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Abstract

Artificial neural networks have been studied for many years in the hope of achieving

human-like performance in the fields of speech and image recognition. A great

landmark in this field is the Hopfield Network. It is simple to implement, simple

to analyze. However, it suffers from the existence of the so-called spurious states

which tend to inundate the space and reduce the value of this network. In this

thesis we provide a complete analysis of the spurious states. This analysis involves

the number of such states, their distribution in the space of states, an experimental

study of their basins of attractions, and finally, most importantly, their equations.

We also describe an algorithm that takes a Hopfield network and replaces it by an

equivalent one but with less internal connections. The importance of this algorithm

is obvious when it comes to the issues of implementation using VLSI.

Finally, we comment on this network and discuss its usefulness as a Content­

Addressable-Memory.

Thesis Supervisor: Sanjoy K. Mitter

Title: Professor of Electrical Engineering, Department of Electrical Engineering

and Computer Science
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Chapter 1

Neural Networks: A Survey

1.1 History

Artificial neural net models have been studied for many years with the hope of

understanding certain essential features of the human central nervous system, and

thereby incorporating these features in computational systems [16].

Some of these features are :

• Pattern recognition.

• Classification.

• Learning.

• Extraction of concepts or rules from instances.

• Adaptive computation.[2]

The definition of what some of these features really mean is a difficult task.

The most influential idea was the Perceptron, which ruled for about 12 years

(1957-1969). First proposed by Rosenblatt, it was shown later by Minsky and

Pappert[19] to have certain limitations.

In the sixties and early seventies, Caianiello and Little were independently at­

tempting to model Mc.Culloch-Pitts neural networks within the physics community. [17,

18].

Grossberg, in 1968, started a large research effort that is still in progress. His

modeling project has engaged in studying a network of elements which are intended

to map more or less faithfully cortical neurons. A wealth of papers and books have
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been published and an interesting collection of psychological results [4] - such as

the development of the Adaptive Resonance Theory : ART - has been announced.

Finally in 1982, J. J. Hopfield began a research program into neural networks and

rekindled interest in them by his extensive work [9,10,11] on different versions of the

Hopfield net. This interest arose because of the simplicity of the network as well as

some other interesting properties. His net can be used as an associative memory,

for instance, or to solve optimization problems, as we will elaborate later [11,14].

1.2 Models

1.2.1 The Actual Nerve Cells

Neurons, or nerve cells, are the building blocks of the brain. Although they have

the same genes, the same general organization and the same biochemical apparatus

as other cells, they also have unique features that make the brain function in a

different way from, say, the liver [24]. The important specializations of the neuron

include a distinctive cell shape, an outer membrane capable of generating nerve

impulses, and a unique structure, the synapse, for transferring information from

one neuron to the next. The human brain is thought to consist of 1011 neurons,

about the same number of stars in our galaxy. No two neurons are identical in form.

Nevertheless, their forms generally fall into only a few broad categories, and most

neurons share certain structural features that make it possible to distinguish three

regions of the cell: the cell body, the dendrites and the axon. The functioning of

the brain depends on the flow of information through elaborate circuits consisting

of networks of neurons. Information is transferred from one cell to another at

specialized points of contact: the synapses. A typical neuron may have anywhere

from 1,000 to 10,000 synapses and may receive information from something like

1,000 other neurons. Although neurons are the building blocks of the brain, they

are not the only kind of cells in it. A major class of cells in the central nervous

system is the glia cells or glia, which provide structural and metabolic support for

the delicate meshwork of the neurons [12]. Although the human brain is the most

complex of all known systems in the universe, some facts are known ( or thought

to be ) about its operation. As a matter of fact, neuroscientists model the neuron

2



as follows [8] :

1. The internal state of a neuron is characterized by an electrical potential dif­

ference across the cell membrane at the axon hillock. This potential difference

is called the generating potential. External inputs produce deviations in this

potential from a baseline resting potential ( typically between 70 and 100 mv ).

When the generating potential exceeds a certain threshold potential, an action

potential is generated at the hillock and propagates away from the hillock along

the axon.

2. Axonal Signals: The action potential is a large depolarizing signal ( with

amplitude up to 110 mv ) of brief duration ( 1-10 ms). In a given neuron,

every action potential travels with the same constant velocity ( typically be­

tween 10 and 100 mls ) and undiminished amplitude along all axon collaterals

( branches ) to their terminal synaptic knobs.

Axonal signals are emitted in bursts of evenly spaced action potentials with

pulse frequencies typically in the range between 2 and 400 Hz for cortical pyra­

mid cells, or 2 and 100 Hz for retinal ganglion cells. Single spike potentials are

also spontaneously emitted. A single spike is not believed to carry informa­

tion. It appears that all the information in an axonal signal reside in the pulse

frequency of the burst. Thus, the signal can be represented by a positive real

number in a limited interval.

3. Synaptic Inputs and Outputs: The flow of signals in and out of a neuron

is unidirectional. A neuron receives signals from other neurons at points of

contact on its dendrites or cell body known as synapses. A typical pyramid cell

in the cerebral cortex receives input from about 105 different synapses. When

an incoming axonal signal reaches the synaptic knob it induces the release of a

substance called a neurotransmitter from small storage vesicles. The released

transmitter diffuses across the small synaptic gap to the post synaptic cell

where it alters the local receptor potential across the cell membrane. A synaptic

input is either excitatory ( if it increases the receptor potential) or inhibitory

( if it decreases it ), and inputs combine additively to drive a change in the

generating potential.
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4. Summary: Neurons are cells that are highly interconnected. Each cell sums

the inputs coming to it (from the axons of other neurons) through its den­

drites. If the sum exceeds a certain threshold level, a signal will be transmitted

(through the axon) to the dendrites of the other neurons. Otherwise, nothing

is sent out. Based on this observation, the reader will appreciate the artificial

models presented in the next section.

1.2.2 The Artificial Nets

All the artificial neural net models that have been devised so far share the follow­

ing common characteristics. They are composed of many nonlinear computational

elements operating in parallel and arranged in patterns reminiscent of biological

neural nets. Computational elements or nodes are connected via weights that are

typically adapted during use to improve performance.

What caused the recent resurgence in this field ( after a long period of dormancy)

is the development of new net topologies and algorithms, new analog VLSI tech­

niques, and some intriguing demonstrations, together with a growing fascination

about the functioning of the human brain. Recent interest is also driven by the re­

alization that human-like performance in the areas of speech and image recognition

will require enormous amounts of processing. Neural nets provide one technique for

obtaining the required processing capacity using large numbers of simple processing

elements operating in parallel.

Although all the neural networks fall under the same category: Dynamical sys­

tems used for computational purposes, they differ in certain aspects. These aspects

are:

• Dynamics: Synchronous or asynchronous update of the neurons.

• Connections: Weights, number of layers, etc...

• Input/Output: Continuous or binary.

• Nonlinearity: Hardlimiting, Sigmoid, etc...

• Weight adaptation: Different algorithms.
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The Hopfield network will receive adequate discussion in the chapters to come.

For a detailed study of other important landmarks in this field the reader is referred

to [16], [4], [19], [13] and [1].

1.3 Thesis Overview

The thesis is organized in the following way:

In chapter two we introduce the Hopfield network, describe its various modes of

operation, discuss its properties and list some of its limitations.

In chapter three we formulate rigorously the problem of spurious states, provide

a complete characterization of these states (e.g. their numbers, their equations,

etc... ), discuss the generality of our results and correlate with other available re­

sults in the field. In addition to this, we include an algorithm that replaces a

Hopfield network by an equivalent one (same I/O behavior) but with less internal

connections.

Chapter four is meant to provide the necessary background for this thesis and

emphasize the ideas that are closely related to our work.
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Chapter 2

The Hopfield Network

2.1 The Basic Model

Between 1982 and 1985, J. J. Hopfield came out with different versions of a new

neural network. In his 1982 paper[9] , Hopfield was looking for a network that would

work as a Content-Addressable-Memory. The model he proposed constituted of N

"Neurons" , the output of each was either Vi = 0 ("not firing") or Vi = 1 ("firing at

maximum rate"). Each neuron adjusted its state asynchronously setting

Vi --+ +1 if L 11iVi > Ui

v:. --+ -1 - < u.-, 3 '

(2.1)

with 11i being the strength of the interconnection between neurons i and i, ( Tij=0

if they are not connected ).

To illustrate further, for any two neurons i, i we have the representative diagram

of figure (2.1).

He pointed out that the main features his model had over the perceptrons were:

Back-coupling (Le. output is fed back to input until convergence), exhibition of

computational properties (whereas perceptrons were used only as classifiers his net­

work could, in addition to that, solve some optimization problems), and finally,

asynchronous operation.

