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Abstract

In this thesis, we consider a number of problems in the areas of machine vision
and learning. Our results take steps towards understanding the computational and
information complexity of problems in areas such as machine vision and signal pro-
cessing. In the first part of the thesis, we study problems concerning computational
requirements/limitations in machine vision. We first consider relationships between
variational methods and discrete Markov random field formulations for the problem
of image restoration and segmentation. Several discrete formulations are presented
which correctly approximate the continuous segientation problem. The results for
the segmentation problem lead us to consider a question concerning the computation
of the length of a digitized contour. It is shown that for a particular model of parallel
computation, length cannot be computed locally with a rectangular digitization, but
can be computed locally using a random tesselation and an appropriate deterministic
one. Finally, we study the complexity of model based recognition and show that
certain formulations of model based recognition are NP-complete.

In the second part of the thesis, we study a number of extensions to models in
machine learning with a view towards obtaining information complexity results ap-
plicable to areas such as machine vision and signal processing. We first consider
extensions to the Probably Approximately Correct (PAC) learning model, including
learning over a class of distributions, active learning, and learning with generalized
samples. We study a particular application of learning with generalized samples to a
problem of reconstructing a curve by counting intersections with straight lines. Qur
results refine a classical result from stochastic geometry. Finally, we consider a prob-
lem concerning the classification of an unknown probability measure from empirical
data. Using large deviations techniques, we simplify and extend previous results on
classifying the mean of a random variable. We also study the much more general case
of classifying the measure itself, and consider applications to density estimation and
the problem of order determination of a Markov chain.
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Chapter 1
Introduction

In this thesis, we consider a variety of problems in the areas of machine vision and
machine learning. The underlying goal motivating our choice of problems is to take
steps towards understanding the computational and information complexity of new
classes of problems — particularly those arising in vision. There has been a tremendous
amount of work done in the area of machine vision (for example, see the annual
reviews by Rosenfeld [103, 104]. However, comparatively little work has been done
on understanding the computational or information requirements/limitations of vision
tasks. ‘

The first part of the thesis (Chapters 2 through 4) deals with questions related
to computational limitations. Chapters 2 through 3 concern variational and Markov
random field (MRF) approaches to problems in early vision which have been a subject
of great interest recently. We focus on a particular problem of image restoration and
segmentation, but our methodology and results are suggestive of the types of questions
that should be considered for other early vision problems using variational or MRF
formulations. In Chapter 4, we consider the complexity of model based recognition,
an approach which has been widely considered for later stages of vision. Again, our
results are suggestive of the types of questions that should be considered for other
approaches to the problem of object recognition.

The second part of the thesis (Chapters 5 through 9) deals with various
extensions to models in machine learning. Standard approaches in estimation theory,
signal processing, information theory, etc., are not applicable to most vision tasks
due to the complex and highly nonlinear nature of the observations and objects to
be reconstructed/estimated. Thus, there is little theoretical machinery available to

address questions concerning the amount of data required to adequately perform a
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particular vision task. There has been a great deal of work done in the area of machine
learning on what is known as the Probably Approximately Correct (PAC) learning
model. In Chapters 5 through 7, we study some extensions of the PAC model with
a view towards extending the domain of applicability of this model. In Chapters 8
and 9, we study a different type of inference problem (or “learning model”) from
empirical data. We feel that this approach may be furcher extended and related to
other learning approaches. Our results on both learning models are of interest in
themselves, but it is hoped that they also serve as step towards developing machinery
to answer questions of information complexity for a much broader range of problems,
such as those arising in vision.

In the remainder of this chapter, we first briefly discuss the general areas consid-
ered in the thesis. Section 1.1 is related to the material in Chapters 2 through 3,
Section 1.2 to the material in Chapter 4, Section 1.3 to the material in Chapters 5
through 7, and Section 1.4 to the material in Chapters 8 and 9. In Section 1.5, we
describe the organization of the thesis and (very briefly) the main contributions in

each of the chapters.

1.1 Variational and Markov Random Field Meth-

ods 1in Machine Vision

Recently, many problems in early vision have been formulated using variational ap-
proaches (e.g., see [82]). These variational methods are appealing for a number of
reasons. The terms in the cost function are intuitively plausible and correspond in
a natural way to constraints generally expected to be present in the environment
(for example certain invariants and/or smoothness). Also, these methods provide a
unifying approach to the wide variety of early vision tasks, and in fact suggest ways
in which various early vision modules might be fused. Finally, it is possible to ana-
lyze certain problems (such as for segmentation) to cbtain properties of the solutions
provided by these variational approaches.

In practice, these variational methods are generally implemented using finite-
difference-like approximations with discrete versions of the cost function defined on
digitized domains. Interestingly, the resulting discrete problems are closely related
to Markov random field (MRF) models, which are conceptually and computationally
appealing. In fact, for many problems the MRF formulation is the starting point from
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which a variational principle on a continuous domain can be deduced if necessary.

A continuous formulation is useful for a number of reasons. For example, it may
be easier to impose or identify certain constraints such as invariance under arbitrary
rotations and translations. Also, analytical techniques can be more readily applied to
derive proberties of the continuous formulation. However, since analytic solutions are
not generally available, the problem must eventually be digitized to obtain numerical
solutions. The discrete problem has the advantages of being more directly amenable to
computer implementations, particularly with parallel algorithms or hardware. Also,
as mentioned above, the probabilistic interpretation in terms of MRF’s is conceptually
appealing.

A natural question is whether these discrete formulations are in fact approxi-
mations of the continuous formulations in the sense that solutions to the discrete
problems are close to solutions of the continuous problem as the lattice spacing tends
to zero. This question is important if one wants to guarantee that the advantages
of the continuous formulations are retained, at least approximately, by solving the
discrete problem. Hence, for these reasons, our criteria for considering a discrete for-
mulation to be an “approximation” to a continuous problem is not whether the cost
functions are approximations of one another in the usual sense, but, rather, whether
the solutions provided by the two problems (i.e., the minimizers of the cost functions)
are approximations of one another.

We consider these questions of suitable discrete approximations for a particular
formulation for image restoration and segmentation. Various discrete formulations
in terms of MRF’s were studied by Geman and Geman [46], Marroquin [81] and
others. A variational approach to the problem was proposed by Mumford and Shah
in [88] (see also Blake and Zisserman [22, 23]). It appears that the standard discrete
formulations used do not properly approximate the continuous problem. We study
some discrete formulations for which we prove desirable convergence properties in
the continuum limit. Motivated by our results for the segmentation problem, we
then study questions on whether the length of a curve can be computed locally from

discrete approximations.

1.2 Model Based Recognition

Many tasks of perceptual information processing that are easy and natural for humans

appear to be much harder for machines. For example, although locating an object
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such as a pen on a table appears to us an easy task, it requires the ability to identify
all possible shapes of pens as such, and is difficult to implement in a machine. These
difficulties can be avoided in many computer vision applications that take place in a
controlled environment. In these cases it is assumed that the objects of interest can
be modeled and catalogued in a library. The problem of model based recognition can
be informally described in the following way: given a library of modeled objects and
a set of sensed data, identify and locate the objects from the library that are present
in the data.

Reviews of the extensive literature on model based recognition in computer vision
can be found in [19, 21, 26]; more recent studies include [48, 49, 74, 123]. The standard
computational approach is to represent the modeled objects and the data in terms
of discrete features so that the recognition can be solved as a search problem. These
results indicate that by applying rigidity constraints in various ways, model based
recognition can be efficiently applied to recognize a small number of object even from
partial views and in the presence of non-malicious noise. The relevant complexity
parameter in such cases is the number of features that comprise each object.

The generic model based recognition problem that we consider is noise free and
assumes no occlusion. We analyze the case in which objects are represented by a small
number of features. The relevant complexity parameter in this case is the number of
objects. Instead of analyzing the performance of specific algorithms, our approach is
to apply techniques from complexity theory to identify cases in which model based
recognition appears to be inherently difficult. Specifically, we show that the problem
is NP-complete, and thus, its complexity (modulo standard complexity assumptions,
i.e., P # NP) is super-polynomial in the size of the library.

Proving that a problem is NP-complete is a common technique in complexity anal-
ysis for identifying the problem as intrinsically difficult. In a (well defined) sense, an
NP-complete problem is the most difficult problem in the class NP, which includes
many difficult problems such as the traveling salesman. However, an NP-complete
problem is not completely unapproachable; a standard method for coping with such
problems is to identify easily solved sub-problems. In the case of model based recog-
nition this might correspond to exploiting additional structure of the modeled objects
and the way they are viewed. The negative results that we provide can be used to
determine constraints that may simplify the problem of model based recognition. For
more information on the theory of NP-complete problems see [44]. For applications

of NP-completeness results to vision tasks see [64, 117].
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1.3 Formal Models for Machine Learning

In defining a formal model for learning, one needs to provide precise specifications
for the concepts being learned, the information gathering mechanisms, and the per-
formance criteria. A number of different models have been studied by varying one
or more of the features above. For example, Gold [47] considered a model known as
“identification in the limit” (referring to the performance criterion), which has been
studied extensively in the context of language learning. Another interesting class of
leaning models which has been considered is known as mistake bound (or on-line)
learning [78, 79].

We will focus on a learning model popularized by the work of Valiant [118] which he
referred to as “distribution-free learning” (referring to an aspect of the performance
criteria). This mode] is also known as the “probably approximately correct” (or
PAC) learning model (referring to a different aspect of the performance criteria). A
more general model (ignoring computational complexity requirements) was studied
independently by Vapnik [121], and fundamental results related to this framework
have been obtained in the probability and statistics literature (119, 120, 36, 94]. A
very general formulation for PAC learning was presented by Haussler [55, 56]. There
has been a tremendous amount of work done on analyzing and extending the original
model. Most of the variations retain the PAC criterion, and so we use the term “PAC
learning” to refer to the original model and its variants.

In the PAC model, the learner attempts to approximate a function unknown to
him, but chosen from a known class of functions. The data available to the learner
consists of random samples of the unknown function. After seeing some bounded
number of samples, the learner is required to produce a hypothesis which with high
probability is close to the true function (hence the name “probably approximately
correct”). Precise definitions for this learning model are provided in Chapter 5.

One goal of studying such a formal framework is to be able to characterize in
a precise sense the tractability of learning problems. That is, to address questions
concerning the amount of data required to learn a particular concept. We feel that
this general paradigm may be extended to help provide results on the information
complexity for a wide range of problems in areas such as machine vision, system
identification, and signal/image processing. We consider some extensions of the PAC
learning framework with a view towards extending the domain of applicability to such

areas.
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1.4 Classifying Probability Measures from Em-

pirical Data

In (28], Cover presented some interesting results concerning the type of information
that can be extracted about the mean of an unknown random variable from a sequence
of i.i.d. samples. Koplowitz [66] extended and refined some of Cover’s results. The
problem considered in [28, 66] can be stated as follows. Given a sequence of i.i.d.
samples of an unknown random variable, we wish to decide whether the mean of
the random variable is in a particular set or its complement. It is required that we
eventually stop making incorrect decisions as long as the true mean is not in some
set of measure zero.

This problem is interesting since the type of information to be extracted differs
from the usual objective in estimation/statistics, and cannot be directly obtained from
the usual convergence results on empirical means (e.g., Chebycheft bounds or laws of
large numbers). The success criteria is also highly reminiscent of an “identification
in the limit” criteria used in machine learning [47].

We extend some results of [28, 66], and study a much more general framework.
We feel that the framework discussed may have connections with other learning
paradigms, and it may be possible to further extend the framework to apply to a

much broader class of problems.

1.5 Contributions and Organization of Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we first describe
the variational method for image segmentation, and discuss some useful results from
geometric measure theory. We then derive a number of properties of Minkowski
content. These are used to show that a new discrete formulation that we present
appropriately approximates the continuous formulation. We then present two other
discrete approximations which also correctly approximate the continuous segmenta-
tion problem. The proofs of convergence for these methods are much simpler, and
they may also lead to more efficient implementations.

A problem suggested by these discrete approximations is discussed in Chapter
3. This problem concerns the local versus global nature of computing the length
of a curve from discrete approximations. We define a particular model for parallel

computation, and following definitions of Minsky and Papert [84] (see also (1]), we
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consider notions of local and non-local computation for this model. We show that
for the usual rectangular digitizations, length cannot be computed locally, but that
using appropriate random or deterministic digitizations, the length of line segments
can be computed locally.

In Chapter 4, we consider the computational complexity for the problem of model
matching in object recognition. We show that certain formulations of model match-
ing are NP-complete, so that without further restrictions this approach to object
recognition is computationally difficult.

Starting in Chapter 5, we turn our attention to some problems in machine learn-
ing. After introducing the PAC learning model, we derive some new results on the
relationships between the metric entropy of a concept class with respect to various
distributions and its VC dimension. We then prove some partial results regarding
learnability for a class of distributions which give some indication of whether prior
knowledge of the distribution helps in terms of learnability. Our results suggest that
a substantial amount of prior knowledge regarding the distribution is required before
this prior information impacts learnability.

In Chapter 6, we study the question of how much oracles can help the learnability
of a concept class. Specifically, we consider the effect of allowing access to an oracle
capable of answering arbitrary binary valued queries. We show that, surprisingly, for
both fixed distribution and distribution-free cases, the set of learnable concept classes
is not enlarged by allowing active learning, although the sample complexity can be
reduced.

In Chapter 7, we consider an extension of the PAC learning model which allows
" the use of more general types of samples. This extension substantially increases the
range of problems to which the PAC learning framework can be applied. We consider
a specific application to a problem of reconstructing a curve by counting intersections
with straight lines. Our results refine a classical result from stochastic geometry.

In Chapters 8 and 9, we consider a problem involving classifying probability mea-
sures from empirical data. Our results greatly extend previous results on problems
of this type. The model we consider is a kind of generalization to an identification in
the limit criterion, and may be applicable to more standard learning formulations.

At the end of Chapters 2 through 9 we discuss a number of open problems and
directions to pursue which are directly related to the content of the particular chapter.
In Chapter 10, we discuss a number of potential research directions of a more general

nature. Some of the directions we discuss are relatively independent of the work
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presented in the thesis, but concern ideas which arose during the course of this work.

Other directions concern extensions of or connections between various parts of the

thesis.



Chapter 2

Convergent Discrete
Approximations to a Variational

Method for Image Segmentation

2.1 Variational and Markov Random Field Meth-

ods for Image Segmentation

A variational approach to the problem of restoring and segmenting an image degraded
by noise was recently proposed by Mumford and Shah in [88] (see also Blake and
Zisserman [22, 23]). The method involves minimizing a cost functional over a space
of boundaries with suitably smooth functions within the boundaries. Specifically, if g
represents the observed image defined on @ C R?, then a reconstructed image f and

its associated edges I' are found by minimizing
B = [[(f-ofdody e [[ VS dody+el(t)  (21)

where ¢y, ¢z, c3 are constants and L(T') denotes the length of I'. An interesting special
case of this problem is obtained if f is restricted to be constant within connected
components of Q\I'. In this case, the optimal value of f on a connected component

of Q\T is simply the mean of g over the connected component. Hence, the solution

17
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depends only on I and is obtained by minimizing

k
E() =) [[ (9-9) dedy + e L(T) (22)

where Q,..., 8, are the connected components of Q\I', and g, is the mean of g over
Q;. .

Discrete versions of these problems have also been proposed {23, 88]. In these
discrete problems, the original image g is defined on a subset of the lattice 1Z* with
lattice spacing *. The reconstructed image f is defined on the same lattice, while
the boundary I' consists of a subset of line segments joining neighboring points of the

dual lattice. For the discrete problem, f and I' are found by minimizing

BT =X (=g 4 e 3 (i~ fi)? + esL(T) (2.3)
e 3,1'eN
adjacent
“WNh=0

Similar discrete problems arise in the context of using Markov random fields for
problems in vision as proposed by Geman and Geman [46] and studied by Marroquin
[81] and others.

The continuous formulation has some distinct advantages over the discrete formu-
lation. For example, the continuous problem is invariant under arbitrary rotations
and translations. Also, results from the calculus of variations can be applied in the
continuous case. In fact, such methods have yielded interesting results concerning
the properties of the minimizing f and I' (89, 108, 122]. However, since analytic solu-
tions are not available, the problem must eventually be digitized to obtain numerical
solutions. The discrete problem has the advantages of being more directly amenable
to computer implementations, particularly with parallel algorithms or hardware.

A desirable property of any discrete version of a continuous problem would be for
solutions of the discrete problem to converge to solutions of the continuous problem
in the continuum limit. In the examples above, one would like convergence of the
discrete solutions as the lattice spacing tends to zero. It seems that this is not the
case for the problems as defined above. Specifically, in Section 2.4 we present an
example for which there is evidence indicating that solutions to the discrete problem
fail to converge to a solution of the continuous problem. In this chapter, we consider
formulations involving modifications to both the cost functional and the discretization

procedure for which we can ensure convergence in the continuum limit. We consider
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three discrete approximations and prove some desirable convergence results for these
methods. For the cost functional, we propose the use of different penalty terms for the
boundaries instead of Hausdorff measure which has been previously used [4, 5, 96]. For
the discretization procedure, we consider only digitizing the boundary. The observed
and reconstructed images are still defined on continuous domains.

In Section 2.2, we introduce some preliminary definitions and results from geo-
metric measure theory, and in Section 2.3 some additional properties of Minkowski
content are derived. Section 2.4 contains results on the application of these ideas to

the variational formulation of the segmentation problem.

2.2 Metrics and Measures on the Space of Bound-

aries

In this section, we introduce a variety of notions useful in dealing with the ‘boundaries’
or ‘edges’ of an image. The ‘image’ is usually a real valued function defined on a
bounded open set § C R?, although some of the results consider the more general
case of @ C R". A boundary generally refers to a closed subset of Q. However,
sometimes the boundary may be restricted to have certain additional properties such
as having a finite number of connected components. A topology on the space of
boundaries is required for the notion of convergence, and a measure of the ‘cost’ of a
boundary is required for the variational problem.
For A C R™, the §-neighborhood of A will be denoted by A®) and is defined as

A® ={z e R": inf |z — y| < 6}
yEA

The notion of distance between boundaries which we will use is the Hausdorff metric

dg(-,-) defined as
dir(Ay, Ay) = inf{p: A; C AY and 4, C AP}

It is elementary to show that dg(-,-) is in fact a metric on the space of all non-empty
compact subsets of R™. An important property of this metric is that it induces a

topology which makes the space of boundaries compact.

Theorem 2.1 LetC be an infinite collection of non-empty closed subsets of a bounded

closed set . Then there exists a sequence {I',} of distinct sets of C and a non-empty
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closed set T C Q) such that T, — T in the Hausdorff metric.
Proof: See [41], Theorem 3.16.
g

For the ‘cost’ of a boundary, the usual notion of length cannot be applied to highly
irregular boundaries. Hence a measure on the space of boundaries which generalizes
the usual notion of length is desired. A variety of such measures for subsets of R"
have been investigated. (e.g., see [42]). Perhaps the most widely used and studied
are Hausdorff measures [41, 42, 102].

For a non-empty subset A of R", the diameter of A is defined by |A| = sup{lz—y| :
xz,y € A}. Let

')’

W, =

CT(3+1)
where T'(+) is the usual Gamma function. For integer values of s, w, is the volume of
the unit ball in R*. For s > 0 and 6 > 0 define

Hi(A) = 27%w, inf{d |V’ : AC U, U] <6}
=1 =1

The Hausdorff s-dimensional measure of A is then given by
H(A) = lim H;(A) = sup Hz(A)
§—0 §>0

Note that the factor 2=*w, in the definition of H}(-) is included for proper normaliza-
tion. With this definition, for integer values of s, Hausdorff measure gives the desired
value on sets where the usual notions of length, area, and volume apply.

Many properties of Hausdorff measure can be found in [41, 42, 102]. The following
definitions are required to state several useful properties. A curve I' C R"™ is the image

of a continuous injection ¥ : [0,1] — R". The length of a curve I' is defined as
L(T) = sup{D_ [¥(t:) —¢(tica)] + 0=t <ty <o+ <t = 1}
=1

and T is said to be rectifiable if L(T') < occ. Finally, a compact connected set is called

a conlinuum.

Theorem 2.2 IfI' C R" is a curve, then H'(T') = L(T).
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Proof: See [41] Lemma 3.2.

O

Theorem 2.3 IfT is a continuum with H'(T') < oo, then T' consists of a countable

union of rectifiable curves together with a set of H!-measure zero.

Proof: See [41], Theorem 3.14.

O

Theorem 2.4 If{T',} is a sequence of continua in R™ that converges (in Hausdorff
metric) to a compact set T', then T' is a continuum and H(T') < liminf,_ e H}(Tn)-

Proof: See [41], Theorem 3.18.
O

Theorem 2.4 asserts that H!-measure is lower-semicontinuous on the set of con-
nected boundaries with respect to the Hausdorff metric. Richardson [96] extended
this result to a cost term for boundaries which depends on the number of connected
components. Specifically, define »(I') = HXT') + F(#(T')) where #(I') denotes the
number of connected components of T', and F is any non-decreasing function such

that limp_.e F(n) = co. The following result was shown in [96].

Theorem 2.5 #(-) and v(:) are lower-semicontinuous on the space of boundaries

with respect to the Hausdorff metric.
Proof: See [96], Lemma 1 and Theorem 2.

O

This result was used in [96] to prove an existence theorem for the variational
problems of interest. The essential properties required are the compactness of the
space of boundaries and the lower-semicontinuity of the cost functional. However,
with the discrete approximation suggested in [88], H'-measure can be strictly lower-
semicontinuous on the space of boundaries with the topology induced by the Hausdorff
metric. That is, one can find a set of boundaries [',, in the discrete approximations
converging to a boundary I' but with H'(T') < iminf,_ e H(T,). It is for this reason

that discrete solutions may fail to converge in the continuum limit to a solution of
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the continuous problem (see Section 2.4). It may be possible to resolve this problem
by modifying the cost functional and/or the discretization process. Here we consider
the use of alternate notions for the cost of boundaries and modified discretization
procedures (discussed in Section 2.4).

