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ABSTRACT

¢ classes are characterized by unknown probability distributions.
A data sample containing labelled vectors from each of the c classes
is available. The data sample is divided into test and training samples.
A classifier is designed based on the training sample and evaluated
with the test sample. The classifier is also evaluated based on its
asymptotic properties as sample size increases.

A multiclass recursive partitioning algorithm which generates a
single binary decision tree for classifying all classes is given. The
algorithm has the same desirable statistical and computational proper-
ties as Friedman's (1977) 2-class algorithm. Prior probabilities and
losses are accounted for. A tree termination algorithm which terminates
binary decision trees in a statistically optimal manner is given. for-
don and Olshen's (1978) results on the asymptotic Bayes risk efficiency
of 2-class recursive partitioning algorithms are extended to the c-class
case and applied to the combined partitioning/termination alaorithm.
Asymptotic efficiency and consistent risk estimates are obtained with
independent test and training sequences.

Thesis Supervisor: Dr. Sanjoy K. Mitter
Title: Professor of Electrical Engineering and Computer Science
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I. INTRODUCTION

In this chapter we give a statement of the nonparametric multi-
class classification problem and briefly review previous work. We
give é chapter-by-chapter summary and a list of the contributions of

the thesis.

1.1 Statement of the Problem and Previous Work

We state the nonparametric multiclass classification problem as
follows. c¢ classes are characterized by unknown probability distribu-
tion functions. A data sample containing labelled vectors from each
of the ¢ classes is available. The data sample is divided into test
and training samples. A classifier is designed based on the training
sample and evaluated with the test sample. The classifier can also be
evaluated based on its asymptotic properties, as sample size increases.

The best known approach to nonparametric classification is the
k-nearest-neighbor rule introduced by Cover and Hart [1]. Let geﬁRd
be the vector to be classified. The k-nearest-neighbor rule labels o
by plurality logic on the labels of the k-nearest vectors to a (with
respect to some metric) in the training sample. Advantages of the
k-nearest-neighbor rule include:

(1) asymptotic Bayes risk efficiency is obtained if k is chosen

to be a function of the training sample size ny such that

k(nl) + o (as ny > o) (1.1)

>0 (asvn1 > ®) (1.2)



(2) valid for multiclass
Disadvantages include:
(1) computationally expensive (distance to all vectors in training
sample must be computed for each o to be classified)
(2) not invariant to coordinate-by-coordinate strictly monotone
transformations, such as scaling
(3) not obvious how to introduce prior probabilities and losses
Friedman [2] has recentTy introduced a 2-class recursive paftitioning
algorithm, motivated in part by the work of Anderson [3], Henderson and
Fu [4], and Meisel and Michalopoulos [5]. The algorithm has desirable
statistical and computational properties, and the resulting classifier
~is a binary decision tree. We discuss Friedman's algorithm in detail
in Chapter 2. Advantages of the Friedman algorithm include:
(1) asymptotic Bayes risk efficiency is obtained if the algorithm
is appropriately modified (Gordon and Olshen [6])
(2) computationally efficient
(3) invariant to coordinate-by-coordinate strictly monotone
transformations
(4) prior probabilities and losses are accounted for
The mainvdisadvantage of Friedman's algorithm is that it is only appli-
cable to the 2-class case. Friedman gives a multiclass modification
but we point out several problems with his approach. A major thrust
of this thesis is to generalize Friedman's algorithm to the c-class

case (c>2) in a way which maintains the advantages listed above.



1.2 Chapter-by-Chapter Summary

In Chapter 2, recursive partitioning is discussed. Data and binary
decision tree notation is introduced. Friedman's 2-class algorithm is
reviewed. Friedman's algorithm generates a binary decision tree by
maximizing the Kolmogorov-Smirnov distance between marginal cumulative
distribution functions at each node. In practice, an estimate of the
Kolmogorov-Smirnov distance based on a training sample is maximized.
Adaptive and transgenerated coordinafes can be used in desiéning the
- tree. Friedman suggests that the c-class problem be solved by solving
¢ 2-class problems. The resulting classifier has ¢ binary decision
trees. Several problems with this approach are pointed out. A multi-
class recursive partitioning algorithm is given which generates a single
binary decision tree for classifying all classes. A binary decision
tree is generated by minimizing the Bayes risk at each node. In prac-
tice, an estimate of the Bayes risk based on a training sample is minimized.

In Chapter 3, termination of binary decision trees is discussed.

An algorithm is given for optimally terminating a binary decision tree.
The algorithm yields the unique tree with the fewest nodes which mini-
mizes the Bayes risk. In practice an estimate of the Bayes risk based
on a test sample is minimized. The algorithm is generalized to cost
functions other than Bayes risk. Test and training sample division is
discussed.

In Chapter 4, asymptotic results for the nonparametric multiclass
classification problem are derived and applied to decision rules gen-
erated by the partitioning and termination algorithms of Chapters 2 and 3.

Asymptotic Bayes risk efficiency of a decision rule is defined. Gordon



and Olshen's results for the 2-class case are briefly reviewed and modi-
fied for the multiclass problem. Gordon and Olshen's approach involves
consistent density estimation, although their densities are with respect
to a general dominating measure which need not be known. Their results
apply to decision rules which partition a Euclidean observation space
into boxes and are invariant to coordinate-by-coordinate strictly mono-
tone transformation. No assumptions are made concerning the underlying
cumulative distribution functions. For simplicity, we give modifica-
tions for our algorithms which obtain asymptotic efficiency only for
continuous marginal cumulative distribution functions. However, it is
shown in general that consistent density estimates (with respect to a
general dominating measure) yield asymptotically efficient decision
rules for the multiclass case. The proof of this result, which is
quite simple for the 2-class case, is surprisingly difficult for the
c-class problem (c>2). Here, a simple graph-theoretic technique is
used to simplify the problem. The results are applied to decision rules
generated by the partitioning and termination algorithms of Chapters 2
and 3. Asymptotic efficiency is obtained with independent tést and
training sequences. Consistent risk estimates are obtained, even though
the estimates are based on the same test sequence used for termination.
Finally, it is shown that the rate at which the risk of a binary de-
cision tree terminated by the Chapter 3 termination algorithm approaches
the optimal Bayes risk is at least as fast as that of the tree termi-
nated by optimizing a termination parameter, as Friedman suggests.

In Chapter 5 we draw the conclusion that Friedman's recursive par-

titioning algorithm can be extended to the multiclass case, with the



same desirable statistical and computational properties. However, we
also conclude that certain issues arise in the c-class problem (c>2)
that did not exist or were cbscured for the 2-class case. Suggestions

are given for further work.

1.3 Contributions of Thesis

We list the major contributions of the thesis.
(1) A mdlticlassrrecursivé partitioning é]gorithm thch generafes a
single binary decision tree for classifying all classes is given. The
algorithm has the same desirable statistical and computational proper-
ties as Friedman's 2-class algorithm. Prior probabilities and losses
. are accounted for.
(2) A tree termination algorithm which yields the unique tree with
fewest nodes which minimizes the Bayes risk is given (applicable to
2-class case also).
(3) Gordon and Olshen's results on the asymptotic Bayes risk efficiency
of 2-class recursive partitioning algorithms are extended to the multi-
class case and applied to our algorithms. Asymptotic efficiency and
consistent risk estimates are obtained with independent training and
test sequences. Convergence rates for different termination criteria

are compared.
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II. TREE GENERATION

In Chapter 1 the nonparametric multiclass classification problem
was stated and previous work on the subject was reviewed. In particular,
Friedman [2] has recently introduced a 2-class recursive partitioning
algorithm with desirable statistical and computational properties. The
resulting classifier is a binary decision tree.

In this chapter, recursive partitioning is discussed. Data and
‘binary decision tree notation is introduced. Friedman's 2-class algorithm
is reviewed. Friedman's algorithm generates a binary decision tree by
maximizing the Kolmogorov-Smirnov distance between marginal cumulative
distribution functions at each node. In practice, an estimate of the
Kolmogorov-Smirnov distance based on a training sample is maximized.

Adaptive and transgenerated coordinates can be used in designing the

- tree. Friedman suggests that the c-class problem be solved by solving

c 2-class problems. The resulting classifier has ¢ binary decision
trees. Several problems with this approach are pointed out. A multi-
class recursive partitioning a]gofithm is given which generates a single
binary decision tree for classifying all classes. A binary decision
tree is generated by minimizing the Bayes risk at each node. In prac-

tice, an estimate of the Bayes risk based on a training sample is minimized.

2.1 Data and Binary Decision Tree Notation

(1)

In the sequel we denote a sequence by x" "7, x(z); ees Or [x(")]

and reserve {x(n)} for the set which contains the single element XM,



11

We shall often be dealing with s >1 sequences but will only be interested

in the nm1-:—h element of the m@ sequence, m=1,...,5, which we refer to

(ng,) (n)

as x rather than X m°,

Let [kg(")] be a sequence of d-dimensional random vectors from the

th

k= class, k=1,...,c. Let A|(<") denote the kt-r-'-class sequence

kg(l),...,kg(n(k)), k=1,...,¢, and let A(") denote the sequence

: Agn) seso ,A‘(:") » where

n= 3 (k) (2.1)
k=1

Let #n(k)(s) = the number of vectors in AI((") and S Rd, k=1,...,c, and

C .

(1) (2)

We assume that ,o'"’, a'“’, ... are independent identically distributed
(i.i.d.) random vectors, k=1,...,c, and A&"),...,A((:n) are jointly in-
dependent. A(") will be referred to as the data sequence; a realization

of A(") will be referred to as the data sample.