In 1984, Hopfield modified his first version considerably by allowing continuous

variations in the output rather than discrete ones. This was achieved by changing

the 110 characteristics of each neuron from a simple step function to a sigmoid

type of relation (see figures (2.2) and (2.3)). He tried to defend his new model

6
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Figure 2.1: Two typical neurons i and j

using some biological arguments, but also showed that if it were operating with a

sigmoid relation close to a step function, then the stable points would be basically

the same ones as the old model, thereby concluding that "the new continuous model

supplements, rather than replaces, the old original stochastic description" [10]. A

minor change to the continuous model was made in 1985, when Hopfield decided to

make the output of a neuron vary continuously between -1 and 1 instead of 0 and

1 thereby embedding some form of symmetry in the network space of states.

Later, several researchers (e.g. [2]) suggested a new version of the Hopfield net

that had discrete state space (-lor 1) and where the transitions were not deter­

ministic, but rather obey a certain probabilistic mechanism. In this new scheme,

even if the sum of inputs exceeded the threshold value, the output would become 1

only with a certain probability (see figure (2.4)).

7
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Figure 2.2: I/O Characteristic of a neuron: DSDT mode

Figure 2.3: I/O characteristic of a neuron: CSDT mode

2.2 Modes of Operation

From our previous discussion of the different versions of the Hopfield net we can

distinguish three types of dynamics.

1. DSDT: Discrete-Space, Deterministic-Transitions.

2. CSDT: Continuous-Space, Deterministic-Transitions.

3. D SST: Discrete-Space, Stochastic-Transitions.

In the following, we will describe in detail each of the various dynamics.

• DSDT: In this mode of operation, a neuron is chosen at random for state

update. All neurons will have as output either -1 or 1. The chosen neuron

8
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Figure 2.4: Transition probabilities of a neuron: DSST mode

will take the weighted sum of the output of all the neurons connected to it, with

weights Ti ; (connecting the Joth neuron to our i th one) carefully predetermined.

Now if the sum exceeds a given threshold Ui (which might vary from one neuron

to another), the output takes the value 1, otherwise it goes to -1. All of this

can be written in equation form (see 2.1) repeated here for convenience.

(2.2)

The I/O characteristics of each neuron can be modeled as a step function (see

figure (2.2) for the case Ui = 0).

To introduce some notational convenience, we will collect the output of all N

neurons WI, W2, ••• , WN in one vector w. By doing this, we can now describe

this mode of operation "at each clock cycle" as:

with

w(k + 1) = sgn(Tw(k) - U) (2.3)

I+1 x> 0

sgn(x) = -1 x < 0

o x =0

where U = vector of thresholds = (UI, U2 , ••• , UN). However, for all practical

purposes we can assume the thresholds to be equal since this yields to an easier

VLSI implementation. In fact, most versions of the model have zero threshold.

9



Note also that, strictly speaking, only one entry of U is updated at a time.

However, it will turn out that this distinction is immaterial for our work.

In the literature: T, the matrix of interconnection weights Tij, is referred to as

the matrix of "synaptic efficacies" by analogy with biology.

Depending upon the choice of T, the vector operation might have fixed points,

as it might also exhibit some interesting features. Namely, by careful choice of

T, one can let any starting initial vector w(O) converge after some time to one

of a certain set of fixed points.

To illustrate with an example: Let T be

T (~~ =~)
-1 0 3

chosen arbitrarily. Then T will have the vectors:

as fixed points. More specifically, T will drive all other states to the attractors

in the way described by the following schematic diagram:

Note also that this T has a nice property: It takes each state to the closest

attractor in Hamming distance measure. So, we can classify the network with

the chosen T as a memory for 4 patterns, and starting with any unknown pat­

tern containing partial information about one of the attractors it will converge

to it, hence the name "Content-Addressable-Memory".

10



• CSDT: Contrary to the previous mode, here all neurons will update their

states simultaneously. Also, the output of each is not restricted to live in a dis­

crete space, but rather is allowed to take continuous values between, say, 0 and

1. The major change being yielded in the I/O characteristics of a neuron which

is now a sigmoid instead of the old step shape (see figures (2.2) and (2.3) for

a comparison). Note, however, that even in this case, the final limiting states

can be forced to lie on the corners of the hypercube by gradually shrinking the

width of the linear region of the sigmoid function .

• DSST: This mode differs from the previous ones by the fact that equation (2.2)

no longer holds, and transitions are random and follow a certain probability

distribution. As illustrated in figure (2.4) the sum of inputs to each neuron will

now only determine the probability that the output will go to 1 (or equivalently,

to -1).

2.3 Properties of Hopfield Nets

Hopfield studied extensively the model he proposed and concluded - after several

computer experiments - that it could work as a content-addressable-memory [9].

As we have already illustrated in the previous section, a memory location is not

addressed by an address but rather by incomplete information about its contents.

For example, if the memory has the data 0111001 then a partial knowledge, such

as 01*1*0*, should be enough, for instance, to retrieve the full data.

In another part of his work[ll], Hopfield used the network to provide "good" but

"fast" solutions to such computationally hard problems like the Travelling Salesman

Problem, thereby showing an important collective (i.e. parallel) computation feature

of his network.

Finally, Hopfield used his network to simulate an A/D converter!

The probable reasons for the interest in the Hopfield Network are:

1. The internal connections remind us of the way neurons are connected in the

brain.

2. It can be analyzed using statistical arguments.
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3. It is a fail soft device since it will keep operating satisfactorily even when some

of the wires are randomly disconnected.

4. It exhibits the feature of "learning". For neurophysiologists, it is believed that

the human being learns by modifying the brain synapses l . Since in the Hopfield

network the synapses correspond to the interconnection weights Iii, the ability

to add memories by modifying these weights is an interesting property.

5. Finally, the computation is collective, and being able to obtain O(n2 ) multi­

plication and O(n2 ) addition instantaneously is a real saving in computation

time. The type of computation that is being referred to is the multiplication

by the matrix T (see equation (2.3)).

2.4 Limitations of the Network

So far we have not discussed any of the severe drawbacks associated with the net­

work, some of which Hopfield himself mentioned in his paper[9]. The first and most

restrictive drawback is the dramatically low number of memories it can handle. Us­

ing Hopfield's algorithm to determine the interconnection weights Iii for a network

of N neurons, one can faithfully address by content no more than O.15N memories.

Recall that the total possible number of states in this case is 2N • A technical ques­

tion that arises is whether this drastic reduction in memory size has its origin in

the algorithm Hopfield chose to find the Iii's or is it really an inherent limitation

of the network itself? The answer to this question will be of great importance and

it is actually a fundamental one associated with neural networks.

Another limitation of the network is the appearance of little-understood spurious

memories, those memories that represent patterns we did not intend to remember.

Computer experiments have shown that they are huge in number. In my opinion,

it is here where the real problem lies, and a better understanding of the occurence

of these states is essential to its use as an "associative memory" .2

Finally, the present model requires a relatively large chip area due to the nu­

merous internal connections. It would be nice if one can find an algorithm which

IThis is called ·Hebb'~ rule- for learning.
2 another term for Content-Addressable-Memory.
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will transform any matrix of weights [Tii ] into an "equivalent" one (i.e. one with

the same input-output behavior) but having more zeroes in it. A zero in this case

represents no connection.
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Chapter 3

The Main Problem

3.1 Formulation

3.1.1 Content-Addressable-Memory

A Content-Addressable-Memory is, as we discussed in the previous chapters, a

memory from which data can be retrieved by providing partial information about

the content rather than supplying a certain address. This means that if the memory

is able to remember 8 patterns (Le. strings of N-bits of ±l's) and we present to it

a string of N-bits, it has to retrieve the best matching pattern. To describe such a

memory more formally :

Let f! = {-l,l}N. Let G = {Vt,V2 , ••• ,V8 } C f!

Our purpose is to design a network that simulates a mapping <P, such that:

1. <p(f!) = G, where G is the set of patterns to be memorized.

2. Let U E f!. We want l

<p(U) = argmind(U, V)
VEG

where d(U, V) is the Hamming distance between U and V.

N

d(Vl , V2 ) = L J.L(V;, V2
i
)

i=l

lin cases of ties, ~ may be set-valued.

14



with2

J.L(x,y) {~

In particular, \IV E G we require ~ (V) = V.

3.1.2 Hopfield's Approach

In an attempt to build a Content-Addressable-Memory, J. J. Hopfield suggested a

network with the following properties:

• Let Yin E n be the input vector and let T be an N x N matrix.

