N4 °
= inf sup if{u,v) = *(P*)(xo) ()

u Y

If P(+) is convex and D is feasibkle, then the Zollowing

are ecuivalent:

1y »p_=1n

2) P(s} is isc at x_, i.e. lim inZ P(x) > P(x )
c oy - o
o
33 sup inf Fluo,=) > * .
T finite CX* uw €l - °
o€ Lutx ~LO?

1

;‘.
-

o

ﬂ.
h
Q
2]

Proof. The pronf is im-ediate since P = P(x )

{xx ). SGtaterent 4} folleous fror Propesition 2.2

L m;} - P - - H 4y =

2.4 Theorer (no Aualizes oan and dual soluticones),

N ey ee—m ™ P T . .1 - .

sA53uTma :C 1S5 SInito., ¢ Toliovan are a~nivalant:
4
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1) P DO and DO has soluticns

o
3) JTev st = <x > - P*(-L*%,T)
Y I S¢T ‘o X . R D
. o a7 A
4) d5ev st Po = inf S0iu; ...

I£ P{+) 1is convex, then each of tne ahove is equivalent tc

(D

5} 3JG-nbhd N st inf D'{x _;x) > ==
= o)
M€
ey lir inf P'(xo;x) > —=
“Z70
P (Xo-rt.:) “PO
r 13 - < =
7) lim inf = =
piade!
+
t+C
I {u,Lu+x +tu)-?
sup inf inf inf T ° > -s,

N=0-nbhd t>0 xe'l uel’

(«) 1is converx and X 1is a normed space, then the

-
h
d

above are eguivalent to:

O
A
Lu
™
\%
[
-
.
\V
(]
N
(w
(
~




o5

Y L - Cer s . A . .
and u is a soluticn for PO 1ff there is a v satisfyinag
anv of the conditicns 1')-3') below. The following

statements are eguivalent:

A A
1') u solves P, ¥ solves D_, and P_ = D,
A - T A A
2')  F(u,Lu+x ) = <X ,V> - F*(-L*Yy,v)
A -~
3')y  (=L*v,v) € sF{u,nut ).

These irply, and are eculvalent to if ©{u,-) 1is proper

convex 4sc X - R fcr everr u €U, the Jollowinag ecuivalent

4"y oe3t{e,m (Y and €3(-1(&,-nH), i.e. (,W)

is a saddlepoint of i, that is

A . - ~ = . ;
L(d,v) < 2(4,9) < i(e,¥) for every u €U, vE€Xx*.
A A -~ - A A .
5')  nisx esu(d, ) (y) and LFves(-v(-,v))(u), i.e.

A . ., A A
v solves 1nf[n(u,y)—<Lu+xo,y>] and u solves
v

A LA
inf{H(u,v)+<u,L*v>],

P~30f, 1) => 2). Let v bhe a2 solution of DO = *(P*)(xo).
Then P = < ,3> ~ ?*(3). tlence F*(%) = <XO,!> - P(x )
o K v X
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3) => 4) => 1). Irmediate from (9).

If p(-) 1is convex and P(xo)é R, then 1) and 4)-9)

i~

are all equivalent bv Theorem II.3.2. The equivalence
of 1')-5') follows £rom the cdefinitions and

Proposition 2.3. o

Rerark, In the case that

X is a normed space, condition 8)
of Theorem 2.¢ provides a necessarv and suificient characteri-
zaticn for when dval soliutions exist (vith no dualitv gap)
that shows exzlicitlyv how their existence depencds on what
topeology is used for the space of perturbations. In
general the idea is to take a norm as weak as possible
while still satisfving condition 8), so that the dual
proklen is formulated in as nice a space as vossible,
For example, in optimal control problers it is well known
that when there are no state constraints, perturbations can
be taken in e.g. an L, norm to get dual solutions v (and
costate-L*y) in L, whereas the presence of state constraints
requires perturbations in a uniforr rnorm, with dual
solutions onlv existing in a space of measures.

It is often useful to consider perturbations on the

dual problen; the duality resulits for ontirization can




te7
then be applied to the dual farmilv of verturhed problerms.

Now the dual problen Do is

-D_ = inf [F*(~L*v,v)-<x_,v>].
Y o
vex*

In analogy with (2} we define perturbations on the dual

problem by

D(v) = inf {F*(V-L*y,y)-<xo'y>], v E&U*, (10)
veX*
Thus D{+)}) 1is a convex map U* = R, and -D, = D{0}.

i

(*D) (u) sto{<u,w>=-D(v) ]

heg

il

*(?*)(u,Lu*xo).

Thus the "dual of the duzal" is

-(*D) *(0) = inf *(F*)(u,Lu+xo). (11)
ue’ds
In particular, if F = *(r*) then the "dual of the dual"

is again the priral, i.e. dom*D is the feasibiliiy set

for P_  and -(*D) *{0) = P,+ More cenerally, we have

P = P(x_ ) > —-{(*D)*(3) > B, F =D(0) = *(p*) (0). (12)
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3. Dualitv theorers for optinization problers

L
&

hroughout this section it is assumed that U,X are

HELCS's; L: U » X 1is lin=ar andé continuous; VOE X; and

F: U x X+ R, Again, P(x) = inf F(u,Lu+xo+x), PO = P(xo),
u

D, = *(P*)(xo) = sup [<x ,v>-F*(-L*y,v)]. ‘e shall he

interested in conditions under which BP(XO) 7 B: for the
there is no duality cap and there are solutions for D

These conditions will be conditions which insure that

P{.) 1is relativelwv continuous at 2 with respect to

(1)

the solution set for D

e

s precisely SP(XO)

This last result provides a very inportant sensitivity
interpretation for the dual solutions, in terms of the

rate of chance in minimum cost with respect to perturbations

13

-

3y + 4
in o Tne

s

state” constraints and costs. !orccver if (1)
holds then Theoren 2

suificient ccnditions for utl to sclwve P
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3.1 Theorer., Assume P(+) is convex {e.a. F is convex).
If P(+)}) is bouncded above on a subset C of ¥, where
XO€ riC and affC 1is closed with finite codimensiocn in

an affine subspace M containing affcom P, then (1) holds.

Proof. From Theorer II.8.1, 1b) => 2b), we know that P(.)

is relativelyv continuous at ¥, O
3.2 Corollarv (Xuhn-Tucker pcint). B2Assume DP(*) is

convex (e.g. F is convex). If there exists a u €U

1 1

.
SUCn Ttaa

cr

rF{4,+) 1is boundad above on a suhset C of

»
v
-

where L§+xo€ riC and affCc is closed with finite

codirension in an affine subspace M containinc affdom P,

then (1) holds. 1In particu if there is a U €U such

'-l
[AV)
la}

ge

that F(U,:) is boundeé ahove on a neighborhood of LG#XO

then (1) holds.

Proof. Clearlv ©P(x) = inf F(u,Lu+x) < F(U,Lu+x), so
u

Theoren II.8.1 applies. 5

The Kuhn-Tucker condition of Corollary 3.2 is the nost
widely used assurmption for duality [ET76]. The difficulty

in applving the rnore general Theorer 3.1 is that, in

v}

cases where {*) is not actuallv continuous but onlvy
relatively continuous, it is usually difficult to

determine affdom P. Of course, dom P = U [dorr (u,-)-Lul
r H4




1o

but this mav not be easv to calculate., e shall use
Theorem 1I.8.1 to provide dual compactness conditions which

insure that P(-} is relatively continuous at X

Let K be a convex balanced w{(U,U*)-compact sub-
. ", C.
set of U; equivalentlv, we could take K = "I vhere 1
is a convex balanced n(U*,U}-0-neichiborhood in U*,

Define the function g¢: X* > R by

gy} = inf F*(v-L*vy,v). (2)

Note that ¢ 1is a ¥ind of "srmoothing™ of P*(v)

il

F*¥{~L*v,y) wvhich 1

®

ve

v
I

vwhere rajorized bv P*, The
reason whv we nead such a <« 1is that ({+) 1is not
necessarily isc, which proovertv is irportant for applving
compactness conditions on the level sets of P*; however
*g 1is autoratically £sc and *c¢ dominates P, while at the

same time *g approXimates P

Fle - .

3.3 Lerrma. Define g(.) as in (2). Then
{(*g) (x} < inI[F(u,Lus+x)+sud <u,v>j, If F = *(r*),
u veK

then P(x) < (*c)(x) for evervy x &cor P. I!oreover

dorm *g > U [der Flu,+)-Luj.
nespan K

*

y

Proof. B3y de

thy

initicn o g, we have {(*qg) (x) =

sup sup_[<x%,v>-F*(v-L*y,v)i. l!low for evervy ut&U and
Yy VeK




v €Y, F*(v-L*v,y) > <u,v-L*v> + <Lu+x,v> - F{u,Lu+x) =
<u,v> + <x,y> - F(u,Lu+x) bv definition of F*, Iiznce

for every u€U,

(*q) (x) < sup_[F(u,Lut+x)-<u,v>]

veK
= F{u,Lu+x} + sup <ua,v>
vE-X
= F{u,Lu+x) + sup_<u,v>

VER

. . e v- - .0
vhere the last equality follows since 1}

K 1s bhalanced.
Thus we have proved the first irequalitv of the lerna.
Now supgose F = *(F*) and x¢€ don P. Since ¥°

is a n(U*,U)~0-neighborhcod wa have
(*qg) (x) = sup_ sup [<x,y>-F*(v-L*v,y)l]
Ve In \g

> 1lim sup sup [<x,v>-F*(v-L*y,v)]
V=0 v

= - lim inf inf [F*(v-L*y,vy)-<x,v>],
v ‘?‘o <7

wheare the lirm inf is taken in the n(U*,U)-topoloav.

\j—)—o
Define hi(v) = inf [F*(v-L*v,v)-<x,v>], so that
:’7
*GY (%) > - Lim inf h(v). low (*h)(u) =

JEa,v>] o= *(FF) (u,nutn) =

sup sup [<u,v>-F*(v-L*v,v
v Vi

F{u,Lu+x). Hence P(x) < +o tsans that




1z

inf F{u,Lu+x) < +o, i.e., *h } +», so that we can replace
u

the lim inf bv the second conjugate:

(*g) {x)

|v

- lir inf h{v) = =(*h) *(0)
?\r-}.o

= inf F(u,Lu+x) = P(x).
u

The last statement in the lemma follows from the
first ineguality in the lemnma. For

%X € U [dem F(u,-)-Lu] if7f Jué [0,=)+X st F{u,Lu+x) < +=,
uéspan X

iff Ju st sup_ <u,v> < +» and F(u,Lutx) < +» (since
e

< _ 0,0 .- - .
K= "(K)), iff 3Fu st F(u,nu+x) + sup_ <u,v> < +», and
vEL

this implies that x &€com *a. Hence don *g D

U {dorm F{u,*)-Lu]. iote that dom P is given by
uéspan K

U [dom F(u,*)-Lul. 0

uey
3.4 Theorer. MAssurme [ = *{f*}, PO < +», and there is a
«{C,U*) ~corpact conve:r subset X of U such that
span ¥ D U dom F{-,x)}). Suppose
XeY
1 { vk, (T k) -7 *- -< , j e = ‘oo
1y Ay ex*: (£%) _(-L*v,v)-<x_,y> < 0} is z subspace f;
2) 3 =(U*,U)-C-neigrhorhood M in U*, an iy € X,
an r. € I such that




n3

vy € X*: inf P*(v-L*v,v) - <x,v> < r.} is

€]

nonenpty and locallv *H*equicontinuous for

the w{X*,X)-topologv.

Ther affdon P is closed, P(*) P affdon P

jae

s continuous

at X, for the induced tovology on affdom®? , and (1)} holds.

Proof. ¥e rav assume that X is balanced and

contailins

-

. - ., ’ ) G,..0 Qs .y
7 by replacing XK with co hal (Xui7) = (KN =K Nxn-=1),

-

~ 5 -~ 1 *
2fine «¢(+) as in (2). Ve first shov that dom P = dom .
Now dom P = U [Cor Fu,c)-lul = U [¢er M{u,-)-Lul C
CEL uespan K

dor *¢ by Lerma 3.3. ©Dut also by Lerrma 3.3 we have

P(x} < (*¢) (1) for evers €1 (since dor ® & dom *a),
so dom P D cdom *c¢  and hence don P = don *q.
This also implies that c¢ldom *{P*) = ddorn *a, since

el dor *(P*) = ¢l Com P hv Lerma II.1.1 {(note

nonernty level set by hvpothesis 2)).
tfence by the definition (II.2.1) of recession functions we

have (P*)_ = g = ((*g)*)_. 2 straichtforwvard calculation

usinc Proposition IIZ.2.3 and the fact that P*(v) =

L*v,v) vields

Yow 1= {v€ X*: o (v)-<x_,v> < 0} = [dom a - 1
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subspace, hence !I = [dom g
closed affine set containin
then implies that riepi*g

with finite codimension in

hvpothesis 2)

and affdorm g 1s closed

NS

ar
Py

o}

M, bv Theorer II

08010

oreover by Theorem IX.9.1, *g(+) is actually relatively

continuous at xo

Y
. -

r

¢l affdon *g - X

oM

is bounded above on 2o

and hence 1is relativw
1’2 shall be interestad
cases., One is when U 1s

and we put the w* = 7 (U,V)

topology on U; for then U*
is the span of a

unit ball in U). FHence, 1if
norred space, and 1I F ()
then conditions 1) and 2} o

sufficient for (1) toc hold.

The other case

15
it

t

closed sets

L L S
i = “([dom g hO] )

a

orr *g, we rust have affdom *qg

'h

at interior conditions reduce

ffdom *g 1is a closed sub-

ely continuous at X,e O

two verv useful special

dual of a norred space V,

topology as the oricinal

=V

and the entire space U

w{(U,V)-compact convex set (namely the

U V* where YV is a

is convex and w(Ux¥, VxX*)-2sc,

neore

Lanl

rn 2.4 are autoratically

X 1is a barrelled space, so

to core conditicons for

(equivalently, cornactness conditions reduce




s

to boundedness conditions in X*). For sinplicity we con-
sider only Frechet spaces for vhich it is irmediate that

all closed subspaces are harrelled.

3.5 Theorer. Assume F = *(F¥*); PC < +=; X 1s a Frechet

space or Banach space; and there is a w(U,U*)-compact

convex set K in U such that span KD U dorm F(*,x).
xeX

Then the following are eguivalent:

1} affdom P is closed; and xoe rcor dom P, or

Lu #x _+3) < 4= => Je > 0

2) vy ey*: (F*) (-L*y,v) - <x_,v> < 0} is a
subspace ; and there exists a n(U*,U)-0-
neichborhood i1 in U¥*, an xle X, an rl& R

such that {y €X*: inf F*(v-L*v,y)}-<x
Vel

otY> < T }

is ronerpty and w(X*,¥)/M-locallv bounded,

If either of the above holds, then P(-) P affdom P is

continuous at 2N for the inrduced metric topoloav on

affdom P and (1) holds.

Proof. e first note that sirce span K 2 U donm F(*,x)
xXE€N
we have as in Theorem 2.4 that dom P = dorm *o and

G (y) = (P*)_(v) = (F*)_(~L*v,v).




e

1) => 2). Ve show that ¢{(+) 1is relatively con-

tinuous at X and then 2) will follow. Now
don P = dom *g, so }k)ercordom P, Let W = affdom P - x

o
be the closed subspace parallel to dorm P, and define

h: W > R: w ~» *g(x_+w). Since *g 1is &sc on X, h is
£sc on the barrelled space V. 3ut O € core don h (in W),
hence h 1is actuallv continucus at 0 (since ¥ is

barrelled), or equivalently *c¢ i1s relativelyvy continuous

at Xge Applying Theoren II.9.1 we now see that 1 is

the subspace t; the remainder of 2) then follous from

A

Theoren II.8.1, since g(y) = ini F*(v-L*y,y) > (*qg)*(y).

2) => 1. 1llote that % is a Frechet space in th
uced topology, so w(X*,X)/!'-lccal boundedness is
equivalent to w(¥*,X)/!1-local conpactness. But now
we may siplv apply Thsorem 3.4 to get P(.) relativelv
continusus at x and affdom ? closed; of course,

e}
1) follows. g

3.6 Corollarv. Assume P < +w

o ;s U = V* yvhere V 1is

a normed space; X is a Frechet space or Banach space;
F(+«) 1s convex and w(UxX, VxX*)-iZsc. Then the following

are ecuivalent:

t..
N
h
1
[N
0]
g
"'J
[N
n
0
'4.1
0
)]
D
Q.
U
]
e
o

“o€ rcordor ¥, or




equivalently

and

2y {y ex*;

and there is an

(r*

such that

is nonemptv and

)

F{u
( e}

SLU 43 +X)
o "o

17

<

+

(-L*v,v) —<X_ey> < 0}

v €

<

X*

> 0,

inf
fvl<z

>

le U st F(ul,d l+x0—€x) < 4=,

an xléx, an

is a subspace M;

:le R

F*(v-Lry,¥) ~<x ,v> < 7))

w({X*,X) /I-1locallv bhounded,

I either of the ahove holds, then P(*)! affdom P is
continuous at X for the incuced metric tovology on
affdom P and (1) holds,
Proof. Take K to he the closed unit ball in U = V*,
then ¥ 1is wi{U,V)-cormpact and span X = U. The corollarv
then follows from Theorem 3.5.

In the case that affdom P is the entire space X, we
have the following useful corollarv. Ilote that
conditon 1) considerably ceneralizes the Kuhn Tucker
condition of Corollarw 3.2.
3.7 Corollarv., Assunre ?O < +w; U = V* +here V 1is
a norrned space; ¥ 1s a Frechet space or Banach snace;
F{(<}) 1is convex and = {Ux{, VxI*)-isc. Then the following
are edgulvalent:

1) x, € cordon T = cor U {dem T (u,=)-Tu]

uetT




2)  {vex*: (F*) _(-T%7,v)-<x_,y> < 0} = {0};
and there is an € > 0, an xle X, an rlé.R
such that {y € X*: linf F* (v-L*v,y)-<x_,y> < rl}
lVEie
is nonenptv and w({X*,X)-locallv bounded.
3) there is an = > 0, an rO€ R such that
{vex*: inf F*(v-L*v,v)-<x_,v> < r 1} is
ivlia Q &}
nonenptv and w(X*,¥)-bounded.
If anv of the above holds, then DP(+) is continuous at
X, and (1) holds.
Proof. Immediate from Corollary 3.6 with affdomP = X. g

2lso applv

on the dual problem to

the original problen P

these theorems to perturhations

get existencc of solutions to

D

H

and no duality gap P

As

-

o]

an example, we give the dual version of Corollary 3.6.

