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ABSTRACT

c classes are characterized by unknown probability distributions.
A data sample containing labelled vectors from each of the c classes
is available. The data sample is divided into test and training samples.
A classifier is designed based on the training sample and evaluated
with the test sample. The classifier is also evaluated based on its
asymptotic properties as sample size increases.

A multi class recursive partitioning algorithm which generates a
single binary decision tree for classifying all classes is given. The
algorithm has the same desirable statistical and computational proper­
ties as Friedman's (1977) 2-class algorithm. Prior probabilities and
losses are accounted for. A tree termination algorithm which terminates
binary decision trees in a statistically optimal manner is given. r,or~

don and Olshen's (1978) results on the asymptotic Bayes risk efficiency
of 2-class recursive partitioning algorithms are extended to the c-class
case and applied to the combined partitioning/termination algorithm.
Asymptotic efficiency and consistent risk estimates are obtained with
independent test and training sequences.

Thesis Supervisor: Dr. Sanjoy K. Mitter
Title: . Professor of Electrical Engineering and Computer Science
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I. INTRODUCTION

In this chapter we give a statement of the nonparametric multi­

class classification problem and briefly review previous work. We

give a chapter-by-chapter summary and a list of the contributions of

the thesis.

1.1 Statement of the Problem and Previous Work

We state the nonparametric multi class classification problem as

follows. c classes are characterized by unknown probability distribu­

tion functions. A data sample containing labelled vectors from each

of the c classes is available. The data sample is divided into test

and training samples. A classifier is designed based on the training

sample and evaluated with the test sample. The classifier can also be

evaluated based on its asymptotic properties, as sample size increases.

The best known approach to nonparametric classification is the

k-nearest-neighbor rule introduced by Cover and Hart [1]. Let aeRd

be the vector to be classified. The k-nearest-neighbor rule labels ~

by plurality logic on the labels of the k-nearest vectors to ~ (with

respect to some metric) in the training sample. Advantages of the

k-nearest-neighbor rule include:

(1) asymptotic Bayes risk efficiency is obtained if k is chosen

to be a function of the training sample size n1 such that

k(n
1

) ~ 00 (as n
1
~ 00) (1.1)

(1.2)
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•

(2) valid for multi class

Disadvantages include:

(1) computationally expensive (distance to all vectors in training

sample must be computed for each ~ to be classified)

(2) not invariant to coordinate-by-coordinate strictly monotone

transformations, such as scaling

(3) not obvious how to introduce prior probabilities and losses

Friedman [2J has rec~ntly introd~ced a 2-class retursive partitioning

algorithm, motivated in part by the work of Anderson [3J, Henderson and

Fu [4J, and Meisel and Michalopoulos [5J. The algorithm has desirable

statistical and computational properties, and the resulting classifier

is a binary decision tree. We discuss Friedman's algorithm in detail

in Chapter 2. Advantages of the Friedman algorithm include:

(1) asymptotic Bayes risk efficiency is obtained if the algorithm

is appropriately modified (Gordon and Olshen [6J)

(2) computationally efficient

(3) invariant to coordinate-by-coordinate strictly monotone

transformations

(4) prior probabilities and losses are accounted for

The main disadvantage of Friedman's algorithm is that it is only appli­

cable to the 2-class case. Friedman gives a multiclass modification

but we point out several problems with his approach. A major thrust

of this thesis is to generalize Friedman's algorithm to the c-class

case (c>2) in a way which maintains the advantages listed above.
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1.2 Chapter-by-Chapter Summary

In Chapter 2, recursive partitioning is discussed. Data and binary

decision tree notation is introduced. Friedman's 2-class algorithm is

reviewed. Friedman's algorithm generates a binary decision tree by

maximizing the Kolmogorov-Smirnov distance between marginal cumulative

distribution functions at each node. In practice, an estimate of the

Kolmogorov-Smirnov distance based on a training sample is maximized.

Adaptive and transgenerated coordinates can be used in designing the

tree. Friedman suggests that the c-class problem be solved by solving

e 2-class problems. The resulting classifier has c binary decision

trees. Several problems with this approach are pointed out. A multi­

class recursive partitioning algorithm is given which generates a single

binary decision tree for classifying all classes. A binary decision

tree is generated by minimizing the Bayes risk at each node. In prac-

tice, an estimate of the Bayes risk based on a training sample is minimized.

In Chapter 3, termination of binary decision trees is discussed.

An algorithm ;s given for optimally terminating a binary decision tree.

The algorithm yields the unique tree with the fewest nodes which mini­

mizes the Bayes risk. In practice an estimate of the Bayes risk based

on a test sample is minimized. The algorithm is generalized to cost

functions other than Bayes risk. Test and training sample division is

discussed.

In Chapter 4, asymptotic results for the nonparametric multi class

classification problem are derived and applied to decision rules gen­

erated by the partitioning and termination algorithms of Chapters 2 and 3.

Asymptotic Bayes risk efficiency of a decision rule is defined. Gordon
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and Olshen's results for the 2-class case are briefly reviewed and modi­

fied for the multi class problem. Gordon and Olshen's approach involves

consistent density estimation, although their densities are with respect

to a general dominating measure which need not be known. Their results

apply to decision rules which partition a Euclidean observation space

into boxes and are invariant to coordinate-by-coordinate strictly mono­

tone transformation. No assumptions are made concerning the underlying

cumulative distribution functions. For simplicity, we give modifica­

tions for our algorithms which obtain asymptotic efficiency only for

continuous marginal cumulative distribution functions. However, it is

shown in general that consistent density estimates (with respect to a

general dominating measure) yield asymptotically efficient decision

rules for the multi class case. The proof of this result, which is

quite simple for the 2-class case, is surprisingly difficult for the

c-class problem (c > 2). Here, a simple graph-theoretic technique is

used to simplify the problem. The results are applied to decision rules

generated by the partitioning and termination algorithms of Chapters 2

and 3. Asymptotic efficiency is obtained with independent test and

training sequences. Consistent risk estimates are obtained, even though

the estimates are based on the same test sequence used for termination.

Finally, it is shown that the rate at which the risk of a binary de­

cision tree terminated by the Chapter 3 termination algorithm approaches

the optimal Bayes risk is at least as fast as that of the tree termi­

nated by optimizing a termination parameter, as Friedman suggests.

In Chapter 5 we draw the conclusion that Friedman's recursive par­

titioning algorithm can be extended to the multi class case, with the
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same desirable statistical and computational properties. However, we

a1so conclude that certain ; ssues ari se ; n the c-c1ass problem (c > 2)

that did not exist or were obscured for the 2-class case. Suggestions

are given for further work.

1.3 Contributions of Thesis

We list the major contributions of the thesis.

(1) A multiclass recursive partitioning algorithm which generates a

single binary decision tree for classifying all classes is given. The

algorithm has the same desirable statistical and computational proper­

ties as Friedman's 2-class algorithm. Prior probabilities and losses

are accounted for.

(2) A tree termination algorithm which yields the unique tree with

fewest nodes which minimizes the Bayes risk is given (applicable to

2-class case also).

(3) Gordon and Olshen's results on the asymptotic Bayes risk efficiency

of 2-class recursive partitioning algorithms are extended to the multi­

class case and applied to our algorithms. Asymptotic efficiency and

consistent risk estimates are obtained with independent training and

test sequences. Convergence rates for different termination criteria

are compared.
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II. TREE GENERATION

In Chapter 1 the nonparametric multiclass classification problem

was stated and previous work on the subject was reviewed. In particular,

Friedman [2] has recently introduced a 2-class recursive partitioning

algorithm with desirable statistical and computational properties. The

resulting classifier is a binary decision tree.

In this chapter, recursive partitioning is discussed. Data and

binary decision tree notation is introduced. Friedman's 2-class algorithm

is revdewed. Friedman's algorithm generates a binary decision tree by

maximizing the Kolmogorov-Smirnov distance between marginal cumulative

distribution functions at each node. In practice, an estimate of the

Kolmogorov-Smirnov distance based on a training sample is maximized.

Adaptive and transgenerated coordinates can be used in designing the

tree. Friedman suggests that the c-class problem be solved by solving

c 2-class problems. The resulting classifier has c binary decision

trees. Several problems with this approach are pointed out. A multi­

class recursive partitioning algorithm is given which generates a single

binary decision tree for classifying all classes. A binary decision

tree is generated by minimizing the Bayes risk at each node. In prac-

tice, an estimate of the Bayes risk based on a training sample is minimized.

2.1 Data and Binary Decision Tree Notation

In the sequel we denote a sequence by x{I), x(2), ••• or [x{n)]

and reserve {x(n)} for the set which contains the single element x(n).
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We shall often be deal i n9 wi th s > 1 sequences but wi 11 only be i nteres ted

in the nm!tl element of the mit' sequence, m= 1, ... ,s, whi ch we refer to
(n ) (n )

as x m rather than x m.
m

Let [k~(n)] be a sequence of d-dimensional random vectors from the

kth class, k = 1, ..• ,c. Let A~n) denote the kth-c1ass sequence
(1) (n(k» _ (n)

k~ , • • · ,k~ , k - 1,. · · , c, and 1et A denote the sequence

(n) (n)
Al , ••. ,Ac ' where

c
n = L n(k)

k=1 .
(2.1)

( . (n) d_Let #n(k) S) =the number of vectors 1n Ak and Sc=lR , k-l, ... ,c, and

c
#n(5) = L #n(k)(5)

k=1
(2.2)

We assume that k~(I), k~(2), ... are independent identically distributed

( . . d) 'd t k'·· - 1 d A(n) A(n) .. t 1 .1.1.,. ran om vec ors, . - , ... ,c, an 1 , ... , care J01n y 1n-

dependent. A(n) will be referred to as the data seq~ence; a realization

of A(n) will be referred to as the data sample.