(ny) (n)

Let Ak denote an nl(k) element i.i.d. subsequence of A "7,

("1)

n n
k=1,...,c, and let A denote the sequence Ag 1),...,A£ 1), where

c ,
on = kzl nl(k) . - (2.3)

d

_ .
Let #n (k)_(S) = the number of vectors in AI(< 1) and S<=R, k=1,...,c,

and
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C

)
Similarly, let Ai 2" denote an nz(k) element i.i.d. subsequence of
(n 2) ("2)

Aén),l<= 1,...,c, and let A( 2) denote the sequence A c

where

n, = nz(k)' (2.5)

d

n
Let #n (k)(S) = the number of vectors in A'(( 2) and SR, k=1,...,c, and
2

c
SORBENNO (2.6)

(n) (nl) (nl)

Since Al .o é") are jointly independent, so are A1 seeesA

A{nz) (nz). We do not assume at this point that Ainl), Ainz) are

(n) ,(ny)

independent, k=1,...,c. However, if Ak k are independent,
n n (n,)
(m)  p(ng) aln) p(ng

and
9 e .-’A

k=1,...,C, then A are independent. will be

referred to as the training sequence and test sequence, respectively;

(n) ~,(np)

will be referred to as the training sample

(n3)

a realization of A
and test sample, respectively. A(ﬁ),VA(nl), and A are examples of
the preliminary notational remarks.

Let Fk(g) be the joint cumulative distribution function of class k;
Fk(ai) be the marginal cumulative distribution function of class k for
coordinate 1i; My the probability measure of class k; L the prior pro-
bability of‘c]ass ks zk the misc]assificatfon loss for class k. We
assume there is no loss associated with correct classification.

A binary decision tree is shown in Figure 2.1 (cf. Meisel and



t,(T)

t6(T)

Note: node indices are monotonically increasing fromf1eft to right for
any level, and from first to last level.

Figure 2.1 Binary Decision Tree T
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Michalopoulos [5]). Let binary decision tree T=-{{t0(T),...,tm(T)},E(T)},
where {tO(T),...,tm(T)} are the nodes or decision points of T and E(T)

are the edges of T; m(T) the number of nodes in T; o(T) the number of
levels in T; 1j(T), rj(T) pointers to the left and right subnodes of tj(T),
respectively; Sj(T) the subtree of T whose root node is tj(T). T is a
finite binary decision tree if m(T) is finite. Let T0 be a binary de-
cision tree. T=T, if tO(T) =tO(T0), {tO(T),...,tm(T)(T)}C: {tO(TO),...,
tm(To)(TO)}’ and E(T)CZ.E(TO).

Example 2.1

For the (finite) binary decision tree T of Figure 2.1 we have

m(T) =9, o(T) =4, 1,(T) =5, rz(T) =6, and Sl(T) as shown.

2

The decision parameters at node tj(T) are ig(T), ay*(T), 1j(T), and
J

rj(T), and are defined as follows. The root node tO(T) is the point at

which the decision process begins. At node tj(T) the i*tb component

J
of o is used for discrimination. If a;y <a¥, the next decision will
J J
be made at t] (T). If ai*;>a$* the next decision will be made at tr (m.
J J J J

If 1j(T)~<0, tj(T) is a terminal node and o is assigned to class llj(T)I.
It is easily seen that a binary decision tree with these decision para-

d into boxes (rec-

meters can realize a decision rule that partitions R
tangular parallelpipeds with sides parallel to the coordinate axes).
The algorithms we discuss generate binary decision trees as the par-
titioning proceeds.

In Section 2.3 an algorithm is given whfch generates binary decision

trees. In Chapter 3 an algorithm is given which optimally terminates

binary decision trees. The tree termination algorithm requires all
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nodes be labelled as if they were terminal nodes. This is most easily
accomplished during partitioning. Thus the nodes of the binary_detision
tree before applying the tree termination algorithm actually have five
decision parameters: ig(T), aﬁg(T), 1j(T), rj(T), and cj(T), where
class cj(T) is the label of tj(T) if tj(T) ultimately becomes a terminal
node. After the tree termination algorithm is applied, cj(T) is no
longer a decision parameter. The explicit dependence of quantities on

<t (T).

trees will be dropped if the meaning is clear, e.g., tJ j

2.2 Friedman's Algorithm

Friedman's algorithm is based on a result of Stoller's [7] concerning

~univariate nonparametric 2-class classification. We assume
24T = 2Ty (2.7)
Consider the univariate case (d=2). Stoller has solved the fol-

Towing problem: find o* which minimizes the probability of error based

on the decision rule:

o < a* decide class 1 or 2

a > o decide class 2 or 1 (2.8)
Let

D(a) = lFl(u)-Fz(a)] (2.9)

be the Kolmogorov-Smirnov (K-S) distance between the two cumulative dis-

tribution functions. Stoller shows that
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D(o*) = max D(a) (2.10)

If (2.8) does not provide sufficient discrimination, Stoller's procedure
can be applied to {a<a*} and {a>0o*} resulting in a decision rule with
four intervals. In fact, Stoller's procedure can be applied recursively
until all intervals in the decision rule meet a termination criterion.
Terminal intervals are labelled as follows. Let [a,b) be a terminal in-
terval which results from Stoller's procedure, and

uk*[a,b) = max uk[a,b) ' (2.11)

k=1,2 - :

Then class k* is the label of [a,b). Of course,

w[a,b) = F (b) - F, (a) (2.12)

Friedman extends Stoller's procedure to the multivariate case (d>2)
by solving the following problem: find a$* and i* which minimize the

probability of error based on the decision rule:

Osx < 04 decide class 1 or 2

x> ok, decide class 2 or 1 (2.13)
Let

D(o;) = [Fy(as) - Fplas) ], (2.14)

the K-S distance between the two marginal cumulative distribution func-

tions for coordinate i. Clearly,

o(dy) = max D(a,) (2.15)
]
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D(a;?*) = max D(a;.‘) _ (2.16)
i=1,....,d

As with the univariate case, Friedman's procedure can be applied recur-
sively until all d-dimensional intervals or boxes in the decision rule

meet a termination criterion. Terminal boxes are labelled as follows.

Let B be a box which results from Friedman's procedure, and

Wex(B) = kzifz u (B) , o (2.17)

Then class k* is the label of B.
An example of Friedman's procedure for d=2 is shown in Figure 2.2.
A box B= ]R2 is to be partitioned, based on the within-box marginal cumu-

lative distribution functions Fk(ai) k,i=1,2, or equivalently, the

dFk(ai)

within-box marginal densities pk(u’i) =8'0T“— k,i=1,2 (the Pk(oti) are

shown). By inspection, the discrimination on coordinate 1 is greater

than that on 2; conseaquently, i*=1, oc"_’i‘*=oz’1‘.

To apply Friedman's procedure to the nonparametric classification

n
problem, Fk(o‘i) and Wy must be estimated from the training sample A( 1).

~ n k
Let Al((nl) be a rearrangement of A|(< 1) such that k&gl)sk&gz)g,“ <ka§nl( ))’

where k&ga) is the 1'@ component of kg(j). An estimate of Fk(o‘i) based

n
on the training sample A( ! is:

i ~(1)
0 s <ka1-
(ng) vy _ ) (3) J(3+1) . _
Fk ((!_i).— "m ka] <a1.<kui J‘l,...,nl(k)"l
1 ai>k&§"1(k)) (2.18)



*=1
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Figure 2.2 Friedman's Algorithm (d=2)
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These (maximum 1ikelihood) estimates are expected to work well with mod-

erately large data bases and are pointwise consistent, i.e.,

Fénl)(ai) £ F (ct;) (as ny (k) »=) (2.19)

where L3 denotes convergence in probability. An estimate of uk(B) based

n
on the training sample A( v is

# (B) .
n, (k)
ﬁﬁ"l)(a) - **%;rzy“ (2.20)

We note that (2.18) implies a preprocessing of data.

The partitions produced by Friedman's procedure can be associated with
the nodes of a binary decision tree as described in Section 2.1. Termina-
tion criteria for Friedman's procedure are discussed in Chapter 3.

Asymptotic properties are discussed in Chapter 4.

Adaptive and Transgenerated Coordinates

Adaptive and transgenerated coordinates are functions of the measured
coordinates. They can be constructed as the partitioning proceeds,
based on training subsamples. A great advantage of the Friedman al-
gorithm is that many such coordinates can be added with 1ittle computa-

tional penalty.

Optimality

The Friedman algorithm is suboptimal in the sense that it only uses
information from the marginal cumulative distribution functions. In
certain pathological cases (cf. Gordon and Olshen [6]) this can result

in poor performance. Gordon and Olshen modify Friedman's algorithm to
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obtain asymptotic results. These modifications are discussed in Chapter
4. Their usefulness in the finite sample case appears to be highly

data dependent.

Extension to Multiclass Problem

Friedman suggests that the c-class problem can be solved by solving
c 2-class problems. In each 2-class problem, one of the classes is
to be discriminated from all of the others taken as a aroup. A test
vector is classified by directing it down all c trees and using plurality
logic on the ¢ terminal node training subsémp]es. There are th sig-
nificant problems with this approach:

(1) Optimal labelling of decision regions is computationally ex-
pensive. This can be seen as follows. Let Bj be a terminal box which
results from applying Friedman's 2-class algorithm to class j and

classes 1,...,j-1,j+1,...,c taken as a group, and

c c
(1 B:) = max  u({] B:) (2.21)
K551 37 k=1, Kge1 Y
.
Then class k* is the label of [j B.. In practice, My must be estimated.