• Let w(l), w(2), ... , be a sequence of vectors defined by:3

w(l)
w(k + 1)

Yin

sgn(Tw(k))
(3.1)

where sgn(.) is defined, component-wise, as:

(

+1 x> 0

sgn(x) = -1 x < 0

o x =0

• The output of the network is limk-+oo w(k) when it exists, and we denote it by

Vout '

If the limit Vout exists \lYin E n then the mapping

H: n -t n

N-VTY.
2Note that d can also be written as d(V1 , Y2) = i 2, and therefore

N-yTU
~(U) = argmin = argmaxyTU.

VEa 2 VEa

3The actual way these vectors evolve differs from one version of the model to another. We will concentrate now
on the synchronous, deterministic-transitions, discrete-space model and show later that the results apply equally well
to all the other models.
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is called a Hopfield operator.

Note that once the matrix T is chosen, the operator H is completely specified.

It is hoped that if we can synthesize T out of the patterns we want to memorize, H

will have the desired properties of ~ described in the previous section. However, as

we will soon see, this is not a trivial issue. In fact, the most widely known algorithm

to construct T - the so-called outer product algorithm4- results in the appearance

of a much larger number of memories than required. These extra memories are for

this reason called spurious memories.

Definition: Let H be a Hopfield operator. A vector V is spurious if

V E n\G and H(V) = V.

Problem: Characterize the spurious vectors of a given operator H

This problem is of fundamental importance to the field of neural networks, and

solving it (at least for the outer product case) will shed light on and provide consid­

erable insight into the usefulness of the Hopfield network, specifically as a Content­

Addressable-Memory.

In the next section, the main result regarding this question will be stated and

followed by a theoretical proof together with some experimental tests.

3.2 Solution: Characterization of Spurious States

3.2.1 Main Theorem:

Let G = {Vb ... ' V,} c n, where the Vi's are mutually orthogonal, Le. ¥iTVj = Noij •

Let T = 2:;=1 Vi¥iT. Let A, be the set of vectors the network ends up memorizing,

Le. A, = {V: H(V) = V}.
Then the following is true :

·Under this scheme T is taken to be the sum of outer products of the vectors to be memorized.

•
T= LViVt

i=l

16



• G C A,: This means that, indeed, the network does memorize the patterns we

are interested in. Note, however, that G is a proper subset of A,.

• Elements of A,: Let D, = Set of all realizable Boolean functions of VI, V2 , ••• , V,. 5

Then, there is an injection between A, and D,.

For the case s ~ 3, there is a bijection between As and D s.

• Cardinality of A,: For s ~ 7

card(AI ) = 2, card(A2 ) = 4, card(As) = 14, etc... see table 3.1

and for s > 7
3' 2,2
- < card(A,) < -,
2 s.

Note that the number of spurious memories is (card(A,) - s) which is quite

large.

s 1 2 3 4 5 6 7
card(A,,) 2 4 14 40 1402 21,228 3,548,358

card(A,,) - s 1 2 11 36 1397 21,222 3,548,351

Table 3.1: Number of attractors and spurious states

3.2.2 Example: 8=3

Let Vb V2 and Vs be 3 mutually orthogonal vectors of!l. Let T = VIvt + V2vl +

VsVs
T • Let H be a Hopfield operator corresponding to T. Then the set of patterns

the network ends up memorizing is:

As = { VI; V2 ; Vs ; V I ; V 2 ; V S

VIV2 + VS(VI EB V2) ; V I V2+ Vs(V I EB V2)

VIV 2 + VS(VI EB V 2) ; VIV2+ V s(VI EB V2)

V I V 2 + Vs(V I EB V 2) ; VIV2+ V s(V I EB V2)

VIV2+VS(VIEBV2); VIV2+VS(VIEBV2) }

5Realizable Boolean functions are a special class of Boolean functions. See next chapter for a complete definition.
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where the logical operations are defined on an entry by entry basis. Note that there

is a bijection between A 3 and the set of realizable Boolean functions of 3 variables.

This set is:

{Xl, X2, X3, XI, X2, X3, XIX2+ X3(XIEB X2), XIX2+X3(XIEBX2), XIX2+X3(XIEBX2),

XIX2 + X3(Xl EB X2), XIX2 + X3(Xl EB X2), XIX2 + X3(Xl EB X2), XIX2 + X3(Xl EB X2), XIX2 +

X3(Xl EB X2)}.

3.2.3 Remarks

Taking a closer look at the above example, the following observations can be made:

1. For this special case, it turned out that card(A3 )=card(D3).

2. The number of attractors is always 14 no matter how large N is.

3. For each attractor, its negative is also an attractor.

4. The number of spurious states is 14 - 3 = 11.

5. If we had the chosen 8 = 7 case, we would have obtained 3,548,351 attractors,

literally MILLIONS of spurious states!!!.

3.2.4 Proof

Let H be a Hopfield network as described in the previous section. Let Vb V2 , ••• ,

V8 be 8 orthogonal vectors of dimension N. Let T = ~ Ei=l ViViT • Let v be an

attractor of H, Le. H(v) = v, then 6:

Lemma: v is an attractor if and only if sgn(Tv) = v.

Proof: Suppose sgn(Tv) = v. Let w(l) = v. From equation 3.1 we conclude that

w(2) = w(3) = ... = v. Therefore H(v) = v and hence v is an attractor.

To prove the other direction, let v be an attractor. Let w(l) = v. From equation

3.1 we conclude that limk-+oo w(k) = v . The key point to notice is that the space of

states is finite, hence we will hit the limit, since we are given it exists, in 2N steps

at most. Therefore, w(2N + 1) = w(2N + 2) = ... = v. Now since w(2N + 2) =

sgn(TW(2N + 1)), we conclude that sgn(Tv) = v) D

6This lemma applies to any real matrix T
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• Let v be an attractor. Then,

sgn(Tv) v.

sgn(Ei=l ~ViViT v) v.
sgn(Ei=l aiVi) v.

Note that ai = ViTv/N and hence aiVi is simply the orthogonal projection of

v over Vi . Now it becomes apparent that the argument of the signum function is

nothing but the orthogonal projection of v over S, the space spanned by the eigen­

vectors of T that correspond to nonzero eigen-values. For this reason, T is called a

projective matrix.

If we define an orthant of a vector v, O(v), to be the region of Rn that sat­

isfies: sgn(xl) =sgn(vl), sgn(x2) =sgn(v2), and so on ... , (i.e. the orthant of

v = (1,1, -1,1) is the region of Rn specified by: Xl > 0, X2 > 0, X3 < 0, X4 > 0)

then, we can characterize the sgn function as a mapping that maps a vector into

that vertex of the N-cube that shares the same orthant.

Making use of the above two observations, we can directly conclude that:

Fact I: A necessary condition7 for v to be an attractor is that S intersects

the orthant of v.

Stated in mathematical terms:

sgn(Tv) = v =* 0 (v) n S :f 0.

Note also that, in generals

Fact II: A necessary and sufficient condition for v to be an attractor is

that the orthogonal projection of v over S lies also in the orthant of v.

In equation form:

sgn(Tv) = v ¢::::> proj-L(v)s E O(v) .

• Let Qs = {v:S n O(v):f 0}. Let As = {v:H(v) = v}. Then, from Fact I we

conclude:

(3.2)

7This condition is quite general and applies to any real matrix T.
8Although we will not use FACT II in the coming proof, we included it to make the picture clearer.
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How to determine Qs ?

For the sake of illustration, I will consider the case of 3 memories (8 = 3) and

then generalize.

Let T = E~=l ViViT • Without loss of generality we can interchange any two rows

of corresponding entries until we reach the canonical form of table (3.2).

Vl V2 V3

+1 +1 +1

+1 +1 ----=t

+1 -1 +1

+1 -1 r-:r-

-1 +1 +1

-1 +1 ----=t

-1 -1 +1

-1 -1 r-:r-

}all (rows)

Table 3.2: Vb V2 and V3 in canonical form

Let S = Space spanned by Vb V2 and V3 • To find the orthants that S intersects

it is enough to study the sign of entries of the vector

(3.3)

which is, in turn, the same as exploring the vector of signs generated by:(see table

(3.2))

(3.4)

(3.5)
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(3.6)

(3.7)

The question now becomes: Using different choices of cx.,{3 and 1 how many distinct

vectors of signs can we generate? Or, stated differently, how many regions of R 3

do we obtain after drawing 4 planes? At this point, the need for Threshold logic

results becomes obvious.