3.8 Corollarv.

Frechet space or Banach

1s convex and w(UxX, Vx¥*})-isc.

Assumnme

P > —-xo; U = V* ywyhere V is a

o
space; X is a norred space; F(-)

Suppose

{ueU: Fm(u,Lu+xO) < 0} 1is a subspace M, and there is an

e > 0, an xlé X, an rl& R such that

{ue U: inf F(u,Lu+x _+x) < r,} 1is nonenmptyv and w(U,U%) /M-
ix§i€ o -~

locally compact. Then PO = DO and Po has solutions.

Procf. Apply Corollarv 3.6 to the dual probhlem (2,10). [
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IV. Minimum Norm and Spline Problems and

a Separation Theoren

Abstract. Results in cduality theory for optimization

prcblems are applied to minimum norm and splire problems

[ add

and improve previous existence resultis, as well as
expressing them in a duality framework. Related results
include conditions for +the sum ©of two closed convex sets

"to be closed leading to an extended sevaration principle

for closed convex sets.
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l. Minirum norm extrenals and the spline problen

Ve apply our results on the relationship between
continuity points of convex functionals and locallv equi-
continuous level sets of conjugate functionals to derive
a duality principle for nminimum norm problems. It is
well known, for example, that in a norred space ¥ the
nininun distance from a point X to a nonempty convex
set C 1is equal to the maxinun of the distances from the
point to the closed hyperplanes separating the point and
the convex set C. In other vords,

inf [%-x | = max inf (x—xo)y,

XEC © VER XEC

where B denotes the closed unit ball in I* and the
. N . . . ~ A - .
maxinum on the RHS is attained by some Y €B. This also
- - - - A -
characterizes the minimum-norm solution: X €C attains
. . . S A . . -
the infimum on the LHS iff X=x, is alianed with sore
A . P A A ~ . . 3
v €8, i.e. ix—xol = (x-x_)¥; and it is easv to see that

such solutions exist whenever € is closed and ¥

is
either reflexive or the dual o* a separable normad space.
e generalize these results tc include the spline probler

and also develop sufficient conditions for a solution to

the ninimum norm prohlerm to exist.




nonempty convex subset of U, Ta kounded ljinear rap

from U into X; then for x€ X, TFT{x) is the rinirum

norm problen

e consider perturbations in x, i.e. calculate the

conjugate of P{

L]
-
v
o,
0
&
0
'—.l
(6]
U
)
o

ual problem *(pP*) (x).

e then take perturhations cn the dval prohlen to cerive

existence conditions Zor the criginal orchlme P (x).
To calculate the dual problemr, define £(u) = 'C(u)
and gfx) = !x,; then P{¥) = inflf{u)+a(Tu+x)]. Iinw £*
u
is just the support Zunction :C* of C and gc* 1is

just the indicator <., o©f the ball B = {ve€X*: |y < 1};

hence P*(y) = £*¥(-T%r) + g*{(v) = sup u{-T*v}) + éB(y)
ueC

= ¢,fy) ~ inZ (Tu)y. Thus, the dual probler is
*(P*) (x) = sup [xv-P*{v)] = suop inf {(Tu+x)v. Clearlv
v ven ueC
P(x) > *{(P*) (x), wvith equalitv iff P(-) is 1lsc at x.
e now cdefine parturkations on the dual prohlem,
Tor each x¢€ X, let DK(-) Lbe the functiocnal on U*

glvan by

il
i

D (v)

P

nE{E*(v=-T* ) +c*(v)-xyv] = inZ{xy + sup u(v+T*v) ],
v veD ueC
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0f course, for v =0 Dx(v) is just the dual probler
(with a change in sign to nake Dy(-) convex) :
DX(O) = - *(p*)(x). To calculate the conjugate of

perturbations on the cual problen, we have

(*D) (0) = *(£*) (W) + *(g*) (Tu+x) = &, (u) + lTa+x |

is weakly lsc so a = *{ag¥*).

dual 1is

(*D )*(0) = - inf fTu+x|,
u¢€ cicC

which is again (minus) the primal probklem P(x) 1if C

is clesed., In ceneral we have
- - % *x - = k (D%)
P(x) > —( Dx) (0) > DX(O) = *(D*) (x).

to state the main results. Ve

-1
by N = T ({0}

e are now reacdy
cenote the null space of 7= }, and for

r { +
=z {ueyu: dal(u,M) < r}

Lo

Rl
i+r+B

523

r >0 we write

[+3 . N . - .
wnhere B 1s the open unit ball in U,

Theoren 1, Let U he norred linear spaces, C a
onempty convex subset of ¥, T a bouncded linear map

o}

b

r x6€X%, let P(x)

v
L]

o U into 3

iy
H

probler

o
0
r
3

P(X) = in;. t _‘.U'E‘X_

e the rininum
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and consider the dual problen

*(P*) (x) = max inf (Tu+x)v.
vEB ueC
Then we always have P(x) = *(?*)(x), where the maximization

in *(P*) is attained by some Vv €B. lMoreover UE€C

solves P{x) iff there is sore € 3 for which

L >

ITO+x| = (2Q+x)¥, in which case solves *(P*) (x).

>

Sufficient conditions for P(.) to have minimizinx

. A .
solutions ué€C are:

1) U is reflexive, € 1is closed, TU 1is closed.
2) C_nNn 1 1is a subspace M

3) Cnon Nr/m is nonempty and weakly locallv bhounded

in U/M, Zor sorme x > 0.

Before proving the theoren, we nake a few remarks
about the existence thsorems. First, some authors do
not assume that U is reflexive, but that X is
reflexive and I 1is finite dirensional. However this
actually implies that U is reflexive, since U/N is
topologically isomorpnic to TU, a closed suhspace of X,
In fact, when TU 1is closed we have U reflexive iff

' and U/ are reflexiva if

th
r-s
o]
3
2%
J
o
o
H
0
]
0]
h
}-_J
)
~
e
<
0
-

and the latter is certainlv true 1f M and ¥ are

reflexive.
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Seccndly, we examine the condition 3}, By
ra = f e T /e Fd \r
CNAN /M we of course mean fu+MeU/: uécCcni }.

It is straightforward to show that 1if Ct\Nr/M is
locally bounded for some r > 0 sufficientlv large so
that C n NY is nonemoty, then it is actually true
that C n Nr/M is locally bounded for everv r > 0

(arque along the lines of Proposition IX.1.4). Thus

3} is reallv equivalent to

-X . . . .
3') C Nt /M is weakly locally hounded in U/M

for ever r > 0. By weakly locallv sounded in U/ we
3% p 1S

v

S A 2 : * /2 &
mean locally bounded in the topolocv w(T/M,M7),

where U/M 1is a normed spac2 and = 1is norm~concruent

-—

to (u/mM)* (note that M = C_n U is closed since C_
and M are closed). Since the weak topology w(U/M,MY)
on the quotient ncrmed snace (/M 1is the sarme as the
quotient w(U,U0%*)/M of the weak tosology w(U,U*) on U,
we see that C N Nr/M is weakly locally bounded in U/M

.. r . . . . . .
1ff C N N 1s weakly locallv ! ~eguicontinuous in U,

that is iff there is a finite suhset F of U* and a
r . .
coe cn i such that sup_ o d(u,) < +o,
uelnll n(co+ F)

. . roo._ . : .
(ve note that CAMN"  is locally Mt-ssuiconti

every polnt if it is at a sinaels point C,r as in

Proposition II.l.4). Thus 3) is ecuivalent to



sup d{u,M) < +=,
r o,
ueCniN ﬂ(co+ F)

and implies the existence of such an T for every

r > 0, cO€ Cr\Nr. Finally, it can also be shown that

3"} is also equivalent to

3'*'"}) there 1s a finite subset ¥ oI U* and a

coé C such that every norr-convergent sequence

- O
u.+n., for u.€Cnf(c +F) and n, €Nl, has
i1 i o i
d(ni,ﬁ) bounded,
\ . . 5
These are certainly true if Cn N is itself weakly

locally bounded or ¥ 1is finite dirensiocnal. And they

s . .r . . -
are certainlyv true if CnAN is actuallv H‘—equ1cont1nuous
. iy . r .
{(not just w(ui,Y*)-locallyv so), e.g, iZ C NN is bounded
' . . . X . ..
or C is boundec or € 1is M -eqguicocntinuous

(i.e. sup d(u,M) < +=), As in 3'''}, we note that
ueC

X . . . .

cnx 1s M -equicontinuous 1II everv norm-convergent
- < - T n . M

secuence xi+ni, for xie C and =n,€N as d(hij)

>

bounded.

Proof of the theorer. Ve

4

irstc note tn

finite, convex, and normn-continuous Iuncziocnal on X

For, it is clearly convex since € 1is convex, T 1is
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linear, and the norm is convex; and if c, is anv element

of C then

p(x) < i?coi + |x]|

and P(-+) is bounded above by a continuous function.
Thus we irmediately have P(x) = *(P*)(x) = —DX(O), and

the subgradient :P(x) is ncnempty and w({X*,X)-compact.

But the elements

(o]
2}
Q
g
%
A

. v A s s a
are just those Vv €X* which

attain the suprerum in supixv-P*(v)}] = *(P*} (x), so that
Y
1

%
~
Q)

a.
—~
%
s
it

< . A L.
-D_(0) thas solutions v &3, This proves the
P2

)
|
=
)
[m)
'O
v
=
t

of the thecren

To obtain existence of solutions for P({(x), we nust
show that 3D_(0) # &€, for BDX(O) is precisely the
solution set of P, Ve shall actually show that under
the conditions 1) to 3) Dx(o} is norm continuous at 0
on affdomD{-) = M* in U*, 1i/e first note that D () is
convex and w{U*,U)-1sc at 0 Zor every x ¢ X; for, both
DX(O) and (*Dx)*(O) are pinched hetween the values

-P(x) and ~*{P*) (x), so bv the equalitv cf the latter

we rnust have DX(O) = (*DX)*(O). (In fact, rore is true.

If we define a new priral problen P_(x) = inf ({Tu+x|=-uv)
ueC

we cet a dual problenm *(Pv*)(x) = -D_ (v}, and the same

argument vields D _(v) = (*D_})*(v) for everv v &U'*, x€X.)
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Thus to show that BDX(O) is nonemptv, we rust show that
(*DX)*(-) is relatively continuous at 0 in the norm
topology (which is the mw(U*,U) topology on U* when U

is reflexive), or eguivalently (by Theorem II.3.2)

that the level sets of (*D ) (-) have weakly locally
bounded (equicontinuous = weakly bounded in a reflexi&e
Banach space)} image in the quotient space U/M, where
M= {u: (*D ) _(u) < 0} is recuired to be a subspace.
Now (*D_) (u) = Pru+x| + 6o (u), and since (*D ) () is

conveXx and weakly lsc we have the easy calculation

x Pr) x
Dx(co?t“) D(co)

*D u) = sup = |7 +
(*D_) () suz = |Tul + 6. (u).
t>0 =
Thus we require M =1 NC_ to be a subspace as in 3).

The level sets of (*D ) (+) are preciselv
P2

-1
{u: (*DX)(u) < r}l =CAaT “(-x+rB) (i.e. those ué€&C for

which “u 1s within r of -x), for r > 0, To insure

that we take r sufficiently large so that the level set

is nonempty, we take r > |Tc, +x| for any c &€ C and

for convenience r > |x|{. Then the level set is contained

in C F\T_l(2rB). Now T has closed range, so there is

an

[}

sufficientlv snmall so that
ed(u,) < (Tul < g “d(u,M)

(this merely states that U/} is topolocically isomorphic
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toc TU under the rapping T as taken on U/), But

. . -1 . . .
this means that the set T “(2rB) 1is certainly contained

. 3r @ 3r/c Sy . ..
in the set N + —E.B N . Thus, it is sufficient to

reguire that C AN N3r/£ have weakly locallv bounded

image in U/M. loting that Cn NT/1 is weaklyv locally

bounded for every r > 0 iff it is locally bounded for

ct
S

N
w

sorme r > inf{t: C A we have the condition 3)

or 3'}. 1O

Rerarks. If U 1is not reflexive, it 1s still true that

H

P(x} has a soluticn if ths other conditions hol

{}l

and
\‘r X3 M -~ 3 e
(C ni~) /1 is nonemtpy and weakly locally compact in

U/ for sore

H

> 0, Of cecurse, weak compactness in a

nonreflexnive space may be diflficult to characterize,

rove sirmilar existenca

R

It is 2l1lso possible to
results when U,Y are the duals of separable normed

spaces, T 1is w{U,U*)-(X,*X) -secuentially continuous,

and T 1is w¥* =

o

w{(U,*U} -seguentiallv closed.

fudv

Since the spline existence conditions

()

or Pi{x) do

not depend on the point x, w2 see that we have actually

developed a sufficient concdition for <TC to be closed

in ¥, or ecvivalentl-s («hen is closed) for C+II o b

PO A

4]

problems is to aoplv Dieudonne's theorem [D6S] for the

closedness of the sum of &1

-
ot} =
ke OO0
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that C be locally cormpact or M £finite dirmensional
(that is, locally compact) and that C_an ¥ = {C}. our
conditions are much weaker, narely that C, 0!I be a
subspace M, and that Cn T/ be weakly locally
compact in U/M (lccal compactness in a KLCS alwavs

implies weak local compactness, as noted in the renarks

following Corollarv II.1.10). 1In varticular, the null
spa 5 of T need not be finite-dirensi 1, and

C_ N N need not reduce tc 07,

Zxarple, I infinite dirensicnal.

Let U =i = tul(+): ul(+) is ahs cont on [0,1] and

i <
P
cost to depend on the cerivative U only over the
’) - 4 . .
intervals {0,3] and [§,-3, wvith no derivative cost on
12 . .
{§7§}. Hence take the linear ooerator to be
1 .
T: I > 1L+ u +» Tu here
B B
SR I = 2 11
u{t) teLO’T{}U[?"‘
(Tu) (&) = . . The constraint set
12
)

12
5 . } i 1
anc !u(t)| <1l for t &{§,§};; note :that there are
. - 12
constraints o the derivative Ior t & {%,5], so that
o] -

the null space of T is truely, infinite dirensional,.
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Clearly U = H; is reflexive, C 1is closed convex,

has closed range on H (TU is concruvent to
1

2
L_10,5] x L_{3,11), ¥ = {ueH

. 1
5 - : u is constant on {0'31 and

constant on [%,l]}, C_ = {u€el”: u{d)=u(l)=0, ul{t):=0 for

t e[%,%]}. Thus XnC_ = {0} is a subspace. 2and

cnut o= {UE;H;: ueC and du,M)<r} C

0
]
c
m
A+
-
RN
-
v
o]
0
=
(t
I A
0]
[}
0

constant function on

1 N . - .
[O,§]\J[§,l}f which is bounded because of the derivative
and endpoint constraints. Thus,

the existence conditions

of Theorem 1 are satisfied and the minirum normn prohlen

P(x) = inf !Tu+x| has soluticns.
ueC
Example, C_ N1 not necessarily {0l.

Let U,¥X be reflexive Banach spaces, T: U ~» X
bounded linear with closed range, anéd C a closed affine
subse> of U. Then C_ 1is the subspace C-C parallel

to C, hence condition 2) 1is always satisfied. If c, N N

is finite dirensional (e.g. M or C is finite dirensional)

then the minirmum norm probler P(x) = inf|{Tu+x! has
uel
solutions., Alternatively, 1Z C i3 a finite-codimensional
n
3 3 £ ~ = -1 = [ o) +h
closed flat C = M\ v, (r,) fZor v, €L*, r, €2, then
k=1 7 a8 7 he

cCNni/C_,N N 1is a finite-dinensional affine set in
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U/C_n1® and hence Cr\ﬁr/cmrwﬁ is weaklv locally

bounded, so again spline scolutions exist.
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2. On the separation of closed convex sets

The spline existence conditions developed in Theorem 1
essentially constitute a sufficient condition for the sum
of two closed convex sets to be closed, namely the sum of
the constraint set C and the null space N. We can use
the same techniques to develop a general crtierion for the
sum of two closed convex sets to be closed in a reflexive
Banach space; this extends Dieudonne's theorem [D66] in
this context and leads to a separation principle. In what

follows we define BY = {x ¢ X: inflx-b] < €} =
beB

B + c¢-(open unit ball), for € > 0 and B C X.

Theorem 2 Let X be a reflexive Banach space with A,B

closed convex subsets of X satisfying:
1Y A nB is a subspace M
[ee] co

2) A nNnBY is nonempty and w({X,X*)/M-locally bounded,

for some € > 0.

Then A-B 1is closed. 1In particular, if A and B are
disjoint then they can be strongly separated, i.e. there

exists y €X* such that inf ay > sup by.
a¢a beB

Proof. We may assume that A,B are nonempty. Suppose
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z € A-B; we show that 2z ¢ (A-B), or equivalently that

inf inf |a-b-z| > 0. By translation we may assume that

a€eA beB
z = 0. Define the convex lsc function f: X + R by
£(x) = §,(x) + inf ix-bj.
b¢B

Then £f£* 1is given by

f*(y) = sup suplay-la-bl].
a€A beB

We show that conditions 1) and 2) are sufficient to prove
that £*(-) 1s relatively continuous at 0. By Theorems II.9.1,
7) => 1), and ;1.8.1, 7y => 2), it suffices *to show that
a level set of f is locally bounded in the topology

is required tobe a subspace
w(X,K*) /M, where M = {x: f_(x) < 9} = A_N B_ A.But the level
sets of f are precisely {x: £(x) < e} =4 NB* for ¢ > 0,
so that 1) and 2) are the required conditions.

Thus f*(-) is relatively continuous at 0, and con-

sequently 23f*(0) # @#. This means that there is an
X, € 3f*{0), or equivalently that 0 éaf(xo), i.e. X

o]

solves inf f(x) = inf inf [x-b|. Hence inf inf [x_-b| =
X x€d beB X€A beB

inf {xo—b[ > 0, where the last inequality follows since
beB

x0¢ B (recall AnB = @ since 0¢A-B)and B is closed. Note

that since 0€ ¢ (A-b), A and B can be strictly separated.
a
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If Amlﬂ B_ is a subspace and a is locally bounded,
then conditions 1) and 2) follow immediately. In
Dieudonne's theorem [D66] A_ N B_ is required to be {0},

with A 1locally bounded.




Chapter V
(pages 135 to 164)
was removed from thesis.



VII. Optimal Quantum Detection

Abstract. Duality techniques are applied to the problem

£ specifying the optimal quantum detector for multiple
hypothesis testinag., Existence of the optimal detector 1is

established and recessary and sufficient conditions for

optimality are derived.