J=1 n
As estimate of My based on the training sample A( 1) is

[of
# ( fiB.)
A(ng), € (K)o
Uk (JQIBJ) = nl(k) (2.22)

Precomputation-and storace of labels is expensive because of the number

c
of ] Bj. Online computation of labels is expensive because the training
J=1

~subsample at each node must be stored (not just # (k)(Bj)’ k=1,...,c),
, 1
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and also because of the repeated computation to compute labels. Friedman
appears to use a heuristic for labelling.
(2) It is unlikely that desirable asymptotic properties can be

found. Since the c trees are generated independently, #n (k)( ﬂ BJ) can-
. 1 j=1

not be easily restricted. This property is crucial to Gordon and
Olshen's results.

In the next section, a multiclass recursive partitioning algorithm
is given which generates a single binary decision tree for classifying

all classes. This circumvents the problems described above.

2.3 Multiclass Recursive Partitioning Algorithm

Friedman's procedure can be extended to the c-class case (c>2) by
solving the following problems: find a¥*, i*, m*, and n* which minimize

the probability of error based on the decision rule

O < a¥* decide class m* or n*

g > OFy decide class n* or m* (2.23)
Let

Dm,n(ai) = IFm(OL )-Fn(ai)l’ (224)

the K-S distance between the marginal cumulative distributions of classes

m and n for coordinate i. Clearly,
Dm,n(a?) = max D (a)) (2.25)

(a**) 1=1max , Dm,n(a¥) (2.26)
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D (o*,) = max D (a*,) (2.27)
m* ,n**Ui* m=1,...,c M0 i*
n=1l,...,c
m#n
(2.24) - (2.27) replace (2.18) - (2.16) in the Friedman procedure. In-
stead of (2.17) we have
uk*(B) = max uk(B) (2.28)

k=1,...,C

Otherwise the procedures are the same. Note that m* and n* are not de-

“id

cision parameters.

To this point, it has been assumed that

21W1 = ... = lcﬂc (2.29)

To remove this restriction, we solve the following problems: find

a¥,, i*, m* and n* which minimize the Bayes risk based on the decision
rule
Ogx < a$* decide class m*

x> 0oy decide class n* (2.30)

First we solve: find a? which minimizes the Bayes risk based on the

decision rule
decide class m

decide class n (2.31)

The Bayes risk of decision rule (2.31) for a¥ =a; is
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c c
R (a,) = ) #,m 7T Pr{decide j|k}
AL L =
j#k
= g mou log,e) + 4y (-=,a.) + Z L
k=1
k#m,n
=g (1-F (a ))-FP ™ F a )+ f 2y (2.32)
k=1
k#m,n
Thus
Rm’n(a$) = qg; Rm,n(a1) (2.33)
It follows that
(a**) = 1; min ) Rm,n(a?) (2.34)
R (o%,) = min (a* ) (2.35)
e ) ST T
n=1l,...,C
m#n

When this procedure is applied recursively, one or more classes may have
zero measure on a box to be partitioned. Clearly, the sum in (2.32) and
the minimization in (2.35) should only be over classes with positive
measure. (2.32)-(2.35) replace (2.14) - (2.16) in the Friedman procedure.
Instead of (2.17) we have

Qk*ﬂk*“k*(B) = ) 1max kakuk(B) (2.36)
=ly...4C

Otherwise, the procedures are the same.
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In Chapter 3 an algorithm is given for optimally terminating a binary
decision tree. The test sample is used both to terminate the tree and
to estimate the risk of the terminated tree. This adds constraints to

the problem of test and training sample division.
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III. TREE TERMINATION

In Chapter 2, a multiclass recursive partitioning algorithm was
given based upon the ideas of Friedman [2]. The resuiting classifier is
a binary decision tree. A binary decision tree is generated by minimi-
zing the Bayes risk at each node. In practice, an estimate of the Bayes
risk based on a training sample is minimized.

In this chapter, termination of binary decision trees is discussed.
An algorithm is given for optimally terminating a binary decision tree.
The algorithm yields the unique tree with the fewest nodes which minimizes
the Bayes risk. In practice an estimate of the Bayes risk based on a
test sample is minimized. The algorithm is generalized to cost func-
tions other than Bayes risk. Test and training sample division is

discussed.

3.1 Termination Criteria

Let Bj(T) be the box associated with node tj(T). The Bayes risk

of binary decision tree T is given by

c c
R(T) = ] gm I Pr{decide jlk}
k=1 Jj=1
j#k
c
- kz]_ zk‘"k z uk(BJ)I(“J‘ fk) (3.1)

:t.eT, 1.<0
J tJeT 1J<

where
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1151 # k

1
I(“jl?‘k) "’{ )
0 1] =« (3.2)

An estimate of R(T) based on data sample aln) 4

(n) § ~(n)
RYI(T) = T gm ] e (BI(.] #K)
k=1 jit.eT, 1.<0 J J
J J
o Rkwk
O R IO A ©-3)
> d
. . A(nl) A(nz) . .
Similarly, R (T), R (T) are estimates of R(T) based on the training

n
sample A( 1) and the test sample A(nz), respectively.

n .
é 1) be the binary decision tree generated by applying the par-

Let T
s . . .. ("1) .
titioning algorithm of Section 2.3 to the training sample A , With
termination criteria that terminal nodes contain vectors only from a

single class. Thus

A(nl) ("1) _ ¢ zknk
AU AR A RO §:tj€T(()n1)s 1;<0 Py (0 B3 11T 7
=0 | (3.4)

i.e., the entire training sample is correctly classified. But if class
distributions over]qp then the optimal Bayes rule should not correctly
classify the entire training sample. Thus we are led to examine termina-
tion criteria other than terminal nodes contain vectors from only a single
class.

Friedman suggests that the number of training vectors at terminal

nodes should be large enough to provide good estimates of the class
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measures. Friedman introduces a termination parameter k =minimum number
of training vectors at a terminal node, which is determined by minimizing

(nz). But for

an estimate of the Bayes risk based on the test sample A
large ¢ and fixed k there are many possible terminal node populations.
Thus the optimum k might be expected to vary from node to node.

In Section 3.2 an algorithm is given for optimally terminating a
binary decision tree. The algorithm yields the unique tree with fewest

nodes which minimizes the Bayes risk.

3.2 Optimal Tree Termination

Let TO be a finite binary decision tree. We want to solve the

- following problem: find T,=T, such that

0

R(T,) = min R(T) (3.5)
T=T,

Consider the following tree termination algorithm:

- Tree Termination Algorithm

=1

(i) 1if (Bayes risk does not increase when the descendents-of‘gn(T )-3
are deleted and tm(T )-3 becomes a terminal node) 0/
: 0

{delete descendents of t a terminal

. and make t
node} m(TO)-‘] m(T

0)'j
J+«j+1
if (j<m(T0)) go to (i)

end
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Theorem 3.1

Let T, = T0 be the binary decision tree which results from applying
the tree termination algorithm to TO' Then T, is the unique tree with
fewest nodes such that

R(T,) = min R(T) (3.6)
T'C:'TO

Proof

We first derive a simplified deletion rule for deleting a node's
~ descendents. Let Tb be the tree before the descendents of t; are deleted
and ts becomes a terminal node; Ta the tree after the descendents of t,

are deleted and t; becomes a terminal node. Expanding (3.1) gives

.
R(T,)= ] & BI(|1,]#k)+ B)I(]1:]#k
b) k-z-l k'"k(§:tjes1., 1j<Ouk( 5105 1#K) §;tj¢si, 1.<ouk( 3 151#6)
(3.7)
and
c .
R(T,) = kzlzkﬂk(uk(Bi)I(c#k) +§:tj¢51 ,. ]j<0uk(8j)1( 111#K)) (3.8)

The descendents of ti are deleted and ti becomes a terminal node if

c
R(T.) -R(T,) = [ &, m (u (B,)I(c.#k) -] w (BHI(]1.]7k)) (3.9)
a b k=1 k'k'Tk i i Sit.eS., 1.<0 k*"j J
J 1 J
<0
The interpretation of (3.9) is that the decision to delete descendents of

ti and make ti a terminal node depends only on ti and Si'
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Given T= T0 we construct T'e T, such that R(T') <R(T). Let

0
To> Tys e To(T )_1=T* be the sequence of trees generated by applying
0

the termination algorithm to TO’ where Ti is the tree after terminating

.th .
the o(TO)-1— level of TO’ ti seeust

; (i) the level i terminal nodes of
1 z(1

T=T

0 T'= T0 is constructed from T by the following algorithm:
i=1
(i) J-=1

(ii) 1if (there exists a nonterminal node t
b, =4 Torg) )

k(To(TO)-i) such that

{replace tij(T) by Sk(To(TO)-i)}

J« i+l
if (3<z(i)) go to (ii)
i<+ i+l
if (i<o(T)) go to (i)
end
An example of the construction of T' is shown in Figure 3.1. Since T:T0
and Sk(To(TO)-i) is a subtree of To(TO)—iC: TO’ it follows that T'= TO.
Now consider a t; -(T) which was replaced by SK(TO(TO)—i)‘ Since the de-
§cendents of tk(Td(TO)-i) were not deleted by the termination algorithm,
we have from (3.9) that R(T') <R(T) (Tb=T', Ta=T). If we allow that
no tij(T) was replaced, we have R(T') <R(T).
Observe that T, results from applying the termination algorithm to
T'. This follows from (3.9) and induction on the nodes of T'. Thus
R(T,) SR(T') which implies R(T,)<R(T). Since this is true for any

T= TO we have R(T,) = min R(T). Now suppose there exists T T0 such
T=T
0
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Figure 3.1 Construction of T' =Tq fromn T=T,
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that T#T,, m(T)<m(T.), and R(T) =R(T,). Then there are nonterminal
nodes of T, which are terminal nodes of T. Let ti(T) be a terminal node
of T such that tj(T*)= ti(T) is a nonterminal node of T,; T' be T with
ti(T) replaced by Sj(T*). Since the descendents of tj(T*) were not de-
leted by the termination algorithm, we have from (3.9) that R(T') <R(T)
(Tb=T', a=T). But R(T,) <R(T') implies that R(T,) <R(T), a contra-

diction.