Figure 3.1: Cube divided into 14 pieces by 4 planes passing through its center

From the literature on Threshold logic9
, we learn that 4 planes passing through

the origin divide R 3 into 14 regions (and not 16 I!, see figure (3.1)) such that all

the triplets (cx., (3, 1) lying in the same region generate the same vector of signs (in

equations 3.4-3.7)

A set of 14 triplets,lOone from each region, is

M = { (1,0,0),(-1,0,0),(0,1,0),(0,-1,0),(0,0,1),(0,0,-1),

(1,1,1), (1, 1, -1), (1, -1,1), (1, -1, -1),
(-1,1,1), (-1,1, -1), (-1, -1, 1), (-1, -1, -1) }

°The next chapter is dedicated to provide the basic information about this field.
!Osee Chapter 4: and Appendix A for more detail
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From equation 3.3 and the discussion preceding it, it should be clear now that

So, what is A 3 ?

One way to determine A3 is, using equation (3.2), to check every vector of Q3

and see if it satisfies sgn(Tv) = v. However, with some thought, we need only check

2 vectors of Q, namely those that correspond to

m = (1,0,0) and m = (1,1,1)

Taking N = 4, VI = (1,1,1,1), V2 = (1,1, -1, -1) and V3 = (1, -1, -1, 1) (the

vectors are in their canonical form) we find out that, indeed, VI and sgn(VI +V2+V3)

are attractors. Therefore, for s = 3

A3 - Q3

{v:v=sgn(mIVI+m2V2+m3V3) and (mbm2,m3)EM}

What is even more interesting is the fact that the elements of Q3 can be written

as Boolean functions ll of VI, V2 and V3 , where it turns out that

sgn(VI + V2 + V3 ) -

sgn(V1 + V2 - V3 )

VIV2+ V3(VI E9 V2)

VIV2+ V 3(V1 E9 V2)

and so on ... with the operations on the right hand side expressions being Boolean

operations defined on an entry-by-entry basis.

Finally, we can conclude the following important result that was stated before:

Let H be a Hopfield network made out of N neurons having zero threshold.

Let T = v1vt +v2vt +V3V3
T,where Vb V2 and V3 are 3 mutually orthog­

onal vertices of the N-cube. Then, the attractors of H (or equivalently,

the fixed points of the operation sgn(Tv) = v) are the following

11 see next chapter for more details.
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VIV 2 + VS(VI EB V 2) ; VIV2 + VS(VI EB V2)

V IV 2 + VS(V I EB V 2) ; V IV2 + V 3 (V I EB V2)

VIV 2 + V S(VI EB V 2) ; V I V 2 + V 3 (V 1 EB V 2)

where the logical operations between vectors are defined on an entry-by-entry basis.

A Micronote on 8

So far we have not discussed anything about s, the number of mutually orthogonal

vertices of the N-cube. Contrary to what one might originally think, the maximum

number of s needs not be always N but might in fact be a much smaller number.

If N is odd then s = 1 since no two vertices can be mutually orthogonal (adding an

odd number of -1 and +1 can never result in 0). However, it can be shown that if

N = 2P for some p, it is guaranteed that we can let s = N .

• Case s > 3: Going back to our previous dicussion. To obtain analogous results

for the case s > 3: Let VI, ... , V8 be s mutually orthogonal elements of the N-cube.

We interchange the rows until we obtain the canonical form similar to table (3.2).

The question is: What is M for s > 37

Answer: Books on Threshold Logic (e.g. [5]) have listed the elements of M for

s = 1,2, ... ,7. If s = 4 for instance, then (omitting permutations and negations)

we get

M = {(I, 0, 0, 0), (1, 1, 1,0), (2, 1, 1, I)}

(the full M has 104 elements).

Checking which of these correspond to attractors we find that only (1,0,0,0)

and (1,1,1,0) do.

Counting all possible permutations and negations we obtain that the overall

number of attractors in the case s = 4 is 40, where each attractor is of the form

with m = (ml,m2,mS,m4) = a permutation of either (1,0,0,0) or (1,1,1,0).

Doing the same for s = 5,6 and 7 we obtain the following fundamental result:
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Consider a Hopfield network made out of N neurons having threshold

zero. Let [1ii] be the interconnection matrix of the network. let s be

the rank of T. Let Vb ... , V8 be the eigen-vectors of T (with nonzero

eigenvalues) . Assume that these vectors are constrained to be corners of

(-1, +I)N. Assume further that the corresponding eigen-values are the

same (and positive). Let As be the set of attractors of H, then

card(At} = 2 card(A2) = 4 card(A3 ) = 14 etc ...

and in general
38 2s2

- < card(As) < _, ~ 2
211

2 s.
with the attractors being realizable Boolean functions of Vb ... ,Vs .

Again the reader is referred to appendix A for a complete listing of the realizable

Boolean functions with zero threshold.

A point here needs to be clarified. In certain cases (e.g. N = 8, s = 8) some of

the attractors may turn out to be the same. The overall number of spurious states

will be less than what is listed in table (3.1). However, this will not occur if all the

typical rows in the canonical form are present (Le. Vi, ail + ai2 ;f 0 in table (3.2)).

It is easy to see that a necessary condition for the presence of all typical rows is to

have log2 N ~ s - 1.

We have not proved yet the last part of the theorem, namely

(3.8)

To see why this is true, we refer to the fact that there is an injection between As

and D 8 , the set of realizable Boolean functions of Vb .. . ,V8 • Therefore,

But it was proved by Winder[26] that

thereby establishing the upper bound.

24



For the lower bound it is enough to note that for any 8 all vectors m having

an odd number p of ±l's and (8 - p) zeroes will correspond to an attractor. The

overall number of such attractors is

s (8) 38
- (-1) 8:L 2P=---

p=l,podd P 2

the result of the summation can be obtained by expanding (1 + 2)8 and (1- 2)8 and

then taking the difference.

Experimentally we see that the lower bound is very loose but still it expresses

the exponential growth of the spurious states.

So far, no attempt has been made to correlate between D 8 and Qs. In fact,

a careful analysis (see next chapter) can show that there is a bijective mapping

between D sand Qs. This means -in words- that a space spanned by vectors of the

N -cube intersects an orthant if and only if the representative vector12 of the orthant

is a realizable Boolean function of these vectors.

12The representative vector of the orthant is the N-cube element that lies in it.
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3.2.5 Experimental Results

Appendix B includes a program written in LISP. This program is used to search the

whole N-cube -looking for the attractors of the Hopfield Network- for the cases:

s=3,N=8; s=4,N=8 and s=5,N=16. The whole list is printed for the first two

cases while for the last case, and due to lack of space, only the number of attractors

is computed and printed.

1. s==3, N ==8

IVl
The vectors to be memorized are V2

V3

(+,+,+,+,-,-,-,-)
(+,+,-,-,+,+,-,-)
(+,-,+,-,+,-,+,-)

1 ==> (list-attractors (enumerate-vertices 8) )

1 (+ + + + - -) <--- V1
2 (+ + + - + - - -)
3 (+ + - + - + - -)
4 (+ + - - + + - -) <--- V2
5 (+ - + + - - + -)
6 (+ - + - + - + -) <--- V3
7 (+ - - - + + + -)
8 (- + + + - +)
9 (- + - + - + - +)
10 (- + - - + + - +)
11 (- - + + - - + +)
12 (- - + - + - + +)
13 (- - - + - + + +)
14 (- - - - + + + +)
DONE
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2. s==4, N ==8

Here we add to the vectors from last case:

V4 =(+,+,+,+,+,+,+,+)

1 ==> (list-attractors (enumerate-vertices 8) )

1 (+ + + + + + + +) <--- V4
2 (+ + + + + + - -)
3 (+ + + + + - + -)
4 (+ + + + - + - +)
5 (+ + + + - - + +)
6 (+ + + + - - - -) <--- VI
7 (+ + + - + + + -)
8 (+ + + - + - - -)
9 (+ + - + + + - +)
10 (+ + - + - + - -)
11 (+ + - - + + + +)
12 (+ + - - + + - -) <--- V2
13 (+ + - - - - - -)
14 (+ - + + + - + +)
15 (+ - + + - - + -)
16 (+ - + - + + + +)
17 (+ - + - + - + -) <--- V3
18 (+ - + - - - - -)
19 (+ - - - + + + -)
20 (+ - + - - -)
21 (- + + + - + + +)
22 (- + + + - - - +)
23 (- + - + + + + +)
24 (- + - + - + - +)
25 (- + - + - -)
26 (- + - - + + - +)
27 (- + - + - -)
28 (- - + + + + + +)
29 (- - + + - - + +)
30 (- - + + - - - -)
31 (- - + - + - + +)
32 (- - + - + -)
33 (- - - + - + + +)
34 (- - - + - - - +)
35 (- - + + + +)
36 (- - + + - -)
37 (- - + - + -)
38 (- - - + - +)
39 (- - - - - - + +)
40 (- - - -)
DONE

-------
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3. 8==5, N==16

In this case the vectors to be memorized are:

(+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+)
(+,+,+,+,+,+,+,+,-,-,-,-,-,-,-,-)
(+,+,+,+,-,-,-,-,+,+,+,+,-,-,-,-)
(+,+,-,-,+,+,-,-,+,+,-,-,+,+,-,-)
(+,-,+,-,+,-,+,-,+,-,+,-,+,-,+,-)

1 ==> (count-attractors (enumerate-vertices 16»
1402

By inspecting the computer results, we find a perfect match with the theoretical

expectations. The reader is referred to section 3.3.3 for a discussion about the

basins of attractions.
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3.3 Discussion

In the coming sections, we will examine the obtained results closely, trying

to correlate them with present available results that have used the statistical

approach. In addition, we will discuss the implications of such results. Finally,

we will assess the Hopfield approach as a means for simulating a Content­

Addressable-Memory.