-
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1. Introduction

The mathematical characterization of optimal detection
in the Bayesian approach to stétistical inference is a
well-known result in the classical theory of hypothesis
testing, In this paper we consider detection theory for
quantum systems.

In the classical formulation of Bayesian hypothesis
testing it 1s desired to decide which of n possible
hypotheses Hl,...,Hn is true, based on observation of a
random variable whose probability distribution depends on
the several hypotheses. The decision entails certain
costs that dei'end on which hypothesis is selected and
which hypothesis corresponds to the true state of the
system. A decision procedure or strategy prescribes which
hypothesis is tc be chosen for each possible outcome of
the observed data; in general it may be necessary to use
a randomized strategy which specifies the probabilities
with which each hypothesis should be chosen as a function
of the observed data. The detection problem is to determine
an optimal decision strategy.

In the quantum formulation of the detection problem,.
each hypothesis Hj corresponds to a possible state p.
of the guantum system under consideration. Unlike the

classical situation, however, it is not possible to
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measure all relevant variables associated with the state

of the system and to specify meaningful probabilitv

distributions for the resulting values. For the gquantum

detection problem it is necessary to specify not only

the procedure for processing the experimental data,

but also what data to measure in the first place. Hence
the quantum detection »>roblem invelves determining the
entire measurerent process, or, in mathematical terms,
determining the protability operator measure corresponding
to the measurement process.

We now formulate the quantum detection problem.
Let H be a separable complex Hilbert space corresponding
to the physicai variables of the svstem under consideration,
There are n hypotheses Hl""'Hn about the state of the
system, each corresponding to a different densit operator
Pj; every Pj is a nonnegative definite selfadjoint trace-
class operator on H with trace 1 and is the analog of the
distribution functions in the classical problem. Let §

denote the set $ = {1,...,n}. A general decision strategy

is determined by a probability operator measure (POM)
m: 25 *-iS(H)+; in this case the POM effecting the
decision needs only n components My reee My where each m.

is a positive selfadjoint bound linear operator on H and

L (1)
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The measurement outcome is an integer i € S; the conditional
probability that the hypothesis H, is chosen when the

state of the systenm is ?j is given by
Pri{ilj} = tr(?jmi) i,i=l,e..,m. ‘ (2)

We remark that it is crucial here to formulate the problem
in terms of general probability operator measures rather
than resolutions of the identity. For example, an
instrument which simply chooses an arbitrary hypothesis
with probability 1/n without even interacting with the

system corresponds to a measurement process with the POM

given by

these are certainly not projections.

Ve wuenote by Cij the cost associated with choosing
hypothesis Hi when Hj is true, For a specified decisiop
procedure effected by the POM {ml""'mn}' the risk
function is the conditional expected cost given that the
system is in the state P., i.e.

) n
R (3) = tr[Pj iil Cijmi}.
If now uj specifies a prior probability for hypothesis

,, the Bayes cost is the posterior expected cost
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n

R. = I R_{(3j)u.
R £ B i

1}
o
H
e
H
1

(3)

where fi is the selfadjoint trace-class operator

. Cij“joj i=1,...,n. (4)

The quantum detection problem is to find Myse.es,f SO as

to minimize (3) subject to the constraint (1) and subject
to the condition that the operators mnm. be selfadjoint

and nonnegative definite, r. > 0.

The minimization problem as formulated above is an
abstract linear programming problem, where the positive
cone is the se't of all selfadjoint nonnecative definite
bounded linear operators (ml,...,mn) E(iiS(H)+)n. e
shall pose this problem in a dualitv framework, construct
a dual probler, and give necessary and sufficient conditions

which the solution nust satisfy. Moreover we shall show

that solutions exist, although they need not ke unigue.




170

2. The finite dimensional case

It is interesting to explicitly construct the form of

the problem in the finite dimensional case. This will not

not only exhibit the primaryv features of the problem, but
also show why the usual linear programming techniques do
not apply because of the nature of the positive cone.
Moreover the ﬁinite dimensional case is of interest be-

- cause it includes the situation where the qguantum states

Ol""'Qn are pure states.

lience, for this section only, we shall take H to he
c? where g 1is a positive integer. The compact, trace-
class, and boidnded selfadjoint operators are all complex

gxq self-adjoint matrices, which we may identify with the

z
real linear space R1 ., For example, in the case I = Cz

we may identify every self-adjoint operator £ 6<£S(£2)
with an element of R4 by

fl f2+if3

£ = ) <—> f = (£ ,£°,£°,f ) &P (3)
gloig3 £l
To save notation, we shall write out the prohlem explicitly

only for H = € ; the general finite dimensional case is

an easy extension.

The quantum detection problem for n hypotheses 1is,

from (3),
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P = inf{_g

2
j"ltr(mjfj) b ml,...,mn € {S(C )+r

3
E]
"
=4
——

where I is the identity operator on H = € and each

mj or fj € a{_s(cz) is identified with an element
1 2

3 4 4 .
£f. = (f. L E . € R 5). h
mJ or 3 (j'fj']'f}) as in (5) The

s 2 . .
positive cone SCS(C ), consists of the nonnegative

definite matrices; £& £ _(H),_ means that el >0,

£% > 0, ana £7¢? > (£5)% + (232,

Hence, if we define
e . 4
the positive cone K = fis{c)+CR by
k= tmert: nt >0, nt >0, it > nH) 2 @hHH (6)

then the problem hecomes

n 4 i 1 n
p=inf{z = mifl: (m,...,m) e K" and
=1 i=1
n n n n
b m? =1 = I m%, T n? =0 = I m?}. (7
j=1 =1 I 9=1 .3 g=1 I

Note here that the duality between £S(H) and 'Z’S(H)

given by <f,m> = tr(fm) has simply reduced to the
4 . .

usual inner product £ flem® for £ TS(CZ) = pt
i=1

and m¢é€ &ps(cz) = R4. The problem is in the form of a

finite dimensional linear programming prohlem except that

the closed convex cone K of "positive" vectors is no longer

polyhedral , that is an intersection of a finite number of
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closed halfspaces. In the next section we shall define

; the dual proklem here is

. . 4
thus a minimization problem over R, In general, for a

linear programming problem of the form

inf{<f,m>: me€Q, Am = g} where Q 1is a

q ! closed convex
m

cone and A 1is a continuous linear map, the dual problenm

is given by sup{<g,y>: f - A*y €},

e do not derive this
u

here but simply state that the dual problem for (7) is

D = sup{yl+y4: y’€R4, fj-y ext vi=1,...,n}

where the dual positive cone K is {(by straightforward

but tedious calculation)

4

k' o= {y€R4: inf L myT >0} =
meK i=1
( 4 1 4 1 2

ly¢€R =y >0,y >0, 4y y4 > (y2)2+(y3) F. (8)

Ilence, the explicit form of the constraints for the dual

problem is

1 1 4 4 1.1 4 4 2 2,2 3 3,2
< £.7; < f£.7; 4(f. - f. - > -f. ~f.
Yy = i y =< i ( 3 y ) ( 3 vy >y 5 ) T+ {y f) )

for every j = 1,...,n.

Clearly, the usual duality theory

for finite dimensional linear programming is not applicable.
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Because of the explicit nature of the linear constraint

n
I m,. =1

3 in the original problem, we shall see that
1=1

duality theory does work for this prohlem. In ceneral,

however, it is possible to have a finite duality gap for

Ne

linear programming problems with positive cone of type X

We construct such an example now.
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A linear programming problem with non-polvhedral cone

which has a duality gap

T’le consider a linear

form (7) with n = 2 (that is, a problen in RS), except

that we change the linear equality constraint. Define

the closed convex cone K in R4 by (6); ' is given bv (8).

1 2 3 4 1 2 3 4
Let u = (ml P My, My, Wy, MY, My, My, M ) represent

a vector in R8 and define the problen Py by

P, = inf{u : u KxK, Au = (0,-1,0,0)}

where A is the linear map

Au = (ul—uG, u2-u8, —us, u3+u7).

If yt‘:R4 is a dual variable, then A*y 1is given by

1 2 4 3 1 4 2
A*'y = (v, v,y , 0, v, -y, v, =y

£

The dual problem is

D, = sup{-y*: (0,1,0,0,0,0,0,0) - A%y € X xk'},

First, let's solve the primal problem, From the

constraint Au = (0,-1,0,0) we have u5 = 0; but

(uSIUG'U7,u8)e X so u5 = u6 = 7 = 0.

Again from

Au = (0,-1,0,0) we now have ul = u6 = 0, which since
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(ul,u ,u3,u4)61( implies u? = 0. Thus u° = 0 for every

feasible u; in fact every feasible u looks like

u = (O,O,O,uQ,O,O,O,l) with u4 >0, and P

. 1 = 0.

Now consider the dual problem. The constraints are

1 2 1

(=yy1-y ,—y4,0)€ K" and (y3,y ,-y4,+y2)ﬁ K+. The first

. . . . . 2 .
constraint immediately implies y~ = 1l; in fact every

feasible y is of the form y = (yl,l,yJ,O) where vy S 0

and Y3 2 (yl)2/4. Hence Dl = -1 and there is a finite

duality gap Pl-Dl = 1,

Where does the difficulty arise? If

P = inf{cu: u€Q, Au=b} is an abstract linear program,
where Q is a élosed convex cone in a Banach space U and A
is a bounded linear map from U into a Banach space 2,

then P has solutions (assuming P is feasible) and P = D

+ c .
where D = sup{yb: y € Z*, c-A*y €0 } whenever { l{o) is
A
closed in RxZ, or eqgquivalently (in the case that A has

closcd range) whenever Q +.N{c} is closed+. But
A

&

consider the cone K; if we fix m2 and m3 in (6) with m2
and m” not both zero, then the cross section of K in

m --m4 space looks like

* N denotes null space.
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> —obont > @) 2 md)?

This is precisely the infamous example of a closed convex
set whose sum with a closed subspace (e.g. the m4 axis)
need not be closed or eguivalently whose image under a

closed~range bounded linear map (e.g. the projection

onto the ml axis) need not be closed.
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4, The quantum detection problem and its dual

We formulate the quantum detection problem in a
daultiy framework and calculate the associated dual problem,
First we summarize some well-known duality relationships
between various spaces of operators (cf. [Sch60]}.

Let H be a complex Hilbert space. The real linear

space of compact self-adjoint operators j{S(H) with the

operator norm is a Banach space whose dual is isometrically

isomorphic to the real Banach space Tg(H) of self-adjoint

trace~class operators with the trace norm, i.e.

W{S(H)* = ‘Tg(H) under the duality

]

<a,B> = tr(aB) < [al 1Bl A€ T a), BE K (H).

Here |B| = sup{|B¢|: ¢eHn, [o| < 1} =

sup{trAB: A ¢ T (H), lAitr <1} and |a] is the

tr

trace norm I lki[ < +o yhere A€ T;(H) and {1}

are
1

the eigenvalues of A repeated according to multiplicity.

The dual of 'TS(H) with the trace norm is isometricallv

isomorphic to the space of all linear bounded self-adjoint

operators, i.e. T_(#)* = <fS(H) under the duality

<A,B> = tr(AB) Ae T m, BE JCS(H).

Moreover the orderinags are compatible in the following
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sense. If K_(H),, 'Z’S(}I)+, and <;CS(H) denote the

+
closed convex cones of nennegative definite operators

in K (H), 'TS(H), and .fS(H) respectively, then
, + +
(K ), 17 = 7., and [T_m),}) = ;fs(u)+

where the associated dual spaces are to be understood in

the sense defined above.

Let fj ‘be given elements of ‘TS(H) {as defined

in (4)), j=1,...,n. Define the functiocnals
Fj: JCS(H) > R by
Fj(A) = 530(A) + tr(fjl\.) . AeaCS(H), j=1,...,n, (8)

where & ()

_>_O
L

s + of nonnegative definite operators, i.e, §

denotes the indicator function for the set

bo (A

is 0 if A > 0 and +« otherwise. Each F. 1is proper

convex and w*-lowersemicontinuous on afS(H), since
jis(H)+ is - a w*-closed convex cone and A ¥ tr(fjA) is a

continuous (in fact w*-continuous) linear functional on

iis(H). Define the function G: cfs(H) + R by

G(A) = 6{0}(1\)' A ¢ °€S(H)p (9)

that is G(A) 1is 0 if A =0 and G(A) is += if A # 0;

G is trivially convex and lower semicontinuous. Let

m = (ml,...,mn) denote an element of .fg(H)n, the
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Cartesian product of n copies of ,{S(H). Then the quantum

detection problem (3) may be written
— n
Fi(m)+G(I-Im): m = (my,...,m) ¢ ESRCIRN ST

where L: £ AR cfs(H)

s is the continuous linear
operator
g n
Lim) = & m, , me &_(H)", (11)
. 3 s
3=1
We consider a family of perturbhed problems defined by
2 n
P(A) = inf { £ F.(m.) + G(a-Im: mé€ &£_(m"},
=1 3 3 S
J
A€ L _(H). (12)

P{*) is a convex function efs(H) + R and P = P(I).

Note that we are taking perturbations in the equality

constraint, i.e. the problem P{A) requires that everv

feasible m satisfy Lm = A. Ve remark that G(+) 1is nowhere

continuous, so that there 1s certainly no Kuhn-Tucker
point m such that G(+) is continuous at Lm as reguired by

the duality theorem in [ET76,III 4.11.

In order to construct the dual problem corresponding

to the family of perturbed problems (12) we must calculate

the conjugate functions of F. and G. Ve would like to pose

the dual problem in the space _‘TS(H), so we consider
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"{s (H) = T_(H)*

Clearly *G

Y]

0.

for v Q‘TS(H),

i

(*Fj) (v) sup{tryx-’f‘j(x): X € zsm)}

It

sup{tr(y-fj)x: x € ,{S(}1)+}

ce e
‘-{0 if ,.jyéTS(H)+
+

@ optherwise

Now L: fS(H)n - a‘fS(H) is continuous for the

w* =

wi iS(H); TS (1)) topology on is(n) , SO we can

calculate the pre-adjoint (where we identify

LT = (TN as

L T )~ Ty (vy,e.y).

n n
Hence (*P)(v) = I (F*v))+("6)(y) = I & . ().
=1 ) j=1 =73
Thus the dual problem is (*P)*(I) = supltryI-*P{y)] is
Y
given by
(*p) * (1) =

sup{tr(y): v € T H), fj-y >0 j=1,...,nl.

We have immediately P(I) > (*P)*(I) with equality iff P(.)

and compute the pre-conjugates of F.,G,

Bv a straightforward calculation we have,

(12)
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is w*-Asc at I.

We now define perturbations on the daul problem.

Let D(+) be the functional on 'TS(H)n defined by

D(v) = inf{-try: y'e'FS(H), y < vy j=1,...,n} (13)

where v = (vl,...,vn)E:'TS(H)n. 0f course, D(f) is just
the dual problem (with a change in sign to make D(.) convex)

for £ = (fl,.;.,fn): D(f) = *P)*(1I). Moreover the dual

of the dusl problem is again the primal, since F. and G

are w*~-Isc:

*(D*) (f) = sup{<f,m>-D*(m): m,égis(ﬁ)n}

$

n
= supf{ I tr(f
=1

n

.m.) - *P ) *(m.) - (*G) * (~Lm-I) :med n
ij) jil(FJ) (“3) (*G) *(-Lm-1) meS(H)}

n
= sup{jiltr(fjmj): -mj&‘is(H)+_Uj=l,...(n,~Lm = 1}

n

= -inf{ % tr(fjmj).: my ¢ ism)

40 3=1,...,n and Lm=1}
j=1

1

- P(1).

In general we have P(I)

th

=*(D*) (£) > - D(f) = *(p*) (1).

We shall show that D(+) is continuous for the norm topology

on 'TS(H)n, and hence that D(f) = *(D*) (f) and

P(I) = *(D*) (f) has solutions. Equavalently, we could

show that the level sets
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m €L (M7 DXm)-<£,m> < r} =

n
med S(H)+:

nhes

n
m, = I and £ trf.m. <r}, rer
3 =

are bounded and hence w* = w(afS(H)n, ?S(H)n) compact,

and then apply Theorem III.11.5 to show that D(.) is

continuous at f. In fact, in this case the feasibility

set for the primal problem,

— n‘
domD* = {m € ofs(}1)+. ;

oo

n. = T
) my 1,

is itself w* compact and hence it is easy to see that P

has solutions.

Proposition 1. D(+) is continuous on ’T;(H)n. Hence

D(f) = *(D*) (£) and *(D*)(f) = P has solutions in S(H)“.

Proof. By Theorem ITI.11.5 applied to the dual problem
we need only show that domD = Tg(H)n. Given
n

V= (Vyyeea, v )€ T (H)n, set y = - ¢ (v.*v.)l/2

1 n s =1 3 3
: * 1/2 . . -
where (vj vi} 1s the unique positive square root of
the positive operator vj*vj > 0. Since (vj*vj)llz—vj >0

for every j, then Y < Vj yj and hence vy is feasible

for D, i.e. D(v) < =try < +=, Hence domD = 'TS(H)n.

O

Proposition 1 shows that there is an optimal soluticn

for the quantum detection problem ard that there is no
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duality gap. The difficult part is to show that the dual
problem (*P)*(I) has solutions. It turns out that the

level sets of the dual cost function are bounded in /Z‘S(H)
but not weakly compact; equivalently, P({-) is norm-continuous
at I but not nmf iS(H) ’ TS(H))-continuous. This suggests

that we imbed T_(H) in its bidual T_()** = aﬁs(m*

and extend the dual problem to the larger space; it will

then turn out that there are solutions in T (H). This

approach works because 'Z'S(H) has a natural topological

complement as a subset of Z_(H)*.

Proposition 2. X _(m)* = 7T,(N) & (J X_(H) )t where J
is the canoni-al irbedding of K _(E) in 5{’5(}{). In
other words, every bounded linear functional y on {S(H)

may be uniquely represented in the form vy = Yac & Ysg

wvhere Vact ’Z‘S(H) and ysgé 7(5(1{)—‘-' and
Y = trly, A) + Ysg(A), A ei’s(n)
1= Iyacter * iyagls

Proof. From [Sch%0,IV.3.5] we have the identification

LBy * = T (H) 8y K(H)*; it is onlv necessary to show
that the same result holds for the real linear space
iS(II) . But every (real-linear) vy f—:fs(}{)* corresponds
to a unique -(complex-lincar) A€ L (H)* satisfying

A(A*) = K{A), and conversely; this correspondence is given
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by
y(n) = A +FKET], A €L (1);
aa) =y s ayEERD L acZm.

