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ABSTRACT

The problem considered is the minimization of the maximum weighted
sensitivity in the frequency domain for single input/single output
linear time invariant systems with a linear time-invariant feedback
compensator. The plant is considered to be a finite dimensional
(rational transfer function) linear time-invariant system in cascade
with a pure delay. The minimization is done in the ﬂw norm, which is
MMMMMM the supremum norm for stable transfer functions evaluated on the
imaginary axis. The sensitivity weighting function is taken to be a
proper stable rational function bounded away from O at .

We apply the theory of [Sarason 1967] to find solutions. Our
N method consists principally of solving an eigenvalue/eigenfunction
problem by transforming it into a two-point boundary value problem.

In the case of a 1 pole/l1 zero weighting function, when the plant
has no right half plane poles or zeros, we have a complete solution to
this problem. We find explicit expressions for the ideal closed loop
sensitivity and feedback compensator. The optimal compensator is
unstable and improper. When the plant has right half plane poles and
zeros, we show how to solve the critical two-point boundary value
problem, but we have not computed the explicit sensitivity and

- compensator as of yet.

In the case of more general rational weighting functions, the
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problem is partially solved. When the weighting function magnitude
approaches 1 from above at high frequency, we show how to find the
optimal sensitivity and compensator by solving a set of simultaneous
transcendental equations. We show the general form of the sensitivity
and compensator. -The optimal compensator is unstable and improper.

When the weighting function magnitude approaches 1 from below at
high frequency, the problem can have non-unique solutions, and we do not
have a general solution. We solve a special case, and indicate the
possibility of finding other all-pass solutions by means of a limit of
quotients of functions related to the eigenfunctions. We show how to
make the problem solvable by slightly modifying the weighting functions.

We show how to approximate the optimal weighted sensitivity using
proper finite dimensional compensators.

We show that the optimal compensator for problems with a rational
plant having no delay can result in an ill-posed feedback system. This
is not the case when the plant model contains a delay. We also show

[+]
that the # minimal sensitivity feedback system can generally have zero

"delay margin."

Thesis Supervisor: Dr. Sanjoy K. Mitter

Title: Professor of Electrical Engineering and Computer Science
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CHAPTER 1.

INTRODUCTION

A. Purpose of the investigation.

The goal of this work is to obtain and analyze explicit
compensators for delay systems which achieve or approximate a closed
loop sensitivity function minimal in the supremum (ﬂw) norm. An
underlying premise of this investigation is that all real systems
contain delays, so that it is only by examining the optimum for such
systems that an understanding can Be obtained of how delays limit
achievable performance.

We also regard the delay problems considered here as a first step

towards considering similar design issues for other infinite dimensional

plants.

B. Problem Considered.

We consider the single-input/single output * optimal sensitivity

control problem formulated in [Zames 1981], but with plants of the form
-sA -1 '
P(s) = e " -A(s)*B""(s) (1.1)

where A and B are stable proper rational functions, and A)O.1 (A brief

summary of the theory of il appears in Chapter 2.) The block diagram in

1We assume throughout this paper that A(s) and B(s) have no zeros on the
imaginary axis. The inclusion of such zeros in our work can be done
exactly as in the case where the plant has no delay. See, for example,
[Francis and Zames 1984, pp. 13-15].
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Figure 1 shows the feedback system models we are considering.

Figure 1. Feedback system considered.

The closed loop sensitivity S(s) is the transfer function from d to
y. The weighted sensitivity X(s) for the weighting function W(s) is

given by

X(s) = W(s)S(s) = W(s)[1+P(s)C(s)]"* (1.2)

The problem is to minimize the # norm of X(s) over all stabilizing

proper feedbacks C(s).

C. Discussion of Optimality Criterion

The criterion of minimizing the norm of (1.2) is introduced and
motivated in [Zames 1981, pp. 585-586]. In summary, the sensitivity
criterion is intended to resemble the classical use of sensitivity
specifications as a design requirement. Furthermore the use of the %
norm allows the criterion to be handled in an analytical way, since
there is mathematical theory which allows explicitly computation of the
optimal compensators. In that paper it is recognized that there are

other important design criteria besides sensitivity. It is pointed out
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in particular that the * norm may be useful in analyzing the effects of
plant uncertainty on interconnections of systems. This is because the
function space #* is a Banach algebra, and hence the cascade of systems
in the algebra belongs to the algebra. Therefore the norm of a cascade
of transfer function models satisfies a norm inequality involving the
individual norms of the components.

The motivation here in considering the sensitivity (1.2) is an
attempt to extend existing results to systems with delays. Since the
current theory allowing various * norm criteria to be optimized
originated with this basic problem, it seems appropriate to also begin
the extension with this problem.

The presence of the weighting function W(s) in (1.2) serves an
essential purpose. A realistic requirement on closed loop sensitivity
for a feedback system will imposé more demanding tolerance on some
frequencies than others. The weighting function serves to incorporate

such specifications.

D. Reason for Delay in Model

We have three reasons for inserting a delay into the nominal plant
model for the * problem: 1) as the beginning of the development of
solutions to the # problem for more general infinite dimensional
plants, 2) out of concern for the well-posedness of the optimal systems,
and 3) as a potential design aid in accommodating uncertain excess phase
in the plant, which is a characteristic of various systems of interest.

We discuss each of these reasons in turn.
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[0 4]
1. A start on # design for infinite dimensional plants. Our

initial motivation for considering plants with delays was that we wanted
to extend solutions to the optimal sensitivity problem existing for
finite dimensional models to infinite dimensional ones. The delay
seemed to be the simplest and most ubiquitous of such systems.

At the same time we were also concerned that we might run into
difficulties because of the fact that our plant models are not
continuous in the uniform operator topology2 as the delaj present‘in the
plant varies. [Willems 1971, pp. 93-94] For stable systems this is the
same topology induced by the ﬁw norm in which we have defined the

sensitivity minimization problem.

2. Well-posedness of feedback systems. There are two reasons for

the requirement for continuity with respect to delay variations of the
solutions to our mathematical models. First, all real systems contain
what are perceived as time delays, although it may be difficult to
isolate a physical delay element. Second, when one wishes to
interconnect models into feedback configurations, one needs conditions
on the models to guarantee the existence of solutions to the resulting
equations. Continuity (with respect to variations of parameters and the
insertion of a small delay into the loop) of solutions is part of the
accepted definition of well-posedness of feedback systems. [Willems

1971, p. 90-91] See also [Zames 1964]. Well-posedness guarantees

2In this thesis we are considering plant models whose input and output
spaces are the "extended” L? space L:(O.w). Since this space is not a

normed space, what is meant by the uniform and strong operator
topologies is not obvious. See Chapter 9 Appendix.
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existence and uniqueness of solutions, making only physically
justifiable assumptions.

Because of the lack of continuity in the uniform operator topology
for most systems we would want to consider, this topology is not used in
the definition of well-posedness. [Willems 1971, p. 94] The strong
operator topology is used instead.

When the component systems of a single loop feedback system all
have rational transfer functions, strict properness of the loop gain is
sufficient for the system to be well-posed. For this reason, and also,
not coincidentally, because strict properness is physically realistic,
this assumption is usually made in the finite dimensional plant theory.

In the * theory for finite dimensional plants, one obtains loop
transfer functions which are not strictly proper as the limiting case
vhich attains the optimal sensitivity. The solution to the ﬂm—minimal
sensitivity problem for finite dimensional plants will then be ill-posed
if the memoryless part of the loop transfer function has magni tude
greater than 1. We give an example where this occurs in Chapter 9.

. The presence of a delay in the plant model, on the other hand,
ensures that our solutions give well-posed feedback systems, even in the

limit, as we also discuss in Chapter 9.

E. Perspective and Contributions.

The * sensitivity minimization problem has been extensively
studied by others for the case of purely rational plant with multiple
inputs and multiple outputs. For a tutorial and bibliography see

[Francis and Doyle 1985].
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We extend the conventional il minimal sensitivity solution for
single-input/single-output finite dimensional plants to such systems
with a single delay added in cascade with the input to the plant. We
believe that the work on which we report here is the first application
of the ﬂw minimal sensitivity theory to a delay problem. The basic
technique used here first appeared in [Flamm 1985].

Similar work has been done independently by Foias, Tannenbaum and
Zames. In [Foias, Tannenbaum and Zames 19855], these authors consider
the cases covered by our Chapters 3 and 5. In [Foias, Tannenbaum and
Zames 1985b] they consider the cases of our Chapters 6 and 7. These
authors do not derive the explicit optimal sensitivities and
compensators, nor do they consider the issues of compensator stability
and approximation of the optimal sensitivity with proper finite
dimensional compensators.

We view the main contributions of this thesis as the following:

1. This work (reported initially in incomplete form in [Flamm 1985]) is
the first treatment of the # norm minimal weighted sensitivity problem
with a delay in the input to the plant. The theory of the solution is
due to [Sarason 1967], but the formulation and solution of our problem

as a two point boundary value problem is new.

2. In the case of a 1 pole/l zero weighting function when the plant has
no right half plane poles or zeros, we have a complete solution to this
" norm minimal weighted sensitivity problem. We provide explicit

expressions for the ideal closed loop sensitivity and feedback
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compensator, and we show that the optimal compensators are unstable and
improper. When the plant has right half plane poles or zeros, we solve
the crucial eigenvalue/eigenfunction problem. (We have not yet

calculated the explicit sensitivity and compensator.)

3. In the case of more general rational weighting functions, the
problem is not completely solved.

When the weighting function magnitude approaches 1 from above at
high frequency, we can provide a complete solution. We do so explicitly
for plants without right half plane poles or zeros. For plants with
right half plane poles or zeros, we solve the part of the problem that
differs from the no right half plane poles or zeros case, but we do not
explicitly compute the sensitivity and compensator.

When the weighting function magnitude approaches 1 from below at
high frequency, the problem can generally have a non-unique solution.
For the case of no right half plane poles or zeros, when the ﬂp norm of
the weighting function is equal to 1, the problem has a trivial
solution. We also have a conjecture that would give another solution

which is all-pass.

4. We show how to approximate the optimal weighted sensitivity using

proper finite dimensional compensators.
5. We show that the optimal compensator for problems with a rational

plant having no delay can result in an ill-posed feedback system. We

show this does not happen when the plant model contains a delay. We
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also show that the optimal system with or without a delay can generally

have zero "delay margin.”

F. Outline of the Dissertation

The development starts in Chapter 2 with a review of the
mathematical theory underlying our solution. We transform the problem
we are considering in the now standard way to the appropriate form for
the application of the results of [Sarason 1967]. We lay out the
structure of our‘solution technique to be applied in subsequent
chapters.

Chapter 3 begins the detailed exposition of our solutions, with the
simplest delay example, that of a stable minimum phase plant with a
delay added at the input. The complexity of the sensitivity weighting
function shapes the computations we must perform, and in this chapter we
consider the simplest weighting function which gives an acceptable
design, a 1 pole/1 zero rational function. After normalization of the
frequency variable, the weighting function has a single free parameter.
Depending upon the parameter, there are two cases: one leads to a
unique optimal sensitivity, the other to a non-unique one. In either
case there is an optimal sensitivity which is a constant times a
function of constant magnitude on the imaginary axis. We find that the
optimal compensator is generally improper and unstable.

Chapter 4 covers the finite dimensional approximation of the
optimal compensator for the plant and weighting functions of Chapter 3.
As in the case of finite-dimensional plants, for implementation we want

to approximate the ideal compensator with a proper one. In the process,
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we show that the épproximation technique for the finite dimensional case
does not work here. We describe a new one that does, and since the
optimal compensator contains a delay, we also show one way to
approximate it with a finite dimensional one.

Following the analysis of the prototype solution, we extend the
class of plants and weighting functions allowed. In Chapter 5 we extend
the 1 pole/1 zero weighting function case to more general rational
weighting functions. In Chapter 6 we extend the solution for the 1
pole/1 zero weighting function case of Chapter 3 by adding right half
plane zeros to the plant. In Chapter 7 we cover the case where the
plant has right half plane poles.

In Chapter 8 we discuss conditions which allow us to compute
solutions. In Chapter 9 we cover in more detail the issue of
well-posedness for these feedback systems. Chapter 10 summarizes

salient points about this work, and describes unsolved problems and work

in progress.
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CHAPTER 2

FORMULATION OF THE SOLUTION

A. # Theory

The work to be presented requires a basic knowledge of the theory
of #P spaces, the Hardy spaces of analytic functions. In particular, we
work with the spaces # and #>. Our main reference is [Hoffman 1964].
[Helson 1983] is also useful at the level of this work. Here we shall
summarize without proof some essential facts and definitions.

wp(n) spaces (1 { p { @) are Banach spaces of functions analytic on
the region Q C C. There are two types of #P spaces used, those of the
unit disk, xp(m), and those of the half plane, ﬁp(ﬂ+). In some of the
mathematical literature the half plane o is the upper half plane
{z€C | 9m(z) > 0}. In our work we shall use the half plane c’, the
right half plane {z € C | %e(z) > 0}.

For f(z) defined on C', let f (u) = F(x+jy). F € #P(C) if F is
analytic in ¢’ and fx(y) is bounded in LP norm as x | 0. ﬂp(C+) is a

Banach space under the norm lIfll = lim IIf ﬂp(C+) can be identified

x10
with a subspace ﬂp(jm) of the corresponding LP space on the line,

in_.
xp

Lp(jR). The description of this subspace is most easily given for the
case of p = 2. A theorem of Paley and Wiener says [Hoffman 1962, P
131]:

A complex-valued function f in the right half-plqne belongs to #°

if and only if f is the Laplace transform of a function in L2(O,m).

2. Formulation of the Solution _ Page 17



The interpretation of this is that #° is the space of Laplace transforms
of test functions used to evaluate the L2 stability of a system. #° is

a Hilbert space.

The space m”(jm) is the subspace of Lm(jm) whose harmonic
extensions are analytic in C+.

We shall refer to ﬂp(C+) as simply #° from now on.

The basic reason that # is important to us is that it is the space
of transfer functions of linear systems which in the time domain are
L?-stable, causal, and time-invariant, and the # norm is the induced LZ?
norm (the "gain" of the system). This fact seems to be widely known,
although the elements of the proof do not seem to be collected in the
same place. For this reason we list them: (1) A function ¢(s) € %
induces a bounded map on #° via multiplication. (2) A bounded
multiplication operator on LZ :is the Laplace transform of a
time-invariant operator on LZ. [Bochner and Chandrasekharan 1947, p.
143] (3) A convolution oﬁerator on L? corresponds to a multiplication
operator under Laplace transform. [Schwartz 1966, p. 308] (4)
Causality of a convolution operator on L2 corresponds to analyticity of
its Laplace transform in the right half plane. [Foures ana Segal 1955,
p. 389]

A function f in # is called inner if |f(jw)| =1 a.e. for w € R.
Inner functions can be factored into the product of a Blaschke product

and a singular part. A Blaschke product is a function of the form

_k® [1-pB%|s-8
B(s):[:+i] n n

n=1 |1—I3r21|s+§n’
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e (B.)
with 1 € {B.}, {B.} having %e(B.) > 0, and } ———— < ®», A singular
i 1 i 1 1 + Iﬁrzll

inner function is of the form

joo
S(s) = e_psexp[i[ { %EIijg'd”(t)]’
=J® .
where p is a finite singular positive measure on the imaginary axis and
p is a non-negative real number.

A function f in #P (for 1 { p { @) is called outer if {e—SAf(s),

A > O} spans a dense subspace of #P. (For p = ©, the subspace should be
dense in the weak topology.) Also, f#° is dense in #° is f is outer
and bounded.

In the case of rational functions in ﬂm. inner functions are those
with unit magnitude on the imaginary axis and left half plane poles
which are reflections of right half plane zeros across the imaginary
axis (finite Blaschke products). For rational functions in #°, outer
functions are those with no right half plane zeros. Scalar multiples of
inner functions ;re known as all-pass functions, and outer functions are

known as minimum phase functions. Any function in #° can be factored

uniquely (up to scalar multiples) into an inner and an outer part.

B. Transformation of the Original Problem
| We now briefly summarize the transformation of the problem of

minimizing the weighted sensitivity (1.2) to a problem of the form
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inf, IW(s)V(s) - e S3A(s)H(s)II_ (2.1)
He#

where W(s), V(s) and A(s) are fixed # functions. This argument
appears, for example, in [Francis and Zames 1984, p. 10].

The first step is to use the "Q-parametrization” of all stabilizing
compensators introduced in this context by [Zames 1981, pp. 305-306].
Then using a coprime factorization of the plant over stable transfer
functions, we can express the problem of minimizing the closed loop
sensitivity as a minimization problem affine with respect to a
parameter-function which can vary freely in ﬁm. As this free parameter
varies, the attainable sensitivity functions range over a subspace of
ﬂp. The form of this subspace is ¢+¢MP. where ¢ and Y are fixed ﬂm
functions. After modifying ¥ to make the subspace closed, we can apply
the theory of [Sarason 1967] on the dilation (generalized extension —
see [Halmos 1967, p. 118]) of operators on certain subspaces of #>. In
the special cases of interest to us, we obtain an explicit expression
for the infimal sensitivity in our modified problem, from which we
calculate the (improper and infinite dimensional) compensator which
attains this sensitivity for the original problem. We can then examine
how to find a realizable (proper and finite dimensional) compensator
that approximates the infimal sensitivity norm.

At this point, before continuing with theoretical background we

first state our assumptions on the weighting function W(s).

C. The Choice of Weighting Function.

We assume that the weighting function is a rational minimum phase
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241
function in # with real coefficients, and bounded away from zero at «.

¥e normalize the weighting function so that I?m W(s) = 1.
s |-

The minimum phase assumption is without loss of generality, since
multiplication of (1.2) by an inner function does not change the *
norm.

The reason for the rationality assumption is simple convenience,
and the fact that nothing seems to be lost from this restriction. If,
however, strictly proper weighting functions are considered.3 so that
W(») = 0, since the resulting optimal weighted sensitivities will be
all-pass, the corresponding unweighted sensitivities will be unbounded
at ®. This would be an unacceptable design, were it really to be used.

It could be argued that real implementations will use proper
approximations to the optimal compensators. Then the unweighted
sensitivity will not only be bounded at infinity, it will have value 1
there.

However, since the approximation techniques presented in the
literature, [Zames and Francis 1983] and [Vidyasagar 1985], achieve
sensitivity with norm arbitrarily close to the optimal by approximating
the optimal weighted sensitivity to higher and higher frequencies, these
techniques cause the unweighted sensitivity to grow as the approximation
improves. A trade-off would then be required. Since bounded
sensitivity is a real design constraint, which proper choice of

non-strictly proper weighting function accommodates, the use of such a

3It would simplify our problem to take W(s) strictly proper, since then
it would be a compact operator on #Z. (See [Rudin 1973, p. 197] for a

definition of compact operator. See section F below for the advantage

of this.)
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weighting function seems to be the natural way of providing the

trade-off.

D. The Q-parameterization of Stabilizing Compensators

If C is a feedback compensator which stabilizes the closed loop
system (in the sense of both input-output and internal stability) and
results in closed loop sensitivity S = (14PC)~!, there is a transfer

function Q such that

S = (1-PQ). (2.2)
Q and C are related by
C Q
Q:m and C=m. (2.3)

When P is stable, any stable Q results in a stabilizing C, and
conversely. When P is unstable, the stability of the closed loop
imposes additional constraints on Q in order to ensure that the
sensitivity has zeros at the unstable poles of P. Several versions of
these constraints appear in [Zames and Francis 1983, pp. 589-590].

We shall not use the constraints explicitly here because the
introduction of a coprime factorization in the next section eliminates
the need to deal with constraints explicitly.

Remark: The use of this "Q-parametrization” when the plant (or
compensator) is stable dates back at least as far as [Newton, Gould and
Kaiser 1956, p. 35]. Perhaps the easiest way to see how it arises

naturally is via the block diagram Figure 2. Here nga is the transfer
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Figure 2. Transformation of Feedback System

function from d to w. In picking C, we might know what we would like
the closed loop transfer function to be, and so be able to directly

specify a cascade compensator Q, as in Figure 3. Equating the cascade
d w
—{Q [P }—

Figure 3. Equivalent Cascade Control System

C

and feedback compensated system transfer functions, we find Q = 1370

E. Use of Coprime Factorization

By next introducing a coprime factorization [Callier and Desoer
1978] of the (unstable) plant transfer function it is possible to obtain

an expression (2.4) for the closed loop sensitivity function which is

X(s) = W(s)V(s) - e SAA(s)H(s) (2.4)

unconstrained as a function of the stable transfer function-parameter

H(s). [Francis and Zames 1984, p. 10].
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We describe this transformation using the explicit assumed form of
our plant given in (1.1), P(s) = e_SAA(s)-B'i(s).