Let A~nl) denote an n1(k) el~ment i.i.d. subsequence of A~n).
(nl) . (n1) (n1)

k = 1, ••• ,c, and 1et A denote the sequence Al ' . · · ,Ac ' where

c
n = L n1(k)
1 k=1

(2.3)

L t # (5) th b f t . A(n1) d 5 Rd k 1e n (k) = e num er 0 vec ors 1n k an c::: , = , ..• ,c,
1··

and
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c
'n (5) = I 'n (k)(S)

1 k=l 1
(2.4)

(2.5)

(2.6)

Similarly, let A~n2) denote an n2(k) element i.i.d. subsequence of
(n) _ (n2) (n2) (n2)

Ak ' k - 1, ..• ,c, and 1et A denote the sequence Al , .. · ,Ac '

where

c
n = I n2(k)'
2 k=l

L t , (5) th b f t . A(n2) d 5 Rd k - 1 de n (k) = e nurn er 0 vec ors 1n k an c= , - , ••• ,c, an
2

c
'n (5) = I 'n (k)(S)

2 k=l 2

5· A(n) A(n) .. t1 . ddt A(n1} A(n1) dlnce 1 , ... , c are JOlIn y 1n epen en , SO are 1 , ... , c an
(n ) (n ) .. (n1) (n2)

Al 2 , ••. ,Ac 2 We do not assume at th1S p01nt that Ak ,Ak are

. d . d t k - 1 H .f A{ n1) A( n2) . ddt1n epen en, - , ... ,c. owever, 1 k' , k are 1n epen en ,

k= 1, ••• ,c, then A(nl), A(n2)are independent. A(nl), A(n2) will be

referred to as the training sequence and test sequence, respectively;

a realization of A(n1), A(n2) will be referred to as the training sample

and test sample, respective'ly. A(n),' A(n1), and A(n2) are examples of

the preliminary notational remarks!,

Let Fk(~) be the joint cumulative distribution function of class k;

Fk(ai ) be the marginal cumulative distribution function of class k for

coordinate i; ~k the probability measure of class k; TIk the prior pro­

bability of class k; R.k the misc1assification loss for class k. We

assume there is no loss associated with correct classification.

A binary decision tree is shown in Figure 2.1 (cf. Meisel and
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level

1

Note: node indices are monotonically increasing from left to right for
any level, and from first to last level.

Figure 2.1 Binary Decision Tree T
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Micha10pou10s [5]). let binary decision tree T={Ito(T), .•• ,tm(T)},E(T)},

where {to(T), ... ,tm(T)} are the nodes or decision points of T and E(T)

are the edges of T; m(T) the number of nodes in T; o(T) the number of

levels in T; 1j (T), rj(T) pointers to the left and right subnodes of tj(T),

respectively; Sj(T) the subtree of T whose root node is tj(T). T is a

finite binary decision tree if m(T) is finite. Let TO be a binary de­

cision tree. Te TO if to(T) =to(TO)' {to(T), ... ,tm(T)(T)}C= {to(TO)'.··'

tm(T )(TO)}' and E(T)C=E(TO).
o .

Example 2.1

For the (finite) binary decision tree T of Figure 2.1 we have

m(T) = 9, o(T) = 4, 1
2

(T) = 5, r 2(T) = 6, and 51 (T) as shown. I
The decision parameters at node t.(T) are i~(T), ai*(T), lJ.(T), and

J J j

rj(T), and are defined as follows. The root node to(T) is the point at

which the decision process begins. At node tj(T) the ijth component

of a is used for discrimination. If a.* <a.~* the next decision will
1 • 1 •
J J

be made at t l . (T). If a. * ~ a~* the next deci sion wi 11 be made at t (T).
1 . 1 . r.

J J J J

If 1j (T) <0, tj(T) is a terminal node and g is assigne~ to class 11j (T) I.

It is easily seen that a binary decision tree with these decision para­

meters can realize a decision rule that partitions Fd into boxes (rec­

tangular parallelpipeds with sides parallel to the coordinate axes).

The algorithms we discuss generate binary decision trees as the par-

titioning proceeds.

In Section 2.3 an algorithm is given which generates binary decision

trees. In Chapter 3 an algorithm is given which optimally terminates

binary decision trees. The tree termination algorithm requires all
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nodes be labelled as if they were terminal nodes. This is most easily

accomplished during partitioning. Thus the nodes of the binary decision

tree before applying the tree termination algorithm actually have five

decision parameters: i"-!(T), a~*(T), 1.(T), r.(T), and c.(T), where
J 'j J J J

class c.(T) is the label of t.(T) if t.(T) ultimately becomes a terminal
J J J

node. After the tree termination algorithm is applied, c.(T) is no
. J

longer a decision parameter. The explicit dependence of quantities on

trees will be dropped if the meaning is clear, e.g., t j +- tj(T).

2.2 Friedman's Algorithm

Friedman's algorithm is based on a result of Stoller's [7J concerning

univariate nonparametric 2-class classification. We assume

Consider the univariate case (d = 2). Stoller has solved the fol-

lowing problem: find a* which minimi·zes the probability of error based

on th~ decision rule:

ex < a*

ex ~ a*

Let

decide class 1 or 2

decide class 2 or 1 (2.8)

(2.9)

be the Kolmogorov-Smirnov (K-S) distance between the tV/o cumulative dis-

tribution functions. Stoller shows that



O{o.*) = max D(a)
a.

· 16

(2.10)

If (2.8) does not provide sufficient discrimination, Stoller's procedure

can be applied to {a,<a*} and {a~a*} resulting in a decision rule with

four intervals. In fact, Stoller's procedure can be applied recursively

until all intervals in the decision rule meet a termination criterion.

Terminal intervals are labelled as follows. let [a,b) be a terminal in-

terval which results from Stoller's procedure, and

Pk*[a,b) = max ~k[a,b) (2.11)
k=1,2 .

Then class k* is the label of [a,b). Of course,

Friedman extends Stoller's procedure to the multivariate case (d~2)

by solving the following problem: find ai* and i* which minimize the

probability of error based on the decision rule:

let

decide class 1 or 2

decide class 2 or 1 (2.13)

(2.14)

the K-S distance between the two marginal cumulative distribution func-

tions for coordinate i. Clearly,

0(~*1·) = max D(a.)a,. 1
1

(2.15)



max D(a~)

i=l, ... ,d 1
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(2.16)

As with the univariate case, Friedman's procedure can be applied recur-

sively until all d-dimensional intervals or boxes in the decision rule

meet a termination criterion. Terminal boxes are labelled as follows.

Let B be a box which results from Friedman's procedure, and

~k*(B) = max ~k(B)
k=1,2

Then class k* is the label of B.

(2.17)

An example of Friedman's procedure for d = 2 is shown in Figure 2.2.

A box Bc=R2 is to be partitioned, based on the within-box marginal cumu­

lative distribution functions Fk(CLi ) k,i = 1,2, or equivalently, the

- _ dFk(ai )
within-box marginal densities Pk(ai ) - da. k,i = 1,2 (the Pk(ai ) are

1
shown). By inspection, the discrimination on coordinate 1 is greater

than that on 2; consequentl y, i* =1, ai* =ai.

To apply Friedman's procedure to the nonparametric classification

problem, Fk(uil and ~k must be estimated from the training sample A(n1l.
-(n1) (n1) -(1) -(2) _(n1(k»

Let Ak be a rearrangement of Ak such that kCLi ~ kCLi ~ ... ~ kai

where ka~j) is the i~ component of k~(j). An estimate of Fk(ai ) based

on the training sample A(n1) is:

o

F
k
(n1)(a.) = j

1· n
1

(k)

1

-(1)
a.. < ka.·1 1

-(j) ~ -(j+1)
ka.· -..:: a.. < ka.·

1 1 1
j =1, ... ,n1(k)-l

(2.18)
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partition

I
r
I
f
I

a.*1

~B

i* =1

a* =0.*i* 1

Figure 2.2 Friedman's Algorithm (d =2)
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These (maximum likelihood) estimates are expected to work well with mod-

erate1y large data bases and are pointwise consistent, i.e.,

(as n
1

(k) 0+00) (2.19)

where g denotes convergence in probability. An estimate of ~k(B) based
(n )

on the training sample A 1 is

(2.20)

We note that (2.18) implies a preprocessing of data.

The partitions produced by Friedman1s procedure can be associated with

the nodes of a binary decision tree as described in Section 2.1. Termina-

tion criteria for Friedman's procedure are discussed in Chapter 3.

Asymptotic properties are discussed in Chapter 4.

Adaptive and Transgenerated Coordinates

Adaptive and transgenerated coordinates are functions of the measured

coordinates. They can be constructed as the partitioning proceeds,

based on training subsamples. A great advantage of the Friedman al­

gorithm is that many such coordinates can be added with little computa-

tional penalty.

Optimality

The Friedman algorithm is suboptimal in the sense that it only uses

information from the marginal cumulative distribution functions. In

certain pathological cases (cf. Gordon and Olshen [6J) this can result

in poor performance. Gordon and Olshen modify Friedman's algorithm to
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obtain asymptotic results. These modifications are discussed in Chapter·

4. Their usefulness in the finite sample case appears to be highly

data dependent.