Hence, the theorem follows. a)

Before calculatingj the dual problem, it is necessary
to determine what the positive linear functions look like

in terms of the decomposition provided bv Proposition 2.

Proposition 3. Let Yy ¢ iS(H)*. Then Y ¢ {oﬁS(H)+]+

IFE y_ € T ), and y__¢ (,{S(H)+]+.

+ .
] if

Proof. It is irmediate that y e [L_(H),

. +
Yac € 'Z'S(H)+ and Y sg €[ fs(h)+} . Converselv, suppose
vel .,fS(H)+}+. Then clearly for every compact operator

Ce 7(5(}1)+ CX iH), we have
0 < y(c} = trYaCC.

ence vy__¢€ {‘R_S(H)+]+ = ’(S(H)+. Now let Ac¢g (S(H)+

be an arbitrary positive operator. Take {Pi} to he a
norm-bounded net of projections with finite rank such that

P 4 I in the sense that Pi 2 Py for i > i' and

Pi + I in the strong operator topology. Then

3
13;1/2P:.LZ\‘]‘/2 has finite rank and Al/zpiA‘/z 4 A in the
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strong operator topology. Hence

1/2, ,1/2, _ 172, 172y .
0 < y(A-a"""P.A )—ysg(A)H:r{yac(A—A P.AT )] Ygq @

where the limit in the last step is valid since

aopl/2p 4172

P.A + 0 in the w* = w(.fS(H) ' TS(H)) topology
on c{S(H) (this is weaker than the strong operator

topology). Thus ysgc [fS(H)+]+. 0

Y71ith the aid of this last proposition it is now
*
pcssible to calculate the extended dual problem in .{’S(H) .

The conjugate function of G is G*

1

0, The conjugate

of F. is
J

!

Fj*(y) sup{tr[(yac-f)x]+ysg(x) T X € fs(fi)+}

: ) +
0 if fj-yace ’Z‘S(H)+ and 'Ysge [is(h)+1
+ otherwise

= 6_<_fj(yac) * 6_<_o (ysg)

+ . e
where by Ysg < 0 we mean “Vsq € (L (H) 1. The adjoint
of L: & (H)rl > £ (H): m > % m. 1is

s s 521 3

L*: £ _(H)* ~ ;fS(H)*n: v * (V,.e.,¥). Hence

n
P*(v) = I Fj*(-(L*y)j)+G*(y) =

1 J

e 3

N 5ifj(yac) + 5:O(ysg).
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Thus the dual problem *{(P*) (I) = suply(I)-P*(y)] is

Yy
given by

*(p*) (I) = sup{tr(yac)+ysg(l): v t.is(H)*, y._ <0,y <f£.

sqg ac — j

j=l'o-"n}o

Note that this is consicstent with the more restricted

dual problem (*P)*(I) given by (12). Ve prove that P(-.)
is norm-continuous at I, and hence P(I) = *{p*) (I), *(P*)(I)

has solutions.
Lemma 4. If A€ L _(H) and |a] <1, then I+A > G. 1In

particular, I € int ifs(ﬁ)+ and y(I) > 0 for every

P +
nonzero y E[afs(d)+] .
Proof. Suppose |A| < 1. For every ¢¢€H,

<(1+a) 810> = [o]%+<aolos > |o]%-|al-]s}?

il

(1-1a]ye}? > o.

Hence I+A > 0 and I €int ig(H)+. Now suppose

y € [d{S(H)+]+, y # 0. Then there is an A €£S(Il) such

that |al <1 and y(R) < 0. Hence y(I) > y(I+d) > 0. 0

Proposition 5. P(*) is continuous at I, and hence

9P(I) # ¥. In particular, *(P*)(I) = P(I) and the dual

problem *(P*) (1) has solutions.

Proof. By Theorem IXI.11,5 it suffices to show that

I€int domP. But if A ¢ és(ﬁ) and |a| < 1, then by
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Lemma 4 I+A > 0 and m = (I+A,0,0,...,0) ¢ dfs(H)n is
feasible for P{(I+aA), i.e. I+A edomP. Henc:o

I ¢int domP and 3P(I) # 4. 0

It is now an easy matter tc show that the dual
problem actually has solutions in ‘?S(H), that is solutions

in iS(H)* with O singular part.

Proposition 6. Everv solution vy &.is(H)* of the extended

dual problem *(P*)(I) satisfies ysg = 0, i.e. vy Dbelongs

to the canonical image of T (H} in 'TS(H)**.
Proof. Suppose vy ¢ iS(H)* is feasible for the dual

problem' i.e. }rac i f] for J = l,...,n and ysq i 0.

~ ! “ . d
If ysg # 0, then tr(yac)+ysg(1) < tr(yac) by Lemma 4.

Hence the value of the objective function is improved by

setting ysg = 0, while the constraints are not violated,

Thus if vy is optimal, then qu = 0. .

To summarize the results, we have shown that if we

define

n
—_ 3 - 1 n~
P = lnf{.z tr(fjmj). (my,myeee.,m) € fs(h) ;

J=1
n
my >0 for j =1,2,...,n; Im, = 1} (14)

-D = supf{tr(y): v¢ Tar v 2 fj for j = 1,2,...,n} (15)
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then P = -D and both P and -0 have optimal solutions.

Since P 1is an infimum and -D is a suprernum we immediately
get an extremality condition: m solves P and y solves D
if and only if m is feasible for P, y is feasible for -D,
and

n

jiltr(fjmj) = try.

This leads to the following characterization of the

solution to the quantum detection problem.

Theorem 7. Let H be a complex Hilbert space and suppose
(fl,...,fn) € ?é(H)n. Then the guantum detection problem P
defined by (11) has solutions. Moreover, the following

statements are equivalent for m = (my,...,m)) é<fs(H)n:

1) m solves P

n
2} In. =1I;m >0 for i=1l,...,n;
L0 iz
j=1
n
L f.m. < fl for 1 = 1l,ee.,n
j=1 J 3
n
3) Inm. =3I;m, >0 for i=1l,...,n;
S ] 1 -
i=1
n
In.f. < fi for i = 1,...,n.
j=1 33

Under any of the above conditions it follows that
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is self-adjoint and is the unique

solution of the dual problem -D given by (15); moreover

P=-D= tr(y).

Proof We must show that the conditions 2) and 3) are
necessary and sufficien’. for m QEfQ(H)n 0o solve P.
Note that the first part of each condition 2), 3) is simply

a feasibility requirement.

Suppose u solves P. Then there is a y E'TS(H) which

solves -D such that y < fi for 1 = 1,...,n and
n '
T tr(f.m.) = tr(y).
j=1 33
n n
Egquivalently, 0 = I tr{f.m.)-tr(yi) = I tr(f.-y)m.
i=1 J 3 =1 J 3
] 3
n
since I m. =1I. Since f.-y > 0 and m. > 0 we conclude
jzl J J - 3 -
from Lemma 8 which follows, that (fj—y)m_.l = ¢ for
n “n
j=1,...,n. But then ¢ = ¢ (f.-y)m. = I f.m.-y and
4=1 3 J =1 33
-

2) follows. This also shows that y is unigue.

Conversely, suppose 2), i.e. m is feasible for P and

n n
r fm. < f., 1=1,...,n. Then y = £ f.m. 1is feasible
j=1 33— 1 j=1 2 J
n
for -D, and Z tr(fjmj) = tr{(y). Hence m solves P and
j=1

y solves -D.
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Thus 1) <=> 2) is proved. Since tr(fjmj) = tr(mjfj)
n
the proof for 1) <=> 3) is identical, and y = fjm] =
j=1
n
I m.f. is the solution of -D.
jop 33 =

We have made use of the following easy lemma.

Lemma 8. Let A €T _(H',, B €L _(H), . Then AB > 0, and

trAB = 0 iff AB = Q.

N 2
Proof. If ¢ ¢H, then <AB¢|¢> = <Al/2Bl/2Bl/2Al/“¢!¢> =

<Bl/2Al/2¢[BU2AU2¢> = §Bl/2Al/2¢i2 > 0. Since AB > 0,
trAB = E<AB¢i]¢i> is 0 iff AB = 0, where {@i} is a
i

complete orthonormal set. 0O

Remarks on the literature. TYXL75] claims the necessary

and sufficient conditions 2) with the additional constraint

that

o1

f.m. =

m.f., but the proof of thes=s conditions
lJJ J 3

N~ 3

3 i=1
is not correct. [H73] states that the conditions 2) are
sufficient, but of course this is the easy part. It is
interesting to note that in the commuting case where
{pi—pj'ok-pli =0 for i,3j,k,% {1,...,n}, the problem
reduces to the classical case, i.e. the optimal guantum

detector m = (ml,...,mn) corresponds to a finite resoluticn

of the identity and the decision is made in the usual way
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by maximizing the posterior probability.

Added Remark. Prcfessor Mitter has brought to my attention

Holevo's paper [H76] in which the detection results given
here are proved using a somewhat different argument. How-

ever he does not appear to have extended these results to

the more general estimation problem considered in Chapter IX.



VIII. Operator-Valued Measures

Abstract. Let S be a locally compact Hausdorff space and
X,2 Banach spaces. A theory is develcoped whcih represents
all bounded linear operators L: CO(S,X) +~ Z2* (without
requiring L to be weakly compact) by Borel measures m which
have values in L(X,Z*) nd are countably additive in a
certain operator topology. Moreover this apprcach affords
a natural characterization of various subspaces ot L(X,2%)
in terms of boundedness conditions on the corresponding
representing measures. The uaual results for representing
bounded linear maps can then be obtained by considering

L(CO(S,X),Y) as a subspace of L(CO(S,X),Y**), for ¥ a
Banac

n space. These results have applicaticns in the theory

of gquantum estimation.
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Operator-valued Measures

It is clear that the formulation of guantum estimation

problems requires some techniques in the theory of operator-

valued measures. While proving the necessary properties of

such measures I noticed that the approach I had taken,
while natural for LS(H)—valued measures, was scmewhat dif-
ferent from the general theory of operator-valued measures
developed in the literature, as we shall see. Let S be a

locally compact Hausdorff space with Borel sets B. Let

B4 -

X,Y be Banach spaces with normed duals X*,Y¥* CO(S,X)

denotes the Banach space of continuous X-valued functions

f: S - X which vanish at infinity (for every ¢ > 0, there

is a compact set KCS such that [f(s)| < e for all se S\K),

with the supremum norm [f|_ = sup{f(s)|. It is possible to
S€S

identify every bounded linear map L: CO(S,X) + Y with a

representing measure m such that

Lf = ‘m{(ds)f(s)

(1)
S

for every £ ECO(S,X). Here m is a finitely additive map

m: B » L(X,Y**) with finite semivariation which satisfies:

1. for every z €Y¥*, m : 8 - X*¥ is a regular X*-valued
2 g

Borel measure, where m, is defined by

mz(E)x = <z, m(E)x> E€B, x€X; (2)



2. the map z » m, is continuous for the w* topologies

. *
on zé€Y and m_ € CO(S,X) .

The latter condition assures that the integral (1) has

values in Y even though the measure has values in L(X,Y**)

rather than L(X,Y) (we identify Y as a subspace of Y*¥*).

Under the above representation of maps L.EXACO(S,X),Y), the
maps for which LX: CO(S) > ¥Y: g{(*) » L{(g{-)x) is weakly
compact for every x€ X are precisely the maps whose
representing measures have values in L(X,Y); not just in
L(X,¥Y**). 1In particular, if Y is reflexive or if Y is
weakly complete or more generally if Y has nc subspace
isomorphic to cé, then every map in L(CO(S,X),Y) is weakly
compact and hence every L € L(CO(S,X),Y) has a representing

measure with values in L(X,Y).

In the conte:z of gquantum mechanical measures with
values in LS(H), however, I identified every ccntinuous
linear map L: CO(S) - LS(H) {here X=R, Y=LS(H)) with a
representing measure with values in LS(H) rather than in

LS(H)**, using fairly elementary arguments. Since Y = LS(H)

is neither reflexive nor devoid of subspaces isomorphic

to ¢, (think of a subspace of compact operators on H having

a fixed countable set of eigenvectors), I thought at first

I had made an error. Fortunately for my sanity, however, I

soon detected the crucial difference: whereas in the usual
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approach it is assumed that the real-valued set function
zm(+*)x is countably additive for x € X and every z €Y*, I
require that it be countably additive only for x € X and
z€.Z=TS(H), where Z=TS(H) is a predual of Y=LS(H), and
hence can represent all linear bounded maps L: CO(S,X) > Y
by measures with values in L(X,Y). 1In oti:.z words, by
assuming that the measures m: B > LS(H) are countably
additive in the weak* topology rather than the weak topology
(these are equivalent only when m has bounded variation),
it is possible to represent every bounded linear map
L: CO(S) - LS(H) and not just the weakly compact maps.
This approach is generally applicable whenever Y is a dual
space, and in fact yields the usual results by imbedding
Y in Y**; moreover it clearly shows the relationships
between various boundedne..s conditions on the representing
measures and the corresponding spaces of linear maps. But
first we must define what is meant by integration with
respect to operator-valued measures. We shall always take
the underlying field of scalars to be the reals, although
the results extend immediately to the complex case.
Throughout this section we assume that B8 is the
o-algebra of Borel sets of a locally compact Hausdorff
space S, and X,Y are Banach spaces. Let M: B =+ L(X,Y) be

an additive set function, i.e. m(ElU 32) = m(Bl)+m(E2)
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whenever El'EZ are disijoint sets in B. The semivariation

of m is the map m: 8 > R, defined by

L,

i

it~ 3

lm(El)Xi

where the supremum is taken over all finite collections
of disjoint sets El""’En belonging to Bn E and

KyreoosX, belonging to £1- By BnE we mean the sub-o-algebra

{E'¢€ B: E'CE; = {E'NE: E€8B} and by X, we denote the

closed unit ball in X. The variation of m is the map

Im{: 8 ~ R, defined by

Im! (E) = sup ? }m(Ei)I
i=1

3

t

where again the supremum is taken over all finite collections

of disjoint sets in BNE. The scalar semivariation of m is

the map m: ® > R, defined by

13

m(E) = sup| aim(Ei)l
1

e

wnere the supremum is taken over all finite collections
of disjoint sets Bl""'En belonging to BN E and
ajr..-,a,€R with la;| < 1. It should be noted that the
notion of semivariation depends on the spaces X and Y;
in fact, if m: 8 » L(X,Y) is taken to have values in

L(R,L(X,Y)), L(X,Y), L{X,Y)** = L(L(X,Y),R) respectively
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then

e

=1

= m < -’ = < ’L‘ = :- -
MR, Lx,U)) S ™ T MLk, vy £ T Mg x,0) 5, R) (3)
When necessary, we shall subscript the semivariation

accordingly. By fa(B,W) we denote the space of all finitely

additive maps m: 8 + W where . 1s a vector space.

Proposition 1. If m¢€fa(B,X*) thenm = |mj|

. More generally,

if m¢€ fa(B,L(X,Y)) then for every z € Y* the finitely

additive map zm: B ~ X* satisfies zm = |zm].

Proof. It is sufficient to consider the case Y = R,

i.e.
mé€fa(@,x*). Clearly m < Iml. Let E€B and let Ej....,E
be disjoint sets in BAE. Then I{m(E.)| = sup Im(E )%, =

1 xiexl
sup IZm(Ei)xi{ < m(E). Taking the supremum over all
Xiéxl

disjoint E; € BNE yields |lm| (E) < m(E). g

We shall need some basic facts about variation and
semivariation. Let X,Y be normed spaces. & subset Z of

Y* is a norming subset of Y* if supi{zy: z€ Z,|z! < 1} = |y|

for every y €Y.

Proposition 2. Let X,Y be normed spaces, m € fa(d , L(X,¥)).

If Z is a norming subset of ¥Y*, then
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m(E) =  sup tzm| (E) , E B
z€Z,lz|<1l
m(E) = sup sup fzm(*)x!(E) , Ee&

z€Z,|z|<l xeX,|xi<1

Moreover |y*m(+)x|(E) < |x|-{y*m|(E) < Ix]-ly*]-

mi{ (E)

for every x€ X, y*¢ Y*, Eed.

Proof. Let {El,...,En} be disjoint sets in- & N E and

e € . Tt
Xy xn Xl hen

n n n
bz m(E;)x I = sup <z, I m(E) x> = I ozm(E;) X, .
i=1 ZGZl 1=1 1=1
Taking the supremum over {Ei} and {xi} vields
m(E) = {zm|(E). Similarly,
n n
sup | I aim(Ei){ = ~sup sup sup <z, I a,m(E.)x>
| -1 L
Eaiﬁil 1=1 ;aiﬁl; xEXl ZEZl i=1
n
= sup I {zm(E;)x|
xeX, 1=1
2€7

and taking the supremum over finite disjoint collections

(8.1¢ BAE vyields m(E) = sup sup lzm(+*)x| (B).
: Ixj<1 lzl<1

It is straightforward to check the final statement of the

theorem. O
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Proposition 3. Let mefa(d, L(X,¥)).

Then m, m, and |m|

are monotone and finitely subadditive; |m| is finitely

additive.
Proof. It is immediate that m, m, 'm| are monotone.
2 E = ’ nd 1""IF

Suppose E,, E, ¢ and E,ANE, = #, and let F,
be a finite collection of disjoint sets in <Btﬁ(ElL}EZ).
Then if {x;! < 1, i = 1,...,n, we have

n n
3 m(Fi)xl} =1z (m(Fir\EL)+m(Fif\E2))xi§

i=1 i=1

[ A

iz . |+ Im(F. nE |
i;m(Flr\El)xll+‘im(Fl(\L2)xl!

| A

m(El)+m(E2)-

Taking the supremum over all disjoint Fl,...,Fne i}rW(El&)EZ)

yields 5(E1L)E2) < ﬁ(El)+72(E2). Using (3) we immediately

have m, {m! finitely subadditive. Since |m! is always

superadditive by its definition, im! is finitely additive. 0

We now define integration with respect to additive set

functions m: & > L(X,Y). Let 438X denote the vector

space of all X-valued measurable simple functions on S,

n
that is all functions of the form £ (s)

= I 1. (s)x,
i=1 Bt

N

where {El,...,En; is a finite disjoint measurable

partition of S, i.e. EiQJB P91, E;erj =g for i # 3,

-
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and U E. = S. Then the integral /m(ds)f(s) 1is defined
i=1 S

unambiguously (by finite additivity) as

/m(ds) f(s) =
S i

T e

m(Ei)X;. (4)
1 i
We make &®OX into a normed svace under the uniform norm,

defined for bounded maps f: S - X by

Suppose now that m has finite semivariation, i.e.

m(s) < +=. From the definitions it is clear that

|/m(ds)f(s)! < m(s)-|E}_ , (5)
S

so that £ » /m(ds)f(s) is a bounded linear functional on
s

-

(88x,{<|_); in fact, m(S) = sup{|/m(ds)f(s)!: [£]|_ < 1,fel0X}
is the bound. Thus, if m(S) < +» it is possible to extend
the definition of the integral to the completion M(S,X) of
&8 in the |+|_ norm. M(S,X) is called the space of totally
& -measurable X-valued functions on S; every such function

is the uniform limit of Jd-measurable simple functions.