(nl)

In practice TO='TO and an estimate of the Bayes risk based on the

(nlaﬂz)

A n
- test sample A 2" is minimized. Let Ts be the binary decision

(”1)

tree which results from applying the termination algorithm to T0

based on the test sample A(nz). Then

a(n2) ((npam)y

(T, M (o) alm2) (3.10)

T=T1,1

Finally we give the simplified deletion rule based on the test sample
(ng)

A The descendents of ti are deleted and ti becomes a terminal node

if:

2" () A"y - § kG 61 0] (B)1(1 7))
k= M (k) Tng(k) JteS1<0n(k)

<0 (3.11)

Cost Functions Other Than Bayes Risk

Inspection of the proof of Theorem 3.1 shows that cost functions Q(T)

of the form

QT) = | a(t;) (3.12)
J:tjeT, 1j<0
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can be optimized by the termination algorithm.

3.3 Test and Training Sample Division

nns) . C .
Ti 1 2) is generated by applying the termination algorithm to Té"l)

a nq,n .
based on the test sample A(nz). R(nz)(Ti 1 2)) is an estimate of
( n,)
R(Tﬁnl’nz)) based on the same test sample A( 2" The asymptotic implica-

tions of this procedure are discussed in Chapter 4. We mention here that

(n].) (n2) . . .
A s A must be independent and nys Ny must be increased in a pre-
scribed manner to obtain desirable asymptotic properties. Since we want

to use the entire data sample it follows that

n(k) = nl(k)~+n2(k) k=1,...,c (3.13)

which implies

n=n +n, (3.14)
In addition, common sense indicates that we must have

nl(k) = nz(k) k=1,...,c (3.15)
which implies

n = n, (3.16)

We complete the discussion of tree termination by drawing the fol-
lowing analogy.. The 2-step procedure of tree generation and termination
is similar to the solution of a general regression problem if tree genera-

tion is associated with generating models of different order, and tree
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termination with determining the optimal order.
In Chapter 4 we investigate asymptotic properties for multiclass
classification algorithms in general, and for the algorithms given in

Chapters 2 and 3 in particular.
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IV. ASYMPTOTIC RESULTS

In Chapters 2 and 3 a 2-step procedure was given for solving the
nonparametric multiclass classification problem. A multiclass recursive
partitioning algorithm generates a binary decision tree by minimizing
the Bayes risk at each node. In practice, an estimate of the Bayes risk
based on a training sample is minimized. A termination algorithm yields
the unique tree with fewest nodes which minimizes the Bayes risk. In
practice, an estimate of the Bayes risk based on a test sample is mini-
mized.

In this chapter, asymptotic results for the nonparametric multiclass
classification prob]ém are derived‘and applied to decision rules gen-
erated by the partitioning and termination algorithms of Chapters 2 and 3.
Asymptotic Bayes risk efficiency of a decision rule is defined. Gordon
and Olshen's [6] results for the 2-class case are briefly reviewed and
modified for the multiclass problem. Gordon and Olshen's approach in-
volves consistent density estimation, although their densities are with
respect to a general dominating measure which need not be known. Their
results apply to decision rules which partition a Euclidean observation
space into boxes and are invariant to coordinate-by-coordinate strictly
monotone transformations. No assumptions are made concerning the under-
lying cumulative distribution functions. For simplicity, we give modi-
fications for our algorithms which obtain asymptotic efficiency only for
continuous marginal cumulative distribution functions. However, it is
shown fn general that consistent density estimates (with respect to a

general dominating measuré) yield asymptotically efficient decision
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rules for the multiclass case. The proof of this result, which is quite
Simp]e for the 2-class case, is surprisingly difficult for the c-class
problem (c>2). Here, a simple graph-théaretic technique is used to
simplify the problem. The results are applied to decision rules generated
by the partitioning and termination algorithms of Chapters 2 and 3.
Asymptotic efficiency is obtained with independent test and.training
sequences. Consistent risk estimates are obtained, even though the
estimates are based on the same test sequence used for termination. Fin-
ally, it is shown that the rate at which the risk of a binary decision
tree terminated by the Chapter 3 termination algorithm approaches the
optimal Bayes risk is at least as fast as that of the tree terminated by

optimizing a termination parameter, as Friedman suggests.

4.1 Measure-Consistent Density Estimation

Let ﬂ(") be a decision rule based on the data sequence A(n). Note
that R(ﬁ(n)) is a random variable; by convention, the expectation has
not been taken over the data sequence. We say that ﬂ(") is asymptotically

Bayes risk efficient if

r(a{My % R(2g) - inf R(2) (as n-w) (4.1)
2

Many approaches to showing asymptotic efficiency of decision rules have
involved consistent density estimation. In general, these results have
shown that if the underlying cumulative distribution functions are Lebesgue
absolutely continuous, then pointwise consistent density estimates yield
asymptotically efficient decision rules (cf. Fix and Hodges [8], Van Ryzin

[9]). If a function is Lebesgue absolutely continuous then it is
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continuous and has a derivative almost-everywhere. Thus, if a density
is singular or even if it is discontinuous on a set of Lebesgue meas-
ure >0 then the corresponding cumulative distribution function is not
Lebesgue absolutely continuous and the results do not apply.
c c
Let v==izl¢iui’ where izl¢i= 1, $;>0, i=1,...,c. Then Hpskpse ooty
are absolutely continuous with respect to v, i.e., v(S)=0 implies
ui(S)==0, i=1,...,C, where S is any measurable setéulFrom thguRadon—
c

Nikodym theorem, there exists measurable functions R Y such

~ that

du . '
UI(S) =Jsa—g—d\), 1=1,...,C (4.2)

du.
The [%5%] are Radon-Nikodym derivatives and have the interpretation of

densities, but with respect to the measure v.

A

R |

Let T . R be measurable functions such that

A
d“gn) duy p

v{g: (@) - (o) >€}+O (as n~w) (4.3)

i | A
for all €>0. We say that 35 is a measure-consistent estimate of v

based on the data sequence A(n). Gordon and Olshen [6] have shown that
measure-consistent density estimates yieid asymptotically efficient
decision rules for the 2-class case (Section 4.2). They give modifica-
tions which can be applied to decision rules which partition Rd into

boxes and are invariant to coordinate-by-coordinate strictly monotone
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transformations. Their modified rules yield measure-consistent density
estimates and consequently are asymptotically efficient. No assump-
tions are made concerning the underlying cumulative distribution func-
tions. For simplicity, we give modifications for our algorithms which
yield measure-consistent density estimates and consequently asymptoti-
cally efficient decision rules only for continuous marginal cumulative
distribution functions. We refer the reader to Gordon and Olshen's
paper for the general case.

Gordon and Olshen introduce the idea of a p-quantile cut. We only
consider the case of continuous marginal cumulative distribution func-
tions. Given a box B, a p-quantile cut on the itb coordinate has been

- achieved at a? if
max{#n(B fi {a, <ot} # (81 {ai>oc’]?})} <pe# (8) (4.4)

i.e., if at most a fraction p of the vectors in B land in either daughter
box. Note that it is unimportant how vectors with qi==a$ are assigned
to the daughter boxes since continuous marginal cumulative distribution

functions imply \){oc?i‘} =0.

d

Let ﬁég) be a decision rule which partitions R™ into a finite set

of boxes and is invariant to coordinate-by-coordinate strictly monotone
transformations, and let B(n)(g) be the unique box which contains a.

Let 0("), ﬁg"), ﬁén), cees ﬁgn) be the usual set-wise consistent esti-

mates of v, Hys Mo «evs Ho based on the data sequence A(n), i.e.,

Fn(i) (9

e i=1,...,cC (4.5)

oM (s) -
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Cc .
i) = §eiiMes) - (a.6)
1: L.

M (M (q))

From simple properties of measurable sets and functions QMmO ,
(B (a))

i=1,...,c are measurable functions. The following theorem follows from

Gordon and Qlshen's results.

Theorem 4.1
tet pel3,1). If

. (1) there exists fixed positive 6 such that for n large enough
E%Qe (8, 1-8), i=1,2 (4.7)

(2) there exists k(n) such that

=~
=
S

.___.._..-) © (aS n->oo) (4.8)
/i
k(n) 0 (as n~») (4.9)
/i

(3) Mgz 4 BM@)km 1 (as nae) (4.10)

(4) an increasingly large number of p-quantile cuts are made on every
coordinate

then

e )
e M) &

>e} B0 (as now) (4.11)

for all ¢>0, i=1,2.
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Proof

See Gordon and Olshen [6].

N
dy.
Theorem 4.1a says that under the stated conditions, 831 (o) =
RIMCC) t ), §-1.0
is a measure-consistent estimate of — (a), i=1,2.
5 (M (q)) dv

Theorem 4.1a can be used to modify Friedman's 2-class algorithm to obtain
measure-consistent density estimates. We call this modified algorithm
Gordon and Olshen's 2-class algorithm. Since Gordon and Olshen are only
concerned with asymptotic results, the algorithm is applied to the entire
data sequence A(n) rather than the training sequence A(nl). We shall
have more to say about this in Section 4.3. Lét;Je[%,l), k(n)==n%@, and

w a large integer. We are given a box B.