Extension to Multiclass Problem

Friedman suggests that the c-class problem can be solved by solving

c 2-class problems. In each 2-class problem, one of the classes is

to be discriminated from all of the others taken as a group. A test

vector is classified by directing it down all c trees and using plurality

logic on the c terminal node training subsamples. There are two sig­

nificant problems with this approach:

(1) Optimal labelling of decision regions is computationally ex­

pensive. This can be seen as follows. Let Bj be a terminal box which

results from applying Friedman's 2-class algorithm to class j and

classes 1, ... ,j-l,j+l, ... ,c taken as a group, and

c
'llk*( n B.)

j=1 J

c
= _ max llk(.~ Bj )

k-l, ... ,c J-l
(2.21)

c
Then class k* is the label of nB

J
.• In practice, llk must be estimated.

j=1 (n )
As estimate of ~k based on the training sample A 1 is

(2.22)

Precomputation·and storage of labels is expensive because of the number
c

of nB
J
.. Online computation of labels is expensive because the training

j=l

subsample at each node must be stored (not just #n
1

(k)(Bj ), k = 1, ... ,c),
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and also because of the repeated computation to compute labels. Friedman

appears to use a heuristic for labelling.

(2) It is unlikely that desirable asymptotic properties can be
c

found. Since the c trees are generated independently, # (k)(.n B
J
.) can-

n1 J=1

not be easily restricted. This property is crucial to Gordon and

Olshen1s results.

In the next section, a multi class recursive partitioning algorithm

is given which generates a single binary decision tree for classifying

all classes. This circumvents the problems described above.

2.3 Multiclass Recursive Partitioning Algorithm

Friedman I s procedure can be extended to the c-class case (c> 2) by

solving the following problems: find o.i*, i*, m*, and n* which minimize

the probability of error based on the decision rule

Let

decide class m* or n*

decide class n* or m* (2.23)

(2.24)

the K-S distance between the marginal cumulative distributions of classes

m and n for coordinate i. Clearly,

Om n(o.*l·) = max 0 n(a1·), o.i m, (2.25)

(2.26)
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Dm*,n*(ai*) = max Dm,n(ai*)
m=l, ,c
n=l, ,c
min

(2.27)

(2.24) - (2.27) replace (2.14) - (2.16) in the Friedman procedure. In­

stead of (2.17) we have

~k*(B) = max ~k(B)
k=l, ... ,c

(2.28)

Othen'l'ise the procedures

cision parameters.

are the ~::lmo
..:JUIII~ • Note that m* and n* are not de-

To this point, it has been assumed that

2
1

'Tr
1

= = Q., 'IT
C C

(2.29)

To remove this restriction, we solve the following problems: find

ai*, i*, m* and n* which minimize the Bayes risk based on the decision

rule

decide class m*

decide class n* (2.30)

First we solve: find a~ which minimizes the Bayes risk based on the
1

decision rule

a. < a~
1 1

a. ~ a~
1 1

decide class m

decide class n (2.31)

The Bayes risk of decision rule (2.31) for a~ = a. ;s
1 1
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c c
= L ~kTIk .L Pr{decide jlk}

k=l J=l
jrk

c
= R, 1f 1.1 [a.. ,00) + R, TI 1.1 (-00,0..) + LQ,k7Tkmmm 1 n n n . 1 k=l

kJ'm,n

c
= Q, TI (1- F (a..» + 9J TI F (a..) + I R.kTIkmm m 1 n n n 1 k~l

k;lm,n

Thus

Rm,n(a.*l.) = min R (a.)o.i m,n 1

It follows that

(2.32)

(2.33)

'min R (a.~)
·-1 d m,n 11- , ••• ,

(2.34)

Rm*,n*(a.i*) = min
m=l, ••• ,c
n=l, ••• ,c
mJ'n

(2.35)

When this procedure is applied recursively, one or more classes may have

zero measure on a box to be partitioned. Clearly, the sum in (2.32) and

the minimization in (2.35) should only be over classes with positive

measure. (2.32) - (2.35) replace (2.14) - (2.16) in the Friedman procedure.

Instead of (2.17) we have

Otherwise, the procedures are the same.

(2.36)
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In Chapter 3 an algorithm is given for optimally terminating a binary

decision tree. The test sample is used both to terminate the tree and

to estimate the risk of the terminated tree. This adds constraints to

the problem of test and training sample division.
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III. TREE TERMINATION

In Chapter 2, a rnulticlass recursive partitioning algorithm was

given based upon the ideas of Friedman [2]. The resulting classifier is

a binary decision tree. A binary decision tree is generated by minimi-

zing the Bayes risk at each node. In practice, an estimate of the Bayes

risk based on a training sample is minimized.

In this chapter, termination of binary decision trees is discussed.

An algorithm is given for optimally terminating a binary decision tree. ,

The algorithm yields the unique tree with the fewest nodes which minimizes

the Bayes risk. In practice an estimate of the B~yes risk based on a

test sample is minimized. The algorithm is generalized to cost func­

tions other than Bayes risk. Test and training sample division is

discussed.

3.1 Termination Criteria

Let Bj(T) be the box associated with node tj(T). The Bayes risk

of binary decision tree T is given by

c c
R(T) = I tknk .I Pr{decide jlk}

k=l J=l
j;k

(3.1)

where
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11 j 11 k

11 j I =k (3.2)

An estimate of R(T) based on data sample A(n) is

= r i 7r I 0k(n) (B .) I ( 11 .11 k)
k=l k k j:t.eT, 1.<0 J J

J J

",(n1) A(n2)
Similarly, R (T), R (T) are estimates of R(T) based on the training

sample A(n1) and the test sample A(n2), respectively.

Let T~nl) be the binary decision tree generated by applying the par­

titioning algorithm of Section 2.3 to the training sample A(n1), with

termination criteria that terminal nodes contain vectors only from a

s~ngle class. Thus

= 0 (3.4)

i.e., the entire training sample is correctly classified. But if class

distributions overl~p then the optimal Bayes rule should not correctly

classify the entire training sample. Thus we are led to examine termina-

tion criteria other than terminal nodes contain vectors from only a single

class.

Friedman suggests that the number of training vectors at terminal

nodes should be large enough to provide good estimates of the class
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measures. Fri edman introduces a termi nati on parameter k =mi nimum number

of training vectors at a terminal node, which ;s determined by minimizing

. f h· 1 (n2) fan estlmate 0 t e Bayes rlsk based on the test samp eA. But or

large c and fixed k there are many possible terminal node populations.

Thus the optimum k might be expected to vary from node to node.

In Section 3.2 an algorithm is given for optimally terminating a

binary decision tree. The algorithm yields the unique tree with fewest

nodes which minimizes the Bayes risk.

3.2 Optimal Tree Termination

Let TO be a finite binary decision tree. We want to solve the

following problem: find T*e:TO such that

R(T*) = min R(T)
Te: TO

Consider the following tree termination algorithm:

Tree Termination Algorithm

j = 1

(3.5)

(i) if (Bayes ri sk does not increase when the descendents of t (T ) .
are deleted and tm(T )_j becomes a terminal node) m O-J

. 0

{delete descendents of tm(T )_j and make tm(T )_j a terminal
node} 0 0

j +- j + 1

if (j~m(TO» go to (i)

end
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Theorem 3.1

Let T*c= TO be the binary decision tree which results from applying

the tree termination algorithm to TO. Then T* is the unique tree with

fewest nodes such that

Proof

R(T*) = min R(T)
Tc=TO

(3.6)

We first derive a simplified deletion rule for deleting a node's

descendents. Let Tb be the tree before the descendents of t i are deleted

and t i becomes a terminal node; Ta the tree after the descendents of t i
are deleted and t i becomes a terminal node. Expanding (3.1) gives

and

The descendents of t i are deleted and t i becomes a terminal node if

(3.9)

~o

The interpretation of (3.9) is that the decision to delete descendents of

t i and make t i a terminal node depends only on t i and Si.
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Given Tc::: TO we construct T' c= TO such that R(T') ~ R(T). Let

TO' T1, ... , TO(T
O
)-l =T* be the sequence of trees generated by applying

the termination algorithm to TO' where Ti is the tree after terminating

the O{TO)-i th level of TO; t. , ... ,t. the level i terminal nodes of
11 1z(i)

Te:::TO. T'C::: TO is constructed from T by the following algorithm:

i = 1

(i) j = 1

(ii) if (there exists a nonterminal node tk(To(T )-i) such that
ti/T) = tk(To(TO)-i» 0

{replace tij(T) by Sk(To(TO)-i)}

j -+-j+1

; f {j ~ Z ( i » go to (i i )

; -+- i+l

if (i~o(T» go to (i)

end

An example of the construction of T' is shown in Figure 3.1. Since T=TO

and Sk(TO(TO)-i) is a subtree of TO{TO)-iC::: TO' it follows that T'c::: TO.