Here A(s) is the stable rational factor of the plant, and V(s) in
(2.4) comes from a coprime factorization of the plant over the ring of

stable transfer functions via

e S3A(s)U(s) + B(s)V(s) = 1. (2.5)

This factorization is called coprime because as a result of (2.5) the
functions e-SAA(s) and B(s) have no common factors which are stable
transfer functions, except for scalars. We can and do assume that B(s)
is a finite Blaschke product. The idea of parameterizing stabilizing
compensators with such factorizations is due to [Youla, Bongiorno and
Jabr 1976, p. 7]. 1In our case the computational method to find this

~ factorization appears in [Callier and Desoer 1978, p. 655].

The result we need appears in [Desoer, Liu, Murray and Saeks 1980,

pP. 404], that (using our notation above) all stabilizing compensators
U(s)-H(s)B(s)

V(s)+H(s)e S4A(s)

in # . Using the formula (2.3) for Q(s) with this expression for C(s)

are given by C(s) =

» as H(s) varies over all functions

we find that

Q(s) = BU + B?H. (2.6)

Finally, substituting (2.6) into the expression (2.2) for the

sensitivity, and using (1.1) with (2.5), we find that

S(s) = 1 - P(BU + B?H)
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= B(V - e S4am)

ranges over all sensitivity functions attainable with a stable closed
R 0
loop as H varies over # .

To obtain the expression (2.1), we merely note that

inf, IN(BV - Be SAam)i_
He#

inf  NIW(s)S(s)I,
Hex

= inf_ IWV-We SAamyn_
He#
(since B is a Blaschke product)
= inf,, IWV-e SAam)_
He#

(since we have assumed W is invertible in ﬂp). This is (2.1).

The infimal value in (2.1) is not generally attained for any H € #
when P is strictly proper, since then AX is not closed. (This is also
the case when the plant has a pole or zero on the imaginary axis. This
does not differ form the finite dimensional plant case, and we only
handle the strictly proper plant case here.)

If we allowed improper analytic functions H, the infimum would be
attained. From (2.6) an improper H means an improper Q parameter, and
from (2.3) this means an improper compensator.

We will proceed to find a limiting sensitivity which corresponds to
such an improper compensator. Afterwards we will consider the issue of
approximation of this improper compensator by proper ones.

Suppose A = ¢P°. where ¥ is a finite Blaschke product and P0 is a

rational outer function. Let R be the degree difference between the
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denominator and numerator polynomials of Po(s). Our solution then

proceeds by looking for the solution to

inf W(s)V(s) - e S*A(s)H(s)I, 2.7
He(s+1) A"

which is equivalent to

inf, IY(s) - e S4y(s)H(s)N (2.8)
He#
R o ©
with Y(s) = W(s)V(s). This follows since Po(s+1) # = # .
Since fﬂm is dense in ﬂm for any outer function fF € * the infimal
sensitivities for the two problems are in fact equal.
We shall solve (2.8), and find an # function which attains the
infimum. We shall think of this function as a limit for the desired

sensitivity function, and look for attainable sensitivity functions

whose norm approximates the infimum.

F. Results from [Sarason 1967]
Our solution to (2.8) is based on [Sarason 1967], to which the’

reader is referred for the detailed mathematical Justification of our
work. Here we briefly summarize the essential features of the theory.
Most of the material in [Sarason 1967] is developed in terms of the
space ﬂm(T). the space of boundary functions on the unit circle for
functions bounded and analytic in the unit disk. However in the current
work we are concerned with continuous time systems and their Laplace

transforms, so we deal with the space w“(jm), the space of boundary
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functions on the imaginary axis for functions bounded and analytic in
the right half plane.

In [Sarason 1965], summarized in [Sarason 1967, p. 192], the author
translates his work for the space ﬂQ(T) to ﬂ”(m) for the special case
equivalent to the case that arises for the plants we shall consider in
Chapter 3. (Note that Sarason uses w”(m). * of the upper half plane.)
We shall cite relevant results in [Sarason 1967] in a form translated to
ﬁm(C+), restricted to the special cases of interest to us.

Suppose K is a closed subspace of a Hilbert space H, and W is an
operator on H. Let HK be the projection operator from H to K.

T = HKole is an operator on K, called the compression of W, and W is a
dilation of T.

Viewed as operators which act by multiplication, the space * is a

space of bounded linear transformations of #2 which commute with

multiplication by e-SA. A 2 0. Let K be a closed subspace of #°. Take

SA to be the operator on K defined by SAf =1 (e"SA

K
operator on K which commutes with SA' A 2 0. [Sarason 1967] is

*f). Let T be an

concerned with dilations (which commute with multiplication by e—sA

) of
such operators on K to all of #Z.

If ¢ € * and f € #°, ¢+f € #2, and we denote this multiplication
operator on #° by M¢.

In the cases of interest to us, T will be the compression of a

multiplication operator on #° to K, and K will have the special form

K =»Iz © yi#>, where ¥ is an inner function. Alternatively we write

K = (¢m2)l. where the orthogonal complement is taken in #°. (T will
commute with SA because ¥#° is invariant under multiplication by e_SA.)
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Let IITl refer to the induced operator norm of T. We can state a version
for ﬂm(G+) of the main result in [Sarason 1967, Theorem 1] as,
If T is an operator on K which commutes with SA' for all A > O,

(o}
then there is a ¢ € ¥ such that llell, = NTH and T = HK°M¢IK'

If f is a function such that UITfll = UTH-UIfll, we call f a maximal
vector for T. Compact bounded operators have maximal vectors. ([Rudin
1973, p. 313] using also T T = TN from [Rudin 1973, p. 297].)

The operators which we consider are not compact, and in the general
non-compact case the existence of such a norm-preserving dilation is the
best we can do. In the general case we do not know how to construct the
dilation.

We subsequently establish that the particular operators in which we
are most interested have maximal vectors, in spite of not being compact.
In this case we do know how to construct the dilation, and it is really
Proposition 5.1 in [Sarason 1967, p. 188] that we require. Our version
of that proposition is

Let T be the compression of a multiplication operator on #2 to K

with IITI = 1. If T has a maximal vectorkf, then there is a unique

¢ € ﬂm with qu:Il°° = 1 such that the compression of M¢ to K is equal

toT. ¢ is inner, and it is given by
¢ = —F (2.9)

G. Application of [Sarason 19677 to Problem

In order to follow [Sarason 1967], we view [Y(s)—e-SA¢(s)H(s)] in

(2.8) as an operator on #°. The compression of this operator to
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K=#>0¢Sh

V#° is equal to the compression of Y(s) on the same
subspace. Call this latter operator T = HKYlK' (We note that

IiT < iYIl.) The infimum in (2.8) cannot be less than the operator norm
of T. Theorem 1 in [Sarason 1967] says that the desired infimum is in
fact equal to IITIl.

Following [Sarason 1967, §7] a way to find this supremum is to use
the facts that IITIZ = T Tl (via the definition of adjoint) [Rudin 1973,
p. 297] and that p(T'T) = IT"THl since T'T is normal [Rudin 1973, p.
282]. Therefore ITIl = p(T"T)%.

If T is compact we need only find the largest eigenvalue of T*T,
but this will not be the general case.

In our case we normalize W(s) with W(®) = 1. Since W(s) is
rational it is then equal to 1 plus a strictly proper stable rational
function. Therefore T is the identity plus a compact operator, and we
Have only slightly more complication: Since we shall have T*T-I is
compact, we know from Weyl's theorem that the spectrum of T*T and I
differ only by eigenvalues. [Halmos 1967, pp. 92 & 2957. Therefore,
a(T*T) C {ml: ne€ a(T*T-I)} U {1}. Also, 1 is the only cluster point
of p(T*T).

Thus the idea will be to examine the eigenvalues of T for a
ma#imum. If none exists, we will have IITIl = 1.

The operator T is equivalent to an operator V: ¥ '(K) - 2™ (K) via
the inverse Laplace transformation. ¥ '(K) is a subspace of L2(0,).
One can think of V acting on time functions via convolution and T on
transfer functions via multiplication, each followed by the

corresponding projection. In particular, there is a one-to-one
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correspondence between eigenvectors, and the eigenvalues of T*T and V*V
are éhe same. Furthermo?e. compactness of V is equivalent to
compactness of T.

If T*T has a largest eigenvalue, say A%, then IITIIZ = Az,-and the
corresponding eigenfunction will be a maximal vector for T. According

to Proposition 5.1 in [Sarason 1967], in this case ﬁ%ﬁ-will be dilated

~

TF

by an inner function given by ——=. This is the unique minimal
ITIf

A

dilation. In our case, Tf would be the optimal sensitivity.

f

Thus when T*T has a largest eigenvalue, we can find the minimal
dilation of T. For computational reasons we prefer to use V*V. We then
have four steps to find the optimal sensitivity:

¢ Find K, and the corresponding subspace of LZ(O.W),

e Compute V*V.

¢ Solve the eigenvalue/eigenfunction problem for this operator,

® Find the maximal eigenvalue and a corresponding eigenfunction, and
compute the minimal dilation of T. Since 1 is the only cluster point of
p(T*T), if TN > 1, T has a largest eigenvalue. Then T has a unique
minimal dilation.

When T does not have a maximal vector., we still know from Theorem 1
in [Sarason 1967] that a minimal dilation of T exists, but we don’t know
that it is unique, or how to compute it in general.

In this latter case the problem is not completely solved. In
Chapter 8 we have a practical observation on how to pick W so as to
ensure the existence of a maximal vector and a conjecture about the form

of a solution for general W.
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)

When [W(jw)| > 1 for o large enough T has infinitely many
eigenvalues greater than 1. Since the only cluster point of the
eigenvalues is 1, this means that T*T has a largest eigenvalue, and thus
a maximal vector. We observe that (since W(®) = 1) we can always pick
W(s) so that IW(jw)l eventually approaches 1 from abové, while affecting
IW(jw)I only arbitrarily little at any frequencies of interest, by
introducing one additional pole/zero pair at high frequency. In othef
words, we can always pick a W close to one having the desired magni tude,
which results in a solvable problem.

When |W(jo)| does not approach 1 from above at infinity, it must do
so from below. Then there we get the other two cases. If |W(jw)| < 1
for all w, the magnitude of the infimal sensitivity is 1, a maximal
vector does not exist, and an optimal sensitivity is obtained with the
open loop system (for a stable plant). |W(jw)| > 1 over some frequency

band. In this second case a maximal vector may or may not exist.

H. Computation of the Optimal Compensator

The result of the application of the above theory is a multiple of
an inner function, which is either the optimal sensitivity or the
optimal sensitivity divided by the Blaschke product resulting from the
plant poles. This sensitivity is that for a modified problem ((2.8)
instead of (2.1)), where we have extended # just enough to allow
inversion of the outer part of the plant.>

We use this to obtain a sequence of approximations to the optimal
solution of our original problem in two steps. First we compute an

improper compensator which would give us the computed optimal
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sensitivity as described above. Then we show how to find a sequence of
propér compensators for which the closed loop sensitivity approaches the
optimal.

The computation of the improper compénsator involves finding the
value of the free parameter which gives rise to the optimal sensitivity,
using the formula X(s) = Y(s) + e_SAwH (when B = 1), using the notation

of (2.4) and (2.8). Since our computation of X did not involve finding

requires some
-sA q

¥

Jjustification in itself. Suppose we have computed the optimal

an H which realizes the infimum, the computation H =

sensitivity X(s) as above. We know that HK(XIK) = HK(Y|K), so
HK((X—Y)IK) = 0. We can also see that HK(X-Y) = 0 since K'L is invariant
under multiplication by * functions. Therefore (X—Y).‘Jf2 C Kl = e_SAwﬂz.
But then e—SAw divide; (X-Y) in * (this follows from the uniqueness of
the inner-outer factorization), and the computation works. From this

point computation of a compensator is a matter of algebra.
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CHAPTER 3

THE FIRST CASE

In this chapter we consider the problem where the plant is given by
-sA
P(s) = e Po(s) (3.1)

where Po(s) is a minimum phase and stable function, and the weighting

function is given by

W(s) = E}— (3.2)

with O < B.
The content of this chapter follows the general scheme outlined in
Chapter 2:
1. Identify the subspace of #? given by K = (e_SAﬂz)l, and the
corresponding subspace of L?(0,») given by £ *(K).
2. Explicitly compute the compression T of the weighting function
W(s). viewed as an operator on #2, to the subspace K, and the
adjoint operator T™. We also compute the corresponding operators V
and V" on ¢ *(K).
3. Using these computations, solve the eigenvalue/eigenfunction
problem for V*V. We do this by converting the problem originally
posed for an integral operator to a two-point boundary value
problem.

4. Pick the largest eigenvalue if it exists, and compute the
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optimal sensitivity and the corresponding optimal compensator. If
there is not a largest eigenvalue, we can still find an optimal
sensitivity and corresponding compensator, but these will not be
unique. In this case we find that W(s) itself in an optimal
sensitivity, and we also find a sequence of suboptimal
sensitivities which converge to an all-pass optimal sensitivity.

5. Approximate the optimal compensator with a proper and finite

dimensional compensator.

Remarks:

1. We have normalized the frequency scale to put the zero of the
weighting function at the point -1, so (3.2) is a completely general 1
pole/1 zero weighting function, subject to the stability and minimum

phase conditions.

2. In the case of a stable plant P, in the formula for the coprime

factorization equation (2.5), we can set A=P,, B=1, U = 1,

V = l—e_SAPO. Then our minimization problem becomes

inf_ IIW(1-P) - PHI = inf  IIW - PH'I (3.3)
He# H'ex
since for every H € # , there is a H' € #" such that P(W+H) = PH', and
conversely. Thus we proceed with the function Y in (2.7) set equal to W
and ¥y = 1.
3. VWe shall see that in step (4.), for the 1 pole/l zero weighting

function, there are two cases, depending upon whether the pole lies
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closer to the origin than the Fero or farther from the origin. The
former case, that of B < 1; is the only one of interest since the latter
case has the trivial solution of no feedback giving the optimal
sensitivity. (We also demonstrate a non-trivial solution for the

B > 1 case.) Furthermore, we shall see that in the case B < 1 there

always exists a largest eigenvalue.

A. Calculation of K.

The result of this section is that

K = £(L3(0,4)) (3.4)

where ¢(+) denotes Laplace transform.

We prove this as follows: Suppose f, h € L2(O,w). K is defined by

(F(s).e”*h(s))y = 0. for all f(s)€ K and he#?
Then

0= (f(iw),e_iwAh(iw))Lz

= (F(t).R(t-4)), 2

by Parseval's theorem. Therefore f(t) = O a.e. [A,®). Conversely, if

F(t)EL? and supp(f)C[0.4]. then fe(e S3#2)L. Thus
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(F:f€L[0,®) and supp(F)C[0,4]>

_ [l—e_SA] e
s

where """ denotes convolution.

B. Computation of Operators.

The computation of the operators T, T*, V and V* proceeds in a
straightforward manner. The results of this section are contained in
the expressions for V and V*, equations (3.5) and (3.6).

Accordingly, for fe€K,

TF _ 2[[u(t)-u(;‘A)]JZw(t_T)f(T)dT]'

where w = £°*(W), and u(t) is the unit step function,

O for t <1
u(t) =
1 fort > 1.

This can be seen simply by projecting Wf onto K. It is easy to see that

-sA
. . 1-e
T is given by T = HK(WIK) = ——g———*W(S)IK.

and V is the operator on L?(0,A) defined by

t
(VF)(t) = Ionb(t-r)f(r)df. ' (3.5)

We show in the appendix to this chapter that
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Vy = JAy(T)w(T—t)dT.  (3.6)
t

C._ Solution of eigenvalue problém.

We want to solve

A2F = VVE. (3.7)
We do so by using a realization of the operators V and V* as a pair of
differential equations on the interval (0,A), with appropriate boundary
conditions. After formulating these differential equations, we find the
solution by taking Laplace transforms, after justifying the extension of
the domain of the equations. We then explicitly apply the boundary
conditions to show that all eigenfunctions are sinusoids and to show
that the frequencies and phases of these functions are the solutions of
equations (3.17) and (3.19) below, respectively.

Now let

t
y=Vf = JS w(t-T)f(T)dT for t€[0,A],

and let
z = V*y = Jf w(7-t)y(7r)dT for t€[0,4A].

Since w(t) = 5t + (1—B)°e_Bt. we can take

E)ﬁ = —Bexy + (I—B)f

y=x1+f
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Bexz = (1-B)-y

Exz

N
]

x2 + Yy

as a state space model for VV valid on [0.4].

Boundary conditions are given by y(0) = f(0) and z(A) = y(4). This
is equivalent to x1(0) = O and x2(A) = O (if B # 1).

Remark: We exclude the case B = 11 because otherwise the frequency
domain weighting function could be W(s) = 25% or W(s) = 1. These are of

no interest since we only allow weighting functions which are

non—-constant and outer.

More concisely,

= _ |-B O}, 1-B],
S
z=[1 1]x+ f ' (3.8b)
with
(0
0= E:zEA;]' (3.8¢)

Equations (3.8) simply constitute a realization of the operator V*V, so
that for any f(t) defined on (0,A). the solution to (3.8) is
z(t) = (VV)F(¢t).

Now we set z = A%f in order ta find the eigenfunctions and

eigenvalues of V*V, Then

(A%-1)f = [1 1]-x ) (3.9)
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replaces (3.8b).

If the equations (3.8)-(3.9) were defined on (0,), we could take
Laplace transforms and solve for ;(s) in terms of x(0). This not being
the case, we shall still do so, but we require a little more
justification. The justification is as follows:

Every solution to (3.8)-(3.9) has some initial value x(0). Using

(3.9) we can write (3.8) as

(g 222 4]

and the solution to (3.10) with initial condition x(0) gives us the same
x(t) on (0,A). We can extend this solution to (0,») jusf by integrating
(3:10).

This shows that all solutions to (3.8)-(3.9) have such an
extension. Conversely, taking any solution to (3.10) with initial -
condition x(0), we obtain a solution to (3.8)-(3.9) since the value
x5(A) will match (3.8c). Thus we conclude that we can obtain all
solutions to (3.8)-(3.9) by taking Laplace transforms as if the problem
were defined on (0,®), if we can find the correct value for x(0).

Therefore, taking Laplace transforms in (3.8a)

A -B O ~ 1_ ~
sx - x(0) ox + [ i ].f
p-1 B] i

and so
st 01, . [};’13]-? + x(O)].
=B s- L
Using (3.9)
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(\2-1)F = [1 1]- ,3:‘1’]-? + x(O)]

I
ll—‘ ml
1+
W W™
9
@ O
A
—
—

—— 0
11| 5P | [1-F].7
cun 3 LA )
$2-p2 s—f3

_|[1=B_ 1B _ (1-B)®|5 , [s1  _1°
) [s+ﬁ sB g2 p2 }f ' [sz-ﬁz S_B]X(O)

|
—
!
=
N
“~nD
7]
w0
i
—
—
| IS
~~
o
A

2 Bz s—p3

r N-1

2 s-1 1
s2p? [sz—Bz S‘B]x(O)

~h)>
Il
>
N
(/2]
|
—

= [a2 - . .[s—l s+B]-x(0).

Remark: If A® =1 then (B3-1)f = O implies f =0 or B2 = 1.
From the remark on page 17, B? = 1 does not correspond to a weighting

function which we consider. Thus we can assume that A2 # 1.

So f has for its poles the zeros of (A%-1)s® + 1-A%p2, that is

202
$? = 1lxkf . (3.11)
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o Taking +v to be the two roots of this equation, we either have > = 0,
or
B f(t) = et + qee T,
-
to within a constant multiplier.
- The possibility of these cases and, in the second case, the
coefficient a are determined by the boundary conditions. To determine
- the boundary conditions, we start with (3.9) and differentiate, then
- substitute (3.8a). We get
(A\%-1)F = [1 1]-x
o and
(\-1)F = [1 1]-x
i R
-1 B
- = [-1 Bl-x
- We write these as

) A R R S

Now we apply (3.8c) to obtain

- o2-0)-[E] = []xac0)
and
(A2-1)- ;%2; - ;i]xi(A).

We conclude that

~he

~
(@]

~
1

B+F£(0) (3.12)
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and

F(A) = -F(A). (3.13)

Now it appears that we could have.

242 2y2_ 2y2_
(1) 221 o, (11) B2=L 5 0 or (111) BAEL (o,
A%-1 A%-1 A%-1

We consider each of these cases in turn.

Case (i). This implies f=0. Then f(t)=k+t + m, but F(O):Bf(O)

implies f(t):m(Bt+1); and we normalize by assuming m=1. Then (i) gives

AZBZ' - 1’
or

1

2.

A% =

)

The boundary condition at t = A gives us
B-A +1 = -B.
Since ﬁ') O by assumption, case (i) is excluded."

Case (ii). In this case
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f = ewt + a*e-qt

2,2 )
with 72=P§%}—2J > 0. VWe assume without loss of generality that ~+>0.
A°-1

Then the boundary condition (3.12) gives us

=B

¥ - a*y = B+(1 +a), or a = Py 5 (3.14)
Boundary condition (3.13) gives
eA'r + a-e—A‘T = —'roeA1 + a°1°e_A7.

