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Abstract

We study the problem of image segmentation in the presence of texture information
at several scales� We propose to model homogeneous textured regions as ergodic
random functions and to model images as piecewise ergodic random functions� Im�
age properties can then be retrieved by �ltering the image at all scale of resolution
with a bunch of image descriptors and then averaging this description over regions
of di�erent sizes� The result is a representation embedded in a 	scale�scale�space

which is an extension of the usual scale�space obtained by adding to it a statistical
scale dimension� The ergodicity assumption then is equivalent to assume that the
representation becomes deterministic as the statistical scale goes to in�nity� Each
type of texture can then be characterized by a deterministic 	signature
 which can
be approximately retrieved from the image by using large enough averaging windows�

We propose a method of segmentation based on evaluating the dishomogeneity
at all statistical scales and on optimization of a cost function which is basically the
dishomogeneity function plus a complexity term� We show that for piecewise ergodic
one dimensional images� in the limit of in�nitely large regions� this method allows to
recover exactly the discontinuity set of the image� Computer experiments with one
dimensional images are shown�
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Chapter �

Introduction

��� Image Segmentation� Edge Detection and Im�

age Partitioning

Image segmentation ia one of the most widely studied problems in vision� It is

generally agreed upon that image segmentation is a necessary �rst step for most

goals of vision�

We can formulate the problem of image segmentation according to two di�erent

paradigms� edge detection and region�based segmentation� In the edge detection

approach the goal is to identify locations in the image where abrupt changes in image

properties � such as brightness and texture � are present� Edges found in this

way are not required to be closed curves and usually are detected by means of local

operators� These operators work �conceptually� in two steps� �� They smooth the

image to some extent in order to attenuate the noise and �� Compute some sort of

spatial derivative �gradient� laplacian� to detect the presence of a sharp discontinuity�

For a theory of edge detection see ���� ���� A popular edge detection algorithm

is Canny�s ���� While most of the edge detection schemes have been developed for

brightness image segmentation there is also some work done on texture edge detection

���� ��� ����

On the other hand� region based image segmentation aims at partitioning the
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image into a set of homogenoeus regions� Therefore� the resulting boundaries are

closed curves� The simplest way to do this is� for instance� to classify each pixel

independently into one of two sets depending on whether its gray level is above

or below a given threshold� Else� whole blocks of pixels can be classi�ed together

according to more global properties�

For instance� in ���� ��� classi�cation of pixel blocks is performed at a very coarse

scale to take advantage of the amount of statistics which can be gathered from large

regions of the image� Then boundary resolution is improved by a coarse�to��ne strat�

egy implemented in a pyramid datastructure�

In pyramid linking ���� ��� ���� which is another region based method� nodes asso�

ciated with blocks of pixels are 	linked
 together whenever they share similar image

properties� To compute these properties a smart averaging procedure is adopted

which merges information only between blocks of pixels which are linked together�

In this way averaging over dissimilar regions is avoided� Linking and averaging are

alternated repeatedly until equilibrium is reached�

A similar tecnique �split and merge� is to recursively split dishomogeneous regions

into smaller components and merge similar regions together until no more changes

are needed ���� ��� �� ��� ��� ����

In region growingmethods a region is progressively expanded until its homogeneity

would no longer be mantained by a further expansion ���� ��� ����

It is not clear which of edge detection and image partitioning is better� The choice

may depend on the domain of application and in general the two methods can be used

in conjunction ���� or treated in an uni�ed fashion �����

A drawback of image partitioning is that the properties of every region �brightness�

texture� must be discontinuous enough at their boundaries in order for a reasonable

partition of the image to exist� let alone be found� This assumption does not always

hold� In any case� edge detection schemes based on oriented �lters can acheive very

high signal to noise ratios by accumulating 	signal
 along boundaries� This makes

possible the extraction of very detailed and accurate information which can not be

recovered by purely region based methods�
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On the other hand� if the above assumption holds to a su�cient degree� it may

be useful to constraint the output of image segmentation to be a set of regions� since

this format of representation is easier to be used by successive stages of processing�

Indeed� most existing vision systems rely on an image partitioning scheme�

��� Image Models

Images are noisy projections of the real world and therefore possess to a certain

degree the same regularities of the physical world ����� Indeed� the usefulness of image

segmentation comes from the assumption that portions of the image corresponding

to the same surface or object are in some sense homogeneous while� most of the time�

sharp changes occur between abutting objects�

In making this more precise� edge detection and region based image segmentation

enphasize di�erent aspects of modeling� namely� while the former enphasizes the need

of good models for discontinuities� the latter depends strongly on good models of

homogeneous regions� Discontinuities in brightness� for instance� can be modeled by

combimations of step� impulse� ramp and roof waveforms �����

Let us turn our attention to some models of homogeneous regions� The simplest

model of a homogeneous �not textured� region is a constant function� Thus the whole

image can be described as a 	piecewise constant
 function� To take into account

the dishomogeneity of the illumination and the variations in the surface orientation

	piecewise smooth
 functions can be used� For instance� 	piecewise polynomial


functions have been employed ���� ��� ����

Variational approaches to image segmentation ���� �� ��� embody the piecewise

smooth assumpution by evaluating the departure from smoothness locally by means

of di�erential operators and then trying to minimize the output of these operators by

introducing boundaries at the appropriate locations�

Modeling of textured regions is a much more complex problem and many frame�

works have been proposed� According to the structural approach ���� a textured

region is created by the regular repetition of a primitive element across the image�
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Many di�erent primitives have been proposed� blobs ��� ���� edges ���� ���� peaks and

ridges ����� run length primitives ����� Voronoi polygons ����� Julesz�s textons ���� ����

In the statistical approach texture is described by the joint probability distribution