To measure the cost of the boundaries, we suggest the use of Minkowski content
[42]. Let p(-) aenote Lebesgue measure in R™. For any A C R", 0 < s < n, and
6 > 0, define

M) = 24T

" rw,_,
As in the definition of Hausdorff measure, the term w,_, is included for proper nor-
malization. Recall that A is the §-neighborhood of A — i.e. those points within
distance § of A. Equivalently, A®) is the Minkowski set sum of A and the open ball
of radius §; or in the terminology of mathematical morphology [107] it is the dilation
of A with the open ball of radius §. In general, ims_,o Mj(A) may not exist (for an
example see [42], Section 3.2.40). However, lower and upper Minkowski contents can
be defined by
Mi(A) = liminf M3(A4)

6—0+

and

M**(A) = lim sup Mj3(A)

§—0+

respectively. If these two values agree (i.e if lims_o Mj(A) exists) then the common

value is simply called the s-dimensional Minkowski content and is denoted by M?*( A).

2.3 Properties of Minkowski Content

In this section, we develop several properties of Minkowski content some of which
will be used in Section 2.4. The results can roughly be categorized as properties
of §-neighborhoods, continuity and regularity properties of Minkowski content, and
relationships between Minkowski content and Hausdorff measure.

First, we state two elementary properties. Two sets A;, A, are said to be positively

separated if
d(Al,Az) = inf{|a1 - (lzl ta1 € Al,az € Az} >0

The sets A, A,,..., A, are called positively separated if min;x; d(A;, 4;) > 0. The
first property is that M? is additive on positively separated sets, i.e. if A;, A;,..., 4,,
are positively separated then M*(UZ, A;) = Tin, M?*(A4;). This follows from the fact

1=1
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that for sufficiently small é, the é-neighborhoods of the A; are disjoint. The second
property is that for any set 4, A®) = A% and so M(A) = M3(A) for every § > 0,
where A denotes the closure of A. Clearly A(®) C A®). On the other hand, if z € A%
then |z —y| = 7 < & for some y € A. But |y — a| < § — 7 for some a € A, so that
|t —a| < |z —y|+ |y — a] < §. Hence, z € A®) and so the result follows.

The following two letamas give properties of §-neighborhoods which will be useful
in showing continuity properties of Minkowski content. B,(z) and B,(z) denote the
open and closed balls, respectively, of radius 7 centered at z, and for a set A, 0A

denotes the topological boundary of A, i.e., the closure of A minus the interior of A.
Lemma 2.1 p(8T¥)) =0 for every I' C R2.

Proof: Let ' C R? and let E = T®). The Lebesgue density of E at =, D,(E, ), is

defined as (E N B.(z))
. -(z
D,F,z)=1lm ———=
W(Brm) = Jiy = 0B (o)
when the limit exists. We will show that the Lebesgue density of E is less than 1 for
all z € E. Hence, u(E) = 0 will follow from the Lebesgue Density Theorem.
Let z € E = @T). Then for each 7 > 0, there exists ¢(r) € I' with |z — ¢(r)| <

8§+ 72 If w € Bs(c(r)) then w ¢ E,| so that

#(EN B,(z)) < u(B,(z)) — u(B:(z) N Bs(c(r)))

The circle of radius é centered at ¢(r) intersects the circle of radius » centered at z in
two points which determine a chord C'. Let S denote the segment of B,(z) determined
by C, @ the central angle at z subtended by C, and a the distance from ¢ to C. Then

i(Br(x) N Bs(c(r))) > n(S) = %rz(ﬂ — sin 6)

and P 2 250 .
. 1 1%y _ 13 -1,7 + rTtr —
oy 6 = g 2cos () = limg 2o (o may ) =
Therefore,
#(ENB(x)) _ . w(B(x)) —p(S) . 1 N |
= lim —————— 2 < , ) - — (0 —sinf)) ==
DB ST B ) S ) el g =g

a
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Lemma 2.2 If T, — T in Hausdorff metric, then T(®) — T'¢),

Proof: Let ¢ > 0. Since Iy = I, 3N < o0 such that dg(T,,T) < eVn > N. I
z € T©® then z = a + p with a € ' and |l pll<é. Foralln> N, there exists a, € I'n
with || @ — an l|< e Thenzn =an+p € T'é® and || z — 2 ||=|| @ — an ||< €. Hence,
T c (I®). Similarly, r'e) c (1), Thus, dg(T®),TC) < eVn > N.

]

Two continuity properties of Mj may now be deduced. These follow directly from

the corresponding continuity properties of Lebesgue measure on §-neighborhoods.

Theorem 2.6 IfI', — ' in Hausdorff metric then w(T@) — u(T®) and so Mi(Tr) —
MYT). Le., M3(T') is continuous in T with respect to Hausdorff metric.

Proof: Since’ I, — T, by Lemma 2.2 we have I’ﬁf) — T®, Let € > 0. Then
there exists N < oo such that reé c (T@))) ¥n > N. Therefore, sup,>n p(T®) <
w(TE+). As e | 0, T+ | T(®) so that imsup, . u(TE)) < u(f(“-)_).' Then by
Lemma 2.1 it follows that limsup, (TE)) < u(TE)).

Let K be a compact subset of I'®). Since {Bs(z): € I'} is an open cover of K,
there exists a finite subcover Bs(z1), - ., Bs(wm). Let € > 0. Since T, — T, there
exists N < oo such that ¥n > N we can find Yn1y--->Ynm € I'n with |yn: — @il < €
fori=1,...,m. Then p(Bs(z:)\ Bs(yn,i)) < f(€) where fle) = p(B1 \ Ba) < 26¢

where By and B, are balls of radius & whose centers are € apart. Therefore,

W(0) > w(U) Belyns)) > p(K) —mf(e) ¥n2 N

1=1

and so inf.>n w(TE) > p(K) — mf(e). Since € > 0 1is arbitrary and f(¢) — 0
as ¢ — 0 we have liminf o p(TY)) 2 ((K). Finally, since this is true for every
compact K C T'®), we have lim inf oo p(T48)) > supgcre w(K) = p(TE)).
Thus,
liminf £(I®) = limsup p(T¥) = lim p(0Y) = p(C?)

n—oo n—oo

Proposition 2.1 M;(I') is continuous in & for all 6 > 0.

Proof: As 5 | 6, we have T 1 T®) so that p(T7) 1 w(T@). Asn | 6, we have
(M | T¢). Then by Lemma 2.1, (T | p,(-IT‘S)) = u(T®). Thus, lim, s w(TM) =
p(19).
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O

All the results given so far in this section were proved for I' C R?. However, these
results and proofs can easily be extended to R".

We now state a result given in Federer [42] relating Minkowski content to Hausdorft
measure. A subset I' of R™ is called m-rectifiable if there exists a Lipschitzian function

mapping a bounded subset of R™ onto I'.
Theorem 2.7 IfT' is a closed m-rectifiable subset of R™ then M™(T') = H™(T).

Proof: See [42] Theorem 3.2.39.

O

We will present a proof of Theorem 2.7 in the restricted case of 1-dimensional
measure in R? (i.e., m = 1,n = 2), which is stated as Theorem 2.8. The basic idea of
our proof is contained in the proof of Proposition 2.4. This idea will be used again in
the proof of Theorem 2.9 on the I'-convergence of Minkowski content, which is true
only for 1-dimensional measures.

The following two results give upper and lower bounds on M;(T') for rectifiable
and connected sets respectively. These two results could be appropriately extended

to s-dimensional measure in R".

Proposition 2.2 If T C R? is rectifiable then u(T'®)) < 26HY(T) + w62 and so
ME(T) < HY(T) + Lné.

Proof: Since T is rectifiable, I' = {y(¢) : 0 < t < 1} where v : [0,1] — R’ is
rectifiable and HY(I') = sup{E™, [7(t:) — ¥(tic1)] : 0 =to <t < -+ < ¢ = 1}. For
j=1,2,...1et {t;;} be a sequence of dissections such that max;{|t;; —t.-1,;|} — 0 and
HYT) = lim; oo T |y (k) — Y(tic1,;)| Let C; = = UMY S; where S; is the straight
line joining ~(¢;-1,;) and y(¢;;). Then ;L(S,-(;-s) = |y(t:;;) — y(tiz1,;)| + 762, and

WU SE) = (UAESE) + p(SE) - u(SkmUS“”

;L(U’F—ISG)) (‘;'( )) — 782
= p(UETESY) + y(tes) — v(te-15)]

IN
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By induction on i, we get
] m(j)
p(C7) < 3 r(tiy) — y(tioa)| + 762
i=1

Since ('; — I' in Hausdorft metric, by Theorem 2.6

w(T®)) = lim ;L(C'J(-'s)) < HYT) + 7é®
Jj—oo

Proposition 2.3 IfT' C R? is connected, then MYT) > |T|.

Proof: Let z,y € T, and let ¢ > 0. Since I' is connected, we can find =z =
ToyT1y... 2k = y In ' with |z; — @;_4] < e for 1 < ¢ < k. Let P(w) denote the
point obtained by the orthogonal projection of w onto the straight line T' through =
and y, and let p(w) be the coordinate of P(w) considering T as the real line with

origin at x and positive direction towards y. L.e.,

(w —:c,y-—:l:)
ly — z|

p(w) =

where (-,-) denotes the usual inner product. Note that |p(z;) — p(zi_1)| = |P(z;) —
P(z;_1)| < |z, — ;1] < €. By deleting intermediate points and reordering the indices
as necessary, we can assume that 0 = p(zo) < p(z1) < -+ < p(zx) = |z — y| and
p(x;) — p(zio1) < e

For u,v € R? with p(u) < p(v), let R(u,v) = {w € R? : p(u) < p(w) < p(v)}.
Then

T® > UL ,Bs(zi) D UL, Bs(z:) N R(zi, @i1)
= Uy Bs(P(w:)) N R(wi, zi1)

Since the R(z;,x;_1) for i = 1,2,... k are disjoint,

w(Uf_, Bs(P(x;)) N R(xi,xi_1))
26

M;(T)
1 k

= 5 > u(Bs(P(:)) N R(zs,io1))
i=1
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51‘_5 ;2\/62 — €2 (p(z;) — P(fci—l))

€2
= |z —yl4/1 - 52
Since € > 0 is arbitrary we have M}(I') > |z — y|. Finally, the result follows since

z,y € I' are arbitrary.
O

Using the bounds of Propositions 2.2 and 2.3, the following proposition can be

shown.

Proposition 2.4 IfI' C R? is connected and consists of a countable union of recti-
fiable curves then MY(T') = H}(T).

Proof: First, we prove the result when I' is a rectifiable curve which does not intersect
itself. Let I' = {y(¢) : 0 < ¢ < 1} where v : [0,1] — R? is rectifiable and v(s) # v(¢)
ifs#t Let0=ty<t; <---<tm=1andfori=1,2,...,mlet I, = {y(¢t) : t;_; <
t <t} WK, CT;7=1,2,...,m are continua then they are positively separated.

Therefore, for sufficiently small é the K,-(‘S) are disjoint. From Proposition 2.3 we have

M) > Y My(K;) > | K
1=1 =1

for all sufficiently small §. Hence,

lim inf MG(T) > 3 |y(t:) — 7(tia)]

i=1

and since the dissection {t;} is arbitrary
]j16ni31f MG(T) > HY(T)
On the other hand, from Proposition 2.2, M}(T') < H'(T') 4+ 176 so that

lim sup M3(T') < HY(T)

§—0
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Thus,
MY T) = l.in%M}(I‘) = HY(T)

Now, suppose I' = U2,C; is connected where the C; are rectifiable curves. By
decomposing the C; as necessary, we can assume that they are not self-intersecting
and that C; intersects C; in at most a finite number of points for 7 # j. Then
HYT) = =2, HY(C;). Let E, = U C;. Then by a dissection argument similar to
that used above we get

k
lim inf MG(Ex) > D H'(C:)
- 1=1
and so

lim inf M;(T) > sup ngliglf MG (Er) > HY(T)
— k —
Also, from Proposition 2.2 and the fact that I is connected we have

W(ED) = w(ES) + () - w(ED, n o)
BB + 1(CL)) — m6% < w(EL) ) + 26H(Ch)

A

By induction we get
k
W(EPY <265 HY(Cy) + 78
1=1
for every integer k. Since E(”) is an increasing sequence of sets with I'®) = U2 Ex

we have

() = lim w(EP) < 26HN(T) + 762

Thus
lim sup M;(T) < HY(T)

6§—0

and so the result follows.
O

The next inequality gives bounds for s-dimensional Minkowski content in R? which
are valid for every subset of RZ. This could also be appropriately extended to R".

Here, we use the notation

H;06(T) = 27w, inf{D>_|U;|* :T Cc YU, 6§ <|Ui| <268}

=1 =1
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Proposition 2.5 For every ' CR? and 0 < s <2,

201 16

s < L] < 3
Do 3(T) < ME(T) < w,wz_,H'S'”(r)
and so
270 5(T) < ME(T) < liminf —0—H (T
WeWsy_, - * - lgl_’l(]):l Wyl _, 5,26 )

where Hj 5(T) = 2™°w, inf{T2, [U:)* :T CUZ, U;, & < |Ui| < 26}

Proof: Consider the closed lattice squares formed by the points 712—6Z2. Form a cover
{U;} of T by taking all lattice squares whose intersection with T is non-empty. Then
{U;}is a 6-cover of T and U; U; C T(%). Hence,

2 2 § 2
— H? T.|* — B Y2 ‘ .
S0 < R = 55 2() =r(UU)
2 2 o
< FonT®)= F?”(Fm) = 2w, , M}(T)

To show the second part of the first inequality, let {U;} be any cover of I' with
§ < |U;| < 26. Without loss of generality, we assume that U; N I' is non-empty for
each i. Select z; € I' N U;. Then U,-Em(:ci) O U;U; D T so that UiFZIUgl(wi) o> T
since |U;| > é. Therefore,

/.L(Uiﬁzly‘.l(:lﬁi) Zi 47!"U,‘,|2 47T' IUi|2 24_"
M < < < = |*
MG(T) < 27%wy_, T Trwp, T owao, Zz: (Gihyz-s wzey ; 1%
and so
24—3 . oo . <o 16 .
MT) < inf 3|0 :TcUUW;, 6<|U <6} = 2.25(T)
W2-s i=1 =1 Wyz—s

a

Note that the definition of Hj ,; is similar to Hausdorff measure, except that the
diameter of the covering sets is bounded below as well as above. Hence, its value may
be quite different from Hausdorff measure. As an aside, one consequence of the above
proposition is the known result that the Minkowski dimension of a set is greater than
or equal to its Hausdorff dimension [35, 80].

We can now prove the following special case of Theorem 2.7.
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Theorem 2.8 IfT' C R? is a compact set with a finite number of connected compo-
nents then MYT') = HY(T).

Proof: Since the connected components of I' are compact, disjoint, and finite in
number, they are positively separated. By additivity of both M?! and H!, we need
only consider the case in which I' has one connected component. Hence, we assume
that T' is a continuum. If H}(T) = oo then MY(I') = oo from Proposition 2.5.
Therefore, we can assume that H!(T') < co.

Then from Lemma 3.12 of [41], T is arcwise connected. Since I' is compact, we
can define a sequence of curves C; inductively as follows (as in the proof of Lemma
3.13 of [41]). Let C be a curve in I' joining two of the most distant points of T
Given (1,C,,...,C,, let ¢ € T be at a maximum distance from UleCi and let d;
denote this maximum distance. If d; = 0 then the procedure terminates and we let
C; =0 for i > j + 1. Otherwise, let C;;; be a curve in T joining z and Uf=10i that
is disjoint from U?_, C; except for an endpoint.

Let By = Us_,C;. Tt is shown in [41] (proof of lemma 3.13) that HY(T') =
HY (U2, Ey). Also,

Y d; < Y HYC;) = HY(T) < oo

i=1 j=1
so that d; — 0. This implies that E, = U*_,C; — F in Hausdorff metric as k — oo
and so U2, ), = I'. Hence, from Proposition 2.4 and using the fact that M1(A4) =

MI(A) for any A, we get
HY(T) = HY (U2, Bx) = MY (U, Ex) = MY (U, E,) = MN(T)
O

Note that M* and ! do not agree on all compact sets. An example of a compact
set on which they disagree is given in [42] (section 3.2.40).

The final result shown in this section is that Minkowski content possesses a useful
type variational convergence property known as I'-convergence (or epi-convergence).
This notion of convergence, introduced by De Giorgi [29, 30] and independently by
Attouch [10], is useful in problems involving the convergence of functionals. The result
on I'-convergence will be used in Section 2.4 to prove somne convergence properties of
solutions to certain formulations of the segmentation problem. Given a topological
space (X, ), and functions F,,, F : X — R U {—o00, 400}, the sequence {F,} is said
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to be T-convergent (or epi-convergent) to F at = € X if the following two conditions
hold:

(i) for every sequence {z,} converging to z in (X,7), F(z) < liminf, 0 Fn(zn), and

(ii) there exists a sequence {z,} converging to z in (X, 7) such that
F(z) > limsup,,_, ., Fu(a).

We will show that for every sequence &, — 0, M} is I'-convergent to M* on the
space of compact subsets of R? with a bounded number of connected components
and with the topology induced by the Hausdorff metric.

First, we need the following lemma as stated in [41].

Lemma 2.3 Let C be a collection of balls contained in a bounded subset of R™. Then

there evists a finite or countably infinite disjoint subcollection {B;} such that

U BcUB,

BeC i
where B! is the ball concentric with B; and of three times the radius.

Proof: See [41], Lemma 1.9.

Now the the T-convergence of Minkowski content can be shown.

Theorem 2.9 For every sequence &, — 0%, M;j is I'-convergent to M?! on the
space of compact subsets of R* with a bounded number of connected components and
with the topology induced by the Hausdorff metric. Le., let I' C R? be compact with
#(T) < M < oo, and let §, > 0 satisfy lim,_ 6, = 0. Then the following two

conditions hold:

(i) For every sequence of compact sets I'n C R? with ', — T in Hausdorff metric
and #(I',,) < M Vn we have '

MY(T) < liminf M} (T,)

(i) There exists a sequence of compact sets I'y C R? with T, — T in Hausdorff
metric and #(T',) < M VYn such that

MY(T) > limsup M; (T'n)

11— 00
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Proof: Since #(I') < M we have ' = Uk, F; where k < M and Fy, F3,. .., Fy are
the connected components of I'. Since the F; are compact and disjoint, they are
positively separated i.e there exists 7 > 0 such that F"n F(") =0 for ¢ # j. Then
MYT) = & | MY(F;), and for sufficiently large 7, M} (T,) = Tk M (T NEM).
Thus, it is sufficient to prove the result under the assumption that I' is connected.
Suppose H!(I') = co. Form a §-covering of I' by placing a closed ball of radius
§ about each point of I'. Then by Lemma 2.3, we can find a disjoint subcollection
(necessarily finite) of balls such that concentric balls of radius 36 cover I'®). Let N(é)
be the number of balls in this finite disjoint subcollection. Then 66 N(6) > Hgs(T') —
0o as § — 0. Let € > 0. Since I', — T, for sufficiently large n we have I‘nﬂBg(mi) #£ 0.
Also, since #(I',,) < I, thereis a connected component of I', N Bs(z;) with diameter
greater than or equal to  for at least N(§) — K values of <. Using Proposition 2.3
and the fact that the balls are positively separated, we have for sufficiently large n

N(é)

M (Tn) > M} (T NULPBs(2:)) = > M;, (Tn N Bs(x:))
i=1

N(8)

Z T N Bs(:)| >

v

(N(6) - K)

Nleﬁ

Since 6 N(§) — oo as 6 — 0, liminf,, & M} (T',) = oo, and so the result follows.

Now, suppose H!(I') < co. From Theorem 2.3 we have I' = 5 U (UZ, C;) where
H(S) = 0, and C; are rectifiable curves. From the construction used in the proof of
this result (see [41], also part of the proof is reproduced in the proof of Proposition
2.4), H{(T') = ©2, H(C;) and if @ € ¢; N C; then z is an endpoint of at least one of
C; or C}.

Consider U*_,C;. By decomposing the C;, we can assume that they are simple
curves which meet each other only at endpoints. The C; are rectifiable curves, so that
C;:[0,1] - R? and

m(1)
’Hl(ci) = Ml((__,'i) = sup{z |C,j(ti'j_1 - C’i(tij)| 0=t <tin <...<limu) = 1}
Jj=1
For eachi = 1,2,...,k,let 0 = tio < tiy < -+ < time) = 1, and consider the points

Ty = C’vqf(tij).
The connected components of Uk, C; \ {z;;} are given by Gi; = {Ci(t) : tij-1 <
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t <t;}for1 <1<k 1<5< m(i). For each 7,7, let K;; be a compact subset
of G;;. Then the K;; are positively separated since they are a finite collection of

disjoint compact sets. Therefore, for some n > 0, the Kl-(;?) are disjoint. Since I'y, — T

and #(I'z) < M, for n sufficiently large I', N Kg’) has a connected component whose

diameter approaches the diameter of K;; except for at most M values of 7,j. lL.e.,

except for at most M values of ¢, 7, there is a connected component T;; of I'n N Kl-(J'-’)

such that for every ¢ > 0 there exists NV > 0 with |Tni;| > |K;;| — € and &, < 7 for all
n > N. Hence, by Proposition 2.3, for alln > N

M (T,) > M (T.nUJ K
i’j

K mi)
= S ML(T.NES)

ij

1=1 j=1
k 'rn,(i)

ST Kyl —€) - M(H}.gx{lKiH})

=1 j=1

Y%

and so
m(i)

lim inf M;,(T') = E |1<i5] — M(11}3X{|Kij|})

i=1 j=1

Taking the sup over the compact sets K;; gives

k m(i)

liminf ML (Tn) = sup{} > |Kij| — M(max{|Ki|})}
1)

nree Kij i=1 j=1

E m(i)

= 3 37 |Ci(tii-1) = Ciltig)l - M(Hf;xﬂc'i(ti,j—l) — Ci(ti;)1D

i=1 j=1

Then, taking the sup over the t;; gives

n—oo

k
lim inf Mj (T',) > Z HY(C5)
=1
since M < oo and max; ;{|Ci(ti;j-1) — Ci(ti;)|} — 0 as max;,;{|ti;-1 — ti)[} — 0.