Substitution of (3.14) and a little algebra gives us

2(148) (€2 + &) = —(pra2) (™ - Ty,

So
' th(~A) = - _Iiig_. 3.15
coth(v4) = ~(1+6) . (3.15) ‘
. 12+B.
Now v>0, and B > O by assumption, so

T(1+h) > 0. Also A>0, so
coth(vA) > 1. This is inconsistent with (3.15), and thus case (ii) does
not occur.

Case (iii). In this case we follow the steps in case (ii) except
with v purely imaginary, say v+ = jo with v real. That is,

W2 = 1-B2A2

(3.16)
AZ-1

Then (3.15) gives us °

wz-B

COth(j(nJA) = j(.)(—l‘f'BT
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or

-jsin(2wd) _ _ o®-B
1 - cos(2wA) ~ ju(1+B)
‘and finally
2sin{wA)cos(wA) _ w?-B
92sin?(wh) ©(1+B)
This last equation gives
2—
cot(wh) = G%Tigi . (3.17)

For given B we can numerically solve this equation for o, finding
multiple solutions. From the definition of w? in (3.16), these

>
solutions give us the eigenvalues of V V via

w2+l

A2 =
w24p2

(3.18)

The corresponding eigenfunctions are given by f(t) = cos(wt+yp), where ¢

is given by

E®

tan(¢) = - (3.19)

from (3.12).

The solutions of the equation (3.17) can be characterized

graphically as indicated in Figure 4.
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y=cot(wA)

§
N
¥

gives largest
eigenvalue

——

Figure 4. Graphical solution of (3.17).

D. FExistence of a largest eigenvalue.

We wish to pick the one, if it exists, among solutions to (3.17)

that gives the largest eigenvalue. We see that there are two cases:

o If B<1 then we should pick the solution for w of smallest
magni tude (w=0 has been excluded by our consideration of case
(iii)). In general this must be done numerically.

. If B>1, we should pick the largest solution for w, but one can
see from Figure 2 that there is no upper bound on solutions to
(3.17). Thus there is an infinite sequence of eigenvalues
approaching A®=1 from below. (This means that V*V is not compact,

as we already knew.)

As pointed out in Chapter 2, the spectrum of Vv is the set of
eigenvalues augmented possibly by {1}. Thus for B>1, the spectral‘
radius of V*V is 1, and therefore IIVll=1. Since the open loop system has

sensitivity of norm 1 for the case B>1, the optimal sensitivity is
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attained by H=0 in (2.2), that is, zero feedback. In other words,

liWll, =1 when B > 1, and this is the infimal sensitivity according to
the above argument. (We note that W is not inner. For non-compact
operatérs, minimal dilations are not necessarily unique or inner. In
section H below we find an inner sensitivity as well for this case, with
non—trivial feedback.)

For pB<1, we also have 1 € a(V*V). but this does not affect the
spectral radius since the largest eigenvalue is greater than 1. It is
easy to see that the eigenvalues of V*V are contained in [A;in,l) for
B>1, and in (1.7\;ax] for B<1.

To summarize the situation, we have found two cases of interest:
either B < 1, in which case thefe is an eigenvalue of V*V equal to the
norm of T, or B 2 1, in which case IITIl = 1. This will be¢ used below to
compute the minimal dilation of T to #° in the first case. In the

second case W itself is a minimal dilation of T to #>.
Remark: When B < 1, |W(jw)| approaches 1 from above as @ - ®. When

B>1, lW(jm)l approaches 1 from below as w » @, We discuss the

generalization of these characteristics for more general W in Chapter 5.

E. Calculation of optimal sensitivity for B<1.

When B<1 we can find the eigenfunction f for the largest eigenvalue
of V*V,by solving (3.17) and (3.19). This f is a maximal vector for V,
and so we can follow the method in Sarason to compute the minimal
dilation of T to #°. This minimal dilation will be the infimal

sensitivity which we seek. It is given below in equation (3.21).
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Let wo be a solution to (3.17). When wgy corresponds to a maximal
vector, according to the proof of Proposition 5.1 in [Sarason 196717,
T/ITN,, will be interpoiated by an inner function given by TFA. The

Ti_f
o

We now calculate Tf as £(Vf)

minimal dilation of T will be given by I;.
f

and compute this quotient.

t
Vi = | 08y + QP Joos(agrrpyar

cos(wgt+e) + (1-p)Sin(wot)

(wo+5%)"
Then
TF _ @(VF
G

Lo 1B #[sin(ugt)- (u(t)-u(e-A))]
(002+82)%  ¢[cos(wot+e)« (u(t)-u(t-4))]

=1+ (1-B)4[sin(wot) - (u(t)-u(t-4))]

(3.20)
£[ (wocos(wat )+Bsin(wgt))« (u(t)-u(t-4))]

After some detailed calculation (presented in the appendix to this

chapter) we find that

Tf _ ye_stl —e'SAk(s?ﬁ) (3.21)
f

A(s+B) - e Sh.(s-1)
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When f is a maximal vector for V, (3.21) is the optimal weighted

2

sensitivity, and II; =A% . We can then compute the optimal feedback
f max

compensator for the case f ( 1 as in the next section.

Remark: As A >0, A2 51, and as A »®, A> - L  This can be
_ max max f
seen as follows: From Figure 4, as A » 0, w3 increases. Since

A =

2
W+l , as wg »®, A2 5 1. When A » ®, we see from Figure 4 that
w2+B2 .
~ 148

ws = B. This gives A% % = %z
p+p?

F. Calculation of Optimal Feedback Compensator for B<1.

We want to find the feedback C which results in this weighted

sensitivity. We have X = W(1-PQ) and C = T%ﬁa' so
w-X
C= X" (3.22)

Recall that we are assuming P(s) e—SA-A(s), with A(s) stable and

minimum phase.

Using (3.21) and (3.2) in (3.22) and simplifying, we get for the

optimal compensator

c. L. s?-1 - A%3(s%2-3?%)
AN —(s+1)(s+B) + e_SAk(sz—Bz)

Substituting for the A% using (3.18) we get

c-A\. B2-1 . sZ+wZ
A WEHL —(s+1)(s4B) + e SEa(s2-p?)
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Taking

L.:A(ua):)\?\l

wg+1
this is
2 2
s +wo
C= C-A & 2 ’ —si B-s’
s“+(B+1)s+B 1 + e -}\-m'
which can be realized as shown in Figure 5.
u - s%+w3 Cu
.m— > g.A . >
1[— s2+(B+1)s+B
e-sA ] p.B=s

s+1

Figure 5. Realization of Optimal Compensator

Since A (the outer part of P) will generally be strictly proper, C
"and Q will in general be improper. It is necessary to find a proper Q
for the compensator to be physically implementable. This issue is

covered in Chapter 4.

G. Stability of Optimal Feedback Compensator.

We present three ways to see that the optimal compensator is

unstable.

The first is essentially just an extension of the situation for
purely rational plants. The idea is that the optimal sensitivity is a

constant times a (infinite) Blaschke product, and the numerator of the
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o

sensitivity appears in the denominator of the compensator. Therefore
the compensator has right half plane poles. The details are as follows.

We know from above that C = E%%, so

Since W and P have only left half plane zeros and poles by assumption,
if we can show that X is a constant times a Blaschke product, we can
conclude that C is unstable.

Let ¢ = A™'X. Then ¢ is inner. We argue (following [Sarason 1967,
p. 194]) that ¢(s) is a Blaschke product: Since ¢(s) is continuous on
the imaginary axis, the only singular inner functions that can divide it
are of the form e °© with @>0. But esaw(s) is unbounded on the positive
real axis, so ¢ is purely a Blaschke product.

We can further show that ¢ is an infinite Blaschke product by

applying Picard’s theorem to its numerator. Thus we prove that

l—e_SA)\E:E

o7l has finitely many zeros in the closed left half plane, and

then conclude by appealing to Picard’s theorem that 1—e_SAK§£%-has
infinitely many zeros in the right half plane.
First we note that Ie_SAI > 1 for s in the left half plane, and

|e_SA| < 1 in the right half plane. Now all zeros must satisfy

e_%é(SA)- 25% = TlT, and therefore all closed left half plane zeros
satisfy EEE < T%T' Since IAI > 1 the locus 25% = T%T is an ellipse,

and so all closed left half plane zeros lie on or inside the

- . . s=B| _ 1 .

intersection of the ellipse o1 = 13q-w1th the closed left half plane.
See Figure 6.
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Figure 6. Region for possible left half plane zeros.

Thus all closed left half plane zeros lie in a compact region, and
we conclude from analyticity that there are only finitely many in that
region. Picard’s theorem tells us that there are infinitely many zeros,
so that we must conclude that there are infinitely many in the open
right half plane.

(The same concluéion might be reached by looking at the Nyquist
plot for the feedback loop in Figure 5, although we know of no version
of the Nyquist stability criterion which applies to the case of
infinitely many right half plane poles.)

A second instability proof gives us more detailed information about
the distribution of the right half plane zeros without much more

trouble. As stated above, the right half plane zeros must satisfy

:—_:-% > T%T As |s| - =, % > 1. Therefore as |s| > », the zero set

(zi} appfoaches the line Ie_SAI = T%T, which is the same as

@e(sj = lﬁ%ﬁlu and 9m(zi) - (2n+1)w. Also, since right half plane zeros

must satisfy

EE?I <1 (by comparing distances from B and from the point

-1), we have |A[- =B) ¢ IN]. Then since Ie—SAlo sBl _ 1 \
s+1 , s+1 .I—r
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IeSAI < |n|., and we conclude %Re(s) < lﬁ%ﬁl for these zeros.

The third proof uses the fact that H(s) = (s+1)—e_SAA(s-B) has
right half plane zeros can also be obtained from results on the
distribution of zeros of entire functions. (See [Levin 1980] Chapter 7,
- 84, p. 323, Example 1.) For our purposes it is more convenient to refer
to the earlier work [Pontryagin 1955].

According to Theorem 7 in this latter paper it is sufficient to
show that the function G(y) = y-cos(yA) + sin(yA) + A-y has zeros which
are not purely real.4 To see this all we need is to recognize that G
has infinitely many zeros. (To show this we can use Theorem 3 in the
same paper.s) Setting G(y) = O we get

—y-cos(yd) = sin(yd) + A-y.
For real values of y, the left hand side of this equation has the lines
z = #y for an envelope, whereas the right hand side oscillates with
deviation 1 about the line z = A.y. Since IAI > 1, for some value yq

there are no more real zeros for lul > vo.

4Theorem 6 says that if we evaluate H(s) on the imaginary axis, and
split the resulting H(iy) (y€R) into real and imaginary parts,
H(iy) = F(y) + iG(y) with F(y) and G(y) taking only real values,
then necessary and sufficient conditions for H to have all its zeros
in the left half plane are that (i) F and G have only real zeros,
that (ii) these zeros alternate, and (iii) for at least one value of
Y. G'(y)F(y) - F'(y)G(y) > 0. Thus we need only show that G has a
complex zero to establish that H has a right half plane zero.

5Theorem 3 applied to G(y) says that for sufficiently large values of
the integer kR, G(y) has exactly 4k+1 zeros on the strip in C
—2km + e { %e(y) < 2km + e. Therefore for all the zeros of G(y) to
be real it is necessary and sufficient for G(y) to have exactly 4k+1
real zeros on the interval in R -2kw + e < y £ 2Rr + €.
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H. Another Solution for B>1

We show now that when B>1 the choice of A = 1 in equation (3.24)
gives an infimal sensitivity and a corresponding improper compensator.
There are essentially two things to show: First, that for A = 1 X(s) is
in #° (in fact we show it is inner). Second, that this X(s) is a

dilation of T — equivalently, that e_SA divides (W(s)-X(s)) in %

1. X(s) is inner. For A = 1, (3.21) becomes

-sA
X(s) = oo _(sf)
st - e (s-1)

Let e(s) be the numerator of X(s) and g(s) be the denominator. Then we
see that e(s) = -e_SAg(—s). so it is clear that [X(jo)| = 1. We need
only check that g(s) has no zeros in the right half plane. The zeros of
g(s) are given by the solutions to

Since the Ie_SAI <1 in the right half plane, and IE;%I > 1 in the right

half plane, there are no right half plane zeros.

2. X(s) is a dilation of T. We show that e—SA divides (W(s)-X(s))

0
in # .
s+1 s+l - e_SA(s—B)
W(s) - X(s) = £ - —
s+tf - e " (s-1)
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_ L(s*p%) - (s*-1)]e”SA
(s+B)[s+B - e SA(s-1)]

_ (1-p2e ™
(s+B)[s+B - e S4(s-1)]

(1-p?)
(s+B)[s+B - e S4(s-1)]

3 . w
is in ¥ .

This is divisible by e_sA in % since

Thus we have a second minimal dilation of T for the case B>1, the
first being given by W(s) itself.

The compensator corresponding to this inner sensitivity is

W-X (l-ﬁ‘z)e_sA -sA, s+l - e_SA(s—B) -t
C(s) = = - e A —
B (s+B)[s+B - e S(s-1)] [ s+B - e SA(s—l)]

= A'i (l—pz) .
(s+B)[s+1 - e SA(s-p)7

Remark: If we take A in (3.21) (call this function Xk(s)) for which A?
is not equal to the spectral radius of T*T, the equation which
determines the zeros of the denominator of XA is

e—sA _ A!s+§[-

- s-1

In the right half plane %e(s) > O, Ie-SAl < 1, so in order for Xk to
s+

Miﬁ)—l <1. But
s-1 s—-1

in the right half plane, since § > 0. If B > 1, we know all eigenvalues

have right half plane poles, we must have > 1

are less than 1, but cluster at 1. Therefore for all but finitely many

eigenvalues A the function XA is stable, and we actually can find a
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sensitivity.
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CHAPTER 3 Appendix

Details of Calculations

A. Calculation of Adjoint to V.

V* is defined by (x.V*y) = (Vx,y), so we just compute:

(Vx,y) = JAy(t)'(w(t)*x(t))dt [We have used the fact that
0 both w and y have their
support on [0,®).]
Using the fact that

w(t-T) = B(t—r) * Wo(t-T) = Ble—r) * (1-p)-eP(t"T)

we then have

t
JAy(t)°(w(t)*x(t))dt = de(t)°[j wo(t-T)x(T)dr + 6t*x(t)]dt
0 0 0
t
= Jﬁy(t)o[(1-6)°e-ﬁt°J‘eBT°x(T)dT + x(t)] dt
0 0

t t A
= [ vy PTx(rran] -
0 0 0

t
JA[j y(r)e PTar]-[Plox(t)]-at + J‘Ay(t)x(t)dt
0 Yo 0
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g t
= de(t) y(T)we(7-t)drdt - de(t)J y(T)we (T-t)drdt
0 0 0 0

+ JAX(t)[G(t)*y(t)]dt
0

- = JAX(t)[JAy(T)wo(T-t)dT + (S%y)(t)]de
0 t
= (Jﬁy(T)w(T—t)dr,x(t))
- t
- and we conclude
%
- Vy-= JAy(T)w(T—t)dT.
t
B. Computation of Optimal Sensitivity
We now explicitly compute and simplify the expressions in equation
- (3.20).
-sA &5, .. -6, .
- P[sin(wot)«(u(t)-u(t-4))] = 1‘: x —{(s-jv) 5 (s+jo)
- 1 l_e—(s_ij)A l_e_(s"'j(‘JO)A
= g;‘[ : - ]
S—Juwg s+ jwg
_ 2jug = & %A [ (st jug)et¥0 (s jug)eTI00A
tn 2j(sz+w§)
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_ wg = e *A[ssin(wd)+wg-cos(wgh)] (3.22)

sZ+w3 :

-sA & , + 6 ,
1-e " | O(s-jwg) (wtjwg)
s 2

$lcos(wot)(u(t)-u(t-4))]

1 l_e_(s—jQD)A l_e_(s"'j‘lJO)A
= 5’[ +
s—jwo s+ jwe

s - e SAs-cos(woh) - ©o sin(wod)] (3 93)

2
Sz+(.)o

Using (3.22) and (3.23) in (3.21), we get

-3
]
—
+

(1-B)[-wo+ e-SA-(s-sinw0A+w°coswoA)]

wo[-s+e_SA(s~coswoA—w°sinwoA)] + PB[-wgte _SA(s-sinwoA+w°coswoA)]

1+ (1-B)[-wo+ e-SA(s-sinwoA+wocosmoA)]

-wo(B+s)+e_SA[s(w°coswoA+ﬁ sinwgA)+we (BcoswgA-wesinwgA) ]

. (3.24)

The optimal weighted sensitivity in (3.24) can be written

wo[—s+e_SA(s'coswoA—mosinmoA)] + e_SA(s-sinwoA+wocosmoA) - wo

=<

mo[—s+e—SA(s-coswoA—wosinwoA)] + B[—wo+e—SA(s°sinw°A+choswoA)]

-sA -sA_. ~sA -
s+ (-wote ~ wocoswoA+e sinwoA) + woe (coswoA-wosinwod) - wo

S°(—wo+e—SAwocoswoA+e—SABsinwoA) + woe_SA(ﬁcoswoA—wosinmoA) - Pwo

where wo is the smallest positive solution of (3.13).
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We can further simplify this expression, but we first need to

establish the fact that
% = cos(wgd) + E—sin(moA)
Wo
This just requires the calculation

cos(wpd) + g—sin(moA) = cos(woA)[l + g_nﬂgiliél]
o o]

w3-B

cos{wgd) 93:22]
5B

[ 1 ]% [:Jjwz]
1 + tan®(wod) 3-8

=[ (w§-p)® ]%,L«:ﬁﬁz]

(0g+1) (w3+p?) 2-B

Fﬁiﬁf]% =1

Let C, = sin(wgd) + w0°cos(woA).

We use equation (3.19) and substitute

Wo
for A® using (3.16) to obtain sin(wpd) = Lliglggﬂcos(woA), from which we
wa—p
have:
: 1+8
- wgcos(wpoA)+sin(wgd) = |1 + cos(wpd)
Wg wg—ﬁ
’ 2
= lig5’-1::os(c.JoA)
w3-B
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2182 1402
= COS(QOA).M.IA
w3-B  wi+p®

=A"TeA® = A

[1—&:%] cos(wgd)

(nJo—B

2
= —Mcos(woA)

cos(woA)-wesin(wpd)

wocos(wod)+Bsin(wed) = [(00 + M&]cos(woA)

mg—B

2, .2
= womcos(woA)

and

|
k)
—
N[+
=
[
[
—
0
(]
4]
~~
4
[#]
[~
—

Bcos(woAd)-wosin(wed) =

|
|
! N
N[+
e
on
(o}
7]
~~
€
o
o
A

This gives us

- wos(e—SA?\-l) - Bwo7\°e_SA - Wg

X
wgs(e—SA°)1—\ -1) - woe-SA°)1\— ~ PBog
-sA
= a-—=tl e _A(s7f) (3.25)
A(stB) - e ""+(s-1)
(3.25) is the same as (3.21).
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CHAPTER 4

REALIZATION OF THE COMPENSATOR

A. Motivation

Now we consider the problem of approximating the optimal compensator
with a real system. Our discussion here will be for the 1 pole/1 zero
weighting function case for a stable plant with minimum phase rational
factor covered in Chapter 3. However, the analysis extends to more
general cases.
| There are two problems with the optimal compensator: First, it is
generally improper. The physical interpretation of this is that it
would have to contain differentiators, which can only be approximated
.with real systemss. The second problem is that the optimal compensator
contains a ideal delay, and again this cannot be constructed exactly.

The best we can hope for is that we can approximate the ideal
compensator over a finite bandwidth, and design the system so that the
behavior outside this band does not significantly affect performance.
We would like to describe an approximation procedure such that we can
pick whatever finite bandwidth we want, and the performance will
approach the optimum as the bandwidth grows.

Of course, we must explain in what sense we are approximating the

6The problem with realization of the delayed differentiators we would
need is not a lack of causality, since a differentiator cascaded with a
delay is even strongly causal. The problems that make differentiators
impossible to realize are infinite bandwidth and unboundedness.
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optimal compensator. What we really want is to describe a sequence of
compensators for which the weighted * norm of the closed loop
sensitivity approaches the infimal value.

Since the infimal weighted sensitivity is unique (when it has norm
greater than 1), and the corresponding compensator is improper when the
plant is strictly proper, there can be no proper compensator which
achieves the infimum.

From the viewpoint of the minimization problem originally posed, it
must be true that when P is strictly proper the set PA is not closed in
the norm topology on ﬂm. (It turns out that the éondition that P is not
strictly proper and does not have any zeros or poles on the imaginary
axis is sufficient to guarantee that set is closed.)

The rest of the chapter is as follows: We motivate our construction
of approximating proper compensators with a discussion of why a version
of the usual approximation procedure, which works for the case of
rational plants, does not work for the delay case. We then show one way
to construct a sequence of compensators for which performance approaches
the optimum. We do this in two steps. First we produce a sequence of
strictly proper compensators which contain pure delays, which sequence
approaches the optimum. Then we show how to approximate the delays with

strictly proper systems so as to preserve the good performance.