Gordon and Olshen's 2-class Algorithm

if (coordinate i has not been partitioned in the w most recent par-
titionings which led to B)

[i*<i
a¥,+median o, for data vectors in B}

else

{compute i*, oX, from (2.14) - (2.16)
a?*<-max{min{p quantile, aﬁ*},
~ min{l-p quantile, a¥},
min{p quantile, 1-p quantile}}}

if (termination criteria not satisfied)
{partition B on coordinate i* at a¥,}

. else '

{do not partition B: B is a terminal box}

end
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The termination criteria are:

(1) #n(B) = #n(i)(g) for some i=1,2 OR

(2) min{#n(B 0 {a].*<oqf*}), #.(B N {ai*>a’]?*})} < k(n)

We now consider the multiclass case. Inspection of Gordon and

(4.12)

(4.13)

Olshen's results indicate that the generalization of Theorem 4.la for

c>2 is true.

Theorem 4.1

Let pe[%,1). If there exists fixed positive 6 such that for n

large enough

n(i) ¢ (g, 1-0), i=1,....c

n

(2), (3), and (4) as in Theorem 4.la, then

e

for all e>0, i=1,...,cC

agn)(a(n)(g)) d“i, )
G(n)(B(n)(c_x)) dv ‘-

> e} L3 0 (as n->)

Proof

See Gordon and Olshen [6].

(4.14)

(4.15)

Theorem 4.1 can be used to modify the multiclass partitioning al-

gorithm of Section 2.3 to obtain measure-consistent density estimates

by substituting (2.32) - (2.35) for (2.14) - (2.16) in the Gordon and

Olshen 2-class algorithm and changing (4.12) in an obvious manner.
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In Section 4.2 we review Gordon and Qlshen's proof that measure-
consistent density estimates yield asymptotically efficient decision
rules for the 2-class case. No assumptions are made concerning the under-
lying cumulative distribution functions. The proof of this result,
which is quite simple for the 2-class case, is surprisingly difficult
for the c-class problem. Here, a simple graph-theoretic technique is

used to simplify the problem.

- 4,2 Measure-Consistent Density Estimation and Asymptotic Efficiency

We want to show that measure-consistent density estimates yield
asymptotically efficient decision rules, with no assumptions on the
underlying cumulative distribution functions. We start with the 2-class

case and follow Gordon and Olshen.

Let
Lijle) = Haymge) > 2ymgri{e)) (4.16)
A(n) A\(n)
dy; du’
Igg)(g) = I(Qiﬂidv1 (9)>’2jﬂjdvj {(a)) - (4.17)

For the 2-class case we have

dul duz
R(ag) = J[(1-112)21“1 7 Tt @
duy du, '
= Qlﬂl - JIIZ(Qlﬂ'l a‘:}'—'- Q,ZTTZ -a;)—') dv » (4.18)

du du
(n)y _ (n) 1_ 2
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where the dependence on o has been suppressed for notational convenience.
Note that R(ﬁ(")) is a random variable; by convention, the expectation
has not been taken over the data sequence. We have the following

theorem.

Theorem 4.2a
/\(n) /\(n)

——(a), ————-(_) be measurable functions such that
dA“S'n) du; p
\){g g Y i Y P s:} PO (as now) (4.20)
for all €¢>0, i=1,2. Then
R(2M) BR(ag) (a5 now) (4.21)
Proof
For €>0 let
dul . du2 ‘ ‘
wl = {g : 1 Ui rve () Slzwz—d-s—(g)l < e} (4.22)
du1 d c
Wy = {9‘ |2y (@) - 2y () } Wy (4.23)
duy  du,

‘From the Radon-Nikodym theorem, el vas are measurable functions. Using

simple properties of measurable sets and functions we have W,, w2 are

dﬂl dUZ (n) dul duZ
measurable and I1 (2 M35~ 2"dw ), I (21 13~ % odg ) are measurable
on wl, wz. Thus
2 dul du2
Rag) = anl-kZJw ol ma = 22T ) (4.24)

k
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2 du
(n)y _ - (n) 2
R('™) = 2ymy kzl N (21 ot~ ATy E)dy (4.25)
k
We show
du du du
7{n) 2 1 2
fw (21 1d L) b o Mg e
k k
(as n»»), k=1,2 (4.26)
Consider wl. We have
: du dp du
p{n) 2 1 2
Uw (“1 & b ) - o T2t e
1 1
du du
(n) 2
<J lI ‘12111dv Lo ads |
< leedv < ¢ (4.27)
le
Now consider wz. First,
du du du
(n) 2 1 2
|I Aqm ldv LoTow ) | S MMd Tt R o
which is integrable over wz. Second,
du du du du
(n) 1 2 1 2 '
{“e“’z lI (2ymgy (@) - 2omygs () - T (0 mgs (@) - Rpmygs ()| > e

(as n»>w) (4.28)

Po
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for all €' >0. We see this as follows. For ' >0,

ll 1“1dv Ha) -2 Tr2d H(2)) - 100yt (@) - 2ympge (@) | = 0 < e
whenever
@Iﬁn) duk € )
ld\) (g)-’a\;—(g) <m— , k=1,2, for all gewz
Thus
(n) du1 du, d d“z S
V{‘l‘e”z' 115" (g (@) = 2yt (@) - 1y (bymgs (@) - £pmy (@) /5}
< du[((n) duk £
< v{g g (@) -g5 (2| 2 20,7 for some k-l,Z}
% d“(n)u k()| 52 (4.29)
< \){a: o /—————} 4.29
k=1 - d =/ dv ZSLk'nk v

Taking the limit in probability (as n-+«) of both sides of the above in-
equality gives (4.28). Finally, apply the Lebesgue Dominated Convergence
Theorem.‘

The proof of Theorem 4.2a is quite simple. However, the proof for
c>2 is considerably more complicated.

Let x, eR®, i=1,...,c, and I+Il be a norm on R®. Given e>0, we
recursively partition {1,2,...,c-1} into disjoint sets Il""’Iq as follows:

(1) _ _ .
.77 = {i} for some i=1,...,c-1; i¢1,,...,1 4
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(k) 2 (540 - . p(k-1)
100 = {ife = lx - X1 <e for some jel }

& 1(c-1)
Im Im

- 1(2) .
the that Im Im L2c-1.

Example 4.1

In Figure 4.1, e=2, c=10. Let lxll= (>_<~>_<);5, e=v2. Then I,={1,2,3},
I,=1{4,5}, 1,={6,7,8,9}.
The proof of the following lemma uses some basic definitions and

theorems from graph theory (cf. Harary [10]).

Lemma 4.1
c
Let a; eR, i=1,...,c, such that ] a,=0. Thea there exists by s
i=1
i=1l,...,¢, j=1,...,c, such that
c c c
(2) for each m=1,...,q9 and any ieIm
bic = L, % | (8.31)
m
bs. =0 jel s j#i (4.32)
(3) bci =0 i=1,...,C (4.33)

(4) b..=0 Ix; - xs0>e3 Gfc (4.34)
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e=2, c=10
e—1 —>f
Xg -
L]
X8
®
%10 X7
< .
X6
®
X5

Point Distribution in RZ
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(5) for eachm=1,...,q, 1eIm, jel

=1 . 3 (4.35)
keImh,J)cr:Im

bij

Proof

We first associate each x, eR® with a node labelled i. A directed
spanning tree F' is constructed as follows (see Figure 4.2):
(a) Construct graphs 615 Gy +nns Gq corresponding to Il’ Ips vos 1
by equating the indices in I with nodes in G - If ie | Jje I,and
"’-(1‘ -2_<jl|<e, include edge (i,j) in Gm. Note that 61, Gos vees Gq are
connected graphs.
(b) Construct graph & by adding node c to Ejlﬁm. For each
m=1,...,9, choose ieIm and add edge (c,i) to gr.n— Note that 6 is a
connected graph.
(c) Since & is a connected graph, it must have a subgraph which is
a spanning tree. Let F be a spanning tree in 6. Construct F', a directed
spanning tree, by directing all of the edges in F away from node c.

Let P, =(c=t

k 12722 "
F'. Since F' is directed, (tk,tk+1) is a directed edge along P (de-

,t ,tn=k) be the path from node ¢ to node k in

noted (tk,tk+1) ePk), but (tk+1,tk) is not. Thus

? k

which implies

C C C
| kzlak (g,i)ePk i) - kzlak(ék-zc) ) kzlakﬁk (4.37)
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7 3 9
/ \ ‘ ’ \
I,A ! ! \
[ I g
i
\ 1 2, 10 | !
\-—'/ [ ] \ 7 Y 4
N ’
\ '\\\\\.\ \ 6 ,
A \ \_4
\ G
\ 51 3
\__’
&,

¢ (there are other possibilities)

e

F' (there are other poss1b111t1es)

Figure 4.2 Construction of Directed Spanning Tree F'
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o
since } ak==0 by assumption. Interchanging the order of summation we
k=1
have:
Io1q ) i (4.38)
a Y (x; -x:) = a, X 4.38
i=1 §=1 k:(3,1)ep, K71 T gz KK
Thus, if
= 3, (4.39)
R k:(j,1)ePk K
then
cC cC | c
i jzlb"j()'(" a7 L 14,400

which verifies (1). For each m=1,...,q, the i eI"Iwhich was (arbitrarily)
chosen in the construction of 6 will satisfy (2). (3) and (4) are ob-
vious. For each m=1,...,q, ieIm, jeIm, Im(‘i,j)={k : (j,i)ePk} will

satisfy (5).