For f &€ M(S,X) define

m(ds)f(s) = lim fm(ds)fn(s) (6)
s nro s
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where fné B X is an arbitrary sequence of simple functions
which converge uniformly to f£. The integral is well-defined
since if {fn} is a Cauchy sequence in 88X then

{fm(ds)fn(s)} is Cauchy in Y by (5) and hence converges.
S

Moreover if two sequences {fn} {gn} in £HOX satisfy

[gn—fjw + 0 and Efn—fﬁw - 0 then ifm(ds)fn(s)—fm(ds)gn(s)! <

ﬁ(S)!fn—gnioo >~ 0 so lim fm(ds)fn(s) = lim fm(ds)gn(s).

Similarly, it is clear that (5) remains true for every
£ € M(S,X). More generally it is straightforward to verify
that

m(E) = sup{/m{as)f(s): £ €M(S,X), {£f]l_ < 1, suppfcCE!}. (7)

P
-

>

Proposition 4. CO(S,X)C.M(S,X).

Proof. Every g{(-) ¢ CO(S) is the uniform limit of simple

real-valued Borel-measurable functions, hence every function
n

jo!

of the form £f(s) = =

gi(s)x.l = I g.®x. Dbelongs to

i=1 i=1 7

M{sS,X), for giE.CO(S) and xié X. These functions may

be identified with CO(S)®X, which 1is dense in CO(S,X) for

the supremum norm[T§7p448]. Hence CO(S,X) = chO(S)®X<:M(S,X).

To summarize, if meéfa(d, L(X,¥)) has finite semivariaticn

m(S) < +o» then /m(ds)f(s) is well-defined for
S
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feM(S,X) QCO(S,X), and in fact £ » fm(ds)f(s)
S
linear r- 5 from CO(S,X) or M(S5,X) into Y

is a bounded

Now let Z be a Banach space and L a bounded linear
map from Y to z. If m: 4> L(X,¥) is finitely additive
and has finite semivariation then Im: &+ L (X,Z) is
also finitely additive and has fini.e semivariation

Lm(S) < |L|{*m(S). TFor every simple function £ & QX it

is easy to check that L/m(ds)f(s) = /Lm{ds})f(s). By
s s

taking limits of uniformly convergent simple functions we

have proved

Proposition 5. Let méfa(df, L(X,Y)) and m(S) < +». Then

Lm € fa(dd, L. (X,2)) £for every bounded linear L: ¥+ Z, with
Lm(S) < + » and
L/m(ds)£f(s) = fIm(ds, f(s}. (8)
s S
Since we will be considering measure representations
of bounded linear operators on CO(S,X), we shall reqguire
some notions of countable additivity and regularity. Recall

that a set function m: 8 -+ W with values in a locally

convex Hausdorff space W is countably additive iff

m(UEn) = im(E)

for every countable disjoint sequence
n=1 n

{E;} 1in & . By the Pettis Theorem (DSiv.10.1) countakle
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additivity is equivalent to weak countable additivity,
i.e. m: &3 > W is countable additive iff it is countably
additive for thes weak topology cn W, that is iff w*m: & > R

is countably additive for every w* € Wx. If W is a Banach

space, we denote by ca(d3,W) the space of all countably
additive maps m: & -~ W; fabv( N ,W) and cabv(L8H,W) denote
the spaces of finitely additive and countably additive
maps m:&® > W which have bounded variation |m|(S) < + =.

If W is a Banach space, a measure mé€ fa(d,w) is

regular iff for every = > 0 and every Borel set E
there is a compact set KCE and an open set GDE such
that [m(F)| < ¢ whenever F € £n(G\K). The following
theorem shows among other things that regularity actually
implies countable additivity when m has bounded variation
fm|{ (S) < += (this latter condition is crucial). By
rcabv(d ,W) we denote the space of all countably additive
regular Borel measures m:ié +~ W which have bounded

variation.

Let X,Z be Banach spaces. We shall be mainly concerned
with a special class of L{X,zZ*)-valued measures which we
now define. Let M(&, L(X,z*)) be the space of all
me¢fa(d, L(X,2*)) such that <z,m(*)x> € rcabv(d) for
every X €X, z¢€ Z. ©Note that such measures me&¢ WM(D, L(X,2*%))

need nct be countably additive for the weak operator
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(equivalently, the strong operator) topology on L({X,2*)},
since z**m(-})x need not belong to ca{d) for every
X €X, z*¥*¥¢g Z2%*,

The following theorem is very important in relating

- various countable additivity and regularity conditions.

Theorem 1. Let S be a locally compact Hausdorff space
with Borel sets & . Let X,Y be normed spaces, z, a
norming subset of Y*, méfa(d, L(X,Y)). If zm(-)x: & = R
is countably additive for every =z 621, x € X then

Im}(+) is countably additive & =+ R . 1If zm(+)x: & +» R
is regular for every z €Z,, x¢X, and if imi (S) < +m,

then !m}(+) r&abv(8,R,). If Iml(S) < +=, then m(-)

is countably additive iff {m| is and m{+) is regular

iff |m} is.

Proof. Suppose zm(-)X¢ ca{&,R) for every zé¢ Zl’ X € X.
Let {Ai} be a disjoint sequence in o . Let {Bys---/B.}
be a finite collection of disjoint Borel subsets of

x>

U Ai' Then

1=1

a . no w n 0 |

jil,m(Bj)! = jilim(;glAir\Bj)l = j;lxj2§1!zjm(;glAinBj)xj;.
zﬁ&Zl

-

Since each zﬁm(')xj is countably additive, we may continue

P

with
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Q
)

n fee] 0
= T sup | T a.m(A.AB.)x.! < % sup T lz.m(ANnB.)x.|
j=1 x.€X, i=1 o3 T o) x.ex, i=1 S
31 - ] 1
2.€ . ‘
€2 262,
n =) B n x
< ¥ I |m(A.aBy)| = T % Im(A.,aB.)| < T im|(A.).
T 5=1i=1 t i=1 j=1  * 2 T i=1 *

x

Hence, taking the supremum over all disjoint {B.!<c UA~A.,
o oc . izl
we have [m|( U Aj) < T im|{ (A.). Since {m| 1is always
i=1 Toi=1 -

countably superadditive, |m! is countably additive.

Now assume zm{-)x 1s regular for every =z € 2 x€ X,

17
and |m}(S) < +w». Obviously each zm(-)x has bounded
varitation since |m{ (S)< +® , hence zm(-)x¢ ca(dd) by
[DS III.5.13] and zm(-)x € rcabv(f ). We wish to show
that |m! is regular; we already know |m| € cabv(d).

Let E €8, ¢ > 0. By definition of |m{(E) there is a

finite disjoint Borel partition {El""’En} of E such

n
that Imi(E) < T §m(Ei)§ + ¢/2. Hence there are
i=1
fy ! ;

zl,...,zné Z1 and xl,...,xne X, %y < 1, such that

n

im!(}:) < I zm(E;)x, + /2.
i=1 -

Now each zim(-)xi is regular, so there are compact KiC.Ei
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for which lzim(Ei\ Ki)xil < e¢/2n, i=1,...,n. Hence

Im| (ENK) = |Inl(B) - |m](K)

n e n

< X . - Z o dit . :. N
z zim(Ei)xi + = ) zlr"(Elr\}l)xl
l=1 i=1
n

= s n(E. . . y,
R zim(El\ Il)xl + €/2
i=1

< €,

and we have shown that |{m| is inner regular. <Since
Im|(s) < +=, it is straightforward to show that |ml| is
outer regular. For if I ¢@d, € > 0 then there is a
compact KCS\N E for which [m{(S\NF) < Im|(X) + € and

so for the open set G = S\NKDE we have
Im|(GNE) = Iml(SNE) - |m{(K) < €.

Finallv, let us prove the last staterment of the
theorem. We assume n¢€ fa(add, L{X,¥)) and {m{(S) < +o,
First suppose nf(.) 1is countablyv additive. Then for
every disjoint sequence {Ai} in &,

Im( U A,) -
i=1 * i

[ e I

m(Ai)I + 0, so certainly
;

4

y*m( U A, )x -

' y*m(hi)x.l > 0 for every v*¢ ¥Y*, x€ X
i=1 i

o3

hi

-
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and by what we just proved |m| is countably additive.

Conversely, if |[m| is countablv additive then for everv

® n
disjoint sequence {A.} we have [m( UA,) - I miA,)]| =
1 . 1 . 1
i=]1 1=1
Im(_g Ai)l < }ml(.U Ay = lm,(.y A - = Im{(Ai) ~ 0,
1i=1 i=1 i=1 i=1

Similarly, if m is regular then every y*m(*)x is reqular

and by what we proved alreadv |m| is regular. Converselv,

if |m} is regular it is easyv to show that m is reqular. .

Theorem 2. Let S be a locally compact Hausdorff space

with Borel sets 49 . Let X,Z Dbe Banach spaces. There

is an isometric isororphism L n between the bounded

linear maps I: CO(S) + L(X,2*) and the finitelv additive

measures m: 43 > L(X,Z*) for which zm(:)xé€ rcabv(dd)

for every x€X, z€2Z, The correspondence L& m is

given by
La = [ g(s)m(ds), gE;CO(S} (10)
)
where |L| = m(S); moreover, zL{g)x = [ a(s) zm(ds)x and
{zL(<)x] = |zm(*)x|(S) for x€X, z¢ Z;

Remarks. The measure mé€ fa(&, L(X,2*)) need have neither

finite semivariation m(s) nor bounded variation |m|(S).

It is also clear that L{g)x = [/ g{s)m{ds)x and
N

zL(g) = f g(s)zm(ds), by Proposition 5.
S
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Proof. Suppose L ¢ L(CO(S), L(X,Z2*)) is given. Then

for every x€X, zZ€Z the map g » 2ZL(g)x is a bounded

linear functional on CO(S), so there is a unique real-

valued regular Borel measure oLt &3 + R such that
14

zL{glx = [ f(s)mx ,(dsh.

(11)
S ’

For each Borel set F ¢ &8, define the map n{(E): X - 2z*

L

by <z,m(E)x> = mXZ(E). It is easv to see that

m(E): X - 2* is linear from (11); roreover it is con-

tinuous since

m(E)| < m(S) = sup |zm(+)x{(S) = sup lm__|(5) =
I | = swe) I e | <zl
|z|<1 lz|<1
sup |zL(<)x} = |L].
%<1
lzl<1

Thus m(E) € L(X,2*%) for Fed and m €fa(d, L (X,2%))

has finite scalar semivariation m(s) = |L

. Since
= - - . 3 - - - - 1 -
m mL(R,L(X,Z*)) is finite the integral in (10) is

well-defined for g eCO(S}CIM(S,R) and is a continuous

linear map ¢ » fm{ds)g(s).
I

=

Mow (1ll) and Proposition 5
imply that

zL(g) x

i

Jzm(ds)xg(s) = <z, m(ds)a(s) *x>
S S
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for every x¢ X, z€ 2. Thus (10) follows.

Conversely suppose me€fa(dH, L(X,z*)) satisfies

zm(+)x ¢ rcabv(R ) for everv x¢ X, z€ Z., First we nust

show that ™ has finite scalar semivariation m(8) < +o

Now sup |zm(E)x] < |zm(<)x](S) < += for every x€X, z¢ 2.
B A

EE€
Hence successive applications of the uniform houndedness

theorem vields sup |m(E)x] < + =

for everv' xé¢é ¥ and
Eed

sup |m(E)] < +», i.e. © 1is bounded. Rut then by
Eed

Proposition 2

- n
m(S) = sup |zm(+)x|(8) = sup sup ) {zm(Ei)x{
Ix|<1 x|<1 E; disjoint i=1
<)<l lz]<1
+ -
= sup sup z zm(Ei)x - I zm(E ;)X
|x[<1 E, disj +
lz|<1

b

= sup sup zm(U+Ei)x - zn{U E.)x

Ix|<1 E.dis] *
iz]<1
< sup 2:uplzm(E)x| = 2sup|m(E)| < +=
T ix|<1 EeD E e '
Jzl<1

where ' and U" (£~ and U7) are taken over those i

for which zm(Ei)x > 0 (zm(Ei)x < Q).

Thus 1:(s) 1is

finite so (10) defines a bounded linear map

Ls CO(S) - L(X,2%). O
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/e now investigate a more restrictive class of
bounded linear maps. For L € L(CO(F), L(x,z2*))

define the (not necessarilv finite) norm

n
= |
Hel sup!iilL(gi)xi.

where the supremum is over all finite collections

gl,...,gn€ CO(S)l and xl,...,xnéxl such that the ay

have disjoint support.

Theorem 3., Let S be a locally compact Hausdorff space

with Borel sets 8 . Let X,2 be Banach spaces. There

is an isoretric isomorphisn Ly« me L, between the

linear maps Lj: C_(S) » L(X,2*) with HLIH < +»; the

measures m€fa(d, L(X,2*)) with finite semivariation

m{S) < += for which 2m(+)x € rcabv(&3) for everyv

zZ ¢2Z, x €X; and the bounded linear maps IL,: CO(S,X) > Z*

The correspondence L, n < L, is given by

"

ng ;Cm(ds)q(s) ’ qECO(S)

o

{ds) f(s) , fe CO(S,X)

€2 Baa

Lz(g(v)x) = xng)x , g€ CO(S), x € X.

Moreover under this correspondence | !LIH = m(S) = |L

(12)

(13)

(14)
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and 2L, € CO(S,X)* is given by 2zL,f = [ zm{ds) f(s)
)

where 2zm€ rcabv(d,X*) for every z €32

U

Proof. From Theorem 2 we already have an isomorphism

Ly $ n; we nust show that l!Llli = m(S) under this

correspondence. Ve first show that I[Lli! < m(s).

Suppose gl,...,qne Cc(s) have disjoint support with

lg;le < 15 %ypec0,x €X with !xi‘ < 1; and z€ 7 with

lz] < 1. Then

n
<z, 2 L (gl)x]_> =

i=1 1 i

t~s

. ézm(ds)xi-gi(s)

| A

n
z }zm(-)xi!(suppgi)
i=1

A
o3

izm| (suppg;)

i=1

where the last step follows from Proposition 2 and |x.| < 1,

Since |zm| is subadditive by Proposition 3, we have
n

n
<z, L Ll(gi)xi> < izm[(.U

suppg;) < lzm[(S).
i=1 i=1

Taking the supremum over |z| < 1, we have, again by

Proposition 2,

n
|2 Ly{g)x;| ¢ sup |zm]| (s) = m(s).
i=1 - lz!f_l
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Since this is true for all such collections {gi} and

{x;1, |IL]] < m(S). We now show m(s) < ||L|]. Let

€ > 0 be arbitrary, and suppose E;,...,E e are

disjoint, |z} <1, }xil <1l,1i=1,...,n. By regularity

of zm(o)xi, there is a compact KiC Ei such that

lzm (e)x; [ (By) < % + |zm)x, | (®k), i = 1,...,n. since

the K, are disjoint, there are disjoint open sets
Gi:)Ki. By Urysohn's Lemma there are continuous functions
93 with compact support such that IK < 95 < 3.(~ . Then
i ’i
n n n
‘ = r -
'Z zm(Ei)xi ‘E zL(gi)xi + _E ‘(lE. gi)(s)zm(ds)xi
i=1 i=1 i=1 i
"n n
< .E zL(qi)xi + .E f(lE.-lK.)(s)zm(c:s)xi
i=1" i=1 1 i
n n
< .Z ZL(gi)Xi + .Z lzm(')x}(Ei\ hi) < -Z zL(qi)xi+€
i=1 i=1 i=1
n
<1z L(gi)xil + €
1=1
< luil + e

Taking the supremum over |z| < 1, finite disjoint collections

{Ei}, !xi] <1 we get m(s)

A

]| + €. sSince € > 0



213

was arbitrary n(s) < ||L|| and so =(s) = liLn}].

It remains to show how the maps L, € L{C _(s,x}y,2*

are related to Ll and m, 1o givan Ll or equivalently m,
it is irmediate from the definition of the integral (6)

that (13) cefines an L, € L(CO(S,X),Z*) with
‘Lzl = m(S) < +»., Conversely, suopcse L
is given. Then (14) defines a kounded 1li
Ly: C (s) » L (X,2%), with ‘L, ! < {L,|; moreover it is

easy to see that ||{r 1] < I:

deternines a measure n¢ ML, L(X,2*%)) with

n(s) = llel] < !L2§ such that (12) holds. 1Mow suppossa
n
£{-) = 'Z *i(')xie CO(S)@X; then
i=1
n n
I £ = 2 = YT . D 3 +
'n{ds) £(s) .E Ll(gl)kl I Az(gl( )Al} Lz(x).
i=1 1=1

Hence (14) holds for f£(.) €C (3)3X, and since C_{38)&X is
’ o

dense in C_(&,X) we have
0 4

Lyl = sup |l £l = suo I fmtds) £(s) |
feCc (s)ax feC_(s)ax
9] G
tel <1 TLst
< sup Ifm(ds) Z(s) i = 2480,
T fert(s,X)
PEi <2

-3
oy
W
il

i

= (S) b, b,
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rinally, it is immediate
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rom Proposi

zL,f = fzm(ds) £(s) for f'ECO(S,X), z €2. Ve show that

. ' —
zrm € rcabv(df ,X*) for z€ Z, Since lzn|(s) < [z|-a(s)
by Proposition 2, zm has bounded variation. Since for

‘\ al
each x€ X, zr{*)x€ rcabv(dy) we mav apply Theoren 1
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<
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zm € reabv (8 ,X*) . 0O
The following interesting corollarv is imrediate from

}ILlES = }in in Theorer 3.

Corollary. Let L,: CO(S,X) > VY he linear and bounded,

where X,V are Banach spacass and §  i1s & leocally cormpact

where the suprernun is over all £in

}‘Jc

T2 ceollections

{gl,...,g }(:CO(S} and all {x,,...,:_ } €7 such that

n n

- . . . i ! P H

tsuppgi} are disjoint and ig.|_ <1, bar, | < 1.

