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ABSTRACT

In this thesis, we shall develop an axiomatic framework for a theory of
thermodynamics. Through a general definition of a thermodynamic system based on
a Markov process formulation, we shall demonstrate that thermodynamic relations
follow. Consequently, one can identify the essential properties of a thermodynamic
system.

This thesis consists of three parts. In Chapter 2, we shall suggest how a Markov
process can arise from a classical physical system and we shall show that a general
Markov process can be cast in the form of a dissipative dynamical system. In the
next chapter, we shall show, as a particular case, how a Markov process results
from a reduction in the state space of a classical Hamiltonian system describing the
evolution of a microscopic system of a large number of particles. In Chapter 4, we
shall construct a framework that captures the required thermodynamic properties
of Markov processes—an equilibrium state and forces and fluxes. The dissipation
inequality of Chapter 2 can then be shown to correspond to the second law of
thermodynamics. Furthermore, we shall obtain a reciprocity theorem stated in an
input-output form.

Thesis Supervisors: Sanjoy K. Mitter, John L. Wyatt, Jr.

Titles: Professor, Department of Electrical Engineering and Computer Science,
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1. Introduction

Thermodynamics provides a macroscopic description of systems in and near
an equilibrium state. Statistical derivations have been advanced as the microscopic
foundation upon which thermodynamics rests. As summarized by Lax [LAX 60}, a
considerable amount of work existed by 1960 on the treatment of a thermodynamic
process as a Markov process. Since 1960, the connection between Markov process
theory and thermodynamics has continued to be explored and has been extended
to systems far from equilibrium [e.g., BRO 79, FOX 79, GRA 78, NIC 77].

Current formulations do not provide a general framework for analyzing
thermodynamic systems. Systems are described phenomenologically and with an
absence (common to physics [WIL 79]) of a system theoretic treatment of inputs and
outputs. To understand what general system properties have as their consequence
thermodynamic relations then becomes difficult.

In this thesis, we shall develop an axiomatic framework for a theory of
thermodynamics. Through a general definition of a thermodynamic system based on
a Markov process formulation, we shall demonstrate that thermodynamic relations
follow. Consequently, one can identify the essential properties of a thermodynamic

system.

This thesis consists of three parts. In Chapter 2, we shall suggest how a Markov
process can arise from a classical physical system and we shall show that a general
Markov process can be cast in the form of a dissipative dynamical system in the
sense of Willems [WIL 72, WIL 79]. In the next chapter, we shall show, as a particular
case, how a Markov process results from a reduction in the state space of a classical
Hamiltonian system describing the evolution of a microscopic system of a large
number of particles. In Chapter 4, we shall construct a framework that captures
the required thermodynamic properties of Markov processes—an equilibrium state
can be defined and forces and fluxes follow from a system theoretic input-output
sesting. The dissipation inequality of Chapter 2 can then be shown to correspond
to the second law of thermodynamics. Furthermore, we shall obtain a reciprocity
theorem stated in an input-output form.

Three perceived benefits of this research are:

(i) Nonequilibrium thermodynamics can be placed on a sound mathematical footing
[WYA 81, p. 2). The idea that a near-equilibrium thermodynamic system can be
modeled as a Gauss-Markov process is well-known [e.g., BRO 79, FOX 79, LAX
60, NIC 77]. For nonlinear, nonequilibrium systems, there is no consensus on an
appropriate Markov process formulation (for example, see the above references).

(ii) A cross-fertilization between stochastic control theory and thermodynamics
can occur [BRO 79]. Stochastic control provides precise, but often nonintuitive,
formulations and solutions of one class of problems while thermodynamics
provides imprecise, but often intuitive, formulations and solutions of another class
of problems. Both fields can thus benefit from any demonstrated connections.



(iif) An appropriate noise model for a nonlinear resistor can be derived [WYA 82. A
model to represent thermal noise in a nonlinear resistor is a current research
topic. A benefit of the proposed approach is an outline of both the constraints
such a model must satisfy and the manner of its derivation.



2. The Forward KolmogorovEquation as a Dissipative Dynamical
System

Thermodynamics is concerned with a simplified, macroscopic description of a
physical system. The observable dynamical variables of a classical physical system
form a small subset of a large but finite set of dynamical variables. Under certain
conditions, the observable dynamical variables evolve as a Markov process. The
key features of a thermodynamic system can be captured in a Markov process
formulation, in particular, through Kolmogorov’s forward equation as the evolution
equation for the statistical state, a probability distribution or density function. An
essential thermodynamic property is a dissipation inequality, which we shall first
derive as a property of a system with state dynamics governed by Kolmogorov’s
forward equation, before providing it with a second-law interpretation in Chapter

4.

10



2.1. From a Classical Physical System to a Markov Process

Classical physical systems are finite-dimensional, continuous-time, differential
systems. The set of dynamical variables is large but finite and evolves according to
a system of first-order differential equations.

Thermodynamic quantities are statistical quantities. An ensemble of classical
physical systems is a thermodynamic system. However, thermodynamics is concerned
with a simplified, macroscopic description of a physical system. The archetypical
thermodynamic system is a statistical description of an observable subset of the
dynamical variables of a classical physical system. The evolution of the observable
dynamical variables is governed by a system of first-order stochastic differential
equations. An ensemble of the observable dynamical variables is characterized by
a probability measure—the thermodynamic state.

Under appropriate conditions, the reduced description obtained by considering
just the observable dynamical variables yields a Markov process. In this thesis,
we shall show that the essential features of a thermodynamic system can be
captured in a Markov process formulation. Our results follow from the properties
of Kolmogorov’s forward equation—the evolution equation for the probability
distribution or density function which is the thermodynamic state. Although
the results are based on Kolmogorov’s forward equation, a consideration of the
underlying sample-path stochastic differential equations provides insight into why
a Markov process formulation so nicely captures thermodynamic properties.

In this section, we shall amplify on this line of reasoning. In the following
chapter (Chapter 3), we shall treat a specific example—a description of how Markov
processes arise from a Hamiltonian system.

Consider a classical physical system described by a set of n + N dynamical
variables

=2

where y(t) is an obseivable n-dimensional vector, z(t) is an unobservable N-
dimensional vector and n < < N. Let R, be the time set of interest. The evolution
equations are the system of first-order differential equations

dz(t)
dt

We have explicitly indicated the dependences of the function f on both the
dimension N of the uncbservable vector z and, by assumption, on a characteristic

parameter, denoted by A.

Equation (2.1) can be solved for the observable dynamical variables y(t). Denote
the solution by

= fn(t, z(t}; N). (2.1)

y(t) = on(t, z(0); ).

11



Assume the dynamical variables are initially distributed according to some
probability law, that is, 2(0) = zp(w), a2 random vector. Then y(t) is a stochastic

process and

y(t) = y(t, w) = dn(t, zo(w); N).
The stochastic process y depends on both the dimension N of the unobservable
vector z and the characteristic parameter \.

If appropriate regularity assumptions are satisfied, the process y(t) can be
decomposed as the sum of a process of finite variation and a martingale. Typically,
the regularity assumptions are satisfied in the limits N — oo and A\ — oo. In the
following discussion, we introduce the required regnlarity assumptions, following
the treatment of Nelson [NEL 67].

Let 7, be an increasing family of o-algebras, such that y(t) is P;-measurable
for any t € R;. We then say {y(t),t € R+} is adapted to {P,t € R;}. Note that a
suitable choice for 5, is

Po=10{y(s),0 < s <t}

The first two regularity assumptions similarly restrict both the process and what
we shall define as its mean forward derivative.

Assumption 2.1. The random variable y(t,-) € L1 2 LY R) for all

t € R, (that is, E{|y(t)]} < oo) and the mapping t — y(t,) is continuous from
1

?R.’. — Ln'
Assumption 2.2. For each t € R, the mean forward derivative

y(t+6g—y(t)lpt}

exists as a limit in L1 and the mapping t — m(t, -) is continuous from R, — L1.

) 4 Ji, B

The mean forward derivative m(t) is a P-measurable random variable, by
definition of the conditional expectation. As the following theorem shows, m(t) can
be considered a best prediction of a derivative of the process y(t).

Theorem 2.1. Letr,s € Ry, r < s. Then

E{y(s) —3(r)| 2} = E{ [ m(r)ar|R}.

By Assumption 2.2, t — m(t, ) is continuous from R, — L. Thus the integral
exists as a Riemann integral in L!.

Define the n-dimensional random variable v(t) for all ¢t € R, by

12



oft) £ 4(t) - 4(0) = [ m(r)r

As a consequence of Theorem 2.1, the process {v(t),t € R.} is a martingale
with respect to {P,t € R.}. The two further assumptions allow us to write the
martingale v(t) as a stochastic integral.

Assumption 2.3. For each 7,5 € Ry, v(s,") —v(r,-) € L2 A L2(0; R"). For
each t € R4,

o) £ Jlim B{z[o(t +6) — o(e)[v(t +6) - o(e)]TIA}

exists as a limit in Ll,, and the mapping ¢t — ©(t,-) is continuous from R, —

Lflan‘
Assumption 2.4. For a.e. t € R, detO(t) > 0 a.e.

Let X(t) be the positive square root of ©(t). Given Assumption 2.4, the inverse
of L(t) exists, a requirement for the proof of the following decomposition theorem.
(Assumption (2.4) is restrictive and is not required for the example of Chapter 3.)

Theorem 2.2. Let r,s € R4+, r < 5. Then, given Assumptions 2.1 to 2.4,
there exists an n-dimensional martingale w such that

E{[w(s) — w(r)]fw(s) — w(r)[T1P} = (s = )axn,

where I,,«,, is the n X n identity matrix, and

y(s)—v(r) = [ m(r)ar + [ £(r)du(r).

In particular, for each t € R,

y(t) = y(0) + /0 t m(r)dr + /o t (r)dw(r). (2.2)

We can write Equation (2.2) as the stochastic differential equation
dy(t) = m(t)dt + L(t)dw(t).
The notation dw represents the formal derivative of the martingale w—a special
case of a white-noise process.

A white-noise process is the formal derivative of a process with uncorrelated
increments. Its Fourier transform is a frequency-independent spectral density
function. The term “white-noise process” is therefore in analogy with white light,
which contains all frequency components. The representation of the observable
dynamical variables y of a classical physical system as the solution of a stochastic

13



differential equation driven by white noise follows in the limits of the dimension
of the unobservable dynamical variables N — oo and the characteristic parameter
X\ — 00, in the examples in the literature (Section 3.2.1.1).

Just as the formal derivative of a martingale is a special case of a white-noise
process, the formal derivative of a process with independent increments is a special
case of the formal derivative of a martingale. Both Gaussian white noise and Poisson
white noise are formal derivatives of processes with independent increments.

If the sample functions of the process y are continuous with probability one,
then the martingale w is a Brownian motion process [NEL 67); hence its formal
derivative is Gaussian white noise. For a process y with discontinuous sample
functions, the martingale w cannot be specified as a Brownian motion process.
When w is a Brownian motion process or a Poisson process, the process y is a
Markov process. For example, consider the stochastic differential equation

dy = f(y)dt + G(y)dB(¢), (2.3)

where f(y(t)) € L1, G(y(t)) € L1, and B(t) is an n-dimensional Brownian motion
process. Then

w(t) = A(#)
and y is a Markov process. As another example, consider the stochastic differential

equation

k
dy = f(y)dt + 3 hi(y)dN*(t), (2.4)

1=1

where f(y(t)) € L}, hi(y(t)) € L1 for all 4, and the N¥(t) are independent Poisson
counting processes with intensities \*(t). Let

1) £ N - | Ni{r)dr.

Then
k
mit) = f(4(0) + 3 hloON0)
k
CEWAVOIHFOND
k t
wlt) = 3 [} S Om) )

14



(where we assume Assumption 2.4), and y is a Markov process. In this thesis, we
shall limit our discussion to Markov processes with sample-path functions arising
from stochastic differential equations of the form of the above two examples.

15



2.2. The Forward Kolmogorov Equation

In this thesis, we shall focus on the forward Kolmogorov equations associated
with sample-path equations of motion such as (2.3) and (2.4). Kolomogorov’s
forward equation describes the evolution of the probability distribution or density
functions of a Markov process. A detailed development of the following properties
of Kolmogorov’s forward equation can be found in [DOO 53, GIK 69, KEI 79, KEL 79,
WEN 81] for Markov step processes and in [DOO 53, FLE 75, FRI 75, WEN 81, WON 71]

for Markov diffusion processes.

A finite-state Markov step process can be described by a stochastic differential
equation of the form (2.4). (For example, in [BRO 77], with f = 0 in (2.4), choices for
the h; are given for which the process y evolves on a finite set of complex numbers.)
Without loss of generality, the finite state space of the stochastic differential

equation can be mapped to a subset of the integers
A
E={1,2...,N}.
The set of intensities of the Poissen counting processes similarly can be mapped to
a set of rates for transitions j — ¢ (where 7 7 j) on the state space E.

A Markov step process on the state space E is also known as a Markov chain.
Let {£(t), t & R;} be the Markov step process on the state space E. Let a;;(t)
be the rate at time t for the transition j — ¢. The a;; are called infinitesimal
transition rates. Require that the a;; be piecewise-continuous functions of time.
The infinitesimal transition rates satisfy the relation
a;;j(t)s +o(s) =Pr{&(t +s) = 1| £(t) =5}, i # 5, (2.5)
(s)

where o(s) is any function such that lim,_.q o—a- =0.

Let

A
e =— Y, aj (2.6)
I

and define the infinitesimal matrix A = (@ij). A Markov step process for which
(2.6) holds is called conservative.

The transition function matriz P(t | s) is defined to have elements

pij(t] 5) £ Pr{€(t) =] () = 3}
Equation (2.5) and the Chapman-Kolmogorov equation
Plul|ls)=Pu|t)P(t|s),0< s<t< u,
yield [DOO 53] Kolmogorov’s forward equation
oP(t | s)
ot
and Kolmogorov’s backward equation
dP(t]s)

—5 = —P(t| 3) A(s) .

— A() P(t] 8),

16



The initial condition is P(s | s) = I, where I is the N X N identity matrix. The
probability distribution of £(t) is an N-dimensional vector p(t) with elements

A .
pi(t) = Pr{¢(t) =1} .
The probability distribution p(t) is the statistical state at time t of the process

{&(t), t € Ry}, The state space Pg is the space of all probability distribution
functions, that is,

A S p—1 i .
PE—{pt'zpt"‘lypg(t)ZOV'lEE},

1=1
The probability distribution p(t) is related to the probability transition function
P(t| s) by
p(t) = P(t | s)p(s),
that is,
p(t) =E{P(t| s)}.
Thus p(t) should also satisfy Kolmogorov’s forward equation
dp(t
0 — awple); 2(0) =0 (27)

Given our assumption that the a;;(t) are piecewise continuous, a unique
solution exists to the ordinary differential equation(2.7). (Weaker conditions such as
integrability will also suffice.) Given our assumption that the Markov step process
is conservative, for any initial condition py which is a probability distribution,
that is, for any initial condition py € P, the unique solution p(t) € Ag. We shall
further assume intercommunicating states, that is, the a;;(t) are such that every
state is reachable with finite probability from every other state. The probability
distribution p(t) then has strictly positive elements [GIK 69, KEI 72]. Lastly, we

shall assume a;; = 0 iff a;; = 0, in order for the ra.tlo Z— to be well-defined. For

a;; = a;; = 0, we shall adopt the convention that -2 a’,._ =1.