Finally, letting k& — oo gives

liminf M} (T.) > HY(T) = MNT)

n—Cco
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which proves (i).

To show (ii), take T', = I'. From Theorem 2.8, M(T') = H'(T') so that in partic-
ular lims_o M}(T') = M(T') exists. Hence, for every sequence §, — 0, condition (ii)
is satisfied by taking I', =T

O

Note that Theorem 2.9 is not true in general if the bound on the number of
connected components is dropped. For example, let r1,7;,... denote an enumeration
of the rationals between 0 and 1. Take I', = {(r:;,0) : 1 <7 < n} and §, = 1/n%.
Then I, — ' = {(,0) : 0 < z < 1}, but M} (T'n) < 37né, — 0 while MY (T) = 1.
However, the restriction on the number of connected components can be dropped if

we impose the additional assumption that dg(I'n,T')/é, — 0 as n — oo.

2.4 Discrete Approximations to the Segmenta-

tion Problem

In this section, we apply some results of the previous sections to the variational
method for image segmentation discussed in the introduction. As before, g represents
an observed image defined on a bounded open set @ C R?, f is the reconstructed
image, and I' are the boundaries of the image. In the variational approach, f and I’
are obtained by minimizing the cost functional 2.1 or 2.2. Normally, g is assumed to
be in L=(2), T is a closed subset of {, and f is in the Sobolev space W?(Q\T).
Under certain regularity assumptions, a number of interesting results concerning the
nature of the minimizing f and T' have been obtained (23, 89, 97, 122]. Also, the
existence of a minimizing pair (f,I') for various versions of the problem has been
shown [4, 5, 96].

Here we are concerned with the behavior of solutions to discrete versions of the
problem as the lattice spacing tends to zero. Specifically, we are interested in whether
or not solutions to the discrete problem converge to a solution of the continuous
problem. It seems that this may not necessarily be the case for the discrete problem
of 2.3. For example, consider the segmentation problem 2.2 where f is required to
be piecewise constant. Take @ = (0,1) x (0,1), g(z,y) = 0 for z < y and g(z,y) =1
otherwise, and 4v/2c3 < ¢; < 8cs. It is generally difficult to prove optimality of
solutions to these types of problems, but for simple examples one can obtain evidence

of optimality by comparing the costs of various natural candidate solutions. For the
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example above, the optimal solution to the discrete problem with sufficiently small
lattice spacing seems to be I' = @, while the optimal solution to the continuous
problem seems to be I' = {(z,z) : 0 < = < 1}. For completeness, it would be nice to
actually prove optimality of these solutions.

The failure of convergence in the continuum limit appears to be a result of the
possible strict lower semicontinuity of the length of curves with respect to the Haus-
dorff metric. E.g., in this case, if I' = {(z,z) : 0 < & < 1} and T’ is the discrete
approximation to I' with lattice spacing 1/n, then I', — T but L(T') = V2 while
limp_ oo L(T') = 2. The notion of length in the discrete case does not coincide in the
continuum limit with the usual measure of length of the limiting boundary.

As previously mentioned, it may be possible to resolve this problem by modifying
the cost functional and/or the discretization process. In this section, we present three
methods for discretizing the variational method for image segmentation for which we
prove desirable convergence properties in the continuum limit. Other approaches
to digitizing the problem have been considered and implemented (e.g., in [97, 45]),
although proofs of convergence of these methods are lacking (see Section 2.5 for more

discussion).

2.4.1 Minkowski Content as Cost for Boundaries

Here we consider the use of Minkowski content for the cost of the boundaries and
propose a modified discrete version of the problem. Specifically, given an observed

image g € L>=(f2) we consider the problem of minimizing

E,s(f,r)zclffn(f—g)zazmzy+c2//mF | V5|2 dedy + caMs(T)

with T a closed subset of  and f € Wh2(Q\T).

For the discrete version of the problem with lattice spacing %, we simply restrict
T to be composed of a union of closed lattice squares of 1Z2. Specifically, for integers
1,7 let

Sii={(z1,zz) ER? i<z <i41,5< 2y <j+1}

S;; is the closed unit square whose lower left corner is at (i,7). Then 1G:; is a square
with side 1 whose lower left corner is at (i/n,j/n). For the discrete problem with
lattice spacing }1, the boundaries consist of a union of the 71—15,5 — i.e., a union of

closed lattice squares of 2Z?. The discrete version with spacing 1 of a boundary
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T C R?is given by P.(T') where P,(-) maps T' to the subset of R? consisting of the

union of the 15;; that I' intersects:

P = U Sy

i\jwith
Ls,inr#£0

However, we still take g and f to be defined on the continuous domains 2 and
Q\T respectively. Hence, we have only incorporated a partial discretization, i.e.
we have only discretized I'. However, the primary difficulty in numerical solutions
is to properly deal with the boundary. For a fixed T, the minimization reduces to
a standard variational problem whose Euler-Lagrange equations can be solved by
standard algorithms for partial differential equations.

We now give some results concerning the problem of minimizing Es.
Theorem 2.10 For every § > 0, there exists a pair (fs,I's) which minimizes E;.

Proof: Since we have shown that M; is continuous (Theorem 2.6), the existence

proof of Richardson [96] can be applied.
O

Note that for any bounded I', M4(T') < oco. Hence, a minimizing boundary may
quite possibly have nonzero Lebesgue measure.

The next theorem establishes the desirable property of discrete to continuous
convergence for E; with a fixed § > 0. We will use the same notion of convergence
as used in [96]. For f € WL2(Q\T), f and its weak first order derivatives Dy,
i = 1,2, can be considered as functions in L*() by defining them to be zero on I
By (fn, ) — (f‘,I‘) we mean that T',, — T’ in Hausdorff metric and that for the
extended functions f, — f, Dy, fn — Ds, f,1=1,2 weakly in L*(Q2).

Theorem 2.11 Let (f;,,T},) denote a minimizing pair for Esn, t.e. for the discrete
problem Ej; with lattice spacing ~. Then there erists a subsequence (still denoted
(f3n:15,,)) and a pair (f5,Ts) such that (f;.,Ts.) — (f5,Ts) and (f5,Ts) minimizes
Es.

Proof: The existence of a pair (fs,['s) with (f§,,T5.) — (f5,Ts) follows from Lemma
3 of [96]. We only need to show that (fs,I's) minimizes Es.
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Let (f#,T';) minimize Fs. For each n, let A, be obtained from I'; by taking the
smallest cover of I'; using the closed lattice squares of the lattice with spacing 1.
Let h, be the restriction of f} to 2\ A,. From Theorem 2.6, im,_,» Es(h,,A,) =
Es(f;,T3). Then, by the lower-semicontinuity of Es and the optimality of (f;,,,T} )

for the discrete problem with lattice spacing 2, we have

E6(f67F6) S ]-irllll’g}fEcs(fG,naPﬁ.n)S]-i'l;r_l.iol.}szS(hn,An)
= Jinn Ea(h, M) = E5(f5,T)

Therefore, Es(fs,Ts) = Es(f;,T}) so that (fs,I's) minimizes Es.
O

A natural question at this point concerns the behavior of (f5,I';) as § — 0. One
would like (f#,I'f) to converge to a minimizing solution of the original cost functional
E. We can show a convergence result if the number of connected components of the
admissible boundaries is uniformly bounded. ILe., following [96], we let the cost term

for the boundaries be

vs(T') = My(T) + F(#(T))
where F(k) = 0 for k < M < co and F(k) = oo for k > M. Let EM denote the

cost functional with the above boundary term, and let EM denote the cost functional

whose boundary term is

v(I') = M) + F(#(T))

By Theorem 2.8, M(T') in the equation for v(I') could equivalently be replaced by
‘HY(T'). For these variational problems, we have the following convergence result,

which essentially follows from the result on the I'-convergence of Minkowski content
(Theorem 2.9).

Theorem 2.12 Let (f;,T;) denote a minimizing pair for EM, and let §, — 0%. Then
there is a subsequence (which we still denote by 6,) such that (f{ ,T; ) — (f,T) for
some (f,T') which minimizes EM. Furthermore, EM(f; T} ) — EM(f,T).

Proof: The existence of a pair (f,I') with (f;,,I'; ) — (f,T) follows from Lemma 3
of [96). We need to show that (f,T') minimizes Es and that EM(f; ,T; ) — EM(f,T).
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This follows from Theorem 2.9 on the epi-convergence of Minkowski content in

the case of a bounded number of connected components. Specifically,
EM(£,T) < liminf EY(fs,,Ts,) < liminf EM(f*,T*) = EM(f*,T)

so that (f,I') minimizes EM.

Also, we have

E'M(f, G) = lim sup Eﬂ(f, I') > lim sup Ef:{(fgn, Ts,.)
Thus,
limsup EJY(f,T) < EM(f,T) < li11111.i£f Eé‘j(f, r)

M= 00
and so

EM(£,T) = lim E5[(f,T)
O

Finally, we give a result concerning the convergence of solutions when the lattice
spacing and § are simultaneously allowed to go to zero. The following theorem guar-
antees convergence of a subsequence to a solution of the continuous problem if 6 — 0

at a rate slower than the lattice spacing.

Theorem 2.13 Let &, > 0 with é, — 0 and let (f; .,T; ) denote a minimizing

pair for Ef:{,n, i.e. for the discrete problem Eg’{ with lattice spacing % If né, — oo as

n — oo then there exists a subsequence (still denoted (f. .,T3. ) and a pair (f,T)
such that (f3. ., T; ) — (f,T) and (f,T) minimizes EM.

Proof: As before, the existence of a pair (f,T') with (f; ,,T; ) — (f,T') follows
from Lemma 3 of [96], and so we need to show that (f,T') minimizes EM.

Let (f*,T*) minimize EM, and for each n let (hn,A,) be obtained from (f*,T*)
as in the proof of Theorem 2.11. Namely, A, is the smallest cover of I'* using lattice
squares of the lattice with spacing %, and h,, is the restriction of f* to O\A,. Then
using Theorem 2.9 and the optimality of (f; .,T; .) we have

EM(f,T) < liminf EY(f; ., T3, ) < liminf E}(hn, Ar)

Since A, is the minimal cover of I'* on the lattice with spacing }1, we have A, C
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(F')(%‘E) so that

. V2
D )
((T*)(6nt+2) vz
= liminf p((I) )E"—F*"
noee 2(671 + ?) 6"‘

lim "'(2((1; . j@))) (14 22) = myre)

liminf M; (A,) < limin

n—oo n— oo

né,

It follows that
li'{]lgl{ Eﬂ(hn) An) S EM(f" F*)

Therefore, EM(f,T) < EM(f",l"') so that (f,T') minimizes EM.

2.4.2 Alternative Cost for Discrete Boundaries

In this section we propose another discrete version of 2.1 which possesses the desirable
convergence property in the continuum limit. As in the discretized version using
Minkowski content in the previous section, the discrete boundaries consist of unions
of discrete closed lattice squares. However, we assign a different cost (measure of
length) to the discrete boundaries. It is shown that this alternate measure of length
satisfies a convergence property from which convergence of solutions to the variational
problem follows.

As in the previous section, for the discrete version of problem 2.1 with lattice
spacing 1, we restrict the boundaries to be composed of a union of closed lattjce
squares of 1Z2. We now define an alternate cost for discrete boundaries (or rather
discrete approximations to length for any boundary). Let I' C R2, First, suppose
that P,(T') (the discrete version on the lattice with spacing 1/n) is connected. In this
case, define £,,(T') by

Ln(T) = inf{H*(A) : A connected and FP.(A) = P,(T)}
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In the general case, define £,(I') b
= Z L.(G:)

where the G; are the connected components of P,(I').

The discrete measure of length assigned to a connected discrete boundary P.(I')
is the minimum length of a connected curve that gives rise to the same discrete
boundary. Related measures of length for discrete boundaries have been studied in [68,
85, 86]. Note that for bounded T, the inf could actually be replaced by min since the
infimum is achieved. This follows from the compactness result of compact sets under
the Hausdorff metric and the lower semicontinuity of Hausdorff measure. The sum in
the extension to arbitrary boundaries is well defined since any discrete boundary has
at most a countable number of connected components. In fact, a bounded discrete
boundary has a finite number of connected components. Two boundaries that give
rise to the same discrete boundary have the same discrete measure of length.

Using this discrete measure of length, we can define a partially discrete version of
the original variational problem 2.1 with lattice spacing 1. The boundaries are recon-
structed only to within their £ discrete versions, but the observed and reconstructed
images are still defined on continuous domains. Specifically, given an observed image
g € L=(Q) we reconstruct a discrete boundary P,(I') and an image f on § \ P.(T)

by minimizing

E, = [/ )2 dz d /f VS|P dedy + csLoa( Pa(T

(f, Pn n\P,.(r) edytef)op o | VFII* dzdy + csLn(Pa(T))
(2.4)

We now discuss some properties of the discrete measure of length and the associated

discrete variational problem.

Theorem 2.14 For every fited n < 0o, a minimizing solution (f*, P.(I'*)) for Ea(-,)

eTists.

Proof: For a fixed boundary, the minimization of E, is a standard variational prob-
lem for which a solution exists. Since { is assumed to be bounded, there are only a

finite number of distinct discrete boundaries P,(T'), and so the result follows.
O

As previously mentioned, common way to prove existence to variational problems

is to show a compactness property and lower-semicontinuity of the cost function.
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Due to the finite number of possible discrete boundaries, compactness and lower-
semicontinuity over the set of discrete boundaries are immediate. However, £,(-) is

not lower-semicontinuous over all I'. For a simple example, take n = 1, and let T’
be the straight line joining (1,1) and (2 — %,3). Then P;(TI'x) = Soo U Sio so that

2172
L£1(Tx) = 0. Also, the T converge to the straight line T' joining (},1) and (2, }), so
that Py(T') = Soo U S10 U Sz0. Therefore, £1(T') =1 > liminfy_eo £1(T%) = 0.

The following result shows that for a large class of boundaries the discrete measures

of length converge to the usual notion of length as n — oo.

Theorem 2.15 IfT' is a compact set with a finite number of connected components

then lim,_,o L£.(T') = H(T).

Proof: If G4,...,G,, are the connected components of T', then for sufficiently large
n the P,(G;) are disjoint for ¢ = 1,...,m. In that case, L,(T') = ¥, L.(G:). Also,
HY(T') = =7, HY(G;). The result will follow if it can be shown for each connected
component. Therefore, suppose that I' is connected.

By the definition of £,(I'), we have £, (I') < H*(T') so that limsup,,_,., La(T) <
HY(T'). On the other hand, for each n, there exists a compact and connected A, with
P.(A,) = P,(T) and H'(A,) = LA(T). Since P,(A,) = Pu(T), An — T in Hausdorff
metric as n — oco. By the lower-semicontinuity of H! (see [41], Theorem 3.18) we
have H}(T') < liminf,_ H}(A,) = liminf, o L,(T'). Thus, lim, . L£.(T) exists
and equals H'(T).

O

The following theorem shows that the discrete measures of length converge in

another useful way to Hausdorff measure.

Theorem 2.16 L, (-) is I'-convergent to H'(:) on the space of compact subsets of
R? with a bounded number of connected components and with the topology induced by
the Hausdorff met-ic. Le., let T C R? be compact with #(I') < M < oco. Then the

following two conditions hold:

(i) For every sequence of compact sets I', C R? with I', — T in Hausdorff metric
and #(I'n) < M VYn we have

HYT') < liminf £,(T,)

n—oo
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(ii) There exists a sequence of compact sets I'n C R? with T',, — T in Hausdorff
metric and #(I'n) < M Vn such that

HYT) > limsup L.(T'n)

Proof: To show (i), let T, be any sequence of compact sets with #(I'x) < M and
[, — I in Hausdorff metric. Then #(P.(T'n)) < #(I'») < M. Therefore, for each
n there exists A, with #(A,) = #(Pa(Tn)) < M, P.(An) = Po(Th), and H(A,) =
L.(T,). Since ', — T, we have P,(T',) — T and also since P.(A,) = P,(T',) we have
A, — I'. Hence, by the lower-semicontinuity of Hausdorff measure for a bounded
number of connected components (as mentioned in Section 2.2 — see [96, 97]), we
get HY(T) < liminf,_ o H*(A,) = iminf, o L£a(T5).

To show (ii), simply take I', = T for all n. Then by the definition of £,(T'), we
have HY(T') > L,(G) = L,(T') for all n and so H(T') > limsup,,_,, Ln(T's)-

a

The I'-convergence property shown above is sufficient to show convergence of so-
lutions to the discrete problem 2.4 as the lattice spacing  goes to zero if the number
of connected components of the admissible boundaries is uniformly bounded. I.e.,

following [96], we let the cost term for the boundaries be
vu(T) = La(T) + F((T))

where F(k) = 0 for k < M < oo and F(k) = oo for kK > M. Let EM denote the
cost functional with the above boundary term, and let EM denote the cost functional

whose boundary term is

v(T') = HY(I') + F(#(T))

For these variational problems, we have the following convergence result, which es-

sentially follows from the previous result on I'-convergence.

Theorem 2.17 Let (f2,T%) denote a minimizing pair for EM. Then there exists a

subsequence (still denoted (f2,T%)) and a pair (f,T') such that (f;,T}) — (f,T) and

(f,T) minimizes EM.

Proof: The existence of a pair (f,T) with (f:,T*) — (f,T') follows from Lemma 3
of [96]. The fact that (f,T') minimizes EM follows from the I'-convergence of £, to
H! (shown above) which implies the I'-convergence of EM to EM.
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d

2.4.3 Segmentation with Piecewise Linear Boundaries

In this section we formulate a modified version of the original variational problem
2.1 which eliminates the problems associated with computing the length of irregular
curves. The modification consists of requiring the boundaries I' to consist of a union of
a bounded number of straight line segments. We propose a partially discrete version
of the modified problem and show a convergence result for the solutions to the discrete
problems.

Let SM = SM(Q) be the set of all compact subsets of  that are the union of
M < oo or fewer connected line segments contained in 2. Consider the problem of
minimizing 2.1 subject to the constraint that I' € SM. Alternatively, we can consider
this problem as one of minimizing the cost function Esm whose boundary term is
HYT) for T' € SM and infinite otherwise.

Theorem 2.18 For every fited M < oo and Q a bounded region of R, SM(Q)
is compact with respect to the Hausdorff metric. Le., for every infinite sequence
I, € SM(Q) there is a subsequence, still denoted T, and T' € SM(Q) such that
I, — ' in Hausdorff metric.

Proof: First, each T, is a compact subset of (. As previously mentioned, the set
of compact subsets of  is compact with respect to the Hausdorff metric (e.g., see
[41], Theorem 3.16). Hence, there is a subsequence, which we still denote I', and a
compact set I' C Q such that T', — T' in Hausdorff metric. We need only show that
I € SM(Q), i.e., that T' is the union of at most M line segments.

Note that by a line segment we include the possibility of a single point or the
empty set. It is straightforward to show the result for M = 1. Le., given a sequence
of single line segments any convergent subsequence converges to a single line segment.
Now, each T',, is the union of at most M line segments so that I', = Uf‘ilAn,,- where
each A,; is a line segment (possibly a point or the empty set).

We can extract a subsequence (still indexed by n) so that A,; — A; where 4, is
a line segment (again, possibly a point or the empty set). Similarly, we can extract
sub-subsequences M — 1 more times (still indexed by n) so that foreach: =1,..., M,
A,; — A; where each A; is a line segment.

Therefore, for the final sub-subsequence, I', = UM A, ; and for eachi =1,...,m

we have A, ; — A; where A; is a line segment. Hence, I', — T' = UM, A; and so
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T e SM(Q).

Theorem 2.19 A minimizing solution (f*,I'*) for Esm(-,-) exists.

Proof: This follows from the compactness of SM shown above and the lower-

semicontinuity of the cost function (e.g., see [96, 97]).
O

Now we consider partially discrete versions of the problem Egswm. As before, only
the boundary is discretized. For this problem we consider a different form of discrete
representation for the boundaries, taking advantage of the fact that the boundaries
are piecewise linear. Specifically, we consider the set of lattice points in 172, and
require the endpoints of each line segment in the boundary to lie on these lattice
points. Let SM™ = SM"(Q1) denote the collection of all sets consisting of at most M
straight line segments whose endpoints lie in 2Z* N P,(2). To obtain a convergence
result we will consider the boundary to be a dilation of the linear segments where the
amount of dilation is related to the lattice spacing. For the discrete problem with
lattice spacing 1/n, the cost function is minimized over boundaries of the form ['(én)
where §, > v/2/n with §, — 0 as n — oo and I' € SM™(Q). The reconstructed image
is then defined only on § \ I'®»). However, the cost of the dilated boundary I'(6) is
taken to be simply the the total length of the straight line segments comprising I'.
Let Egmn denote the discrete problem with lattice spacing 1/n. For these discrete

problems, we have the following convergence result.

Theorem 2.20 Let (f},I?) denote a minimizing pair for Esma. Then there ezists a
subsequence (still denoted (f3,T%)) and a pair (f,T') such that (f3,T},) — (f,T) and

(f, I‘)' minimizes Egsar.