�or moments thereof� of neighbouring pixels� For instance the following have been

used� co�ocurence matrices ��� ���� correlation ���� gray level di�erence ����� Unser has

proposed to use the projection of the N�th order probability density on appropriatetely

chosen axis� These projection can be computed by using linear �lters �����

Texture can be also characterized by the Fourier spectrum ���� or spatially localized

Fourier�like transforms ���� such as Gabor �lters ��� ��� Wigner distributions ���� ����

prolate sferoidal sequences ���� ���� or by 	texture energy masks
 ���� ��� ��� ����

Filtering methods based on models of the human brain have been proposed �����

Images can also be modeled as two dimensional random functions� While it is dif�

�cult to think of a unique model which describes all properties of images� probabilistic

models which capture some of the basic properties of images have been proposed� For

instance we can model an ensamble of images made of brightness uniform regions by

assigning high probablity to images in which neighbouring pixels have the same gray

level ���� ��� ���� This can be done by using the language of statistical mechanics�

An energy function can be de�ned on all possible images so that interaction among

neighbouring pixels encourage them to be in the same state� The resulting probability

density is called Gibbs distribution�

Models constructed in this way are equivalent to Markov Random Fields� A

Markov Random Field is a random function de�ned by specifying the conditional

probabilities of the state of a pixel on the state of neighbouring pixels� They have

been used to model textured images ��� ��� ���� In these models� the parameters

which specify the probabilistic dependency of a pixel on neighbouring pixels are used

as a 	signature
 of the texture type and therefore can be used to discriminate among

di�erent textures�

Autoregressive models have also been used to model texture ���� ��� ��� ��� ����
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��� Image Segmentation with Probablistic Models

A number of image segmentation algorithms have been developed within the probab�

listic setting� In ����� it is assumed that the observed image is a corrupted version of

an image drawn from an ensemble of piecewise constant images with a known set of

possible gray levels� Also� it is assumed that the probability density of the noise�free

image �the 	a priori
 density� and the conditional distribution of the observed image

on the original one are known� The problem then reduces to �nding the image which

maximizes the 	a posteriori
 density �MAP�� Simulated annealing is employed to this

purpose�

In ���� ��� a random function which describes texture is embedded in another

random function which speci�es the partition of the image into homogenoeus regions�

The parameters of the texture random function are switched by the second function�

The problem is then to �nd the partition of the image which maximizes the MAP

distribution of the second function given the input image� A dynamic programming

tecnique is used to acheive this maximum�

The scheme proposed in ���� allows for di�erent types of models �e�g� polynomial

and stochastic� to be present in the image� A decision rule is used to classify pixels

into one of a �xed set of models�

In ���� an energy function is de�ned by using a disparity measure between neigh�

bouring blocks of pixels� Large disparity encourage intervening boundaries and dis�

tinct partition labels� Di�erently from previous Bayesian methods� the set of possible

models is not �xed a priori� However� some kind of ad�hoc training is needed to set

a number of thresholds� Also� an approximate estimate of the number of regions and

the scale parameter must be preset externally�

��� Multiscale Image Segmentation

Scenes of the world contain objects of many sizes containing features of many sizes�

Also� objects can be viewed at several distances� Therefore� the images that we see
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contain features at di�erent scales� For example� the coat of a zebra can be described

at several di�erent scales � at the �nest level the individual hairs are visible� at the

next level collections of hairs of the same color generate a number of stripes� and at a

still coarser level the stripes appear to belong to a larger regular 	textured
 pattern

�from ������ Thus� a useful scheme for image segmentation must be able to deal with

information extracted at several scales�

In edge detection methods based on linear �ltering� the scale parameter is given

by the size of the �lter� The outputs of �lters having di�erent scales can be put

together to generate a unique representation embedded in the so called scale�space

����� As one increases the size of the �lter the smoothing increases and the number

of edges decreases ����� Unfortunately� while on one hand this allows more global

information to be extracted� on the other hand it makes the location of boundaries

poorer and poorer making it impossible to retrieve interesting features such as corners

and T�junctions�

Similarly� variational approaches have been shown unable to retrieve corners and

T�junctions� A solution to this problem within the variational framework has been

proposed in ���� where it has been shown that in the microscopic scale limit the

optimal solution converges to the discontinuity set of the image�

Another method to generate coarse description of the image without deteriorating

the localization of boundaries is by means of anisotropic di�usion ����� The basic idea

is to smooth the image iterativelly using local averages where the brightness gradient

is not too big while averaging is inhibited at location where the gradient is too strong�

i�e� where an edge is very likely to exist�

The choice of an appropriate scale of segmentation is related to the uncertainty

principle ����� That is� a large scale allows a good 	class localization	 �as long as we

do not mix statistics from di�erent regions� but deteriorates the spatial information

about the localization of boundaries� In other words� it is possible to rely on accurate

measurment of the parameters of the image model �say� the average brightness� only

at the price of blurring the boundaries� On the other hand� a small scale improves the

boundary resolution but precludes the detection of more global patterns� To overcome
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the limitation due to this uncerainty principle the scheme proposed in ���� ��� adopts

a pyramidal datastructure� Detection of the model parameters is done at a �xed

coarse scale but the �nal spatial localization of boundaries is determined at the �nest

scale of the pyramidal representation�

However� the uncertainty principle is not the only issue in choosing a scale for

segmentation� Another problem comes from the intrinsic ambiguity in de�ning what

a good segmentation should be� In fact� a given location of the image can be described

as belonging to di�erent regions depending on the scale of observation� For instance�

a hair in the coat of a zebra can be a region by itself� or belong to a stripe or belong

to the black and white striped pattern of the coat� Therefore an ideal segmentation

scheme should specify all the scales at which a 	reasonable
 segmentation exists�

along with generating the corresponding segmentation�

��	 Contribution of this thesis

The goals of this thesis are �� Propose an image representation scheme based on

two scale dimensions� namely� the feature scale � and the the statistical scale L� ��

Introduce an unsupervised image partitioning method which selects the 
best scale


of segmentation at each location�

Many image segmentation algorithms using classi�cation or maximization of the

MAP distribution allow only for a few number of region types ���� ��� ��� ���� To

avoid this limitation one can try to detect clusters in feature space ����� Another

approach is to compare image parameters measured from neighbouring regions either

to �nd abrupt changes �edge detection� or to discover homogeneous region �see for

instance ������ It is this last approach that we intend to follow in this thesis�

A limitation of most image segmentation algorithms is that they �x a priori a scale

parameter so that only edges or regions within a given range of scales are discovered�

In the approach suggested in this thesis a 
best
 scale of segmentation is assumed

to exist at each location but no restriction are posed a priori on it�� This means� for

�Note that this is not the most general point of view� As we mentioned before� more than one
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instance� that we should be able to detect a small white spot on black background with

high spatial resolution and� at the same time� be able to detect the coarse boundary

between two macrotextures�

A way to do this is to evaluate the 
homogeneity
 of several subregions having

di�erent sizes and to choose at each location the scale having the highest homogeneity�

It is also possible to add a bias which favours larger regions� since a partition into a

small number of regions is usually desirable�

Since we do not want to commit ourselves to any particular scale� we should employ

an image representation embedded in a scale�space� In this way features at all scales

can be represented explicitely and can contribute to the segmentation process�

However� in order to evaluate homogeneity reliably at di�erent scales we claim that

it is necessary to add another scale dimension to the standard scale�space� namely the

statistical scale� Roughly speaking� this means that each parameter measured from

the image should be averaged spatially over windows of several sizes� or� in other

words� every parameter should be analyzed at several statistical scales�

The assumption that underlies the introduction of the statistical scale is that a

homogeneous region is a realization of an ergodic random function� This means that

when one computes the spatial average of any quantity over larger and larger windows�

the result converges to the ensemble average of that quantity and therefore becomes

independent of the position of the averaging window� Thus the dishomogeneity func�

tion� which is computed by comparing averages from neighbouring windows� goes to

zero as the statistical scale goes to in�nity� This makes possible to detect homoge�

neous regions of any size� provided that the size of the region is big enough to make

the ergodic limit a reasonable approximation at some statistical scale�

interesting scale might exist at the same location and it might be worth to �nd them all�
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Chapter �

Multiscale Representations for

Piecewise�Ergodic Images

��� Homogeneity and the Statistical Scale

What is a homogeneous region � When dealing with noisy and textured images this is

a far from trivial question� Intuitively� a region is homogeneous if its properties do not

change from place to place� However� this depends on the �statistical� scale at which

these properties are evaluated� For instance� the coat of a zebra is not homogeneous

at a scale equal to the size of a stripe� In fact� if we observed the coat through a

window of this size then� by translating the window across the image we would observe

dramatic 
uctuations of the coat�s color� Instead� if the observation window is big

enough� say three or four stripes large� and we averaged our measurements over this

window� then our observations would be stationary under translation of the window�

The following sections will be devoted to give precise de�nitions of the statistical

scale and of homogeneity� First� we will de�ne the class of piecewise ergodic images�

��� Piecewise Ergodic Images

In this section we de�ne the class of piecewise ergodic images� This de�nition will be

useful later to show that for images in this class� in the one dimensional case� and in
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the limit of in�nitely large regions� the discontinuity set of the image can be exactly

recovered�

For simplicity� we restrict ourselves to one dimensional 	images
� Then an image

g is a real function de�ned on the real line� g � R� R� We will denote by G the set

of all images�

For x � R and � � � let Tx � G � G and D� � G � G be the translation and

dilation operators respectively de�ned by�

�Tx�g��x� � g�x� x�� �����

�D�g��x� � g����x� �����

We require that the set of images be invariant under translation and dilation� i�e�

for x � R and � � � we assume� TxD�G � G�

A compact support functional f on G is a real valued function de�ned on any

g � G� such that f�g� depends only on the restriction of g to some interval �x�� x���

f�g� � f�gj�x��x��� �����

Let ���F �P� be a probability space and let � be a stationary random function

in the set of images� � � � � G� Then we say that � is ergodic if� for any compact

support functional f � and for almost all � � ��

lim
X��

�

�X

Z X

�X
f�T�x�����dx � E �f������� �����

That is� � is ergodic if the spatial average of any functional converges to the

ensemble average when the averaging window becomes in�nitely large�

Now� let f��� � � � � �N��g� �i � �� G be a collection of ergodic random functions�

Then a piecewise ergodic random function with discontinuity set D � fd�� � � � � dNg�
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di � di��� is the random function�

� �
N��X
i��

�i	�di�di��� �����

where 	�di�di��� is the indicator function of the interval �di� di���� Also� we say that

the image g is piecewise ergodic with discontinuity set D if g � ����� i�e� if it is a

realization of a piecewise ergodic random function with discontinuity set D�

��� Image Representations in Scale�Scale�Space

Given an image g � G� we want to de�ne a description of it embedded in a 	scale�scale�

space
 R�
L �R�

� �Rx containing two scale dimensions� feature scale and statistical

scale� First� we will de�ne a description embedded in a 	standard
 scale�space R�
� �

Rx which contains only the feature scale dimension� This description is obtained by

applying an image descriptor to translated and scaled versions of the input image g�

An image descriptor a is a functional on G with support on ���
�
� �
�
��

a � G� R� a�g� � a�gj�� �

�
� �
�
�� �����

Then� if a is an image descriptor we de�ne the description function Ag � R
�
��Rx �

R as�

Ag��� x� � a�D���T�xg� � Ka���a�T��xD���g� �����

where Ka��� is a suitable normalization factor which may depend on a�

All wavelet representation can be expressed in this way� In order for ����� to be

a wavelet expansion it is su�cient �and necessary� that �� a be a linear functional�

satisfying the wavelet equation �see ���� for more details� �� �� x be discretized in the

right way�

Note that Ag��� x� depends only on gj�x��
�
�x��

�
��

The description of g in 	scale�scale�space
 is the functionAg � R
�
L�R

�
� �Rx � R

�In general a need not be a compact support functional but is su�cient that it vanish for jxj � ��
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de�ned� for L � �� by�

Ag�L� �� x� �
�

L� �

Z x�L��
�

x�L��
�

Ag��� x
��dx� �����

For L � � the function is unde�ned �or can be set to zero��

Note that he average is taken over all x� such that �x�� �
�
� x�� �

�
� � �x�L

�
� x�L

�
� and

therefore Ag�L� �� x� depends only on the restriction of g to the interval �x�
L
�
� x� L

�
��

This interval will be referred to as the averaging window of Ag�L� �� x��

We can generalize the de�nition to averages of 	higher order
� That is� for p � �

let�

Ap
g�L� �� x� �

�
�

L� �

Z x�L��
�

x�L��
�

�Ag��� x
���

p
dx�

� �

p

�����

For p �� we obtain�

A�
g �L� �� x� � max

x�L��
�
�x��x�L��

�

Ag��� x
�� ������

Let us consider a set of image descriptors fakg and let
n
Ak
g��� x�

o
and

n
Ak�p

g �L� �� x�
o

be the corresponding descriptions�

If the image g is a realization of an ergodic random function� ie� if g � ����� �

ergodic� then for the de�nition of ergodicity it follows� for almost all � � ��

lim
L��

Ak�p
g �L� �� x� � lim

L��
A

k�p
���	�L� �� x� �

h
E
h
Ak
g��� x�

ipi �
p 	 s��k� �� p� ������

Therefore� for a given set of image descriptors fakg� the function s� of �k� �� p�

may be used as the 	signature
 of the ergodic random function �� Note that� after

the limit L�� is taken� ������ is independent of the spatial position x�

��� The Dishomogeneity Function

Let g � G and let fakg be a set of descriptors� First� let us de�ne the dishomogenity

at location x and scale L for a given choice of �k� �� p�� This can be done by evaluating

��



the range of variation of the descriptionAk�p
g �L� �� x

�� within the interval �x�L� x�L��

To do this we de�ne�

Mk�p
g �L� �� x� � max

x�L
�
�x��x�L

�

Ak�p
g �L� �� x�� ������

mk�p
g �L� �� x� � min

x�L
�
�x��x�L

�

Ak�p
g �L� �� x�� ������

Note that� since Mk�p
g �L� �� x� and mk�p

g �L� �� x� are computed for x
� � �x � L

�
� x � L

�
�

and since Ak�p
g �L� �� x

�� depends only on gj�x��L
�
�x��L

�
�� we have that M

k�p
g �L� �� x� and

mk�p
g �L� �� x� depend only on gj�x��L�x��L��

Also note that the leftmost averaging window contributing to ������������� is �x�

L� x� and the rightmost is �x� x�L�� That is� the extrema in ������������� are computed

over all averaging windows lying between these two adjacent nonoverlapping windows�

Then we de�ne the dishomogeneity vk�pg �L� �� x� as�

vk�pg �L� �� x� � Mk�p
g �L� �� x��mk�p

g �L� �� x� ������

Of course we have vk�pg �L� �� x� � �� Also from ������ it follows that if g is a realiza�

tion of an ergodic random function� g � ����� � ergodic� then limL�� vk�pg �L� �� x� �

� for almost all � � ��

Finally the dishomogeneity at location x and statistical scale L is given by the

most dishomogeneous 	channel
�

vg�L� x� � max
�k���p	

vk�pg �L� �� x� ������

Again� vg�L� x� � �� Also� if g � ����� � ergodic� and if the ergodic limit ������

is uniformly attained over� �k� �� p� then limL�� vg�L� x� � � for almost all � � ��

�Uniformity over x is guaranteed by the stationarity of g�

��



Chapter �

Computing a Partition of the

Image

In the previous chapter we have described a way of representing images at several

scales� Now we turn to the problem of �nding an 	optimal
 partition of the image�

In the next two sections we show that if the image g is piecewise ergodic and if the

regions are large enough then the discontinuity set of g can be recovered by minimizing

an appropriate function�

��� Asymptotic Recovery of the Discontinuity Set

Let g � G and let the support  of g be compact� Then a partition of g is identi�ed

by a set of consecutive boundary points B � fb�� � � � � bMg� bj � bj��� such that

�b�� bM � �  � Note that if g �
PN��

i�� 	�di�di����i��� then we must have� b� � d� and

bM � dN �

Given an image g� we de�ne the dishomogeneity of a partition B of g as�

vg�B� �
M��X
j��

bj�� � bj

bM � b�
vg

�
bj�� � bj

�
�
bj�� � bj

�

�
�����

where the function v is the dishomogeneity function �������

Let g be a piecewise ergodic image� g �
PN��

i�� 	�di�di����i���� Then we de�ne the

��




�dilation of g as�

g� �
N��X
i��

	��di��di����i��� �����

Similarly� for any partition B of g de�ne the 
�dilation of B as�

B� � f
b�� � � � � 
bMg �����

We say that the ergodic random function � is well behaved for the set of descriptors

fakg if the image descriptions of ���� generated by fakg attain the ergodic limit ������

uniformly over �k� �� p�� for almost all � � �� Also� the piecewise ergodic random

function � �
PN��

i�� 	�di�di����i is said to be well behaved if all the �i are�

Theorem � Let fakg be a set of image descriptors such that supg�G ak�g� ��� Let

� �
PN��

i�� 	�di�di����i be a piecewise ergodic random function with discontinuity set

D � fd�� � � � � dNg and assume � is well behaved under fakg� Let g � ����� Let B be