We can recast Kolmogorov’s forward equation as follows.

Definition 2.1. The fluzes
Tist) 2 ai5(8) pj(t) — ajit) pi(t).
Kolmogorov’s forward equation then becomes
9= 5400 (28)

The flux J;; can be interpreted as the net flow of probability from j — ¢ on the
state space E. Equation (2.8) is thus a conservation equation for probability.

17



A continuous-state Markov process can be described by astochastic differential
equation of the form (2.3), also known as an Ité equation. Consider the following

It6 equation:

dz(t) = m(t, z(t))dt + Z(t, z(t))dA(t), (2.9)
where z(t) € ®" and f(t) is an n-dimensional Brownian motion process. Let the
symmetric n X n matrix

o(t,z) £ 2(t,2)57(t, ),
and denote the elements of © by 6;;. Assume m(t,z) is a C'-function of z and
©(t, z) is a C*-function of z, m(t,z) and ©(t,z) are piecewise-continuous in ¢, and
O(t, z) is positive definite for all z € R", t € R;. The Markov process {z(t), t € R4}
is also known as a diffusion process. For this thesis, we shall only consider diffusion
processes on the state space R". The transition function of the process {z(t), t € R4}
is denoted by
p(t,z | s,y) =Pr{z(t) < z| z(s) = y}.

Given suitable restrictions on m and X, there exists a transition density function
p(t,z | s,y) such that

z
p(t,zls,y)=/_mp(t,u|s,y)qu

and p(t, z | s,y) satisfies Kolmogorev’s forward equation

:t otz | 7,y) = zg—[m,(t 2olt, z | 3,9)]

+3 5 5am; o[ttt )]

and Kolmogorov’s backward equation

d 0
—5" (t,:t l s, y) = Zmi(S,y)-é—_p(t,z I $, y)

32
+ = Zozy ,ya %, -p(t,8 | 8,9).

t,]

The initial condition is p(s, z | s,y) = 6(z — y), where 6(:) is Dirac’s delta function.
The probability density of z(t), p(t, z), is a function of t € R4 and z € R", where,

for any region I' C R",

Pr(z(t) € T} = [ o(t,z) V.

The probability density p(t, z), as a function of z for t fixed, is the statistical state
at time t of the process {z(t),t € R;}. The state space Py~ is the space of all
probability density functions on R", that is,

Poo & (olt,2): [, olt,z)aVe =1,
plt.z) > 0V ze R},

18



The probability density p(t, z) is related to the transition density function
p(t,z | 8, y) by

p(t,z) = /m,, p(tiz | s,9)p(s,y) dVz,
that is,

ot z) = E{p(t,z | 5,9)}.

Thus p(t, z) should also satisfy Kolomogorov’s forward equation

d d

ap(t’ z) - = ; a—z,‘[mi(t’ x)p(t, .'1:)]
(2.10)

1 3*
+ 2 ‘z,]: m" [otj(tl z)o(t, :t)]
The existence and uniqueness of a solution to the purtial differential equation (2.10)
can only be proven in special cases. Consequently, we shall assume the existence of
a unique solution p(t,z) € Py~ to (2.10). We shall further assume the probability
density p(t, z) is strictly positive for all z € R", t € R, and sufficiently regular to
justify the integrations by parts we perform in the following sections.

We can recast K :lmogorov’s forward equation in a more compact form. Define
the m-dimensional partial derivative matrix operator

g afo o)
v ayl.“aym '

When y = %, the sample-path state variable of our diffusion process, we shall
denote V; by V.
Definition 2.2. The fluzes

jt2) 2 mis, 2)olt,z) — 5V - (B(t, 2ot 7).

Kolmogorov’s forward equation then becomes
d .
ap(t, z) = -V . j(t,z). (2.11)

The flux j can be interpreted as a probability density current and Equation (2.11)
as a conservation equation.

19



2.3. A Dissipation Inequality

For both the Markov step process and diffusion process, we can define a
function of the statistical state which yields a dissipation inequality. In Section
4.3, we shall provide both the function of state and dissipation inequality with
thermodynamic interpretations.

Denote the statistical state of either process by p(t,y). Suppose there are two
possibilites for the set of parameters of a Markov process (the set of parameters

being either A or m and ©). Let p!(t,y) and p?(t, y) be the solution of the forward
Kolmogorov equation for each set of parameters, under equivalent initial conditions.

The logarithm of the likelihood ratio
111 p l(t’ Z)
p(t, 2)
is well-defined (by assumption, p(t,y) is a strictly positive function of ¢ and y) and
is defined as the information for discrimination in favour of H; against Hj, given

the state of the Markov process is 2. An argument from Kullback [KUL 58, Sect.1.2]
leads to the above definition. Suppose we observe the state of the Markov process

at time t to be z (that is, either £(t) == z € E or z(t) = z € R"). The conditional
probability that hypothesis H; is true is then
Pr{H;}pi(t, z)

Pr{H,}p!(t, z) + Pr{H2}p%(t, 2)
Thus the logarithm of the likelihood ratio

n? 1(¢, p'(t 2) — Pr{H, | 2} I Pr{H}

p2(t, 2) Pr{H, | 2} Pr{H,}

and the information resulting from an observation z is the difference between
the logarithms of the likelihood ratio of the two hypotheses after and before the
observation.

The information has two interesting properties. The absolute value of the
information is a metric on [0, 1], as can be verified by calculation. Furthermore,
a conservation relation holds for the information in favour of a time-dependent
state pl(t,y) against a time-independent state p?(y), given the true state is the
time-dependent state. The conservation relation is of the form

1
p(t 2)
E{—In
{dt p¥(2) FPR
1 d 1y
=0

The information leads to a functlonal of the statistical state which can be

considered a distance measure. Consider the quantity

E{ln p(t z)} ,

p3(t, 2)

Pr{H; |z} =
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where the expected value is taken given the true state is p!(t, y), which we shall call
the mean information for discrimination in favour of H; against Hz, given p!(t,y),
after Kullback [KUL 58, Sect. 2.1]. For y = 1 € E, the mean information given p}(t)

is
1
1 p;(t)
> pi(t)In s
T pi(t)
and for y = z € R", the mean information given p!(¢, z) is

p'(t 2)
P2 G

Gy & E{ln M}

p'(2)
the mean information given p(t,y), with respect to the time-independent reference

state p"(y). This functional of the statistical state p(t,y) has two properties of a
measure of the distance of the statistical state from a reference state:

(1) G'(t) 20

(#) G"(t)=0 iff  p(t,y)=0p"(y)
The above two properties follow from the inequality In z < z—1, for which equality
holds iff z = 1.

The functional G"(t) satisfies a dissipation inequality, as follows. First consider
the N-state Markov step process. Then

Let us call

N .
%G’(t) = -&‘%ZJ‘I pi(t)In g;%)
dp, (t) y ) _1_.@’_(1).
__t; E + ;pt(t){}h‘(t) dt ]
_ z Z T t)l pl()
1=1 j=1
_ N i-1 : M
B ; ng %il9)le P}/Pj
B = e = )
= 5 Enon G0 8 8 siom(i+ 2 050)

Define functionals of the set of fluxes J;;, set of infinitesimal transition rates a;;,
and state p by

S5 p:/pj
N -1 7
D(t) 4 ;1 Z Jij(t)In (1 + ;‘%’)_g;z(?))
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Consider the set of functions of time
1, 28/ a5i(t)
t/ot
P} /p;

We can write the fluxes J;; to show an explicit dependence on these functions, as

a;:/ag
l i
Jij = aﬁp,(pi/p' R - 1).
/P
Suppose we consider this set of functions as inputs to a system with Kolmogorov’s

forward equation (2.8) as a state equation and the set of fluxes J;;(t) as outputs of
the system. Then W7(t) is a memoryless function of the inputs and outputs

Now consider the functional D(t). If J,-j() > 0, then In (1+ anlt p' ) > 0.

Similarly, if J;;(t) < €, then In (1 +5 (tp t) < 0. (Note that J;;(t) will never
equal —a,;(t)p;(t) by the assumptions of intercommunicating states, guaranteeing
strictly positive p;, and a nonzero aj;(t) iff a nonzero g;;(t).) Thus D(t) > 0, with
equality iff J;;(t) =0 for all 7,5 € E.

Willems’ work on dissipative systems [WIL 72, WIL 79] introduces a storage
function, supply rate, and dissipation rate. We have constructed a dissipative
dynamical system with storage function G', supply rate W", and dissipation rate
D. That is, we have shown

d
£6"(t) = W'(t) - Dlt) < W'(e),
where the supply rate W”(t) can be considered as a memoryless function of system
inputs and outputs and the dissipation rate
D(t) 20,
with equality iff all system outputs vanish.

We can similarly construct a dissipative dynamical system for the diffusion

process. Then

_ <> f;gt(z;m [ 25y,

=/R—V-j(t,a:)lnp(('z)) AT

p(t, z)
_/ i62)-vinEaZav.,

where the last step follows from an integration by parts. A calculation verifies

Vin p(t, z) = 2071(¢, :r.)[m(t, ) — %V - O(t, z)| — ;(%z—) e~(t,z)j(t, z).

So
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L

76 ()

= /92“ ilt,z) - {29_1(t, x)[m(t, z)— —;—V - O(t, x)] ~Vh p'(z)} dv;
- /mn ;(-i—z—)j(t, z) - 071(t, 2)5(t, z) dV.

We can similarly define functionals
W) & [ () {207, z)[m(t, ) - %v e, :c)] — Vi p'(z)} 4V,
A 2 . -1 .
D(t) = —(t,z) - O™ (¢, 2)j(t, z) dVz .
() £ [ 2ayit62)- 07 (6 2)i(e 2)dV2
Consider the function of the time ¢ and the sample-path state variable z
2071(¢, x)[m(t, z) — -;—V - O(t, z)] -Vl p'(z).

We can write the flux 5 to show an explicit dependence on this function, as
j= -;-ep{[ze-l(m - %v .8)= Vi p'] ~ VI f-}

If we consider this function as the input to a system with Kolmogorov’s forward
equation (2.11) as a state equation and the flux j(t, z) as the output of the system,
then W'(t) is a memoryless function of the input and output. As ©(¢, z) is positive
definite by assumption, the dissipative rate D(t) > 0, with equality iff j(t,z) =0
for all z € R", that is, iff all system outputs vanish. Thus, as above, we have
constructed a dissipative dynamical system with storage function G", supply rate
WT, and dissipation rate D. In Chapter 4, we shall give this dissipation inequality
a thermodynamic interpretation.
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3. A Series of Derivations of Markovian Thermodynamic
Systems Starting from a Hamiltonian System

A series of Markovian thermodynamic systems can be derived through successive
transformations of a Hamiltonian system. The parameters of the Markovian
thermodynamic systems are determined by the parameters of the underlying
Hamiltonian system. In particular, the equilibrium state associated with a Markovian
thermodynamic system follows through knowledge of the original Hamiltonian

system.
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3.1. The Hamiltonian System

Consider a dynamical system of a large number of particles. In principle,
we can describe the microscopic evolution of the system through the laws of
classical mechanics. (Our discussion will be only within the framework of classical

mechanics.)
In particular, we shall consider a Hamiltonian system of NN particles with
momentum and position coordinates
p;ER, r; ER, ij=12,...,,N,
respectively. The system is described by the Hamiltonian

N

1
'Zl m_’p? + V(T)9
J=

H(p,r) =

DN

where p = (p1,p2,...,pN), r = (r1,72,...,7N), and m; is the mass of particle j.
(We consider one-dimensional rather three-dimensional motion only for simplicity.)

Borrowing terminology usually applied to the stochastic processes of the
following sections, we shall call a phase-space trajectory of the Hamiltonian system
a sample path. Sample-path quantities depend on the coordinates of all particles;
that is, a sample-path state is (r, p) € ®%V. The sample-path equations of motion
are

. j=1,2...,N. .
do, 8H aV 7=12%..,N (3.1)

d - or; or,
Classical mechanics suggests the following definitions of the sample-path quantities
of forces, kinetic energy, and potential energy.

Definition 3.1. The forces of a Hamiltonian system are

v

aA_9%
F:’ - ar,-’

j=1,2,...,N.

Definition 3.2. The kinetic energy of a Hamiltonian system is

and the potential energyis V.

Note that the Hamiltonian H = K + V. Thus the Hamiltonian is the energy
in a sample-path sense. As we have defined the Hamiltonian H as a function of
only p and r, a simple calculation reveals the Hamiltonian is a constant of motion

of (3.1), that is,
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H .
dt
For large N, we cannot expect to track the path of each particle as a
function of time. A statistical description then becomes necessary. Traditionally,
one constructs an ensemble of Hamiltonian systems to provide probabilities for
the one Hamiltonian system with the physical interpretation of frequencies for a
larger system. The ensemble is a collection of identical, noninteracting Hamiltonian

systems—a Gibbs ensemble.

Consider an ensemble of identical Hamiltonian systems. Each system is
deterministic, but the initial condition is uncertain. The “statistical state” of such
an ensemble is a probability measure on R2V. The state space is some subset of the
set of all probability measures on R2V, We can take the state space as the set of all
Borel probability measures on RV that are absolutely continuous with respect to
Lesbesgue measure on R2V [WON 71]. Then there exists a nonegative Borel function
p(t,p, ), where (p,r) € R2V, such that for all '}, ' € RV

Pr{p(t) € Ty,r(t) €T} = /I‘, /I‘x p(t,p,r)dpdr.
The function p(t,p,r) is called a probability density function. We can therefore
identify the statistical states with their density functions.
The evolution equation for the density function p(t, p, ) is the Liouville equation
dp :
a = ’—sz’

where 1 = 4/—1 and:

Definition 3.3. The Liouville operator

LA N[6H 8 8H 8
o drj dp; 0Op;dr;|

=1

The Liouville equation is a Fokker-Planck equation without a diffusion term.

Thermodynamic quantities are statistical quantities. A thermodynamic state
is thus a statistical state. We shall call an ensemble of Hamiltonian systems a
thermodynamic system. The ensemble average of a sample-path function f(p,r) is
denoted as (f) and is defined as

(1) £ [, S0, )eltsp,7) dp .