B. The conventional proper approximation technique.

1. Summary

The only procedures in the literature for this purpose seem to be
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those given in [Zames and Francis 1983, p. 591] and [Vidyasagar 1985, p.
178].

The procedure in [Zames and Francis 1983] requires the evaluation of
the term Bz(w), where Bz(s) is the Blaschke product formed from plant
zeros. In our case there is no Blaschke product involved, but rather a
singular inner function. If we interpret Bz(s) to be this inner
function, Bz(m) is not defined. There is no apparent way to fix this
problem for our case.

The procedure in [Vidyasagar 1985] does not work for our case
either. The essence of the difficulty is the same as in the
Zames-Francis procedure — the inner factor of the plant is not
continuous at infinity. We examine this difficult& in detail, because
it motivates our own approach.

In the case of a stable plant, the Vidyasagar procedure consists of
multiplying the optimal "Q-parameter”™ by a rational function, the
magnitude of which decreases with increasing frequency at a sufficiently
high rate. As the breakpoint of this "roll-off"” function increases, the

e ]
# -norm of the rolled-off sensitivity function approaches the minimum.

7Another way to view the difficulty is the following: Strict properness
of the rational part of the plant amounts to zero(s) at ©®. This can be
handled in the same way as zeros on the imaginary axis. The easiest way

to see this is to transform the problem to % of the unit disk, for then
a strictly proper plant with one more pole than zero has a simple zero
at the point 1. Zeros on the imaginary axis transform to other points
on the unit circle. The delay makes the zero at ® different because the
delay has an essential singularity at ®. This transforms to an
essential singularity at 1 on the unit circle. It is because of the
collocation of the essential singularity with the zero that the
procedure that works in the purely rational plant case for zeros on the
axis does not work for the zero at ®, but does work for other zeros on
the axis. See footnote 1 in Chapter 1.
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The idea is then to compute the compensator which yields this suboptimal
Q-parameter, and in the rational plant case one will have a satisfactory
sequence of approximating compensators.

The following paragraphs use some approximations to illustrate how
Vidyasagar’'s technique fails to approach the optimal sensitivity in the
limit for the 1 pole/zero weighting function case we have explicitly

solved.

2. Application to the delay case.

This section refers to [Vidyasagar 1985, pp. 176-178].
The sensitivity minimization problem (3.3) amounts to finding
inf W - PiHHm. We are looking at the case when the plant P is stable,

He#

with P = Poe_SA. Pi = e_SA the inner factor of the plant, and W is the

sensitivity weighting function. Suppose ﬁ'yields the infimal value.
Since W—e_SAﬁ'is all-pass (in the cases of interest), R is bounded away
from O at infinity. If Po is strictly proper, then P;iﬁ'is improper.
This will generally be the case with realistic plant models. The
optimal Q parameter would be given by Q = P;1§: except for the lack of
properness. We relax our'terminology and refer to this function as a Q
parameter. |

We address the case of Po strictly proper. 'he(s) (defined for an

example below) denotes Vidyasagar's roll-off function which multiplies

~ the parameter, in the case of a stable plant.

In the case when P, has a single zero at
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h ) = s+1 2 _ 2/e
(s) = es +2+e ~ s + 1 + 2/¢e”

Multiple zeros at ®, whose number n equals the differeﬁce of degrees
between denominator and numerator of Po(s). result in the above function
raised to the power n.

Let R be the optimizing function in the minimization. We fifst note
that the infimal weighted sensitivity magnitude IW(l—e_SA§)| is a
constant. Recall that we are élways assuming W(®) = 1. In Vidyasagar'’s
method, to approximate the optimal sensitivity one lets the e in he go
to 0. This means that the roll-off break frequency goes to .
Therefore, if the method were to work, we could assume that W is
approximately 1 before any frequency at which there is significant
deviation in he from 1.

Thus8 we consider the situation at frequencies w » ©_ where the
roll-off starts to take effect, and assume W(jw) = 1. At the

frequencies under consideration we have that
Il-e-SAﬁ1 X IW(I-e-SA§)| = constant.

Therefore for w > ©_ (1—e_SAﬁ)(w) lies on a circle about the origin in
the complex plane, with radius HW(I-e-SAﬁ)Hm, and (—e-SAﬁ)(m) lies on a
circle with the same radius about the point -1.

The magnitude of the rolled-off sensitivity, |W(1-e-SA§he)|, can be

8The following argument applies to the case where the inner factor of
the plant has a rational part, simply by taking ©. large enough.
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approximated in this frequency range as Il—e_SAﬁhel. which in turn can
be understood by considering how e_SAﬁhe deviates from the circle e_SAﬁ
about the point -1.

To continue this argument we specialize to the case of e—SAﬁ'at high
frequency for the 1 pole/1 zero weighting function case we have solved.

An approximation gives the function

(e-SAﬁ) (0) = (I—B)(sinwojlwo -
® coswg + (Bsinwg)/we - e?

for the high frequency behaviour of e_SAﬁz We see that the frequency

dependence of the phase of this function is in the term e, so that it
is periodic with period 2. For the range 0<B<1, the image of w€R loops
around the entire circle. The point is that (e_SAﬁ)°° changes in phase
by 27 radians as w increases from w, to w,+2m, whereas h6 is
approximately constant over this range if w, is sufficiently large. We
shall examine the behaviour of e_SAﬁhe for an interval of width 27 at
high frequency, and thus assume that he is constant over that interval.
Ve now assume that he rolls off steeply enough so that there is
almost no gain reduction at the frequency wiso at which he contributes
180o of phase‘shift. (This is not quite realistic — a 47 pole roll-off
is required for he to contribute 180° of phase shift with only 10% gain
reduction.) When w€[wiso, wiso+2r] the circle on which ((e_SAﬁ)mhe)(w)
lies is the circle of (e_SAﬁ)°° (which is about the point -1) rotated by

[e]
180 about the origin. This is a circle of the same radius about the

point 1. To form the corresponding sensitivities for points on this

circle we add 1, which amounts to translating the center of the circle
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to the point 2. The points on the circle are the values of the
approximate sensitivity function evaluated on w € [w,gq, wW;g0+21], and
it is clear that the # norm of this function is the radius of the
circle plus 2.

More realistically, he will not have 47 poles, and we must take into
account the contribution: of he to gain reduction while it contributes
phase shift. In Figure 7 we show the function (1—e—SA§he)(jw) over the
range [wo-T,wo+T] for the indicated values of wg, with he having 4

poles. (B = 0.1 and € = 0.001 7.) As we

Figure 7. Approximate sensitivity over various ranges.

can see from Figure 7, when he results in
(™R, ) (@) | < m1-e"S2Ru - 1,

whatever the phase shift at w the sensitivity at this frequency is not
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greater than Hl—e_SAﬁﬂm. Furthermore, there is some O for which

e-SAﬁhe will satisfy this inequality for all wzwm. Corresponding to ©,
is some angle e for which additional phase shift is not accompanied by
sensitivity increase. At high frequency, these constants are a function
of B and the number of poles in he'

When e is small, the maximum sensitivity increase over the optimal
value depends on the ordep of he and is independent of e, so letting e-0
does not yield sensitivities with il norm approaching the optimum.

This argument has been limited to the 1 pole/1 zero weighting
function case because we have used our explicit solution in this case to
show how the image of brg revolves entirely around the circle. A

detailed analysis will show in the general rational weighting function

case that e_SAﬁ'has the same "wrapping” behaviour at high frequency.

C. A proper approximation procedure that works.

1. Summary

We now describe how to construct an approximating sequence of
compensators that does produce sensitivities which approach the optimum.

The essential idea is to roll-off H in the ideal Q-parameter by
multiplying it by a stable transfer function for which the Bode
magnitude plot has slope less than 1 (such as (4.2) below), so as to
limit the phase deviation due to the roll-off, until sufficient
attenuation has been obtained. This this can be accomplished, for
example, with a lead-lag network which approximates such compensation by

having average slope magnitude less than 1.
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We note that any stable Q-parameter results in a stable closed loop
system, so that this roll-off technique preserves stability just as the

procedures for the isolated right half plane zero case do.

2. Details of the approximation

Now we assume Q is the optimal (improper) Q parameter resulting in
the optimal weighted éensitivity X = W(l—e_SAa), and that |[X| = k > 1.
We can write X(jw) = heja(w), where a(w) is real.

In the following we will make certain approximations in order to
make the argument easier to follow. One can dispense with the
approximations at the expense of additional details.

We shall assume
w > w_ where W(jw) * 1 for v > ©,- (4.1)

Using this approximation

1—e-SA6'z heja(m).

We now examine the effect of multiplying the parameter Q by the

roll-off function

1/n

hn(s) = [v/(s+7)] (4.2)

The critical feature of hn is that we can make the magnitude of arg(hn)

as small as we want by taking n sufficiently large. We examine the

magnitude squared of the approximate sensitivity,
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|1 + hn(jo) (ke?®©@)_1y|”.

Suppose O is the frequency at which the worst sensitivity occurs, and

define
h = Ihn(J'wm) l
6 = arglhn(jo_)]
and a =va(mm).

Note that h, & and a are functions of n, as is ©- However w, is finite

since the sensitivity function is 1 at ©, and § satisfies 0 <6 ¢ 2%

We henceforth assume we have taken n large enough so that
cos(6) = 1 and sin(6) = 6.

Now we show that this approximate sensitivity approaches the infimal

sensitivity as n increases.
11+ ha(jo) (ke?®(©)_1)|” g' 11 + heed®(rei®1) 2
= |1 - heed® +heefOed |2
= |1 - hecos(5) - Jh+sin(8) + hkecos(é+a) + jhkesin(6+a)|?

= [1 - hecos(8) + hk-cos(é+a)]® + [h*sin(6)hk-sin(6+a) - h-sin(6)]?
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1 - 2hcosd + h® + 2hkcos(8+a) + h?kZ -

2h2h[cos(6)cos(6+a) + sin(8)sin(6+a)]

= 1 - 2hcoséd + h® + 2hk[cos(6)cos(a)-sin(8)sin(a)] + h3kZ -

2h®kecos(a)

= 1 -2h + 2h(1-cosd) + h® + h?krZ + 2hh[cos(a) + [cos(8)-1]+cos(a) -

6esin(a) + [6-sin(6)]*sin(a) - h-cos(a)]

-2h + h?® + R%R? + 2hk[(1-h)+cos(a) - 6-sin(a)]

X1
€1 -2h + h® + h®k® + 2hR[(1-h)*|cos(a)]| + &-|sin(a)]|]
< (1-h+hk)Z + 2hk-5

[1 + h(k-1)]? + 2hk-5

< R? + 2R

< R? + 4kw/n
Thus the squared magnitude of the sensitivity of the rolled-off
compensator differs from the squared magnitude of the infimal

sensitivity by a term of the order of 1/n. (The "X" symbol can be

removed by placing conditions on how small & must be, and adding terms
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to the right hand expression of the order of 52.)

Also the roll-off can be fast after the loop gain has decreased
sufficiently: Since |h(jw)| -0 as w - © and le—SA61 is bounded, as w
increases and after |h(jw)| is sufficiently small, say

. k-1
Ih(jw)]| < =5 for w > ©

we can allow |h(jw)| to decrease arbitrarily fast without increasing the
ﬂm—norm of the resulting sensitivity.

We note that in our case of a stable plant stable roll-off of the
compensator results in a stable closed loop system since the modified
compensator corresponds to a Q-parameter which is in ﬂm. Furthermore,
the argument works with a stable finite dimensional approximation to hn.
From now on we assume hn is such an approximation. We also note that
roll-off of the parameter Q ensures a proper compensator: Let Qn = Qhn,

the rolled-off Q parameter. Then if Cn is the resulting compensator,
Qn

Cn = 1-pq," S° if Qn is proper, so is Cn since P is proper. It is

important to note that since PQn is strictly proper and Qn is stable, Cp
can have only finitely many poles. This is in contrast to C, and is

important in part 2 of section D below.

3. Computation of the proper compensator.

Our proper, but infinite dimensional compensator is given by

wx W-¥(1-PQn)

Cn =% = PW(i-Pam)

4. Realization of the Compensator Page 72



g

Hrm,

Qn hnQ
1-PQn 1-PhnQ
Recall that we are assuming W(s) = EE%" Take n(s) = s+1 and

d(s) = s+B. Let ;(s) denote f(-s). Then from (3.21)

_ n + Ae-SA d
Xsh————a~
A + e n
Using this,
= WX
Q= Sy
n-dX -
T -sA Po
e 'n
_nd-e*h) - M(n 2T
e_SAn(Ad + e_SAn) °
(nn - A%dd) -1
= -sA” '.Po
n(Ad + e “"n)
Thus
hnQ
C = —
m 1-PhnQ

h_(A%dd - nn)P-!
n o

n(Ad - e-SAn) - e_SAhn(Azdé - n;)
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o,

[l

h_(A%dd - nn)P-!

n (8]
= — ——— (4.3)
ANd + e [(l—hn)nn - A°dd]

D. A Finite Dimensional Compensator

We next discuss the requirement that maintenance of closed loop
stability and approximation of optimal sensitivity impose on rational
approximation of the delay in the feedback compensator (4.3). We see
that the restriction is that the delay must be approximated closely
enough until hn is sufficiently small (see equation (4.9)), and then the

delay approximation must not exceed 1 in magnitude.

1. Need for further approximation.

From these formulas, Cnh will in general contain a pure delay. Even
though this rolled-off compensator is physically more realistic than the
ideal compensator, it would be useful to show how to further approximate
the ideal compensator with one which is finite dimensional. Since Cn
rolls off, we could approximate it by a finite dimensional compensator
directly. We would then have to separately check that the sensitivity
is close to the optimal and that stability is preserved. An obvious
question is, can we obtain a sequence of stabilizing compensators for
which the closed loop sensitivity approaches the optimal, just by using
the above formulas with a finite dimensional approximation to the delay?

We repeat that approximation of the delay in our sense means only

that our closed loop sensitivity approximates the infimal norm of the

sensitivity.
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2. Approximation of the delay.

In the 1 pole/zero case we have solved explicitly, we have a formula
for the optimal compensator, and so we know the exact dependence on the
delay term. We now examine the effect of approximations to this delay
on the closed loop sensitivity.

We show one way to approximate the delay in the denominator of

(4.3). Note that our strictly proper but non-rational Q parameter is

2 v v
Qn = Ghn = hn-Ppt-—{2dd —nn)
n(Ad + e " n)

In approximating e_SA with a rational function, we must be concerned
with two things: First, we must preserve the stability of Qhn, and
second, we must preserve the approximation of the closed loop
sensitivity to the optimal sensitivity. The first concern amounts to
maintaining the closed loop stability.

Let us approximate the delay by replacing e-SA with the rational
function p(s). Let Qn be Qn with p(s) substituted for e_SA. and let Cn
be the resulting compensator. Let Q represent Q with p(s) substituted
for e-SA. The following discusses one procedure for selecting p(s).

Let N > © (see (4.1)) be the frequency at which the roll-off due

to hn results in both

[P(w)Cn(w)] < 1

and
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[P(0)Qn(0) | = [P(0)Qw)hn(w)]| = |P(0)X(0)C(w)hn(w)]| < IXI - 1
for

W w .

(At the end we shall also require that for w > wg hn satisfy (4.9)

below. For a given hn, this can be taken as part of the definition of

wc.)

The first condition will guarantee that (1 + Pan)-has no right half
plane zeros if Cn is "close enough” to Cn, thus ensuring stability. The
second condition will guaranteé that |1 - P(w)an(m)| < IXH, if Qn is
"close enough™ to Qn, ensuring approximation of sensitivity.

We have assumed W(w) * 1 for w > ©,. since W, > ©_. and we assume

now that

p(jw) = e 1Y for o < I

so that En(m) X Cn(w) for w < V- We shall ensure closed loop stability

with Cn by requiring

[P(@)Cn(w)| <1 for w > W, - (4.4)

’

From the Nyquist locus, we see that this guarantees stability: Since

p(jw) = e_‘i('JA until |P§n| <1 and |PCn| < 1, PCnh and PCh are

approximately equal and have the same number of encirclements of the
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point —1.9 We shall ensure that the sensitivity is not increased by

requiring

[PQn| < XNl - 1 for w > ©,-

Equation (4.4) is the same as
POn

—| <.
1-PQn

or

[PGhn| < [1 - POhn]|

Now for o > @
c

~ A% -1y
QX sy Fe

so substituting for P and Q we get

|(A2-1)e™hn| < |atp-(A2-1)e T%4n |

and finally

2 . 2_
IAA 1 hne JjowA AT-1

[ <1+ %--

Thus we can ensure stability by requiring

(4.5)

9A Nyquist argument is valid here because Cn and Cn have only finitely

many poles, in contrast to C.
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———— o=  mm - W ER

25—

hne 794 ¢ |1 + £|. (4.6)

Upon the same substitutions equation (4.5) becomes

A%-1 1 -jwA

T‘m’ Ihne JO I < ll + %l (4.7)
Let p = max(ﬁK%:Tu2). Then we satisfy both (4.6) and (4.7) by requiring
that p(jw) satisfy

2 -jwA
Rl [hne T4 ¢ |1 - 2. (4.8)

Since A > 1 and |p(jw)| < 1, the curve 1+p(jw)/N lies entirely in
the right half plane. Thus to satisfy both (4.4) and (4.5) it is

sufficient to take

. 1
Ihn(Jw)I < D for w > O, - (4.9)

To summarize we have three ranges of frequency over which our
approximation of the optimal compensator takes effect. For |m| < w the
approximating compensator is very close in magnitude and phase to the
optimal compensator. Over © < |m| < W, the compensator starts to roll
off until by ©, (4.8) is satisfied. From then on, lw] > W, . SO long as

Ip(jw)l € 1, p(jw) need not be close to e-ij.

4. Realization of the'Compensator , Page 78



CHAPTER 5

GENERAL RATIONAL WEIGHTING FUNCTIONS

In this chapter we expand the solution for the case in Chapter 3 of
a 1 pole/1 zero weighting function by allowing the weighting function to
have finitely many pole/zero pairs, so long as it is a proper stable
minimum phase rational function which is not strictly proper. We start
from equations (3.1) - (3.3), with a w(t) appropriate for this more
general case.

In this chapter we assume that the sensitivity weighting function

is given by

n
W(s) =T L (5.1)
i=

where {Ci} and {Bi} are in the left half plane, and occur in complex
conjugate pairs.

Our approach will be to realize the operators V and V* with a
system of differential equations, find appropriate boundary conditions,
and pose the eigenvalue/function problem in this framework.

If a maximal eigenvalue for T°T exists, we can find the (unique)
maximal weighted sensitivity by applying (2.9) as in Chapter 3. Since
the only cluster point for eigenvalues of T*T is the point 1 (see
Chapter 2 section F) and T*T is bounded, there will be maximum
eigenvalue of T*T if ITN > 1 or 1 itself is an eigenvalue of T*T.
Otherwise there will be no maximum eigenvalue.

In Chapter 8 we give a sufficient (and weak, practically speaking)
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condition on W(s) which will guarantee IITIl > 1, and thus the existence
of a maximal eigenvalue.

The case of no maximal eigenvalue occurred in Chapter 3 when 8 > 1.
In that case we found two functions which were minimal weighted

sensitivities, W itself and also an all-pass function obtained by

TF.
letting A - 1 in the quotient 5 where FA is an eigenfunction for T
A

corresponding to the eigenvalue A.

When we have no maximal eigenvalue in the case of this chapter, it
is easy to see that W will be a minimal weighted sensitivity when
[W(jw)| <1 for w € R. It is similarly easy to see that |W(jw)| < 1
guarantees that there is no maximal eigenvalue. We present below in
section H a conjecture which allows us to find another minimal weighted
sensitivity in this latter case.

Our goal now is to solve the problem given by equation (2.8), with
Y(s) = W(s) as in (5.1) and ¥(s) = 1. Following the development in
Chapter 3, the space K is the same, and the first difference is in
expressing the operator T. We proceed directly to computing V*V, the
time domain version of T*T.

We shall see that the eigenfunctions for V*V are linear
combinations of exponentials with frequencies being the roots of the
characteristic equation (5.13). The eigenvalues and eigenfunctions are
determined by solving (5.13) with the boundary conditions (5.19). These
are simultaneous transcendental equations. We examine the example of
the 2 pole/zero weighting function case, and we see that it appears
difficult to solve algebraically. We also compute the explicit optimal

*
sensitivity and compensator when T T has a maximal eigenvalue. The
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structure of these functions is the same as the case in Chapter 3. We
finally state a conjecture which simplifies our formulas and allows us

to find an all-pass minimal weighted sensitivity when [W(jw)| < 1.

A. Realization of V*V

1. Formulation of differential equations. Taking y = Vf and

z = V*y, we have z = V*Vf. Explicitly,

. .
y =VFf = J; w(t-T)f(T)dT for t€[0,A],

2 (5.2)

Vuys= Jﬁ w(T-t)y(7)dr.