a partition of g� Then it holds for almost all � � ��

�� The limit lim��� vg� �B�� exists� De�ne v
�
g �B� � lim��� vg� �B���

�� If B 
 D then v�g �B� � ��

	� Assume that for each i� �� i� there exist i
 � and p
 � � p � � such that

s�i� �k� �� p� �� s�i� �k� �� p�� Then B �
 D �� v�g �B� � �

Comment� The theorem says that in the limit of in�nitely large regions� and if the

signatures of any two regions are di�erent �i�e� if they di�er for at least one value

of �k� �� p�� then the dishomogeneity of a partition is minimized by all the �nite

partitions which contain the discontinuity points of g�

Proof� �� From the de�nition ����� of vg�B� and from the corollary � of lemma �

we have�

lim
���

vg� �B�� �
M��X
j��

bj�� � bj

bM � b�
vg�

�


bj�� � bj

�
� 

bj�� � bj

�

�
� �����

�Note that uniformity over � requires that for � � �� Ak
g ��� x� be constant as a function of x�

This is obtained if� for instance� lim��� Ak
g��� x� � 	�

��



�
M��X
j��

bj�� � bj

bM � b�
v�g

�
bj�� � bj

�
�
bj�� � bj

�

�
Q�E�D� �����

If we let Lj �
bj�� � bj

�
and xj �

bj�� � bj

�
� � � j �M�� then this can be rewritten

as

lim
���

vg� �B�� � v�g �B� �
M��X
j��

bj�� � bj

bM � b�
v�g �Lj� xj� �����

�� Since B 
 D� for each j� � � j � M � �� there exists ij� � � ij � N � �� such

that �xj � Lj� xj � Lj� � �bj� bj��� � �dij � dij���� Then� applying corollary � to �����

yields v�g �B� � �� Q�E�D�

�� Since B �
 D� there exist i�j� � � i � N � �� � � j � M � �� such that

bj � di � bj��� Then� using the notation of lemma �� !��bj � bj���� D� � � and from

�A���� it follows that v�g �Lj� xj� � � and from ����� we have v�g �B� � �� Q�E�D�

��� Regularization of the Dishomogeneity Func�

tion

Theorem � shows that dishomogeneity is minimized by an in�nite number of par�

titions obtained by adding an arbitrary set of points to the discontinuity set of g�

Formulations of problems which do not yield a unique solution are often referred to

as ill posed ���� ���� A way to make the solution unique is to 	regularize
 the cost

function by adding a suitable extra term to it� Usually� this term can be chosen so

as to constrain the solution to be 	smooth
 or 	simple
 in some sense� For instance�

in variational approaches to image segmentation ���� ��� one of the terms in the cost

function is proportional to the length of the boundary� As a consequence the amount

of boundary produced is kept at a minimum�

Similarly� in our case we can 	regularize
 the problem by adding a 	complexity


term to the dishomogeneity function�

cg�B� � vg�B� � �S�B� �����

��



If we choose S�B� to be just the number of points in the set B then� under the

same conditions of theorem � we can prove that the minimizer of the asymptotic

cost c�g �B� � v�g �B� � �S�B�� for � su�ciently small� is unique and equal to the

discontinuity set of g�

Theorem � Let the assumptions of theorem � hold �including the assumption of

part 	�� Let c�g �B� � v�g �B� � � 
 card�B�� Then there exists �� � � such that for

� � � � �� the minimizer of c�g �B� is unique and equal to D�

Proof� From theorem � and the de�nition of c�g �B� it is clear that if � � ��

B �� D and Card�B� � Card�D� then c�g �D� � c�g �B�� Then we must show that

there exists �� � � such that c�g �D� � c�g �B� for � � � � �� and for all B with

Card�B� � Card�D�� Let M � Card�B� � � and N � Card�D� � � as before and

assume M � N � Let �� � min
��i�N��

�di�� � di�� Then note that since M � N there

exists a di � D� i �� �� i �� N such that �di � �� di � �� does not contain any point

of B� Then� there exists a bj� � � j � M � �� such that �di � �� di � �� � �bj� bj����

Therefore !��bj� bj���� D� � �� where ! is as de�ned in lemma �� Then by lemma �

v�g �Lj� xj� � Kg

�

LjN
� Kg

��

�dN � d��N
�����

where Lj �
bj�� � bj

�
and xj �

bj�� � bj

�
� From ����� we have� v�g �B� � Kg

��
�dN�d�	N

�

Finally� by choosing �� � Kg
��

�dN�d�	N�N��	
we have for � � � � ���

c�g �D� � ��N � �� � Kg

��

�dN � d��N
� v�g �B� � c�g �B� Q�E�D� �����

In actual implementations� i�e� when the size of the regions is �nite� the parameter

� must be chosen to yield an acceptable tradeo� between having an overfragmented

segmentation �low �� and missing some of the discontinuity points �high ���

An alternative way to measure the complexity is by means of the entropy of the

��



partition de�ned as�

S�B� � �
M��X
j��

bj�� � bj

bM � b�
log

bj�� � bj

bM � b�
������

Note that if the partition were made ofM equally large regions� then ������ would

reduce to S�B� � logM � log�Card�B� � ��� The reason to use this de�nition of

complexity will become clearer later�

��� Scale Adaptation within a Homogeneous Re�

gion

In the de�nition of dishomogeneity given in ����� the dishomogeneity of each region

Rj � �bj� bj��� was computed at a statistical scale equal to half the size of the region�

Indeed we can rewrite ����� as

vg�B� �
M��X
j��

vg�Rj� ������

where vg�Rj� � vg�Lj� xj� and Lj �
bj���bj

�
� xj �

bj���bj
�

�vg�Lj� xj� is given by

��������

In real applications this de�nition is not adequate for two reasons�

�� The dishomogeneity function ������ can be easily generalized to the two di�

mensional case by computing averages� maxima and minima over squares �or circles�

of size �L� However� the dishomogeneity of a region which is not a square �or a cir�

cle� cannot be de�ned as easily as in the one dimensional case and a more elaborate

de�nition is needed� For instance we can cover the region with square 	patches


and consider the values of the function v on the elements of this covering� Then the

problem arises of how to choose the size of these patches� In fact� on one hand large

patches are preferable in order to approximate the ergodic limit at best but on the