Definitions for the thermodynamic quantities of energy, equilibrium, temperature,
and entropy rely on the definition of the ensemble average, as we shall show in the

remainder of this section.

Definition 3.4. The energy of a thermodynamic system
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/ Hip,r)o(t,p, ) dpdr.

We can calculate
dE dp

il R

= —1 /mm(Lp)H dpdr

o0H 0 (6H
= —H|—-—|—H])=0,
;-Z—:l <a"J (aPJ ) 9p; (37'1 )>

where the last step follows from an integration by parts. Thus the energy is
time-independent (a constant of motion) for a thermodynamic system which is
an ensemble of Hamiltonian systems—a physically obvious conclusion, since the
Hamiltonian is time-independent for each system sample path.

We wish to assign a unique equilibrium state to a thermodynamic system.
Historically, various arguments have been given to establish a form for such an
equilibrium state. We shall give one set of arguments (but only in a nonrigorous
setting appropriate to the present discussion).

An equilibrium state should be a steady-state solution to the Liouville equation
Lp® = 0.

A simple calculation shows that any twice-differentiable function is in the kernel of
the Liouville operator L iff it is a constant of motion of the Hamiltonian differential
equation (3.1) . For, example, any nonnegative twice-differentiable function of the
Hamiltonian H, appropriately normalized, is a candidate for an equilibrium state.

dpdr

Now consider two independent thermodynamic systems characterized by Ham-
iltonians H; and H,, with equilibrium states p; and ps. As a second property of
an equilibrium state, we should require that p; = ps if H; = Hp, for consistency.
Thus only a function of the Hamiltonian can be a candidate for an equilibrium
state.

Now consider a composite of both systems with Hamiltonian H = H;+ H; and
equilibrium state p®. As a third property, we should require that the equilibrium
state of the composite system be the product of their equilibrium states, or

In p* = In p§ +In g5,

as follows from their statistical independence. Thus the logarithm of the equilibrium
state must be an additive function of the Hamiltonian. Our three requirements

have thus led us to the following definition:

Definition 3.5. The equilibrium state of a thermodynamic system is the
canonical density function
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pt = ce PH,

where the normalization constant

-1
c= (/mw e BH dpdr)

B >0.

and

We shall use the notation (f), to denote the ensemble average of a sample-path
function f(p,r) for a thermodynamic system in equilibrium, that is,

(£e 2 foun F@7)P(p, ) dpdr.

We can define § in terms of a physically-measurable quantity. The average
kinetic energy of particle j is <%,—nljpf> In equilibrium, the average kinetic energy

per particle

11 1 _

(ER .
e

independent of the particle index j, as revealed by a simple calculation (for
one-dimensional motion—for three-dimensional motion, the result is multiplied by

3). We can therefore define 8 by (3.2).

Definition 3.6. The temperature T of a thermodynamic system in equilibrium
is defined by
1

T =15

where k is Boltzmann's constant and } B! is the average kinetic energy per particle,
in equilibrium.

Note that (3.2) is a form of the equipartition theorem for kinetic energy. We
cannot make such a general statement for the potential energy. However, as in
equilibrium

the relation
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18V 11 , 1
(3am), = (i) = =

holds for the potential V. Note that (3.3) can also be written as
-<F,-r,-> — KT. (3.4)
e

For a quadratic potential, that is, for

N
Vir)= }:1 Vilr;) = Z o3,
j=

3—1

an equipartition theorem also holds for the potential energy, that is,
19V 1 ., 1
(3amy7), = (o), = (%), = 34

Definition 3.7. The entropy of a thermodynamic system (whether in
equilibrium or not) is

S 2 —k(lnp).

We can calculate

dp
/!;WV atlnpdpdr k R 3y dpdr

= ki /mw(Lp) In pdpdr
d OH a O0H
=~k Inp)— —(=—1In
35;':1 < 55 p; P~ 35: p)>,
where the last step follows from an integration by parts. Simplifying, we find

oH 6p 0H dp

@ Z /mw (3p; 3r; ~ 3r; 8p; P

6
=k RN 3f dpdr--O

Thus the entropy is time-independent for a thermodynamic system which is an
ensemble of Hamiltonian systems. A time-independent entropy and energy is a
result peculiar to an ensemble of Hamiltonian systems and will not remain valid
for the ensembles of Markovian systems introduced in the following sections.

In an equilibrium state
S= —k(ln Pe)c
= —klnc(H,T)+ kp(H),
= —klne(H,T)+ %;E
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So in equilibrium
dS__ kdedBdl' EdT 1
dE~ cdfdTdE TIdETT
k 1 1\dT EdT 1
= (¢ fow B dodr (3 )F - TR R + T
. T?2dE T2?dE T

p—1 T ’
a classical thermodynamic relation for systems of constant volume (as we have
implicitly assumed).
(In the next section, we shall show that, for a Markovian system, the Einstein

relation equates equilibrium sample-path fluctuations to intrinsic system properties.
A proposed analogue to an Einstein relation in a Hamiltonian system is a combination

of Equations (3.3) and (3.4); namely

<(%)2>e _ ._-;11;<ij:'>6 = 7.’:% (3.5)

Probably little significance should be attached to Equation (3.5), but note the
similarity to Equation (14.85) of Lax [LAX 60].)
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3.2. Diffusion Process Approximations to a Hamiltonian System

The equilibrium state of an ensemble of Hamiltonian systems is described by a
simple form of the density function p—the canonical density function. To describe a
nonequilibrium state, we must use the Liouville equation to calculate the density p
as a complicated function of all the momentum and position coordinates. However,
in thcrmodynamics we are interested in a simpler, macroscopic description. The
simplest macroscopic description is obtained when an ensemble of Hamiltonian
systems can be considered as one system of Brownian particles in a heat bath, as
occurs when the Hamiltonian has the form of this section.

3.2.1. The Ornstein-Uhlenbeck Process

3.2.1.1. An Outline of a Derivation of the Ornstein-Uhlenbeck Process
from a Hamiltonian System
Consider a Hamiltonian system consisting of one observable particle coupled
to 2N unobservable particles. The two compounents of interest are then:
(i) the observable particle and
(ii) a process which typifies the behaviour of the 2NV unobservable particles.
For a particular form of the Hamiltonian, we shall obtain a reduced system

consisting only of the two components of interest. The observable particle is often
called a Brownian particle and the system of 2IN unobservable particies a heat bath.

Let the Brownian particle have mass m, with momentum and position
coordinates pgp and rg, respectively, and the 2N particles of the heat bath have
identical masses m', with momentum and position coordinates p' and 7/, respectively,

where
= (P-Ny--1P=1,P1,- -+, PN),
P =(r-N,...,7—1,71,...,7N).
In the reduced system, let the position and velocity of the Brownian particle be
zeR, vER,

respectively. Let w(t) be a Brownian motion process. Under certain restrictions,
mentioned below, Kac [KAC 69] has shown that the sample-path description of the
reduced process is the Ornstein- Uhlenbeck process (as defined in Section 10 of [NEL

67))

dr = vdt (3.6a)
do=-2 i Loy —\/2kT d (3.66)
V= v fdw, .

where the potential V' and fnctlonal coefficient f are defined in terms of the
parameters of the Hamiltonian system, and the Brownian motion process w(t)
represents the heat bath.

A number of approaches yield the above result (for example, [KAC 69, DUR 81]).
We shall follow the approach of Kac. To obtain this result, Kac had to postulate a
special form for the Hamiltonian. The Brownian particle has a Hamiltonian
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11

Hy = 5;?3 + V(ro),
the heat bath has a Hamiltonian
A=) 5 Laivee)
N=7 — Py N ’
2 JmN m!*
770

and the Brownian particle is coupled to the heat bath by a coupling Hamiltonian
H, = W(ro, 7).

Furthermore, a particular positive-definite quadratic form must be assumed for the
sum of the potentials Viy(r') + W(rp, 7). Thus, excluding the potential V(rg), the
system postulated by Kac is linear.

Initially, the Brownian particle and heat bath are a system in equilibrium,
that is, the initial state at ¢ = 0 is the canonical density function

~or|E Sy VN () + W (ro,r)

p*=ce N
The external potential V(rp) is asserted for times ¢ > 0. Two limiting processes are
then required to derive an Ornstein-Uhlenbeck process.

Unlike the ensemble of Hamiltonian systems of the previous section, an ensemble
of Ornstein-Uhlenbeck processes exhibits an irreversible approach to equilibrium.
However, an initial state of a reverstble dynamical system will recur periodically,
to any desired degree of accuracy. The Poincaré cycle is the time interval between
such recurrences. Thus to obtain irreversible behaviour, the Poincaré cycles of a
Hamiltonian system must become infinitely long. Such a requirement is satisfied in
the limit of infinitely-many unobservable particles, that is, in the limit of N — oo.

In the limit of N — oo, the resulting process is not Markovian. To obtain a
Markov process, Kac defines a characteristic parameter wg of the quadratic form
for V(r') + W(ro,7'). In the limit of wg — oo, the process becomes Markovian.
For times t not significantly greater than ;};, the process is not Markovian. Lax
notes this point—that a Markov process approximation to a reversible microscopic
system is only useful for time scales significantly greater than the forgetting time

of microscopic collisions [LAX 60, pp. 40-41].

Given the above limiting processes, the particular form of the Hamiltonian
assumed by Kac yields an Ornstein-Uhlenbeck process for the observable particle,
with sample-path equations of motion (3.6). The energy in a sample-path sense is
that portion of the Hamiltonian which depends on the reduced sample-path state
(z,v), that is, Hy = imov? + V(z).

We can construct a circuit model for the Ornstein-Uhlenbeck process (3.6). As
in Figure 3.1, consider a series connection of a nonlinear capacitor with energy
storage function ®, a linear inductor of inductance L, a linear resistor of resistance
7, and a white-noise voltage source of amplitude /2kTr. The resistor in series with
the voltage source is the Nyquist-Johnson model for a noisy resistor, which we
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Figure 3.1 A Circuit Model for the Ornstein-Uhlenbeck Process

shall describe in Section 3.3.2. Let g be the capacitor charge and ¢ be the inductor
current. Identify the circuit analogues as follows:

Terq

UREX)

me L

fer

V(z) « ¥(qg).
The above substitutions in Equation (3.6) then yield the Ornstein-Uhlenbeck process
corresponding to the circuit.

3.2.1.2. Thermodynamic Quantities

An ensemble of Ornstein-Uhlenbeck processes is a thermodynamic system.
The thermodynamic quantities we defined for an ensemble of Hamiltonian systems
also apply to an ensemble of Ornstein-Uhlenbeck processes. We shall show that
the definitions from the previous section remain consistent, given the following

changes:
(i) The Hamiltonian H of Section 3.1 becomes Hy = imv? + V(z). (Note,
however, that (3.6) is no longer a conservative system and therefore is no
longer derivable from a Hamiltonian Hy alone.)

(ii) The density function p, in Section 3.1 the solution of the Liouville equation,
is now the solution of a Fokker-Planck equation.

We can again identify the statistical states with their density functions.
However, the evolution equation for the density function is the Fokker-Planck
equation corresponding to (3.6), that is,
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dp O d 19V f kTf ap
a az[”"] dv ( m Oz mv)p m? dv| (37)
Clearly the energy is
E(t) £ (Ho).
The equilibrium state is the canonical density function
gt & cemwrHo, (3.8)

The reader can verify that (3.8) satisfies the criteria of Section 3.1, namely, p° is an
invariant density of the Fokker-Planck equation (3.7) and the average kinetic energy

in equilibrium, <%mv2> , is kT. Furthermore, (provided limjs|_,c0 g~V =0,
e

which justifies the required integration by parts) the potential V' continues to satisfy
the equilibrium relation

2 0z

In contrast to the result of the previous section, for an ensemble of Ornstein-
Uhlenbeck processes the equilibrium state not only is an invariant density of the
Fokker-Planck equation, but is (under appropriate restrictions) the unique invariant
density to which the thermedynamic system evolves. Similarly, both the energy
and entropy can vary along trajectories of the Fokker-Planck equation, as we shall
now show.

As in the previous section, calculations of the time-dependencies away from
equilibrium of the energy and entropy depend on the validity of a series of integrations
by parts. Skipping the intermediate steps, calculations of the time-dependencies of
the potential and kinetic energies yield:

<l 3_K2> = ll‘:T.
c 2

&)= ) )

2 (-4 e

and the energy is not a conserved quantity.

Similarly, the entropy is not a conserved quantity. The entropy of the previous
section was the entropy of the complete system of the Brownian particle together
with the heat bath. In particular, the probability density determining the entropy,
as in Definition 3.7, was then a function p(t,po,70,7’,7') of all momentum and
position coordinates. Now the entropy is the entropy of the Brownian particle—the
probability density determining the entropy is a function p(t,po,r0) of only the
momentum (or equivalently, velocity) and position coordinates of the Brownian

Thus

34



particle. As the Hamiltonian H = Hy + Hy + H. has a coupling term H., the
probability density for the complete system p(t, po, 7o, p',7') is not a product of the
probability density of the Brownian particle p(t, po, 7o) and the probability density
of the heat bath p(t,p/,r'). Thus the entropy of the complete system, a conserved
quantity, cannot be written as the sum of the entropy of the Brownian particle and
an entropy of the heat bath. A third term is needed —an entropy of the interaction
of the Brownian particle with the heat bath.

3.2.1.3. A Nyquist Theorem

We can define characteristic parameters of our system in a general way.
Consider the Ornstein-Uhlenbeck process (3.6). The white-noise process, formally
%\/2757'7% , is the input to the system. In the case of a free particle, that is, with
V(z) = 0, the ratio -';'— is the time constant of the system. We therefore define a

time constant 7 as

A

,Am
7

and a diffusion constant D, equal to % the spectral density of the white-noise input,
as

Equation (3.6b) then becomes

dy = —;1_-vdt +V2Ddw.

To account for nonequilibrium effects, Lax introduces a correction factor C,
which reduces to unity in equilibrium. For a fluctuating variable o € R", represented
by a column vector, C is defined as

c A <aar><aar>:l.

In our case, we define C as the scalar quantity
A <"2> m<”2>
C = = . (3.10)

<02> kT

e

Using the definition for C, the kiucuic energy becomes
1 2) =L < 2> 1
<2mv = ™Y cC--- 2kTC.

As the kinetic energy is the total energy of a free particle, we can rewrite (3.9) to
show that the correction factor C satisfies the differential equation
ac 2

- = —;(C -1). (3.11)
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For a linear system (as we obtain with V' set to 0), the Nyquist theorem relates
the autocorrelation or spectral density of velocity fluctuations due to the extrinsic
white-noise input to intrinsic system properties. The time constant 7, particle
mass m, and ap initial condition for the correction factor C are intrinsic system
properties. Define the autocorrelation function

R(t1,t2) 2 (v(t1), v(te)).
Then, for t; > i

R(t1, ts) = c'?!:_m<vz(tz)>

(¢1~¢3)

. (3.12)
= kT=¢"—7C(ta).
m

Thus (3.11) and (3.12) relate the autocorrelation of velocity fluctuations to intrinsic
system properties and together are a Nyquist theorem.