3.3.1 Relation to others' work

In a paper by Amit et al [3] as well as a paper by Newman [21], it is shown that

in the case of N -+ 00, the spurious states correspond to mixtures of finitely

many original patterns. Each such configuration, which they denote X(v) is

given by:

X(v) = sgn(VlVI + V2V2 + ... + £IsVs)

where V= (VI, £12' ••• ) is a fixed real vector independent of 8 with the following

properties:

(i) v has a finite number of non zero components.

(ii) ±V1 ± £12 ± ... =f 0 for any choice of ± signs.

(iii) For each nonzero £18 , the sum ±V1 ± £12 ••• has the same sign as ±vs for

exactly a fraction (1 + £18 )/2 of all possible sign choices.

Our work was essentially to exhaust all such possible v's; enumerate the spu­

rious states;13 give a different representation in terms of Boolean functions of

the original patterns and show that the results hold exactly even for finite N

as long as log2 N ~ 8 - 1 and the vectors are orthogonal in the geometric sense.

3.3.2 Impact of our work

The result we have already proven has serious implications. It states that

no matter how many neurons we use to memorize 8 words (using Hopfield's

13Enumerating the spurious states by simply searching the N-cube is computationally very expensive. For the case
8 = 7 for instance, N has to be at least 27 - 1 = 64. This means that the size of the N-cube will be 264 = 1.8 X 1019.
If 10-98 is neededto check every vector, the whole cube will require 300 years II Our approach provide for a very
efficient way to find the attractors.
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algorithm) we always end up memorizing As. Such a result falsifies a recent

impression which states that increasing the number of neurons will reduce

the number of spurious states. In fact, increasing N can only help pushing the

attractors to stay apart from each other (Le. to increase their mutual Hamming

distance).

3.3.3 Generality of Results

The following questions may be asked by the reader:

(a) What if the original vectors are not orthogonal?

Answer: If they are not exactly orthogonal then they are at least uncorre­

lated, Le. E(ytTVi ) = 0 for i ;f i. In this case our results will still hold for

large enough N (see Amit et al [3] for a discussion on the case N -? 00).

(b) What if T was not a sum of outer products of vectors?

Answer: If we assume that T is symmetric, then from linear algebra any

N x N symmetric matrix has N orthogonal eigen-vectors: Vi, i = 1, ... ,N.

Therefore we can write it as

However, we imposed two constraints: First, the eigen-vectors have to be

elements of 0; second, the eigen-values have to be the same.

(c) What if T is not symmetric?

Answer: From linear algebra we know that a non-symmetric T will have

complex eigen-values. This will result in oscillatory output provided that

the input is the vector with the complex eigen-value (as can be seen by

direct computation).

(d) Even if T is symmetric why should we let the eigen-values be the same as

the original vectors ?

Answer: They need not be. In fact the results are given in terms of the

eigen-vectors of T regardless of their interpretation. The only restriction

is that they belong to the N-cube.
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(e) Why should we restrict the eigen-vectors to be vertices of the N-cube?

Answer: Even when we relax this constraint FACT I remains true and

therefore the upper bound in equation 3.8 is still applicable. To obtain

a lower bound more work is needed, and in fact this is left as an open

technical question.

(f) What if the eigen-values are not the same?

Answer: If we fix the eigen-values, the attractors can again be found by

checking which elements of Q8 are fixed points of T (see discussion on page

22).

(g) What if we are not operating the network under the mode you have cho­

sen?

Answer: Although we have considered in our analysis the synchronous,

deterministic-transitions, discrete-space model, our results still apply equally

well to all other types of dynamics. To see the validity of this assertion,

note first that synchrony is not an issue because we are studying the fixed

points of H and consequently the fixed points of sgn(T.). Therefore it

does not matter whether we update one neuron at a time or all of them

together.

Second, even when the chosen mode has a continuous space (which amounts

to a sigmoid I/O relationship) instead of a discrete space (which amounts

to a signum, see figure (2.3)), the linear region of the sigmoid will gradually

shrink during the operation of the network to force the final output state

to be on the N-cube (see Hopfield [10]).

Finally, in the case of stochastic transitions, where the probab£l£ty of chang­

ing the neuron state is given by figure 2.4, the number of spurious states is

significantly reduced at high temperature (Le. a long transition region in

figure 2.4). However, when we start "cooling" the network other spurious

states start to appear and for T = a we are faced with all of them. One

might argue that by heating the network enough at the beginning we will

produce a correct output with very high probability. However the number

of neurons needed in this case is approximately N = s/0.15, and if we

know that N neurons mean N 2 interconnections we readily see that this
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aspect is not very practical for implementation purposes.

(h) What is harmful about having spurious states if they are quite away from

the original memories?

Answer: To push the spurious states away from the original memories we

need a large N and we are back to the previous discussion.

(i) How about the basins of attractions of these spurious states?

Answer: It is proved rigorously by Newman[21) that these spurious pat­

terns have energy barriers for sufficiently small a(= lim s/N).

3.4 An interesting Algorithm

One of the problems associated with the Hopfield Network is that of the numer­

ous internal connections. If we can localize the connections we can implement

the network using smaller chip area. In what follows we will provide an opti­

mum solution for this problem.

Definition: Let T and T' be 2 N x N matrices. Let Hand H' be the Hopfield

operators characterized by T and T' respectively. We say that T is isomorphic

to T' if H = H'.

Problem: Given a matrix T, find the matrix T' which is isomorphic to T and

has the largest number of O's.i.e. find

arg max 2: 6(TIj , 0)
T'isoT ..-,3

where 6 is the Kronecker delta. Note that no restriction is imposed on T

whatsoever. There are, however, some constraints on the mode of operation.

It should be either deterministic with a signum type of I/O relationship, or

stochastic with the probability of transition taking one of two values only (Le.

Pr(Vi=l)=p if E njVj > 0, and (1 - p) if E njVj < 0).

Solution: Let T and T' be two isomorphic matrices. Then,

\Iv E n sgn(Tv) = sgn(T'v)
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Let a and a' be the first rows of T and T' respectively. Then

\:Iv E nsgn(av) = sgn(a'v) (3.9)

Given a, the above equation does not have a unique solution in terms of a'.

Our aim is to find a solution with the maximum possible number of zeroes in

it.

If we draw all the binary14 hyperplanes in RN , then from equation (3.9), the two

vectors a and a' should fall at the same side with respect to all the hyperplanes.

That is to say, they should belong to the same convex cone (e.g. see figure (4.1)

and the following discussion).

3.4.1 The Basic Idea

We want to determine the vector in the same cone which has the largest number

of zeroes in it. Because of the inherent symmetry of the problem, this vector

has to be equidistant from all the intersections of the hyperplanes with the cube

surface on which it lies. One way to accomplish this is by assigning positive

charges to both the vector in consideration and to the traces of the hyperplanes

on the surface on which this vector lies (if the vector does not lie on the cube

surface, Le. the greatest entry in magnitude is not ±1, we can force it to be so

by scaling it by the magnitude of the largest entry). Having done so, the vector

will move and settle down in the unique minima (unique because of symmetry)

of the potential of the already defined electric field.

3.4.2 Description of The Algorithm

We define a surface of the N-cube as :

• Let a be the first row of T.
14A binary hyperplane is one whose coefficients are either +1 or -1.

33



• Let PI, P2 , ••• , Pm be the binary hyperplanes in RN
• Their number is

2N - I • Each is of the form CiX = o. Where Ci E n and x = (Xl, X2, ••• , XN)

is the vector of the space variables.