Example 4.2

For ¥' in Figure 4.2 we have

b

ta

2,10 T 917372
by,10 = 3% * 3%

by 10 = 3% *3;* 35 g
b2 = 3

boo =

32 ° 33
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bsy = 25

bg7 = 2

bg; = ag* g

bgg = 29

bj; =0  other

For the c-class case we have

du1
R(3g) = f[(l 2l hidme
du2
+(1-(1-1pp) Tpge e Ty )8omygs=
: du
+ (1—(1‘11(:)(1‘12(:)...( )),Q, TTCE—.| dv
c-1 du1
- 121 21""1'"J[I12113"'11c21”18'6"

du2
t(1-1p) s o T RoTys™

du

ey
* (1'11,c-1)(1 Iy co) o (T Ty EetTer@y—

du

- (1-(1-1 (1T ) oo (1T e ST dv  (4.41)

c-1,c

c-1 dul
r(a™) - 121 %i“i"[[lig) §3) §2) “ME

+ (1- I(n))I(n) I(n)l du2

23 2¢ “2"2dv
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-1 a-rf™ el ot e 133 2
- (1-(1- 1("))(1 1(")) .(1 Ié“i C))zcrcgs~] dv  (4.42)
Let
ay = 1,1 5015, (4.43.1)
2 * (1-15) Lpg0 Iy, (4.?3.2)
;c-l = -0y POTp eg)e - (T e ey e (4.83.c-1)
a_ = -(1-(1-Ilc)(1-12C)...( -1, C)) (4.43.c)
~and
a&") = Igg) ig) gg) o (4.44.1)
as" = (1-{fhrfd) ) (4.44.2)
;ET% = (1-1&"2_1)(1-1§"2_1)...(1-1£f%’c_1)lgﬂi,c (4.44.c-1)
aﬁ") = -(1-(1- 1("))(1 1(")) (1'I£T%,c)) (4.44.c)
Then
R(dg) = :zi o, LE otk dy (4.45)

-1 .
R(a(“)) = C§ By - f f aliMg g1 gy (4.46)
'i:l = '
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F

Note that R(ﬁ(")) is a random va%iabfe‘ by convention the expectation has

not been taken over the data sequence. Now Z a; = Z a; (M) =0 for a1l

i= 1 i= 1 du
aeRY. Thus (1) of Lemma 4.1 with e=1 and x; =X =2,ml, 121,00,
- - i 1dv
gives
@) = T DT by i B | (4.47)
- R(d,) = z.n.-f b 2 T = 8.7 =—L) dv 4.47
B j21 V1 )52 1 =1 idv J Jdv
: c-1 c du
r@(my - . J (M (g .t .
R( ) izl Ly - 121 321 bi: (2 ﬂ1dv lJ"Jdv ) dv (4.48)

We now state and prove the multiclass extension of Theorem 4.2a.

Theorem 4.2 _
g\(n) @(n) /\(n)
Let a————(a), dv —(a), ..., v (o) be measurable functions such
that
NOI .
o o [ -wh@]>c} Bo (as nae)  (a.09)
for all e>0, i=1,...45c. Then
R(a™) £ r(ap) (as n>=) - (4.50)
Proof
For e>0 let
du du

=
-
[
[}
——
Q

2’11r1d\) (0.) %5 “Jd (a)'<€}’ i =1,...5C, j=1’°--9c,
| | (4.51)
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D= {y Wy by W b x g b lc} {‘"23’”23} {Uy g Hpa . . XU 2¢? 2c}

c
x{"’c-l",c’wc-l,c}

={Wps Wy ooos W] (4.52)
_ qul2 13 1c ,,23 ,,24 Zc c-1,c -
W = (W W C ST 0), k=1,
(4.53)
and
c c s
we=0 nw, K=1,...,r (4.54)
i=1 j=1
r g4
It is clear that wl,wz w are disjoint and U w . As in the
k... .
2-class case, wl,wz,.. wr are measurable and
du du du
dey o, W (n) i
b (2 ﬂ1dv ZJanv ), b (2, “1dv QJﬂJdv —J) are measurable on Wy s
1-1,...,(:, J"l,...,C, k"l,...,r. ThUS
T I[1 T by By 9,
R@.) = T f.m - [ by (LMt dv
A R S U S S IS
c-1 r c du du J |
- 1 4yme L 121 lej by 5 (24myges - 44Tygel) @ (4.55)
c du ‘ du '
r@a(M) - z L - Iy zf b(")(zn——-m-——) dv (4.56)
k=1 =1 351N, fdv 7§ Jdv

We show
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du du

du. du. - )
(n) Py Gy P J
I b (2. “1dv QJ“Jd\) Jdv > b (2, ﬂ'ld\) J g —2)dv
(as n+), i=1,...,¢, J=1,...5¢5 k=1,...,r (4.57)
If we choose ll-ll=1+1, and the same £ to generate 11,12,...,Iq and
wl,wz, " P then [I ] is fixed on wk We apply (2) of Lemma 4.1 to each
du
W, as follows. For each m=1,...,q, if ———--Eﬁfi <e for some el ,
choose 10-1, otherwise for any i eI"V choose 10==i. Then take
bi C=Z a,. Note that 1'0=1'0(k,m).
0 keIm
th ' du. dy. B
Consider the i,j= integral on wk Suppose |21“1dv lj“jdv <e
on wk. We have the following cases:
iel , j=c, 1'=1'0(k,m)=> by s = y | a bgr.‘) = Z algn) (Lemma
Joker. 0 W Kel 4.1(2))
m m
. . _ . - (n) _
iel ,J=c, i #'10(k,m)=> bij 0, bij 0 | (E?T?g))
i=c = bij = 0, bgq) =0 (Lemma
J - 4.1(3)) .
iel , jel = b..=] | a,, b (")"}:’ , aln)
. m ij . k> "iJ . . k
keIm(1,J)C: Hn keIm(1,J)c= Rn
(Lemma
}4.1(5))

In any case

) du dui
» (n) My - I _J
”w ( 1ﬂ1d\) - QJﬂJd )dv Wk b (21“1@ Q'J"Jdv )dv

du du.
(n) J
g!w Ibj;" - b sl fd'v'"%“gdv &
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< I leedv < ¢ e .
Wy

since for any I #c 2 a =0 orl, }: a(") 0 or 1. Now suppose
keI keI
I d},l. dLl.

1 J
LT YRR L v

> on Nk. We have the following cases:

ak,b()-z ay

iel , j=c, i=1i,(k ,m)=>b
m .0 i kel kel

i = 3 1 = . (n)=
el d=c, i#ig(k,m)=> b;,=0, b;;'=0

i = = (n)=
i=c¢ %bij 0, bij 0
. - (n) _
j#c :b 0, b1J 0

We need only show (!)

du.

i du i du

I b(")(z T, 0-21r c)d\) J (SL S
iadv c cdv idv c Tedv

wk 0 o0 wk 0 oo _

du
C)d\)

where the dependence of i, on k,m haé been suppressed. First,

0
du., : dy.,
(")(2 s 1O-szrdu) <L T —imwduc
iy 10dv c cdv 1'0 iod\) c cdv
which is integrable over wk. Second,
dy. du.

'I

(4.58)

(Lemma
4.1(2))

(Lemma
4,1(2))

(Lemma
-4.1(3))

(Lemma
4.1(4))

(as n+=)

(4.59)

{aew lb( J(a, m =O(a)- u—(a)) b, (z m 9(a)-2 1; duc(a))lse'}ﬁo
k* dv cdv ig 10dv cdv ‘- ,

oo
(as n—+)

(4.60)
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for all e' >0. We see this as follows. We have

b, = - - 1€={1,...,c-1} - 1) 4.61
1o kglm kéI (=1 i) (4.61)

Since -} Bk~ does not depend on I . for iel

j e an’ it follows
keI

m’J

that } ay depends on Iij only for i el , jelys n#m, and i el » j=c.

keIm
' . . ) _ dui duc . .
From the choice of 10(k,m), 210“1033__"'2c"ciﬁf— >¢ implies
d“i duc .
21"HERT'- lc“cdv >¢ for all ie ﬁn' Thus bioc depends on Iij only for
du,  du,
B RS | - (n)_ 5. ,(n) . (n)
Mg lj"jdv >e. Similarly, b1.OC kél a, "’ depends’on Iij only for
m .
duy duy . .
21ﬂ133— 2JﬂJdv >e. Reasoning as in the proof of Theorem 4.2a, (4.60)

must be true. Finally, apply the Lebesgue Dominated Convergence
Theorem.

The interested reader might work through the 3-class case in detail,
which begins to reveal the structure of the problem. The 2-class case
lacks this structure almost entirely. We remark that therekis a much
s1mp]er proof of Theorem 4.2, which generalizes directly from the 2-class

dul du2 du
case, if it is assumed that — T d o o q are v-almost- everywhere

continuous.

4.3 Asymptotic Efficiency for Mu]tic]assAPartitioning and Termination
Algorithms

We now apply the results of Sections 4.1 and 4.2 to prove asymptotic
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4
efficiency for decision rules generated b§'fhe multiclass partitioning and
termination algorithms of Chapters 2 and 3. Since all the decision rules
to be discussed can be realized as binary decision trees, we refer to
decision trees rather than rules.

Let Tég) be the binary decision tree generated by applying the

multiclass partitioning algorithm of Section 2.3 to the data sequence

A("), modified as in Section 4.1.

Corollary 4.1
(n), P
R(TGO ) > R(hB) (as n-+x) (4.62)
Proof

' N (n) ~(n),o(n)
Let al") - ﬁég) - 7(n) du; (a)==“1 (B*"(a))

i=1,...,c, and

combine Theorems 4.1 and 4.2.
n
Now let Té 1) be the binary decision tree generated by applying the

multiclass partitioning algorithm of Section 2.3 to the training sequence
n .
A( 1), modified as in Section 4.1 but with only (4.12) as the termination
criteria. Thus the terminal nodes of Ténl) contain vectors only from
- _{n
a single class and furthermore_Tégl)C=Té 1). As in Chapter 3, let
n,) '
Ti 17 be the tree generated by applying the termination algorithm to
(m) e (nganp) e
T0 based on the class distributions; T, * the tree generated by

n .
applying the termination algorithm to Té 1) based on the test sequence
(“2) |

A From Theorem 3.1
("1) :
R(T ) = min R(T) - (4.63)
* Tt
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ﬁ(nz)(_‘_inlsnz)) = m]n (n ) (nZJ(T) (4.64)
Tc:TO

Lemma 4.2 |
Let [x&")], [xg")], cees [xgn)] be sequences of random variables.