Furthermore, as the diffusion constant D characterizes the extrinsic white-noise
input, the Einstesn relation
D= -1—<v2> — kil
T ¢ mr
is a special form of the Nyquist theorem. The precise definition of an Einstein
relation is an unsettled question in the literature. The most conventional definition
would state that an Einstein relation connects a diffusion constant to a mobility.
We use the term more broadly to include any relation between system properties
connecting the equilibrium average of the square of a velocity (either a sample-path
velocity or a white-noise input) to either an equilibrium average incorporating a
force or a parameter associated with a force. This loose interpretation incorporates
both the above relation and Equation (3.5).

The above Einstein relation can be established through an equilibrium argument;
hence, it remains valid for the case of a nonzero potential V(z). However, in such a
case, C can no longer be determined just from intrinsic system properties and our
form of the Nyquist theorem is no longer valid.

3.2.2. The Smoluchowski Process

We have seen that a Hamiltonian system reduces to an Ornstein-Uhlenbeck
process only for a time scale significantly greater than the forgetting time of
microscopic collisions. A further expansion of the time scale yields the Smoluchowski
process.

Consider the Ornstein-Uhlenbeck process in the absence of noise, in particular,
a modified (3.6b) rewritten as

dv 19V
—_——=——— - 3.13
@& " fez 7V (3-13)
where 7 = T as in the previous subsection. The limit m — 0, or equivalently,

7 — 0, yields
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19V

Y = o= v e

T~ foz’
The above result, obtained by setting m = 0 in (3.13), is called a singular
perturbation.
Including the noise term, now rewrite (3.6b) as

19V /2kT
rdv = —-}- -5;-dt - vdt + —-f-—-dw.

The limit m — 0 then yields

19V /2kT

dz = vdt.
Thus a singular perturbation results in the Smoluchowsks process

19V /2kT
dz = —?E—dt + wa. (3.14)

The above result can also be explained through the circuit model of Figure 3.1. The
circuit model for the Smoluchowski process is given in Figure 3.2, which follows in
the limit of the inductance L — 9. Nelson [NEL 67] formulates this result as:

But

Theorem 3.1. Let %‘5 satisfy a global Lipschitz condition. Let z,v be the
solution of (3.6) with

z(0) = zo

v(0) =g
and let y be the solution of (3.14) with

y(0) = =zo.

Then, for all vg, with probability one
Jlim 2(t) = y(t)

uniformly for ¢ in compact subintervals of [0, 0o).

An ensemble of Smoluchowski processes is a thermodynamic system. As we
found for the Ornstein-Uhlenbeck process, the definitions of Section 3.1 remain
consistent, given the following changes:

(i) Ho = imv? + V(z) of the previous section becomes simply V(z).
(i) The density function p is the solution of the Fokker-Planck equation

corresponding to (3.14).

The energy and the equilibrium state have the same form as in Section 3.2.1.2.
As before, both the energy and entropy are not conserved quantities. We can obtain
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Figure 3.2 A Circuit Model for th~ Smoluchowski Process

a Nyquist theorem only in the case of a quadratic potential, that is, for V(z) = az?,

for some a > 0.
3.2.3. The Nyquist-Johnson Resistor

The Nyquist-Johnson modei for thermal noise is based on a theoretical
derivation by Nyquist [NYQ 28] of the experimental results reported by Johnson [JOH
28]. The publication of both papers in 1928 provided the study of thermal noise with
a rigorous foundation. By considering an equilibrium connection of two resistors
and applying the equipartition principle, Nyquist demonstrated that the spectral
density S(w) of the open-circuit noise voltage in a “noisy” resistor of resistance r
is

S(w) = 2kTr,
independent of the frequency w. A Thevenin-equivalent circuit modei for a noisy
resistor, as enclosed in the dashed boxes of Figures 3.1 and 3.2, consists of a
white-noise voltage source of amplitude v2kT'r in series with a (noiseless) resistor
of resistance r and is called a Nyquist-Johnson resistor.

3.2.4. Appropriate Loads for a Nyquist-Johnson Resistor

Network theory imposes no constraints on the load which can be connected
across a Nyquist-Johnson resistor. However, the Nyquist-Johnson resistor connected
to a load corresponds tc the Smoluchowski process (3.14), derived from the
Ornstein-Uhlenbeck process (3.6), in turn derived from the Hamiltonian system
of Section 3.2.1.1. The fact that a Nyquist-Johnson resistor is a thermodynamic
system derived from a Hamiltonian system imposes a constraint—the load must
arise from a potential function in order for equilibrium thermodynamic relations
to be satisfied, as we shall now show.

Consider the Smoluchowski process corresponding to the Nyquist-Johnson
resistor and its associated load,
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dg = %fdt + v ?-’?’_z‘-dw, (3.15)

where the charge ¢ corresponds to the position z, the resistance r to the frictional
coefficient f, and the voltage ¢ to the force —%E-.

Suppose we formally write
€= rj—: - V2kTry,

where the white-noise process n = %‘;—" The current % corresponds to the velocity
v = 9, The functional form for the voltage ¢ determines the naturc of the load.
Equation (3.15) can only be derived from a Hamiltonian system if the voltage
€ arises from an external potential corresponding to the potential V'(z). Let the
potential ®(g) correspond to the potential V(z). Then

&g) = -2%(;)-'

Consider two examples of external systems which determine the voltage £ and
hence the external potential ®. As in Figure 3.3, first consider the connection to
a linear capacitor of capacitance C. A linear capacitor determines a potential and
voltage as

*o) =%
éa) =72,

consistent with our formalism.

Now consider Figure 3.4, where we connect a Nyquist-Johnson resistor to a
linear capacitor of capacitance C in series with a linear resistor of resistance R
(equivalently, to an impedance Z(w) = R —izL.). Then
dq
dt”

The validity of the connection of Figure 3.4 implies the existence of a potential V'
such that

e=—(F+R

av
—a;-=az+bv,

for some nonzero constants a and b. But no such potential exists for a Hamiltonian
system—thus the connection of Figure 3.4 is invalid. It is not surprising that in
Section 10 of [LAX 60], Lax found that a load-independent description of thermal
noise could not be found for the connection of a Nyquist-Johnson resistor to a load
impedance with a nonzero real part.

We can further compare the consequences of both connections. For the
connection to a capacitor
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Figure 3.3 A Nyquist-Johnson Resistor Connected to a Capacitor
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Figure 3.4 A Nyquist-Johnson Resistor Connected to a Capacitor in Series with a Resistor
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dg = -—ith+ V 2Ii:z—'dw
rC r

and for the connection to a capacitor in series with a resistor

1 v2kTr

dg = —mc—th + H—kdw.

The diffusion coeﬂicient—% the spectral density of the white-noise input—remains
unchanged from that of (3.15) in the first case; in the second case, the load modifies

it to
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r
D — kT(—;‘:R_)ic

Furthermore, the equipartition theorem fails in the second case—in the first case
1./, 1
2 C(" > =
while in the second case
1 2> _ 1 r
2C<q e ZkT(r + R)'
Thus a violation of an assumption upon which the model is based—its derivation from
a Hamiltonian system—results in the vanishing of its equilibrium thermodynamic

properties.

This result may be restated as follows. A nonzero real part of a load impedance
corresponds to a resistor. The Nyquist-Johnson model of a resistor postulates that
a resistor is a thermodynamic system. Hence the connection of a Nyquist-Johnson
resistor to a load incorporating a resistor R is really the interconnection of two
thermodynamic systems rather than the connection of one thermodynamic system
to a load. The absence of a noise source for the resistor R implies the connection
of a Nyquist-Johnson resistor at temperature T to a Nyquist-Johnson resistor
at zero temperature. Equilibrium thermodynamic properties do not hold for the
interconnection of two thermodynamic systems at different temperatures.
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3.3. Markov Process Approximations to a Hamiltonian System

Both the Ornstein-Uhlenbeck and Smoluchowski process approximations to
a Hamiltonian system have position-independent diffusion coefficients, that is,
diffusion coefficients independent of the sample-path coordinates. Approximations
for a Hamiltonian system composed of distinct potential wells lead to a finite-state
Markov step process and, in an appropriate limit, a diffusion process with a
position-dependent diffusion coefficient, as we shall now show.

3.3.1. A Markov Step Process

In this section, we shall obtain a Markov step process approximation to a
Hamiltonian system, given a potential function with a set of potential wells which,
in an expanded time scale, determines only transitions of the Brownian particle
from well to well. Consider a Brownian particle in a heat bath under the influence
of an external potential composed of M deep potential wells. The spatial extent of
each potential well forms one of M identifiable domains, as follows.

Let the position of the Brownian particle be
rg ER.

Denote the external potential by V(rg). The existence of an equilibrium state (3.8)
requires that the potential V(rg) — oo as rp — +00, in such a manner that (3.8)
integrates to unity over R (for example, V/(rg) > kg as rg — 00, for some positive
constant k). Further suppose that the potential has local minima at

T = ZIaj, 1=12,....M

and local maxima at
70 = T3j+1, i=12....M-1,

where

z; ER, 7=23,...,2M,
and global maxima at rg = z; = —oo and 79 = zZgpr41 = +00. Then

71 <22 < - < TaM41
and we shall say the Brownian particle is in domain 7 if
zgj-1 < 10 < Z25+1, 7=12,...,. M.

As we have shown in the previous section, in a reduced system, the position z of
the Brownian particle evolves as the Smoluchowski process

19V /2kT
dz = ~7 —é;dt + —f—dw. (3.16)

As an example, consider a model for the migration of impurity atoms through
a crystal. The crystal consists of M identical cells. Each cell contains an interstitial
site at which an impurity atom can locate—a potential well. The crystal atoms of
each cell are in equilibrium. By successive collisions with the thermally fluctuating
crystal atoms, the impurity atom can acquire sufficient energy to escape a potential
well and migrate from cell to cell [SC! 79].
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Consider the potential wells deep in the sense that transitions from well to
well occur on a longer time scale than positional fluctuations within a well. By
expanding the time scale to focus only on transitions from well to well, a simplified
macroscopic description results. Such a simplification is invaluable in a calculation
of the mobility of the impurity atoms in the crystal, for example.

Transformation 1: to a “slowed-down’’ Smoluchowski process z(s) =
(), in a rescaled time s = @t

Let
A
Vi =V(z;)-
Define a dimensionless measure of the depth of the potential wells by
A in (Ve -V
Q2 miy {elVi-Vil) (3.17)

We can then rewrite Equation (3.16) for a rescaled time

8 éQt.

For the time scale s, we must introduce the Smoluchowski process
= A 8
Z(s) = z(—=
) 22(3)

(a “slowed-down” version of the process z). Note that we can replacc the Brownian
motion process w(t) in Equation (3.16) by the equivalent Brownian motion process
—-lﬁw(Qt). (Given w(t) is a Brownian motion process, lw(c?t) is also a Brownian
motion process for any nonzero constant ¢.) Thus in the expanded time scale s,

Equation (3.16) becomes
]
ogds + edw, (3.18)

- _16
e

where
1

Q

>

(z) V(z)

2T
o

Transformation 2: to a Markov step process y(r), in a rescaled time

r=2=

Ty

With a further transformation of the time scale, we can construct a finite-state,
stationary, Markov step process y which approximates the Smoluchowski process
z in the sense of describing the sample-path transitions of the Brownian particle
from domain to domain. The sample-path state space of the Markov step process
therefore consists of M states. We shall label the jth state zj; to correspond to the
4th minimum of the potential V. To obtain the Markov step process, we shall define
a rescaled time r. The statistical state of this simplified thermodynamic system is
the distribution function

>
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A
pi(r) = Pr{y(r) = =3},
in the transformed time scale r. The infinitesimal transition rates characterizing
the Markov step process y are defined by

Pr{y(r + A) = zy; | y(r) = 225} = a;;A + o(A).

Transformation 2a: to a ““stochastically-discontinuous’’ Markov step
process

We obtain the Markov step process as follows. Consider an open interval (a, b).
Given an initial position z € (a, ), the mean exit time from (a,b) is, by definition,
the expected value of the minimum of the first passage time to the point a and
the first passage time to the point b. The probability of exit thrcugh the boundary
point a (b) is the probability that the first passage time to a (b) is less than the first
passage time to b (a). For the Smoluchowski process (3.18) (in the time scale s) and
the domain (z3;-1, Z27+1), given an initial position z € (2,1, Z2;4+1), define 7;(z) as
the mean exit time from (z2;_1,Z2;4+1) and define p, ;(z) as the probability of exit
through the boundary point zj;,1. Consider a neighbourhood (g, b) of a boundary
point Z2;,1(Z9;—1). Given the Brownian particle starts from zg;,4(z9;_1), define
PezRj (Pez1j) s the probability of exit through the right (left) boundary point b
(a) of the neighbourhood. (Note that p.zp; and p.r; as defined depend upon the
choice of the neighbourhood (a,b).) The transition rates are determined by

A
T3 = rf(zzj))
A
P+ = p+j(z25)
PezRj) and PezLy: Assume:
(i) V(z) is twice continuously differentiable (C?2),

) V! & 2% Lo, j=1,2,...,2M +1, and

az? =1z
(i) Vaj1 < Vajer.
Making these three assumptions, [WIL 82] approximates 7j, p.j, Pezrj, and Pesr;
asymptoticaily as @ — oco. The approximations follow due to the first two
assumptions; the form of the following expressions is simplified due to the last
assumption. The asymptotic approximations depend only oz the local behaviour of
V(z) about the maxima and minima and are:

Qfrerr(Vai-1-Va)

(/4 (/4
V—V2-1V%;

1

M;‘;llicﬁ(vﬂi-ﬂ_vﬁ—l) +1
25+1

1
DezRy ™~ E

1
DezLj ~ 5 .

Tj ~

Dyj ~



The notation f ~ g is read “f is asymptotic to ¢” and f ~ g as @ — oo, for
functions f and g dependent on both z and @, is defined, for all z, as

lim i = 1.
Q@00 g
Define an index 7 corresponding to the “least deep” potential well by
min{Vay41 — Vaq, Vay-1 — V29 } = @,

where @ is defined by (3.17). Further transform the time scale to
1
T

The following theorem, adapted from Theorem 2.4.4 of [WIL 82], describes how the
Markov step process y(r), with state space {z3;:j = 1,2,..., M}, approximates,
as @ — oo, the Smoluchowski process z(F) = Z(,r), with state space R. (Note
that the process y(r) is a “sped-up” version of the processes Z(s) and z(t), because
7y grows faster than @.) We first provide background from Chapter 2 of [WIL 82]
and Section 5.4 of [COD 82].