• Scale a by the magnitude of its largest entry (Le. by its H oo norm).

• Let Sa = The surface of the N-cube on which a lies.

• Let LI, L 2 , ••• , L m be hyperlines of dimension (N - 2) such that

Le. Li is the trace of Pi on Sa.

• Let di(r) = distance between L i and an arbitrary vector r. For example,

if Pi: XI +X2 + ... XN = 0 and Sa: XI = 1, then,

( )
2N-l I

• Let f r = Ei=I d~(r)

• Using steepest descent algorithm or otherwise find

minf(r)
r

with r = a as initial value.

• Replace the first row of T by the already found minimum.

• Repeat for all the other rows.

3.4.3 Example

Let T be the 4 x 4 matrix

1 3 -1.2 4

2.2 -1 0.1 5

1 2 1 1

1 1 0.9 0
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Then the optimum isomorphic matrix to T is

1/2 1/2

o 0

1/2 1

1 1

-1/2

o
1/2

1

1

1

1/2

o

Note that the new matrix has much less variations in the entries, which has a

clear practical consequence.

3.4.4 Comments

In the process of computing the minimum of the function f (r) we have to

compute an exponential number (2N - 1) of terms. This is not practical for

large values of N. Note however that this the best that can be achieved since

the problem is NP-complete.

To see why it is so, let a be a row of T. To transform ai, the ith. entry of a, to

zero, we have to check if

1I:±ail> lail
i"l-i

but this is equivalent to the "Partition" problem which was proved in [6] to be

NP-complete.

3.5 Summary

In this chapter we have formulated rigorously the problem of spurious states,

provided an analysis based on a geometrical approach and supported with

computer experiments. We also discussed the generality of our results, and

clarified the relation between our work and other ongoing research in the same

field.

In addition to this, we described an algorithm which transforms a Hopfield

network into an equivalent one having the least possible number of internal

connections as well as the least possible number of parameter values. Based
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on these two characteristics, this algorithm represents a major step forward in

terms of implementation efficiency.
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Chapter 4

Threshold Logic

In this chapter we shall study Threshold Logic, the properties of threshold

functions, and discuss the results in the literature that are in close relation

with our research.

4.1 Definitions

Threshold logic deals with the construction of switching functions using thresh­

old devices as building blocks. Threshold devices form linear summations of

their inputs, and discriminate on the magnitude of the sum.

We will start first with few definitions of terms as considered necessary for the

clear understanding of threshold functions, the geometrical interpretation of

switching functions in the n-dimensional space, and the clarification of certain

notations.

A binary variable Xi is a variable which assumes the value of either element of

the two-element set B, Le.

Xi E B = {O,1}, or {-1, 1}, or {F, T}, or in general, {a, b}.

Throughout our work we shall use -1 and 1 for the two elements of B. This

will turn out to be more convenient because of the inherent symmetry.
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A switching or Boolean function is a function of n binary variables, such that

it assumes a value of either -1 or 1 when each of its n variables assumes a

value of -lor 1.

The Cartesian product of n copies of B, Bn

n-cube.

BxBx ... xB, is called the

The n-cube Bn is obviously a subset of the continuous Euclidean n-space Rn.

There are 2n elements in the n-cube, called vertices. They are the 2n different

valuations of the ordered n-tuple X = (Xl, X2, ... , x n ), where Xi, i = 1,2, ... , n,

is the i-th coordinate or component.

In the geometrical sense, a switching function of n variables, F(Xb ... , x n ),

is defined by assigning either -lor 1 to the 2n vertices of Bn, Le. a mapping

from the n-cube Bn into B, or

A Boolean function F(X) of n binary variables X is said to be a threshold

function if the following conditions are satisfied:

n

F(X) = +1, if fA(X) = Laixi > T
i=l

n

F(X) = -1, if fA(X) = L aixi < T
i=l

where

Xi a binary variable assuming a value of either lor - 1, fori = 1,

(4.1)

(4.2)

2, ... , n.

X (Xl, X2, ... , x n )

an ordered n-tuple or vector on n binary variables.

ai a real coefficient called the weight of Xi, for i = 1, 2, ... , n.

A (ab a2, ... , an)

an ordered n-tuple or vector of n coefficients for the n variables
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T

F(X)

fA (X)

in the algebraic function, or the weight vector.

a constant called the threshold value.

a Boolean function ofX.

an algebraic function of X.

A different way of writing equations 4.1 and 4.2 is:

n

F(X) = sgn(L: aiXi - T)
i=l

n+l

sgn(L: aixi)
i=l

where an+l = -T, Xn+l = 1 and sgn is defined by

(

+1 X> 0

sgn(x) = -1 x < 0

o x =0

In order to avoid having F(X) = 0 which does not make sense, we choose the

ai's such that ±al ± a2 ± ... ± an+l =1= o.
By moving to the (n + 1) dim space of the ai's we see that each equation of

the form E Xiai = 0 is an n-dim hyperlane for a specific choice of the boolean

xi's. Each such hyperplane divides the space of weights into two regions one

of which contains the weights we need to realize F(X) and the other contains

the weights for F (X).

To clarify this argument consider the case n = 1. To implement F(X) = x
(the "not" function), for instance, we should find al and a2 such that

or alXl +a2 > 0 for Xl =-1

and alxl+a2<0 for xl=+l

which is equivalent to solving the inequalities

39



Figure 4.1: Space of Thresholds for one variable

this is best solved geometrically in the space of weights (figure 4.1).

It is clear that the pair (ab a2) should lie in region I for it to realize the "not"

function. Similarly, any pair in region III realizes the identity function F(Xl) =

XI, any pair in region II corresponds to the "true" function F(xt} = +1, and

finally any pair in region IV corresponds to the "false" function.

From this simple example we can gain a lot of understanding about Threshold

logic. By going to the space of weights and drawing all the binary hyperplanes

we divide this space into a number of convex cones such that each corresponds

to a threshold function. Therefore, from the number of convex cones we can

generate with 2n binary hyperplanes (2n since each Xi in E Xiai = a is either

+1 or -1 except for X n+l), we can determine the number of possible realizable

boolean functions.

In the next section we will see that if R(n) is the number of regions obtained

by dividing Rn with m binary hyperplanes of dimension (n - 1), then

Note that the space of weights is Rn+l only if we are allowed to vary the

threshold; however, if we are constrained to a fixed threshold (e.g. zero), due

to implementation issues, then the space of weights is really R n
•
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Threshold function may also be referred to as a linearly separable function, a

I-realizable function, a linear-input function, a ma;"ority decision function, etc.

The term "linearly separable function" means, geometrically, that in the n­

dimensional space the set of vertices represented by F (i.e. {X: F(X)=1})

can be separated from the set of vertices represented by the complementary

function F by a hyperplane. However this hyperplane is now in the space of

the binary variables Xl, ••• , x n and should not be confused with the binary

hyperplanes of the space of weights.

The term "I-realizable function" means that the function can be realized by a

single threshold logic element.

The term "linear-input function" means that the algebraic equation repre­

senting the separating surface contains only first-order terms and therefore is

linear.

The term "majority decision function" is slightly misleading. Strictly it should

mean the function which can be realized by a majority gate, a gate whose

output is 1 if and only if a majority of the inputs are 1, for instance, a 2 out of

3 majority gate. However, in the literature, the term majority decision function

has been used for a general threshold function.

A threshold logic element is a physical element whose inputs consist of n binary

variables {Xl, X2, ••• , xn } and whose output is F(X) where F is a threshold

function of the n variables.

In other words, a threshold logic element is a physical realization of a threshold

function. Note in this context that a neuron is nothing but a threshold logic

element.

4.2 Number of Threshold Functions

For up to 7 variables, the number of threshold functions has been exactly

determined[27]. The general problem of how many threshold functions there

are for n variables remains unsolved at present. Several upper and lower bounds

, however, have been derived for n > 7.
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The calculation of an upper bound for the number of threshold functions, R(n),
can be easily done by considering the problem of the maximum number of cones

into which any number of hyperplanes passing through the origin may divide

a space of any dimensions.

Let Cm,n be the maximum number of cones into which m hyperplanes (of

dimension n-1) passing through the origin may divide a space of n dimensions.

It is obvious that Cm,l = 2 for each m > 0, Cm,2 = 2m, C 1,n = 2 for any n > 0.

The general formula can be derived by the following argument. Suppose that a

formula has been established for m -1 hyperplanes in the n-dimensional space.