Proof. Take 2 = Vv* and irh=2< Y7 in 2F = Y¥* Then

T'e now consider a supRscaéc® oI Llnear operators

L, € L{(C (5,X),Y) =with even stronalr continuity propoviies,
e} ¥OTYOof

o X
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namely those which correspond to bounded linear funchtiona

3

3

Yo

or C i5,X8_2); equivalently, wa shall see t

5 1at these rnaps
3 1]

correspond to representing measures n & 7 ( L, L (X,2Z*))

(]

shich have finite total variation }n}(s) < 4+, sp that
m€ rcabv (B, L(X,2*)). For L, ¢ L&CO(S,X),Y) we cefine

the (not necessarily finite) norw

where the supremum is over 2ll finite collections

{f’r°"'fn} of functions in C_{§,X) having disjoint
4

support and ;film < 1. 1In applyina the definition to
L, ¢ L(c_(s), Lx,2%) = Lic_(s,7),Y) with

vvhere the supremun 1S over z2ll Zinite collections
{gl,...,gj} of functions in C (&) Thaving disjoint

support and |g.l

- - -3 L xr ksd . -3 i

tensor produzst spaces., Dy 1 % I 2 danote a tensor

T B = vace of L2e o e D R NA xracb e ety

LDIrouulT spacz ; ana ‘o, PRSI . [URARS 2CCC Svagcoe
- . L. o _ - .

of all finite lincar corninazions TooaLT. o2 wiere
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a. R, X.€X, z.€&€ 2 of urssS a . Z. are not
lé 2 i [4 i ( r [ r i “

}.J.
15

unigquely determined). There 1s a natural dualityv between

Vi

X©® 2 and L({X,2*%) given by

Mcreover the norm of L € L(¥,2*%) as a linear fun

on X & Z 1is preciselv its usual operator nom

.E:.
1t

sup <z,Lx> when X ® Z is rads into a normed
!x§<l
lz|<1

space X & _Z under tha tensor product norm 7 defined bv
B = -

n n
— T « i [
T {u) = inf!{ I ixgitlzgiru = Ioxo &zl nexX 8 7.
i=1 i1t 0t

]

it
o
()]
Q
™)
3
e

on

¢

cal injection X x Z - ¥ ® 2 is continuous)

and in £fa

¢!

¢ w 1s the stroncest norr on X § 74 with

this property. By X 8 _2 we dencte the completion of

X ® _2 for the ¥ norm. Fvery I € L(¥,Z%) extends to

ad A ~7
"
. A
~ . 1 “a 3 1 3 - " PO ] . ~
a unique bhounded linear Zunciicnal on ¥ 6H_ 2 with the
T
A
-~ X, 1. AN 3 T I e -
sare norm, X @_ 72 nav he identified rore concretelvy as
B : -
<
3 £ < 3 R R, - - 3 .- {7 s
inNLinite surms Lo a.x. & z viiare i - oin X,
5 13 i b
1-=4
o
. el bl © t - feo7n T 3 o
zi > 0 in 2, and - o < iT7L, TIT.o, -] antt e




The following theorem provides an

A
*
of CO(S,X 8_ Z)*.

Theorem 4, Let S he a Hausdorff

with Borel sets & . Let X,2 be

is an isomatric isomorphisn L144

the linear maps Ly: C_(S) ~ L(x,

.
e

integral representation

locally compact space

Banach spaces. There
me> L, < Ly between
Z*) with {}]Lll!{ < 4oy

8 ~ L (X,2*) with

e, . . } - e . .
finite variation ,ml(S) < +»  for wiich zm{.)x € rcabv{ad)
for everv z €7, x¢ ¥X; the linear

L.g = [ n{dsqg(s) , Ge¢cC

1 - o
w2

sz = f m{ds) £(s) , ¢z

5 c

Lju = J <u(s),nlds}> , uéecC
[y
[l

<z, {La)u> = <z,L2(q(~)x)> =

mans L, CO(S,X) - 4F
ar functionals

pondence Ll4ﬂlﬁ641w4—'L

3
(s) (15)
(s, (16)
(s, 2_ 2) (17)

~
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Under this correspondence §l§Ll!§| = Inl(s) = }l!Lzlll =

l1,l, and me rcabv( B, L(X,2%)).

3

Prcof. From Theoren 3 we already have an isonorphism

L eanxe%Lz; we rust show that the norms are carried

1

over under this correspondence. As in Theorem 2, we

assume that L; ¢ m e L, with o, 1 = n(s)

]

o
A
+
8

We first show |]lL

1gyrenerg

} C ¢ «a ha disdoint sunsor: 3 I <« 1
S o(8Y; have disjoint support and !xi <1

then q-(‘)xié CO(S,X) have disjoin® support with

. . 201 i
1=1 i=1
Taking the suprenur over ixii < 1 wvields
n
- Pt { A - P+ { t
.L lLl(g,)l < |%%L225{r ant nence l‘i“liil < IliL2§!§~
i=1 B
llext we show %{tLZiI? < {nils). lLet

.} < 1. Then
1 —

n n n
iy &= — 3 7 T~y = I H v Hrery o
I 2. L {(f.) = Z [ z.m(d3}Z.{s) < I Jz.rlsuppf.)
. 1721 . i 3 - = 1ERSVER T
1=1 i=31 & i=1
vinere the last i-nooualibty follous fxorm (7)) apnliod to
—~ ﬂa N - - -
z.m€fal{dd,”*), Dy Propositicns 2 and 3 te nnr haa
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n
= inl{ U suppf.) < [nl().
i=1 *
n
< 1 vields b {L°fi‘ < =l (),
i=1 °

I A
T
o

Lll . Let = >0 be
’Er e £3 =a2re disjoint and
n. Dby regularitv of

such that

BN

TS, -c )(s)zir(ﬁ-;x.
:'::1 ""i -~ 1
n

Tl -1 )Y (syz.mids) ¢,
.. PR I, 1 1
i=1 i bl

n

Eolzomle)ng PN KY)

i=1 - - -
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< Loand 731 €1 vi2ld:
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over all
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Lou = f<u{s),m(ds)> and [L,! = Iml{(s). Thus (17) holds
S
and the theorem is proved. g

Thus, to summarize, we have shown that ther

(¢}
)
4]
™1}

continuous cancnical injection

C (s, X®_ z)* > L{C (S,x),2*) -~ L(C _(5), Li(xX,z%));
] ] O e}

’

each of these spaces corresponds to operator-valuad measuras
me 7%(;9, L(X,2%)) which have finite wvariation |m! (s)

finite semivariation nm{s), and Zinits scalar semivariation

S

(s), respectively. By posing the thzorv in

neasures with values in an L{¥,2*) szace rather th

3
{1
3

r
'

Moreover in the case that Y 1is a duzl sozace (without
necessarily being reflexive), it is oossibla to represen

all bounded linear operators L€ L.(C (S,X),Y) by operator-

o O -
valued measures m € #( L, L(¥X,¥)) wizh values in L(¥%,¥

1t

»

rather than in L(X,Y**); this is imporzzant for the quantum

represent E;(CO(S), L (H)) overaters by IJS(}{)—valuel
o
overator measures rather than is (k) * -valued measures.
>

e now give two examplaes to show now ThE usual reprasantatio
theorems follow as corollaries oy conszliznrzring ¥ as &

subspace of YF*,




Corollary {[D67, III.19.5]. Let S be a locally compact
Hausdorff space and X,Y Banach svaces. There is an
isomatric isomorphism betw=2n bound=d linear maps L:
CO(S,X) + Y and finitely additiva maps m: 3 - IJ(X,Y**)

with finite semivar.:tion m({s} < +» for which
1) vy*m(-) € rcabv(&3,X*) for every y*¢ ¥*

2y y* v y*m 1is continuous for the weak * topologies

e

on Y*, rcabv(d,x*)

Proof. Set Z = ¥Y* and consiizr Y as a norm-cliosed
subspacs 0f Z*. An elerment ** of Y** beloags to Y
iff the linear functicpnal y* » v**(y*})  1s continuous for
the w* topology on Y*. Hencs the maps L €'L(CO(S,X),Y**)
which correspond to maps L € L(C (S,X},¥) are precisely
the maps for which z v <z,Lf> are continuous in ths
w¥-topology on Z = ¥Y* for every
equivalently those maps L £or which z & L¥z 1is con-
tinuous for the w* topologises ocn 2 = Y* znd C_(S,X)*,
The results then follow directly f£rom Thzorem 3, wheve

we note tho* wi.ocn L€y m,

A
th
~
tt
%
'\4
Y%
|
A
N
-
-
N
b
3
)
£
S
N>
1 '1
n

(-
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L: CO(S,X) + ¥ can be uniquslv repres=nted as

Lf = frm{(ds)f((s) , £€¢Z (5,X)
o
S
wh:'re mefa(dy, L(X,Y)) has finite ssniveriation
T(s) < +» and satisfies vy*m(-)x € rcabv(B) for every
x €X, y*€ ¥, if and only if for every x¢€&¥X the boundad
lirear operator L_: CO(S) > Y: g{«) = L{g( )x} 1is weakxly

comnact. In that case |[L| = 2({s) and L*y* 1is given

by (L*y*)f = fy*m(ds)i(s) whsar=z y*r:é:cabv(§3,z*} for
S

every vy¥E€ Y*,

s}

emark. Suppcse Y = 2% is a

{r

]

heorem 2 every L € L(C (S,X),Y)
measure mé€ M(L, LX,¥
the representing measure @m 2actuzlly satisfies
y*m(-)x € rcabv(B) for every v*¥eY¥Y* (and not just for
every y* belonging to the cancnical image of 2 iIn
for every xXE€ X; i.e. in this 2zss w2 nave (in our notation)
me ML, L (X,Y**)) where ¥ Is injected into its

bhidual Y**.

Proof. Again, let ¢ = Y* ani definc J: Y > Y** to be

the cancnical injection of ¢ ink vy o= 7%

linear onecratar L : CO(S) - 7 s wonnly compact 12




* * * %
L)_ : 0 {S)** > Y** has image Lx CO(X) ** which i1s a subset
of JY [DS, VI.4.2}. First, supposa L is weakly compau:,

* *

so that L, ¢ CO(S)*"‘ >~ JY for every x. Now the map
A = A(E) is an element of CO(S)** twrhere we have
identified A€ rcabv(B) = CO(S)*) for E &

* %
Lx (A » A(E)) = (z v <z,m(E)x>)& Y**

03

where m€ W(H, L(X,2*%)) is the representing me

asure
of JL: CO(S,X) > Y**, Since L 1is weakly compz *,

z » <z m{Z1x> must actually besloxng to JYCY¥** i
z #» <z,m{E)X> 1is w* continuous an? n{Z)x € JY. Hence m
has values in L (X,JY) rather than just L(X,Y**).

Conversely if m e (£, L(%,IV)) reoresents an

operator L ¢ L(CO(S,X),Y) by
JLE = fmi{ds)f(s),

x
then the map L_: Y* ~ CO’(S)* E reapv{D): z v <z,m{*)x>
is continuous f£or the weak tovdlogryron ¢ = Y*¥ and the
weak * topology on C_(S)* T rcabv{d) since m(BE)x € JY

for every E €&, x€X. Hence £ [DS8, VI.Z.T7), L is

weakly compact. O




IX. Optimal Quantum Estimation

Abstract. Duality techniques are applied to the problem

derived.
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1. Introducticn

The mathemr2ti~2]l characterization
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mal estimation

jete

in the Bayesian approach to statistical inference is a

=

well-known result in classical estimation thesory. In this
paper we consider estimation theory for guantum systems.
In the classical formulation of Baj ssian estimation

theory it is desired to estimate the unkxnown value of a

-

random param=ter s¢€
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variable whose probebility cistri

value s. The proczdure for deiz=rm

In the guantum formulation of the sstimaticn problem,
each parameter s€ S corresponds to a szate p(s) of the
guantum system. The aim is to e ate the value of s by

performing a measurement on thz guantun system. However,

the quantum situation precludes 2xhausiiva me

L

1

surements

of the system. This contrasts with the
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lassical situztion,

where it is possible in principle tc m=asure all relevant
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to specify not only the best prcocesdurs for processing
experimental cduta, but also wha: to msasure in the first
place. Hence th=2 guantum docislon vroblem is to determine

an optim~l measurenent pr.ocac:
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to deter.aine the optimal preobability coarator measure

Y,

We now formulate the guanzum estimzation problaem

Let S be a parameter spacs, with neisuranle sets X3

b 5 = . - ! o~ = -—% e - By s
Fach s €5 sgsgecifies a state c{s) oI tha guantum svstem,

i.e. every p(s) 1is a nonnegai:ve-deiinite seliadjoint
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Finally, we assum2 that there is a cost

which specifies the relative cost of an

the true value of the parametsr is s.
For a specified decision procadure

the POM m(-), the risk function is t

1L

cost given the parameter value s, i.e.

trfo(s)fc(s,t)m(dz) .
S

Rm(s)

is a a2

~robability me
distribution

the postericr

The guantum estimati

whicin the Bayves axpected cost

A formal interchange cf the

th

im(ds)

(s S

trf*
S

r3
[

.

fe(e,s)o(tYu(de).
S

(]
[¢]

[

L

. A

function C({(s,s)
s A

estimate s when

corresponding to

conditional expected

(2)

(5,8) which
saranster value s,
& cost
r2d a PCM m(-) for
imam.
oI integration yields
(<)
formzalily at leasth,
snctional (&)
n2ll apply duality
2 2xmistaence 0f a
zofficiont condilitions




for a decision strategy to be optimal, much as in the
C2tection problem with a finite number of hypotheses (a

special case of the estimation vroblem whera S 1is a:

ct

finite set). O courss we must first rigorously defin=

what is meant by an integral of the fcrm (4); note tt

both the integrand and the mesasure are cperator-valu2d
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ust then show the eguivalence ¢of {3) and (4); this

so that a dual problem ca
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Before proceeding, we surmarize <he rasults in an
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informal way to be made preciss latsaxy
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t necessary and sufficient conditions
be optimal are
SE£(s)m(ds) < £(t) for everv t£ 8.
S
It then turns out that [f(s)n(ds} bzlongs to 'TS(H)
S

{that is, selfadjoint) and the mininum Bayes posterior
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2. Integration of real-valu=d functions with respect to

operator-valu:d measures

In quantum mechanical messurement theory, it is nearly
alwavs the cases that physical guantities have values in a
locally compact EausdorZIf space S5, e.g. a subset of r"

The integration theory may be sxiended to more general
measurable spaces; but since for dualiiy purpos=s we wish
to interpret operatcr-valued mesasuras on S as continuous
linear maps, we shall always assume that the paramcter

space S is a locally compact space with the induced c-algebra
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complete separable motric spacs, so that the Baire sets
and Borel sets coilincide.
Let I be a complex Hilssxi space. A {self-adjoint)

onerator-valuad regular Borel m=asurse on

w0
',.J
W
)
3
0

m: 43 ~ &£ _(H) such that <m{-): > 1is a regular Borel

measur2> on 8§ for every &, €iI. In oDarticular, sincca
fcxr a vectecr-valued msasure countanle addiniviiy is
ecqulivalent to weak countable a2l izivioy (D3, TV.10.11,

3
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m(+)$ 1is a (norm-) countably additive H-valued measure

for every ¢ e H; hence whenever {E,} 1is a countable

. - - . . . 9
collection of disjoint subsets in &  then

@ x
m ( E ) = ¥ m(E)
n=1 n=

where the sum is convergent in the

w

crong coperator topology.

We denote by ﬁ?(éB,‘fS(H)) the real linear spzace of all

operator-valued regular Borel mesasures on S. We defin

0

scalar semivariation of m¢ #{Jd3,L (H)) to be thes norm

S
=, 4 ' f \
m(S} = sup i<mf{+)3i3> (s} (5)
lel<1
where |<m(-)¢!23>! denotes the :otal variation measure
of the real-valued Borel measur E+» <n(E)¢is>. The

m(s); note that when n(°) is self-adjoi:

i

Nap o . e . —
measure m & (&P, £ (1)) which satisfi
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where by m(E) > 0 we mean mn(Z} belongs to the positive
cone £ (H) of all ronnegativa-definite operators. A
] + =

vrobability operatcr measuare (A is a positive

operator-valued measure mé-kf{ , < {3)) which satisfies
n(S) = I.

If m is a POM then every <n{+)<.:> 1is a probability

measure on S and m(S) = 1. 1In carticul
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then true that m(-} 1is proizczion-valuz2d and satisfies

We now consider integraificon of rez’-valued function

6]

f~e

with respect to operator-vals

identify the reqular Borel cozzzitor-a

- N
Proof. First, m{+} 1is projscticn valu=ad since by finite

additivity

n{T) = r{(S)m(S) = m(E) [m(B)+7/3\Z} ] = /7 T+m{T)Im(S\FE) ,
and the last term 1s 0 since Z NI{SN\Z: = §. lNMoreover wa

have by finite additivity
m(E)m(F) = [M{EaF)+m{EXT) ] - [m(ZAfY=m /NI

sher: the Laght thre ftovm=s -0 D osioos s Shacr mars o

v

disjoint sets.
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:\ehﬂzg,;ﬁS(H)) with the buunded linsar cperators

I~

1 C(5) = ifS(H), t3ing the integratisn theory of

Chapter VIII to get a generalization of the Riesz

Representation Theoremn.

sets & . Let H be a Hilbsrt snacoe
is an iscometric iscmorphism me> L bs

o . .
valued regular Borel measures & /47(=2,2 (H)) and

n

bounded linear maps L€ IJ(CO(S}, £ _(¥}). The corre

S
shere the integral is well-defined for ¢{-) € M{38)
and totally measurable maps g: S - R} and is conve

for the supremum norm on M(S). If me> L, then m(S)

ar?  <L{g)ély> = Jg{s)<m(-)als>lds) <for everv §,v €H
S

. N . — - - 5 .

Moreov - L 1s positive (maps C,(8) into *S(ﬂ)+) i

m is a positive measure; L is nositive and L{l) = I i

m is a POM; and L is an algebrz nomomcoshism wiith L)

iff =m is a resolution of the idesntity, in which caso
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Proof. The correspondence L «<»m  is immediate from

Theorem V12, I

20

m 1s a positive measur:. then
<m(E)dld> > 0 for every E €4 and 2¢H, so

<L(g)¢le> = fgi{s)<m(+)s]|3>(ds) > 0 wheneve

(b
Q
{v
D
-
Re!
N
0-':

C

and L 1is positive. Copr :rsealy,

|
Hh
et
e
0
yol
O
u
r'-
'vJ.
<
()
rr
oy
0
=}

<m(-)6!lé¢> 1is a positive real-valuad measure for every
¢ €H, so m{-) 1s positive. Similarly, L 1is positive
and L(i} = I 1iff m 1is a POM. It only remains to

verify the final statement of the theorsn.