Proof: The existence of a pair (f,I') with (f2,T%) — (f,T) follows from the com-
pactness of SM and Lemma 3 of [96]. We only need to show that (f,T') minimizes
ESM.

Let (f*,I*) minimize Egn. For each n, let A, be obtained from I'* by taking the
best approximation to I'* using line segments whose endpoints lie in 2Z? N P,(Q), i.e.
the best boundary which can be used in the discrete problem with lattice spacing &.
This will be obtained by taking the line segments whose endpoints lie on the lattice
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sites closest to the endpoints of I'*. Note that certainly A=) S T* since §, > v/2/n
and with lattice spacing > there is always a lattice point within v/2/n of any point
in Q. Let h, be the restriction of f* to 2\A¥). Then, we have

E,sM(f7 F) < ll'Il'[l'lol.}f ESM-"(f;:,F;) < hﬂlolgf ESM'"(hmA”)
= J_i_}l;.o ESM.‘"»(hn)An) = ESM(ft’I‘*)

where the first inequality uses the lower-semicontinuity of Esm (which follows from
results from [96]), the second inequality follows from the optimality of (f;, I's), and
the equalities follow from the continuity of the first two terms of Esm with respect

to dilations of the boundary (see [96]). Therefore, Esm(f,T') = Esm(f*,T*) so that

(f,T') minimizes Egsn.

O

2.5 Discussion and Open Problems

We obtained several new properties of Minkowski content, and gave new proofs for
some results already known. Refinements for many of the results may be interesting
to consider. For example, Lemma 2.1 shows that the boundary of a dilated set
cannot be too irregular. We expect that much stronger statements concerning the
regularity of the boundary could be made. For example, if A and P denote the area
and perimeter of a §-dilation, then we conjecture that P/A < 2/8 with equality iff
the §-dilation consists of a union of disjoint circles of radius . This is a kind of
“reverse” isoperimetric inequality for §-dilations. As a general direction, it may be
worth investigating whether the results obtained for Minkowski content and dilations
are applicable to some problems in mathematical morphology [107].

Regarding the segmentation problem, we provided some evidence suggesting that
the standard discretization fails to approximate the continuous formulation (for com-
pleteness, it would be nice to actually prove this). Hence, analytical results concern-
ing the continuous formulation cannot be applied to the standard discrete solutions
(even for a very fine lattice spacing). It may be interesting to study the continuous
variational principle which corresponds to the standard discretization. The natu-
ral conjecture is that in the corresponding continuous formulation the cost term for

a curve is (] cos8(s)| + |sin 6(s)|)ds where s is arc length and (s) is the angle
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between the tangent to curve and a fixed z-axis, rather than the length of the curve.

We presented three procedures for partially discretizing the variational formulation
of the segmentation problem for which we proved convergence results in the continu-
um limit. Our results provide a rigorous justification for certain finite-difference-like
approximation to a variational problem explicitly incorporating boundaries. We ex-
pect that the methodologies presented could be used to analyie discrete approxima-
tions to other “free-discontinuity” variational problems. In particular, the approach
may be applicable to other problems in early vision which explicitly minimize over
boundaries.

There are several reasons for considering a variety of discrete approximation meth-
ods such as those presented here. First, the proofs of the convergence results for two
of the techniques presented here are much simpler since we were able to use some
powerful results on Hausdorff measure, rather than deriving new results as we did
for the method using Minkowski content. Second, certain discretization methods
and cost terms may be easier to implement and computationally more advantageous
than others. Finally, considering several alternative approaches might suggest certain
general properties that are shared by all discretizations of the original problem.

Regarding the second and third points we have some specific ideas in mind. Both
approaches presented here as well as the method using Minkowski content are com-
putationally unattractive compared to the standard discretization. For example, in
the standard discretization the cost term associated with a discrete boundary is ob-
tained by simply taking the total length of the segments in the discrete boundary. On
the other hand, with the digitizations proposed, the computation of the cost terms of
Sections 2.4.1 and 2.4.2 is much more involved. In particular, the MRF corresponding
to the standard discretization is very simple, requiring no interactions between the
boundary sites, while implementing the discretizations proposed would require large
neighborhood structures (growing unboundedly as the lattice spacing tends to zero)
and complex potentials.

The distinction can also be formalized along the following lines. Consider a dis-
tributed implementation in which there is a processor at each lattice site. The state
of a processor is either zero or one depending on whether or not the boundary passes
through the associated lattice square. To compute the length terms of Sections 2.4.2
or 2.4.1, each processor must perform a computation depending on the state of a very
large number (tending to infinity) of other processors as the lattice spacing tends to

zero. On the other hand, for the cost term of the usual discretization, the contribu-
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tion of a particular processor to the total cost depends on the state of the processor
but is independent of the state of all other processors (regardless of the discretiza-
tion level). Hence, if implemented in parallel architectures in the natural way, the
two methods that possess the proper convergence properties require computations
that are in some sense nonlocal as the lattice spacing tends to zero, while the usual
discretization results in a local computation (independent of the discretization level)
but fails to have the right convergence properties. Note that for the method using
piecewise linear approximations, if implemented in the natural way, the computation
can be done locally but each processor requires an unbounded number of states in
the continuum limit (to indicate whether an endpoint of the line segment is present
at that processor and, if so, at which processor the other endpoint lies).

A natural question is whether the computational difficulties discussed above can
be circumvented by a clever discrete approximation. This problem is discussed in
Chapter 3. As we will see, the results in Chapter 3 suggest that for rectangular
lattices the difficulties are not merely due to a poor choice of discrete approximations,
but are inherent difficulties associated with any discrete approximation to measures
of length. This result probably holds for many other regular lattices as well (e.g.,
hexagonal). However, interestingly, the problems with nonlocal computation can be
avoided for appropriate random and deterministic tesselations.

Also, as alluded to above, the nonlocal computations can likely be avoided if
the processors are allowed to have infinitely many states. For example, this could
correspond to associating a direction (or local tangent) to each boundary element in
addition to just it presence or absence. Hence, in the MRF formulations this might
correspond to coupled intensity and boundary fields both of which are real valued.
Some work which may be related to this idea is contained in [93]. A somewhat different
approach to having real valued boundary elements is suggested by an important result
of Ambrosio [4, 5. He obtained an interesting I'-convergent approximation to the
original variational problem; Specifically, he showed that the functional

M) = o [[(F-9+er [ =0 I VF I +es( [ @=v?) | T0 P +5)

I'-converges to 2.1 as A — 0o, so that minimizers of E"(f,v) converge to a minimizer
of E(f,T) as h — oo. Here f is as before and v : € — [0,1] plays the role of
the boundaries. For finite h, v represents a sort of smoothed version of T in the

sense of having a value close to 1 near I' and having a value of 0 away from T,
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and varying continuously in between. This result suggests a natural digitization of
2.1 by taking a finite difference approximation to E*(f,v) as discussed in [97] and
(45]. However, as far as we know, a proof of convergence for such finite difference
approximations is lacking in this case. We expect that convergence should hold as
long as A — co appropriately as the lattice spacing 1/n — 0, namely h/n — 0. Such
a conjecture is natural in light of the results of [69, 73] and was in fact stated in [97].
Furthermore, convergence issues aside, it is not clear that computational difficulties
are avoided with these approaches. E.g., in Ambrosio’s approximation, there may be
some computational or numerical problems as A — oo. Further work needs to be

done to understand whether any computational difficulties arise in this case.



Chapter 3

Local Versus Non-local
Computation of Length From

Discrete Approximations

3.1 Introduction

In Chapter 2, we discussed some discretizations of the segmentation problem for which
we showed desirable convergence results in the continuum limit. These formulations
have the advantage that solutions to the discrete versions converge to a solution of the
continuous problem as the lattice spacing tends to zero. However, they have the disad-
vantage that for discrete boundaries the cost functional is considerably more difficult
to evaluate than for the standard discretization. This has important implications as
to the suitability of these methods for computation on parallel architectures.

As we discussed, the discrete formulations have a close relationship to problems
arising from a probabilistic approach using Markov random fields (MRF’s), which is
attractive for a number of theoretical and practical reasons. One major reason for the
attractiveness of MRF’s is their local neighborhood structure. A very useful property
of the standard discretization is its small neighborhood structure independent of
the level of discretization. On the other hand, the discretizations discussed in the
previous chapter require the neighborhood size to grow (unboundedly) as the lattice
spacing tends to zero. For very fine discretizations, the neighborhood structure is
highly nonlocal and the advantages of the MRF structure are essentially lost. This

is due to the choice of the cost for the discrete boundaries, which were selected
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for their convergence properties to the true length of the curves in the continuum
limit. A natural question is whether one can retain such convergence properties with
computations using local neighborhood structures.

Thus, we are led to consider the local versus non-local nature of computing the
length of a curve from discrete approximations. Interestingly, this problem has con-
nections with the learning paradigms discussed below (see Chapter 7). In this chapter,
we formalize our notions of local and non-local computation, and provide some results

for various tesselations.

3.2 Definition of Local Computation

In studying the question of local versus non-local computation of length, we restrict
ourselves to a particular type of discrete representation for curves. First, for simplicity,
we consider only curves contained in the unit square. For each n, we assume that the
unit square is partitioned into a number of regions sp 1, ..., Snk(n) With k(n) — oo as
n — oo. We think of n as indicating the discretization level, so that n — oo typically
corresponds to finer and finer partitions. The discrete representation of a curve I' on
the partition of level n will consist of those regions s, ; which I' passes through, i.e.,
for which I' N's,,; # 0. 7

The notions of local versus global computation we use are similar to those con-
sidered by Minsky and Papert [84] (see also {1, 75]). For a lattice at level n, we
imagine a processor in each region sn1,...,Snk(n)- Let pn; denote the location (z,y
coordinates) of the processor in region s, ;. For simplicity, we will also let p, ; refer
to the processor itself (as well as its position).

We assume that each processor has information as to whether or not the curve I’
passes through its region. Furthermore, each processor p.,; has an associated neigh-
borhood N, ; which is a set of other processors at level n which provide information
to the processor p, ;. That is, processor p, ; performs a computation depending only
on the state of the pixels in its neighborhood, which will be denoted by T'|n, ;. We
assume that the outputs of each of the processors are combined linearly to produce
the final computed value. Hence, the computed value ﬂn(F) for the length of the

curve I' from its discretization at level n is given by an expression of the form

k(n)

Lo(T) = 3 ¢ni(Tlw.,;) (3.1)
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The diameter of a neighborhood N, ; is the maximum distance between any two
processors in N, ;. The diameter d,, of the computation at discretization level n is the
largest diameter over all neighborhoods N, ;. Note that as n — oo, the processors
necessarily get closer together, since they are all within the unit square. Since we
are interested in computations in which each processor does not communicate to too
many other processors, it is not sufficient simply to bound d, as n — co. Instead, we

will bound the scaled diameter y/k(n)d,. A computation of the above form is said to
be diameter limited (in the limit, or as the lattice spacing tends to zero) if \/k(n)d,

is uniformly bounded as a function of n, i.e., for some d < oo we have (/k(n)d, < d
for all n.

A diameter limited computation provides one notion of what we mean by a local
computation. Following [84], another notion is that of an order limited computation.
The order of a neighborhood N, ; is simply the number of processors in N, ;, i.e. its
cardinality. The order a,, of a computation at discretization level n is the maximum
order over all j of NV, ;. Then, an order ].imitéd computation is one for which «, is
uniformly bounded as a function of n, so that there is some a < oo such that a, < «
for all n.

It is difficult to prove any results without imposing some additional structure
on the computation. We consider the case of a translation invariant neighborhood
structure and translation invariant processors meaning that for each n, N, ; and ¢, ;
are independent of j. We also consider the case in which only those processors which
are “on” can contribute to the computation. That is, we assume that the contribution
¢n,;(T|n, ) of processor p,; is zero if I' does not pass through the region associated
with p, ;. In the case of regular tesselations, these assumptions allow a simplification
of the form of the computation in (3.1). Specifically, for an order or diameter limited
computation there are a finite number K of distinct patterns for I'y, ; (i.e., states of
pixels in a neighborhood). Each processor which sees pattern ¢ in its neighborhood
contributes the same quantity a,; to the total computation. Therefore, if we let ¢,
denote the total number of pixels which I' passes through, and let f,;(I') denote the

frequency of occurrence of pattern ¢, then L, is given by

K
f/n(r) = tn(r) Z a’n.ifn,i(r) (32) .
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3.3 Local/Non-local Results for Various Tessela-

tions

A rectangular digitization is the one most commonly used in image processing. In
this case, at discretization level n the unit square is partitioned along the coordinate
axes into n? square pixels of size 1/n by 1/n. The pixels correspond to the closed
lattice squares of ~Z%. This is exactly the discretization defined in Section 2.4.1. The
discrete version of a curve I' is composed of the union of closed lattice squares of 1Z?
which I' passes through.

For such discretizations, we have the following result.

Theorem 3.1 The length of a curve cannot be computed using a diameter limited
computation from discrete approzimations on a rectangular tesselation. In particular,
if nd, < d < oo then for some straight line T, lim,_,o Ln(T) # L(T).

Proof: We will proceed by showing that any diameter limited computation fails to
compute length appropriately in the limit on many straight lines. Consider a line
segment of unit length and let # be the angle that the extension of the segment makes
with the z-axis. Since we are considering only the case where I' is such a straight line

segment, we will write (3.2) indexed by 6:

K .
La(8) = ta(6) Z: Qnifni(0) (3.3)

For lines with small #, as n gets large the digitization consists of long stretches
of pixels in a row with occasional corners (or shifts) to different rows (see Figure
3-1). Now, suppose the computation is diameter limited with nd, < d. Then for
0 < 8 < tan™! 3 the corners are sufficiently far apart so that the digitized pattern
in the neighborhood of every processor contains either no corners or exactly one
corner (see Figure 3-2), with the different locations of the corner in the neighborhood
corresponding to different patterns.

Since we are concerned with the behavior of the computation as n — oo, we can
ignore the effects at the ends of the line segment, and the effects of the offset of the line
segment with respect to the digitization. For each 0 < # < tan~!}, the frequencies

of occurrence of all patterns which contain a corner are approximately the same for
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[T T1

Figure 3-1: Digitized line segment with small slope.

large n. Hence, we can simplify (3.3) to

Lo(8) = ta(8)[an1£21(8) + an2fn2(6)] (3.4)

where f,, and f,. denote the frequency of occurrence of patterns without a corner
and with a corner respectii/ely.

For large n, there are approximately nsin 8 corners for a unit length segment at
angle 0, and the segment passes through approximately n cos 6 columns. Hence, the
digitized version of the line segment contains approximately ¢,(8) = n cos 8 + nsin 4
total pixels. Also, since the computation is diameter limited with nd, < d, at most d
pixels see a given corner, so that ndsin § pixels see some corner. Therefore, f,1(8) =
dsin /(cos 8 +sin8) and f,1(0) = 1 — fn2(f). Substituting these expressions in (3.4)

and letting n — oo gives
L(6) = a; cos 0 + (ay + d(az — ay))sin 6 (3.5)

for 0 < 6 < tan~' 2. Since the line segments at all angles have unit length, in the
interval 0 < # < tan~' 3, the computation is correct only for those 4 for which L(B) =
1. For finite d, from (3.5) L(#) = 1 clearly cannot be satisfied for all 0 < § < tan~? :
(in fact, it can be exactly satisfied for at most two values of § in the desired interval).
(]

We expect that similar results are true for the other standard regular tesselations
(i.e., hexagonal and triangular). However, it is interesting that it is not true for all
tesselations.

Specifically, we first consider random tesselations produced by a number of random
straight lines. The lines will be drawn from the usual invariant measure which is

uniform in both the angle and radial coordinate (up to some maximum radius) of the
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Figure 3-2: Two types of patterns in diameter limited neighborhood for line segments
with sufficiently small slope.

polar coordinate representation of the line. The “lattice spacing” is related to the
number of random lines drawn. For this tesselation we have the following result for

computing the length of any straight line segment.

Theorem 3.2 LetI' be any straight line segment. There is a diameter limited compu-
tation on tesselations formed from independent lines drawn uniformly which converges

to the length of I' with probability one.

Proof: For the computation on the tesselation at level n, we will let each processor
which is “on” (i.e., which I' passes through) contribute 2/n independent of the state
of all other processors. Hence, the neighborhood of a given processor consists only of
the processor itself, so that the computation is clearly diameter limited.

Now we need to show that as n — oo this computation recovers the length of
a straight line segment I'. Let 3(n,T') denote the number of pixels comprising the
digitized version of I on the lattice at level n. For a random line ¢, let m(¢,T') denote
the number of intersections between £ and I'. Since T' is a straight line segment, for
almost all £, m(¢,I') is either zero or one. Furthermore, since the pixels consist of
regions formed by straight lines and I’ is a straight line segment, the number of pixels
comprising the digitized version of I' is just one plus the number of straight lines

intersecting T. Le., B(n,T') = ¥, m(4;,T) so that

i=1

- 12

Ln =2—Em(£z,I‘)
n

=1
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From the law of large numbers, we have that as n — oo, L, — 2- Em({,T) with
probability one. A result from stochastic geometry states that if I' is any rectifiable
curve in the unit square and £ is a random line intersecting the unit square drawn
uniformly then Em(¢,T') = 1L(T) (e.g., see [105] and Section 7.2 for more discussion).
Thus, using this result we have that L, — L(T') with probability one.

O

The intuitive idea of the results above is that the length of a line segment is twice
the area of a corresponding subset of the cylinder, namely the area of the set of lines
which intersect the line segment. With a rectangular tesselation, we obtain samples
on the cylinder only for # = 0 and § = /2. On the other hand, with the random
tesselation, we obtain a random sampling of points on the cylinder from which we can
easily estimate the desired area. This suggests that there is a tradeoff between the
complexity of the sampling used and the complexity of the resulting computation. It
also suggests that appropriate deterministic sampling strategies should allow a local
computation of the length of a line segment. The theorem below shows that this
is in fact the case for a particular deterministic sampling strategy. Specifically, we
consider the tesselation at level n to be that formed by parallel lines with spacing
1/n taken at angles 27j/n for j = 0,...,n — 1. Denote this tesselation by U,. Moran
[87] has obtained results on estimating the length of a curve by counting intersections
with the straight lines forming the tesselation U,. The following result on the local

computation of length using the tesselation U, follows from Moran’s results.

Theorem 3.3 Let I' be any straight line segment. There is a local computation on

the deterministic tesselation U, which converges to the length of I'.

Proof: As in Theorem 3.2, for the computation on the tesselation at level n, we
will let each processor which is “on” (i.e., which I' passes through) contribute 2/n
independent of the state of all other processors. Hence, the neighborhood of a given
processor consists only of the processor itself, so that the computaﬁon is clearly
diameter limited. To show that as n — oo this computation recovers the length of
a straight line segment T', note that (as in Theorem 3.2) since the pixels consist of
regions formed by straight lines and T is a straight line segment, the number of pixels
comprising the digitized version of I' is just one plus the number of straight lines

intersecting I'. Hence, the theorem follows using the results of Moran [87].

O
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3.4 Discussion and Open Problems

There are a number of interesting questions and directions to pursue along the lines of
this chapter. It would be interesting to extend the local computation results for both
the random and deterministic tesselations (Theorems 3.2 and 3.3) to general curves.
The difficulty is that for general curves there isn’t a simple correspondence between
the number of regions intersected by the curve and the number of intersections the
lines make with the curve. It would also be interesting to extend the local and non-
local results to other tesselations. For example, we conjecture that non-local results
similar to Theorem 3.1 hold for regular tesselations such as triangular or hexagonal.
Likewise, we conjecture that results similar to Theorem 3.2 hold for other random
tesselations such as Voronoi tesselations obtained from homogeneous planar Poisson
point processes. (For work on random tesselations see for example (3, 114]). The
results of [112] may be useful in proving results of this type. One difficulty in dealing
with tesselations which are not formed by a number of straight lines is that the duality
between intersections of the lines and sampling on the cylinder (manifold of straight
lines) is lost. Perhaps there is a more general way in which to view the sampling
which works for other tesselations.

Another direction to pursue is to try to relax some of the assumptions such as
translation invariance, etc. However, it seems that proving results in these cases will
be difficult. One extension that we feel should go through is to prove a non-local
result like Theorem 3.1 for order limited computations as opposed to just diameter
limited. Also, it would be useful to obtain error bounds in terms of the diameter (or
order) of the computation, since it is likely that although an exact computation in the
limit may be non-local, a good approximation can be obtained with a small diameter
(order). It should be possible to use 3.5) to obtain lower bounds on the achievable
error for diameter limited computations.

A natural question is whether the tesselations which allow local computation of
length can be used to construct a discrete version of the segmentation problem which
is local and yet possesses the appropriate convergence properties in the continuum
limit. We expect that this can be done, although the corresponding MRF structure
would be somewhat complicated due to the irregular placements of lattice sites.

Our results show that local lattice systems may inherently lack the ability to
perform certain computations due to the arrangement and connections of the lattice

sites. The results suggest that other lattice-type systems such as cellular automata or
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spin systems in statistical mechanics may possess inherent computational limitations
arising from their architecture. It may be interesting to study these questions.

The notion of local versus non-local computations appears to be of fundamen-
tal importance. The work presented in this chapter suggests many other general
directions which may be interesting to pursue. It may be worthwhile investigating
whether other computations (e.g., determining convexity or connectedness from dis-
crete approximations of a set) can be done locally. One could consider questions of
local/non-local computations using other discretizations or in which the processors
have access to other types of data, as opposed to just data from a discretization on
a tesselation as comsidered here. It might also be interesting to consider forms of
computation other than just those of the type in 3.1, as well as to investigate other

notions of local and non-local computations.
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Chapter 4

Computational Limitations of
Model Based Recognition

The problem of model based recognition can be informally described in the following
way: given a library of modeled objects and a set of sensed data, identify and locate
the objects from the library that are present in the data. The standard computational
approach is to represent the modeled objects and the data in terms of discrete features
so that the recognition can be solved as a search problem. These results indicate that
by applying rigidity constraints in various ways, model based recognition can be
efficiently applied to recognize a small number of objects even from partial views and
in the presence of non-malicious noise. The relevant complexity parameter in such
cases is the number of features that model each object.