The m th hyperplane will be divided by m -1 hyperplanes (along at most m-1

hyperplanes) into Cm - 1,n-1 pieces. Each of these hyperplanar pieces divides

the region it belongs to into two new regions, Le. out of the original Cm - 1 ,n

regions at most Cm- 1,n-1 regions are doubled. Therefore we have:

Cm,n = Cm- 1,n-1 + Cm- 1,n

For m :S n, Equation 4.3 can be expanded as follows:

(4.3)

where

Cmn, Cm- 1,n-1 + Cm-l,n

Cm- 2,n-2 + 2Cm- 2,n-1 + Cm- 2,n

(.) .,t J.
j - i!(j - i)!

(4.4)

Since C1 ,n = 2 for any integer n > 0, Equation 4.4 becomes

Cm,n 2(m~1) + 2(m~1) + ... + 2(:=D
2 x 2m - 1

2m

(4.5)

For m > n, Equation 4.3 can be expanded as follows:

+ ~
m~1)C1,n_m+1 + ... + (:=~)C1,1

m-1 )C (m-1)C+1 12+ ... + 1 1nm-n' m-'
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o for any integer n S 0 and since (D = C~i)' Equation 4.6Since CI,n

becomes
_ 2(m-l) + 2( m-l ) + ... + 2(m-l)n-l m-n+l m-l

2(m-l) + 2(m-l) + ... + 2(m-l)n-l n-2 °
2 E~:~ (m;l)

(4.7)

Thus the number of threshold functions realized by threshold logic elements of

n inputs and n weights is

(4.8)

which is the number when we are forced to use a fixed value of the threshold

(e.g. zero). However, if this restriction is released, then the number of threshold

function satisfies:
n (2n 1)R(n) < 2(; ; (4.9)

For purposes of computation, 2n2In! is a convenient approximation to 2 E~ en;l).
For a complete proof of this fact see Appendix B in [15].

Finally, a lower bound was also derived by Winder [26] who showed that:

R(n) > 20.33n2

Both bounds can be written down in a single equation:

(4.10)

The ratio of R (n) to the total number of functions of n variables decreases

rapidly as n increases.

4.3 Characterization of Threshold Functions

It can be shown that for a threshold function of n variables, the complemen­

tation of variables, the permutation of variables, andlor the complementation

of the function preserves the I-realizability.
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Number of Number of switching Number of threshold Functions of fixed
variables, n functions,22 '" functions, R(n) threshold, RT (n)

1 4 4 2
2 16 14 4
3 256 104 14
4 65,536 1882 104
5 ,..., 4.3x109 94,572 1882
6 ,..., 1.8x1019 15,028,134 94,572
7 ,..., 3.4x 1038 8,378,070,864 15,028,134

Table 4.1: Number of threshold functions

For a complete listing of threshold functions for n variables, the reader is

referred to Appendix C. However, two examples will be given now, where the

results of the second one were already used in the previous chapter.

Example 4.3.1: For the case of two variables Xl and X2, the threshold functions

are all the boolean functions of 2 variables except Xl ffi X2 and Xl ffi X2 since as

we see in figure 4.2 the true vertices cannot be separated from the false ones

by a hyperplane (which is a line in this case).

-1•

-1•

Figure 4.2: Unrealizability of the xor function

Example 4.3.2: For the case of three variables, with the constraint that T = 0

only 14 boolean functions are realizable. These functions are[15]:

Xl, Xl, X2, X2, X3, X3, XIX2+X3(XlffiX2), XIX2+ X3(Xlffi x 2), XIX2+ X 3(Xlffi x2),

XIX2 +X3(XI ffi X 2) , XIX2 +X3(XI ffi X 2) , XIX2+ X 3(XI ffi X 2), XIX2 +X3(XI ffi X 2) , XIX2+
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Appendix A

List of Realizable functions

The following lists l were obtained from Dertouzos[5]. Checked vectors corre­

spond to attractors of the Hopfield Network.

A.l s == 3

li (1,0,0)

o (1,1,1)

A.2 s == 4

li (1,0,0,0)

li (1, 1, 1,0)

o (2,1,1,1)

A.3 s == 5

ti (1,0,0,0,0)

lSince we are fixing the threshold to be zero, the value of if is 1 more than the value printed in Dertouzos.
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ri (1,1,1,0,0) (2)

D (2,1,1,1,0) (3)

ri (1,1,1,1,1) (4)

ri (2,2,1,1,1) (5)

D (3,1,1,1,1) (6)

ri (3,2,2,1,1) (7)

A.4 B == 6

For the next two cases, only the vectors with nonzero elements will be listed.

The unlisted vectors can be obtained from the ones for 8=3,4 and 5 by padding

enough zeroes.

d (2,1,1,1,1,1) (1)

d (4,3,3,2,2,1) (2)

d (2,2,2,1,1,1) (3)

D (4,1,1,1,1,1) (4)

D (5,2,2,2,2,1) (5)

D (4,2,2,1,1,1) (6)

D (5,3,3,2,1,1) (7)

D (3,2,1,1,1,1) (8)

D (4,3,2,2,1,1) (9)

D (4,3,3,1,1,1) (10)

D (5,4,3,2,2,1) (11)

D (3,2,2,2,1,1) (12)

D (3,3,2,1,1,1) (13)

D (3,3,2,2,2,1) (14)
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A.5 s == 7

~ (5,3,3,1,1,1,1) (1)

~ (6,4,4,2,1,1,1) (2)

~ (5,4,2,2,2,1,1) (3)

~ (3,2,2,1,1,1,1) (4)

~ (6,5,3,3,2,1,1) (5)

~ (4,3,2,2,2,1,1) (6)

~ (9,8,5,4,3,2,2) (7)

~ (7,6,3,3,2,2,2) (8)

~ (5,4,3,3,2,1,1) (9)

~ (6,5,4,3,3,2,2) (10)

~ (4,3,3,2,2,2,1) (11)

~ (5,4,3,3,3,2,1) (12)

~ (5,5,3,2,2,1,1) (13)

~ (4,4,2,2,1,1,1) (14)

~ (3,3,1,1,1,1,1) (15)

~ (7,6,5,4,3,2,2) (16)

~ (5,4,4,3,2,2,1) (17)

~ (6,5,4,4,3,2,1) (18)

~ (3,2,2,2,2,1,1) (19)

~ (4,4,3,2,2,1,1) (20)

~ (3,3,2,2,2,1,1) (21)

~ (2,2,1,1,1,1,1) (22)

~ (8,7,6,5,4,3,2) (23)

~ (4,3,3,3,2,1,1) (24)

~ (5,5,4,3,3,2,1) (25)

~ (7,6,5,5,4,3,3) (26)
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~ (3,3,3,2,2,1,1)

~ (5,5,4,4,3,2,2)

~ (4,4,3,3,3,2,2)

~ (4,4,3,3,3,2,2)

~ (4,3,3,3,2,2,2)

~ (2,2,2,2,1,1,1)

~ (1,1,1,1,1,1,1)

D (5,1,1,1,1,1,1)

D (7,2,2,2,2,1,1)

D (6,2,2,2,1,1,1)

D (8,3,3,3,2,1,1)

D (5,2,2,1,1,1,1)

D (7,3,3,2,2,1,1)

D (4,2,1,1,1,1,1)

D (7,3,3,3,1,1,1)

D (9,4,4,3,2,2,1)

D (6,3,2,2,2,1,1)

D (3,1,1,1,1,1,1)

D (6,3,3,2,1,1,1)

D (8,4,3,3,2,2,1)

D (5,2,2,2,2,1,1)

D (7,4,4,3,1,1,1)

D (9,5,5,3,2,2,1)

D (5,3,2,2,1,1,1)

D (7,4,3,2,2,2,1)

D (7,3,3,3,2,2,1)

D (7,4,4,2,2,1,1)

D (6,4,3,3,1,1,1)
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(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)



D (8,5,4,3,2,2,1)

D (4,2,2,2,1,1,1)

D (6,3,3,2,2,2,1)

D (8,5,5,3,2,1,1)

o (9,6,5,4,2,2,1)

D (6,4,3,2,2,1,1)

D (7,5,3,3,2,2, 1)

D (5,3,3,3,1,1,1)

D (7,4,4,3,2,2,1)

D (5,3,2,2,2,2,1)

D (7,5,4,3,2,1,1)

D (4,3,2,1,1,1,1)

D (8,6,4,3,3,2,1)

D (8,5,5,4,2,2,1)

D (5,3,3,2,2,1,1)

D (6,4,3,3,2,2,1)

D (7,5,5,2,2,1,1)

D (8,6,5,3,3,1,1)

D (5,4,3,2,1,1,1)

D (9,7,5,4,3,2,1)