Now consider a tij(T) which was replaced by SK(TO(TO)-i)' Since the de­

scendents of tk(To{T )-i) were not deleted by the termination algorithm,
. 0
we have from (3.9) that R(T') <R(T) (Tb =T', Ta =T). If we allow that

no t. (T) was replaced, we have R(T')~R(T).
1 .
J
Observe that T* results from applying the termination algorithm to

TI
• This follows from (3.9) and induction on the nodes of TI

• Thus

R{T*) ~R(T') which implies R(T*) ~R(T). Since this is true for any

Te::: TO we have R(T*) = min R(T). Novi suppose there exi sts Tc::: TO such
Te To
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T =1

T =

o

A

Figure 3.1 Construction of T' cTO from TC=TO
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that T 1- T*~ m(T) ~m(T*), and R(T) = R(T*).. Then there are nontenninal

nodes of T* which are terminal nodes of T. Let ti(T) be a tenninal node

of T such that t.(T*) =t.(T) is a nonterminal node of T*; T I be T vJith
J 1

ti(T) replaced by Sj(T*). Since the descendents of tj(T*) were not de-

leted by the termination algorithm, we have from (3.9) that R(T I
) < R(T)

(Tb=T ' , Ta=T). But R(T*)~R(T') implies that R(T*) <R(T), a contra­

diction·1

In practi ce TO =Tbn1 ) and an estimate of the Bayes ri sk based on the

- 1 A( n2)· ... d L t T("1 ~n2) b th b' d·'test samp e 1S mlnlm1ze. e *e e lnary eC1Slon

tree which results from applying the tennination algorithm to T6n1 )

based on the test sample A(n2). Then

(3.10)

Finally we give the simplified deletion rule based on the test sample
(n2)

A • The descendents of t i are deleted and t i becomes a tenninal node

if:

A(n2) Jn2) c ,Q,k1Tk
R (Ta)-R (Tb) = ~ n (k)(#n (k)(Bi)I{Citk)-~. #n (k)(Bj)I(lljftk»

k-1 2 2J.t.eS., 1.<0 2
J 1 J

~ 0 (3.11)

Cost Functions Other Than Bayes Risk

Inspection of the proof of Theorem 3.. 1 shows that cost functions Q(T)

of the form

(3.12)
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can be optimized by the termination algorithm.

3.3 Test and Training Sample Division

T~nl,n2) is generated by applying the termination algorithm to Tbn1 )

based on the test sample A(n2). R(n2)(T:n1 ,n2)) is an estimate of

R(Tin1 ,n2)) based on the same test sample A(n2). The asymptotic implica­

tions of this procedure are discussed in Chapter 4. We mention here that
(n) (n) .

A 1 ,A 2 must be lndependent and n1, n2 must be increased in a pre-

scribed manner to obtain desirable asymptotic properties. Since we want

to use the entire data sample it follows that

k =1, .... ~c (3.13)

which implies

In addition, common sense indicates that we must have

(3.14)

k=I, .•• ,c (3.15)

which implies

(3 .. 16)

We complete the discussion of tree termination by drawing the fol-

lowing analogy .. The 2-step procedure of tree generation and termination

is similar to the solution of a general regression problem if tree genera­

tion is associated with generating models of different order, and tree
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termination with determining the optimal order.

In Chapter 4 we investigate asymptotic properties for multi class

classification algorithms in general, and for the algorithms given in

Chapters 2 and 3 in particular.
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IV. ASYMPTOTIC RESULTS

In Chapters 2 and 3 a 2-step procedure was given for solving the

nonparametric multi class classification problem. A multiclass recursive

partitioning algorithm generates a binary decision tree by minimizing

the Bayes risk at each node. In practice, an estimate of the Bayes risk

based on a training sample is minimized. A termination algorithm yields

the unique tree with fewest nodes which minimizes the Bayes risk. In

practice, an estimate of the Bayes risk based on a test sample is mini­

mized.

In this chapter, asymptotic results for the nonparametric multi class

classification problem are derived and applied to decision rules gen­

erated by the partitioning and termination algorithms of Chapters 2 and 3.

Asymptotic Bayes risk efficiency of a decision rule is defined. Gordon

and Olshen's [6] results for the 2-class case are briefly reviewed and

modified for the multiclass problem. Gordon and Olshen's approach in­

volves consistent density estimation, although their densities are with

respect to a general dominating measure which need not be known. Their

results apply to decision rules which partition a Euclidean observation

space into boxes and are invariant to coordinate-by-coordinate strictly

monotone transformations. No assumptions are made concerning the under­

lying cumulative distribution functions. For simplicity, we give modi­

fications for our algorithms which obtain asymptotic efficiency only for

continuous marginal cumulative distribution functions. However, it is

shown in general that consistent density estimates (with respect to a

general dominating measure) yield asymptotically efficient decision
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rules for the multi class case. The proof of this result, which is quite

simple for the 2-class case, ;s surprisingly difficult for the c-class

problem (c > 2). Here, a simple graph-theoretic technique ;s used to

simplify the problem. The results are applied to decision rules generated

by the partitioning and termination algorithms of Chapters 2 and 3.

Asymptotic efficiency is obtained with independent test and training

sequences. Consistent risk estimates are obtained, even though the

estimates are based on the same test sequence used for termination. Fin-

ally, it is shown that the rate at which the risk of a binary decision

tree terminated by the Chapter 3 termination algorithm approaches the

optimal Bayes risk is at least as fast as that of the tree terminated by

optimizing a termination parameter, as Friedman suggests.

4.1 Measure-Consistent Density Estimation

Let n(n) be a decision rule based on the data sequence A(n). Note

that R(n(n)) is a random variable; by convention, the expectation has

not been taken over the data sequence. We say that n(n) is asymptotically

Bayes risk efficient if

inf R(n)
n

(as n +(0) (4.1)

Many approaches to showing asymptotic efficiency of decision rules have

involved consistent density estimation. In general, these results have

shown that if the underlying cumulative distr.ibution functions are Lebesgue

absolutely continuous, then pointwise consistent density estimates yield

asymptotically efficient decision rules (cf. Fix and Hodges [8J, Van Ryzin

[9J). If a function is Lebesgue absolutely continuous then it is
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continuous and has a derivative almost-everywhere. Thus, if a density

is singular or even if it is discontinuous on a set of Lebesgue meas-

ure >0 then the corresponding cumulative distribution function is not

Lebesgue absolutely continuous and the results do not apply.

c c
Let v= I ¢illi' where L <j>.=I, cP;>O, i=I, ... ,c. Then 111,1l2,· •• ,llc

;=1 i=1 1

are absolutely continuous with respect to v, i.e., v(S) = 0 implies

lli (S) =0, i = 1, ... ,c, where S is any measurable set. From the Radon-
dll1 dllcNikodym theorem, there exists measurable functions dv , •.. , dv such

that

I
dll·

~i(S) = S dv
1

dv, i=I, .•. ,c (4.2)

be measurable functions such that

fdll·l
The Ijv'j are Radon-Nikodym derivatives and have

densities, but with respect to the measure v.

~(n) ~(n) ~(n)
111 112 ~c

Let dv ' dv , ••• , ~dv~-

the interpretation of

d
l\(n)

I
11i

dv (as n -+ <Xl) (4.3)

~~n) dll.
for all £ > O. \~e say that dv1 is a measure-consistent estimate of dv1

based on the data sequence A(n). Gordon and Olshen [6] have shown that

measure-consistent density estimates yield asymptotically efficient

decision rules for the 2-class case (Section 4.2). They give modifica­

tions which can be applied to decision rules which partition Rd into

boxes and are invariant to coordinate-by-coordinate strictly monotone
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transformations. Their modified rules yield measure-consistent density

estimates and consequently are asymptotically efficient. No assump-

tions are made concerning the underlying cu,f11ulative distribution func-

tions. For simplicity, we give modifications for our algorithms which

yield measure-consistent density estimates and consequently asymptoti-

cally efficient decision rules only for continuous marginal cumulative

distribution functions. We refer the reader to Gordon and Olshen's

paper for the general case.

Gordon and Olshen introduce the idea of a p-quantile cut. We only

consider the case of continuous marginal cumulative distribution func­

tions. Given a box B, a p-quantile cut on the i~ coordinate has been

achieved at at if

max{# (B n{a. < a~} ), # (B n {a.~ a~} )} ~ p. # (B)n 11 n 11 n (4.4)

i.e., if at most a fraction p of the vectors in B land in either daughter

box. Note that it is uni mportant how vectors wi th o.i =ai are ass i gned

to the daughter boxes since continuous marginal cumulative distribution

functi ons imp ly v{ai} = O.

Let o~3) be a decision rule which partitions ~d into a finite set

of boxes and is invariant to coordinate-by-coordinate strictly monotone

transformations, and let 8(n)(~) be the unique box which contains ~.

Let v(n), ~in), ~~n), , ~~n) be the usual set-wise consistent esti-

mates of v, ~1' ~2' , ~c based on the data sequence A(n), i.e.,

i=1, ... ,c (4.5)
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i=1
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(4.6)

~~n)(B(n)(Ci»
From simple properties of measurable sets and functions () (n) - ,v n (B (~) )

i = 1, ... ,c are measurable functions. The following theorem follows from

Gordon and 01shen's results.

Theorem 4.1

Le t n ~ rk l' Ift" .... L. "., •

(1) there exists fixed positive e such that for n large enough

n(~} e (e, I-e),

(2) there exists ken) such that

ken) .+ 00

10

M!!l-+ 0
In

i =1,2

(as n -+00)

(as n -+00)

(4.7)

(4.8)

(4.9)

(3) # (B(n)(a» > k(n)} g 1
n -

(as n -+ 00) (4.10)

(4) an increasingly large number of p-quantile cuts are made on every

coordinate

then

~ ~ n) ( B(n) (a) ) dll . I
v{a. : IA () () - - -d1 ( a) I > E:J g 0

- \l n (B n (~» \l -

for all E: > 0, ; = 1,2.