If x&") is bounded for all n, m=1,...,s, and

(n)

> ¢, constant (as n+w), m=1,...,s (4.65)

then
min x'(n") < min ¢, (as n-»w) (4.66)
m=1,...,s m=1,...,8 ——

Proof

Since x(n) is bounded for all n, m=1,...,S, min x(") exists
m _ m
m—l,...,s
(n)P

for all n. Since Xg  TCps M= 1,...5S, Cn is bounded, m=1,...,S, and

m=1TT?.,scm exists. Let x=(XqsXpseeesXg)s ,_((n) - (x(n) (n)’._.’xgn))’

c=(c,,c seeesCe ), and f(x)= min x_. We use the following result:
1°72 m=1,....s m
(") Pc and f(x) is continuous then f(x("))->f(c) (")—>cm, m=1,...,S,
implies x( )->c We now show f()_() = min x is “continuous. Let -
m=1,...,S .
|x-y| <8=e. Then |xm-ym| <e, m=1,...,5. Suppose x; = - min - x
. m“l,...,s )
and y. = min Y If i=J then ’
J m=1,...,S
| min x - min yml =-lxi_-y1-| = IxJ.-yJ.| <€

m=1,uoogs m=1,...,5

If i#j proceed as follows. If yjsxi-e then |xj

a contradiction. If yj>x1.+e then |xi -yil <e implies Y5 <yJ., a

-yJ.| <e implies X5 <Xy
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contradiction. Thus

| min x - min y
m=1’000,S

which completes the proof.

We have another corollary to Theorem 4.2.

Corollary 4.2

1t A", 4" 4re tndependent and ny(i) > as ny>e, P=1....0cs
then
m A" By (g v (4.67)
(2) ﬁ(nz)(T,ﬂ"l’"z)) R pri)y (as ny~w) (4.68)
(3) RT""2)) B el (as ) (4.69)
(4) JURURS R(3g) (as ny +) (4.70)
Proof

. (nl) . - . s s . (ni) . s s
Since T is a finite binary decision tree, {1'C='T0 } is finite.

0 .
(nI) , A(nz)

(ny) . .
Let frczTO 1 }={T1,T2,...,TS}. Since A are independent the

Weak Law of Large Numbers gives

ﬁ("?-)(Tm) P»R(Tm) (as ny(i)»= i=1,...,c) m=1,...,s
(4.71)

Thus

ﬁ(nz)(Tm) B R(Tm) (as n2-+w) m=1,...,s (4.72)
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since h2(1)+oo as nyow, i=1,. vsCy by ‘é.\'s.‘sﬁmption.
(1) For >0, [P(nz) (n 1’nz)) R(T(nl 2))I <& whenever
lﬁ(nz)(Tm) -R(T )| <e, m=1,...,s, since T( 1’ nz) T(()nl). Thus
pe1R"2) (1 (M2 Cprlnion)y s g
< our15(M2) -
< Pr{|R (Tm) —R(Tm)l > ¢ for some m=1,...,s}
< Z Pr{|R 2)(T ) -R(T )| > €} (4.73)

m=1

Taking the 1imit (as n2+oo) of both sides of the above inequality and

using (4.72) gives the desired result.

" (np) _ aln) _ _ . alng)
. (2) Let x_ (Tm) and cm-R(Tm), m=1,...,s. Since R (Tm)
is bounded for all Nps M= 1,...,5, (4.72) implies the conditions of
Lemma 4.2 are satisfied. Thus
. A(nz) P .
min R (Tm) >  min R(Tm) (as n2~>w) (4.78)
m=1,...,S m=1,...,s
From Theorem 3.1 it follows that
ﬁ("Z)(Tinl’"Z)) R(T(nl)) (as n,+w) (4.75)
(3) If x(")gy(n) and x(n) B (") then y(n)P (n) Thus (3) follows
from (1), (2).
: n
(4) Since T((?.O ) T(() 1) » Theorem 3.1 gives R(T( 1))<R(T( )) Thus,
| (ny) (ny)

for >0, |R(T, *')- R(ﬁB)l R(T, . R(ﬂB) <€ whenever
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|R(T(n )) R(ﬁB)l-R(T(nl))-R(ﬁB) <e: “Thus

("1)

Pr{IR(T"Y) - R(2g) | >e} < Pr{IR(TNL) - R(ay) | >} (4.76)

Taking the limit (as n1-+m) of both sides of the above inequality and

using Corollary 4.1 gives the desired result. ,

Corollary 4.2(2) shows that R( 2)(T(n1,n2)) is a consistent estimate

a(ny) ("1=“2))

n
of R(Ti 1)). (2) and (4) taken together show that R' 2 (T is

also a consistent estimate of R(ﬁB). These results are true even though

n
.the same test sequence A( 2) is used for estimation and termination. How-

(ng) ,(n3)

. are not inde-'
~(ny) ("1’"2))

ever, the following example shows that if A

pendent, and the iterated limit is not respected, then R (T

®

need not be a consistent estimate of R(ﬁB).

Example 4.3
et A M2 () e ﬁ("Z)(Ténl)) =M (1)) = 0 which

3" 2)(T(nl 2)) R(n)( (n’n))==0,wfor all n. If class distri-

| implies R
~ butions overlap then R(ﬁB):>0 and'ﬁ(")(Tﬁn’n)) cannot be a consistent
estimate of R(hB).

From Corollary 4.1, Tég) is an asymptotically efficient decision

rule. Since R(T(")) is bounded for all n we have
(n)yy - | |
En(R(TGO )) R(ﬂB) (as n»>e) (4.77)

when En is expectation over the data sequence A("). " This can in fact be
taken as the definition of asymptotic Bayes risk efficiency instead of

. n,,.n
(4.1). Corollary 4.2, (3) and (4) taken together show that Ti 1 2) is
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R

o Ny N
also an asymptotically efficient decision rule. Since R(T£ 1 2)),

(

R(T*nl)) are bounded for all n;, n, we have

EnlEnz(R(Tinl’nz))) > Enl(R(Tﬁ"l))) (as n,+e) (4.78)
Enl(R(Tinl))) > R(dg)  (as ny>w) | O (4.79)

(n;)
where En s En are expectations over the training sequence A 17 and the
2

1
() . » . . ,
test sequence A 2 , respectively. It is not possible to directly com-

. . (n) ("1’"2) .
pare the asymptotic properties of TGO and T, because of the itera-

ted 1imit in (4.69), (4.70) and (4.78), (4.79). Number sequences

[ngn)], [nén)]v= [n-ngn)] must be found such that

R(T(ngn)’n-ngn))) £ Raa,) (as n-ew) (4.80)
* B .

or

(n{M n-n{ny

ERT, T 71 D)) > R@p)  (as no) (4.81)

Some work has been done on this problem but no results are available.

Since qudon and Olshen are only concerned with asymptotic results,
they choose the termination parameter k(n) to satisfy (4.8), (4.9). For
n fixed, any k=1,...,n is acceptable. Friedman suggests k be determined
by minimizing an estimate of the Bayes risk based on the test sequence

n v .
A( 2). We now investigate the asymptotic properties of such a rule.
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1

: n n _ L eai
Let T§ 1)’ Té 1), cees Tﬁnl) be binary decision trees generated by
1
applying the multiclass partitioning algorithm of Section 2.3 to the

n
training sequence A( 1), modified as in Section 4.1, but with k=1 for

Tgnl). Let

ny) n.) ,
R(Té 1y = min R(Tg 1% (4.82)
i=1,...,n1
n , . n
R 2)'(T£"1 "2y . min R("Z)(Tgnl)) (4.83)
1'=1,...,n1
n n,,n n,,n
By comparing Ténl) to Ti 1) and Té 1) to Ti 1 2), it is clear that
Corollary 4.2 holds with Tﬁnl), Tinl’nz) replaced by Ténl), Ténl’nz),
respectively. Unlike Tég) and Tinl’nz), it is easy to compare Té“l’"z)

n, ,n . n,,
and Ti 1 2). The following corollary shows that R(T£ 1 nz)) converges

to R(d;) at least as fast as does R(Ténl’nz)) (in the indicated sense).

- Corollary 4.3

For all1 €¢>0, 6>0, nis there exists ng(e,s,nl) such that

n_,n_\ o)
Pr{R(T,(‘ ")y 5 R(TI(:nl ") e} < s n,>no(e,8,n)  (4.84)
Proof
Since T'(:nl)"—' Tinl) we have R(Tinl)) <R(T'(:n1)). Thus, for €>0,
R(TMom2)) R(Tinl’"z)) + & whenever [R(TAM"2)y _p(r{")y) <£,

IR(TI(:nl’"Z)) - R(Ténl) )| <3. Thus,
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¥

pr{r(1{""2)) > R(Té"l’"?)') ve}

< pr{lRri""2)) _r(rfM)) £ or [rer{M"2) L rr{M"2) 5

(nysn,) ( (n

) - R(T 1))l> £} +pr{[R(Ty 1 ")) . R(T("l) )| >3]

< Pr{|R(T,

(4.85)
From Corollary 4.2(3) there exists ng(e,a,nl) such that

(“1’"2)) ("1)

Pr{|R(T, R, VY250 <3 ny>nd(e,8n)  (4.86)

Pr{IR(Tl(_.nl’nz))-R(Tl(:nl))|>% <,§-' n2>ng(e,s,nl) (4.87)

(4.85), (4.86); and (4.87) Eomp]ete the proof.