A finite-state, stationary, Markov step process is completely characterized by
its transition function matrix P(t), with elements
pij(t) = Pr{y(t) = sly(0) = j}.
For any such transition function matrix, the limit
I £ lim P()
t—0+
always exists (Section 5.4 of [COD 82]). The limit
P £ lim P(¢)
t—o00

is called an ergodic projection and determines a partition of the state space of the
Markov step process into ergodic classes and transient states. States in any ergodic
class are inaccessible from states in any other ergodic class. The matrix II satisfies

the properties of an ergodic projection, that is,
@(m>o
{HI-1=1
(iii) 12 =11
(iv) IP(t) = P(t)II = P(t),
where ] is a column vector of ones. Therefore II is called the ergodic projection at
zero.

A Markov step process can have instantaneous states, that is, states in which
the duration of any visit is zero with probability one. However, the process can
spend a nonzero amount of time switching among instantaneous states (that is,
the set of times spent in any instantaneous state contains no intervals but can
" have nonzero measure). Thus a Markov step process with instantaneous states
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is called stochastically discontinuous as its sample functions have segments that
are nowhere continuous. A Markov step process without instantaneous states is
called stochastically continuous as its sample functions are piecewise continuous.
The states of a stochastically-continuous Markov process are called regular states.
The duration of any visit to a regular state is an exponentially-distributed random
variable. If II = I, the identity matrix, the Markov step process is stochastically
continuous; otherwise, it is stochastically discontinuous. An instantaneous state
for which m; = 0, where II = (m;;), is called evanescent, that is, it is a transient

state.
Transformation 2b: to the stochastically-continuous Markov step
process y

Every stochastically-discontinuous Markov step process uniquely determines a
stochastically-continuous Markov process through an aggregation operation. Just
as the ergodic projection P determines a partition of the state space of the Markov
step process into ergodic classes and transient states, the ergodic projection at
zero II determines a partition of the state space of the Markov step process into
ergodic classes at zero and evanescent states. An ergodic class at zero can contain
any number of instantaneous states and at most one regular state. Evanescent
states are visited only in transitions between ergodic classes at zero and can be
neglected without affecting the finite dimensional distributions of the process. Once
in an ergodic class at zero, the process switches instantaneously among states in
the ergodic class. The amount of time spent in any ergodic class at zero is an
exponentially-distributed random variable. (In comparison, states in any ergodic
class determined by the ergodic projection P are inaccessible from states in any
other ergodic class, but within an ergodic class, the time for transitions among states
is an exponentially-distributed random variable.) Thus when evanescent states are
neglected and the states of each ergodic class at zero are merged into a single state,
the resulting Markov step process is stochastically continuous.

The aggregation operation can be formally stated as follows. Let P(t) =
M exp{At}, where A is the infinitesimal generator of P(t), be the transition function
matrix for the stochastically-discontinuous Markov step process. Write the ergodic
projection at zero in terms of the matrices of its left and right eigenvectors of
eigenvalue one, that is, as Il =V - U. Then

P(t) & UP(t)V = exp{UAVt}
is the transition function matrix of the stochastically-continuous Markov step process

(Theorem 5.4.5 and Corollary 5.4.6 of [COD 82]), which completely characterizes
the process. We can now state the theorem.

Theorem 3.1. In the transformed time scale 7, the finite-dimensional
distributions of the process z converge as @ — oo to the finite-dimensional
distributions of a 2M-state stochastically-discontinuous Markov step process.
Aggregation of the stochastically-discontinuous Markov step process yields an
M-state stochastically-continuous Markov step process y with transition rates
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Gj+1,7 = Aj+PezRy
aj-1,5 = )‘j—Pchj
a;,; =0, i?éjilv
where \;, is the rate for a transition z3; — z3;, given by

D4y
i+ = S
Ty

and \;_ is the rate for a transition zz; — z;_1, given by
1-pyj

7

Aj- =

The evolution equation for the distribution function p; is the forward
Kolmogorov equation

oy

dt

In physics, Equation (3.19) is commonly called a master equation.

The form of the equilibrium state p® follows if we require that the equilibrium
state remain an invariant density of the forward Kolmogorov equation. We can
calculate

= (a;,j+1Pj+1 = 8;4+1,iP5) + (5,j-1Pj—1 — @j—1,5P;)- (3.19)

Piy1 G+l Aj+
P Gii+1 Nj+)-

Py; Tl

1=pi+1) 75

V” - V l_V

vt 41 J( Virs ) VeiiV%

Vit o e (Vas- Vs ViinVeie2\ Vijn
Vﬁ:e Br(Vas-1-Vasn1) 1 1 j+1" 25 7+

. e~ B {{(Vai+3—Vaj1)+Vasaa]=[(Vaj41—Va-1)+Vay]}

The equilibrium state is therefore

V.
o (1+,'-1;%{—*1e-=t-‘v=f+f-v=i~*’) L v, (320)
251 w/ng

where ¢ is a normalization constant. The equilibrium state is now a more general
form of the canonical density function.

3.3.2. A Diffusion Process with a Position-Dependent Diffusion Coefficient

In a section entitled “Slightly Nonlinear Systems” (Section 14 of [LAX 60]), Lax
attributes two properties to nonlinear Markovian systems:

(i) The equilibrium state differs from the caionical density function of
Definition 3.5.
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(ii) The diffusion coefficient depends on both extrinsic and intrinsic properties
of the system.

These two properties of nonlinear systems are properties of Markovian systems
with a position-dependent diffusion coefficient. A position-dependent diffusion
coefficient appears in a system derived from a Hamiltonian system in a particular
manner—by reducing (in an appropriate limit) the spacing between the states of
the Markov step process of the previous section.

A Kramer-Moyal ezpansion [NIC 77, Sect. 10.3] of a master equation yields a
partial differential equation, called a forward equation. The forward equation models
a physical process with a continuous sample-path state space. The discrete sample-
path state space of the Markov step process must therefore yield the continuous
state space of the physical process. Thus there is an underlying assumption that
the state space of the Markov step process is a set of points suitably placed in an
n-dimensional Euclidean space (for example).

The forward equation is obtained in the limit of a scaling parameter decreasing
to zero. Let h € R, denote this scaling parameter. The same parameter h scales
three different dependencies of the Markov step process—the position coordinates,
time, and process parameters. In particular, we shall define a scaling parameter A
such that the spacing between the points of the state space placed in an Euclidean
space, a transformation of the time scale, and the infinitesimal transition rates all
depend on h. The forward equation is obtained from the tnfinitesirnal transition
moments

ma(ih) £ 3 lim (el + &))" | ) =2}, m=1,,..., (321)
where z(r) is a Markov step process exhibiting the above dependencies on h. Then,
in a change of time scale to

t=hr,
the infinitesimal transition moments rescale as
mp(z) = ,!1_% mn(2z; h).
T
In the new time scale, the forward equation can be written formally as an expansion
in the rescaled infinitesimal transition moments, that is, as

dp 1, 9,,
at ,,Z=:1 n!(—az) (),

where the density function p is the density function of a Markov process z
approximating the Markov step process z in the limit of the scaling parameter A
decreasing to zero. A Fokker-Planck equation is obtained when the infinitesimal
transition moments vanish for n > 2.

Consider the Fokker-Planck approximation to the master equation (3.19) on
the level of the sample-path equations of motion, that is, consider a diffusion
process approximation to the Markov step process of the previous subsection. For
a rescaled time 7, the approximating diffusion process is of the form
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dz = A(z)dr + /2D(z)dw, (3.22)

where the drift parameter A(z) is the first-order infinitesimal transition moment and
the diffusion parameter D(z) is the second-order infinitesimal transition moment.

Transformation 3: to a “sped-up”’ diffusion process z(r) = y(6%r), in a
rescaled time r = §%r

The time and position coordinates of the Markov step process can be scaled
to obtain convergence to the diffusion process, as follows. Assume

ToIM+1 — ToM =+ = Tgjq — Toj = Tgj — Tgj—)] =+ = T3 — If.
Set a dimensionless parameter
A
6 = z9542 — Taj,
that is, § is defined as the spacing between the minima (or maxima) of the potential
function V. Change the time scale to
r £ 2,

Thus 62 corresponds to the scaling parameter h of Equation (3.21). To obtain the
approximating diffusion process (3.22), the measure @ of the depth of the potential
wells must have a particular depencdence on the scaling parameter é. In particular,

assume
4
Q = 62 ¢

The diffusion process z(7) of Equation (3.22), with state space R, then approximates,
as § — 0, the Markov step process y(77), with state space {z;;5 = 1,2,...,M}.
(Time is “sped up” and the spacing between states is “shrunk”.)

We shall calculate A(z) and D(z) for a specific form of the potential V. For
T € [Z2j-1, T2j+1], decompose V(z) as
V(z) = Q4(z) +0(a),

where:

(i) #(z) and 6(z) are twice continuously differentiable,

(if) ¢"(z2541) 7 0 and 6"(z5;) 7 0 for all ,
(ii) 8(z2;-1) < O(z2541),

(iv) ¢(z) ~ o(z2;)(z — 225)° as = — 235,

(v) ¢"(z2j+1) = ¢"(z2;-1), and
(vi) V(z) ~ Q¢(z) and V(z) >> 6(z), as Q — oo, for z 7 z;.
The first three conditions ensure that our previous assumptions on V(z) are satisfied;

the last three conditions determine the form of the limiting expressions for A(z)
and D(z). The notation f ~ g as u — v, for functions f and g dependent on u, is

defined as
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Similarly, f > > g as u — v is defined as

Jim £ =o.
Note that the last three conditions ensure that as @ — oo, the equilibrium state of
the previous section remains both finite and nonzero. The potential ¢(z) varies as
function of position on the scale of an individual potential well, while the potential
6(z) varies on the scale of the composite system. We can call the potential ¢ a local
potential and the potential 6 a global potential.

With our scaling of the dependencies of the Markov step process y and our
specific form for the potential V', the infinitesimal transition moments of order
greater than two vanish in the appropriate limits. We can thus determine the
parameters of an approximating diffusion process (3.22) by calculating the first-
order and second-order infinitesimal transition moments (the drift and diffusion
parameters, respectively), using Equation (3.21). For the discrete sample-path state
space of the Markov step process y to converge to the continuous state space R, we
must let 6 — 0, z9; — z, and M — co. In the limits § — 0, zo; — z, and M — oo,
we can calculate the diffusion parameter as

1
D(z) = lim 5(¢j+1.j +8;-1,5)
Zgy—T

(

6—’0

zz,—»z

= &7 \/—w' (@)¥nl@)e o),

where
¢’x'nax(z) é lim V2)-1

zzé::;z Q
" A 4. 1.y
¢xmn(z) - z!,-l{-qz QV'
@—c

Using the above result, in the same limits we can calculate the drift parameter as

1
Alz) = lim =(ajs1; = 85-1,5)

T9;—T
- 1 2p =1 1)
T 60 6 27;
Z2;—T
1 a6
—--IETD(Z)-a;.

The approximating diffusion process (3.21) thus becomes



1 90
dzr = —m-a—x-df +y 2D(z)dw, (323)

where we define a position-dependent frictional coefficient
1

u(z) £ kT_D(_z)'
Note that
1
D(z) = kTTz)-

is of the same form as the Einstein relation for the Smoluchowski process (3.14)
(D = sz) The diffusion coefficient D is now both a function of extrinsic and
intrinsic system properties—the external potential V in addition to the intrinsic
parameter f. However, D is independent of the global potential 6 and dependent
only on the local potential ¢—the local potential has become a property of a heat
bath incorporating the effects of the potential wells.

The density function p satisfies the Fokker-Planck equation
o 8 1 988 4D dp
a '

- — = —)p-D

oz ( u(z)dz Oz e oz

As in the previous subsection, we can determine the form of the equilibrium state
p° by requiring that the equilibrium state remain an invariant density of the
Fokker-Planck equation. We then calculate

9, . 100 @

9z P T "Duaz az
190 9

InD

= %732  3a InD.
So
ery 1 —deb(z)
pi(z)=c 5 (z)e ) (3.24)

where ¢ is a normalization constant, and the equilibrium state is again a more
general form of the canonical density function. A simple calculation verifies the
following equilibrium relation (provided lim|;| o0 ze~Frf = 0, which justifies the
required integration by parts), a special case of Equation (14.85) of [LAX 60}, namely,

~{A(e)e), = (D@ 325) = (DG
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3.4. The Equilibrium State

We have constructed a series of Markovian thermodynamic systems through
reductions in the state space of an original thermodynamic system consisting of an
ensemble of Hamiltonian systems. The original Hamiltonian of Section 3.2.1.1 was

of the form
H=(K+V)+K'+(V'+W),

where K and V are the kinetic and potential energies of the Brownian particle,
respectively, K’ and V' are the kinetic and potential energies of the unobservable
particles of the heat bath, respectively, and W is a coupling Hamiltonian, that is,
a potential function of the position coordinates, coupling the Brownian particle to

the heat bath.

In the reduction to the Ornstein-Uhlenbeck process, the above three components
of the Hamiltonian contribute distinct terms to the reduced system (3.6). The
component K + V determines those terms of the equations of motion independent
of the effects of the heat bath, that is, the terms vdt of (3.6a) and —;’,;%E dt of
(3.6b). The component K' determines the average kinetic energy per particle, in
equilibrium, that is, the temperature T' of the heat bath. The component V' + W
determines the frictional coefficient f coupling the heat bath to the Brownian
particle. In the reduction to the Smoluchowski process, the kinetic energy of the
Brownian particle K vanishes.

To obtain the further reduction of Section 3.3.2, the potential energy of
the Brownian particle V is broken into two components. In the reduced system,
one component determines the now position-dependent frictional coefficient u(z)
coupling the Brownian particle to the heat bath; the other remains a potential
component and determines the term of the equation of motion independent of the

heat bath, that is, —22 dr of (3.23).
We can equivalently consider the contributions of each component of the

Hamiltonian to the equilibrium state. The equilibrium state of the original
Hamiltonian thermodynamic system was defined in Definition 3.5 as the canonical

density function

pF= ce-*H;
where ¢ is a normalization constant. In Section 3.2, the equilibrium state remained
the canonical density function, with H becoming K + V for the Ornstein-Uhlenbeck

process and V for the Smoluchowski process. In Section 3.3, we obtained a more
general form of the equilibrium state, in Equation (3.20) as

1
e — — e~k

for the Markov step process, and in Equation (3.24) as

1 - z
pt = C(T)g(T, z)e drh(z)
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for the diffusion process, where we have indicated the temperature dependences
explicitly. The term h is the remaining potential component of the Hamiltonian;
the term 1 is the frictional coeficient y(z) in (3.24) and what can be considered its

analogue in (3.20).