In this chapter we analyze the case in which objects are represented by a small
number of features. The relevant complexity parameter in this case is the number of
objects. Instead of analyzing the performance of specific algorithms, our approach is
to apply techniques from complexity theory to identify cases in which model based
recognition appears to be inherently difficult. Specifically, we show that the problem
is NP-complete, and thus, its complexity (modulo standard complexity assumptions,
i.e., P # NP) is super-polynomial in the size of the library.

Proving that a problem is NP-complete is a common technique in complexity anal-
ysis for identifying the problem as intrinsically difficult. In a (well defined) sense, an
NP-complete problem is the most difficult problem in the class NP, which includes
many difficult problems such as the traveling salesman. However, an NP-complete
problem is not completely unapproachable; a standard method for coping with such

problems is to identify easily solved sub-problems. In the case of model based recog-
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Figure 4-1: Examples of local features.

nition this might correspond to exploiting additional structure of the modeled objects
and the way they are viewed. For more information on the theory of NP-complete
problems see [44]. For applications of NP-completeness results to vision tasks see
(64, 117].

The negative results of this chapter can be used to determine constraints that may
simplify the problem of model based recognition. We will attempt to identify three
types of constraints: constraints that leave the problem NP-complete, constraints
that guarantee efficient (polynomial) algorithms, and constraints that make our NP-
completeness proofs inapplicable, so that they may simplify the problem. The generic
model based recognition problem that we consider is noise free and assumes no oc-
clusion. An example of constraints of the first type is that each pair of local features
can be found in at most three objects from the library. An example of constraints of -
the second type is that each pair of local features can be found in at most two objects
from the library. An example of constraints of the third type is occlusion of convex

objects.

4.1 Preliminary Definitions

We consider situations in which objects can be described in terms of sets of local
features. A local feature is taken to be a simple geometric shape (although the results
hold for arbitrary interpretations of “simple” and “local”), and an object is described
by a set of local features and their location in space. Commonly used features are
points, lines, angles, etc. An example is shown in Figure 4-1, where a triangle is

described in terms of straight lines (a), corners (b), and points along its edges (c).
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Definition: An object description by local features is a set of pairs

0 = {{f1, Xa), (fa Xa), - (fi, X)}

where for 1 <7 < t, f; is a local feature and X; is its location is space relative to a

fixed coordinate system.
Definition: A library is a set of object descriptions.

Definition: A picture is sensed data given as a set of local features and their location

is space.

The problem of model based object recognition is:

For a family of coordinate transformations ¥, a library L, and a picture
P = {{fi,X1),---,(fm,Xm)}, determine a disjoint partition of P into
objects from L, i.e., subsets Oy,..., O, such that: (i) for ¢ # 5 0;N0; = 0;
(ii) P = Oy U---UOy; (iii) for 1 <7 < g there is 9; € ¥ that transforms

an object from L into O;.

Our main result is that the problem of model based recognition under translations,
rotations, and perspective projections is NP-complete. The proofs are based on a
reduction from ezact cover by 3 sets (X3C) that is known to be NP-complete (see
[44] page 221).

X3C: The following ezact cover by 3-sets problem is NP-complete:

Instance: a set E of m elements and a collection C of 3-element subsets of E.
Question: does C contain an exact cover for E, i.e., a subcollection ¢’ C C such
that every element of E occurs in exactly one member of C''?

Comment: X3C remains NP-complete even if no element occurs in more than three
subsets in C', but is solvable in polynomial time if no element occurs in more than

two subsets. A related problem, ezact cover by 2-sets, is solvable in polynomial time.

4.2 The Case of Translation and Rotation

Theorem 4.1 Let L be a library of objects and let P be a picture. The decision
problem of whether P can be described as a disjoint union of translated and rotated
objects from L is NP-complete. The problem remains NP-complete even if each object
is described by 3 points.
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po— m*+l — py - p — mP4i — piyy o Pm
Figure 4-2: The picture in the proof of Theorem 4.1.
pr — 2m*4+5 — py — mP+4 — ps

Figure 4-3: A typical object in the proof of Theorem 4.1.

Proof: Membership in NP is obvious. To show that the problem is NP-complete we
reduce X3C to it. ’

Let {E,C} be an instance of the X3C problem. C is a collection of 3-element
subsets of the m elements €1,...,e, € E. We begin by constructing a picture P of
m points p1,...,pm on the  axis. The location of p, is at the origin, the point p; is
at distance m? + 1 from p,, the point p; is at distance m? + 2 from p,, etc. See the
illustration in Figure 4-2. Let ¢ : E — P denote the mapping of elements in E to

points in P. For 1 <14 < m we have:
#(e;) = a point at = = (i — 1)m* 4+ i(s — 1)/2 (4.1)

Clearly, ¢ is 1-1 and onto, so that the inverse mapping is well defined. We now create
the library L from the 3-element subsets in C'. For a 3-set composed of the elements
€as €3, €4 We add to L an object described by the 3 points ¢(ea), ¢(es), ¢(e,). The
object generated by the elements €3, €4, €5 is shown in Figure 4-3.

To prove the NP-complete result it remains to show that P is a disjoint union of
rotated and translated objects from L if and only if C' contains an exact cover of E.
The proof is based on Lemma 4.1 which is proved at the end of this section.

Let C' C C be an exact cover of E, where ¢ = m/3 = |C'|. For {e;,,€;,,€e;,} € C'
define O; = {¢(e;, ), (e, ), #(€i, )}, so that O; € L for 1 <2 < g. Since (' is a cover
of E and ¢ is onto, P = |J?_, O;. Since C' is exact and ¢ is 1-1, 0;NO0; = B for ¢ # j.

Conversely, let ¥ be the family of coordinate translations and rotations, and
assume O; € L, ; € ¥ for 1 <1 < g such that: (i) for i # j ¥:(0;) N¥;(0;) = 05 (i)
P = UL, ¥:(0;). From Lemma 4.1 it follows that %, is the identity transformation
(¥:(0;) = 0y), so that ¥;(0;) € L for 1 < i < q. Let O; = {pi,,pi,pi, }- Define
T, = (¢~ Y(pi,), & Piy), ¢ 1(piy)), and €' = {T; : 1 < i < g}. From (ii) and the fact
that ¢~! is onto it follows that C' is a cover. From (i) and the fact that ¢ is 1-1 it
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follows that C' is an exact cover.
O

Lemma 4.1 Let O be an object from the library defined in the proof of Theorem 4.1,
and let O' be an object defined by 3 points from the picture in the proof of Theorem 4 1.
If O can be mapped by translation and rotation to O' then O = O".

Proof: Without loss of generality let O be described by the points p; , pi,, pi, and
O' by the points p;,, p;,, pj,, Where i3 < i; < i3 and j; < j2 < js. Since the objects
are 1-dimensional, a transformation taking O to O' involves either zero rotation or a
180° rotation. We show that the transformation must be with zero rotation and zero
translation.

First, suppose the transformation involves no rotation, then the distance between
pi, and p;, is the same as the distance between p; and p;,. From Equation (4.1) we
have
2(i2 — 1) —41(41 — 1)

2

(]2 - 1) —71(51 = 1)

9 = (12 — 1:1)771'2 +

(j2 — j1)m’® 472

Let s(z,7) = (7(j — 1) — i(i — 1))/2, so that the above equation can be written as
(72 = 1) = (G2 — in)lm? = s(i1,42) — 5(j1, J2)- (4.2)

Clearly, 0 < s(7,7) < m? for 1 <17 < j < m, and |s(i1,12) — $(j1,72)| < m?. But since
the right hand side of Equation (4.2) is divisible by m? it must equal 0, and we have

s(11,12) = s(3j2,J2) (4.3)
Jp—n=t2—n

The unique solution to the system (4.3) with 71,7, as the unknowns is j; = ¢; and
J2 = 1. Since in pure translation the distance between p;, and p;, is the same as the
the distance between p;, and p;, the same derivation gives j3 = i3, so that O = O'.
Tt remains to show that a transformation taking O to O’ cannot ‘nvolve rotation.
Suppose, on the contrary, that O is mapped to O' by a transformation involving
nonzero rotation. As mentioned above, this rotation must be 180°. But then the
distance between p;, and p;, is the same as the distance between p;, and p;,, and the
distance between p;, and p;, is the same as the distance between p;, and p; . Using
the same derivation as above we get j; = i3, j» = 12, and j; = %;. But since j; < j3

and 7; < i3 we have a contradiction.
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P P> 2 ~ Pin P
1
d
!

P mi+l — p 0 P mi4+i — P+ 0 Pm

Figure 4-4: The picture in the proof of Theorem 4.2.

4.3 Translation, Rotation, and Scaling

Theorem 4.2 Let L be a library of objects and let P be a picture. The decision
problem of whether P can be described as a disjoint union of translated, rotated, and
scaled objects from I, is NP-complete. The problem remains NP-complete even if each

object s described by 6 points.

Proof: Membership in NP is obvious. To show that the problem is NP-complete we
reduce X3C to 1t.

Let {E,C} be an instance of the X3C problem. We begin by constructing a 2D
picture ( as 2 disjoint union of two pictures: @ = p U P'. The pictures are defined
by the two 1-1 and onto mappings: ¢$:E— P and 8: E — P

é(e;) = a point at ¢ = (i — 1)ym? +i(i—-1)/2, Y= 0

. . . (4.4)
§(e;) = a point at z = (i—1)m*+ (i-1/2, ¥= d

See the illustration in Figure 4-4. We now create the library L from the 3-element
subsets of C. For (€a> €8s e,) we add to L an object described by the 6 points: 8(ea),
6(es), 0(ey); #(ea) #(ea), #(ey). The object generated by the elements €2,€4,€5 is
shown in Figure 4-5.

To complete the proof 1t remains to show that Q is a disjoint union of trarslated,
rotated, and scaled objects from L if and only i (! contains an exact cover of E. The
proof is based on Lemma 4.2 which will be proved at the end of this section.

Let (' C C be an exact cover of E, with ¢ = |C""|. For {e,-l,eiz,e,-,} € (' define
0; = {9(&;1),O(eiz),e(eh),¢(eil),¢(ei2),d)(eia)}, <o that 0; € Lfor 1 < i < q. Since
(" is a cover of E, and ¢,0 are onto P and P’ respectively, Q=PFPU P = U, 0
Since (' is exact and ¢,6 are 1-1, 0, N0; =0 for 1% 3
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ps — 2m+5 — ps m+4 — ps

Figure 4-5: A typical object in the proof of Theorem 4.2.

Conversely, let ¥ be the family of coordinate translations rotations and scaling and
assume O; € L, ¢; € ¥ for 1 < i < ¢ such that: (i) for ¢ # 7, ¥:(0:) N;(0;) = 0; (ii)
Q = UL, ¥:(0;). From Lemma 4.2 it follows that 1); is the identity transformation,
so that 1;(0;) € Lfor 1 < i < q. Let O; = {Piy, Piz: Piss Pi, » Py Py}, Where we
assume without loss of generality that p;,,pi,,pi, have zero y coordinates. Define
T: = {¢~2(pi, ) ¢~ (pi,), ¢~ (piy)}, and €' = {T% : 1 < i < g}. From (11) and the fact
that ¢! is onto E it follows that C" is a cover. From (i) and the fact that $tis 1-1

it follows that C'' is an exact cover.

(]

Lemma 4.2 Let O be an object from the library defined in the proof of Theorem 4.2,
and let O' be an object defined by 6 points from the picture in the proof of Theorem 4.2.
If O can be mapped by translation, rotation, and scaling to O' then O = O'.

Proof: Let O be generated by e;,,€;,, €. Let uy,uz,us, be the points of O' that
are mapped to 8(e;, ),0(e;, ), 0(e;, ) respectively, then uq,u;, us are collinear. Similarly,
let vy, va,v3, be the points of O’ that are mapped to P(ei, ), P(ei, ), P(ei,) respectively,
then vy, v;,vs are collinear. Since (e, ), #(ei,), ¢(e;,) form a right triangle, w1, u2, v,
form a right triangle, so that the triplets wq,uz,us, and vy, V,,v3 are not on the same
line in the picture. Therefore, it must be that one triplet lies on the line y = 0, and
the other on the line y = d, and since the distance between the lines in the library
object is d, the transformation involves no scaling.

It remains to show that the transformation involves no translation and rotation
and this follows from Lemina 4.1 when applied to the points u;,u;,us and the library
of objects defined by the triplets of points {6(e;, ), 8(e;,), 0(ei,)} for 1 <4 < gq.
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4.4 The Case of Perspective Projection

A perspective projection is the mapping 7 : R* — R? given by
X Y
—_ [— , = — 4.
* fZ 4 fZ (4:5)

Here it is assumed that the camera is at the origin and pointed directly down the Z
axis. The reference frame is oriented as the image plane, which is located at distance
f from the origin (see [53]). Unlike translation, rotation, and scaling, perspective
projection may destroy geometric properties by merging lines and points. In the
extreme case, any object far enough from the image plane is projected into a single
point in a finite resolution picture. To eliminate degenerate cases we consider only

stable perspective projections.

Definition: A stable perspective projection has the following properties: (i) Distinct
3D feature points are mapped into distinct 2D feature points. (ii) Non-collinear 3D

feature points are mapped into non-collinear 2D feature points.

Notice that a small perturbation of the viewing point of an unstable perspective

projection always gives a stable perspective projection.

Theorem 4.3 Let L be a library of JD objects, and let P be a 2D picture given as
a set of local features and their 2D location. The decision problem of whether P can
be described as a stable perspective projection of a disjoint union of translated and
rotated objects from L is NP-complete. The problem remains NP-complete even if

each object is described by 12 points.

Proof: Membership in NP is obvious. To show that the problem is NP-complete we

reduce X3C to it.
Let {E,C} be an instance of the X3C problem. We begin by constructing the 2D

picture @ = P, U P, U P U Py, where

P; = {$j(e;);1<i<m} for1<j<4

$1(e;) = apointatz=(i—1)m?+i(i—1)/2, y=0
#2(e;) = apointatx=(i—1)m?+1i(z—1)/2, y=md
#s(e;) = apointaty=(:—1)m?+i(i—1)/2, z=-—
Palei) apoint at y = (¢ — 1)m? +1¢(: — 1)/2, =z = m3+1
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Thus, the points are on the edges of a planar rectangle.
We now create the library L from the 3-element subsets of C. For (e;,, €;,, €;,) we
add to L an object described by the twelve 3D points: {#%(e;,);1 <j < 4,1 <t <3},

where:

¢:(e;) = apointat X =(i—1)m?+4(:—-1)/2, Y =0, Z=f
di(e;) = apointat X =(i—1)m?+i(i—1)/2, Y =m? Z=f
di(e;) = apointatY =(G—-1)m?+i(1—-1)/2, X=-1,Z=f
#i(e;) = apointatY =(i—-1)m?+i(:-1)/2, X =m>+1, Z=f

Observe that 7(¢i(ei)) = ¢j(e;) for 1 < j < 4. It remains to show that @ is a stable
perspective projection of a disjoint union of translated and rotated objects from L if
and only if C' contains an exact cover of E. The proof is based on Lemma 4.3 which
will be proved at the end of this section.

Let C' C C' be an exact cover of E, with ¢ = |C'|. For {e;,, €;,,€;,} € C' define O;
as the 3D object described by the twelve 3D points: {¢3(e;,);1 <5 <4, 1 <t <3},
so that O; € L for 1 <17 < q. Since (' is a cover of F, and ¢, are onto P, respectively,
Q = Ui_; 7(0;). Since C' is exact and ¢; are 1-1, 7(0;) N 7(0;) = 0 for 7 # j.

Conversely, let ¥ be the family of coordinate translations and rotations and assume
O; € L and ¢; € ¥ for 1 <1 < ¢, such that: (i) for ¢ # 7, 7(¥:(0;)) N 7(¥;(0;)) = 0;
(i1) @ = U, 7(¥:(0;)). From (ii) and Lemma 4.3 it follows that ¢; is the identity
transformation, so that ¢,(0;) € Lfor1 <1 <gq. Let O; = {pfl,pfz,pfa} for1 < j <4,
where we assume without loss of generality that pf! were generated by ¢%. Define
T, ={(¢3)Ypl,):1 <7 <41<t<3},and C' = {T;: 1 < i < ¢}. From (ii) and
the fact that (¢7)~! is onto E it follows that C' is a cover. From (i) and the fact that

(#%)~* is 1-1 it follows that C" is an exact cover.

O

Lemma 4.3 Let O be a 3D object from the library defined in the proof of Theo-
rem 4.3, and let O' be an object defined by 12 points from the picture in the proof
of Theorem 4.3. If O can be mapped by translation rotation and stable perspective

projection to O’ then the mapping is with zero translation and rotation.

Proof: We use the following properties of perspective projection (see [53], Chap-
ter 13): (a) Collinear 3D points are projected into collinear 2D points. (b) If the
projection of parallel 3D lines is parallel 2D lines then the 3D lines are parallel to the

image plane.
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Let O be generated by e;,,€;,,€e;,. Let L; be the 3D line of the rotated and
translated points ¢(e;, ), #i(es,), #3(ei;) for 1 < j < 4, so that L, is parallel to L,

and L is parallel to Ly. Let u uJ be the points of O' that are mapped to ¢? (€s,)s

HYGH
¢3(es,), 3(ei,) respectively, then u},u?,u? are collinear for 1 < j < 4, and since the
projection is stable, the 4 triplets are on 4 different lines in the picture. The picture
has exactly four lines with at least 3 points. These lines are: y =0, y = m?, z = —1,
and £ = m® + 1. Therefore, the 4 triplets come from these 4 lines.

Let [; be the projection of L; for 1 < j < 4. [; intersects with two lines from
{l5,13,14}, and is parallel to the third. Since L, intersects with L3 and Ly, [, intersects
with l3,ls, and is parallel to [;. Thus, we have two parallel lines L,,L, that are
projected into parallel lines. Therefore, both L; and L; must be parallel to the image
plane; let Z; and Z; be their depth. From the same arguments the lines Ls, L4
are parallel to the image plane; let Z3, Z; be their depth respectively. But since L
intersects with both L; and L, we have Z, = Z, = Z3 = Z4.

We conclude that all the points of the translated and rotated object O have the
same distance from the image plane. From Equation (4.5) it follows that in this
case the distance from the image plane has the effect of scaling the object. Thus,
Lemma 4.3 follows from Lemma 4.2 when app]jed to the library of objects defined by
¢i(ei), di(ei,), di(ei,) and the 6 points uj,ul,ud for 1 <j < 2.

4.5 Discussion and Open Problems

We have shown that the problem of model based recognition is NP-complete. Thus,
there is little hope for a performance guaranteed algorithm that can solve the problem
efficiently. However, it is still possible that easy sub-classes of the problem can be
characterized by additional structure of the modeled objects (e.g., convexity) and
the way they are viewed (e.g., occlusion). Our results can help determine what
constraints are potentially useful. For example, we can identify some constraints that
may potentially simplify model based recognition, and other constraints that leave
the problem NP-complete.

Local features other than a point: With no additional structure this can only
make the problem more difficult. However, with additional structure of the local
features the problem may become polynomial. For example, straight lines may have

an additional constraint that their ends meet (see Figure 4-1).
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Occlusion: Without additional structure this can only make the problem more
difficult. However, with additional constraints such as convexity this makes our NP-
completeness proofs inapplicable, so that it may potentially simplify the problem.
A small number of feature points: If each object is described by 2 points the
problem is polynomially solvable by matching techniques.

A large number of feature points: Without additional structure this can only
make the problem more difficult. However, if it is assumed that small subsets of these
points determine a unique object from the library then the problem is polynomially
solvable. (This is the essential assumption in geometric hashing {74]).

Almost distinct subsets: If the distance between every pair of feature points
uniquely determines two (or less) objects, the problem is polynomially solvable. If
this distance determines three (or more) objects the problem is still NP-complete.
This follows from the comment in the definition of X3C.

Dimensionality: Notice that the results of Theorem 4.1 hold also for translation
and rotation in 2 and 3 dimensions. Similarly, the results of Theorem 4.2 hold also
for 3 dimensions.

It would be interesting to study further the complexity of model based recognition
under different conditions such as those mentioned above. Some other interesting
directions may be to consider the complexity of formulations in which we require only
“approximate” solutions and/or to consider stochastic formulations of model based
recognition (including noisy observations) in which one can consider, for example, the

average case complexity.
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Chapter 5

Metric Entropy, VC Dimension,
and Learnability for a Class of

Distributions

Recently, there has been a great deal of work on the Probably Approximately Cor-
rect (or PAC) learning model, which is a precise framework attempting to capture
the notion of what we mean by ‘learning from examples’. The essential idea consists
of approximating an unknown ‘concept’ from a finite number of positive and nega-
tive ‘examples’ of the concept. For example, the concept might be some unknown
geometric figure in the plane, and the positive and negative examples are points in-
side and outside the figure, respectively. The goal is to approximate the figure from
a finite number of such points. The examples are assumed to be drawn according
to some probability distribution, and the same distribution is used to evaluate how
well a concept is learned. However, no assumptions are made about which partic-
ular distribution is used. That is, the learning is required to take place for every
distribution.