(as n -+00) (4.11)
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Proof

i\
d~.

Theorem 4.1a says that under the stated conditions, ---d1 (a) =
v -

~~n)(B(n)(a)) d~.
1 - is a measure-consistent estimate of -d1 (a), i =1,2.

V{n)(B(n)(~)) v -

Theorem 4.1a can be used to modify Friedman's 2-class algorithm to obtain

measure-consistent density estimates. We call this modified algorithm

Gordon and Olshen's 2-class algorithm. Since Gordon and Olshen are only

concerned with asymptotic results, the algorithm is applied to the entire

data sequence A(n) rather than the training sequence A(n1). We shall

have more to say about this in Section 4.3. Let p € [~,1), k(n) = n5/8 , and

w a large integer. We are given a box B.

Gordon and Olshen's 2-class Algorithm

if (coordinate i has not been partitioned in the w most recent par­
titionings which led to B)

{i*+ i
a~* + medi an a. for data vectors in B}

1 1

else

{compute i*, ai* from (2.14) - (2.16)

ai*+max{min{p quantile, ai*},
min{l-p quantile, ai*},

min{p quantile, 1-p quantile}}}

if (termination criteria not satisfied)

{partition B on coordinate i* at ai*}

else

{dq not partition B: B is a terminal bOx}

end
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The termination criteria are:

( 1) fo r s orne i =1, 2 OR (4.12)

(2) (4.13)

We now consider the multi class case. Inspection of Gordon and

Olshen's results indicate that the generalization of Theorem 4.1a for

c > 2 is true.

Theorem 4.1

Let p e [~, 1). If there exists fixed positive 8 such that for n

large enough

n(~) e (8, 1-8), i=l, ... ,c (4.14)

(2), (3), and (4) as in Theorem 4.1a, then

for all € > 0, i =1, ... ,c

Proof

See Gordon and.Olshen [6].1

(as n-+ (0) (4.15)

Theorem 4.1 can be used to modify the multiclass partitioning al­

gorithm of Section 2.3 to obtain measure-consistent density estimates

by substituting (2.32) - (2.35) for (2.14) - (2.16) in the Gordon and

01shen 2-class algorithm and changing (4.12) in an obvious manner.
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In Section 4.2 we review Gordon and Olshen1s proof that measure­

consistent density estimates yield asymptotically efficient decision

rules for the 2-class case. No assumptions are made concerning the under-

lying cumulative distribution functions. The proof of this result,

which is quite simple for the 2-class case, is surprisingly difficult

for the c-class problem. Here, a simple graph-theoretic technique is

used to simplify the problem.

4.2 Measure-Consistent Density Estimation and Asymptotic Efficiency

We want to show that measure-consistent density estimates yield

asymptotically efficient decision rules, with no assumptions on the

underlying cumulative distribution functions. We start with the 2-class

case and follow Gordon and Olshcn.

Let

I .. (a)
lJ -

dll· dlJ .
= I(£ono-d'(a) > £ono~dJ a»

llV - JJV-

~~n) aJ~n)
= I(£ono

d
1 (a) >£ono

d
J (a»

1 1 V - J JV -

(4.16)

(4.17)

For the 2-class case we have

(4.18)

(4.19)
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where the dependence on ~ has been suppressed for notational convenience.

Note that R(o(n)) is a random variable; by convention, the expectation

has not been taken over the data sequence. We have the following

theorem.

Theorem 4.2a

;'(n) ~(n)
111 112Let --d---(a), --d---(a) be measurable functions such thatv - v -

(as n-+ oo ) (4.20)

for all E > 0, i = 1,2. Then

(as n +(0) (4.21)

Proof

For E>O let

(4.22)

(4.23)W2 = {~ : h1Tl:~l(~) - ~21T2:~2(~) I > E} = w~

d11 d11
From the Radon-Nikodym theorem, dv1 , dv2 are measurable functions. Using

simple properties of measurable sets and functions we have WI' W2 are
d~1 d1l2 (n) dll1 d1l2

measurable and .I I2 (R,I1Tldv - Q,2 1T2dv ), 112 (R,I1T ldv - R,21T2dv ) are measurable

on WI' W2. Thus

(4.24)
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We show

J
(n) dlJ1 dlJ2 P J dlJ1 dlJ2

. 112 (£I7fldv - £2 7T2dv )dv -+ W 112(£I7fldv - £27f2dv )dv
Wk k

(as n -+ co), k = 1,2

Consider WI. We have

(4.25)

(4.26)

Now consider W2- First,

which is integrable over W2- Second,

(4.27)

(as n -+ co) (4.28)
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for all £1 >0. We see this as follows. For £1 >0,

whenever

Thus

{ .I (n) dll1 d1l2 d1l1 d1l2 II}
v ~eW2· 112 (i1'IT1dv (~) - i 2'IT2dv (~» -112(Q,1'IT1dv (~) - Q,2'IT2dv (~» ~£

dll(n) dll

.;; v{~: Idv
k (~) - dvk(~)I;., 2,Q,:1T

k
for some k= 1,2}

(4.29)

Taking the limit in probability (as n-+ oo ) of both sides of the above in­

equality gives (4.28). Finally, apply the Lebesgue Dominated Convergence

Theorem. I

The proof of Theorem 4.2a is quite simple. However, the proof for

c >' 2 is cons i derab ly more comp 1; cated.

Let x. eRe, i = ·1, ... ,c, and 11·11 be a norm on ]Re. Given £ > 0, we
-1

recursively partition {1,2, ... ,c-1} into disjoint sets I 1 , ..• ,Iq as follows:

for some i =1, ..• ,c-1; i;' 1
1

, .•. ,Im- 1
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I ( k) = {i"l c II x. - x .11 ~ E for some j e I (k-1) }
m -1 -J m

I ~ 1(c-l)
m m

Note that I = l(Q,) Q,;;?;c-l.
m m

Example 4.1
~

In Figure 4.1, e = 2, c = 10. Let II~II = (~.~) 2, E: = 12. Then II = {1,2,3},

12 ={4,5}, 13 ={6,7,8,9}·1

The proof of the following lemma uses some basic definitions and

theorems from graph theory (cf. Harary [10J).

Lel11lla 4.1
c

Let aielR, i=I,. .. ,c, such that L ai=O. The;, there exists bij ,
i=1

i = 1, ••. , c, j = 1, ... , c, such that

c c c
(1) L l b .. (x. - x.) = L a.x. (4.30)

i=1 j=1 1J -1 -J ;=1 1-1

(2) for each m= 1, .•• ,q and any i e 1
m

b. = L a (4.31)
1 C kel k

m

bjc = 0 j e 1
m

; j"l ; (4.32)

(3) b . = 0 i=I, ••. ,c (4.33)
Cl

(4) b .. = 0 IIx.-x.II>E; j"lc (4.34) .
1J -1 -J
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~10
•
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~5

•

Figure 4.1 Point Distribution in R2

e = 2, c = 10

1lrk;--1 --*

~9
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(5) for each m=1, ... ,q, i e 1m j e 1. , m

(4.35)

Proof

We first associate each x. eRe with a node labelled i. A directed
-1

spanning tree F' is constructed as follows (see Figure 4.2):

... , Gq corresponding to 11' 12, ... , lq

nodes in G. 1fie I , j e I andm m m---
Note that G1, G2, .•. , Gq are

(a) Construct graphs ~1' ~2'

by equating the indices in I withm
IIx. - x.1I <e:, include edge (i ,j) in G .
-1 -J m

connected graphs.
q

(b) Construct graph G by adding node c to Ur,. For each
m=1 m

m= 1, .•. ,q, choose i e 1m and add edge (c, i) to G. Note that G is a

connected graph.

(c) Since G is a connected graph, it must have a subgraph which is

a spanning tree. Let F be a spanning tree in G. Construct F', a directed

spanning tree, by directing all of the edges in F away from node c.

Let Pk = (c = t 1' t 2' . · . , t n =k) be the path from node c to node kin

Fl. Since F I is directed, (tk,tk+1) is a directed edge along Pk (de­

noted (tk, t k+1) e Pk)' but (tk+1' t k) is not. Thus

(4.36)

which implies

c
I ak I (x. - x . )

k=1 (j,i)eP
k

-1 -J
(4.37)
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\

\

J
I

\

I,
7

,
,..

r ~,

, 9
I

I

, 8
I
\

\

\ 6

"

10

•
... -

/4,\'"
\ \

\
\ 5 J
, '- -

fj2

~ (there are other possibilities)

f' (there are other possibilities)

Figure 4.2 Construction of Directed Spanning Tree f'
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c
since I ak = 0 by assumption. Interchanging the order of summation we

k=l
have:

Thus, if

then

c c
I I (I a )(x. -x.)