N
]

We assume Bi # Bj for i # j. If w(t) is the inverse Laplace transform

of W(s), we can write

n
_ﬁit
w(t) = 5, + Eai°e , (5.3)
i=1
i
1 a
r -Dt : ‘ 1
or w(t) = 5t +ce b, wherec= [.|, b=|. | and
1 n
Bl 0 EEEEEY 0
D=|0 [32
ﬁn—l 0
0 o B,
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P

U=coxs +f (5.4)

Dexz - bey

D;ln-
o
N

]

T
Z=c°*xz +y

as a state space model valid on (0,A). (If Bt=ﬁj for some i and j, D
will be a more general Jordan form, and b and ¢ will change

appropriately. The following also applies with modifications in such a

case.)

2. Formulation of boundary conditions Boundary conditions are

obtained by equating derivatives in (5.2) and (5.4):

y(0) = f(0) + JZ w(t-T)f(T)dr
and

y(0) = ¢"+x1(0) + F(0)
imply
c7°x1(0) = 0.
5(0) = F(0) + w(0)F(0) and §(0) = &'+ [-Dxs(0) + b7(0) ]+ £(0) tmply

c'Dx;(0) = O

since ¢'b = w(0). In general we obtain
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-
. . t .
uey = F ey fowé"(t—r)-f(r)dr *)

j=0
and
i-1
y((e) = T M) + T wlD o) (170 gy 4 6Dy,
j=0
and so
. i-1
y(0) = £ (0) + § uwf (0)r (7179 ()
j=0
and
i-1

50 = (D) 'xi(0) + § Wl (0)r (17 () 4 £(H) 0.

i-1

Jj=0

Wi 0y (1170 ¢y

Thus cT(-D)ixi(O) = 0, and since (cT,D) is observable, we conclude that

x,(0) = O.

Similar computations allow us to conclude

xz(A) = O.

More concisely,

General Rational Weighting Functions

(5.5)

(5.6)
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with [:;ggg] = 0. (5.7)

In this form we have a standard two-point boundary value problem,
and for any f we obtain a unique solution z to (5.5)-(5.7). When we
%
impose the condition that f be an eigenfunction of V V, we expect to see

only countably many fs which provide solutions.

B. Incorporation of the eigenvalue problem

We set z = 7\2f. Then

'()\2—1)f = (c¢' ¢")-x (5.8)

replaces (5.6).
Differentiating (5.8) we get

2-1)f = (' c")x

(c' cr).([_ —DT 0],x + [—l]:]f)

_ (cf c'r) —Dr of, (5.9)
-bc’ D
(A*-1)f = (¢" )~ 'D, Ol-( 'D, Olex + [_b]-f)
-bc D ~-bc D
2
- (" e")- —DT o].. . (" ¢T)- -D 0O .[_]l:j,_f
. |-b*c D ~b-c’ D
5. General Rational Weighting Functions Page 84




)
-f (5.10
bc'D-Dbc’  D? T ['b (519

- (" cr).[ D? o ].x . (' cT).[ -D 01.
-bc D

Remark: In the 1 pole/zero weighting function case this agrees with

(3.8)-(3.9) with

D =p, c

1 and b = 1-8.

C. Solution of the two point boundary value problem.

In the following, we shall want to take Laplace transforms in
(5.5)-(5.8). However, since these equations are defined only on the
interval (0,A), we cannot without extending the equations to (0,»).

We can take the equations (5.5)-(5.8) to be defined on [0,»), and
we can solve the resulting eigenvalue/function problem. We would like
to use this solution to obtain the solution to the problem on [0.A]. It
is obvious that every solution on [0,®) induces a solution on [0.A], but
we do not know a priori that every solution on [0,A] can be obtained in
this way. We will show this to be the case, and then we can take
Laplace transforms.

Suppose f is solution to the problem on [0.A]., with eigenvalue

A% # 1. Then (5.8) gives f = (cT cT)~x. Substituting this into

(5.5) we get

x= | Ok [_:]- L.(e™ ¢")ox. (5.11)
. |-bc’ D A%-1
Since f is a solution on [0,A], there is some x(0) corresponding to this
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solution. Let x(t) on [0,®) be the solution to (5.11) with initial

condition x(0). Then we simply take f(t) on [0,®) to be given by

f = 21 -(c' cT)ox. This f is the desired extension, and Laplaéé
A°-1

transforms of f and x on [0,®) exist because the components of x are
finite sums of polynomials times exponentials.

Now we consider (5.5) on [0,») and take Laplace transforms. We

have S°; - ;(O) = -DT 0 °; + [_b]°;.
-b°c’ D

and so

o [ (7 0]

Taking Laplace transforms in (5.8) and using this we get

(*-1)F = (e e")e(sT - [b“’, ]‘;])‘1-[[_‘;]-? + X0)].
-b-c

Some calculations give us

(si-[ D 0])1_[stp 077 _ (s1+D)7} 0
b-c" D] | be" sI-D|  |-(s1-D) TbeT(s1+p)" ! (sI-p) !

and
-1
T (sI+D) o |.[v
(e e) [-(sr-n)‘lbc'(spn)‘l (sI-D)_l:l [‘b]

= ¢"(s1+D) b - ¢"(s1-D) 'be"(s1+D) b - ¢"(sI-D) b

5. General Rational Weighting Functions Page 86



= Wo(s) + Wo(-s)Wo(s) + Wo(-s)

W(s)W(-s) - 1

where we note W(-s)

2(w(-t)). Then

P Exz - W(—s)W(s)]-i(cT c)(sI - [ D 0])-1;:(0) (5.12)
-bc D

The right hand side of this equation has for its poles the solutions of

A% - W(-s)W(s) = O (5.13)

since the denominators of the entries of (sI - [

-D 0f,-1
~bec’ D

) ~ are factors

of the denominator of the left hand side of (5.13).

Rather than find x(0) in order to find F. in general it will be
more direct to write F as a partial fraction expansion with undetermined
coefficients and poles being the solutions of (5.13), and solve for the
coefficients in the time domain using the boundary conditions. Note
that (5.13) is really an nth order polynomial equation in s2.

Remark: 1In the 1 pole/zero case (5.13) gives us (3.11).

Example. In the 2 pole/zero case, if we let the zeros be -, and

-{2 and the poles be -B,; and -f,, and we assume they are real, we get
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a2 _ (S0 (s+02) . (s=Cy) (s=C
0= N = (s6:) (s+P2) (s P (B

Therefore

o
]

A%(s®-B7)(s%-B3) - (s>-C3)(s3-(3).

(A*-1)s* + [C3+03-N*(BT+B3)]s> + A3B3BT - C3C2 (5.14)

(If B,

B> and (, = C>. the same formula holds.)

The solutions of (5.14) are given by

? = C[CH+ 03N (53+80) ] ¢

2(A%-1)

7]
|

[[C3+C3-N7(BT4B2)1° - 4+ (A*-1)-(NB3pT - C305)]>

2,02, 02 2. .2 2,02 n2 2 2.2 2,02 F2 2 .2y |1/2
N D) ¢ [N(BE-AR-(CIEDT + 2 (0-0T) (303 |
2(A%-1)

Let {SA i} be the set of solutions to (5.11). The possible
eigenfunctions fj must satisfy the boundary conditions (5.7). This

requirement implicitly determines what values for A are possible.

D. A computational form of the boundary conditions.

We now consider the transformation of the boundary conditions (5.7)

to constraints on f. From (5.8)
1"
(A-1)f = [c] x.
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Define

[

oo
”~~
g
+

[ orommmmn |

oo
~h
A
[

o9,

..

g

(A%-1)f

Al

(WP-1)F = 5] Alhx + [—:]f) = [E]TAZ" + (200(0)-w0(0)?) -

,

) T
020 = [ e (3]0 + 2ot wo0r?)-7

C

-

- T
- z] Ax + (20(0)-wo(0)3)F

-

In general we have

az-1r(H) < [:]TAix +i§ [z]TAj [_:]f(i'j‘l).
j=1

T,
although [z] A/ [_:] = 0 for j even.

Using this formulation we can write

where
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e

> ]

Feif

§ F

L;(zn—”d
( AZ-1 0 0 0 0]
0 A%-1 0 0 0
- [2] " [_b] 0 A%-1 0 0
M- 0 —[z] TA[_:] 0 A2-1 0
Gel oo AR o 0
T T

I B R 0

and

We note that by minimality of our state space realizations for the
convolution operator and its adjoint, N is always invertible. Thus we
have N™'MF(t) = x(t). Using the boundary conditions and partitioning

N as N°*' = [8:::;;] we have
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- (N"*),MF(0) = O and (N"*),Mf(A) = O.
If the submatrices are themselves invertible, a somewhat simpler ~
o computation is to partition Mand N as M = [:‘] and N = [N“ g‘z]. Then
2 21 22
le N11 .
o we get MF(0) = N x,(0) and Mf(A) = N x,(A). These give
22 21

| [M-N,,N3M,]F(0) = O
. and

[Hé‘Né1NI}H1]f(A) = 0.

Remark. In the 1 pole/zero case this becomes

2—
- A°-1 0 f |11 x,

0 A%-1]|f -1 B

1 [B -1]A%-1 o JF
. B+I[1 1| o AZ1]|f] =%
- AZ-1 B -1{|f
_ B+l 1 1](f]| = >
Since the boundary conditions are x1(0) = 0 and x,(A) = O, this implies
— f(0)
[ﬁ -1] F(o) =0

»; and
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f(4)
[1 1] [F(A)] = 0.

Assuming k # O and, f(t) = aieht + aze_ht, this gives

Fe)] N[ 1 0 [y
[i’(t)] = [h -k | (O e—ht a, |’

Applying this, we find

B-R B+k ay
= 0.
-(h+1)ehA (k.—l)e—k'A a,

Therefore
B-k Bk
det( ) =0,
~(r+1)e®™  (r-1)eRA

and

(R+B) (k+1)e"d = (r-B)(k-1)e RA,
We write this in a more tractable form as

(R2+kB+k+B)e™d = (k2-kp-Rep)e A,
or

(R2+B) (- "8y = r(pr1)(fhreY).

We know kR is either real or imaginary. If kR is real this becomes
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(kR®+B)sinh(kA) = -k(B+1)cosh(kA).
If R is imaginary we have B
(R®+B)sin(kRA) = —k(P+1)cos(kA).

The only real solution is k = O, but this is ruled out. For k imaginary
this agrees with (3.17), and there are infinitely many imaginary
solutions.

Example. We continue the solution of the 2 pole/zero (distinct
poles) case. Now we use the coefficients in the partial fraction
expansion of W, {ai} (see (5.4)), instead of the zeros of the weighting

function {fi} which appear in (5.14).

A%-1 0 0 0

N = 0 A%-1 0 0

wo (0) 22w, (0) 0. A*-1 0

0 wo (0)*-2w, (0) 0 A%-1

and
1 ‘ 1 1 1
N —B1—a2—a1 "Bz‘az'ai B Bz
- B%+a2ﬁ1‘azﬁz ﬁ§+a1l32'¢11ﬁ1 Bf 3|

PP~ BI+asBoB: -3 -P3-a.BE-asBi+a,BiPr-a B B P2

using the notation above.

2
s.t -s.t
Let f(t) = 2 (aie Yoy bie t ). where {isi) are the solutions of

i=1
A% = W(s)W(-s). Then
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F(t) 1 1 1 17 [Stt

e 0 0 0 a,
F(t) _ |st sz =-s1i -s2| |O eS2t 0 0 as
f(t) T sz sz s s3] o o eStt 0 b,
£ () si s3 -s? -s3| |o 0 0] e 52t b,

Detailed calculations (which appear in the appendix to this chapter)
show that f satisfies the boundary conditions x;(0) = 0 and x,(A) = 0 if
and only if

det[ t; ] = 0. (5.15)

where

L, = [}wo(O)z_Zﬁo(o))I - (Rz—l)Ki (Kz-l)I] S1 Sz -S;i -Sa3

Sf Sg S1 S2
s§ s3 -s? -s3
and
L, = [(w°(0)2—260(0))1 - (A%-1)K, (Az—l)I]-
1 1 1 1750 o 0
S1 S2 -S1 -S> 0 eSZA 0 0
S% S2 S1 Sg 0 (0} e_SiA 0
si s2 -s? -s2 |o 0 0 oS24

The simultaneous solution of (5.15) and (5.14) determine the
eigenfunctions for this problem. This procedure can be extended to the

general n pole/zero case, and may be useful for numerical computations.
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E. General form of the eigenfunctions of T*T.

The previous analysis shows one way of calculating the eiéenvalues
and eigenvectors of T*T.“ We are next interested in finding the explicit
infimal sensitivity and corresponding compensator, so we examine the
general form of the eigenfunctions of T*T.

We next show that the numerator polynomials of eigenfunctions will
be a multiples of the denominator of W(s). as in the case of 1 pole/l
zero weighting function. The interpretation of this is that then the
image under T will have no "transient" part. In other words, we think
of T as a linear system acting on the input, the eigenfunction f € K.
Since the system is causal, we can ignore the fact that the output
terminates after time A, and just think of inputs and outputs as being
exponentials. As such the output will consist of the "steady-state"”
response at the exponential frequency of the input, and the "transient"
part at the exponential frequency of the convolution kernel 2'1(W). The
motivation for thinking of it this way is that the eigenfunction
condition for T*T requires that any transient response be annihilated by
T*. thus wasting energy from the input that could have been used to
result in a bigger output magnitude. The result applies to all
eigenfunctions, not just the maximal one, since T* actually cannot
annihilate a transient from T.

We know that an eigenfunction for the eigenvalue A% is of the form

F(s) = 2[[u(t)—u(t-A)]f(t)]. with
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f(t) =

i

—sit Sit
[a.e + b.e ]
1 1

1

N 5N S

where {isi} is the set of solutions to the characteristic equation
A% = W(s)W(-s). (We assume for simplicity that the solutions are

distinct.) Let

n
2(F(t)) = )

_ a(s)
A%d(s)d(-s)-n(s)n(-s)

(this defines a(s)) where W(s) = 3%2%. Now

n
=s.A -s_(t-A) s.A s (t-4)
s i i i
f(t) = 2 [ .e e + bie e ]
i=1
= g(t-A).
where
n -siA —sit SiA sit
g(t) =§ [a..e e + bie e ]
i=1

Note that £(g(t)) has the same denominator, de(s)d(—s)-n(s)n(—s). as
€(f(t)). Thus

F(s) = 2(F(t)) - e SA¢(g(t))
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a(s) - e_SAb(s) .
A%d(s)d(-s)-n(s)n(-s)

Where b(s) is the numerator polynomial of €(g(t)). Letting x(s) be the

polynomial defined by

-sA
¢u(t-8) (w(t)*F ()] = e % x(s) |
[A%d(s)d(~s)-n(s)n(-5)1a(s)

we find that

TF = a(s)n(s) - e-SAx(s)
[A*d(s)d(-s)-n(s)n(-s)]d(s)

since

2(w(£)¥F () = — als)n(s)
[A°d(s)d(-s)-n(s)n(-s)1d(s)

Let f(t) = f(-t), and let SA be the time shift operator
SA[f(t)] = f(t-A). From the expression for V. in (5.3) we see that
V*y = SA(VSAy) . Let Y =y. We can write T 'Y = e_SA[Te-SA§]V.

Applying this to the equation for TF above we get

AF = T°TF = e S2[Te 4 (1F) 1"
- e—sA[Te—sA a(-s)n(-s) - eSAx(—s) 17
[A%d(-s)d(s) - n(-s)n(s)]d(-s)
- e—sA[T cJ.(—s)n(—s)e_SA - x(-s) v

[A%d(-s)d(s) - n(-s)n(s)1d(-s)
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sA

-sA 1—e_SAuP1(s) a(-s)n(-s)e " - x(-s) ] v
= I aer : ]
[(A"d(-s)d(s) - n(-s)n(s)Id(-s)
- e—sA[ -x(-s)n(s) + z(s)e_SA v

]
[A*d(-s)d(s) - n(-s)n(s)]d(-s)d(s)

—e—SAx(s)n(—s) + z(-s)

[A*d(-s)d(s) - n(-s)n(s)]d(-s)d(s)

for some polynomial z(s). Comparing this with F(s) above, we conclude
that A®b(s) = g%i%g%;g%. Since b(s) and x(s) are polynomials, d(s)d(—s)
divides x(s) and n(-s) divides b(s). Since d(s) divides x(s) and the
support of £ *(TF) is restricted to (0.4). we must have that d(s)
divides a(s). Putting these relationships together, for some

polynomials c(s), e(s) and r(s) we can write
a(s) = c(s)d(s),

x(s) = e(s)d(s)d(-s)
and b(s) = r(s)n(-s).

These conditions apply for all eigenfunctions.

F. Nature of the optimal sensitivity.

The case in which T does not have a maximal eigenvalue is discussed
below in section H. In the following we assume that T has a maximal
vector. We now use this assumption to apply the formula of Sarason

given in (2.9) to determine the optimal sensitivity.
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Given the assumption that F is a maximal vector, we know from
[Sarason 1967, Prop. 5.1] that X(s) = A*p(s), where ¢(s) is inner.

Using the formula for ¢ in (2.9) and the above notation we have

‘P(S) = A"t a(s)n(s) = e—SAx(s)
[a(s) - e S8b(s)7d(s)

_ s-r.e(s)d(s)n(s) - e SAe(s)d(s)d(-s)
[e(s)d(s) = e *4r(s)n(-s)Ta(s)

= amt.glsdn(s) = eTSte(s)d(s)
c(s)d(s) - e_SAr(s)n(—s)

(5.21)

Now we argue (following [Sarason 1967, p. 194]) that ¢(s) is a Blaschke
product: Since ¢(s) is continuous on the imaginary axis, the only
singular inner functions that can divide it are of the form e °% with
a>0. But esa¢(s) is unbounded on the positive real axis, so ¢ is purely
a Blaschke product.

G. The optimal compensator

A simple computation using (5.21) then gives us the optimal

compensator:
W-X
C="5x

_ n(s)[a(s)d(s) - e *4b(s)d(s)] - d(s)la(s)n(s) - o Bu(s)]
e_SAPiPoB'id(s)[a(s)n(s) - e_SAy(s)]
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- —n{-s)n(s)r(s) + e(s)d(s)d(-s)
P,P B '[c(s)d(s)n(s) - e S4e(s)d(s)d(-s)

= PT!.P -1B.ﬂ5)d(s)d(‘s) - r(S)n(S)n(‘S) 1 (522)
Lo c(s)d(s)n(s) 1 - e—sA'egs[dg—s!
. c(s)n(s)

This has the same structure as the 1 pole/1 zero weighting function
case.

Remarks: 1) Since X is an infinite Blaschke product, C = %(;-— 1)
is necessarily unstable. 2) If P is strictly proper, C will be

improper.

H. Conjecture on Weighted Sensitivity Formula.

We would like to conclude from the fact that ¢(s) in (5.21) is a
Blaschke product that the zeros of the numerator are reflections across
the imaginary axis of the zeros of the denominator. However, because of
the possibility of cancellations, we are unable to do so.

If we now conjecture’that there are no common zeros of the
numerator and denominator of (5.21), the fact that this is a Blaschke

product implies that

A [e(-S)n(-5) - eBe(-5)a() ]
and

c(s)d(s) - e-SAr(s)n(-s)

have the same zeros, which are in the left half plane. Since all the
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various polynomials above have conjugate symmetry of their zeros,

[c(-s)] = c(-s). etc., we conclude that
A '[c(-s)n(-s) - e(—s)d(s)eSA] and c(s)d(s) - e_SAr(s)n(—s)

have the same zeros and magnitude on the imaginary axis. Therefore so
do

A [c(-s)n(-s)e S} - e(-s)d(s)] and c(s)d(s) - e SAr(s)n(-s)

The reciprocals of these last two expressions are in ﬁm, have the same
magnitude on the imaginary axis, and have the same poles and zeros.
Therefore they can only differ by a singular inner factor. But they are
continuous on the imaginary axis, and have no common factof of the form
e °% for a > 0, so théy have no singular inner factor. Thus they are

equal, and we conclude that

N tc(s)n(s) = r(-s)n(s)
and

A le(s)d(-s) = c(-s)d(-s).
Therefore c(s) = Ar(-s) = A"'e(-s), and (5.21) becomes

n(s) - Ae-SAd(—s).
Ad(s) - e_SAn(—s)

¢o(s) = (5.23)

sA

Notice this implies that TF = Ae E, or (VF)(t) = A+f(A - t) on
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(0.4). This appears to be the same as a conjecture made by George

Zames10

, that the image under V of an eigenfunction of V*V must be the
eigenfunction reversed in time, except for scaling.

Also, this agrees with the 1 pole/1 zero weighting function case of
Chapter 3.