The equilibrium state of a Markovian thermodynamic system is thus determined
by the Hamiltonian of an underlying physical system. We can also write the
equilibrium state as

P = ce—;‘f(h+leng),

where p°® denotes the equilibrium state of either process. The term h + kT In g has
the form of a chemical potential, where h is the potential of the Brownian particle
independent of the heat bath and kT Ing is the potential due to coupling to the
heat bath. For example, the chemical potential of a species in an ideal mixture is
given by
p=p’+kTlnz,
where u° is the chemical potential of the pure species, analogous to h, and kT In z
is the chemical potential term due to the species being a mole fraction z of the
mixture, analogous to kT Iln g. Thus we can alternately write the equilibrium state
as
PP=c 3-:‘"‘.;

where
ué=h+kTlhg.

When the frictional coefficient is position-independent, the term g vanishes, as it
is incorporated in the normalization constant ¢, and the equilibrium state is the
canonical density function. When the frictional coefficient is position-dependent,
the equilibrium state is the more general form of the canonical density function.

Based on underlying physical considerations, an equilibrium state can be
associated with a thermodynamic system. Three physical properties arising from
the original Hamiltonian, in particular, the temperature as measured by the average
kinetic energy per heat bath particle, in equilibrium, the potential energy function
of the Brownian particle, and possibly a position-dependent frictional coefficient,
yield the equilibrium state. Alternately, the equilibrium chemical potential of the
Brownian particle gives the equilibrium state. In our model of a thermodynamic
system, we shall assume an associated equilibrium state based on either of the

above equivalent physical considerations.
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4. A Derivation of Fundamental Thermodynamic Relations

Kolmogorov’s forward equation is the evolution equation for the statistical
state of a thermodynamic system. We shall augment Kolmogorov’s forward equation
to construct a state space model of a thermodynamic system. Then, given the
parameters of Kolmogorov’s forward equation and an associated equilibrium state,
both based upon physical considerations, thermodynamic properties follow directly

from our model.



4.1. Equilibrium

4.1.1. The Equilibrium State in Thermodynamics

In thermodynamics, a system is that subset of the universe we isolate from its
surroundings for thermodynamic study. A system is described by a set of internal
and external parameters. The state of the system can be specified by a set of values
for these parameters. In steady state, the state is time-independent.

A steady state can be maintained by a cyclic mechanism. For example, in a

cyclic reaction
| \
b4 / Y

a steady state could be maintained by

AN

where a steady flow exists around a cycle. When detasled balance holds, there is “on
the average, ... the same frequency of transition from the condition [X] to [Y] as
from the condition [Y] to [X]. ... the transitions from [X] to [Y] do not have to
be thought as balanced with the help of some indirect route such as [Y] to [Z] to
[X],” [TOL 38), that is, a steady flow around a cycle is precluded. When microscopic
reverstbility holds, “any molecular process and the reverse of that process will be
taking place on the average at the same rate,”[TOL 38] that is, on the average,
a microscopic process is invariant under time-reversal. By definition, equilibrium
is that steady state for which detailed balance holds. The equivalence of detailed
balance and microscopic reversibility is a quantum principle.
4.1.2. A Definition of Equilibrium and Equivalent Conditions for
Equilibrium

In this secticn, we shall begin to provide the dissipative dynamical system
constructed from Kolmogorov’s forward equation in Chapter 2 with thermodynamic
properties. An equilibrium state can be defined in terms of a detailed balance
condition and shown to be equivalent to a reversibility condition.

Consider first a finite-state Markov step process. Let the infinitesmal matrix A
be time-independent. By our assumptions of Section 2.2 on the infinitesimal matrix
A, a unique steady-state solution p® exists, such that, for all z € E,

N

> (aip% — ajip})

=1
=Z Jij =0
J
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This steady-state requirement that all fluxes leaving (or equivalently, entering) any
state sum to zero does not exclude rotational fluxes. Those steady states for which
all fluxes J;; vanish individually for all 4,5 € E can be distinguished as equilibrium

states.

Definition 4.1. An equilibrium state is a steady state for which the fluxes
Jij = 0for all 1,5 € E.

We shall denote an equilibrium state by p®. The definition of an equilibrium
state as a steady state for which all fluxes vanish can equivalently be stated as a
steady state p® for which

ai;p; = a5p}
for all ¢,7 € E. In the literature on Markov chains [KEI 79, KEL 73], this condition
is known as detatled balance. The name arises from the balancing of the flow from
any state 7 to any state 1 by the flow in the reverse direction from # to j. Note
that we use the term equilibrium to distinguish a particular type of steady state,
as it is used in thermodynamics, distinct from its use in the literature on ordinary

differential equations, where it is used synonymously with the term steady state. As
in thermodynamics, equilibrium is equivalent to a condition of time reversibility.

Definition 4.2. The process {¢(2),t € R4} is snvariant under time reversal
if, for all ¢, s € R, the transition function matrix

P(t|s)=P(s|t) .

Theorem 4.1. The following conditions are equivalent:
(i) The steady state p® is an equilibrium state.

(ii) The process {£(t),t € R} in the steady state p® is invariant under time
reversal.

A proof of Theorem 4.1 can be found in [KEI 79] or [KEL 79]. Steady state
is a necessary condition for both equilibrium (by definition) and time reversal
invariance [KEL 79). Theorem 4.1 duplicates the thermodynamic view of equilibrium
we described above (Section 4.1.1). There is a further condition which is equivalent

to equilibrium.
Proposition 4.1. The steady state p® is an equilibrium state iff the

infinitesimal matrix A satisfies the intertwining equation.
A diag {p"} = diag {p°}4,
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where diag {p°} is a matrix with diagonal elements p! and zero off-diagonal elements.

Proof. We give a simple proof not found in the literature. Define the matrix
of fluxes J to have elements J;; with diagonal elements Ji = 0. Then, as the
elements

Jij = aijp; — ajip;,
the matrix J satisfies the matrix equation
J = A diag {p} — diag {p}AT.

By definition, a steady state is an equilibrium state iff all fluxes J;; vanish, or

cquivalently, iff the matrix J = 0. But, for any steady state p’, J = 0 iff

A diag {p°} = diag {p°}AT. =

Both the condition of vanishing fluxes and the intertwining equation of
Proposition 4.1 allow us to determine whether the steady state of the process
{€(t),t € R4} is an equilibrium state from the steady state p® and the infinitesimal
transition rates a;;. As a steady state is determined by the infinitesimal transition
rates, we should expect to be able to establish whether a steady state is an
equilibrium state directly from the infinitesimal transition rates. Such a test exists
and is known as Kolmogorov’s criteria [KEL 79). Define a closed path as any sequence
of states connected by nonzero infinitesimal transition rates starting and ending
with the same state in the state space E. Let the notation

a,,
In —
Closed Path @38

denote the summation of the natural logarithm of the ratio ;% of infinitesimal
transition rates around a closed path in the state space E. In our language,
Kolmogorov’s criteria then becomes:

Theorem 4.2. A steady state is an equilibrium state iff the ratios of
infinitesimal transition rates satisfy
Gy
In—=0
Closed Path @5t
for all closed paths in the state space E.

A proof can be found in [KEL 79]. If there are no closed paths in the state
space, the theorem is trivially satisfied. Note that Theorem 4.2 implies that the
sum of In = —,—- or the product of the ratio =+ between any two states is independent
of the connecting path for a process whxcﬁ will evolve to the equilibrium state.

Now consider a Markov diffusion process. Let the parameters m and 3 be
time-independent. Assume a unique steady-state solution p® exists, such that, for

all z € ®",
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v {m(m)»o"(z) - %V ' [9(")”8(“’)]}
=V-j(@)=0.

This differential steady-state requirement is equivalent to the integral steady-state
requirement that, for all regions I' C R", the surface integral

Lrn-J(z)dSz=0,

where the vector n is the normal to the boundary dI'. Thus steady state does not
exclude circulation around the boundary AI'. Those steady states for which the flux
7(z) vanishes for all z € R" can be distinguished as equilibrium states.

Definition 4.3. An equ:librium state is a steady state for which the flux
J(z) = 0 for all z € R".

We shall denote an equilibrium state by p°. The definition of an equilibrium
state as a steady state for which the flux vanishes can be equivalently stated as a

steady state p® for which
2V - [6(2)0’ (2] = m(z)o’(2)

for all z € R™. Kent [KEN 78] defines these equations as the detatled balance equations.
Note that as before we use the term equilibrium to distinguish a particular type
of steady state, distinct from its use in Kent [KEN 78] and the literature on partial
differential equations. As for a finite-state Markov step process, equilibrium is
equivalent to a condition of time-reversibility.

Definition 4.4. The process {z(t),t € R;} is invariant under time reversal
if, for all t, s € R, and z,y € R, the transition density function

P(t’z l syy) = P(31z I try) .

Theorem 4.3. The following conditions are equivalent:

(i) The steady state p® is an equilibrium state.

(ii) The process {z(t),t € R} in the steady state p® is invariant under time
reversal.

A proof of Theorem 4.3 follows from Theorems 4.1 and 6.1 of Kent [KEN 78]
and our assumption that a steady-state solution exists.

The existence of an intertwining equation is also equivalent to equilibrium.
Define the operator A as the operator of Kolmogorov’s forward equation, that is,

for any C%-function ¢(z), let
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46 2% o mia)é(a)

+ 5T g eI

The adjoint of A, which we shall denote by A*, is then the operator of Kolmogorov’s
backward equation, that is,

A*¢ = z mi(z (z)

+3 § 9:'1‘(3‘)5;;;9;;'#(1) :

We can now state the equivalence of equilibrium and an intertwining operator
equation, analogous to the intertwining matrix equation of Proposition 4.1.

Proposition 4.2. The steady state p® is an equilibrium state iff the forward
Kolmogorov operator A satisfies the intertwining equation

A(p°d) = p°A*¢,
for all C2-functions ¢.

Proof. Using our differential notation, we can calculate

A(pd) =~V - [mps — 2V - (0p4)
=-V-(6)+ 5V [©5)- V4]
=—~(V-5}=i-Vé

+51V-(8p)] - V4

”Z 1 92:9z; az,

and
* 82
pA*¢=pm-Vo+ onna az1¢
Thus, the difference
A(pd) — pA*¢ = —(V - j)¢ — 27 - V4.
By definition, a steady state is an equilibrium state iff the flux 7 vanishes. But, for
any steady state p°, j = 0 iff
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A(p°d) = p*A*¢
for all C?-functions ¢. ]

We can establish whether a steady state is an equilibrium state directly from
the parameters m and ©, in a theorem analogous to Theorem 4.2 for the Markov
step process. For an equilibrium state p°, the flux j vanishes. Equivalently,

:Ll;V (8p)=mp* ——
or, /

Vinp = 20~(m — %\7 .0).

The above equation allows an equilibrium state p® to be determined directly from
the parameters m and ©. Furthermore, for an equilibrium state the quantity
©~1(m — }V - @) is the gradient of a scalar. Define the curl of a vector C'-function

f(z) € R by the skew-symmetric matrix V X f with entries

3 3
(VX fj= E.jfj- 5;jf.--

Note that for any scalar C2-function ¢(z)
VXVe=0.

The following theorem establishes the equivalence of ©~1(m — 1V - ©) being the
gradient of a scalar and equilibrium.

Theorem 4.4. A steady state is an equilibrium state iff
v X [e-l(m— %v.e)] —o,
or equivalently, for all closed paths C C R",
1
-1 —— . . ——3
}g[e (m~ 5V e)] dz =0,

Theorem 4.4 follows from Theorems 4.1 and 4.2 of [KEN 78].

Given a Markov process with time-independent parameters and the assumption
of a unique steady state, we have characterized those steady states which are
equilibrium states. In our model of a thermodynamic system, Kolmogorov’s forward
equation with time-dependent parameters is the evolution equation for the statistical
state. An equilibrium state is associated with the system based on the underlying
physics, as we have suggested in Section 3.4. That equilibrium state is the steady
state to which the system will evolve given a zero nonequilibrium component of
external forces, which we shall now define.



4.2. An Input-Output Description of a Thermodynamic System

4.2.1. Forces and Fluxes in Thermodynamics

Thermodynamics does not explicitly provide a system with a state, inputs,
and outputs, as does system theory. A thermodynamic system is characterized by
a set of internal and external parameters. In equilibrium, the internal parameters
vanish. The internal and external parameters are usually synonymous to internal
and external forces. Thermodynamic quantities such as work flow and entropy
production are written as inner products of forces and fluxes. Thus a flux is defined
“conjugate” to each force. The thermodynamic literature does not contain explicit
definitions of forces and fluxes. Rather, these quantities are defined by example.

4.2.2. Internai and External Forces

Consider first a finite-state Markov step process.

Definition 4.5. The ezternal forces
as;5(t)
a;i(t)

Fy(t) £l

The external forces F;; are eiements of the set {Fy;:4, 5 € E,i > j}. For
a thermodynamic system which evolves to equilibrium, the external forces are
determined exclusively by the equilibrium state p®, as
ai; ¢
Fj=lh—=h%,
Gji Dy

We shall also define intemal forces.

Definition 4.6. The internal forces
A Jij(t) )
Zii(t) =ln|{14+ —F—=].
w8 ( aji(t)pi(t)
The internal force Z;; vanishes if and only if the corresponding flux J;; vanishes.
Thus all internal forces vanish in steady state if and only if the steady state is an
equilibrium state.

Proposition 4.3. The external forces and internal forces satisfy the relation

Fi= Y Zj
Closed Path Closed Path
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for all closed paths in the state space E.

Proof. By definition, the fluxes
Jij = aijp; — ajip; .

A rearrangement of terms thus yields

. a;i Jes

P; aj; a;ip;
= F,‘j - Z.'j .
But
m?% —n1=0

Closed Path Pj
and the theorem follows. [ ]

By Theorem 4.2, a steady state is an equilibrium state iff

Fij=0
Closed Path

for all closed paths in the state space E.

Now consider a Markov diffusion process.

Definition 4.7. The ezternal forces
f(t,3) 2 2071, z)[m(t, z) - %v . 8(t, z)].

For a thermodynamic system which evolves to equilibrium, the external forces
are determined exclusively by the equilibrium state p°, as

f=26"1(m— %V-e) =V

Definition 4.8. The tnternal forces

=(t,z) & 2671(t,2) ;(-}?) itt, ).

The internal forces vanish in steady state if and only if the steady state is an
equilibrium state.

Proposition 4.4. The external forces and internal forces satisfy the relation
VX f=VXaz,
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or equivalently,

fcf-dz=};'z-dz

for all closed paths C C R".

Proof. By definition, the flux
) 1
j=mp—2V(6p).
A rearrangement of terms thus yields
Vinp= 26_1(m— -;-v.e)—ze-l %j

=f-2z.
Thus f — z is the gradient of a scalar and the theorem follows. n

By Theorem 4.4, a steady state is an equilibrium state iff
VX f=0,
or equivalently,

fc fodz=0
for all closed paths C C R".