The earliest work and many fundamental results related to PAC-like models was
done by Vapnik [121]. Many important results relevant to the PAC model have
been obtained in the probability and statistics literature [119, 120, 36, 94]. Recent-
ly, Valiant [118] independently proposed a similar model in the computer science
community, and his work spawned a large amount of work analyzing and extending
variations of the PAC model. More recently, Haussler [56] has formulated a very
general framework refining and consolidating much of the previous work on the PAC

model.
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Blumer et al. [24], based on results of [119] gave a characterization of PAC learn-
ability for the distribution-free framework in terms of a combinatorial parameter
which measures the ‘size’ of a concept class. Benedek and Itai [17] studied a variation
of the PAC model in which the examples are assumed to be drawn from a fixed and
known distribution. They gave a characterization of learnability in this case in terms
of a different measure of the size of a concept class.

In Section 5.1, we give some definitions, a precise description of the learning
framework, and some previous results from [24] and {17]. The definitions and notation
used are essentially those from [24], which are a slight variation from those originally
given in [118]. The result of [24] states that a concept class is learnable for every
distribution iff it has finite Vapnik-Chervonenkis (VC) dimension. An analogous
result of [17] characterizes learnability for a fixed distribution. We point out that
the characterization of [17] is identical to that of finite metric entropy, which has
been studied in other contexts. The results characterizing learnability suggest that
there may be relationships between the VC dimension of a concept class and its metric
entropy with respect to various distributions. Some such relationships are known, and
in Section 5.2 we summarize some known results of others and prove some new results.
In Section 5.3 we consider learnability for a class of distributions, which is a natural
extension of learnability for a fixed distribution. Benedek and Itai [17] posed the
characterization of learnability in this case as an open problem. They conjectured that
a concept class is learnable with respect to a class of distributions iff the metric entropy
of the concept class with respect to each distribution is uniformly bounded over the
class of distributions. We prove some partial results for this problem. Although the
results we prove are far from verifying the conjecture in general, they are consistent
with it. Furthermore, they provide some indication of conditions when power is
gained by requiring learnability only for a class of distributions rather than for all

distributions.

5.1 The PAC Learning Model and Previous Re-

sults Characterizing Learnability

In this section, we describe the formal model of learning introduced by Valiant [118]
(learnability for all distributions) and a variant (learnability for a fixed distribution),

and we state previous results characterizing learnability in these cases. The result of
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Blumer et al. [24] characterizes learnability for all distributions in terms of a quan-
tity known as the VC dimension. The result of Benedek and Itai [17] characterizes
learnability for a fixed distribution in terms of a quantity known metric entropy.

Informally, Valiant’s learning framework can be described as follows. The learner
wishes to learn a concept unknown to him. The teacher provides the learner with
random positive and negative examples of the concept drawn according to some prob-
ability distribution. From a finite set of examples, the learner outputs a hypothesis
which is his current estimate of the concept. The error of the estimate is taken as
the probability that the hypothesis will incorrectly classify the next randomly cho-
sen example. The learner cannot be expected to exactly identify the concept since
only a finite number of examples are seen. Also, since the examples are randomly
chosen, there is some chance that the hypothesis will be very far off (due to poor ex-
amples). Hence, the learner is only required to closely approximate the concept with
sufficiently high probability from some finite number of examples. Furthermore, the
number of examples required for a given accuracy and confidence should be bounded
independent of the distribution from which the examples are drawn. Below, we will
describe this framework precisely, following closely the notation of [24].

Let X be a set which is assumed to be fixed and known. X is sometimes called
the instance space. Typically, X is taken to be either R™ (especially R?) or the
set of binary n-vectors. A concept will refer to a subset of X, and a collection of
concepts C C 2% will be called a concept class. An element x € X will be called
a sample, and a pair (z,a) with © € X and a € {0,1} will be called a labeled
sample. Likewise, T = (z1,...,Zm) € X™ is called an m-sample, and a labeled m-
sample is an m-tuple ({(z1,a1),...,(Tm,@n)) where a; = a; if z; = z;. For T =
(1,...,Tm) € X and ¢ € C, the labeled m-sample of ¢ generated by T is given by
sam (%) = ((x1, (1)), ..., (€m, (T ))) where I.(-) is the indicator function for the
set c. The sample space of (' is denoted by S¢ and consists of all labeled m-samples
forallce C,all T € X™, and all m > 1.

Let H be a collection of subsets of X. H is called the hypothesis class, and the
elements of H are called hypotheses. Let Fog be the set of all functions f : S¢ — H. A
function f € Fep 1s called consistent if it always produces a hypothesis which agrees
with the samples, i.e. whenever b = f((z1,a1),...,(Tm,am)) we have Ix(z;) = a;
for « = 1,...,m. Given a probability distribution P on X, the error of f with
respect to P for a concept ¢ € (' and sample 7T is defined as errors . p(ZT) = P(cAh)
where h = f(sam.(T)) and cAh denotes the symmetric difference of the sets ¢ and h.
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Finally, in the definition of learnability to be given below, the samples used in forming
a hypothesis will be drawn from X independently according to the same probability
measure P. Hence, an m-sample will be drawn from X™ according to the product
measure P™.

We can now state the following definition of learnability for every distribution,
which is the version from Blumer et al. [24] of Valiant’s [118] original definition

(without restrictions on computability - see below).

Definition 5.1 (Learnability for Every Distribution) The pair (C, H) islearn-
able if there exists a function f € Fcy such that for every €,6 > 0 there is a
0 < m < oo such that for every probability measure P and every ¢ € C, ifT € X™
is chosen at random according to P™ then the probability that errors.p(T) < € is

greater than 1 — 6.

Several comments concerning this definition are in order. First, learnability depends
on both the concept class C' and the hypothesis class H, which is why we defined
learnability in terms of the pair (C, H). However, in the literature the case H O C
is often considered, in which case, for convenience, we may speak of learnability of
C in place of (C,C'). Second, the sample size m is clearly a function of € and ¢
but a fixed m = m(e,§) must work uniformly for every distribution P and concept
¢ € C'. Because of this, the term distribution-free learning is often used to describe
this learning framework. Finally, € can be thought of as an accuracy parameter while
§ can be thought of as a confidence parameter. The definition requires that the
learning algorithm f output a hypothesis that with high probability (greater than
1 — &) is approximately correct (to within €¢). Angluin and Laird [7] used the term
probably approzimately correct (PAC) learning to describe this definition.

A somewhat more general and useful definition of learnability was actually used
by Valiant in [118] and later by others. This definition incorporates both a notion of
the size or complexity of concepts and the central idea that the learning algorithm
(i.e., the function which produces a hypothesis from labeled samples) should have
polynomial complexity in the various parameters. Other variations of this definition,
such as seeing positive examples only, or having the choice of positive or negative
examples, have also been considered. Some equivalences among the various definitions
learnability were shown in [54]. In this report, we will not consider these variations.
Also, we will be considering the case that H D C throughout, so that we will simply
speak of learnability of C' rather than learnability of (C, H).
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A fundamental result of Blumer et al. [24] relates learnability for every distribution
to the Vapnik-Chervonenkis (VC) dimension of the concept class to be learned. The
notion of VC dimension was introduced in [119] and has been studied and used in
[36, 124, 57]. Many interesting concept classes have been shown to have finite VC

dimension.

Definition 5.2 (Vapnik-Chervonenkis Dimension) Let C' C 2X. For any finite
set § C X, let Ilc(S) = {SNc:c€ C}. S is said to be shattered by C' if lIc(S) = 25.
The Vapnik-Chervonenkis dimension of C is defined to be the largest integer d for
which there exists a set S C X of cardinality d such that S is shattered by C. If no

such largest integer exists then the V(C dimension of C is infinite.

A concept class C' will be called trivial if C' contains only one concept or two
disjoint concepts. In [24], a definition was also given for what was called a well-
behaved concept class, which involves the measurability of certain sets used in the
proof of their theorem. We will not concern ourselves with the definition here. The

following theorem is stated exactly from [24] and was their main result.

Theorem 5.1 For any nontrivial, well-behaved concept class C, the following are

equivalent:
(i) The VC dimension of C' is finite.
(ii) C is learnable.

(iii) If d is the VC dimension of C then

2 8d
67 €

f € Foy is a learning algorithm for C', and

(a) for sample size greater than max(% log log %‘i ), any consistent function

(b) for € < 1 and sample size less than max(3 log ;,d(1 — 2(e + 6 — €6))), no
function f € Focyg where C C H is a learning algorithm for C'.

A definition of learnability similar to that of Definition 5.1 can be given for the

case of a single, fixed, and known probability measure.

Definition 5.3 (Learnability for a Fixed Distribution) Let P be a fized and
known probability measure. The pair (C'; H) is said to be learnable with respect to P
if there exists a function f € Focy such that for every €,6 > 0 there is a 0 < m < oo
such that for every c € C, if T € X™ is chosen at random according to P™ then the

probability that errory . p(T) < € is greater than 1 — 6.



76 CHAPTER 5. LEARNING FOR A CLASS OF DISTRIBUTIONS

Conditions for learnability in this case were studied by Benedek and Itai [17].
They introduced the notion of what they called a ‘finite cover’ for a concept class
with respect to a distribution and were able to show that finite coverability charac-
terizes learnability for a fixed distribution. It turns out that their definition of finite
coverability is identical to the notion of metric entropy, which has been studied in
other literature. Specifically, the measure of error between two concepts with respect
to a distribution is a pseudo-metric (or semi-metric). The notion of finite coverability
is identical to the notion of finite metric entropy with respect to the pseudo-metric
induced by the distribution P.

We define metric entropy below, but first show that P induces a pseudo-metric
on the concept class. Define dp(c1,c;) = P(c1lcp) for ¢1,c; € X and measurable
with respect to P. For ¢;,¢c; € C, dp(cy,c2) just represents the error between ¢; and
c; that has been used throughout. In the following proposition we prove that dp(-,-)
defines a pseudo-metric on the set of all subsets of X measurable with respect to P,

and hence defines a pseudo-metric on the concept class C'.

Proposition 5.1 For any probability measure P, dp(c1,c2) = P(c1Acz) is a pseudo-
metric on the o-algebra S of subsets of X measurable with respect to P. Le., for all

c1,c2,¢03 €S
(i) dp(c1,c2) >0
(it) dp(ci,c3) = dp(ca,c1)
(iii) dp(ci,ca) < dp(c1,ca) + dp(ca,ca)

Proof: (i) is true since P is a probability measure, and (ii) is true since ¢;Ac; =
c2Ac;. (iii) follows from subadditivity and the fact that ¢;Acz C (c;Acz) U (c2Acs).

a

Note that dp(-,:) is only a pseudo-metric since it does not usually satisfy the
requirement of a metric that dp(e;,cy) = 0 iff ¢ = ¢;. That is, ¢; and ¢, may be
unequal but may differ on a set of measure zero with respect to P, so that dp(c;,c;) =
0.

We now define metric entropy.

Definition 5.4 (Metric Entropy) Let (Y,p) be a metric space. Define N(e) =
N(e,Y,p) to be the smallest integer n such that there exists y1,...,yn € Y with
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Y = U™, B.(y:) where B(y;) is the open ball of radius € centered at y;. If no such n
exists, then N(€,Y,p) = co. The metric entropy of Y (often called the e-entropy) is
defined to be log, N{(e).

N(¢) represents the smallest number of balls of radius € which are required to cover
Y. For another interpretation, suppose we wish to approximate 7 by a finite set of
points so that every element of Y is within € of at least one member of the finite set.
Then N(e) is the smallest number of points possible in such a finite approximation
of Y. The notion of metric entropy for various metric spaces has been studied and
used by a number of authors (e.g. see [36, 37, 58, 65, 67, 115]).

For convenience, if P is a distribution we will use the notation N (¢, C, P) (instead
of N(e,C',dp)), and we will speak of the metric entropy of C' with respect to P, with -
the understanding that the metric being used is dp(-,-). Benedek and Itai [17] proved
that a concept class C is learnable for a fixed distribution P iff C' has finite metric
entropy with respect to P. We state their results formally in the following theorem,

which we have written in a form analogous to Theorem 5.1.

Theorem 5.2 Let C be a concept class and P be a fired and known probability mea-

sure. The following are equivalent:
(i) The metric entropy of C' with respect to P is finite for all ¢ > 0.
(ii) C is learnable with respect to P.

(i1i) If N(e) = N(e,C, P) is the size of a minimal e-approzimation of C' with
respect to P and C9/2) = {y1,...,yn(e/2)} is an §-approzimation to C' then

(a) for sample size greater than (32/€)In(N(e/2)/é) any function f : S¢ —
C(¢/2) which minimizes the number of disagreements on the samples is a

learning algorithm for C, and

(b) for sample size less than log,[(1 — §)N(2¢)] no function f € Fep is a

learning algorithm for C'.

Note that in condition (iii)(a), only functions whose range was a finite
£-approximation to C were considered. As noted in [17], a function that simply
returns some concept consistent with the samples does not necessarily learn. In fact,
in [17] it is claimed that there are examples where for every finite sample there are

concepts e-far from the target concept (even with ¢ = 1) that are still consistent with
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the samples. The following is a simple example which substantiates their claim. Let
X = [0,1], P be the uniform distribution on X', and C be the concept class containing

all finite sets of points and the entire unit interval. That is,
C={{z1,...,z.}:1<r<ooandx; €[0,1], e =1,...,7} U{[0,1]}

If the target concept is [0,1] then for every finite sample there are many concepts
which are consistent with the sample but are e-far (with ¢ = 1) from [0,1]. Namely,

any finite set of points which contains the points of the sample is a concept with this

property.

5.2 Relationships Between Metric Entropy and

the Vapnik-Chervonenkis Dimension

The results of the previous section naturally suggest that there may be some relation-
ships between the VC dimension of a concept class and its metric entropy with respect
to various distributions. This is indeed the case. The known relationships essentially
provide upper and lower bounds to supp N(¢,C, P) in terms of the VU dimension of
the concept class. Upper bounds are more difficult to obtain since these require a
uniform bound on the metric entropy over all distributions. The lower bounds result
from statements of the form that there exists a distribution P (typically a uniform
distribution over some finite set of points) for which N(e,C, P) is greater than some
function of the VC dimension.

Here we prove two new lower bounds which improve on previous known lower
bounds. Benedek and Itai [17] have shown that if C' is a concept class of finite VC
dimension d > 1 then (i) there is a distribution P such that |log,d] < N(3,C, P),
and (ii) if € < 5 then there is a distribution P such that 2¢ < N(e,C, P). First, some
comments on these relationships are in order.

Regarding relation (1), we note that if the VC dimension of C is infinite then we can
find a sequence of distributions P, forn = 1,2,... such that lim, N(%, C,P,) = oo.
Relation (i) is proved by considering the uniform distribution on a finite set of d
points shattered by C'. If the VC dimension of (' is infinite, we can find a sequence of
distributions under which ' unboundedly large metric entropy by taking P, to be the
uniform distribution over n points shattered by C' and using (the proof of) relation

(i) for each n = 1,2,.... However, for a concept class of infinite VC dimension,
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in general we may not necessarily be able to find a particular distribution P for
which N(e,C, P) = oo, but will only be able to approach infinite metric entropy by a
sequence of distributions. Nevertheless, in some cases we can achieve infinite metric
entropy as shown by the following example. Let X = [0,1] and let C be the set of all
Borel sets. Then taking P to be the uniform distribution, we have N(},C,P) = oo
since the infinite collection of sets corresponding to the Haar basis functions (i.e.,

cn = {z €[0,1] : the nth digit in the binary expansion of = is 1}) are pairwise a

1
2

Regarding (ii), a more general statement can be made which does not depend on
the VC dimension of C. Specifically, let z,,...,z, € X be distinct points and let
¢1,...,¢k € C be concepts whose intersection with {zy,...,z,} gives rise to distinct
subsets, i.e. ¢ N {z1,...,Tn} # ¢; N {z1,...,2,} for ¢+ # 7. Note that we must
necessarily have k < 2". If we take P to be the uniform distribution on {z1,...yTn}
then we obtain N(e,C, P) > k for € < 5=. This reduces to (ii) if C has VC dimension

d and cj,...,cy are concepts which shatter the set of points {z;,...,z4}. However,

distance - apart with réspect to P.

our statement is more general since, regardless of the VC dimension of C, it may be
possible to find n concepts which give rise to n distinct subsets of {z;,...,z,} so that
N(e,C,P) > n for € < 5. This is essentially the basis for Lemma 5.2 below.

First, we prove a result which has a larger range of applicability than (ii) and
gives a stronger dependence on d than (i) for € < % Although the bound of (ii) is
exponential in d, it is valid only for € < 55, so that the Iange'of applicability goes
to zero as d — oo. On the other hand, (i) is valid for a fixed € independent of d
(namely € = ;) but gives only logarithmic dependence on d. The following bound

gives exponential dependence on d for a fixed range of applicability (¢ < 3).

Lemma 5.1 If C' is a concept class of finite dimension d > 1 then there is a proba-

bility measure P such that
e2G=P4 < N(¢,C, P)

forall e < 1.

Proof: Let {z;,...,x4} be a set of d points that is shattered by C, and let p be
the uniform distribution on {z,...,xa}, i.e. P(x;) = 1 for i = 1,...,d. For this
distribution, the only relevant property of a concept ¢ are those z; which are contained
in c. Hence, we can represent ¢ by a d bit binary string with a one in position 12
indicating that z; € ¢, and we can identify the concept class C' with the set of all d
bit binary strings.
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Given two concepts cy, ¢, represented as binary strings, dp(c1,¢2) = 5 where k is
the number of bits on which ¢; and ¢, differ, and so dp(c1,¢2) < € iff ¢, differs from
c1 on k < ed bits. The number of binary strings that differ on k bits from a given

string is (,‘f) Therefore, the number of concepts in an e-ball around a given concept

15 Yock<ed (:) Since the total number of concepts is 2%, we need at least
d
0<k<ed k

concepts in an e-cover, so that

N(e,C,P) 22 T (Z)

0<k<ed

Now, Dudley [36] states the Chernoff-Okamoto inequality

Z (:)pk(l — p)'"'—k S e—(np—m)?/lznp(l_p)]

0<k<m

for p < 2 and m < np, which can be obtained from a more general inequality (for
sums of bounded random variables) of Hoeffding {60]. Taking » = d, p = 1, and

2 (Z) < 2639

m = ed we obtain

0<k<ed
for € < 1. Using this in our earlier bound on N(e, C, P), we get -
N(e, C, P) > ez
for € < % which is the desired inequality.

O

Most lower bounds (including the one above) are not particularly useful for small
€ — i.e., the bounds remain finite as ¢ — 0. This is the best that can be obtained
assuming only that ¢’ has VC dimension d < oo, since C itself could be finite. The
following result assumes that C' is infinite but makes no assumption about the VC

dimension of C.

Lemma 5.2 Let C' be a concept class with an infinite number of distinct concepts.
Then for each ¢ > 0 there is a probability distribution P such that N(e,C, P) > =
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Proof: First, we show by induction that given n distinct concepts, » — 1 points
T1,...,Tn_1 can be found such that the n concepts give rise to distinct subsets of
*1,...,Tn_1. This is clearly true for n = 2. Suppose it is true for n = k. Then for
n = k + 1 concepts cy,...,cky1 apply the induction hypothesis to ¢;,...,ck to get
Ti,...,Tr-1 Which distinguish ¢;,...,ck. Ck+.1 can agree with at most one of ¢y, ..., c.
Then another point z; can be chosen to distinguish these two.

Now, let € > 0 and set n = |5-]. Let ci,...,¢, be n distinct concepts in C', and
let z1,...,%n—1 be n — 1 points that distinguish c,...,c,. Let P be the uniform
distribution on z;,...,z,_1. Since the ¢; are distinguished by the z;, dp(ci,c;) >
1/(n —1) = 1/(|5] — 1) > 2¢. Hence, every concept is within ¢ of at most one of
C1y---,Cn S0 that N(e,C,P) > n = [%J

The following theorem summarizes the result of the two lemmas given above and

previous upper and lower bounds obtained by others.

Theorem 5.3 Let C' be a concept class with infinitely many concepts and let 1 < d <
oo be the VC dimension of C. For e <1/2,

suplog, N(e, C, P) > max(2d(1/2 — 2¢)?log, e, log, Zi)
P €
and for e < 1/2d,
| 2e. 2
suplog, N(e,C, P) < dlogz(fln f) +1
P

The first and second terms of the lower bound follow from Lemmas 5.1 and 5.2
respectively. The upper bound is from [56] which is a refinement of a result from [94]
using techniques originally from [36]. A weaker upper bound was also given in [17].
Note that the condition that C' contain infinitely many concepts is required only for
the second term of the lower bound. Also, note that as an immediate corollary of the
theorem we have the result that supp N(€,C, P) < oo iff the VC dimension of (' is
finite.
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5.3 Partial Results on Learnability for a Class of

Distributi‘ons

In this section we prove some partial results regarding learnability for a class of
distributions. The definition of learnability in this case is completely analogous to

the definitions given earlier, but for completeness we state it formally.

Definition 5.5 (Learnability for a Class of Distributions) LetP be a fized and
known collection of probability measures. The pair (C, H) is said to be learnable with
respect to P if there exists a function f € Feg such that for every €,6 > 0 there is a
0 < m < oo such that for every probability measure P € P and everyc € C, ifz € X™
is chosen at random according to P™ then the probability that error; . p(T) < € is

greater than 1 — 4.

Benedek and Itai [17] posed the problem of characterizing learnability for a class

of distributions as an open problem, and they made the following conjecture.

Conjecture 5.1 A concept class C is learnable with respect to a class of distributions
P iff for every € > 0,

N(e,C,P)=sup N(¢,C,P) < o0
PeP

The notation defined in the statement of the conjecture will be used throughout.
Namely, if P is any class of distributions, then N(e, C,P) is defined by N(e,C,P) =
suppep N(e,C, P).

For a single distribution, the conjecture reduces immediately to the known result
of [17] (stated in Section 5.1). For every distribution, the results of Section 5.2 imply
that the condition sup,; p N(¢,C, P) < co Ve > 0 is equivalent to the condition that
C have finite VC dimension. Hence, the conjecture in this case reduces to the known
result of [24] (also stated in Section 5.1). As pointed out in [17], the case where P
is finite is similar to the case of a single distribution, and the case where P contains
all discrete distributions is similar to the case of all distributions. The result for all
discrete distributions follows again from Section 5.2 since supgy;,.,ee p V(€,C, P) <
oo Ve > 0 iff the VC dimension of (' is finite.