As a final comment, the analysis/measure-theoretic results used in
this chapter (properties of measurable sets and functions; absolute
continuity; Radon-Nikodym and Lebesgue Dominated Convergence theorems)

" can be found in Royden [11] and Fleming [12]. Probability/statistical
results (consistency and efficiency of estimators; convergence of random
sequences and functions) can be found in Rao [13]. ‘A discussion of

iterated limits is given in Bartle [14].
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V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

In this chapter we draw the conclusion that Friedman's recursive
partitioning algorithm can be extended to the multiclass case, with the
same desirable statistical and computational properties. However, we
also conclude that certain issues arise in the c-class problem (c>2)
that did not exist or weré obscured for the 2-class case. Suggestions

are given for further work.

5.1 Conclusions

We have seen that Friedman's [2] 2-class recursive partitioning
algorithm can be extended to the multiclass case, with the same desirable
statistical and computationa]yproperties. However, we have a1$o seen

that certain issues arise in the c-class problem (c>2) that did not

~ exist or were obscured in the 2-class case. Consider Friedman's sug-

gestion‘that the c-class problem be solved by solving ¢ 2-class problems.

- This appears to be a satisfactory solution. 1In faét, we were able to
account for prior probabilities an& 1osses by considering mixture mar-
ginal cumulative distribution functions for a group of classes, although
we do not give this result here. But a solution was not found for the
computational/storage problem of optimally labelling decision regions,

or for the problem of restricting the number of training vectors in a
decision region. This led to the conclusion that a single decision tree
was needed for classifying all classes, and consequently to the multiclass

recursive partitioning algorithm of Section 2.3. Similarly, Friedman
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suggests that the number of training vectors in a terminal node be large
enough to obtain good estimates of the within-node class measures.
Friedman introduces the termination parameter k =minimum number of train-
ing vectors in a terminal node. But for large c and fixed k there are
many possible terminal node populations. This led to the conclusion
that the optimal k might vary from node to node.and consequently to the
tree terminationla1gorithm of Chapter 3. Finally, the proof of Theorem
4.2, that measure-consistent density estimates yield asymptotically ef-
ficient decision rules for the c-class case revealed a structure that

was almost entirely lacking for only 2 classes.

5.2 Suggestions for Further York

Sufficient numerical work should be done to confirm our results.
We note that both Friedman's suggestion for solving the c-class problem
and the multiclass recursive partitioning algorithm of Section 2.3 have
been implemented and tested by Monte Carlo procedure on a problem
with ¢=5 Gaussian classes in a d=2 dimensional space. The ¢ binary
decision trees generated by Friedman's multiclass algorithm were ter-
minated by a nonoptimized value of the termination parameter k, and the
decision regions were labelled in the manner he suggests. For sim-
plicity, the Section 2.3 algorithm was also terminated by a nonoptimized
value of k. 'Resu1ts are given in [15]. The results indicate that the
Section 2.3 algorithm has a lower average class error rate for a given
complexity (number of terminal nodes). However, much more thought should
be given to the problem of finding suitab]e_test cases, the tree-
termination algorithm should be used, and other parametric and.non-

parametric methods should also be compared.
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GLOSSARY OF SYMBOLS

number of classes

dimension of observation space

. or [x

jEb vector in k=

i= component of K

(n)]

.th

th

a seque

th

nce

class data sequence (sample)

J9)

k= class data sequence

k

th

th

data sequence (sample)

(sample)

= class training sequence (sample)

= class test sequence (sample)

training sequence (sample)

test sequence (sample)

number of vectors in k
A(")'

k

th

class data sequence (sample)

number of vectors in k-b class training sequence
(sample) A(nl)

k

n%mber of vectors in ktb class test sequence (sample)
o .
A2 :

number of vectors in data sequence (sample) A(")
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("1)

number of vectors in training sequence (sample) A

n
number of vectors in test sequence (sample) A( 2)

number of vectors in kg-1 class data sequence (sample)
Al((") and S =RJ
number of \(/ectors in k'-:—h class training sequence
(sample) Aknl) and Sc:le

th

n?mbc)er of vectors in k= class test sequence (sample)
Akn2 and S<=]Rd

number of vectors in data sequence (sample) A(") and
s=gd

: - (ny)
number of vectors in training sequence (sample) A
and SC=]Rd

. (n,)
number of vectors in test sequence (sample) A
and S‘=]Rd

joint cumulative distribution function of class k

marginal cumulative distribution function of class k
for coordinate i

probability measure of class k

prior probability of class k'

misclassification loss for class k

a binary decision tree

j‘i' node or decision point of binary decision tree T

root node of binary decision tree T

edges of binary decision tree T

number of nodes in binary decision tree T



o(T)
15(T)

Y‘j(T)
Sj(T)
ig(T)

of4(T)
J

11,
cj(T)
D(ai)

B

~(nq)
A 1

(3)

K&

~(J)

k%
?én)(“i)
("1)(a )
fﬁ"z’(ai)
a(n)

A(nl)
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number of levels in binary decision tree T

pointer to left subnode of tj(T)

pointer to right subnode of tj(T)

subtree of binary decision tree T with root node tj(T)
partitioned coordinate at tj(T)

value of partitioned coordinate ig(T) at tj(T)

label of t (T) if t (T) terminal node (1 (T) <0)

label of t.(T) if t.(T) ultimately becomes a terminal
node J J

Kolmogorov-Smirnov distance between F (a.), F (a.)

box (rectangular paral1e1p1ped with sides parallel to
coordinate axes)

th

rearrangement of k= class training sequence (sample)

(n1)
Ak"1

th vector in Einl)

1Eb component of ka(J)

estimate of Fk(ai) based on data sequence (sample) A(")

?t1mate of F (a )} based on tra1n1ng sequence (sample)

atM

(n

estimate of Fk(ai) based on test sequence (sample) A

estimate of Hy based on data sequence (samb]e) A(n)

. . '
estimate of My based on training sequence (sample) A( 1

2)
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estimate of My based on test sequence (sample)

in Chapter 2, a terminal box which results from applying

70

A(nz)

Friedman's 2-class algorithm to class j and classes

1,..

.»3-1,3+1,.

..»,C taken as a group.

the box associated with tj(T).

Kolmogorov-Smirnov distance between Fm(ai)’

Bayes risk of partitioning coordinate i at o

Bayes risk of binary decision tree T

In Chapter 3,

F (o)

nti

1 if 1.e. (logical expression) is true, 0 otherwise

estimate of R(T) based on data sequence (sample)

estimate of R(T) based on test sequence (sample) A

aln)

(n,)

binary decision tree generated by applying the multi-
class partitioning algorithm of Section 2.3 to the

training sequence (sample) A " with termination cri-
terion that terminal nodes only contain vectors from

a single class (in Chapter 4, modified as in Section 4.1 °
but with only (4.12) as the termination criteria)

minimum number of vectors at a terminal node (Fried-

man's termination parameter)

a finite binary decision tree

binary decision tree generated by applying the tree
termination algorithm to T0
distributions

based on the actual class

binary decision tree before descendents of some t are
deleted and t becomes a terminal node

binary decision tree after descendents of some t are
deleted and t becomes a terminal node

b1nary decision tree constructed from'TCZTh

T'e= T

R(T') <R(T)

such that

n,)

estimate of R(T) based on training sequence (sample) A( 1
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binary decision tree generated by applying the tree

termination algorithm to T " based on the actual

class distributions 0

binary decision tree gener?ted by applying the tree
n

1) based on the test

termination algorithm }o T0
n

sequence (sample) A" 2

a cost function which can be optimized by the ﬁree
termination algorithm

a decision rule

the Bayes risk of decision rule 1

a decision rule based on the data sequence (sample) A(")

the optimal Bayes decision rule
c

an estimate of v based on the data sequence (sample) A(n)

Radon-Nikodym derivative of measure W with respect
to measure v

estimate of O based on the data sequence (sample) A

a decision rule which partitions Rd into a finite set

- of boxes and is invariant to coordinate-by-coordinate

strictly monotone transformations

the unique box in ﬁég) which contains o

a norm on R®
index set used to recursively define I

index sets ={1,2,...,c-1}

index setCZ-'Im
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F' a directed spanning tree (F with edges directed away
from node c)

91,62,...,6 connected gkaphs corresponding to 11,12,...,1

q q

G connected graph which has spanning tree ¥ as a subgraph
F a spanning tree which is a subgraph of &
Py . path from node ¢ to node k in F'
Iij(g) an indicator function
Igg)(g) an indicator function based on:-'data sequence (sample) A(")
W, . a set=RY

ij ~
0 ,Cartesian product of sets of sets (C Rg

d

WysWosno oW ?-tuples of sets =R
W, W W setsC=Rd

1°7°2°°° "y
Tég) ' binary decision tree generated by applying the multi-

class partitioning algorithm of Section 2.3 to the data
sequence (sample) A(n), modified as in Section 4.1

(n,) n
TGO1 same as Tég) except uses training sequence (sample) A( 1
En expectation over data sequence A(")

. . (g
En ' expectation over training sequence A
S |
. (n

E, expectation over test sequence A 2

2

[ngn)], [néh)] number sequences
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n n (n.)
Tg 1),T§ 1),...,Tn 1 binary decision trees generated by applying
1 the multiclass partitioning algorithm of
Section 2.3 to the training sequence A "1 s
.m digied as in Section 4.1 but with k=1 for
.M
i
n n
Tl(, 1) Tg 1) which minimizes Bayes risk based on the actual
class distributions
(nl’nz) ("1) . . es .
TF T_i which m1n1m1z?s ?ayes risk based on the test
n
2 .

sequence (sample) A
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