D (6,5,3,2,2,2,1)

o (6,4,4,3,2,1,1)

D (7,5,4,4,2,2,1)

D (7,5,4,3,3,2,1)

D (5,3,3,3,2,2,1)

D (6,5,4,2,2,1,1)

D (7,6,4,3,2,2,1)

D (8,7,4,3,3,2,2)
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(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)



o (7,5,5,3,3,1,1)

o (4,3,3,2,1,1,1)

o (8,6,5,4,3,2,1)

o (5,4,3,2,2,2,1)

o (6,4,4,3,3,2,1)

o (5,4,4,1,1,1,1)

o (7,6,5,2,2,2,1)

o (8,7,5,3,3,2,1)

o (7,6,4,3,3,1,1)

o (5,4,4,2,2,1,1)

o (9,7,6,4,4,2,1)

o (6,5,4,3,2,2,1)

o (7,5,5,4,3,2,1)

o (4,4,3,1,1,1,1)

o (6,5,5,2,2,2,1)

o (7,6,5,3,3,2,1)

o (6,5,4,3,3,1,1)

o (5,4,3,3,2,2,2)

o (7,6,5,4,4,3,2)

o (3,3,3,1,1,1,1)

o (5,5,4,2,2,2,1)

o (5,5,3,3,3,1,1)

o (6,5,5,3,3,2,1)

o (7,6,5,4,4,2,1)

o (6,5,4,4,3,3,2)

o (5,4,4,3,3,2,2)

o (4,4,3,3,2,2,1)

o (3,3,2,2,2,2,1)

51

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)



D (5,4,4,3,3,1,1)

D (6,5,5,4,3,2,2)

D (4,4,3,3,3,1,1)

D (5,5,4,4,3,3,3)

D (3,3,3,2,2,2,2)
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Appendix B

Computer Programs

The following program is written in SCHEME (a dialect of LISP). The input

are the vectors Vb... ,VB. Several procedures can be used to produce a list of

the attractors, their numbers, the limit to which each state converges,etc...

(de~ine Cattractor? v)

(equal? (operation v) v»
_. ,--------------------------------------------------------------------------,f I I

<define (operation v) I;; returns the next state of the Hop. Net.
(~ignum (*mat Tv»)

<define (check v) III checks if a given realization a IS also
(signum (*mat (transpose TM) v») ;;; an attractor

, , ,--------------------------------------------------------------------------I I I

<define <signum v)

(cond «null? v) nil)
«} <t.c.p v) u) r:.cc,ns +1 (signum (rest v»»
«( (top v) 0) (cons -f (sionum (rest v»»
<else (cons 0 (signum (rest v»»»

(define (spurious-counter list) ;;; finds the number of non-degenerate
(cond «(null? list) 0) ;;; attractors.

<else (+ <count-varieties (car list»
(spurious-counter <cdr list»»»

, I , •

• I I
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Continued.

define (count-attractors stream)
.: new} ir,E;";
(let «number-or-attr~ctors0)

(pres£nt-vertex 0»
(define (count-helper the-stream)

(set! present-vertex (1+ present-vertex»
(cond «null? the-stream) (1+ number-of-attractors»

«attractor? (top-of the-stream»
(set! number-of-attractors (i+ number-of-attractors»
(count-helper (remaining-of the-stream»)

(else (count-helper (rem~ining-o( the-stream»»)
(count-helper stre~rn»)

define (count-varieties vector) II' finds all possible permutations of a
( 1E: t « k (1 e: n 9 t h ve c tor' :> ::. ) I J IIi s t 0 f e: 1 E: ITI €: n t s .

(define (nurn-or-rep list)
<cond «rflJl1? <cdr' list.» 1'>

( <= .: car- 1 i s t) (c d d to, 1 i s t. » (j + (nu IJI- 0 f - t' E: P .; cdr 1 i s t, ) ) ::. )
<E: 1SE: 1»)

(det'lne <remove-j-elements j list)
( if (=cr'o'7' j) 1 i st

(r€:lTlov€:-j-element:=. (- j 1) (cdr' 1 ist,»»
(if (rflJII? veet.c.r) j

<of< (combination (nurn-of-rep vector) k)
(count-varieties (remove-j-elements (num-of-r€:p vector)

veer-cor' ) ) ) :>:> :>
,; '::let'l ne: (ccllllb i nat i c,n k n)

(de:fir,e (fact IT!)

( if (= (I IT.) i (* m (fact, (- m i»)::O)
(I ( fact n) (... ( fact k) (f'.act (- n k»»)

., ,------------------------------------------------_._-~----------~---------.J J J

Abstraction d~finition.

". def i ne t.e'!) car)
(define rest cdr)
(d~fin€ first-of car)
~define first-element car)
:define remaining cdr)
.define top-of head>
d~fine remaining-of tail)

;)j--------------------------------------------------------------------------

;;; definition of matrix operation +mat.

fd~fin€ (+mat mati mat2)
r; if (nu i 1? ITlati) : ( )

(cons (accumuI2t~-n + 0 (list (first-el~ment mati)
(first-e:l~ment mat2»)

<+mat (rest mat1) (rest rnat2»»)

definition of matrix operation *mat

:define (*rnat mat vector)
(mapcar (lambda (row) (dot-product row vector» mat»

:d~fine (dot-product v w)
(accumulate + 0 <acculT!ulate-n * 1 (list v wi»~)

'define (tr~nspose m~trix)

(aceumulat€-n cons '() matrix»
.;;---------------------------------------------------------------------------
:;; definition of general list manipulation procedures
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Continued.

I I ,

r: aet'lne (accurflulate cC'lTibiner init.iai-vaiu€ i ist)
( if" (nu II? 1 i st )

initicl-value:
(combin~r (car l1st>

(accumulate comblner initial-value (cdr list»»)
(define <accumulate-n op init lists)

(if (null? (car lists»
'( )

(cons (accumulate op init (mapcar car lists»
(accumulate-n op init (m~pcar cdr lists»»)

.. ,-----------------------------------------------------------------------_._-,. J,
{define (sum-of-diadic-products vectors)

(de~ine (diadic-product vector; vector2)
<define (scale-by a)

I: i ambda <;,~ )
(* a;,:»)

( if <rlu 1 1'( vtE:ctor' i) I ( )

(cons (mapcar' (scale:-b:,' (first-element. v>:;l=t,OJ"'l» vectol-;;::)
( diad i c-pr·c.duct (r·es;:. vect.or'1 ) v€c't.or·2»»

(if <null? (remaining vectors» (diadic-product (first-of vectors)
(first-of vectors»

(+mat (diadic-product (first-of vectors) <first-of vectors»
(sum-of-diadic-products (remaining vectors»»)

, ,,--------------------------------------------------------------------------,I' ..
<define (filter pred list)

<cond «null? list) '(»
«pred (car list»

(~ilter pred <cdr list»»
(else (filt~r pred <cdr list»»)

;;; d~finition of sever~l matrices, cases N=8. N=16

<define: v81 '(1 11 -; -1 -1 -1»
<de~ine ",82 "~1 1 -1 -111 -1 -1»
<define v83 '( 1 -1 1 -1 1 -1 1 -1»
(define I~M (list v81 v82 v83)
<define 18 (sum-of-diadic-products (list v81 v82 v83»)

v162 \/163 \1164

-1 -1 -1 -1 -1
" 1 1 -1 -1 -1
1 ·-1 -1 1 1 -1
-; 1 -1 1 -1
1 1 1 1 ;:>:>

" def i ne:
:: dei' i ne
" define
dE.~ine:

<de:~ine

<define:
( de:~ i rle
<def'i ne:

vH·1 '( 1 1 1 1 1 1 1 -1 -1
v1t.2 '(1 1 1 -1 -1 -1 -1 1
v 163 I (1 1 -1 -1 1 j -1 -1 1
v164 '(1 -1 1-1 1 -1 1 -1 1
vi 65 ' <: 1 1 1 1 1 1 1 1 1 1 1
v166 '(-1 -1 -1 -1»
116M (list v161 v162 v163 v164 v165»
T16 (sum-o~-diadic-products(list v161

-1 ::. )
- i ::.)
-1 :»
-1 :»

\1165»)

(de~ine v321 (append v161 v161»
<define v322 (append v162 v162»
<define v323 (append v163 v163»
<define v324 (append v164 v164»
(define v325 (append ",165 v166 v166 v166 v166»
<d~fine: v326 (append v165 v165»
(de~ine 132M <list ",321 v322 v323 v324 v325 v326»
(define 132 Csum-of-diadic-products (list v321 v322 v323 v324 v325 v326»)
;~i----------------------------------------------------------------------------
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