We now prove some results for more general classes of distributions. Although

our results are far from verifying the conjecture completely, the partial results we
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obtain are consistent with it. Furthermore, our results provide some indication of
whether prior knowledge of the distribution or attempts at density estimation can
help in terms of learnability.

One natural extension to considering a single distribution P, is to consider the class
of all distributions sufficiently close to Pp. One measure of proximity of distributions
is the total variation defined as follows. First, we assume that we are working with
some fixed o-algebra S of X. Let P* denote the set of all probability measures defined
on S. For P, P, € P*, the total variation between P; and P, is defined as

| P, — Py|| = sup |P1(A) — Py(A)]
A€S
For a given distribution Py and 0 < A < 1 define
Py(Po,A) ={P € P* :||[P - Po| < A}

P,(Py, ) represents all probability measures which are within A of Fp in total varia-
tion. For A = 0, P,(Py,0) contains only the distribution Py, and for A = 1, P,(Fo, 1)
contains all distributions.

Another possibility for generating a class of distributions from P, utilizes the
property that a convex combination of two probability measures is also a probability
measure. Specifically, if P, and P, are probability measures then AP, +(1—X)P; is also
a probability measure for 0 < A < 1. One interpretation of this convex combination
is that with probability A a point is drawn according to P;, and with probability 1— A
the point is drawn according to P,. Given a distribution P, and 0 < A < 1, define

Pi(Poy)) = {(L=n)Pa + qP :n < A, P € P'}

The distributions in Pj( Py, A) can be thought of as those obtained by using Py with
probability greater than or equal to 1— ) and using an arbitrary distribution otherwise.
Note that, as with P,( Py, ), we have P(Po,0) = {Po} and P (Fo,1) = P*.

Both P,( Py, A) and P,(Fo, A) can be thought as ‘spheres’ of distributions centered
at Py, i.e. all distributions sufficiently ‘close’ to P, in an appropriate sense. The
following proposition verifies the conjecture for P)(FPo,A) and P,(Fo,A) and shows
that a concept class is learnable for P;( Py, A) or Py(Fo,A) with A > 0 iff it is learnable

for all distributions.
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Proposition 5.2 Let C' be a concept class and be P, a fized distribution. Then for
each fited and 0 < X < 1, the following are equivalent:

(i) N(e,C,Pi(Pp,))) < oo for all e > 0
(i) C has finite VC dimension
(ii) C is learnable for P)(Pp, )

Furthermore, P(Po, ) C Py(Po, A) so that the above are equivalent for P,(Pp,)) as

well.

Proof: (ii) = (iii) This follows from the results of [24] (what we have called Theorem
5.1). Namely, (ii) implies learnability for all distributions which implies learnability
for Py(Fo,A) C P*.

(iii) = (i) We prove this by showing that (i) is not true then (iii) is not true.
If N(e,C,Pi(Po,A)) = oo for some ¢ > 0, then for every M < oo there exists Py €
Pi(Po,\) such that N(e,C, Ppr) > M. But then by the results of [17] (what we have
called Theorem 5.2), more than log, N(e, C', Par) > log,(1 — 6) M samples are required
to learn for Pyr. Since M is arbitrary, letting M — oo contradicts the fact that C is
learnable for Pi(Po, A). Thus, N(e,C,Pi( Py, ) < oo for all € > 0.

(i) = (ii) For every P € P*,let Q = (1 — A)Py + AP € Py(Po, ). I c1,¢, C X

are any measurable sets, then

do(e1,c2) = Q(arlAcz) = (1 - A)Po(c1Acz) + AP(c1Acs)
> /\P(ClAC2) = /\dp(clAC2)

Therefore, N(Xe,C, Q) > N(¢,C, P) and so

N(e,C,P") = ;:11)). N(e,C,P) < ;:11’). N(Xe,C,(1 = NPy + AP)

= sup  N(Ae,(,Q) < oo
QEP(Fo,A)

Hence, from the results of Section 5.2, ' has finite VC dimension.
Finally, to show Py(Fo, A) C Py(Fo, A), let Q@ € Py(Po,A). Then Q = (1—7)Po+nP
for some P € P* and y < A. For every 4 € S, we have

|Q(A) — Po(A)] = |(L = n)Fo(A) + nP(A) ~ Po(A)]
= nIP(A) - Py(4)| <7< A
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Therefore, ||@ — Po|| < A so that Q@ € Py(Fo, A).
O

The following result shows that learnability of a concept class is retained under
finite unions of distribution classes. That is, if a concept class C is learnable for
a finite number of sets of distributions P;,...,P, then it is learnable with respect
to their union P = U ,P;. This is to be expected if the conjecture is true since

N(e,C,P) = max; N(¢,C,P;) < oo iff N(¢,C,P;) <o fori=1,...,n

Proposition 5.3 Let C be a concept class, and let Py,..., P, be n sets of distribu-
tions. If C is learnable with respect to P; for1 = 1,...,n then C is learnable with
respect U, P;.

Proof: Let f; be an algorithm which learns C' with respect to P;, and let m;(e,é)
be the number of samples required by f; to learn with accuracy e and confidence §.

Define an algorithm f as follows. Ask for

€ 6
m(e,8) = 1rlgliag)$11ni(2 ) + — lnm

samples. Using the first max; m;(%, ) samples, form hypotheses A4,...,k, using

202
algorithms f1, ..., f, respectively. Then, using the last 22 In S 373 samples, let f output
the hypothesis h; which is inconsistent with the fewest number of this second group
of samples. We claim that f is a learning algorithm for C' with respect to U™ ;P;.
Let P € U™, P, and let ¢ € C. Then P € P, for some k. Since the f; are
learning algorithms with respect to the P;, at least one h; (namely hy) is within §
of ¢ with probability (with respect to product measures of P) greater than 1 — £.
Given that h; is within § of ¢ for some %, the proof of Lemma 4 from [17] shows that
the most consistent hypothesis (on the second group of samples) is within € of ¢ with
probability greater than 1 — g. Therefore, if A denotes the event that at least one h;

is within -',_§ of ¢ then

Pr{dp(f(sam.(T)),c) < ¢} = Pr{dp(f(samc( })),c) < e|A} - Pr{A}
> (1—5)(1—5‘)>1—5

Thus, f is a learning algorithm for C' with respect to U, P; using m(e, §) samples.

a
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Note that the above result is not true in general for an infinite number of classes
of distributions since the sample complexity of the corresponding algorithms may be
unbounded (i.e. we may have sup; N(¢,C,P;) = oo). However, even if N(¢,C,P;)
is uniformly bounded the proof above does not go through since the application of
Lemma 4 from [17] requires finitely many hypotheses. This is essentially the difficulty
encountered in attempting to prove the conjecture directly.

For a finite number of distributions Pi,..., P,, define their convez hull, denot-
ed by conv(Py,...,Pr), as the set of distributions that can be written as a convex

combination of Py,...,P,. That is,
conv(Pl,...,Pn)'-—- {MPr+ -+ AP :0< )\ <1 and M\ + -+ I, = 1}

We now prove the following proposition.

Proposition 5.4 Let C be a concept class and let Py, ..., P, be probability measures.

The following are equivalent:

(i) C is learnable with respect to P; for eachi=1,...,n.

(it) N(e,C,conv(Pr;...,P,)) < oo for all € > 0.

(iii) C is learnable with respect to conv(Py,..., P,).

Proof: (iii) = (i) This is iinmediate.

(1) = (ii) Since C is learnable with respect to P; for each ¢, by Theorem 5.2
we have N(e,C,P;) < oo for all ¢ > 0 and ¢ = 1,...,n. Let Ni(¢) = N(¢,C, P;)
and let ¢;1,...,¢; N (e2) be an $-approximation of C' with respect to dp,. For each
i =1,...,n,let C;; = {c € C :dp(c,cj) < £} for j =1,...,Ni(5). We have
C = U;E(;/z)c'i,j foralli=1,...,n. Let

n
Chyyoen = [ Ciks
i=1

for 1 < k; < Ni(§),i=1,...,n. Clearly,
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Also, by construction the ‘diameter’ of each Cl, . k. with respect to dp, is less than

n

or equal to e forall : = 1,...,n,i.e. foreacht =1,...,n we have

sup  dp(c1,c;) <€

€1,62€Ch; ... kn

Hence, ii we define a metric p(-,-) by
pler,c2) = max dp,(c1, ¢2)

then N(e,C,p) < [Iic; Ni(§) < oo since we can form an e-approximation of C with
respect to p by simply taking any point from each Cy,, k, that is nonempty.
Now, if @ € conv(Py,...,P,) then @ = Y% A\ P; for some 0 < A; < 1 with

' ; A; = 1. For any measurable ¢;,c; C X, we have

do(cryea) = Y Aidp(er,ca)

i=1
< (Z A; ) max dp,(c1,¢2) = p(e,cz)
so that N(¢,C,Q) < N(e,C,p). Thus,
N(e,Cyconv(Py, ..., P)) = sup N(e,C,Q) < H N,-(E) < 00
Q€conv(Py,..sPn) =1 2

(i) = (i) If N(e,C,conv(Py,...,P,)) < oo for all € > 0, then, in particular,
N(e,C,P;) < oo fori =1,...,nand € > 0. Therefore, we can employ the construction
used abovein proving that (i) implies (ii) to get a finite $-approximation of ¢ uniform-
ly for all @ € conv(P4,...,P, ) As shown above, such an approximation can be found
with less than or equal to [[I, N;(§) elements where N;(§) = N(§,C, P:). Thus, using
the proof of Lemma 4 from [17], the algorithm which takes 2 (ln 3+ 2h, In NVi( 4))
samples and outputs an element of the {-approximation with the smallest number of

inconsistent samples is a learning algorithm for C' with respect to conv(Fy,..., Py,).
a

The above proposition verifies the conjecture for classes of distributions which are
‘convex polyhedra with finitely many sides’ in the space of all distributions. In fact,
combined with the previous proposition, the conjecture is verified for all finite unions

of such polyhedra.
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5.4 Discussion and Open Problems

It was first pointed out that the condition for learnability with respect to a fixed
distribution obtained in [17] is identical to the notion of finite metric entropy. In
considering relationships between the VC dimension of a concept class a1.d its metric
entropy, we provided two new lower bounds. Finally, we proved some partial results
concerning learnability with respect to a class of distributions. These results are
consistent with a conjecture in [17]. Specifically, it was shown that the conjecture
holds for any ‘sphere’ of distributions and for any set of distributions which is a
finite union of ‘convex polyhedra with finitely many sides’. In addition to verifying
the conjecture in these cases, the results indicate some limitations of attempting to
enlarge the set of learnable concept classes by requiring learnability only for a class
of distributions as opposed to all distributions. '

As far as we know, the conjecture on learnability for a class of distributions has
not heen solved. However, some results regarding learnability with respect to a gen-
eral class of distributions are known. First, it is easy to show that the condition
suppep N(€,C, P) < oo is necessary for learnability. Natarajan [90, 91] has shown
that a somewhat different condition is sufficient. As before, given a finite set of points
€y,...,x; let lIg(ay,. .., ;) denote the subsets of z4,...,z; generated by intersection
with a member of C. Let |ll¢(z,...,z;)| denote the cardinality of ll¢(z1,...,z1),
and let Hp;(C') = log, Ep|llc(z1,...,x;)| where Ep denotes the expected value with
the points x;,...,7; drawn independently according to P. The quantity Hp;(C)
was introduced by Vapnik and Chervonenkis [119] and was referred to as a notion
of entropy. Based on the results of Vapnik and Chervonenkis, Natarajan has shown
that the condition lim;_,o suppcp Hpi(C')/l = 0 is sufficient for learnability of C' with
respect to P. A simple example shows that this condition is not necessary. Let
X =[0,1], P be the uniform distribution on X, and let C consist of the interval [0, 1]
itself together with all finite sets of points. Then (' is learnable since every concept
is a distance 0 away from either the empty set or the entire interval, so that letting
the hypothesis be either @ or [0,1] based on a single sample is a learning algorithm.
On the other hand, Hp;(C') = 1 for all [.

Using a distinction considered in [15] and [91] we can refine the conjecture. A
concept class will be called strongly learnable if the learner can output any concept
consistent with the examples and still have a learning algorithm. The term learnable

by itself will still refer to the case where some hypothesis (that need not be con-
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sistent) is guaranteed to be close to the target concept. (Note that, unfortunately,
the terminology is not particularly good as the term “weak learnability” has been
used by others to denote a different idea [106].) The result of Natarajan shows that
lim;_, suppep Hpi(C)/l = 0 is sufficient for strong learnability since the condition is
equivalent to a uniform convergence property of the empirical measures [119] which
in turn implies strong learnability. However, it is not necessary since the concept
class consisting of all finite subsets of [0, 1] is strongly learnable under the uniform
distribution (all concepts are a distance zero apart) but the condition (and hence
uniform convergence) is clearly violated. As far as we know, it is an open Aproblem
to find a single condition which is both necessary and sufficient for strong learnabili-
ty. And, as mentioned above, for (not necessarily strong) learnability, the condition
suppep N(€,C, P) < oo is necessary and is conjectured to be sufficient.

Hence, there are gaps in the known results characterizing of learnability for a class
of distributions. Results on the uniform convergence of empirical measures are related
but are not directly helpful. These questions seem somewhat fundamental but quite
difficult.
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Chapter 6

Active Learning Using Arbitrary

Binary Valued Queries

In the original PAC model the examples provided to the learner are obtained from
some probability distribution over which the learner has no control. In this sense,
the model assumes a purely passive learner. There has been quitev a bit of work
done on increasing the power of the learner’s information gathering mechanism. For
example, Angluin [8, 9] has studied a variety of oracles and their effect on learning,
Amsterdam [6] considered a model which gives the learner some control over the
choice of examples by allowing the learner to focus attention on some chosen region
of the instance space, and Eisenberg and Rivest [38] studied the effect on sample
complexity of allowing membership queries in addition to random examples.

In this chapter, we study the limits of what can be gained by allowing the most
general set of binary valued learner-environment interactions, and giving the learner
complete control over the information gathering. Specifically, we consider completely
‘active’ learning in that the the learner is allowed to ask arbitrary yes/no (i.e., binary
valued) questions, and these questions need not be decided on beforehand. That
is, the questions the learner asks can depend on previous answers and can also be
generated randomly. Many of the oracles previously considered in the literature
are simply particular types of yes/no questions (although those oracles that provide
counterexamples are not). Both active learning with respect to a fixed distribution
and distribution-free active learning are considered. Since we are concerned with
active learning, the probability distribution is not used to generate the examples, but
1s used only to measure the distance between concepts.

Definitions of passive and active learning are provided in Section 6.1. In Sec-
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tion 6.2, active learning with respect to a fixed distribution is considered. A simple
information theoretic argument shows that active learning does not enlarge the set
of learnable concept classes, but as expected can reduce the sample complexity of
learning. In Section 6.3, distribution-free active learning is considered. In this case,
active learning can take place only in the degenerate situation of a finite concept
class. We also consider a form of distribution-free learning in which we assume that
the learner knows the distribution being used, so that ‘distribution-free’ refers only
to the requirement that a bound can be obtained on the number of yes/no questions
required independent of the distribution used to measure distance between concepts.
However, even in this case active learning surprisingly does not enlarge the set of

Jearnable concept classes, but does reduce the sample complexity as expected.

6.1 Definition of Active Learnability

By active learning we will mean that the learner is allowed to ask arbitrary yes/no
questions. We will consider only the case H = C throughout, and so we define active
learnability in this case only. For a fixed distribution, the only object unknown to
the learner is the chosen concept. In this case, an arbitrary binary question provides
information of the type ¢ € Co where Cp is some subset of C. That is, all binary
questions can be reduced to partitioning (' into two pieces and asking to which of the
two pieces does ¢ belong. For distribution-free learning (or more generally, learning
for a class of distributions) the distribution P is also unknown. In this case, every
binary question can be reduced to the form “Is (¢, P) € ¢?” where q is an arbitrary
subset of C' x P, so that C' and P can be simultaneously and dependently partitioned.
This follows by letting ¢ be the set of (c, P) pairs for which the answer to the binary
question is “yes.” Thus, the information the active learner obtains is of the form
({g1,a1);-- -, (gm,am)) where ¢ C C x P and a; = 1 if (¢,P) € ¢gi and a; = 0
otherwise. The ¢; correspond to the binary valued (i.e., yes/no) questions and a;
denotes the answer to the question ¢; when the true concept and probability measure
are ¢ and P respectively.

In general, ¢; can be generated randomly or deterministically and can depend on
all previous questions and answers (q1,a1),- -, (¢i—1,@i-1). The ¢; are not allowed to
depend explicitly on the true concept ¢ and probability measure P, but can depend on
them implicitly through answers to previous questions. Let § = (q1y---,qm) denote a

set of m questions generated in such a manner, and let sam. p(q) denote the set of m
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question and answer pairs when the true concept and probability measure are ¢ and
P respectively. Let Scp denote all sets of m question and answer pairs generated in
such a manner for all c € C, P € P, and m > 1. By an active learning algorithm we
mean an algorithm A for selecting gi,..., ¢ together with a mapping f : S¢p — C
for generating a hypothesis from sam.p(g). In general, 4 and/or f may be nonde-
terministic, which results in probabilistic active learning algorithms. If both A and
f are deterministic we have a deterministic active learning algorithin. Note that if
the distribution P is known then with a probabilistic algorithm an active learner can
simulate the information received by a passive learner by simply generating random

examples and asking whether they are elements of the unknown concept.

Definition 6.1 (Active Learnability for a Class of Distributions) Let P be a
fized and known collection of probability measures. C' is said to be actively learnable
with respect to P if there exists a function f : S¢p — C such that for every e,6 > 0
there is a 0 < m(e,8) < oo such that for every probability measure P € P and every
ce C, if h = f(sam(c, P)) then the probability (with respect to any randomness in A
and f) that P(hAc) < € is greater than 1 — 6.

6.2 Active Learning for a Fixed Distribution

In this section, we consider active learning with respect to a fixed and known prob-
ability distribution. That is, P consists of a single distribution P that is known to
the learner. As we mentioned in Chapter 5, Benedek and Itai [17] have obtained
conditions for passive learnability in this case in terms of the metric entropy of
C'. Specifically, they showed that any passive learning algorithm requires at least
log,(1 — §)N(2¢,C, P) samples and that (32/€)In(N(e/2)/6) samples is sufficient.
The following result shows that the same condition of finite metric entropy is
required in the case of active learning. In active learning, the learner wants to encode
the concept class to an accuracy € with a binary alphabet, so that the situation
is essentially an elementary problem in source coding from information theory [43].
However, the learner wants to minimize the length of the longest codeword rather

than the mean codeword length.

Theorem 6.1 A concept class C is actively learnable with respect to a distribution
P iff N(,C,P) < oo for all € > 0. Furthermore, [log,(1 — §)N(2¢,C, P)| queries

are necessary, and [log,(1 — §)N(¢,C, P)] queries are sufficient. For deterministic
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learning algorithms, [log, N(¢,C, P)| queries are both necessary and sufficient.

Proof: First consider § = 0. [log, N(¢,C, P)] questions are sufficient since one can
construct an e-approximation to C' with N (e, C, P) concepts, then ask [log, N(¢, C, P)]
questions to identify one of these N(e, (', P) concepts that is within € of the true con-
cept. [log, N(¢, C, P)]| questions are necessary since by definition every e-approximation
to C' has at least N(¢,C, P) elements. Hence, with any fewer questions there is nec-
essarily a concept in C' which is not e-close to any concept the learner might output.
The essential idea of the argument above is that the learner must be able to
encode N(e,C, P) distinct possibilities and to do so requires [log, N(¢,C, P)] ques-
tions. Now, for § > 0, the learner is allowed to make a mistake with probability
8. In this case, it is sufficient that the learner be able to encode (1 — §)N(e,C, P)
possibilities since the learner could first randomly select (1 — 6)N (e, C, P) concepts
from an e-approximation of N(e,C, P) concepts (each with equal probability) and
then ask questions to select one of the (1—48)N (¢, C, P) concepts, if there is one, that
is e-close to the true concept. To show the lower bound, first note that we can find
N(2¢) = N(2¢,C, P) concepts cy, ..., cn(2e) Which are pairwise at least 2¢ apart since
at least N(2¢) balls of radius 2¢ are required to cover C. Then the balls B(c;) of
radius ¢ centered at these c¢; are disjoint. For each 7, if ¢; is the true concept then
the learning algorithm must output a hypothesis A € B¢(c;) with probability greater

than 1 — §. Hence, if k queries are asked, then

(1- 6)N(2¢,C, P)
N(2¢)

< Z Pr(h € Be(ci)lc = ¢i)

=1
N(2e

)
= Z /Pr(h € B(ci)le=ci, q1,---,qc)dA(q1,---,qk)
=1

N{(2¢)

= Z/ > Pr(h € Be(ci)le = i, (q1,a1),- .-, (qr, ) )dA(qu, - - -, qk)

N(2¢)

Z/ Z Z Pr(hGBE(C,'”C:C,', (91,41)7"°’<qk7a'k>)dA(QIa--',qk)

----- ap 1=1

N(2¢)
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= /deA(ql,---,qk)
— 9k

where the integral is with respect to any randomness in the questions, the fourth
equality (i.e. where conditioning on ¢ = ¢; is dropped) follows the fact that the
hypothesis generated by the learner is independent of the true concept given the
queries and answers, and the second inequality follows from the fact that the B.(c;)
are disjoint. Thus, since k is an integer, k& > [log,(1 — §)N(2¢,C, P)].