;=1 j=l k:(j,i)eP
k

k -1 -J
(4.38)

(4.39)

c c
LIb.. (x. - x.)

i=l j=l 1J -1 -J
(4.40)

whi ch veri fi es (1). For each m= 1, ... ,q, the i e 1
m

whi ch was (arb; trari ly)

chosen in the construction of ~ will satisfy (2). (3) and (4) are ob­

vious. For each m= 1, ... ,q, i € 1m, j elm' Im(i ,j) = {k : (j ,.i) e P
k

} will

satisfy (5).1

Example 4.2

For F ' in Figure 4.2 we have

b2 ,10 = a1 + a2 + a3

b4 ,10 = a4 + as



b
S4

= as­

b67 = a6

so

b.. = 0
lJ otherl

For the c-class case we have

(4.41)
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- (1-(l-r(n))(l-I{n)) ... {I-I(n) ))£ TI ~~e] dv (4.42)
Ie 2c c-l,e e edv

, and

Then

a1 = I12II3···Ile

a2 = (I-I12)I23···12e
···
ae-1 = (I-Il,e-l)(I-I2,e-l)···(1-Ie_2,e_l)Ie_l,e

ae = -(1-(1-11e)(I-I2e)···(I-Ic_l,e))

a(n) = l(n)I(n) l(n)
1 12 13 ... Ie

a(n) = (1_1(n))I(n) l(n)
2 12 23 ... 2e

a(n) = (1-1(n) )(1-1(n) ) ... (1-1(n) )1(n)
c-l 1,e-1 2,e-l e-2,e-l e-l,e

a(n) = -{I-(I-I(n))(1-1(n)) ... (1-1(n) ))
e Ie 2e e-l,e

e-l f e dll·
R(~B) = I £.7T. - I a.£.7T.A...

1 dv
;=1 1 1 ;=1 1 1 luv

(n) _ e-l f e (n) d~;
R(~ ) - I £ .7T. - I a . i . TT •-d dv

;=1 1 1 ;=1 1 1 1 V

(4.43.1)

(4.43.2)

(4.43.e-l)

(4.43.e)

(4.44.1)

(4.44.2)

(4.44.e-l)

(4.44.e)

(4.45)

(4.46)
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, ,f

_ c-1 fee d~i d~j
R(aB) - I R,.7T. - I I b. o(R, 07T o-d - R, 07T'-d -) dv

, ;=1 1 1 ;=1 j=1 lJ 1 1 V J J v

{n) _ c-1 fee (n) d~; d~j
-R (a ) - I R, o7T. - I lb. 0 ( R, .7T •-d- R, .7T '-d) dv

i=1 1 1 1=1 j=1 lJ 1 1 V J J v ,

We now state and prove the multi class extension of Theorem 4.2a.

(4.47)

(4.48)

Theorem 4.2
. Nn) 0(d n)

a~i 112
Let -d-(a)'-d-(a),v - v -

that

~(n)

... , ----dc (a) be measurable functions suchv -

(as n+ oo ) (4.49)

for all e: > 0, i =1 , ... ,'C. Then

(4.50)

Proof

For e: > 0 let

W••.= {a
lJ -

'I d~. d~. I }
R,.7T'-

d
l(a) - R, 07T o--'-Jd (a) :e.:;;e: , ; =1, .•. ,c, j =1, ••. ,c,

llV - JJV-

(4.51)
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x{We-1te,W~-1,e}

={~1' ~2' ... , ~r}'

_ (12 13 Ie 23 24 2c e-1,e)
~k - Wk ,Wk , •.. ,Wk ,Wk ,Wk,···,Wk , ... ,Wk '

and

(4.52)

k=l, ... ,r,

(4.53)

e e· ..
W = n n w1J

,
k i=l j=l k

k=l, ... ,r (4.54)

r
It is clear that W1,W2 , ••• ,W are disjoint and UWk =lRd • As in the

r k=l
2-elass case, W1,W2, ... ,Wr are measurable and

dlli dlJ· (n) dlJi dlJjb
1
•
J
·{R,.1T·-

d
- R, 01T o.-:...J..d ), bo 0 (R, 07T·-d - R, 07T o-d ) are measurable on Wk,

~ 1 V J J v 1J 1 1 V J J v
i=I, •.. ,c, j=l, ... ,e, k=l, ... ,r. Thus

..

c-1 r f ·c c dll • . .dlJ .
R{aB) = l R, o7T. - l I lb. 0(R,. 7T or - R, .1T .~) dv

i=l 1 1 . k=l W
k

1=1 j=l lJ 1 1 V J J v

e-1 r e C f dlJ· dlJ·
= l R,.1T. - l l l b.. (R,. 7Tor- R,01To~) dv (4.55)

i=l 1 1 k=1 i=l j=1 W
k

1J 1 1 V· J J v

(n) _ e-l r e c f (n) dlJi dlJj
R(a ) - L R,.1T. - L l l bo. (R,·7T·-d - R, 01T o-d ) dv (4.56)

;=1 1 1 k=l i=l j=l W
k

lJ 1 1 V J J v

We show
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I
() dll . dll . P I dlJ . dll .n tAl -:..:J.. .. ..,. 1 tAJ

b.. ( R, .1T •-d - R, .1T •d') dv -+ b. . ( R, •1T •-d - R, .1T '-d-) dv
W lJ 1 1 V J J V W lJ 1 1 V J J V
,k k

(as n -+ 00) , i = 1, ... ,c, j = 1 , ... , c, .k = 1, ... , r (4.57)

If we choose 11·11 = I· I, and the same e: to generate 1
1

,12, ••• , I q and

W1,W2, ... ,Wr , then [1m] is fixed on Wk. We apply (2) of Lemma 4.1 to each

I
dlli dlJ I .

Wk as follows. For each m= 1, ... ,q, if dv - dvc ~e: for some i elm'

choose i 0 = i; otherwi se for any i e 1m, choose i 0 = i • Then take

bi c=l: ak· Note that io=iO(k,m).
o kelm

th I dlJ . dlJ '1Consider the i,j - integral on Wk' Suppose R,.1T'-d 1 - R,.1T'~d ~e:
1 1 V J J V

on Wk. We have the following cases:

i elm' j = c, i = iO(k,m) ~ b
1
•
J
· = L ak , b~~) = ~ a(n) (Lemma

kel . lJ kel k 4.1(2))m . m

ie 1m, j =c, ;" ;O(k,m) '* b;j = 0, b~j) = 0 (Lenuna
4.1(2))

i = c ~ b.. = 0, b~ ~ ) = 0
lJ lJ (Lemma

4.1(3))

• I . I b t b(.on.) = t ° a(n)
1 em' Je m~ •j = L ak , L k

1 kelm(i,j)C:=l
m

lJ kelm(i,j)C:l
m

(.Lerrma
4.1(5))

In any case

II (n) . dlJ i dlJj . I. dlJ; dlJj I
. b .. (R,.1T'-

d
- R,.1T'

d
)dv - b. ·(R,·7T·-

d
- R,.7T'-

d
)dv

W lJ 1 1 V J J V W lJ 1 1 V J J V
k k

I
(n) d~; dlJj

~ W
k

lb.. - b. ·11 R,. 7T '-d - R, .7T '-dIdvlJ lJ 1 1 V J J V
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since for any I fJ c L ak=0 or 1, L a~n) =0 or 1. Now suppose
keI keI

I
dlJ ° dllO

IR.i 1fid\l' -R. j 1fjdv
J > E on Wk, We have ,the following cases:

i e I , j =c, i ~ i O( k,m) =9 boo =0, b~ ~) =0m, lJ lJ

(4.58)

(Lenma
4.1(2»

(Lenma
4.1(2»

i =c (Lerrma
-:4 ..1(3) )

(Lernna
4.1(4»

We ne~d only show (!)

where the dependence of i O on k,m has been suppressed. First,

which is integrable over Wk" Second,

(4.59)
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for all E' > O. We see this as fo11oWs. We have

b - ~ a =-~ a-a
iOc - k~I k k~IC k c

m m
(I~ = {I, ... ,c-l} - 1m) (4.61)

I
dll· dll ·1R, .rr .-d1 - R, 0 rr o-dJ > E.

1 1 V J J v
Similarly, b~n) = I· a(n) depends' on I~~) only for

lOC keI k lJ
m

I
dll. dll 01

R,.rr.-d 1 - R,orro-.:...J..d > E. Reasoning as in the proof of Theorem 4.2a, (4.60)
1 1 v J J v

must be true. Finally, apply the Lebesgue Dominated Convergence

Theorem. I
The interested reader might work through the 3-class case in detail,

which begins to reveal the ·structure of the problem. The 2-class case

lacks this structure almost entirely. We remark that there is a much

simpler proof of Theorem 4.2, which generalizes directly from the 2-class
. dll1 d1l2 dllccase, if it is assumed that dv ' dv ' •.. , dv are v-almost-everywhere

continuous.

4.3 Asymptotic Efficiency for Multiclass Partitioning and Termination
Algorithms

We now apply the results of Sections 4.1 and 4.2 to prove asymptotic
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efficiency for decision rules generated by· the multiclass partitioning and

termination algorithms of Chapters 2 and 3. Since all the decision rules

to be discussed can be realized as binary decision trees, we refer to

decision trees rather than rules.

Let T~~) be the binary decision tree generated by applying the

multiclass partitioning algorithm of Section 2.3 to the data sequence

A(n), modified as in Section 4.1.