4.2.3. An Input-Output Thermodynamic System

Although thermodynamics describes systems under the influence of external
variables, current formulations do not provide a general framework for treating
inputs and outputs. In this section, we shall provide a thermodynamic system with
such a system theoretic framework.

Consider the external forces of Definitions 4.5 and 4.7. For a thermodynamic
system wkhich evolves to equilibrium, we have shown that the external forces

Fj=h % (4.10)
f(z) = Vin g, (4.18)

In general, such a relation between the external forces and an equilibrium state
does not hold.

As we have suggested in Section 2.1 and shown in Chapter 3, a thermodynamic
system arises from a classical physical system. As we have shown in Section
3.4, an equilibrium state, determined by either the Hamiltonian of the original
physical system or by the equilibrium chemical potential, can be associated with
a thermodynamic system. The Hamiltonian or chemical potential and thus the
associated equilibrium state will depend upon parameters determined externally to
the thermodynamic system. For example, consider Equation (3.15) of Section 3.2.4
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dg= ;l:fdt-l- 2’:wa,

a sample-path process corresponding to the thermodynamic system of a Nyquist-
Johnson resistor and its associated load. The voltage ¢ arises from an external
potential ®(q). Consider a potential ®(q) determined by a linear capacitor of
capacitance C, that is, a potential
¢
®(q) = 2C

The capacitance C is then a parameter which determines the associated equilibrium
state
p(g) = e~ M),

The external force f(z) is the voltage £ (normalized by kT'), that is,

) = 5 '@
1 8%9(q)
kT 8q

=1

kT
1

kT
Thus for this thermodynamic system, which evolves to its associated equilibrium
state, the capacitance C is also a parameter which determines the external force.
We shall denote a vector of such external parameters by o and explicitly indicate
the dependence of the associated equilibrium state by p®(a) or p%(z; a).
We shall provide the vector of external parameters a with a time-dependence.
Assume oft) is a differentiable function of time with derivative

2 _ o). (4.2)

The derivative v(t) is a control whlch determines the evolution of o(t) and hence
the evolution of the associated equilibrium state.
If the control v(t) = 0 for times ¢ > s, then, for a thermodynamic system

with external forces determined by the associated equilibrium state p®(a(s)) or
p%(z; a(s)), as in Equation (4.1), the system will evolve to that equilibrium state.

In general, the external forces will not be completely determined by Equation
(4.1). We shall define two components of the external forces. Let the equilibrium

component

O

. pi(a)
i) £ p5(a)
f¥(z;0) £ Vinpt(z;e)



and the nonequilibrium component
A
Fiy(t) =AF.-,'(t) — Fij(a(t))
f(t2) = f(t,2) = £4(z;0t))
The external forces can then be written as
Fi(t) = Fi(t) + Fg;((t)
f(t,2) = f(t, z) + £%(z; oft)) .

There are two classes of controls which can be applied to our model of a
thermodynamic system. The first class is controls which determine the evolution
of the associated equilibrium state and hence the equilibrium component of the
external forces. The second class is perturbations of the external forces away from
that component determined by the associated equilibrium state. We shall append the
first-order ordinary differential equation (4.2) to the forward Kolmogorov equation.
Then the inputs to our thermodynamic system are the controls v(t) and FJj(t)
or f*(t,z). For state dynamics of Kolmogorov’s forward equation augmented by
Equation (4.2), we shall define an equilibrium state as a steady state for which both
the fluxes J;; or 5 and the control v vanish.

Associated with the control v(t), we shall define additional external forces.

Definition 4.9. The ezternal forces due to the control v(t) are
() & 3 pilt)Va lnpi((t))
. L
for a finite-state Markov step process and
A
/i) = /R" p(t, z)Vq In p%(z; (t)) AV,

for a Markov diffusion process.

As we have shown, at equilibrium both the nonequilibrium components of the
external forces and the fluxes vanish. Similarly, at equilibrium both the control v
and the external forces of Definition 4.9 vanish—the control v by definition and

the external forces by the calculation
[ff= Z:P:va In pf(c)
1

= E Vo pi(a)
= Va Zp:(a) =0
o= [ o)Vl pi(z; o) dV
= /R,, Va pf(z; ) dV;
= Vg, /8_ p%(z; @) dV; = 0.
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We shall consider the fluxes J;; or j and the external forces f* as the outputs of
our thermodynamic system.

We have augmented Kolmogorov’s forward equation to construct a state space
mode]l of a thermodynamic system. Define the operator A as the operator of
Kolmogorov’s forward equation. For the Markov step process, A is the infinitesimal
matrix A; for the diffusion process, 4 is an operator, such that, for any C?-function

é,
Ap=-V - |mp—2V - (04)).

For both processes, denote the statistical state by p, the fluxes by 7, and the
nonequilibrium external forces by f". Our thermodynamic system is then

da

_d? =9 (4.30)

P — e ) (4:3b)
= j(a,p; ") (4.3¢)

ff= fv(a:?)v (4'3d)

where the state variables are a and p, the inputs are v and f", and the outputs
are 5 and f*.

66



4.3. The Dissipation Inequality of Thermodynamics

4.3.1. The First and Second Laws of Thermodynamics

In thermodynamics, with a change in state of a system, the change in a state
function depends only on the initial and final states, while a path function depends
on the path through which the change in state is effected. Thus, the differential
of a state function is exact and the differential of a path function is inexact. The
differential of a state function X can be decomposed (formally) into the sum of the
differentials of two path functions, as

dX =d.X +d;X,
where d.X represents changes in X due to the flow of X between the system and
its surroundings, and d; X represents the productton of X in the system.

Using the termirology of Willems’ work on dissipative systems [WIL 72], we say
a thermodynamic system with storage function X is dissipative with respect to the
supply rate 43%"— and lossless with respect to the difference of the supply rate and

the dissipation rate —%—. The corresponding mathematical statements are:
dX d,X+d.-X < dX d;X
dt ~  dt dt = dt' dt
The first law of thermodynamics postulates the existence of a state function
U called the internal energy, such that

<o.

v _ d.U
dt = dt
U _

dt-~ '

that is, the internal energy of a system is conserved. In a closed system, the flow
of energy between the system and its surroundings is equal to the difference of the

heat flow %} and the work flow %" , OF

By thermodynamic convention, a flow from the system to the surroundings is
positive for work and negative for heat. In an open system, the heat flow and work
flow terms include contributions due to the flow of matter between the system and

its surroundings.
The second law of thermodynamics postulates the existence of a state function
S called the entropy, such that
a§ 4.5 d;5 _ d.S
g ata g
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that is, the entropy produced inside a system is non-decreasing as a function of
time. A temperature T can be assigned to a system. Then,
.S 1dg
dd ~ Tdt’
We shall use the following notation for heat flow, work flow, and the entropy
production rate:

A dg
“2

w
D&

Note that we have defined a flow from the system to the surroundings as negative
for work, contrary to thermodynamic convention. The first and second laws of

thermodynamics can then be written as

iU=Q+w

d Q Q
ZES -T—,+D>-i;

respectively. ‘
For an isothermal change of state, at a constant temperature T,

d d
ZU-TZS= —(U ~TS).

If we define a free energy G as
G AvU-TSs,
the first and second laws then yield the following dissipation inequality

d
-a-zG =W-TDSW.

The heat flow Q and work flow W are observable only through effects produced
in the system’s surroundings. The entropy production rate D is not observable
through effects produced in the surroundings. Nonequilibrium thermodynamics
gives a structure for the work flow and entropy production—as the inner product
of a vector of fluxes and a vector of forces. For example, the flow of electrical work

is the product of current and voltage.
4.3.2. The Dissipation Inequality in a Thermodynamic Setting

In this section, we shall use notation applicable to both a Markov step process
and a diffusion process as the sample-path process. Suppose q is a sample-path

functicn. For a Markov step process ¢ = (q1,92, - - - ,gn), an N-dimensional vector,
while for a diffusion process, ¢ = g(z), a function of z € R". Consistent with our
definition of Section 3.1, we shall define the ensemble average of a sample-path

function as



N
(@) £ Y anilt)

cs=1

for a Markov step process and as

(@ 2 [ oz)oltz) Ve

for a diffusion process. Similarly, consider the N(N — 1)/2-dimensional vectors @
and R with subscripted elements @;; and R,;, where ¢, = 1,2,...,N and ¢ > j,
or the n-dimensional vector functions

4(z) = (q1(z), g2(z), -, n(2))
and

r(z) = (r1(z), ra(z), ..., ra(2)),
where z € R". We shall define an inner product as

-1

N
QR £ T QiR

s=1j=1

for a Markov step process and

A
@r) & [ oe) - rz)ave
for a diffusion process. For both processes, we shall denote the statistical state by
p, the fluxes by j, the internal forccs by 2, and the external forces by f or by f
appropriately superscripted.
Using the nota*ion just introduced, we can rewrite the terms of the dissipation
inequality of Section 2.3 as
d e yr
Sor=w-p<w
& Wr-p<Ww,
where

g Emz

wr "'A_‘(Jsf)-(])f')
D 2(ira),
and f7 is defined similarly to f°, that is, as either the N(N — 1)/2-dimensional
vector F" with elements In 5;;— or the function f"(z) = Vlnp'(z). As we stated in
Section 2.3, the dissipation rate D(t) > 0, with equality iff the flux j vanishes.
In Section 2.3, we defined p" as a time-independent reference state. Now

suppose p" is time-dependent. In particular, as we have defined an equilibrium state
associated with a thermodynamic system, suppose p" is a function of time-dependent
parameters a(t), that is, p" = p"(y; a(t)), where # = v(t). Then the supply rate
W' becomes

W=01fN-0Gf)-v (Volnp’),



where the additional term follows from the relation

d .
(alnp)=v +(Valnp").

The storage function §" can be decomposed as
§" = —(np’) +(lnp).
Define the ensemble averages

U 2 —(Inp")

S & —(np).
Then

g=u-s.

The ensemble average U" > 0, as follows from the inequality In 2 < z — 1. Define
the inner product

Q é "'(.7 ) f ) .
Calculations as in Section 2.3 then yield the equality
d .
Gl =—li,/)=v - (Valns')
=0+ W
and the inequality

28 = (i, )+ (5,)

=0+D02>Q.
For an N-state Markov step process (only), using the inequality
§=(m2)20,

with pf = -]%,- independent of , the inequality § < In N follows. Thus —§ +In N
is nonnegative and consequently S (strictly —S +InN) is a storage function in
the sense of Willems [WIL 72] for an N-state Markov step process. Similarly Q is
a supply rate. However, no such upper bound exists for § for a diffusion process.
Thus, in general, § is not a storage function in the sense of Willems [WIL 72].
The ensemble averages

U= —(lap")

§ = —(Inp)

§=()=U-$

and inner products
wr =(j1f)-(j1f')-v * (valnp')
Q =-<J’f)
D =(j,2)
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have thermodynamic interpretations. As the time-dependent reference state
p'(y; a(t)), take the equilibrium state p®(y; of(t)) associated with a thermodynamic
system. Then the ensemble averages U" and §" become
U¢ = —(Inp°)
p
F=mE)=u-s

and the inner product W™ becomes
We=(5,f) =5, f)—v - (Valnp®)
={f=f)=v-f
=(jvfn)"'v : .f""

We have now constructed a first-law equality
d [-J— (4
y tu = Q0+ W¢,
a second-law inequality
d

and the resultant dissipation inequality

d ae _ qpe_ e
7Y = We—-0 < We.

The ensemble averages U, S, and §° have properties of the energy, entropy,
and free energy, respectively. Similarly, the inner products W¢ Q, and D have
properties of the work flow, heat flow, and entropy production rate, respectively.
In Section 4.5, we shall reintroduce Boltzmann’s constant k¥ and the temperature
T as multiplicative factors and define such quantities as applied to physical (as

opposed to abstract) systems.
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4.4. Reciprocity

4.4.1. Onsager’s Reciprocity Relations

Close to equilibrium, thermodynamics assumes a linear relation between forces
and fluxes, as

j= Lf,

where, in the thermodynamic literature, the flux 5 and force f are n-dimensional
vectors and the linear operator L = L, a matrix. However, there is no general
definition of fluxes and forces in the literature. Onsager showed that the matrix
L is symmetric for processes sufficiently close to equilibrium that such a linear
relation could be assumed, as a consequence of the principles of detailed balance
and microscopic reversibility (Section 4.1.1). The relations L;; = L;; between the
elements of the matrix L are known as Onsager’s reciprocity relations.

4.4.2. Reciprocity

Consider the dissipation inequality

dc___ e __ e
o = We-D < We.

The supply rate is

we = (j:f")—'v ' fv’
composed of inner products of the inputs f* and v and outputs 7 and f” of the
thermodynamic system (4.3) constructed in Section 4.2.3. We can linearize such a

system about a steady state. The thermodynamic system is then reciprocal if the
linearized operator mapping the inputs to outputs is self-adjoint.

As we have constructed our thermodynamic system (4.3), the state variables are
o and p(t,y). We can equivalently consider the statistical state p as parameterized
by the vector of external parameters . A statistical state p(t,y, ) satisfies the
partial differential equation

or(t,y, o
Bolb,0) . uplt, v, @) + Ales plt ),
the solution of which maps to the solution of (4.32) and (4.3b). We can thus
alternately take p(t,y, @) as the state of our thermodynamic system. A steady state
p°(y, @) is the solution of
v’ - Vop’(y, @) = A(a; f*)p*(y, @)

The steady-state inputs are f™° and v® and the steady-state outputs are 5° and
fU”. Note that in the representation of (4.32) and (4.3b), a steady state can be a
periodic function of time.

We shall define the linearized thermodynamic system as the dynamical system
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:tsp = A%6p+ Bl6f" + B%6v; 6p(0) =0
65 = Clép+ D6 ™
§f¥ = C26p + D%v,
where 42 & —y*. Va + A(a; f™*). For a Markov step process, the operators are
matrices; for a diffusion process, the operators are infinite dimensional.

Let the notation D; denote both the partial derivative with respect to the
vector g and the Fréchet derivative with respect to the function g(z). Let the
notation D, h|, denote D, h evaluated at steady state, that is, at p = p°®, f" = f™°,
and v = v°. Then

B! = Dpn (~v-Va+A)p|,
B = Dv ("‘v Vu +A)P|,

C = Dp jl,
=D, f°|,

D = Dy §

D?=0p, f"l,

We can now unambiguously define reciprocity as:

Definition 4.10. A thermodynamic system linearized about a steady state
p® is reciprocal if the system operator

He: (6™, 6v) — (67,61°)
is self-adjoint.

Consider the Markov step process. The explicit dependence of the fluxes J;;
on the nonequilibrium forces FY; is, for ¢ > j,

Jij = (p:;p: Fi — 1).