- = > oy
193 = ’ I n
ns O: 03 cne

n m
fql(s)m(ds}-fgz(s)m(ds) = £ I a.b,n{E.n{F)
S=1 k=i -~ k J <
J - e
n m
= I 7 a n{E.NF,
BRI LA R
354 HEL
= Jg, (3}

Hence g + fg(s)m{ds) 1is an algsbra hormomorshisn from

the algebra of simple functions on S inzo o (D).
~ s
Moreover wWe 3how thao the honoToronhism 13 isomzzric on
Pyl S et . -1




[feisIm@ds)| < mis)|g], = gl _.
n
Converseiy, for g = I ajlv w2 may chooss  $. to be
j=1 - 73
in the range of the projection m(sj), with iéj! =1,
to get
[fg(s)m(ds)| > max <fgls)m{ds)+2.!5.>

j:l'.;.,n j: ) 1‘.3 B

e
t

j=1l,...,n

Thus g v JSg({s)m(ds) 1is isom=%iric on siuzle functions.

n

ince simple functions are uniformly dense in  M(3), it
follow by taking limits of simnle functions that
fgl(s)m(ds)-fgz(S)m(dS) = [g \S)§§2{S)?z(ds) and
{fgl(s)m(ds)[ = fgl{m for every g;,3,&M(S}. Of cour
the same is then true for g,,g,€C (3)C:{S). Since

CO(S) is complete, it follows

g !
)
@]
o
[

)_.J
[97]
U
i

0]
[®]
8]
D
[T
o
}_J
0

iscmorphism of C (S} orco a closzd subaluzhra of L

o
Now assume that L is an algsbra homomorphism and
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M, = {gerM(s): Sgistaids) Sh(s)n(ds) = fg{s)h(s)m(ds)
for evary n&€C _(3)1}.

Then Ml ccntains CO(S). Now if gné.M(S) is a uni-
formly bou:r:ad seuence which converges pointwiss o 9q

then fgn(s)m{ﬁd} converges in the weak oparator
torology to fgo(s}m(ds) by the dominated convergence
theorem appiied to each of the regular Eorzsl measures
<n(')¢§¢>, ¢,u€H (the intecrals actuallv converge for
the norm topology on & _(H) whenever lg ~go} -+ 0).

Hence My is closed under pcintwise convergcence of

uniformly bounded seguences, and sd eguals all of M(S)

by regularity. Similarly, let

M2 = [h€M(S): Jai{sIm(ds)- -/his)m(ds) = ‘g(s)h{s)m(ds)

for every g€ M(S)].

Then Mz contains C_(S) ard must therefore egual all of M(S).

o]

It is now immediate that disjoint sets
in & then
n(Z)m(F) = | dr-lein = flgjr(s)m(“s) = 0.
At st il
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subspace of a complex space correso2onds to a uniqusa
complex-linear map on the complex linear
spaces, we coull just as easily identifyvthe (self-adjoint)
serator-valued regular measures ?ﬁ(QB,;fS(H)) with
the complex~linear maps L: C_(S,¢) - & (H) which

satisfy

L{g) = L{g)¥*, gec_(s,o).
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3. Integration of ‘tS(H)—vaLued

W2 now consider cf(H) &3

L TH), T(H)), that is, bounded linear maps ~rom

a

functions

subspace of

Tae

T (4)

into T (H). 'his is possible bescause if A & T (H) and
B € £(H) then AB and BA bslong to T(H) and
! 1 ] !
1aBi . < [a] . IB]
H ! E\' i
!BAltr < in:tr!Bl
tr (A3) = tr(BAa).
Then every B € £ (H) defines a bounded linear function
Lg: T(H) » T(H) by
L. (A) = 23, Bn&¢ T(=)
D
. .+ . ) . .
with |B]| = {LB;_ In varticular, A+ trAR Gefines a
continuous (compil.:x~-) linear functional on A & T(H), and
in fact every linear functional in  7Hii*  is of this
form for some B € L (H) (cf Section ViZI.i). we note that
if A and B are selfadjcint then tr23 is real
- Lr o int mravgaly 1S - ' !
From (7)), !LBi < iB:. Conversely, if -, . ¢H and ;C<l,{.
hen InL_t > | (a9 ! = }aon =i '
then |L_ | (Cou)u‘tr = |20B% . Si2Fn > lepz e
hence (L | ‘Bl

"operations”

S7)
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(although it is not necessarily true that AB 1is self-
adjoint unless AB = BA). Thus, it is possiblé to identify
tha space Tg(H)* 0of real-linesar continuous functionals

‘s .. 2 . . N R
on T (")  witt d,q(h), again under th= pairing

tween the spaces T (8) anéd & _(4), which we shall use

to formulate a dunl problem for ths guantum estimation

situation. Howev

[¢)]
s
b
D
Ll
<
[
'..o
ft
)
'_
4]
Q
o
m
t
Q
(9]
@]
o
)
=
S.:IJ
[0}
H
IS
o]

= £ T Y T s -
as a subspace of XL { T(H), T(H)) so that we may integrate
T (H)-valued functions S ;1 bl asnact ¢ £ H) -
(. (H)-valued functions on £ with raspect to S(h) salued
operatcr measurss to get an elemant of T (H).
Supprose €7ﬁ(c8,JfS(H)) is an oparator-valued
regular Borel measure, and £: 3 - T _(H) is a simple

function with finite range of the forn

.[‘4’.3

DO &-h“:
3 s 3 - "o
- 9 + N . .
is f€ &Be T (). Then wo mav unanhiguously (by finita

Ul
rn
—~
[l
~
e
pel
~
jO
1%}
-~
i




The question, of course, is to what class of fun

(9]

tion

7]

can we properly extend the definition of the integral?
Now if m has finite total variation .m! (s}, then the
map £ » [f(s)m(ds) 1is continucus for the supremum norm
Q
(el = Supff(s}gtr on &8 ’?S(H), so that by continuity
s

the intejral map extends to a contirnucus linear map from

the closure (S, T_(H)) of Qe T (1) with the

}..J
}..J

nocrm into  T{H). In pariticular, tne intagral

«w

Ji(s)=(ds)
S

total variaticn. Since we wish ¢ consider general quantum

We may consider every mE€ /77 (23, X _{H)) as an elemsnt
>

— ~ ) z ~ (¥ - - - N - .
of W](L, L (T, THHE)) in the obvio:

1 SBOES S Way T IOoX
o,
O R a1 o vy
E € L‘é', oL ¢ \zl) Wi p,(t
m{Z) (e} = omi(E}-

o e
Moroacwrey

P
Y

r LTnf ST

jJ]
J)

3
o

Tent
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of 77(&3,655(H)) is the sam= as the scalar semivariation
of m as an element of h?(é?,i (TMH), T(H))), since

the norm of B ¢ fS(H) is the same as the norm of B as
the map p v ¢B in £ (T(H), T(H)). By *the representation
Theorem VITII.2 we wmay uniquely identify
men (8,2 _#H)) W, L (T, TH)) with a linear
operator L € £(C_(s}, £_(H)) € £(C (S), 2 (2(H), T(E))).
Now it is well-known that for Banach spaces X,Y,Z2 wa

ay identify [T67,II1.43.12;

L (x %_ v,2) £ B(R,¥-.2) = L(x, 2(Y,2))

A
where X @_ Y denotes the comnletion of the tensor prozuct

space X €& Y <Ior the proieciive tensor product norm

n ' n
foi_ = infl T ix.lelyts £= T x.@y.}, £€X 0 Y
T j=l 3 J jzl _

fa(X,Y:Z) dernctes the space oI continuous bilinear forms

B: X x Y > 7 with norm

il

{ I [, ! . PR
P B | upo sSuD Bx,v)
PTUBIK, Y 2) - v e

‘,...J

~ - 2 r 3 = 3 . B
and ;f(sq L(Y,2Y) Oof course d2notes the space of continuous

1.
i
linear maps L,: X +~ £ (X,7) with norm
i1, . o = sup Lo
: H - 7 er . R N .
U2 (X, YL, C 27 {Y, %)
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The identification L, «* B e L is given by

1 2
Ll{:\:®y) = B(xX,v) = Lz(x)y.

In our case we take X = M(S), Y = 2 = T (H) to identi

k4
o

Z(M(S) éﬁ THE), TEH) T L8, LOTHE), TE)) . (8)

Since tire map g - [fg(s)m{ds) is ccntinuous from M{3)
into X _(H)C L(T(H), T(A) for everyr me (L, < _(1),
we see that we may identify m with a continuous linear

A
map f v Sfdm for f£eM(S) ©_ T (H2). Clearly if

fed(s) © T (H), that is if

for g. € M(3) and o, ¢ T (¥}, then

definition of the integral to elszments ¢f the comvletion
Is A -
M{S) ©_ T (H) by sefting
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whero £ _€M(S) ® 7(H) and f_ -+ £ in the l-lﬁ—norm.
In the saction which follous we prove that the completions
M(S) éﬁ T(H) and CO(S} gv T(3) may be identified with

subspaces of M(S, T(H)) and CO(S,‘T(i)) respectively,

i.e. we can treat elements £ of M(S) ©_ T(H) as totally

T

measurable func

rr

ions f: S » T (}). We shall show that

v

under suitable conditions the mans f: 5 » T (H)

pas

interested in for gquantum estination problams do belong

A
the bounded linear mans L,: C (S} ©_ 7T{H) - TEH

- 2 : <+ £
overator-valued regular Borel measures = € W (5, 2 (T(H)

B ~ . o~ 2 . - o~ .
and the bounded lineczr maps L.: CO(D) - TGN, THY))Y.
The cosrespondence Llééxnééib is given bv the relations

1 oy it - — —~ - 3 T —_ -\ T H e oo .
and undaer this corraspoadance . = (s) = Lo More-
[NV T M o FE = H L 101 I " e
over thz inteyral [f{s)n(ds) s wall-4dn o Too every
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and linear from M(S) ®_ T(H) into T (H).

proof. From Theorem 4 of the section whizh fo
. - . - A L -~ -

may identify M(S) ®_  CT(H), and hence CO(S)

as a subspace c¢f the totally measurable {that is, uniform

limits of simple functions) functions £f: S - T(H). The

results then follow from ThecremVIM.2 and the isometric

isomorphism

¢

Lic (s) 8_ T, T T L (5), L TE), TEH))

as in (8). We note that by a £ { T(H), T(H))-valued

h

regqular Borel msasure we mea:
for which txCm(-)2 1s a complex regular Borel measure

for evory p € T(H), C € K(H), where in the ap

of TheoremViL2 ve have taken ¥ = TH(H), z = K (H)

Remarkx. It should be empnasizad that tne [+ norm 1is
strictly srronger than the supremum noym
i [ ! -y - . e e ok s
lei = sup;:(s)gtr. ttence, 17 Z_, £ &M{8) 6_ T(H)
S ;
satisfy £ _(s) = £(s) uniforml,, It 1s 2% noccemsarily Cruo
PN e Lt R ~ NN - F ‘ - ‘3




o

totally meas:
a

well-defi]

this is important is that

the functicns £ €
are those for which we may legitimately defil

(s)m{ds) for arbitrarvy

)]
™
IS%
9}

ju

IS O
ell-defined way, Jjust as it is obwidus n
integral [ff(s)wm(ds) for finite linear

with

the

. o . - - -
£{s) = g.{(s)e_.€C (8 © T _(H). “nat is not
. 3 3 o s -
3=1
. . . - P’ \ A - .
obvicus is that the completicn ¢ C_1S) & LS(E in
the tensor product noyxm 7 m2v b2 idsniified with a
subsnacz of continucus functicons f: S - T {H).
pel
Before vrocecding, we revisw soms pasic facts about
tensor product spacos. Let MN,2 Dbz spaces. By
X 9 7 we denofe a tensor nroiuct snacoe o X ant 7,
which is the vector gnace of 231 linsar




n
T a.x. ® z. wwre a. tR, ».¢X, z.€ Z [(of course,
ST 3 ] J 3
j=1
aj,xj,zj are not uniquely determined). There is a natural

duality between X ® z and & (X,2*%) given by

n

< % a.x. ® z

j:ljj J 3

Moreover the norm of L € £(X,Z*) as a lin=s2r functional
on X ® Z 1is precisely its usual operator norm

sup <z,Lx> when X 8 Z 1is macde into a
<l |x|<1

™
I
N0
—
g

normed space X ®_ Z under t
h

Iy’
o
ot
o
13
0
0
3
£o
N
Q
%
&
Q
ok
o
3
v

n
x.l-fz.l: £= 2 x. ® zj}, fex e 2.

It is easy to see that |[x 6 z!_= {xi-!z| for

x €X, z¢é& 2 (the canonical injeczion ¥ x Z2 » X ©® 2 1is

continuous with noym 1) and in fact '+ _ is the strongest

norm on X ® Z with this prozs=rty. BY X &_ Z we denote
for

the completion of X @_ Z the |+!_ norm. Every

L ¢ £(X,2*) extends to a unigue boundzd linear functional
A . .
on X 8&_ Z with the same norm as 1ts susrator ..orm, 0O
) . - v A oye X P ek - AT
that we identify (X &_ 2)* = JI{X,2%;. The space ¥ &_ &

may be identified more concretelv az 2il infirite sums




RF7

5 a.x. & z. where x. > (
- J ] J

o
) ]aj; < +e=  [S71, III.6.47,

P2 2
X ® 2z and £ (X,2*) by

A second important topol

with nornm

n
| £ a,x. © Zi{* = max
i=1 * PSR!
It is easy to see that !-|_ is
v o z! Lol hat
ix @ z! = |xi+;z:, and that
[

is finer than the e-topolog:

the completion of X

®
N
e
ot

injection of X ©_ Z 1into X

norm 1 and densa2 1image); this

A
spaces we may identify X 9

i~ s

e—-topulogy,

the
A
X &_ 2
canonical



X é~ Z > X @E Z 1is one-to-one [cf T67, ITII.38.47. We are

interested in the case that X = C _(S) and 2Z = TS(H):

we may then identify - C (5) ®_ 7T _(H) with c (S, T (1))
sinze the |-|_ is precisely the [-|_ norm when

c,(s) ®© 'TS(H) is identified with a subspace of

CO(S,'TS(H)), and C _(S) ® 7 _({(H) 1is dense in

CO(S,‘FS(S))> and we would liks to bs able to consider

¢ (S) &_ Tg() as a subspace of C_(5, T,(¥)). Similarly

we want to consider M({S) %T T(d) as a subspace of

M(S, T(H)).

4., Theorem. Let X be a Barnzach space and H a Hilbert

A
snac2. Then tha canonical manding of ¥ @_ T (H) into

in question has waak * dense Image in

|

IS
va
M
o
-~
-
l"‘
1]

[
H
6]
o
"y
fu
<
[®]
)..J
[o)
(D
W3
ct
}.J
Ik
|»J
(D
oN)

A O ~
(X &_ T(H))* = X,
il
T(s)* with (). Note that the adjcint is cone-to-one,

since the imagzs of the carnonical mapping 15 clearly dens=2.

A

¥ ; - =1 N ey 2 7
Yhat we must show is that the imbedding of (X & iy )y =,
N - . P ~ gy

the sc-called integrzl mapnincs X > X I(H) = T{D*, into
-~ £ (7)) =~ tomale * S o S emase~ ME o~ -~ -
{ X iy ) nas weea: cense Lhzge. o Coyrise the set
oL 14 s ! ’

.
< nt voOus mans T W o= i s I
of linear continuous maps L _: X LAy with finite
~
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2

A N N
(x 8_ T(H))*; we shall actually sho:

<

that these finite-rank

. . . - -
parators are weak* dense in Jf(x, ZL{H)). We therefore

ncad to prove that for every £ €(X o T®), L eL(X, L(F)),
€ >0 there is an L in X (¥. X(H)) with finite rank

such that |[<£,L-L_>| < e. Now £ has the representation

f= I a.x. 80 z. (1¢)

‘

l..l
0
5
A
N
)
o
‘-J
m
~

o
<f,L*LO> = ¥ a.<z.,{L-I, }x.>. {(11)

The lemma which follcows proves the following fack: to every
3 . ) s . = D ga-
compact subset XK of X and every JO-neighborhood V of

. < . Z oixr By Y
there is a contin.sus linear mav L : X - XL (H) with

o
finit2 rank such that (L—LO {(z) € V. Using th=2 renresenia-
b 7“5 4 Y -

tion (10), we take X = {xj;%_, Jio}y zard

0

10 N\ Py | T oy } - =<5 T T > -~
Vo= {y, Vg, e e/ v la.l. %e thon have £,L-L > < =
1 2 3_-, 3 S

— .1

as desired. 13
The lemma required fcxr tn2 above nrool, which we give

. . . . : ae = L o
beleow, basically amounts to shcwing tnat 7% = I

satisfics th~ annroxirmal

9]
)
S
]
[}
1
1

{
s
N
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Banach s :ce X the finite rank cperaiors ares densae in

PEE= .

Z(X,Z2*) for the topology of uniform converience on
& =2

compact subsets of X. It is not known whether every

locally ~onvex space satisfias the approximati

0

n property:
this gquestion {(as in the pressnt situztion) is closely

- . . A
related to when the canonical mapving ez - X ®€ Z

is one-to-one.

and every O-neighborhood V in L (H) +there is a continuous

H} with finiiz= rank such that

Proof. Let Pv1 be projecticnrs in E  with Pn + I, whera
F———— I

I is the identity owperator on = (e.g. take any complete
orthonormal basis {2.,3¢ J}! <Zor H; 1l1let ¥ be the

family of all finite subsets of J, dirscted by sot inclusi

and for ne€ N define Pn to b=z the »nrojsction onerater

U
O
]

5 <¢\I¢-v>¢>j for o€ H). Supucis L & & (X, Z2(H)).

n . =

jen
Then PnLé £ (X, £(#)) has finite rank and CONvVLrges
pointwise to L, since (PnL3(xj = P_{Lz) - Lu. Morecver
{P_T} 1is uniformly bounded, szlinc: ESRIIEEE E- S N
L - —_—- - - - ~n RN Poxs .
Tri2s, by the Barach Lnocrern (2, IIFL4.£)1 or by okn
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Arzela—-Ascoli Theorem the convaergan:

=3

¢n compact sets.  This means that for every C-neighborhood V

in L {1y and every compact subset K of X, it is true

srace, H a Hilbert space. Th2 canonical na
I . 2
CO(S) @r T(H) -~ CO(S, T(Hd)) 1is one-to-one, and the
[}

o , T(H)) is one-to-on=.