Corollary 4.1

Proof

(as n -+ 00) (4.62)

~~n) A~n)(B(n)( ))
L'et ~(n) = ~G(no) = T(n) l(rv) =11,~ . 1 d

U U GO ' d \.Ao () () 1 = , . . . ,c, an
v - V n (B n (~))

combihe Theorems 4.1 and 4.2.1

Now let T~nl) be the binary decision tree generated by applying the

multi class partitioning algorithm of Section 2.3 to the training sequence

A(n1), modified as in Section 4.1 but with~ (4.12) as the termination

criteria. Thus the terminal nodes· of T~nl) contain vectors only from
(nl) ~ (n)

a single class and furthennore TGO C=TO 1. As in Chapter 3, let

T~nl) be the tree generated by applying the tennination algorithm to
(nl) . .. (nl,n2)'

TO based on the class dlstrlbutlons; T* the tree generated by

applying the termination algorithm to T~nl) based on the test sequence

A(n2). From Theorem 3.1

(4.63)



58

.. i"

(4.64)

Lenuna 4.2

Let [x1n)J, [x~n)J, .•. , [x~n)J be sequences of random variables.

If x(n) is bounded for all n, m= 1, ... ,s, and
m

then

x(n) f c constantm m' (as n~oo), m=I, ... ,s (4.65)

min x(n) g min c
m=l, •.. ,s m m=I, ..• ,s m

(as n ~ 00) (4.66)

Proof

Since x~n) is bounded for all n, m= 1, ... ,s, min x(n) exists
m=l, ••. ,s m

f 11 S· (n) P - I · b d d - I dor a n. 1nce xm ~cm' m- , ... ,s, cm 1S oun e , m- , ... ,s, an

. . _( ) (n)_( (n) (n) (n))
mln cm ex1sts. Let~- x1,x2'···'xs'~ - xl ,x2 , ••• ,xs '

m=l, •.. ,s

£ = (c1,c2' ••• ,cs ), and f(~) = min xm. We use the following result:
m=I, •.. ,s

if x(n) gc and f(x) is continuous then f(x(n)) gf(c) .. x(n) f c , m= 1, ... ,s,
- - - - - m m

implies x(n) gc. We now show f(x)"=' min x is· continuous. Let
- - -. mm=l , ..• ,s

I~-ll <O=e:. Then IXm-Ym l <e:, m=I, ... ,s. Suppose xi = . min xmm=l, ••. ,s
and y. = mi n y. If i = j then

J m=l, •.. ,s m

1 min x - min y I =·1 x. - Y·I = Ix. -Y·I < e:
-1 m - m 1 1 J Jm- , .•. ,s m-1, •.. ,s

If i;j proceed as follows. If y.~x.-e: then Ix. -y·1 <e: implies x. <x.,
J 1 J J . J 1

a contradiction. If y. )x.+e: then Ix. -y·1 <e: implies y. <y., aJ 1 11· 1 J
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contradiction. Thus

I mi n x - mi n y I = Ix 0 - y 0 I < e;
m=l, .•• ,s m m=l, ... ,s m 1 J

which completes the proof. I
We have another corollary to Theorem 4.2.

Corollary 402
(n) (n) .

If AI, A 2 are independent and n2(i)-+00 as n2 -+ 00 , i=I, ••. ,c,

then

(I)

(2)

(3)

(4) (as n
1

-+(0)

(4.67)

(4.68)

(4.69)

(4.70)

Proof

5 0 T(nl) 0 fO °t b O d 0 0 {TC=T(n1}} 0 fO °t1nce 0 1S a 1n1 e 1nary .ec1s1on tree, 015 1n1 e.

{ (nl)} _ { 0 (ni) (n2) °Let Tc::: TO - T1'T2' ... ,Ts}. 5, nce A , A are 1ndependent the

Weak Law of Large Numbers gives

(as n2(i)-+00 i =1, •.• ,c) m=I, •.• ,s
(4.71)

Thus

(a~ n2 -+ (0) m=1, ... ,s {4.72}
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."
since n2(i) -+00 as n2 -+ 00 , i = 1, ••• ,c; by assumption.

(1) For e:>0, IR(n2)(T~n1,n2» _R(T~n1,n2»1 <e: whenever

A(n2) I - . (n1,n2) (n1)IR (Tm) - R(Tm) <e:, m-1, ••• ,s, Slnce T* CTO . Thus

s A(n )
~'l Pr{IR 2 (T ) - R(T ) I ~ e:}

m=1 m m
(4.73)

Taking the limit (as n2 -+
(0) of both sides of the above inequality and

using (4.72) gives the desi.red result.

(n2) A(n2) A(n2) .
, (2) Let xm = R (Tm) and cm= R(T

m
), m= 1, .•• ,s. Since R (Tm)

is bounded for all n2, m= 1, ••• ,s, (4.72) implies the conditions of

Lemma 4.2 are satisfied. Thus

A(n2) p
min R (T) -+ min R(T) (as n

2
-+(0)

m=I, ••• ,s m m=I, ••• ,s m

From Theorem 3.1 it follows that

(4.74)

(as n
2

-+(0) (4.75)

(3) If x(n) J:.y(n) and x(n) J:.z(n) then y(n) J:.z(n),. Thus (3) follows

from (1), (2) •

. (n1) (n1) . ,(n1) (n1)
(4) Slnce TGO c= TO ' Theorem 3.1 glves R(T* ) ~R(TGO ). Thus,

for e: > O. IR(Tin1 » - R(u
B

) I = R(Tin1» - R(uB) < e: whenever
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(4.76)

Taking the limit (as n1+00) of both sides of the above inequality and

using Corollary 4.1 gives the desired result. I
. Corollary 4.2(2) shows that R(n2)(T~n1,n2» is a consistent estimate

of R(T:
n
1». (2) and (4) taken together show that R(n2)(T~n1,n2» is

also a consistent estimate of R(aB). These results are true even though

the same test sequence A(n2) is used for estimation and termination. How-

ever, the following example shows that if A(n1) , A(n2~ are.not inde­
,,(n2)( (n1,n2»

pendent, and the iterated ~imit is not respected, then R T*

need not be a consistent estimate of R(aB).

Example 4.3

(n) (n2) () ,,(n) (n) ,,() ()
let A 1 =A =An. Then R 2 (TO 1 ) =R n (Ton ) =0 whi ch

implies R(n2) (T:
n
1'"2) =R(n)(Tin,n» =0,.: for all n. If class distri­

butions overlap then R(a
B

) > 0 and R(n)(Tin,n) cannot be a consistent

estimate of R<aB).1
From Corollary 4.1, T~~) is an asymptotically efficient decision

rule. Since R(T~~» is bounded for all n we have

(as n+ 00) (4.77)

when En is expectation over the data sequence A(n). This can in fact be

taken as the definition of asymptotic Bayes risk efficiency instead of
(n ,n )

(4.1). Corollary 4.2, (3) and (4) taken together show that T* 1 2 is
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also an asymptotically efficient ·dec~s·ion·rule. Since R(T~nl,n2)),

R(Tinl» are bounded for all n1, .n2 we have

(4.78)

(as n
1

-+-(0) (4.79)

where En ,En are expectations over the training sequence A(n1) and the
1 2

. (n )
test sequence A 2 ,respectively. It is not possible to directly com-

pare the asymptotic properties of T~3) andT~nl,n2) because of the itera­

ted limit in (4.69), (4.70) and (4.78), (4.79). Number sequences

[n~n)l, [n~n)] =[n - n~n)] must be found such that

or

(as n -+- (0)

(as n-+- (0)

(4.80)

(4.81)

Some work has been done on this problem but no results are available.

Since Gordon and Olshen are only concerned with asymptotic results,
I

they choose the tennination parameter k(n) to satisfy (4.8), (4.9). For

n fixed,any k = 1, ... ,n is acceptable. Friedman suggests k be determined

by minimizing an estimate of the Bayes risk based on the test sequence

A(n2). We now investigate the asymptotic properties of such a rule.
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L" t T(n1) T(nl) ... , T(n1)be" 'bi~~;Y' decision trees generated by
e 1 ' 2' n

1
applying the multi class partitioning algorithm of Section 2.3 to the

training sequence A(n1), modified as in Section 4.1, but with k = i for

T~n1). Let
1

(4.82)

(4.83)

. (nl) (n ) (n ,n2) (n ,n )
By comparlng TF to T* 1 and TF 1 to T* 1 2, it is clear that

(nl) (n1 n2) (nl) (nl,n2)Corollary 4.2 holds with T* ,T*' replaced by TF ,TF '
. 1 . (n) (nl,n2)·· (n1,n2)respect1ve y. Unllke TGO and T* , 1t 1S easy to compare TF .

(n ,n). (n ,n )
and T* 1 2. The follow1ng corollary shows that R(T* 1 2) converges

to R(aB) at least as fast as does R(T~nl.n2» (in the indicated sense) .

. Corollary 4.3

For all £>0, 0>0, n1, there exists n~(£,0,n1) such that

(4.84)
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pr{R(Ti"1 '"2» ;;. R(T~"1 '".2J) +e:}.

< Prfl R(Ti"l '"2» - R(Ti"I» I ;;.~ or IR(T~"1 '"2» _ R(T~"1 '"2» I ;;. ~}

< Prfl R(Ti"1 '"2» - R(T~"I» I ;;. ~} + Pr{ IR(T~"1 '"2» - R(T~"I» I ;;. ~}

(4.85)

From Corollary 4.2(3) there exists n~(£,o,nl) such that

(4.86)

(4.87)

(4.85), (4.86), and (4.87) complete the proof. I

As a final comment, the analysis/measure-theoretic results used in

this chapter (properties of measurable sets and functions; absolute

continuity; Radon-Nikodym and Lebesgue Dominated Convergence theorems)

can be found in Royden [11] and Fleming [12]. Probability/statistical

results (consistency and efficiency of estimators; convergence of random

sequences and functions) can be found in Rao [13]. A discussion of

iterated limits is given in Bartle [14].
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v. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

In this chapter we draw the conclusion that Friedman's recursive

partitioning algorithm can be extended to the multiclass case, with the

same desirable statistical and computational properties. However, we

also conclude that certain issues arise in the c-class problem (c>2)

that did not exist or were obscured for the 2-class case. Suggestions

are given for further work.