Under the conjecture then, in the case of stable plant with no

right half plane zeros (the details for more general cases have not yet

been completely worked out), we have from (5.22)

X(s) = A-n(8) = re d(-s)
A(s) - e An(-s)

(5.24)

and we get for the optimal compensator:

AV

_ n(dd-e"4n)A(n-ne™S4d)a

re 44 (n-reS4d)P,

_ A%dd - nn

Ad(n—Ae_SAé)

Pg!

_ pgt.2dd - nn 1
= and

1 - Ae_SA°i
n

10Conversation with Prof. George Zames, November 1985.
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This has the same structure as the 1 pole/1 zero weighting function

case.

Remark: As in Chapter 3, A=1 in (5.24) gives an inner fuﬁction which
interpolates W on K when W, = 1. This gives a second solution (X(s) =
W(s) is the other) for this case. In the general case of no maximal

eigenvalue we do not yet know whether this procedure works.
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CHAPTER 5 Appendix

Conditions for Solution of Boundary Value Problem

The following calculations derive the conditions (5.15) for the
solution of the boundary value problem in the example.

Using x,(0) = 0 and x,(A) = O we get
(A*-1) ], = x(0),
f(0) 1 Bz

2 . [ B> -1][F(0)
2 _é [ ][. ] i xZ(O)

2 P ‘ﬁ1 1 f(O)
[wo(O)z—zzLo(O) 0 A%-1 o] f(0)

0 wo (0)3-2wg (0) 0 A%-1]|s

[if p3 A1 | B= -1][F(O)
2 gz PP |5, 1][F(0)

A2-1 EiBZ(Bi_ﬁZ) B%-ﬁf} [f(O)]
Ba=Bi|p,p,(82-82) B2-82||F(0)

2 [‘ﬁ152 B2+p1 :| |:f(0):|
= (A°-1) .
~B1B2(B1+Bz)  B3+P1P2+Pi] |f(0)
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| [f ?(0) ] [ =B1B2 B1+B2 ][f(O)Jﬁ
(A2-1) = (A*-1) 2|1
€23 (0) -B.B2(B1+Bz) B3+B1B=+B1) IF (0)

. F(0)
-(wo(O)z—zwo(O))[. ]

f(0)
Taking
[ —B1B2 B1i+B2 ]
K, =
 BuBa(BitB2)  BE+PiBa+BE
we have
f(0)
[(wo(O)z—zzLo(O))I—(7\2—1)K1 (7\2—1)1] £(0) -0 (5.20)
f(0) ~
€22 (0)
F(4) 1 1
(\*-1) |, = x;(4)
f(4) -Bi—a;-a; -Br-ax-a,
“Bz-az-a, -1 f(4)
(-1, . = x,(4)
Bi-B2 | Bitay+a, 1 f(4)
f(A)
[wo(O)z-zuBo(O) o A*-1 0 f(4)
0 wo(0)>-2wg (0) 0 A%-1 F()
£ (4)
[ Bi+aBi-a,B> B§+a1ﬁz‘a1ﬁ1 -,
‘ﬁ?_azﬁf_a13f+azﬁzﬁ1—azﬁg ‘33'01ﬁg"a2ﬁ§+a1ﬁiﬁz—a1ﬁ%_

| ~Po-az-a, -1 [F(A)
(1), .
Byi-B> Bitasta, 1 ][f(4)
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P

Taking

[—(a1+a2+ﬁi+ﬁz)(a1+a2)—(a1B1+a262—B152)
Kz = (as+az+B1+B5) (B1B2+Baz+B2ay)

we have

-(as+ar+B+B5)

(B1+B2)2+Ba(as—By)+asBy |

F(4)

[(w0(0)2-2&0(0))1 - (A%-1)K, (x2-1)1] F) | 2o - (5.21)

F(4)
ftal(A)

2 s.t -s.t

Now we note that if f(t) = 2 (aie Yos bie t ). where {isi} are

i=1

the solutions of A% = W(s)W(-s).

F(t)
f(t)
F(t)

f(a)(t)

1 1 1 170 o 0 a,
_ |5t sz -si1 -sz2f |O 52t o 0] as
s s3 s s3] |o 0 e Stt o b,
st s3 -sf -s3] [0 o0 o e 52t |p,

Then (5.20) and (5.21) become

11 1 17 [a

[(wo(O)z-zzBo(om - (AZ-1)K, (AZ-I)I] 12 TS TSR 1920 20 (5.22)

and

5. Appendix:

s s3 s? s3| |b,
s? s3 -s§ -s3| |b,
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[(wo(O)z-zzBo(O))I - (-1)Ks (Az—l)x]o

11 1 1740 o 0 a,
s1 sz -s1 -sz2| |0 eS24 o 0 azl _ o
st s3 s? s3| |0 0 e Sth g b,
s? s3 -s? -s3| |0 0 oS24 bs

(5.23)

Taking

Ly = [(wo(0)2-217>o(0))1- (A%-1)K, (>\2-1)1] S1 Sz TS1 7Sz

s? sz s? s3
S:i’ Sg —S? -Sg
and
L, = [(wo(of—zi'o(om - (AP-1)K, (7\2—1)1]-
1 1 1 1]7[S%0 o 0
S1 S2 -S1 -S3 0 eSZAO 0
s? s3 s2 sZ| |o 0 o St 0
s7 s3 -s? -s3| o 0 0 e—SzA

There exists an a = [a, a, b, bz]T which satisfies (5.22) and (5.23) if

and only if
det[IL" ] = 0. (5.25)
> .
This is the same as (5.15).
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CHAPTER 6

' SOLUTION WITH RHP ZEROS

In earlier chapters we presented the solution of the problem of
minimizing the weighted sensitivity function by feedback, when the plant
is stable and has no right half plane zeros. In the next two chapters
we eliminate the restrictions on right half plane zeros and stability,
one at a time.

We carry these solutions only to the point of solving the
eigenvalue/eigenvector problem. The explicit computation of sensitivity
and compensator for these cases is left to future work.

The analysis in Chapter 8 regarding conditions for the existence of
maximal eigenvalues of T*T applies equally well in these cases. The
same holds for the realization analysis in Chapter 4.

We now consider the problem

. -sA
inf W - e *y-HIl |

He#
n s-bi -
withy = 1T >+ Where Re(bi)>0.
i=1 S+bi

The idea of our extension of the results in Chapter 3 is as follows.

The subspace of #2 given by K = #% © e-SAwﬂz can be decomposed into a

sA

direct sum K = K, ® K,, where K; is due to the inner function e -~ and

K> is due to the inner function y. As in Chapter 2, K is the space on

which the operator T induced by the weighting function W acts. Using
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this decomposition T has a triangular form when written as an operator
matrix, as does the time domain version V.

We then proceed to explicitly compute the form of V*V. and separate
V*V into a direct sum of operators corresponding to the decomposition of
K. Since K; is finite dimensional, the part of V*V that acts on K, is
finite dimensional, as is the part of V*V that acts on K; but gets
factored through K.

Expressing the eigenvalue/eigenfunction conditions for V*V
separately on ¢ '(K,) and on £ *(K,), we get one equation on each of the
subspaces, linked by 2n coupling coefficients when there are n right
half plane zeros. Choosing a basis for expressing the coupling, the
eigenvalue equation on ¥ *(K,) gives n independent linear relations for
the coupling terms, which then allow us to eliminate that equation by
substitution into the other. We are ieft with a single equation
expressing the eigenvalue condition, which looks like the case in
Chapter 3 except for the addition of a linear combination of n functions
(which form a basis for V*Kz) whose coefficients depend explicitly on
the eigenvalues and the singular values of the restriction of V to K.

We next assume that the weighting function has one pole/zero pair,
and we derive a differential equation for the eigenfunctions. We
finally explicitly compute the boundary conditions and derive an
algebraic equation, the solutions of which give the eigenvalues as in
Chapter 3. At this point the determination of the.infimal closed "1loop
sensitivityuana corresponding ideal compensatof proceeds exactly as in

Chapter 3, and the analysis in Chapfer 4 also applies directly.
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A. Calculation of K.
Proceeding in Chapter 3, the first step is to find K = (e_SA-w°ﬂ2)l.

The results in Chapter 3 for ¢ = 1 show that K, = $(L%(0,4)) C K, and it

: » n s-b,
is known [Francis-Zames 1984, p. 11] from the case ¢y = I _} that
i=1 s+b,
i
Ks = <2—, t=1,...n> C K.
S+bi

We show that K = K,+K3. From the above, it is obvious that
K 2 K,+K3. To see that K C K,+K5, suppose k € K, and let k be the
inverse Laplace transform of E. Split k into a sum k = R;+k,, where Rk,
has support on [0,A] and k, has support on (A,®»). Obviously Ei € K,,
and we need only check that ﬁz L y#® implies that ﬁz € K,+K3. But since
ks is zero on [0,A], the orthogonality condition requires that

SA ~ n s—b{ 1
e *kRy, € { I — ﬂz} , and the case in [Francis-Zames 1984] gives us
i=1 s+b, ,
i

the desired result.

We take

Ks = (< m— i=1,...n>,

for then K = K; ® K>.

B. Computation of V'V.

The # function W(s) is an operator on #°, and our next step is to
find the norm of the compression of W to K. We call this compression T,
T = HKWIK. The idea is to find the norm (in the case in which T°T has a

largest eigenvalue) by finding the‘eigenvalues of T*T, and then picking
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- %
the largest one. To this end, we compute T and T'. As in Chapter 3, it
e
will we will ultimately find it convenient to compute T T in the time
, 3
domain version V V.

We can represent T as an operator matrix acting on the direct sum

T, Tz, T, O
decomposition of K given in %A above: T = = , Wwhere
Tz To Tyz To |

T,y = O by causality of T. To be more explicit we define the operators

on K
Ti: K— Ky ¢ F 1, [W(T, F)]
K, K,
Ti2: K— Ky : F —>1, [W(I, F)]
K> K,
T2: K— K2 : F — T, [W(TT, F)].
K2 K>

In preparation for computing T*T, we note that K, is finite
dimensional, so that we can split T*T into three parts —- the infinite
dimensional operator TTTi and the finite dimensional operators (TT2T12 +
TTsz) and (T:T12 + T§T2)-

We compute the singular value decomposition of T,. Let {Gi'
i=1,...,n} and {Li' i= 1,...,n} be the orthonormal bases for the domain
and range of T, in the singular value decomposition, and let {o,,

Un} be the corresponding singular values. We note further that

-sA
sp(Gi, i=1,...n) = sp(Li. i=1,...,n) = sp(e —, i=1,...n),
s+b,
i
and that )
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Define P(s) =

n

oL, =T,G. = z WG, .G.>+G..
i LA M

11
j=1

Suppose F € K. We write F = Fy + F2, with F,€ K; and F2 € Ka.

l_e—sA

n

M (X) = ) X.G>G, = ) <X.L>L,.

i=1

Thus

TF

6.

= I WF

= T,\Fy + T,2F, + ToF,

n

= Px(W-(PxF)) + E CWe(P<F).L>°L, +

i=1

n

= Px(W:(PxF)) + ) CWe (P%F) L, >-L, + Eai<F.Gi>°Li.

i=1

so that HKI(X) =P % X. We note that

n

i=1

I N3

2

n

i=1

Now we can rewrite the operators on K

Ti: K — Ky : F > PX[W+ (P¥F)]

Tis: K— Ky : F §<W-(P*F),Li>-Li

Solution with Right Half Plane Zeros

n

i=1

n
He( ) F.GpeC )L >,
1 Jj=1
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n
T2: K—Ke i F i 2 0, <F.GL, .
i=1

Then we want to explicitly compute

T*T = TTT1 + T?zTiz + szTz + T:T12'+ T§T2.

In order to do this we must write down the operators TT, TTz and Tz.
Ve let Vi be the operator acting on LZ(O.N) corresponding to the
operator Ti above. Then taking p = Q-I(P) = u(t)-u(t-4), g9; = Q_I(Gi),

e, = ¢ (L) and w = ¢ (W), and defining w(t) = w(-t).

We see in the appendix to this chapter that we can write

n
* * ~ ~
VVE = ViV, F + 2 8, (<F.8> + 0,<F.g,>) on [0,4]
i=1
and
n
VVF = 2 0.9, (KF.2.> + 0.<F.g.>) on (A,®)
i 9\ ey i 9y )
i=1
~ ~ *
where ei = p-(w*ei) = vizei.

C. Application of Eigenvalue Condition

n
Taking f = fy ® f,, where f, has support on [0,A] and f, = 2 a.g;.
i=1
we now set V*Vf = A%f. Note that (f,gi> =a,. Thus
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n
* ~ L~
Ny = VIViF, + ) 8,(<F1.8> + 0,-a) on [0.4]
- i=1

and

n
A2 z a.g; = z ai°gi(<fi,8i> + ai°ai) on (A,»).
=1 i=1

Since the g, are linearly independent, we must have

kzai = ai°(<f1.ei> + at°ai) for each i. Our eigenvalue/eigenfunction

problem has become

n
2 _ * ~ ~ .
A2F, = VIV, F, + 2 £, (<Fi.2)> + 0, -a)
i=1
for t€[0,A] subject to
G <F 2>
{;. = =t i=1, ..., n}. (6.1)
i A2_g2 -

Thus the problem is

. " n A2<f1,e >
A°fy = ViVif, + z T —

D. Derivation of differential equations.

At this point it is evident that we need to invert the operator
(Az—vai), which we do by writing the operator equation as a set of
differential equations. We work out all the details-for the case
W(s) = ::;. and at the end we obta1n equation (6 15) as the

eigenvalue-determining equation. This is the extension of equation

(3.17) to the case of right half plane zeros in the plant.
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o

Let
y = Vif,
and

n 2 ~
[ ~ x <f1 vei>
z =V,y + z ei—,

, A2-o2

i=1 i

where the support of the functions in these equations is restricted to

[0.A]. We can write

y = wxf,
and
. TN, 8D
z = wey + ei
A2—g2
i=1 i

In order to illustrate the technique for realization of these

equations and solution of the eigenvalue problem we assume

W(s) = %,

and therefore

w(t) = 8, + wo(t) = 5, + (1-B)e PL.

Remark: The case of general (ration, stable and minimum phase) W(s) is

covered by the direct extension of the methods of Chapter 5.

LY
Thus we can obtain V Vf as the solution z to

g—tx:l = =fex; + (1-B)-f,
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y=x1+f1
d L ]
dt Xz = [exp - (l'ﬁ) y
A2<f1.e >
N
i=1 i
More concisely,
. ‘B 1-8].
A2<fi,e >
z=(1 1)ex+ f; + 28—.

i=1 A? -ai

Boundary conditions are given by y(0) = f(0) and

A2<f,.e >
2(4) = y(4) + } 2 ()——+
AZ-g?
i=1 i
or x1(0) = x2(4) =

Now setting z = A%f, in (6.3), we obtain

(A-1)F, = (1 1)-x + 2 e

i=1

A%-o2
1

6. Solution with Right Half Plane Zeros
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o

Differentiating and substituting (6.2),

s s ' E s A% <f1,£ >
(A*-1)f, = (1 1)([ ]x+[ ]-f)+ e-—
(1-8) B Pg?
i=1 i
A2<f1,e >
= (-1 B)-x+ Ee—.
AZ-o?
i=1 i
Differentiating and substituting (6.2) again,
. 7\2<f1.8 >
0*-DF = 1 o[y o]+ [5E] 00 + }e
i=1 -GL
) . g 7\2<f1.8 >
= B3(1 1)+x + (B-1)f, + 2 g — 1
Now substituting for (1 1)-x using (6.4),
n 2 2 I’
. A <f1,e > 2 AN°<Fy .80
(WP-D)F; = B2 ((V-1)f, - ) 8,———5) + (B%-1)F + } o—
- A%-o?
i=1 ‘L i=1 i
n x2<f1, oe > 2\: ~
= (BPA*-1)-f, + z (2, - B%2) (6.5)
To simplify, we calculate Zi. as follows.
7 t <0
ei =0 {t > A
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]

~

ei = p° (w*ei)
Since ei € K,, we can write

-bi(t-A)
7 5® u(t-4),
1

ei(t) =

||.M;’

J

(where this equation defines {ﬂij}) and therefore

v -b(7-A
[u(t)-u(t-A)] ) 7iij [G(T_t)+(1-ﬁ)e—ﬁ(7—t)u(T—t)]e it )u(T-A)dT

Jj=1

n b _(T-A
= [u(t)-u(t-4)] ) vi.Jw (1-)e Py (r-t)e it )u(T—A)dT
jop mex(e.d) |
n Crfe_ey =b.(T-A)
= (1-B) Z 1ijJ:e Blr-t)g "J° 4r for 0 < t < A

Jj=1

dr

n
(b.A+Bt) = —(b +B)T
(1-B) z U J Jme J

Jj=1 A

n
(b A+Bt) | _ -(b +B)T
(1-B) 2 1ije J ET%E*e J
j=1 J

T=A
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P

n
B(t-a) ¥ Tij
) = (l-B)e E b +3
=17

(6.6)

We see at this point that & = B?2, and we conclude from (6.5) that

f1(t) = cos(wt+y),

where

and

The

6.

2y2_
_mz=m or \2 =

A3-1

Boundary conditions come from

2

W +p

w2+l

2.

n
1 1 ~
F10) = ——xa(0) + —— } 2,(0) ——
i=1 i
n 2
L AKF.L e
1
Fo(0) = —Ey(0) + ) 2,.(0)
AZ-1 . A%-g?
i=1 i
] . g ~  AKF,, 2>
fi(d) = ——=x,(A) + * 2.(4)
A2-1 A*-1 0 t A2-g2
= 1
I ) P A, e
Fa(8) = =t (4) + =—— 3 2 (8)
-1 A%-1 0 kz—ai
se imply
Solution with Right Half Plane Zeros
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s

DA%, 8> o o

) ———t2,(0)-p2,(0)). (6.8)

F1(0) = B+F(0) + —
A1, A°-0o;
i=1 i

and

DONCFLLED L

) (2, (4)+2,(4)). (6.9)
1

=1

Fi(A) = -F(8) +

1 i
A%-1 A%-g?
i i

The solutions to the equation (6.5), subject to the boundary

conditions (6.8) and (6.9), determine the eigenvalues and eigenfunctions

of VV.

E. Simplification of boundary conditions.

Next we see from (6.8) that

n
7.00) = (1-p)ePd S Li
7,0) = -pe ™) 5=
j=11
. n
" A
2,(0) = (1-p)pe P ) LI,
j=1
~ n Y.
&,(4) = (1-p) ) 5ok,
j=11
and
. n
2.(4) = (1-p)B §
i b +3
j=1

So the boundary conditions from (6.7)and (6.8) amount to
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R

2 n
F1(0) = BeF1(0) + 2 e >[(1‘5)Be - E 2 sip-me ™ § 4
i=1 L J—l j=1 J
= B+f1(0) (6.10)
and
. ?\2<f1,8 > =,
Fi(A) = ~f,(4) + z [(1—[3) z + (1-B)B 2 ﬁ]

i=1 j=1 b5t j=1 17

nF > o '
1% ij
= -F1(A) + (VP52 ) )5+ (6.11)
i=1" 9y j=1 7

F. Determination of eigenvalues.
Using (6.10), we see

-w*sin(¢) = Brcos(y) (6.12)
and from (6.11)

<f1.8 >

~w sin(wA+p) = —cos(wh+p) + (02+B%)A2 2 z b (6.13)
AZ-g? B
=1 i J—l
Expanding sin and cos and using (6.12), (6.13) becomes
———:2——r-w°sin(wA) - Brcos(wA ]
(ﬁ2+w2)é[ )
<f ,e >
= ———:l———[ s(wA) + Bsin(wA ] + (0Z+p%)AZ !
(BZ+U2)% weos (wA) sin(w) (v ) 2 AZ a z b +ﬁ

=1 J—l
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= ;[wcos(om) + Bsin(wA)] + (02+B%)AZ 2 <f1,9 ’ E
(Bz+m2)% - 17\ a . b +B
= J—l
Substituting for AZ from (6.7) and collecting terms,
EE_ZL_?ZBQ)-ﬁ) sin(wd) - m(B+1)-cos(wA)]
2+0?
<F1,2,> N
= (0*+B%) (0®+1) Lj (6.14)
z W1 - o3 (0%4B%) LPiP

Using (6.6), we now compute an explicit expression for <f-'1,8i>.

n
~ ¥
<fi.8.> = JAcos(wH'r)(l—ﬁ)eB(t—A) 2 —=Jq¢
i 0 ) 1b +

J:

n
v, .
(1—B)e_ﬁA 2 bﬁi[%‘ cos(wt+~r)eptdt
j 0
j=17

n
(l—B)e_BA z Tij [msin(AoH-«p) + Beos(Awty) _ wsin(p) + BCOS((p):I
J'=1bj+[3 e-ﬁA("’z"'Bz) w?+B>

(1-B)e ~hA 2 5 +ﬁ = 1 )% {eBA[cos(<p)sin(wA+,p)

J_
- sin(y)cos(wA+p)] - [cos(¢)sin(¢) - sin(y)cos(¢)]}
1 R
= (1-B) zb =B i sin(wA)
jo1 40 (B6®)
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(B?+0?)