- : A T\ - o
caronical mapping M(S) ©_ T (=)} -~ M(S
[1}

1

Proof. This focllows from tha previous thecrem and the fact

Ny

A . . .
that CO(S) 8 ¥ may be identiZied with C_(S
supremum norm, for Z  a Banach space. Similarly

7y . v
MIS)Y & Z = M(S,Z) with th= suprenum norm.

Remark. In Theorem VIIT.4 we exnlicitly identified

a
a

(c sy &_ T mn* = Licg(s), L) and  (C (S) 8 T+ =

o o €

cC (3, TE))* with the rmeasures -5167W(A§,53(H) having

o

finite semivariation and fini:z- total variation, resoectively.




257

5. A Fubini theorenm for the Baves postesrior expected ccst

In the gquantum estimatiocon probkem, a decision strategy

1t

corresponds to a probability operator measure m 57?(49,ig(3))

with posterior expected cost

R = Jtrip(s)fC(t,s)m{dt) u(dt)

t

S S
whare for each s o((s) specifies a state of the guantum
svsten, C(t,s) is a cest function, and u is a prior

probability measure on S. We would like to show that the

order of integration can be intarchanged to yield

where

R
w

th

t=t

tr/f
S

! \
Ay

{s)m{(das)

il

fC(e,s)p(t)u &)
S

¥

T, (H)

that belongs to the space

of functions integrable against operator-

valued measures.

Let (s, ,u) be a finite ncrnnegative measurs spacs,
¥ a Banach space. A function £: 8 » ¥ is measurable 1fi
therec 1s a saguencs {fq} of simple measuvrable fuactions
converqing pointwisa to £, 1.2. fn'== - I{s)y ifor ovory
s €S8, A usefinl critaricn for moanucaniiicyr is o nrz
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following [DS I1IX.6.9]: £ is measurable iff it is
separably-valuad and for every cocen subsst V of X

-1 . S . - R .
£ (V). In particular, evary f éCO(S,X) is
measurable, when S 1is a locally cocmpact Hausdorff spac
¥

with Borel sets & . A function £: S -+ X is integrable

|l
t

ff it .s measursable and [!£({s)!-p{ds) < +=, in which case

the integral JEf(s)u{ds) is wzll-d=2fin=d 2s Lochner's

closure cf the simple X-valuei Zunctions with the uniform

norm. We abbreviate M(S,R) to M{S).

7. . Proposition. Le

et

be z locallv comnact Hausdeorf

S
space with Borel sets 43 ;¥ a2 Drozalility mcasure on S,

and H 2 Hilbert space. Suppczz ~2: S - 'TS(H} belongs
to  M{S, TE(H)), and C: § ¥ 3 - % iz 2 real-vziued man
satisfving
\ - -~ S et o N
£ Cle,») € Ty(5, &, ;0F00.
Then for every =s&5, f£(g) L5 owetleZalined an o oan ola -
e~ . . .




f(s)y = fC(t,s)o(tlu(dt); (12)
S

1T
i

A\
noreover £ € M(S) @ ’CS(H) and for every ocoperator-valued

r.rasure m € WD, d‘CS(H) )}, we have

FE(s)m{ds) = Sfp(t) [ C(t,sIm(ds))ul

u(dt) (13)
S S S

Moreover if t & C(t,*) 1in fact balongs to Ll(S,§3,u;CO(S))

then £ €C_(S) 8 T (m).

Proof. Since t & C(t,-) € Ll(S,.@,p;M(S)), for each n

there is a simple function Cpé I (S,ﬁ,*'-‘vT(S)) such that

1 -t
Flete, )=c (k, )| ulat) < —— . (14)
S n

th

Each simple function Cn is oI the form

k
n
C (t,s) = ¥ g ,(s)1 ()
k=1 D* Enk
there E E are disioint subszsesis of o@ and

n in tha case tha
91 e ’gnkn belong to M(S) (ir s hat
£ C(E, ") Ly(S,d,u;C {S)) wa take

S in

CO(S)). Since ¢ € M(S, TS(H)), for each n there is a

simple measurable function o_: S » T _{il} such that
LRy >
i -
sgpls(t)mn(t)% T (15)
t n




We may assumne,

subpartition corresponding to

taken on by oL

ho)
o]
ct
L
il
Il

Hh

0
1f
-

9

n
= I g_,(s)»o
nx nk
k=1 h
Of course, each fn belong
show that {f£_} 1is a Cauchy

We calculate an upper

£ J(s)-£ (s) =
nT4L n
1 1
“nel n
: ToTa (s) 1 .-
521 x=1 A3 n+l,]

by replacing e

that each

; and hence £ b

with a disjoint
finice nunbar of values

is in fact of the form

We shall

s
sesuencs for the '+!_ norm on
£(s) =Ior every s€S§;
ence I 1s & unigue

Y = - b Now
n+tl n'7
- [N — N T 5. =
S T b A S (S)_:z, ‘_‘ji([.
D=, n,x n,x
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and hence

(16)

n+l Tn
z T { o .-c by et i - ! S (B
j=1 k=1 ]gn+l,3“ ‘"n+l,3 "n,k'ir ’gn+1,3 “n,.'wipnk!tr}“( n+l,
Suprosea N # £, i.e. thers exists a ¢t B .nE
ol n+l1,3j n,k ! o€ n+1,jn n,k’
Then from (15) we have
—~ | —_— | : [ — 1
0 . . lo = | + L -olt
!'n+1,3 "n,kler = Prr1,s olE) iy 1Pn,k plE )ty
P SN SR
-- n+1 2n n+
(ne1) 2™t g n2nFd
Thus, the first half of the suxmmazion in (16) is bounded
above by
X k
nt+l "n
Lo zig bou(E AE )= — fle (e, =) uidy)
~——5 X L g I AR <t i ! ! :
1+1,1 ' n n,k n-1i +1 ™
n2 j=1 k=1 P72 T ’ n2
= 1 .1 y
nzn—-l’ n+l''1
« et )
= n-1 ' 1
n2
whare bv iiCisl we mean the norm of £ & C(Z,-) as a
elemant ©of L, (S,32 ,2:M(8)), 2nd the last inzcouclity fo lows
from (14}. Similarly the soc2:ai hallf of the sumnation is




1
kn+‘ n
o]l +1)- ¢ T lg .- +u (E
(K-~l ) o - tJ—l"!-li:' gnrk‘d' (—.n'*'ll]
=i k=1
= (|lo} _+1)- ~c_|
(lol #1211, = 11,
1
< ({o% +1) 3
n-1
n2
whare again the last ineguality follows
| 1 5 A
|[ic -Cll; < — by (14). Let a be a
'Tn 1 n
n2
than 1 + I§C1§l and 1 + |oi adding
inegqualities from (16) we hava
- \ a
£ -f i < —_ .
! n+l "niw -2
n2
iecnce for every m > n > 1 it follows
m-1 (&)
| = - < | _ £ 1 a
-f < T T A S M
™ nls £ ‘f3+¢ Siix . n-2
J=n j=n 2
Thus {fn} is a Cauchy seguence Ior th
M(S) ® 'TS(H), and hence has & limit £
Since it certainly follows tha* f‘_1 £
fact in the uniform norm since '-}_ < !
it is straightforward to show that (
every s €85, fo = £. DMoreovz=zs in th
Eovr C(t,*) €0L,(S.&,:;C (S)), wa have £

3|

"
»

0]

~1 3
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and

since



s

T_(m).

(Q»—f

CO(S)

helcnas to

and hence

as.

that (13} hol

p -
Q%7

s

to

o

enain

r

-

It only

ions we have alreadv rada

49

apgro

o

1
S

from t

follows

this

'ow clearly

o~~~
w
~4

ing

T3 r

e
Voo
PR

a

jasaul

e

St




=here

again

the

e
o
0

L

257




The cquantun estimation omroblen and its Aual

We 2re now prepared to Zorrulate the quantum detection

decisi

Y. [ ety
wner
Prooo
-

t v C

er in a dualitv frarewcrh and calculate the associated
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problem. Let & bhe a lo
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ally compact Fausdorif space
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S
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=
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ion strategsr, then the oosiericr expacitad cost is

— : d R N . S
P\,‘__‘ - trJrO(t) {Jr(t'-‘)>~ (RO B r(‘t)'
: Q S
r S Iyalad Tl e ra S Trx-
U 1S 4 Rrior ProNani LT (&, ). Ex
sition 7 this is srell—-definzd whenavar tha mayn
- oal + -~ W v :
> - LAY - .- N ~ -
(£,*) helonas o L, (5,2, ), in which casc
v ointerchange the ordor o intoaraticn tn acob
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f{s) = Jfo{u)C(t,s)ulds).
[
The guantum estiration problen is to rinimize (17) over
21l operator-valued measurss o« e7ﬁ{;9,:fb(ﬁ)) which are
ro's, i.,=. the constrainzs at~ that ri{f) > 0

for everv

Ye formulate the estimation probler in a duality
frarmework. As in thie cunantum detectlion probhler, we take
arturbations on the ecualizy ¢onsztraint ri{s) = T,

}.J
.
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Then the qgquantur detection preblem ravy ho writien
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be - wE{T A ! —~" 2 7 ~ fTry oy

o= AnfirAn) +C{I-1r r e e, Y Y S

O el
S oo - ” 4 2 - s - N £ o o]
wners L x?(o),auq(k)} - < 0 g the confinucus linoor




hus we are taking perturbations in the equality constraint,

i.e. the problem P(x) recuires that every feasible m

-

he nonn2gative and satisfy r{(8) = x; of course,

1}
P = P(I}). Since I and G are convex, P(+) is
ccirax £ (1) > |,

s

In crder to construct tha duzl preblerm corresyonding

tc the familv of perturbed preblens D{(x), ve rmast calculate

f)
)
n
0
=4
rr
v
'3
h
0
v
: ol
D
0
b)
o
Vomd
and
o
o]
5
=
o]

the dual problerm is posed in & (1) * Clear

“he adioint of the operator L is civen Fvw
Le: L_(x MDD, L 1) F: v b (n e een(s).
G i :

To calculate T©*{L*v), we have the fsllovingc
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1T .

>]
£t
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i£e]
s
Al
Q
0
b
m
&
X
o
o]
(o8
'h
N
‘N

’43” T ()

S it s

~—r

o 3y e A
}7‘x:-(sj < t’:J _'_\S)rn( S (18}
- s
for every positive operator-walued measura & W (& L _{u
-0 \ - ~ S = [EAs = S DR Jaaed meanure HERS l\' » r\““) ‘).
<~ T
‘Then v < 0 and v < {1 for evarr §5 €0, whore
CHG — Tac - 4
2N e is the unicoug dozeroeosition ¢f v o Intn
K Yo"V an :




4 A 93 and v
}ace“s() —’sgé 7‘(5

’

broof, Fix any sC,ES. Let X be an arbitrarv elemant

ol fs(ﬁ)+, and define th

it
o]
Q
0
'-ll
rf
'J
o
0

cperator-valued

) v

,
measure mé?”f(@,&’c(li)+ v
P

w
(e
Ih
0

m
]

o
3}
1]
1"
m
&9

’
0 lf S 4 .
Then verm{S8) = v{x) = trl{> x)+- (), and £rif{s)mi{fa) =
- ac “sg !
trf(so)x. Thus bv (18) tr{vac—f(;o)ZL*vsctx) < 0; since
X €I (i-’)+ was arbitrarv, it Zollows IZIrenm Preroszition ITIL3

sg — Y sc 3 - :
With the aid of this lermma it is now easv to verify that
¢ iz v < £{s) s S, and v < 0
. ac — fate SR
F*(L*v) = :
+= gother;isa
= 6 '_(\7 ) + 3 .r ) .
<f'‘ac <o sa
It now follows that P*{(y) = F¥(L*v) + CF{v) is 0 1if
:"SC —<_ G and y’ac i F(S‘ En~ every S e:"' on Dt‘:(-‘o) -
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D_ = *.0%) (I)

= supltry_ _+y_ (I): v exs(m*, Ve, £ 0, v__ <

“sg “<ac

We show that P{s) is norm continuous at I, and hence

is no cduality ¢ap (P =D ) and D has solutions.

cctimal solutions for D will alwavs have 0 singular

o
part, i.e. will be in T _(¥)

continuous at I, arnd hence 37(I) ¥ g. In particular,
PO = B, and the dual pronlen 2, Anas crtiral solution
s h] + 3 A . P I 1 S h]
Yoreover everv solution v €& _(i)* of the cual proble:r
>
- A FaS A
D naz U singuiar part, l.e. v =0 and v = v
O - =ied - ac
belongs to the canonical irags of 'Tg{ﬁk in 'ZS(Y)**
Proof. We show that 7(.) i3 hounded ahoeve on a unit
7~ 1
ball centerad at I. Suppos: x € L_{¥) and bl < 1.
-3 —
By Lemma VII.4, I+X > 0. Let Sq be an arhitrarv eleran
of S ard define the positivae oparator-valund measure

Py
(I+x 1f s _¢ T
~
Y
£ N . o
milsy = ’ Eal .
( {) S -~ -
U L P
Than r ia Foneiih,lo for ™ Oais An e d
iLa-oit i [ PSR Q VIS RN IO <a 1 B T
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trff(s)nids) = trf(so)(1+x) = 21f(s )|

Thus P(I+x) < 2|i(s )l*r whenewar Ix! < 1, so P{-)
— C

is bounded abowve on a neighborhood ¢ I and so by

convexity is continuvous at I. By Theocrem I.11.1 it

ol
oy
[

6]
0
it
g
it
U
o)
[oN)
o)

follows that BP(xO) # &2, has

. A - - .
solutions. Suppose now that v €Z (5)* is an optimal

A A
tr(yah)+yso(1) < tr(y__). Illence the value of the cdual
o N ~
cehjective function is strictlv improved by setting
A . . e . . e A
Ve. = 0, while the constraints rerain satisfied, so
< 4

.~ A . . . . . N
that if y is coptiral it must bhe true that y__ = 0,

In orcder to show that the nronlern P has solutions

ve could define a family cf dual narturtned problers D{v)

A
for v &f 3)€a_‘?s(&
x B

O

r we could take the alternati=-r2 rethod of showing that

- = N 3 3 1 = - ~ 2 1 PR o
sot of fegasible PO's nm is weak* ccmract and the cost

_ . . . 5 N T ;
function is weak*-lsc when /77 {0y &) = ;f(CO(S)ﬁ{
. - « . ~ -~ o o~ -~ A
iz identified as the norm2d dual of the space C (S) &

« £ — A F"(h\»\l, -

{L;m> = Coxirs rmldsg .
v - 4 i1 ~ JU - - “ < I - [N F S
PRGNS SRS R SN he Q1T ST 200 O T

) and show that D) is continuvous,



A A . -~ - -
predual C (s) @_ T_G0) of 77(8, T_{(i{)); by
Proposition 7 it suffices to assume that t v C(t,-)

belongs to Ll(S, o ,u;CO (s)).

ProsE. Since 97](8, £ (¥)) is thz normed dual of

s
P el . . .
cC (s @ 'Z'S(H) it suffices to shor that the set of

POM's is hounded; in fact, e shov that n(s) = 1 ‘or

Thus the set of DPOM

unit ball in (&, L (i), hence weaX*-Ccormpactt. T
- ) -

£ C(t,-} belongs to T’l{“ , -w,,i;(“o(.\)) than

— A -~

£ GCO(S) ©_  T_{1) bv Prorosition 7, so ©» b trif(s

i =

1s a weak¥*—-continunus linoor Iunciion and harca atta
its Lnfirvs on the set of o470 s, hun i T soliuti

.



The foilowing theorem sumnarizes the results we have

, as wall as providin

-2

a necassary and

sulificient characterization of the optimal solution.

cm, Let I be a Hilbsrt space, S a locally

compact Hausdorff space with Borel sets jé . Let

pem(s, T_(H}), C: S x5S~ R amap sat

PJ .
n
g2
iq
'—J
3
1

t = C(t,-) € Ll(s,ﬁ,u;co(s}), and u a probabilitvy

rmeasure on (S,83). Then for everv n € ” (3, £_ )y,

txfo(t) [fCl(e,sim(ds}Ylu{dt) = trfi(s)m(d
S S S

P, = infltr/fi{s)m(ds): neflL, L 1)) ,n{5)=I,n(E)>0 for every FRed)
a
Do = supltry: ye T _(H), v < £(s) for every sé€ S},
T"hen P_ = D, and hoith P and D have ontirzl solutinns.,
o o o o :
Moroover the following statemsnis are eguivalant for

;1&%7(2?,(’ (#)), assuniing n(8) = I and

< m (¢ = T n{L) > g for
evary § é£§:
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1) m solve=

2) JSi(s)n(ds) < £(t) for every L €S
S
3) Sm(ds)f(s) < £(t) for evervy tE£ 8§,
S
Under any of the above conditions it Zoilows that
y = ff(s)m(ds) = fm(ds)i(s) is secliadjoint and is the
S S

unnigu2 solution of Do' with

P =D = try.,

e} o <
Proof. Ve ne=d only verifv tie eguivalence of 1)-3);
the rest follcws £from Progositions 9 and 10. Sudpose m
solves P_. Then there is a v ¢ T _{i) which solves D,
so that vy < £{t) for everv t and

trff(s)n{ds) = trv.

S
Ecuivalently 0 = trff(s)n(ds)-tzy = =/ {f(s)-vin(ds).
S s

Since fls)-y > 0 for evary s¢é&£S and 1w > 0 it follows
that 0 = [{£(s)-vIm{ds) = /Z{s)n{cs)-+v and hencc 2) hcl

S S
This last cqguality also shows that v 1s uniguae,

Conversely, suppose 2) Liolds., Thzn v = TZ{«s)m(dz)
s

is feasible for N, and rorasver tr’i{s)n{ds) = trv,
Zince PO > Do' it follows =i.nz o =m~lwos P and -
anlwar D, 5o that 1} polds,




\.L‘

&

Thus 1) <=> 2) is proved. The procof of 1) <=> isg
identical, assuming that trif{(s)n(ds) = trir{ds)£f(s)
~ A e s
for every féc_(S) ®_ Ts(x:) . But the latter is true

since trald = trBA  for ever—- A € ’Z'S(EE), B éafS(H)

and hence it 1i1s true for everv f €C _(3) & T_(F). o
>
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