��



other hand small patches are better at following the contour of the region��

�� In real images� slowly varying distorsions are often present which cause other�

wise ergodic regions to be non stationary� Two examples may be a tilted textured

surface and a surface of a uniform color under inhomogeneous illumination� In these

situations� if we let the statistical scale go to in�nity� the dishomogeneity also goes

to in�nity instead of vanishing� This is because very distant locations in the image

have very di�erent properties� Therefore� even if the region is arbitrarily large� the

	optimal
 statistical scale may be �nite� Thus� it might be useful to let the scale of

each region be a free parameter and optimize over it instead of assuming that the

largest scale is always the best�

Going back to one dimensional images� we can de�ne the dishomogeneity of region

Rj � �bj� bj��� at statistical scale Lj �
bj���bj

�
as�

vg�Lj� Rj� � max
bj�Lj�x��bj���Lj

v�Lj� x
�� ������

Note that maximization is carried over all x� such that �x��Lj� x
��Lj� � Rj and

therefore vg�Lj� Rj� depends only on gjRj �

Then the dishomogeneity of a partitionB � fb�� � � � � bMg at scales L � fL�� � � � � LM��g�

Lj �
bj���bj

�
is given by�

vg�B�L� �
M��X
j��

vg�Lj� Rj� ������

Now� optimization of the cost function must be carried out over both the bound�

aries and the set of statistical scales L� If we want to take into account the fact that

a region which is globally ergodic is preferable to a region which is only locally ergodic

then we can introduce a term T �B�L� in the cost function which is monotonically

�This problem is an instance of the uncertainty principle� In fact� 
class� localization acheived
by approaching the ergodic limit must be traded o� against boundary resolution� �A consequence of
this is that large macrotexture� which exhibit ergodic properties only at large statistical scales can
only have coarse boundaries��

��



decreasing with the Lj�s� for instance�

T �B�L� � �
M��X
j��

bj�� � bj

bM � b�
log

�Lj

bj�� � bj
������

Then� by taking S�B� to be the entropy of B the cost becomes�

cg�B�L� � vg�B�L� � �S�B� � 
T �B�L�

�
M��X
j��

bj�� � bj

bM � b�

�
vg�Lj� Rj�� � log

bj�� � bj

bM � b�
� 
 log

�Lj

bj�� � bj

�

By letting for simplicity 
 � � we have�

cg�B�L� �
M��X
j��

bj�� � bj

bM � b�

�
vg�Lj� Rj�� � log

�Lj

bM � b�

�
������

��� A Local Formulation of the Problem

Before discussing an algorithm based on the above optimization criterium we want

to rewrite the cost function as an integral of a cost density� In this way� the problem

reduces to minimizing the cost density locally and becomes more tractable from a

computational point of view�

Let the labeling function j�x� be de�ned by x � Rj�x	 � �bj�x	� bj�x	���� Then ������

becomes�

cg�B�L� �
�

bM � b�

Z bM

b�

�
vg�Lj�x	� Rj�x	�� � log

�Lj�x	

bM � b�

�
dx �

�

bM � b�

Z bM

b�

Hg�B�L� x�dx

������

where

Hg�B�L� x� � vg�Lj�x	� Rj�x	�� � log
�Lj�x	

bM � b�
������

In the above formulas� L represents the choice of the statistical scales for each

region� So far� for the sake of simplicity� we have assumed that the statistical scale is

constant within each region� However� this is not necessary and� indeed� our algorithm

allows for the scale to vary also within each region�

��



Chapter �

An Algorithm for Image

Segmentation

��� Cost Minimization in an Overlapped Pyramid

Our algorithm can be divided in � steps�

� Computation of the scale�space description Ag��� x�

� Computation of the scale�scale�space description Ag�L� �� x�

� Computation of the dishomogeneity function and of the cost function �����

� Optimization of �����

� Connected component labeling

This algorithm has been implemented in the overlapped pyramid shown in �gure

���� In the one dimensional case� each node of the pyramid represents an interval of

the real line and the size of these intervals doubles when moving up in the pyramid�

The two children nodes of a parent node represent nonoverlapping intervals having

a boundary point in common� Adjacent nodes in a horizontal level �other than the

bottom level� overlap� The fractional amount of overlap doubles at each level up to

��



Figure ���� A one dimensional overlapped pyramid with �� pixels� Each node in the l�

level of the pyramid represents a window of diameter �l lying on the image� This kind of

pyramid is characterized by an integer parameter	 Z 
Z � � in this �gure
 which is the

highest level of the pyramid sampled at ��pixel intervals� That is	 adjacent windows in the

levels �� � � � �Z are separated by a distance equal to the size of � pixel� From the Z�th level

this distance doubles when one moves up by one level in the pyramid so that the fractional

overlap between adjacent windows is always equal to � � ��Z for the higher levels� Each

node �stores�� �
 a description of the image contained in that window� �
 a dishomogeneity

value computed by using the image descriptions stored in the nodes at the next lower level�

�
 a dishomogeneity cost�

��



the Z�th level of the pyramid� From the Z�th level up it is constant� �Z � � in our

implementation��

The multiscale descriptions Ag��� x� and Ag�L� �� x� are computed for L � �� L�

� equal to the sizes of nodes and at all positions corresponding to the centers of the

nodes�

A cost is also associated with each node n� If we let N be the set of all nodes

then the cost function hg � N � R is given by �compare with ��������

hg�n� � vg�L�n�� x�n��� � log
L�n�

X
�����

where X is the size of the image and L�n� and x�n� are de�ned by� L�n� � x� � x��

x�n� � x��x�
�

where �x�� x�� is the interval corresponding to the node n �n � �x�� x��

if we identify nodes with intervals��

The cost function ����� can be minimized at each location of the image by letting

each node of the bottom level of the pyramid �i�e� each pixel� select the lowest cost

node containing it�

That is� for each pixel �i we de�ne n
�
i by�

h�n�i � � minn�	i
h�n� �����

The minimization in ����� realizes a multiscale local optimization because nodes of

all sizes� and therefore descriptions at all scales� are compared independently at each

pixel �i� In a sense� it is made of two 	orthogonal
 simultaneous optimizations� one

	vertical
 � which selects the most appropriate scale and maximizes class localization

� and one 	horizontal
 � which favours nodes that do not contain boundaries� thus

maximizing space localization�

The computation of n�i can be done very e�ciently with a single top�down scan

of the overlapped pyramid by using a very simple routing algorithm in which every

node of the pyramid sends a 	packet
 to every pixel included in it�

Usually� unless slowly varying distorsions are present� the minimization ����� se�

lects one of the nodes at the largest scale which does not contain a boundary� Oth�

��



erwise� smaller nodes can be activated �see �gures T�b and T���

At this point the segmentation is implicitely de�ned� To make it explicit it is

necessary to label each pixel according to the region to which it belongs� This can be

done in two steps�

First� the set of 	active
 nodes N � � fn�i g is enlarged to the set N
� which also

contains nodes whose cost is not too much greater than some nearby node in N ��

Therefore� N � should contain all the nodes of optimal size included in a uniform

region�

Second� the set N � whose elements make up the optimal partitioning graph is

split into connected components�� which represent the regions of the segmentation�

Each component is assigned a unique label� which is then propagated to all the linked

pixels�

��� Implementation Details and Results of Com�

puter Experiments�

In this section we describe the results of some computer experiments carried out with

� dimensional syntethic images� The main purpose of these experiments is to show

that a wide variety of images can be segmented correctly by the same implementation

of the scheme� All the �� trials shown in �gures T��T�� have been obtained by the

same implementation� that is� no parameter has been adjusted from one trial to

another�

In this implementation only one image descriptor has been used given by�

a�g� � �F� � g���� � �
Z �

� �

�

g�x�dx �
Z �

�

�
g�x�dx �����

�A topology based on overlap is used to de�ne connectivity� Two nodes of the graph� are said to
be connected if their overlap is more than a given threshold 
 say �	��

��



Figure ���� The �lter F� used in our implementation�

The �lter F� is shown in �gure ���� The image description Ag��� x� is then�

Ag��� x� �
�

�
�F� � g��x� �

�

�

�
�
Z x

x��
�

g�x�dx �
Z x��

�

x
g�x�dx

�
�����

The description in scale�scale�space has been computed for two values of p� p � �

and p � �� In our computer experiments the term with p � � has proved to be

very helpful in improving the spacial resolution of boundaries� especially at brightness

discontinuities�

The coe�cient � in the cost expression ����� has been chosen to be proportional

to the 	maximum contrast
 in the image de�ned as� Cg � max��x jAg��� x�j� �In

this implementation � � Cg�� In this way� the two terms in ����� have the same

	physical
 dimensions� Moreover� it is easy to verify that hc�g�c� � c�hg and therefore

the minimization of the cost function is not a�ected by homogeneous illumination

changes of the form� g � c�g � c��

The results of the experiments are shown in �gures T��T��� All images have ����

pixels apart from T�c�d and T�c which have �����

For each trial the input function g is shown� In T��T�� the axis are not shown for

clarity� The ticks below the graph of g correspond to the boundaries of the regions

��



of the output segmentation� The boundaries of the segmentation are also marked on

the graph of g with diamonds�

For some trials� the nodes of the optimal partitioning graph �that is the elements

of N �� are shown above the image� Each horizontal segment corresponds to such

a node� The vertical displacement between segments has been introduced to make

them distinguishable and has no other meaning� Each node which also belongs to

N � is marked with a heavier line in corrispondence of the pixels which have classi�ed

themselves into it�

The image in T�a contains � 	white
 regions of di�erent sizes lying on a 	black


background� Note that all regions� even the smallest ones� are detected and their

boundaries are located with � pixel resolution� Also note that small nodes are acti�

vated near the boundaries while large nodes are selected in the middle of each region�

T�b shows the segmentation of an image containing �� regions of di�erent bright�

ness� Only regions delimited by high contrast boundaries are detected� The boundary

resolution is again of the order of � pixel�

T�a shows an image containing � regions having blurred boundaries� The tiny

region delimited by two empty diamonds is only one pixel large� Apart from this

mistake� all regions are detected and their boundaries are placed near the center of

the corresponding discontinuity�

T�b illustrates the detection of abrupt intensity changes in presence of very strong

gradients� Note that in this image �and also in T�� each region is only locally homo�

geneous and it is necessary to activate many small nodes in order to cover the whole

region�

Figure T�a shows a quite complex image containing both 	white
 and 	black


regions over a 	grey
 background� Regions di�er in brightness and size and some

have blurred boundaries� In T�b�e di�erent kinds of perturbations are superimposed

to the original image� In T�b some noise with uniform distribution has been added

independently to every pixel �we say then that the correlation length of the noise is

�c � ��� T�c contains an uniform illumination gradient� In T�d spatially extended

perturbations are superimposed to the uniform regions� T�e contains an illumination
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gradient and � perturbations �noise� with uniform distribution and correlation lengths

of ������������ The only mistake occurs in T�e in corrispondence of the second

discontinuity� which is not discovered� This is due to the fact that the contrast of

this discontinuity is of intermediate strength and therefore this boundary is unstable�

Also� sometimes� the boundaries of blurred discontinuities are placed some distance

away from its center� This is mainly due to the discreteness of the sampling in the

scale�space�

Figures T�a�c show the detection of a bright region in highly perturbed conditions�

Since here the ergodic limit is acheived only at a large scale� the region must be large

in order to be detected� In T�a�b the boundary resolution is about � pixel while in

T�c is of the order of � wavelength� In T�d the intensity of the noise varies across

the image�

T�a�b show the segmentation of a high�frequency texture on a low frequency

background� In T�c �T�d� the frequency �contrast� has been randomly modulated

around the mean� A boundary is placed only at the abrupt frequency change�

In T� the frequency changes linearly �within each region� simulating a perspective

distorsion� Note that the large range of feature values in each region does not prevent

it to be interpreted as a single region�

T� and T� show some examples of ��dimensional texture segmentation� Both

deterministic and stochastic textures are present�

Images in T� contain both textured and non textured regions� In T�b�d some

noise and an illumination gradient have been added� Note that sometimes a textured

region is slightly extended onto the background�

Finally� T�� illustrates the scale invariance of the segmentation process�

��



Appendix A

Lemmas

Lemma � Assume the same conditions of theorem � hold� Let x
L be such that

�x�� x�� �  where x� � x � L
�

 x� � x � L

�

 and  is the support of g� Let i� and

i� be de�ned by� di� � max fdi � D � di � x�g� di� � minfdi � D � di � x�g� Let

"di� � x�
 "di� � x�
 and "di � di for i� � i � i�� Then

lim
���

Ak�p
g�
�
L� �� 
x� �

�
	i���X
i�i�

"di�� � "di
L

�s�i�k� �� p��
p



�
�

p

	 Ak�p
��g�L� �� x� �A���

and the limit is acheived uniformly over k� �� p� x�

Proof� Using the de�nition ����� we have�

h
Ak�p

g�
�
L� �� 
x�

ip
�

�


L� �

Z � 
di��
�
�

� 
di��
�
�

h
Ak
g�
��� 
x��

ip
dx� � �A���

�
i���X
i�i�

�


L� �

Z � 
di���
�
�

� 
di�
�
�

h
Ak
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��� 
x��

ip
dx� �

i���X
i�i���

�


L� �

Z � 
di�
�
�

� 
di�
�
�

h
Ak
g�
��� 
x��

ip
dx�

�A���

The last equality is obtained by splitting the domain of integration into the ergodic

components of g� �recall that g� �
PN��

i�� 	�� 
di�� 
di���
�i����� The second summa�

tion includes that part of the domain of integration where the supporting window

of Ak
g�
��� 
x��� which is the interval �
x� � �

�
� 
x� � �

�
�� contains a discontinuity point�

��



From ����� we have

Ak
g�
��� 
x�� � ak�T���x�D���g�� �A���

Since we have assumed supg�G ak�g� � �� �A��� is bounded as a function of x� and

therefore the second summation in �A��� is of order O�
���� By using �A��� and the

expansion of g� we get�

h
Ak�p

g�
�
L� �� 
x�

ip
�

i���X
i�i�

�


L

Z � 
di���
�
�

� 
di�
�
�

�ak�T���x�D����i�����
p dx� �O�
��� � �A���

�
i���X
i�i�

�


L

Z � 
di��

� 
di
�ak�T���x�D����i�����

p dx� �O�
��� �A���

Then� by taking the limit and using ergodicity we get�

lim
���

h
Ak�p

g�
�
L� �� 
x�

ip
�

i���X
i�i�

lim
���

�


L

Z � 
di��

� 
di
�ak�T���x�D����i�����

p dx� � �A���

�
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i�i�
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L

E �ak�D����i�����
p �

i���X
i�i�

"di�� � "di
L

�s�i�k� �� p��
p �A���

Uniformity of �A��� is guaranteed by the fact the g is well behaved� Q�E�D�

Corollary � Let the assumptions of theorem � hold� Then
 if the restriction of � to

�x� L
�
� x� L

�
� contains a single ergodic random function
 i�e� if �x� L

�
� x� L

�
� � �di� di���

for some i
 it follows�

lim
���

Ak�p
g�
�
L� �� 
x� � Ak�p

��g�L� �� x� � s�i�k� �� p� �A���

Proof� Since� for the i given above� di � x� L
�
� x�� di�� � x� L

�
� x�� we have

i� � i� i� � i� �� "di� �
"di � x�� "di� �

"di � � � x�� the summation in �A��� reduces to

a single term yielding the result� Q�E�D�
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Corollary � Let the conditions of theorem � hold� Then�
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���
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where Ak�p
��g�L� �� x� is as given in lemma � and the extrema inside the square brackets

are performed in the usual way
 i�e� for x� L
�
� x� � x� L

�
�compare with ������ and

����	���

Proof� From the de�nitions of section ����
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The equality before the last follows from the uniformity of the limit in lemma ��

Q�E�D�

Corollary � Let the conditions of corallary 	 hold� Then

lim
���

vg� �
L� 
x� � v�g �L� x� � � �A����

Proof� Since �x � L� x � L� � �di� di���� then �x
� � L

�
� x� � L

�
� � �di� di��� for

x� � L
�
� x� � L

�
� Therefore� from corollary � and corollary � we have�
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Lemma � Let the assumptions of theorem � hold� Let R � �x�� x�� �  where  

is the support of gand let x � x��x�
�


 L � x��x�
�

� Assume that for all i� �� i� there

��



exist i
 � and p
 � � p � � such that s�i� �k� �� p� �� s�i� �k� �� p�� Suppose Q �

Card�D��x�� x��� � � and de�ne ! � !�R�D� � max
di�R	D

min ��di � x��� �x� � di���

Then

v�g �R� 	 v�g �L� x� � �A����
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where N � Card�D�� � and the costant Kg does not depend on x�� x��
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