5.1 Conclusions

We have seen that Friedman's [2] 2-class recursive partitioning

algorithm can be extended to the multi class case, with the same desirable

statistical and computational properties. However, we have also seen

that certain issues arise in the c-class problem (c> 2) that did not

. exist or were obscured in the 2-class case. Consider Friedman's sug­

gestion that the c-class problem be solved by solving c 2-class problems.

This appears to be a satisfactory solution. In fact, we were able to

account for prior probabilities and losses by considering mixture mar­

ginal cumulative distribution functions for a group of classes, although

we do not give this result here. But a solution was not found for the

computational/storage problem of optimally labelling decision regions,

or for the problem of restricting the number of training vectors in a

decision region. This led to the conclusion that a single decision tree

was needed for classifying all classes, and consequently to t~e multiclass

recursive partitioning algorithm of Section 2.3. Similarly, Friedman
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suggests that the number of training vectors in a terminal node be large

enough to obtain good estimates of the within-node class measures.

Friedman introduces the termination parameter k =minimum number of train­

ing vectors in a terminal node. But for large c and fixed k there are

many possible terminal node populations. This led to the conclusion·

that the optimal k might vary from node to node and consequently to the

tree termination algorithm of Chapter 3. Finally, the proof of Theorem

4.2, that measure-consistent density estimates yield asymptotically ef­

ficient decision rules for the c-class case revealed a structure that

was almost entirely lacking for only 2 classes.

5.2 Suggestions for Further Work

Sufficient numerical work should be done to confirm our results.

We note that both Friedman's suggestion for solving the c-class problem

and the multi class recursive partitioning algorithm of Section 2.3 have

been implemented and tested by Monte Carlo procedure on a problem

with c =5 Gaussian classes in a d =2 dimensional space. The c binary

decision trees generated by Friedman's multiclass algorithm were ter­

minated by a nonoptimized value of the termination parameter k, and the

decision regions were labelled in the manner he suggests. For sim­

plicity, the Section 2.3 algorithm was also terminated by a nonoptimized

value of k. Results are given in [15]. The results indicate that the

Section 2.3 algorithm has a lower average class error rate for a given

complexity (number of terminal nodes). However, much more thought should

be given to the problem of finding suitable test cases, the tree­

tenmination algorithm should be used, and other parametric and non­

parametric methods should also be compared.
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GLOSSARY OF SYMBOLS

(- in order introduced)

c

d

number of classes

dimension of observation space

X(1),X(2), ... or [x{n)] a sequence

k~(j) jth vector in kth class data sequence (sample)

"N(j)
kUri

. (n )
A 1

k

n1{k)

n2{k)

n

i th component of 'a(j)
k-

kth class data sequence (sample)

k~ class training sequence (sample)

kth class test sequence (sample)

data sequence (sample)

training sequence (sample)

test sequence (sample)

number of vectors in kth clas'S.data sequence (sample)
A(n)

k

number of vectors in kth class training sequence
(sample) A(nl)

k

number of vectors in k~ class test sequence (sample)
A(n2)
k

number of vectors in data sequence (sample) A(n)



n1

'n{k){S)

'n (S)
1

'n (S)
2

tj{T)

to{T)

E{T)

m(T)
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(nl)
number of vectors in training sequence (sample) A

number of vectors in test sequence (sample) A(n2)

number of vectors in kth class data sequence (sample)
A(n) and S c=Rd

k

number of vectors in kth class training sequence
(sample) A~nl) and S=:Rd

number of vectors in kth class test sequence (sample)
A(n2) and SC::Rd

k

number of vectors in data sequence (sample) A(n) and
SC=Rd

(n )
number of. vectors in trainiQg sequence (sample) A 1

and S C::Rd

(n )
number of vectors in test sequence (sample) A 2
and SC::Rd

joint cumulative distribution function of class k

marginal cumulative distribution function of class k
for coordinate i

probability meas~re. of class k

prior probability of class k

misclassification loss for class k

a binary decision tree

jth node or decision point of binary decision tree T

root node of binary decision tree T

edges of binary decision tree T

number of nodes in binary decision tree T



o(T}

lj(T}

rj{T}

Sj(T)

ij{T}

ai-lf(T}
J

D(ai }

B

-(j)
k~

F~n} (a;)

F~nl)(1i)

~~n2)(1i)

~(n)
llk

~(nl)
llk
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number of levels in binary decision tree T

pointer to left subnode of tj(T)

pointer to right subnode of tj(T)

subtree of binary decision tree T with root node tj(T)

partitioned coordinate at tj(T)

value of partitioned coordinate ij(T) at tj(T)

label of tj(T) if tj(T) terminal node (lj(T) <0)

label of tj(T) if tj(T) ultimately becomes a terminal
node

Kolmogorov-Smirnov distance between FI(ai ), F2(ai )

box (rectangular parallelpiped with sides parallel to
coordinate axes)

rearrangement of kth class training sequence (sample)
A(nI)

k

.th . -(nI)
J - vector 1n Ak

i th component of a(j)
k-

estimate of Fk(ai ) based on data sequence (sample) A(n)

e~timate of Fk(a.) based on training sequence (sample)
A\nI) 1

(no)
estimate of Fk(ai ) based on test sequence (sample) A 2

estimate of llk based on data sequence (sample) A(n)

(n )
estimate of llk based on training sequence (sample) A 1



!\n,n(ai )

R(T)

I(l.e. )

~(n)(T)

R(n1)(T)

R(n2)(T)

(n
1

)
TO

k

T'
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(n2)
estimate of ~k based on test sequence (sample) A

in Chapter 2, a terminal box which results from applying
Friedman's 2-class algorithm to class j and classes
1, ... ,j-l,j+l, ... ,c taken as a group. In Chapter 3,
the box associated with tj(T).

Kolmogorov-Smirnov distance between Fm(ai ), Fn(ai)

Bayes risk of partitioning coordinate i at ai"

Bayes risk of binary decision tree T

1 if l.e. (logical expression) is true, a otherwise

estimate of R(T) based on data sequence (sample) A(n)

estimate of R(T) based on training sequence (sample) A(n1)

(n )
estimate of R(T) based on test sequence (sample) A 2.

binary decision tree generated by applying the multi­
class partitioning algorithm of Section 2.3 to the
training sequence (sample) A{n1) with termination cri­
terion that terminal nodes only contain vectors from
a single class (in Chapter 4, modified as in Section 4.1
but with only (4.12) as the termination criteria)

minimum number of vectors at a terminal node (Fried­
man's terminatio~ parameter)

a finite binary decision tree

binary decision tree generated by applying the tree
termination algorithm to TO based on the actual class
distributions

binary decision tree before descendents of some t i are
deleted and t. becomes a terminal node

1 .

binary decision tree after descendents of some t. are
deleted and t i becomes a terminal node 1

binary decision tree constructed from Tc::TO such that
T'c: TO' R(T ' ) ~ R{T)
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binary decision tree generated by applying the tree
termination algorithm to Tbn1 ) based on the actual
class distributions

binary decision tree generated by applying the tree
termination algOrit~~ fO Tbn1 ) based on the test
sequence (sample) A 2

a cost function which can be optimized by the tree
termination algorithm

a decision rule

the Bayes risk of decision rule a

a decision rule based on the data sequence (sample) A(n)

the optimal Bayes decision rule

a convex combination of ~1'~2'··· '~c

an estimate of \) based on the data sequence (sample) A(n)

Radon-Nikodym derivative of measure ~k with respect
to measure v

d~ .
estimate of dvk based on the data sequence (sample) A(n}

a decision rule which partitions md into a finite set
of boxes and is invariant to coordinate-by-coordinate
strictly monotone transformations

the unique box in a~~) which contains ~

a norm on lRe

index set used to recursively define 1m
index sets c= {I, 2, ... ,c-l}

index set c 1m
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a directed spanning tree {F with edges directed away
from node c}

connected graphs corresponding to I1 ,I 2 , ... ,Iq

connected graph which has spanning tree 1 as a subgraph

a spanning tree which is a subgraph of ~

path from node c to node k in F'

an indicator function

an indicator function based on'data sequence (sample) A{n)

a set C:=lRd

Cartesian product of sets of sets C R
d

?-tuples of sets C=lRd

binary decision tree generated by applying the multi­
class partitioning algorithm of Section 2.3 to the data
sequence (sample) A(n), modified as in Section 4.1

( ) (n )
same as TG~ except uses training sequence (sample) A 1

expectation over data sequence A(n)

. . .. . A(n1)expectatl0n over tralnlng sequence

. (n )
expectation over test sequence A 2

number sequences
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binary decision trees generated by applying
the multiclass partitioning algorithm of
Section 2.3 to the training sequence A(nl) ,
m?~~)ied as in Secti on 4.1 but wi th k =i for
T. .

1 .

T(n1) h· h . .. B . k b d th t 1i W lC mlnlmlzes ayes rlS ase on e ac ua
class distributions

r (n1) h' h . .. 6 . k b d th t ti W lC mlnlmlz(~ )ayes rlS ase on e es
sequence (sample) A 2
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