Now substituting this in (6.14),

-1

= (0®+B?)(0?+1)sin(wA)(1-B)

(wz—B)°sin(wA) - w(B+1)+cos(wd)

B>+ |

n
(0>+52) (0*+1) (1-B)sin(wl)* )

7 [(mz-B) . Qin(wA) - w(p+1) -cos(wA)]

1

n

=1

-1

=)
w2+1—a§(w2+ﬁz) bj+B

j=1

i=1

T, 2
254
w2+1—ai(m2+ﬁz) bj+ﬁ

j=1

w(B+1)cos(wd) = |w?-B +
- Yoy, 42
(0®+B%) (0®+1) (1-B) 1 = ]sin(wA)
i§1 w2+1-a§(w2+ﬁz)[jglbj+ﬁ] .
cot(wd) =
©® - B + (02+%)(w3+1)(1-B) S 1 [n "ij]z
i=1 02+1—a§(m2+ﬁ2) j=1bj+B _ (6.15)

w(p+1)

6.

3
This equation determines the eigenvalues of V V via

A% =

w3+1

w2+52

Solution with Right Half Plane Zeros
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and the eigenfunctions via

n
f(t) = [u(t) - u(t-4)]Jcos(wt+yp) + z ag;
i=1

where ¢ is given by (6.12) and {ai} is given by (6.1).

G. Other Analysis.

From this point calculation of the optimal sensitivity and
compensator would proceed as in Chapter 3. The approximation analysis
in Chapter 4 applies directly. Conditions for the existence of maximal

eigenvalues are discussed in Chapter 8.
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CHAPTER 6 Appendix

‘Computation of Adjoint Operators

T; is defined by (the inner product being in K)

CF,TaX> = <T2F.X>
n
- <§ o <F.G.5L..X>
1 1 1
i=1
n
- z a.<F.G. <L, .X>
1 1 1
i=1
n N
= <F.§ o.<X,L.>G.>
1 1 1
i=1
from which we conclude
n
TaX = z o, <X.L>G, .
i=1

We know TT from Chapter 3 equation (3.6). sz is most conveniently

derived in the time domain, which we do as follows.

Nizf, x> = <w*(p+f),x>

<p*f,w*x>
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= <F,pe (wx)>

Therefore Vizx = e (wex) .

Now we compute VYV = VTV1 + V?2V12 + VT2V2 + V§V12 + V§V2-

n
ViaViaf = Viz( ) we(p-F).2,>-2,)

i=1

n
= pewx( z wx(p+f).2,>-¢,)
i=1

n
= ) we(p+F).2,>p- (wee,)
i=1

n
= ) <F.p-(wee,)>wp- (uxe, )
i=1

n
V?szf = sz( 2 ai(f,gi>'8i)

i=1

n
= pe(wx{ ) o, <F.g,>2,))
i=1

n
- 2 0, <F.g;> D (wee, )
i=1

n
VEViaf = Eai<v12f,ei>-gi

i=1
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n n
= Yo, ) <Fope(wxe )>+<2 8, 50g,

- z o, <F.pe (wee,)>eg,

i=1

n
E 3
VaVaf = ) 0, <Vaf,2,5g,

i=1

n n
- 2 0, < E 0 <F.g >80,
i=1 j=1

J

n n
= z o, 2 a.(f.gj>°<ej.ei>°gi

Referring to equations (3.5) and (3.6), we see that we can let
f € L?(0,) and write Vif = pe(w*(p+f)) and VTf = p*((p-x)w).

Therefore

6. Appendix: Details of Calculations Page 127



ViViF = pe((p- (wx(p-F))=v).
The net result is

n
P ((p* (0¥(p+F)) )0 + ) <F.pe(wee )>+p-(uxe,) +

i=1
n n n

v v 2
z Ui<f'gi> p (w*ei) + 2 ai<f.P (w*ei)> g; + } ai<f,gi> 9;
i=1 i=1 i=1

vy

n
P+ (P (wX(p=F)))xw0) + ) pe(wxe,)* (<F,pr (0xe,)> +

i=1

n
o <F.g>) + ) 0,0, (<F.pe (w22, )> + 0,<F.q.>)

i=1

p+ (- (wx(p-F)))w) +

n

) (or(wx,) + 0,0,)+ (<F.pr (0%€,)> + 0, <F.g,>)
i=1

We write
n
* ~ ~
VYF = ViVLF + 2 (2, + 0,29, )(<F.L> + 0,<F.g,>),
i=1

where
2. = pe(wxe.) = V¥, e
i—p( ]-_)—121:
and

g, = <w*gi,2i> = |Vzgi|.

Since the support of Bi is on [0,A] and the support of g; is on (A.»),
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we write

n
3€ 3 ~ ~
VVE = VIV, F + z 8, (<F.2> + 0. <F.g,>) on [0,A]
i=1
and
n
VVF = ) 0,0, (<F.2> + 0 <F.g.>) on (4,®)
=299 (<F. ¢ {Fe9; ')
i=1
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CHAPTER 7

SOLUTION FOR UNSTABLE PLANTS

When the plant is unstable, we must accommodate a non-trivial
coprime factorization of the plant. Following [Francis & Zames 1984, »p.
-sA

10] we see that if a coprime factorization of the plant is e AB™*,

sA

with e AU + BV = 1 and B inner, the Q-parameterization of stabilizing

compensators is C = Q/(1-PQ),
Q = BU + B3H, (6.1)

where Heﬂm. The weighted sensitivity is given by X(H) = WB(V-e_SAAH),

A

and the infimal magnitude is inf_ IIWV - e “CAHI.

Hex

Thus the problem looks like the case of stable plants, except with
WV substituted for W. However, the situation is complicated by the fact
that V is not rational. In this chapter we carry the solution only so
far as to see how to apply the results of earlier chapters.

We first find the explicit form of V. We then see that, when there
are no right half plane zeros, the compression of V to K acts like that
of a rational function. Then we can directly apply the results of
Chapter 5.

When there are right half plane zeros, V is not rational on K.
Still, in that case V can be split into two parts, one of which is
rational. The development then would proceed as in Chapter 6, with
modifications.

With an unstable plant, the approximation analysis of Chapter 4
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must be modified to take into account the more detailed structure of the
Q-parameter. We do the additional analysis needed to Justify the

application of Chapter 4.

A. An Example.

In order to extend our work to this case, we examine the most

-s
simple example. For P = E:T - a coprime factorization is given by

—s 1-s
(Sg)e@e) + (S22 ) o1,

Then the optimization problem becomes

1-s
inf_ Iw( 1S 2e 2y - el = inf, IW(IES + 2:S—) - 75Xl
Xet Xe# s
1-s
It can be seen that W-:_l

1

is zero on K = (e-sﬁz) » so the operator
whose norm we seek it that of convolution with ¥~ ? bﬂwltﬁ] on [0,1].

When we have more unstable poles it is the general case that W is
to be modified by a factor which consists of the sum of an % function
(which is the Laplace transform of the projection of an unstable
function onto [0,A]) and another stable function (which is rational).

We shall see that our technique for the case of rational weighting

function then applies.

B. Computation of WV.

We assume that the plant is of the form P = e_SAPoPiB'1 where Po is

outer, Pi is a finite Blaschke product, and B is a finite Blaschke
product. We assume that all complex poles and zeros of P occur in

conjugate pairs. Thus we assume B™'(s) = %%5%1. In order to apply the

7. Solution for Unstable Plants Page 131



formulation of [Francis & Zames 1984] we must find a factorization of P
which is coprime over ¥ to find V explicitly.

The computations involved in finding this factorization are given
in [Callier and Desoer 1978, pp. 655 and 660].

Following these references, we first decompose P into the sum of an
unstable rational part R and a stable but possibly irrational part G.

To perform this decomposition we consider the inverse Laplace transform,

A

€7 (P(s)) = 7 (TSP P.BT)

p(t-4)

p(t-4) + p (t-4),

where ps(t) is stable and pu(t) is unstéble. Since ps(t—A) is stable, we
need only consider the additive decomposition of pu(t—A) into stable and
unstable parts.

The idea of this decomposition is the following. Since pu(t—A) is
zero on (0,A), the purely unstable part will consist of pu(t—A) plus
pu(t-A) propagated backwards to the origin. The stable part will then
consist of just -1 times the restriction of the purely unstable part to
(0,4).

We now explicitly compute the decomposition. Let {di} be the zeros

of B. Since B™'(s) is rational,
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m hi

5 4t

p(t) = u(t)- ) ) a jtle b,
i=1 j=1

m :
where z hi =n and n is the degree of the denominator of Pu(s). Then
i=1

(leaving {rij} undefined for the moment)

m h1'. m hi
. d,(t-4) . d.t
_ _ _ ) _AyJa U _ J, i
P (t-4) = u(t-A) ) ) a, ;(t-4)Te u(t) ) ) ryjtle
i=1 j=1 i=1 j=1
m hi
. d,t
+u(t)§ zrijtje".
i=1 j=1
m hi
. d.t
- - - - J.t
= —[u(t)-u(t-4)] z 2 rijt e +
i=1l j=1
no P d.(t-A) ™ " d.t
_ Ade T - i
u(t-4) z 2 aij(t A)'e z z rijt e
‘ =1 j=1 i=1 j=1
m hi
. d,t
+ u(t) z 2 rLJtJe t
i=1 j=1
m hi
. d,t
- - —ult— j i
= -[u(t)u(e-0)] ) ) roptle b
i=1 j=1 '
no " -d. A d,t no " d.t
_ e T Jia 1 i
u(t-a)| ) ) [ay ;(t-4)Te rgtfle T+ u(e) > > rystle
i=1 j=1 i=1 j:]_
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3

k,
m m 1
dt dt
C Clu(t)-u(m i i
= -[u(t)u(e-0)1 ) ) rtle b v ue) ) ) rystle
i=1 j=1 i=1 j=1

i

if
R,

t . —d.A .
2 [aij(t-A)Je - r..tJ] =0,

Jj=1
which serves to define {rij}' Clearly

not
9(t) = p(t-4) - [u()-u(e-)] ) ) r tle

i=1 j=1
is stable and

m hi

. d.t

r(t) = z 2 rijtJe t
i=1 j=1

is unstable.
In terms of Laplace transforms, for the case where the d, are
distinct, this decomposition may be seen to be
P=R+G
with
R = q(s)/m(s)

and

G = |e™*p, ()P, (s)n(-s)-a(s) |/m(s).

where q(s) is the (k-1)-degree monic polynomial that takes the value
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© —dA
= i X .
e Po(di)Pi(di)m(_di) at each point s = di for i=1 to k.

It can be seen that when P(s) has repeated unstable roots, G(s)

still has the form G = [e-sAa(s)-b(s)]/m(s), where a and b are

polynomials. For simplicity we just consider the case of distinct
— roots.

Now, suppose a coprime factorization of q(s)/m(s) is A-B~!, and

o these coprime factors satisfy the generalized "Bezout" identity

AU + BV =1 for some U and V. (Note that A, B, U énd V are all

rational and in ﬂm.) Then a coprime factorization of P is A-B™! with
- A=A4+G-Band B =B [Callier and Desoer 1978, p. 655]. A and B

satisfy AU + BV = 1 with U = U and

V=V-T0G
In the example,
-S -1
e 1-e ° e
- e 1) S
soen _ e-s_e-i e-i
- os-1 s-1

so that

o e ! e—S_e-1
R(S) —1 and G(S) = T
A coprime factor1zat10n of R(s) is (s+1) (s+1)- , which satisfies
(s+1) 2e + (s+1) 1=1,
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- e = _s-1, = T
so A = (;ITQ, B = (;;T). U=2e and V = 1. Therefore U = 2e and
—s_ -1 -
V=1- 2e°§—§:%——, which agrees with our previous calculations.

As far as we are concerned, the key facts are that U and V are

rational functions, and G is as given above.

C. The compression of WV to K.

Thus WeV = We(V - U-G), and we seek the norm of this function
viewed as an operator on K.

For the case where Pi =1, K is just the subspace of Laplace
transforms of functions with support on [0,A]. In this case, the
relevant operator on L?(0,A) is the sum of the operators of convolution

with ¢7*(WV) and convolution with ¢™'(-WUG). However, because
G = e_SAPo(s)Pi(s)m(—s)—q(s) /m(s), the projection onto L?(0,A) of the

convolution of L?(0,A) with ¢™*(-WUG) is equal to the projection onto
L?(0,A) of the convolution with ¢”'(WUR). So we are concerned with the
norm of the operator on L?(0,A) of convolﬁtion with 7'[We(V + U-R)].
We(V + U-R) is a rational function, so we can handle this case with the
state space formulation of our solution for general rational W.

We remark that (V + U:R) = B™'. To see this we recall A = & + G-B

and B = B. Then A*U + B-V = 1 implies (A-GB)U + BV = 1. But

>

R = A-B™" = (A-GB)B™', so B(RU + V) = 1.

Based on this remark, our operator on K is given by

T = IIK(WB")
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Notice that for this case our characteristic equation for the
eigenvalues is A% = W(s)B '(s)W(-s)B *(-s). Because of our symmetry
assumption on poles and zeros and the fact that B(s) is a Blaschke
product, B™*(s) = B(-s), and B '(s)B™*(-s) = 1. Of course the
eigenvalues differ from the case in which there are no unstable roots
because the tefm B™! changes the boundary conditions as expressed in

Chapter 6.

D. Right half plane zeros.

Now we consider the case where Pi # 1. The development proceeds
exactly as in Chapter 5, with W(V'— ﬁb) substituted for W, up to the
point at which we assumed W = E}%. Since G is not rational,
calculations are more difficult. In fact we see that when we split the
domain of G into K, and K, as in Chapter 5, the action of ¢7'(G) on
¢ '(K,) and £ *(K,) is convolution with (different) sums of exponentials

(and delayed exponentials, for £ '(K,)).

Now we proceed to the computations. We take
P=eStpppt-cSdp +p),
ot s u

where PS and Pu are stable and unstable rational functions,

respectively. As above, G = P - R, and we can decompose G as
-sA l-e-SA
G =Gy + G,, where G, = e PS and G, = - -—;—-—“R. Note that

supp(G;) C Kf. The operators T,, T, and T,, become
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T;: F = IIKi[WB"-(HKIF)]
Ty2: F = H'Kz[WB_i'(UKiF)]
To: F +— UKZ[W(V—EG)-(HKZF)]

The expressions for T, and T,, follow from the calculations in section
C. The formula for T, is direct without simplification. We note that
€7 '(Tz) is a sum of exponentials plus a sum of exponentials truncated at
t = A.

The functions Li and Zi are defined analogously to Chapter 6, and
we can specify the boundéry conditions just as in the case of general

right half plane zeros.

E. Completing the solution.

As in the previous cases, the calculations described above give us
simultaneous equations which determine the eigenvalues and
eigenfunctions of V*V. In a particular case we must find the largest
eigenvalue, and apply Sarason’s Proposition 5.1 to compute the infimal

sensitivity. This in turn allows us to compute the optimal compensator.

F. Unstable plant: proper approximation.

In this case the procedure in Chapter 4 by which we obtain a
sequence of proper compensators for which the closed loop weighted
sensitivity approaches the optimal does not apply.

When the plant is unstable, we cannot roll off Q directly, since
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B,

not every stable Q results in a stable closed loop. In the unstable

case, Q = BU + B®H, where P = e-SA

AB™! is a coprime factorization of P
e

over # and U is the coefficient function in the generalized Bezout

identity e_SAAU + BV = 1. Here the free parameter is H. We note that

both B and U are rational and proper. Since Q is improper when the

plant is strictly proper, it follows that so is H.

(Remark: It is tempting to say that since H = 0 yields a
stablevclosed loop system, we can stabilize the loop with the
suboptimal but proper feedback resulting from Q, = BU, and then
apply the above proper approximation procedure to the optimal
compensator for the stabilized loop. It is not necessarily true
that the composition overall optimal compensator can be obtained as
the of two such feedbacks: If the Q parameter for the second
feedback is Q,, the effective Q parameter is Q; = BU + B2U2Q2.
Therefore, unless the optimal free parameter ("H") lies in the set

00
V2% , it cannot be obtained in this manner.

- Since BU is proper, to obtain a proper Q, what we want to do is roll off

Q-BU
B2

sensitivity is X = WB(V—e—SAAH). Obviously, if there is a sequence of

the (imprbper) free parameter H = Recall that the weighted

proper compensators which allows us to approximate the infimal
sensitivity X = WB(V-e S%H). we must have IXIl_ > lim inf |(WBV)(s)]|.
W - ©

We need to examine the behavior of lim inf | (WBV) (w) |-
o >

Now ¥ and B are rational with W(®) = B(w) = 1, so we look at V(jw).
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~ From above, V=V - U-G. V and U are proper and rational, and G is the

sum of a proper rational function and a strictly proper (since we assume

| P is strictly proper) function. Therefore V(®) exists.
— We therefore require that XN, 2 V(). We can see from above that
R o-a,A
V(®) = z e °Po(di)°d(—di). and we note in particular that V(®) € R.
- i=1 '
We can now simply repeat the argument for stable plants in Chapter
4. substituting [V(®)-A(jw)R(jw)] for [1-P(jw)Q(jw)]. if we assume that
. we take our bandwidth of good approximation wide enough for V(jw) to be
sufficiently close to V(») when w is beyond this band.
o
Frem
amits
PN
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CHAPTER 8

CONSTRUCTION OF SOLUTIONS

A. Summary

In this chapter we discuss the construction of solutions to the
sensitivity minimization problem in its form (2.7). We know from the
theory of [Sarason 1967] that a solution exists, but unless the operator
T*T has a maximal eigenvalue, we do not necessarily know how to find a
solution.

There are three cases, depending upon the weighting function W(s):
(1) VW is such that we can guarantee the existence of a maximal

eigenvalue.

When [W(jw)| > 1 for o large enough T*T has infinitely many
eigenvalues greater than 1. Since the only cluster point of the
eigenvalues is 1, this means that T*T has a largest eigenvalue, and
thus a maximal vector. We observe that (since W(®) = 1) we can
always pick W(s) so that [W(jw)] eventually approaches 1 from
above, while affecting IW(jw)l only arbitrarily little at any
frequencies of interest, by introduciﬁg one additional pole/zero
pair at high frequency. In other words, we can always pick a W
close to one having the desired magnitude, which results in a
solvable problem.

When IW(jm)| does not approach 1 from above at infinity, it
must do_so from below. Then there we get the other two cases.

(2) VW is such that we can guarantee there is no maximal eigenvalue. If
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(3)

8.

|[W(jw)| < 1 for all w, the magnitude of the infimal sensitivity is
1, a maximal vector does not exist, and an optimal sensitivity is
obtained with the open loop system (for a stable plant).
In the third case we cannot tell from examination of W whether or
not a maximal eigenvalue exists. In this case |W(jw)| > 1 over
some frequency band. In this case a maximal vector may of may not
exist. Theh we see two possibilities for solving the problgm:

(a) Modify W slightly, so that case (1) above applies. We
show below how to do this without significantly changing W.

(b) Solve the eigenvalue problem, and examine the solutions.
If a maximum eigenvalue exists, it will lie between 1 and nwi .
This fact should allow numerical procedures searching for it to be
finite. We do not discuss this alternative further. If a maximum
eigenvalue does not exist, and the condition of case (2) above is
not met, then the procedure employed in Chapter 3 section H to find

an all-pass minimal sensitivity may work.

B. Existence of a Maximal Eigenvalues.

We know from Chapter 2 that the spectrum of T'T consists of

eigenvalues union the point 1. We show here a sufficient condition on
e
W(s) for T T to have a maximal eigenvalue, namely, that there exists

some wg > 0 such that

for v > wp. |W(jw)| > 1. (8.1)

There are two steps to see this.

%
(1) For every eigenvalue A2 of T T there are imaginary solutions to
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the equation A% = W(s)W(-s).

(2) The imaginary solutions to A% = W(s)W(-s) are not restricted to

any finite interval as A% varies over all eigenvalues.
It then follows from (8.1) that there will be eigenvalues greater than
1, since there will be eigenvalues Rz for corresponding ©; > wg with
A? = W(jmi)W(—jwi) = |W(j(.1i)|2 > 1. Finally, since W(®) = 1, the
existence of one eigenvalue greater than 1 implies the existence of a
maximal eigenvalue.

The condition (8.1) should always be possible to meet in practice.
If (8.1) does not hold we can modify W as follows: We have that there

exists some wg > O such that for w > wg
[W(je)| < 1 (8.2)

Since (in Chapter 2) we have normalized W so that W(®) = 1, for any

e > 0 we can pick w, large enough so that |W(jm)| <1 - %-for W 2 Wg.

If we take W' = w.[it&%ﬁélﬂg]' it is easy to see that w-w'n_ < Wi e
(o]

and |[W'| - |W]| ¢ IWI-g. Furthermore |W'(jw)| > 1 for o > wg and
W' () = 1. Thus W' satisfies (8.2) yet can be made close to W by choice
of e.