The matrix B! of the linearized system then follows:
B'= [3%1- --B}v(N-x)],

where Bl is defined for ¢ > j and has elements
(B}j) = a;np;(p' )e
2
(B’IJ) — __a'”pj(pt) F;;_u
P§

(BL), =0, k#i,j.
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Similarly, calculate:

2= ‘-[Vap;' .o Va??V]T

T
cl= [O%I' . C}V(N—I)J )

where C’1 is defined for 7+ > j and has elements

(C‘J').' = —4j
(O’!j)j = Gij
(o},.)k =0, ks£i,j,

C? = [Volnpt...Valnpl]
D' = diag (d};),
where d;; is defined for 7 > ¢ and

ds;;; = a’leJ(p’) Fif ’
P;

D?=0.

Let
B 4[B! BY

a[C1
cafo]

For a thermodynamic system linearized about an equilibrium state, a simple
calculation shows

B = —diag(pf)CT

_—)

In equilibrium the control v®* = 0, so A° = A and by Proposition 4.1
1
A= diag(pf)ATdiag(p—e).
t

A further calculation then confirms that the system operator is self-adjoint. In
fact, given the linearized thermodynamic system is a continuously controllable and
observable realization of the system operator (in the sense of Helton [HEL 76]),
we shall prove that a thermodynamic system linearized about a steady state is
reciprocal iff the steady state is the equilibrium state.

The state space of the linearized thermodynamic system is actually that of
(N — 1)-dimensional vector functions of e, as ¥V, ép; = 0. We can consider the
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state space as a dense subspace of a Hilbert space X [HEL 76). As in [HEL 76), we
can define a controllability map

B([6F" sv)T) & /o " ei'tp [6F" 6v]Tdt
and an observability map
C(67 657)T) A /b (Ce®™s)" (67 657 T at,

where * denotes the adjoint. By definition, if the system is continuously controllable
and observable, then the controllability map B and observability map C map the
space of infinitely-differentiable functions of time to a dense subspace of the Hilbert
space X and are continuous. The following lemma gives a necessary condition for

reciprocity.

Lemma 4.1. If the linearized thermodynamic system is a continuously
controllable and observable realization of the system operator ¥*, then reciprocity
implies the existence of an operator T such that

AT =T
CT =5,

Proof. Let
1 17
Q = [ ],
0 IN_ixN-1
where 1 is a column vector with all elements equal to 1. Then

ool u)

0 IN-1xN-1
Let
6p2
p=| :
PN
and .
0
z=Qbp=|__|.
Qép [ 5 p]
Then, as @ is invertible, another realization of ¥* is
'85% = QA°Q 12 + QBSF™ + QB%v

6J =C'Q 'z + DI6F"
§f° =C%Q71z.

(]



Hence, by assumption, a continuously controllable and observable realization of ¥°
can be written as

9% _ _ 0. Vabp + A6p + B 6F™ + B'6v

3t
§J = C'6p + DI6F™
5" = &6p,

where the matrices A, B' and B” have the bottom N — 1 rows of QRAQ™!, @B,
and QB?, respectively, and the matrices .:1, é’l and 6'2 have the left N —1 columns
of QAQ1, C'Q~1, and C2Q~1, respectively.

By definition, reciprocity implies ¥° = ¥**. So, given reciprocity, by Lémma
3 of Willems [WIL 72] and Theorem 4.4 of Helton [HEL 76] there exists an operator
R such that

(~v° Va+ A)R = R(v‘ Va +AT)

Let

where 0 is a column vector with all elements equal to 0, and let
TA (Q"k(QT)'l) .
Then a calculation reveals

AT=T4"
CT =BT ]

Theorem 4.5. A thermodynamic system linearized about the equilibrium
state is reciprocal. Furthermore, if the linearized system is a continuously controllable
and observable realization of the system operator ¥°, then the system linearized
about a steady state is reciprocal iff the steady state is. the equilibrium state.

Proof. We first prove necessity by calculation. Given the system is linearized
about an equilibrium state,

B = —diag(pf)CT

c-r{f3).

As v®* = 0, 4° = A and by Proposition 4.1
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A== diag(pf)ATdiag( }%)

]

Hence, for the system linearized about an equilibrium state

Ne(t) = CeAB + [’;1 g]m)

= BT(—diag(é))diag(pf)e‘{r‘diag(;:?) .

L ]

(aingo)o” +[ 7 o9
=BTeAT‘CT+[1:1 2]6(!:)

=X ¢ (t)’
where ¥°(t) is defined for t € R;..

We prove sufficiency, given the assumptions, by proving its contrapositive, that
is, we prove that if the steady state is not an equilibrium state, then the system
linearized about the steady state is not reciprocal. Using Lemma 4.1, we need only
show that no T exists such that

AT =TA"
CT=8"
for a nonequilibrium steady state.
If such a T exists, then
AT =TA"1 =0,
where ] is a column vector with all elements equal to 1. By assumption, the steady
state solution p® is unique. So

Ti=p°
But then,
BT1=0
while
C(T1)=Cp’
] 0
- fve

for all nonequilibrium steady states. So no such T exists for a nonequilibrium
steady state. [ |

A similar theorem should follow for the diffusion process. In fact, a formal
calculation verifies that the system linearized about an equilibrium state is
reciprocal. However, the operators of the linearized thermodynamic system are

7



infinite dimensional and consequently a proof of the same theorem for the diffusion
process lies beyond the machinery introduced in this thesis.
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4.5. Physical Thermodynamic Systems

In this chapter, we have constructed a Markovian system with thermodynamic
properties—an abstract thermodynamic system. As we shall show in this section,
to define quantities as physically measured, the chemical potential, rather than the
logarithm of the equilibrium state, and the multiplicative factor of kT must be
introduced into the definitions. Our previous definitions will then be seen to define
thermodynamic quantities but not those normally measured in an experiment.

We shall continue to use the notation introduced in Section 4.3.2 as applicable
to both a Markov step process and a Markov diffusion process as the sample-path
process. As we have suggested in Section 3.4, the equilibrium state associated with
a thermodynamic system can be written as

p°(y; o(t)) = c(aft))e~Frrialt)),
where the normalization constant
N -1
c(a(t)) = ( Z c-ﬂr#?(a(t)))
1=1 .

or

c(aft)) = ( /sr- e~ Frpt(zialt) dvz)_l,

The equilibrium chemical potential u¢ is associated with a thermodynamic system
based on its underlying physical structure. We can relate u® to Inp® as follows.

Clearly

In p*(y; &(t)) = ln c(a(2)) — Fpu(y; ft)). (44)
However, as
in B = — 3 (g - u3) (4.50)
Py
and
Vet = —-,}T-Vp.‘, (4.5b)

where either of the above expressions involving Inp® appear, the first term of
(4.4) drops out. Also, taking the gradient with respect to the vector of external

parameters a, .
Volnp®* =Volne— 4:Vau' (4.6)
and a simple calculation reveals

Velne= zlf(val‘e)e )

where, as before, (f). denotes the equilibrium ensemble average of a sample-path
function f(y). Thus (4.6) reduces to

Volnp® = —Z:(Vau® — (Vaul)e). (4.7)
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Using the above calculations, we can define physically-measured thermodynamic
quantities in light of our earlier calculations and relate them to the abstract

quantities defined earlier. The internal energy is

U £ ),

the heat flow is
Q £ —kT(j,f) = kT2,
and the work flow is
W £ kT(j, f*) + v - (Vapd).
The internal energy satisfies the first law
d

EU=Q+W.

Using (4.7), we can calculate the external forces due to the control v(t), of Definition
4.9, as

17 = = (V) = (Vat)).

Let
W L0 (Vapl)

denote the work flow done in a quast-static trajectory, that is, a path in the statistical

state space consisting only of equilibrium states. We then see that defining the

ensemble average U as

1

U = —~{inp") = o

(U-Ing¢)
gave a work flow
e 1 W —We
W kT( )

Thus, using — In p® rather than u® resulted in a work flow W* referenced to the work
flow done in a quasi-static trajectory. We have actually derived two dissipation

inequalities: ~
d e e
TG S W-W

using — In p® and

d
EEG <w
using u*.
The entropy is
§ = —k{lnp)

and the entropy production rate is



D =k(j,z) = kD.
The entropy satisfies the second law

d Q Q
d—ts =T +D 2> T
The thermodynamic forces defined in Sections 4.2.2 and 4.2.3 are normalized
by kT. Define physically-measured thermodynamic forces as

7 £ty
7 éka'
7 —ka"
T’ = Val‘ _kav (Val‘e)e-

The heat flow and work flow can then be written as

Q=-(jn7)
W=(j,7")—-v-?.

We have introduced two modifications to our abstract construction of the
previous sections. By replacing the equilibrium state with its underlying chemical
potential, obtained from physical considerations, we obtain an absolute work flow,
rather than a work flow referenced to a quasi-static trajectory. By introducing
the multiplicative factor of kT, we obtain forces defined in physically-measured
units. We shall now apply our construction to two nontrivial examples—a variable
linear capacitor connected to a Nyquist-Johnson resistor, studied by Brockett and
Willems [BRO 79] and muscle contraction, studied by Hill [HIL 74, HIL 75, HIL 77] and

the author [PRO 81, PRO 85).

We introduced the Nyquist-Johnson resistor in Section 3.2.3. Consider a
Nyquist-Johnson resistor connected to a linear capacitor of variable capacitance C.
The sample-path process which models such a thermodynamic system is Equation
(3.15) with a voltage §{ = —%, that is,

_1g 2kT
dg= 7C dt + {/ — dw.

The equilibrium chemical potential of the system is the energy stored in the
capacitor

B(e) ==
A model of a varying capacitance is a capacitance controlled through
i“_,
da

We have described a model based on physical considerations. We can apply
our construction to this model to obtain its thermodynamic properties. Identifying
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m-——-l-—dt

rC
o BT
r
we see the external force is
7 = kTf = kT(26~'m) = —-g-.
The equilibrium component of the external force is
a q
== k € o = L =

giving a zero nonequilibrium component The external force due to the control v

Tll = —( ac“ ) 2cz(q2)
Thus the heat flow is
Q=- / " i) da

-2 (e22) 9

_K_ 1 2
Q—TC "C2<q)’

which reduces to

and the work flow is

Substituting the voltage £ for —%, we can rewrite the heat flow and work flow in
the physically intuitive forms

N )
1 dC, o
W= -3 {&)
When the capacitance increases, the work flow is negative, that is, work is extracted
from the system.

We shall introduce a model of muscle contraction based on its molecular
biochemistry and structure, described in much more detail in [HIL 74, HIL 75,
HIL 77, PRO 81, PRO 83]. A muscle fibre is composed of myosin cross-bridges and
associated binding sites on actin. Muscle can be modelled as an ensemble of a
simple structure—a myosin cross-bridge and an associated one-dimensional array
of actin binding sites. A cross-bridge cycles through a set of biochemical states,
both attached and unattached to actin, as depicted in Figure 4.1. The biochemical
states are distinguished by the structural conformation of the cross-bridge and
whether the molecules ATP, ADP, and/or P (inorganic phosphate) are bound to

the cross-bridge.
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Figure ..1- A Cross-bridge Cycling through Attached and Unattached States

Transitions among the set of biochemical states can be modeiled by a Markov
step process with transition rates a;;. The transition rates in a set which we shall
denote as (I X I)47% are dependent on an ATP concentration c. The remaining
transition rates are independent of the ATP concentration.

Denote the shortening velocity of a muscle fibre by v(t). The nearest actin site
to a cross-bridge can be referenced by a position z(t). The position z(t) is related
to the shortening velocity by

dz

dt.
The rates for transitions to or from states attached to actin are functions of the
position z. As the binding sites on actin are periodic with period )\, we can consider
the postion z as only taking values in [-)\/2,)/2]. A muscle fibre is an ensemble
of cross-bridges uniformly distributed among all positions. Any measured quantity
is therefore an average over all positions z € [-)\/2,/2].

At any time t, the statistical state can be represented by the vector function
of the position z

= —.

p = (pi(t, 7).

As
dp(t,z) _ 9p(t,z) + dz  Opt, z)
d¢ 8t dt 9z
_ d0(t,5) _ aplt2)
- at oz '’

the statistical state satisfies the partial differential equation

ap(;t, z) _ v?l’gzlz_) + Ale, 2) p(t, 2).
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The only parameter which determines whether a steady state is an equilibrium
state is the ATP concentration. Denote the equilibrium ATP concentration by c®.
For attached states, the equilibrium chemical potential uf is a function of the
position z. Denote the set of states attached to actin by JACT/N, Then uf(z) is

z-dependent only for ¢ € JACTIN The external forces are
F,’j = kTIn ﬁi(ff-)-
aji(cn z)

and the equilibrium components are
aij(cc’z)
aji(ce, z)
The ATP-dependent transition rates are linearly-dependent on the ATP
concentration c¢. For transitions between any two states, the ATP-dependence

is only in one direction. Thus the nonequilibrium components are (assuming a
direction j — % for the ATP-dependence)

F}j = p§(z) - pf(z) = kTn

a;;(c, z)/ai(c, z)
Fij = kTln ———=-m
aij(c, z)/aji(ct, 2)
- len;";, 5,5 € (I X I)ATP,
and are zero for all other transitions. We can calculate the mechanical force exerted
by a muscle fibre as

o - P

ieraerin /-2 d

which is an average of the force exerted by a cross-bridge in each attached state.
A quadratic potential uf(z) models a cross-bridge in each attached state as a linear

elastic element.

Combining expressions, the heat flow is

_ aij(c, z)
Q= -ZE/W Ji(t, z)In i(’ )d

1 i<y
and the work flow is

W=( > [ x:; Tt dz)(len:;)

i,jEIATP

A2 4 ( )
—v(ielnzcrm'/ —-A/2 ,:1 ~dz Pl z)dz)

The heat low and work flow are the expressions one obtains from a thermodynamic
approach [HIL 74, HIL 75, HIL 77]. As the equilibrium constant of a chemical reaction
Ki; = ;—;%, the expression for the heat flow is simply an inner product of the net
flow in each reaction of a cross-bridge cycle and the logarithm of the reaction’s
equilibrium constant. The first term of the work flow is the net flow of ATP
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multiplied by the chemical potential of ATP. The second term is the shortening
velocity multiplied by the force exerted by a muscle fibre. .



5. Conclusions

We have shown that a thermodynamic system can be modelled as a Markov
process. In Chapters 2 and 3, a macroscopic view of a classical physical system
led to a Markov process. One must first understand the underlying physics of
any thermodynamic system to model it as a Markov process with an associated
equilibrium state. However, once a system is so modelled, its thermodynamic
properties follow from our formulation. We have not eliminated the need to
ur.derstand a system before constructing a model. What we have shown is that
for the class of models we have constructed, once those parameters due to the
underlying physics are identified, thermodynamic behaviour follows as an essential
property of the model.
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