We now proceed to show the facts (1) and (2).

(We say that there is an eigenvalue on the interval (v;.,03) CR if

for some w € (wy,w,), there is a A% € a(T*T) such that |W(jw)[® = A%))
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(1) Existence of imaginary solutions to AZ = W(s)W(-s)

*
We first prove that every eigenvalue of T T has at least one

corresponding imaginary solution of (6.13).

First, suppose A%#1. If A% is an eigenvalue of T*T, and y = A®
intersects y = |W(jw)|?, then there is a solution W to
A = [W(jw)|? = W(jw)W(-jw). But then A% = W(s)W(-s) has the imaginary
solutions s = +jwgs. If y = A% does not intgrsect y = |W(jw)|2, then

either A% > sup [W(jw)|? or A% < inf [W(jw) |2, by continuity of
w€R w€R

[W(jw)|®. But WW(s)n2 = sup |W(jw)|? and w=*(s)N2 = [inf |W(jw)|2]-1,
weR

w€R
since, by assumption on our weightings, W'i(s) € ﬂm. Therefore either
2 2 -1 2 1
AT 2 lIW(s)l; or IIW (s)n, < ;;.
Since we must have ITI ¢ HW(s)Hw, the first case would imply
A% = HW(s)H:. The second case also implies A% = HW(s)Hi. by applying
the same argument to l;, T™! and W™ *: (Note that T is invertible, since
A
W is causally invertible.) Let f be an eigenvector for T*T, and let
g = TF. g satisfies [T 'g|? = l—*|g|2, and so T *IIZ ) L For the
A2 A?
second case, T "Il < IW"*(s)ll, so we conclude W=*(s)2 = 1—2 and

therefore A% = inf [W(jw)|2.
w€R

Since W(s) is continuous on the imaginary axis, we see that if
2 . . 2 2 2
y = A" does not intersect y = |W(jw)|?, we must have A® = |W(=)|? = 1.
Now suppose A%=1 is an eigenvalue and f is a corresponding unit
eigenvector. By the reasoning above, if W(-jw)W(jow) = 1 has no

solution, then either IW(jm)I > 1 for all w € R or lW(jw)l <1 for all
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w € R. Suppose |W(jw)| < 1. (For [W(jw)| > 1 just use (T*T)'1 and
(W)™ instead of T°T and WW.) Since we must have IT*TFIl, < UWWFIl,, and
HT*Tfﬂz = 1, we conclude HWWsz = 1. But this is impossible with
[W(jw)| < 1 and lIfll, = 1. We conclude that W(-jo)W(jw) = 1 has an

imaginary solution.

(2) The set of eigenvalues is not be restricted to a finite interval.

Let (sn} be the solutions of W% = 1. We show that if the
eigenvalues {ki} are restricted to a finite interval, the solutions
{sin} to h? = W(s)W(-s) are contained in a compact set in C, which is
impossible.

Regard Wﬁ as a map from jR to R. As such, it is continuous; in
particular it is continuous on any closed interval of the imaginary
axis. If the eigenvalues are restricted to a finite interval, they lie
in the image of the closed interval under the continuous map Wﬁ. and
therefore are contained in a compact set, clustering at the point 1.
Now {sin} is the set of solutions to the polynomial equation n(s)n(-s) -
A:d(s)d(-s) = 0. The solutions are continuous functions of the
Parameter Ai (with appropriate ordering of the solutions). As before,

the set U {sin) must also be contained in a compact set in C.
i

Now we argue that the U {sin} cannot be in a compact set: Every
i

function in 2_1(K) must have a unique expansion as an infinite sum of

orthogonal eigenfunctions of V V [Rudin 1973, Theorem 12.29(d)]. From
Sint
}

the above {e contain ¢™*'(K) in their span. In particular,

i,n

£ *(K) will contain L?(0.A), and we would be able to represent functions
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a.t
in L?(0,A) as 2 ae ', where |ai| (v < for some v+ > 0. This is

impossible, and we conclude that the eigenvalues of T*T cannot lie on a

finite interval.

C. The Indeterminate Case

If the suffiéient condition in (A.) on |W| does not hold, i.e.,
|W(jw)] - 1 from below as w » @, all we can say is that there will be a
maximal vector if there is an eigenvalue greater than 1, using the same
reasoning as above. Otherwise there may or may not be one.

If [W(jo)| < 1 for all o € R, then if the plant is stable, it is
easy to see that the open loop system attains the minimal sensitivity.
In this case, when the plant has no right half plane zeros, we saw in
Chapters 3 (and 5, using an unproven conjecture), we can obtain an
infimal sensitivity in the following way. Let A: be a sequence of

eigenvalues of T*T approaching 1, and let fi be the corresponding

Tf .,
eigenfunctions. Form the quotient ¢, = L It is easy to see that
g i F Yy
i

this will always have magnitude 1 on the imaginary axis. For the case
in Chapter 3 section H we also saw that for all but finitely many
eigenvalues it is stable. For this case it is possible to show that by
evgluating the expression for p; at A =1 we get a stable function, and
in fact P is generally stable for ki close enough to 1.

When |W(jw)| 2 1 and there is no maximal eigenvalue, we do not know

whether this limiting procedure results in a stable function.
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D. A False Conjecture.

At one time we thought that the condition |W(jw)| > 1 on some
finite interval would be sufficient to guarantee the existence of an
eigenvalue greater than 1, but this is not the case. We present the
following argument to clarify this matter.

Suppose |W(jw)| > 1 for w € (a.b) and |W(jw)| < 1 otherwise. If
this implied that there were an eigenvalue greater than 1, there would
be an eigenvalue on the interval (a,b). Then there would be a function

f € K with IIfll; = 1 such that UTfll, > 1. But
ITFI, < UWFN2 =I [W(jo)f (jo) |?do.

Thus to have an eigenvalue greater than 1, it is necessary for f(jw) to
have its support sufficiently concentrated on (a,b). But

£ '(f) € L3(0.4) (for example), and using any version of the
"uncertainty relation” for transforms causes us to conclude that this

support requirement will not be generally met.
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CHAPTER 9
WELL-POSEDNESS

We stated in Chapter 1 that our investigations were partially
motivated by the fact that although the input-output behaviour of linear
systems is not generally continuous in the uniform operator topology,
this is the topology resulting from the ﬁm norm on transfer functions.

The importance of understanding ﬂmeinimal sensitivity design for
delay systems is emphasized by the fact that designs which achieve
ﬂw—minimal sensitivity for finite dimensional systems are not generally
continuous even in the strong operator topology when a small delay is

added. We illustrate this fact with a simple example.

A. Example of lack of Continuity

In [Zames and Francis 1983, p. 593] the solution to the # -minimal
sensitivity problem is computed for the case of a stable plant with two

right half plane zeros. We consider this example here. Let

b,-s)(b,-s

Po = (b, 7s)(bavs) Tt &1

with Qe(bi)>0 and b,;+b, € R, be the plant, where P, is stable and

minimum phase. Let
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with B > O, be the sensitivity weighting function. The optimal "Q"

parameter is

- Dg - [ !b, !!bz ! -1
As) = [ - ey (ere)) (Brosy (Bmey P

where D and c are constants determined by B and the bis. D may be

positive or negative, depending on whether 8 < 1 or B > 1. (We will not

show it here, but B < 1 is the only interesting case.) We assume D is

positive, for f < 1. Then the optimal feedback compensator is
C = Q(1-PoQ)~*.
Now suppose that the true plant is really
P_(s) - e “SPo(s) (9.2)

with €>0.

1. Stability with Delay Added to Closed Loop.

We check stability for the closed loop system with true plant (9.2)

P
and compensator designed for the plant (9.1) by computing

— and
1+P C
. €
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checking the location of its poles. A straightforward computation gives

P
€

_ eseD(c—s)
1+PeC B

e5*D(c-s) + [W(s)(c+s)-D(c-s)]

Po'

We now show that this is unstable by showing that the denominator, call
it m(s), in the above expression has infinitely many right half plane
Zeros.

For this we evaluate m(s) on the imaginary axis and separate it
into real and imaginary parts, m(iw) = f(w) + i°g(w). Now we show that
f(w) has only finitely many real zeros, and conclude by appealing to

[Pontryagin 1955], Theorems 3 and 6.11

that m(s) has zeros in the right
half plane.

A computation gives
2 D+1 .
f(v) = w“D[cos(ew) - —ﬁ—ﬂ + wD(B-c)sin(ew) + BcD[cos(ew)-1] + c.

Since D > 0, the equation f(w) = O cannot be satisfied for sufficiently
large v, and we conclude that f(w) has only finitely many real zeros.
Therefore, m(s) has zeros in the right half plane.

A simpler and more insightful, though informal, proof is as
follows. As s =2 @, m(s) - s(1+D—ese). Therefore the zeros of m(s)
approach the vertical line Re(s) = %-ln(1+D), which is in the right half

plane since D > 0. Furthermore, as € =» O, the poles move infinitely far

11For the content of these theorems, see footnote in Chapter 3.
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into the right half plane.

2. Significance of the Example

In this simple example the #m—minimal sensitivity feedback system
does not remain stable when a small delay is added to the feedback loop.
This in itself is not different from the case of systems with a delay in
the plant, and is not surprising inasmuch as we do not expect the
input-output behaviour of the system to be continuous in the uniform
operator topology.

What is significant is that the input-output behaviour is
discontinuous in the strong operator topology (of linear operators on

12

the space L:) To see this, let Gy be the time domain operator on LZ

which is convolution with the inverse Laplace transform of T:%E“ and let

P
Ge be the similar operator corresponding to T;%—Eu We note from the
€

discussion of the asymptotic pole locations above, that for small e, the

P
closed loop operator T;%—E-has a pole very close to %-1n(1+D). As a
3

result, for practically any fixed x € L: and for any fixed T > O,

lim HQT(Gex = Gox)Il # O, since Gex "blows up" arbitrarily fast as e - 0.
e-0

(9T is the truncation operator defined in the appendix. )
This means that there is something non-physical about the %
sensitivity problem as commonly expressed. It is to avoid such problems

with mathematical models that the concept of well-posed feedback system

12See appendix at end of this chapter.
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is defined.

B. Definition of Well-posed
The definition of well-posed we use is from [Willems 1971]. There
are four elements to the definition, which we repeat here in an informal

manner :

A feedback system is well-posed if
WP 1. An input in L: produces a unique solution in L:.
WP 2. The system is causal. |
WP 3. On finite time intervals, the outputs depend Lipschitz
continuously on the outputs.
WP 4. The various closed loop transfer functions are continuous in
the strong operator topology with respect to the addition of a

small delay and with respect to parameter variations.

(See the [Willems 1971, pp. 90-91] for precise definitions.)

This definition in the context of feedback systems seems to be due
to Zames (see [Zames 1964]). The continuity requirement of (WP 4) is
not universally adopted. See [Vidyasagar 1980, p. 414], for example.

It is (WP 4). however, that makes the feedback system resulting from the
ideal solution to the % problem with a finite dimensional plant
ill-posed.

It is therefore natural to ask why one would want to require
continuity with respect to delay in the feedback loop. Part of the

answer is that without (WP 4) the definition would allow certain

9. VWell-posedness ‘ Page 152




non-physical examples to be considered well-posed systems. We next look

at such an example.

C. Motivational Example

Perhaps the simplest example is mentioned in [Zames 1964, p. 186]
as being due to Nyquist, and this analyzed further in [Willems 1971, pp.

95-96]. In the feedback system of Figure 9, algebra tells us that the

BcAmE

Figure 8. Ill-posed example.

input-output relation is given by y(s) = 2-u(s). However this feedback
system cannot be constructed physically since the inevitable delay
present in the loop will cause instability which gets worse as the delay
gets smaller. For practically no input on a finite interval will the
output approximate the output from the system in Figure 8, as the delay
goes to zero.

This is essentially the motivation for the continuity requirement.
What goes wrong with the simple example of Figure 8 is essentially what
goes wrong with the ideal ﬁm—optimal finite dimensional system.

The ill-posedness for these feedback systems can be thought of as a
result of the memoryless part of the opened feedback loop having gain
which is too large. See [Willems 1971] p. 100.

A strictly proper approximation to the optimal compensator for an

* problem for a rational transfer function plant will result in a
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well-posed system, since the memoryless part will have gain less than 1.
Nonetheless, it is troublesome to use a design technique for which the

goal is to approximate an ill-posed system.

D. Effect of Plant Time Delay.

For plants with a delay in the input the optimal feedback systems
will be well-posed, using [Willems 1971] Corollary 4.1.1, precisely
because of the delay in the plant. One consequence of this is that the
mathematical model of our ideal closed loop system is continuous for
small variations in plant parameters, including the delay time.

Unfortunately, it seems that the ideal ﬂp—optimal feedback system
will still be unstable for delay perturbations, even when the nominal
plant contains a delay.13 The consolation must be that since the system
is well-posed, if the error in the delay is small, the real system we

would build based on our model is a good approximation to the ideal

system on finite time intervals.

E. Strict Properness

In much published work, well-posedness is taken to be equivalent to

13The instability of the perturbed system can possibly be seen from the
Nyquist plot. Let v be the magnitude of the optimal sensitivity. As

@ = o, the Nyquist plot approaches the circle about the point -1 with
radius v. When we introduce a pure delay into the loop. this circle
revolves about the origin, and if |7| < 2, the plot eventually circles
the origin without encircling -1. This happens arbitrarily many times
as w » ®. We conjecture that this "missing”" of encirclements implies
instability in the same way as the count of encirclements does for
finitely many right half plane poles of the loop transfer function.
This argument is not complete, because the underlying Nyquist stability
result for a function with infinitely many encirclements has not been
demonstrated.
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the invertibility of (1+PC). As we saw in section (C), this is not the
case for our definition of well-posedness. However, when this condition
is augmented by the assumption that the loop transfer function is
strictly proper, (WP 4) is then satisfied. It is for this reason that
the mention of well-posedness is commonly correct, given the strict
properness assumption (usually made separately).

We hasten to point out that well-posedness does not require a
strictly proper loop transfer function. Thus the ideal ¥ closed loop
for the minimum weighted sensitivity criterion is well-posed when the
plant model has a delay in the input, as is any finite dimensional
system with loop transfer function having memoryless part with magnitude

less than 1.

F. Alternate Optimality Criteria

It is know that the introduction of other criteria in the #
minimization set-up can result in control of the high frequency
behaviour of the closed loop. This can serve to make the optimal
compensator proper, and therefore give non-zero delay margin. This is

an area for future work.
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CHAPTER 9 Appendix

"Extended" LZ Spaces and Induced Topologies

We stated in Chapter 2 section A that # is the space of transfer
functions of linear systems which in the time domain are Lz—stable,
causal and time-invariant, and that the ﬁm—norm is the induced L? norm.
The topology on % arising fpom this norm is the uniform operator
topology. For an explanation of the various operator topologies see
[Dunford and Schwartz 1958, pp. 475-477].

In the definition of well-posedness one would like to allow
unstable as well as stable systems, so it is not sufficient to consider
systems whose transfer functions lie inuﬂm. To handle the case of
unstable systems and their interconnections, we must allow inputs and
outputs to be unbounded functions of time. For this purpose one defines
the "extended” L? space L: as follows. Let X be the space of

real-valued functions on (0,®). The operator QT on X is defined for

each T > O by

f(t) for t € (0,T]
0 for t € (T,»).

L: is the subspace of X consisting of functions f for which
#.(f) € L*(0,®) for all T > 0. (See [Zames 1966, p. 230].) Let 0
denote the set of causal linear time-invariant operators on LZ. Ve

define a topology on O with the base
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[02]
n (F) = {G € 0: (F-G) € # and IF-GI_ < e}.

We call this the uniform operator topology of operators on Lz since it

is induced by the "extended norm" on LZ defined by

F =
f 2e .
® otherwise.

{ufu2 if f € L?(0,%)

Thus FA approximates F in the uniform operator topology if H@TO(F—FA)II00
is small for all T 2 0. (See [Willems 1971, p. 93].)

Similarly, we &efine the strong operator topology so that FA
approximates F if for all x € L:, H?)‘T((F—F}\)(x))ll2 is small for all

T 2 0. A base for this topology is

m (F) = {G € 0: for all x € L:. (F-G)(x) € L*(0,») and H(F-G)(x)ll, < e}.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

For certain choices of weighting functions we have found explicit
expressions for the optimal weighted sensitivity and feedback
compensator when our plant design model is a stable minimum phase
rational'transfer function in cascade with a delay. These weighting
functions are: (Weighting functions are assumed normalized to 1 at «.)
those whose magnitude approaches 1 from above at high frequency, and
those whose magnitude does not exceed 1 (high pass functions). .For the
first case the optimal sensitivity is an infinite Blaschke product. The
optimal compensator is unstable, and improper when the plant is strictly
proper. It also contains an ideal delay. Computation of the solution
involves the solution of simultaneous nonlinear equations. For the case
of high pass weighting functions, we have found two minimum
sensitivities, the weighting function itself and an all-pass function
(the latter results from a conjecture which remains to be proven).

The completeness of our results is marred by the fact that the most
general weighting functions we might wish to consider do not allow us to
guarantee that we can compute the optimal sensitivity when there is no
maximum eigenvalue. This is not a major limitation, however, since we
can always slightly modify the weighting function so as to guarantee the
existence of an infimal sensitivity we can compute. Future
investigation will examine whether it is generally possible to find an

optimal weighted sensitivity for the no maximal eigenvalue case by
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taking the limit of the expression (5.24) as A > 1.

We have shown how to approximate the compensator with a finite
dimensional compensator, in such a manner as to achieve a closed loop
sensitivity close to the infimal one. The lead characteristic of the
compensator must be very gradually tapered off, until the loop gain is
small enough, in order to preserve approximation to the optimal
sensitivity and preserve stability.

We have indicated how to extend these results to systems with right
half plane poles and zeros, having performed the crucial

eigenvalue/eigenvector computation for these cases. Future work will

. derive explicit expressions for the optimal sensitivity and compensator

using these results.

We proviaed an example which points out that the limiting £
optimal compensator for finite dimensional plants produces an ill-posed
closed loop system. The limiting compensator for a plant with a delay
in the nominal model, on the other hand, produces a well-posed feedback
system. We saw the loop to be unstable with the addition of an
arbitrarily small delay for either case.

A goal of future work will be to understand if these results can be
used to make compensator design robust with respect to the location of
right half ﬁlane zeros. We believe that by designing in the presence of
a delay, which yields unbounded (and possibly fictitious) excess phase,
we may be able to design into a compensated system tolerance for
unmodelled right half plane zeros. Along with this, we expect to pursue
a notion of "delay margin" for feedback systems, which should give us

insight into how to include delays and approximations of delays in
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models of feedback systems.

It will be necessary to consider other criteria for optimality,
since the sensitivity criterion by itself has led to systems with zero
delay margin.

Future work will also cover the extension of these designs to the

case of systems with a delay in the state, and possibly other infinite

dimensional systems.
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Symbol

#°(-)

#(+)

Im(+)

L(+)

LZ(0.=)

2-1

R
Fe(+)
p(*)
a()

List of Symbols and Notational Conventions

Definition

the complex numbers

the complex numbers with positive real part (the right
half plane)

the unit circle
the Dirac distribution with mass at t=0 (unit impulse)

ﬁp(ﬂ) is the p—normed Hardy space of functions analytic
in the region Q .

#m(Q) is the supremum-normed Hardy space of functions
analytic in the region Q

#m(z) is the imaginary part of the complex number z
=1

L%(0,4) is the quadratic-normed Lesbesgue space of
functions with support on the interval (0.4)

the "extended" L®-space with support on (0,®)

Laplace transform
inverse Laplace transform
the projection operator onto functions with support on

(0.T)

complex numbers with positive imaginary part (the upper
half plane)

the projection operator onto the space K

the real numbers
%e(z) is the real part of the complex number z
p(T) is the spectral radius of the operator T

o(T) is the spectrum of the operator T
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sp(*) sp({xi}) is the closed linear span of the set {xi}

supp(*) supp(f) is the support of the function f .

T the unit circle

u(t) the unit step function (Heaviside function)

* 3 o f * g is the convolution of the functions f and g

B V* is the adjoint of the operator V

B Zz is the complex conjugate of the complex number z

A1 S'L is the orthogonal complement of the space S

* B0 #° 8 S is the orthogonal complement of the subsgace S in
#° (for clarity — the complement could be in L?)

R3] IVIl is the norm of the operator V

.|, XIK is the restriction of the operator X to domain K

. f is the Laplace transform of the function f

. W(s) = W(-s)

. multiplication

Notational conventions:

For conciseness the arguments of functions are sometimes omitted.
In these cases, the following conventions hold unless an explicit
exception is noted: Capital roman letters denote operators or functions
in the frequency domain. Capital italic letters denote spaces. Lower
case roman letters denote polynomials. Lower case italic letters denote
functions in the time domain.
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