Finally, if fewer than N(e, C, P) possibilities are encoded, then some type of prob-
abilistic algorithm must necessarily be used, since otherwise there would be some

concept which the learner would always fail to learn to within e.

O

Thus, compared with passive learning for a fixed distribution, active learning does
not enlarge the set of learnable concept classes, but as expected, fewer queries are
required in general. However, only a factor of 1/¢, some constants, and a factor of
1/8 in the logarithm are gained by allowing active learning, which may or may not
be significant depending on the behavior of N(e,C, P) as a function of e.

Note that in active learning very little is gained by allowing the learner to make
mistakes with probability §. That is, there is a very weak dependence on 4 in the
sample size bounds. In fact for any § < 1/2, we have log,(1 — §)N(2¢,C,P) =
log, N(2¢,C, P) — log, 1/(1 — 8) > log, N(2¢,C, P) — 1, so that even allowing the
learner to make mistakes half the time results in the lower bound differing from the
upper bound and the bound for § = 0 essentially by only the term 2¢ versus € in the
metric entropy. Also, note that Theorem 6.1 is true for learnability with respect to

an arbitrary metric and not just those induced by probability measures.

6.3 Distribution-Free Active Learning

Distribution-free learning (active or passive) corresponds to the case where P is the
set of all probability measures P* over, say, the Borel o-algebra. As mentioned in
Chapter 5, Blumer et al. [24] characterized passive learnability for all distributions
(i.e., distribution-free) in terms of the VC dimension of C'. Specifically, if ¢' has VC
dimension d < oo (and satisfies certain measurability conditions that we will not

concern ourselves with) they showed that max(:-log 3,d(1 — 2(e + & — €))) samples
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are necessary and max(?log Z,8¢log 8¢) samples are sufficient, although since their
work some refinements have been made in these bounds.

The case of distribution-free active learnability is a little more subtle than active
learnability for a fixed distribution. For both active and passive learning, the re-
quirement that the learning be distribution-free imposes two difficulties. The first is
that there must exist a uniform bound on the number of examples or queries over all
distributions — i.e., a bound independent of the underlying distribution. The second
is that the distribution is unknown to the learner, so that the learner does not know
how to evaluate distances between concepts. Hence, since the metric is unknown, the
learner cannot simply replace the concept class with a finite e-approximation as in
the case of a fixed and known distribution.

For passive learnability, the requirement that the concept class have finite VC
dimension is necessary and sufficient to overcome both of these difficulties. However,
for active learning the second difficulty is severe enough that no learning can take

place as long as the concept class is infinite.

Lemma 6.1 Let C' be an infinite set of concepts. If cy,...,c, € C is any finite set of
concepts in C then there exists coyy € C and a distribution P such that dp(cat1,¢i) >
1/2 fori=1,...,n.

Proof: Consider all sets of the form by Nby N ---Nb,, where b; is either c; or ¢;. There
are at most 2" distinct sets Bj,..., B« of this form. Note that the B; are disjoint,
~ their union is X, and each ¢; for : = 1,...,n consists of a union of certain B;. Since
C is infinite, there is some set c,y; € C that is not equal to a union of of any subset
of By,...,Bs.. Then, for such a c,41 € C, we have that for some nonempty By,
Cny1 N By is nonempty and cpy1 N Br # Bix. Hence, there exist points z,,z, € X
with ©; € c,41 N By and 2 € By \ cuy1. Let P be the probability measure which
assigns probability 1/2 to «; and 1/2 to x,. For each: =1,...,n, either B, C ¢; or
B, N¢; = 0. Thus, in either case c,y1Ac; contains exactly one of z; or z; so that
dp(cny1,¢) =1/2fori=1,...,n.

Theorem 6.2 C is actively learnable for all distributions iff C is finite.

Proof: If C is finite it is clearly actively learnable since the learner need only ask
[log, |C'|] questions where |C'| is the cardinality of (' to decide which concept is the

correct one.
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If C is infinite we will show that C is not actively learnable by showing that
after finitely many questions an adversary could give answers so that there are still
infinitely many candidate concepts which are far apart under infinitely many remain-
ing probability distributions. Since C' is infinite, we can repeatedly apply the lemma
above to obtain an infinite sequence of concepts c;,c2,... and an associated sequence
of probability measures Py, P, ... such that under the distribution F;, the concept c;
is a distance 1/2 away from all preceding concepts. lL.e., for each ¢ dp,(c;,c;) = 1/2
forj=1,...,1—1.

Now, any question that the active learner can ask is of the form “Is (c, P) € ¢?”
where ¢ is a subset of C x P. Consider the pairs (ci, P1),(cz, P2),.... Either ¢
or g (or both) contain an infinite number of the pairs (c;, F;). Thus, an adversary
could always give an answer such that an infinite number of pairs (c;, P;) remain as
candidates for the true concept and probability measure. Similarly, after any finite
number of questions an infinite number of (¢;, P;) pairs remain as candidates. Thus,
by the property that dp,(ci,c;) = 1/2 for j = 1,...,%i — 1, it follows that for any

€ < 1/2 the active learner cannot learn the target concept.
O

Essentially, if the distribution is unknown, then the active learner has no idea
about ‘where’ to seek information about the concept. On the other hand, in passive
learnability the examples are provided according to the underlying distribution, so
that information is obtained in regions of importance. Hence, in the distribution-
free case, random samples (from the distribution used to evaluate performance) are
indispensable.

Suppose that we remove the second difficulty by assuming that the learner has
knowledge of the underlying distribution. Then the learner knows the metric being
used and so can form a finite approximation to the concept class. In this case, the
distribution-free requirement plays a part only in forcing a uniform bound on the
number of queries needed. Certainly, the active learner can learn any concept class
that is learnable by a passive learner since the active learner could simply ask queries
according to the known distribution to simulate a passive learner. However, the
following theorem shows that active learning, even with the side information as to

the distribution being used, does not enlarge the set of learnable concept classes.

Theorem 6.3 If the learner knows the underlying probability distribution then C' is
actively learnable for all distributions iff C' has finite VC dimension. Furthermore,
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rsupP log,(1—8)N(2¢,C, P)] questions are necessary and [supp log,(1-6)N(e,C, P)]
questions are sufficient. For deterministic algorithms [supplog N(e, C, P)] questions

are both necessary and suffictent.

Proof: If the distribution is known to the learner, then the result of Theorem 6.1
applies for each distribution. Learnability for all distributions then simply imposes
the uniform (upper and lower) bounds requiring the supremum over all distributions
for both general (i.e., probabilistic) active learning algorithms and for deterministic
algorithms. For the first part of the theorem, we need the following result (mentioned
in Section 5.2) relating the VC dimension of a concept class to its metric entropy:
the VC dimension of C is finite iff supp N(¢,C, P) < oo for all € > 0. The first part

of the theorem follows immediately from this result.
O

Thus, even with this extra ‘side’ information, the set of learnable concept classes
is not enlarged by allowing an active learner. However, as before one would expect
an improvement in the number of samples required. A direct comparison is not
immediate since the bounds for passive learnability involve the VC dimension, while
the results above are in terms of the metric entropy. A comparison can be made using
bounds relating the VC dimension of a concept class to its metric entropy with respect
to various distributions as discussed in Section 5.2. Specifically, Theorem 5.3 provides
upper and lower bounds to supp N(e,C, P). This theorem gives bounds on the number
of questions needed in distribution-free active learning (with the side information)
directly in terms of ¢, § and the VC dimension of C. The bounds as stated in
Theorem 5.3 are directly applicable to deterministic active learning algorithms or for
active learning with § = 0. For probabilistic algorithms with § > 0 the quantity
log, 1/(1 — &) needs to be subtracted from both the lower and upper bounds.

6.4 Discussion and Open Problems

In this chapter, we considered the effect on PAC learnability of allowing a rich set of
learner-environment interactions. Previous work along these lines has provided the
learner with access to various types of oracles. Many of the oracles considered in
the literature answer queries which are special cases of yes/no questions (although
those oracles that provide counterexamples are not of this type). As expected, the

use of oracles can often aid in the learning process. To understand the limits of how
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much could be gained through oracles, we have considered an active learning model
in which the learner chooses the information received by asking arbitrary yes/no
questions about the unknown concept and/or probability distribution.

For a fixed distribution, active learning does not enlarge the set of learnable con-
cept classes, but it does have lower sample complexity than passive learning. For
distribution-free active learning, the set of learnable concept classes is drastically re-
duced to the degenerate case of finite concept classes. Furthermore, even if the learner
is told the distribution but is still required to learn uniformly over all distributions,
a concept class is actively learnable iff it has finite VC dimension.

For completeness, we mention that results can also be obtained if the learner is
provided with ‘noisy’ answers to the queries. The effects of various types of noise
in passive learning have been studied [7, 62, 111]. For active learning, two natural
noise models are random noise in which the answer to a query is incorrect with some
probability 7 < 1/2 independent of other queries, and malicious noise in which an
adversary gets to choose a certain number of queries to receive incorrect answers.
For random noise, the problem is essentially equivalent to communication through a
binary symmetric channel, so that standard results from information theory on the
capacity and coding for such channels [43] can be applied. For malicious noise, some
results on binary searching with these types of errors [101] can be applied. For both
noise models, the conditions for fixed distribution and distribution-free learnability
are the same as the noise-free case, but with a larger sample complexity. However,
the more interesting aspects of our results are the indications of the Limitations of
active learning, and the noise-free case makes stronger negative statements.

Finally, an open problem that may be interesting to pursue is to study the re-
duction in sample complexity of distribution-free learning if the learner has access to
both random examples and arbitrary yes/no questions. This is similar to the prob-
lem considered in [38], but there the learner could choose only examples to be labeled
rather than ask arbitrary questions. Our result for the case where the learner knows
the distribution being used provides a lower bound, but if the distribution is not
known then we expect that for certain concept classes much stronger lower bounds
would hold. In particular, we conjecture that results analogous to those in [38] hold
in the case of arbitrary binary valued questions, so that, for example, asking yes/no
questions could reduce the sample complexity to learn a dense-in-itself concept class

(as defined in [38]) by only a constant factor.
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Chapter 7

Learning with Generalized
Samples and an Application to

Stochastic Geometry

In this chapter, we introduce an extension of the PAC model in which the learner may
receive information from more general types of samples. By a “generalized sample”
we will mean essentially a functional assigning a real number to each concept, where
the number assigned may not necessarily be the value of the unknown concept at a
point, but could be some other attribute of the unknown concept (e.g., the integral
over a region, or the derivative at a given point, etc.). The model is defined for the
general case in which the concepts are real valued functions, and is applicable to both
distribution-free and fixed distribution learnability. The idea is simply to transform
learning with generalized samples to a problem of learning with standard samples over
a new instance space and concept class. The PAC learning criteria over the original
space is induced by the corresponding standard PAC criteria over the transformed
space. Thus, the criteria for learnability and sample size bounds are the usual ones
involving metric entropy and a generalization of VC dimension for functions (in the
fixed distribution and distribution-free cases respectively).

We consider a particular example of learning from generalized samples that is
related to a classical result from stochastic geometry. Namely, we take X to be the
unit square in the plane, and consider concept classes which are collections of curves
contained in X. For example, one simple concept class of interest is the set of straight
line segments contained in X. A much more general concept class we consider is the

set of curves in X' with bounded length and bounded turn (total absolute curvature).
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The samples observed by the learner consist of randomly chosen straight lines labeled
as to the number of intersections the random line makes with the target concept (i.e.,
the unknown curve). We consider learnability with respect to a fixed distribution,
where the distribution is the uniform distribution on the set of lines intersecting X.
A learnability result is obtained by providing metric entropy bounds for the class of
curves under consideration.

The example of learning a curve is closely related to a result from stochastic
geometry which states that the expected number of intersections a random line makes
with an arbitrary rectifiable curve is proportional to the length of the curve. This
result suggests that the length of a curve can be estimated (or “learned”) from a set
of generalized samples. In fact, this idea has been studied, although primarily from
the point of view of deterministic sampling [113, 87]. The learnability result makes
the much stronger statement that for certain classes of curves, from just knowing the
number of intersections with a set of random lines, the curve itself can be learned
(from which the length can then be estimated). Also, for these classes of curves, the
learning result guarantees uniformn convergence of empirical estimates of length to
true length, which does not follow directly from the stochastic geometry result.

Finally, we discuss a number of open problems and directions for further work.
We believe the framework presented here can be applied to a number of problems in
signal/image processing, geometric reconstruction, and stereology, to provide sample
size bounds under a PAC criterion. Some specific problems that may be approachable
with these ideas include tomographic reconstruction using random ray or projection
sampling and convex set reconstruction from support line or other types of measure-

ments.

7.1 PAC Learning with Generalized Samples

In the PAC learning model discussed in Chapters 5 and 6, the unknown concept
was a subset of the instance space X (i.e., and indicator function on X). A natural
generalization of this model is to consider the learning of functions as opposed to just
sets (i.e., binary valued functions). A very general framework for learning functions
was formulated by Haussler [56], building on some fundamental work by Vapnik and
Chervonenkis [119, 120, 121], Dudley [36], and Pollard [94]. In this framework, the
concept class (hypotheses), denoted by F', is a collection functions from a domain X

to a range Y. The samples are drawn according to a distribution on X x Y from some



7.1. PAC LEARNING WITH GENERALIZED SAMPLES 103

class of distributions. A loss function is defined on Y x Y, and the goal of the learner
is to produce a hypothesis from F which is close to the optimal one in the sense of
minimizing the expected loss between the hypothesis and the random samples.

Learning from generalized samples can be formulated as an extension of the frame-
work in [56] as briefly described below. However, for simplicity of the presentation we
consider a restricted formulation which is sufficiently general to treat the example of
learning a curve discussed in this paper. We now define more carefully what we mean
by learning from generalized samples. Let X be the original instance space as before,
and let the concept class F' be a collection of real valued functions on X. In the usual
model, the information one gets are samples (z, f(z)) where z € X and where f € F
is the target concept. We can view this as obtaining a functional . and applying
this functional to the target concept f to obtain the sample (6.,6.(f)) = (6m,f(m))
The functional in this case simply evaluates f at the point z, and is chosen random-
ly from the class of all such “impulse” functionals. Instead, we now assume we get
generalized samples in the sense that we obtain a more general functional , which is
some mapping from F' to R. The observed labeled sample is then (&,&(f)) consisting
of the functional and the real number obtained by applying this functional to the
target concept f. We assume the functional & is chosen randomly from some collec-
tion of functionals X. Thus, X is the instance space for the generalized samples, and
the distribution P is a probability measure on X. Let Sr denote the set of labeled
m-samples for each m > 1, for each z € X, and each f € F.

Given P, we can define an error criterion (i.e., notion of distance between concepts)

with respect to P as

dP(fl:fZ) = E|%(f1) - ”E(fz)|

This is simply the average absolute difference of real numbers produced by generalized
samples on the two concepts. Note that this notion of distance reduces exactly to
the notion of distance used in Chapter 5 for the case where the concepts are sets
(indicator functions) and the samples are the standard samples. Also, note we could

define the framework with more general loss criteria as in [56], but for the example

considered in this paper we use the criterion above.

Definition 7.1 (Learning From Generalized Samples) Let P be a fized and
known collection of probability measures. Let F be a collection of functions from the
instance space X into R, and let X be the instance space of generalized samples for

F. F is said to be learnable with respect to P from the generalized samples X if
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there is a mapping A : Sp — F for producing a hypothesis h from a set of labeled
samples such that for every €,8§ > 0 there is a 0 < m = m(e,§) < oo such that for
every probability measure P € P and every f € F, if h is the hypothesis produced
from a labeled m-sample drawn according to P™ then the probability that dp(f, h) < e

is greater than 1 — 6.

If P is the set of all distributions over some o-algebra of X then this corresponds to
distribution-free learning from generalized samples. If P consists of a single distribu-
tion P then this corresponds to fixed distribution learning from generalized samples.
This is a direct extension of the usual definition of PAC learnability (see for example
[24]) to learning functions from generalized samples over a class of distributions. In
the definition we have assumed that there is an underlying target concept f. As with
the restrictions mentioned earlier, this could be removed following the framework of
[56].

Learning with generalized samples can be easily transformed into an equivalent
problem of PAC learning from standard samples. The concept class F' on X cor-
responds natuially to a concept class F on X as follows. For a fixed f € F, each
functional Z € X produces a real number when applied to f. Therefore, f induces a
real valued function on X in a natural way. The real valued function on X induced

by f will be denoted by f, and is defined by

f(&) = &(f)

The concept class F is the collection of all functions on X obtained in this way as f
ranges through F'.

We are now in the standard PAC framework with instance space X, concept class
F, and distribution P on X. Hence, as usual, P induces a learning criterion or metric
(actually only a pseudo-metric in general) on F, and as a result of the correspondence
between F and F, this metric is the equivalent to the (pseudo-)metric dp induced by
P on F defined above. This metric will be denoted by dp over both F and F‘, and is
given by

dp(f1, f2) = Elfi — fal = El&(f1) — &(f2)l = de(fr, f2)

Distribution-free and fixed distribution learnability are defined in the usual way
for X and F. Thus, a generalized notion of VC dimension for functions (called pseudo
dimension in [56]) and metric entropy of I characterize the learnability of F' in the

distribution-free and fixed distribution cases respectively. These same quantities for
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F' then also characterize the learnability of F' with respect to dp.

Using results from [56] (based on results from [94]), we have the following result
for learning from generalized samples with respect to a fixed distribution. This result
is a direct generalization of Theorem 1 from [56] which allows the use of generalized

samples.

Theorem 7.1 F is learnable from generalized samples (or equivalently, F is learn-
able) with respect to a distribution P if for each ¢ > 0 there is a finite e-cover F'(©)
for F' (with respect to dp) such that 0 < f; < M(e) for each f; € F(*). Furthermore,
a sample size )

2M(e/2) | 2| F(e/2)]

m(e,6) > ) -

is sufficient for €,6 learnability.

Proof: Let F'(¢/2) be an $-cover with 0 < f; < M(e/2) for each f; € F(</?). Let F(</?)
be obtained from F'(</2) using the correspondence between F and F. After seeing
m(e,8) samples, let the learning algorithm output a hypothesis A € F(/2) which is

most consistent with the data, i.e., which minimizes

1 m(e,6)
— Ti(h) — v
m(,§) = |zi(h) — vil
where (&;,y;) are the observed generalized samples. Then using Theorem 1 of [56], it
follows that with probability greater than 1 — é we have dp(f,h) < e.

O

Althdugh we will not use distribution-free learning in the example of learning a

curve, for completeness we give a result for this case.

Definition 7.2 (Pseudo Dimension) Let F' be a collection of functions from a set
Y to R. For any set of points § = (y1,--.,ya) from Y, let Fig = {(f(n1),---, f(ya)) :
f € F}. Fg is a set of points in R%. If there is some translation of Fiy which
intersects all of the 2¢ orthants of R? then 7 is said to be shattered by F. Following
terminology from [56], the pseudo dimension of F', which we denote dim(F), is the
largest integer d such that there etists a set of d points in Y that is shattered by F.

If no such largest integer exists then dim(F') is infinite.

We have the following result for distribution-free learning from generalized sam-

ples, again using results from [56].
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Theorem 7.2 F' is distribution-free learnable from generalized samples (or equiva-
lently, F is distribution-free learnable) if for some M < oo we have 0 < f < M for
every f € F and if dim(F) = d for some 1 < d < co. Furthermore, a sample size

64 M*

€

c +ln3

m(e, §) >

(2d In 16eM 8)

is sufficient for €,8 distribution-free learnability.

Proof: The result follows from a direct application of Corollary 2 from [56], together
with the correspondence between F and F' and the fact that dp(fy, f2) = dp(f1, fo)-

O

Note that the metric entropy of F' is identical to the metric entropy of F (since
both are with respect to dp), so that the metric entropy of F' characterizes learnability
for a fixed distribution as well. However, the pseudo dimension of F' with respect to X
does not characterize distribution-free learnability. This quantity can be very different
from the pseudo dimension of F' with respect to X.

As mentioned above, for simplicity we have defined the concepts to be real valued
functions, have chosen the generalized samples to return real values, and have select-
ed a particular form for the learning criterion or metric dp. Our ideas can easily be
formulated in the much more general framework considered by Haussler [56]. Specifi-
cally, one could take F' to be a family of functions with domain X and range Y. The
generalized samples X would be a collection of mappings from F to Y. A family of
functions F mapping X to ¥ would be obtained from F by assigning to each f € F
an f € F defined by f(&) = #(f). As in [56], the distributions would be defined on
X x Y, aloss function L would be defined on ¥ x Y, and for each f € F the error
of the hypothesis f with respect to a distribution would be EL(f(%),7) where the
expectation is over the distribution on (Z,7).

Although learning with generalized samples 1s in essence simply a transformation
to a different standard learning problem, it allows the learning framework and results
to be applied to a broad range of problems. To show the variety in the type of obser-
vations that are available, we briefly mention some types of generalized samples that
may be of interest in certain applications. In the case where the concepts are subsets
of X (i.e., binary valued functions), some interesting generalized samples might be
to draw random (parameterized) subsets (e.g., disks, lines, or other parameterized

curves) of X labeled as to whether or not the random set intersects or is contained in
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the target concept. Alternatively, the random set could be labeled as to the number
of intersections (or length, area, or volume of the intersection, as appropriate). In
the case where the concepts are real valued functions, one might consider generalized
samples consisting of choosing certain random sets and returning the integral of the
concept over these sets. For example, choosing random lines would correspond to
tomographic type problems with random ray sampling. Other possibilities might be
to return weighted integrals of the concept where the weighting function is selected
randomly from a suitable set (e.g., an orthonormal basis), or to sample derivatives of

the concept at random points.

7.2 A Result From Stochastic Geometry

In this section we state an interesting and well known result from stochastic geometry.
This result will be used and is related to a specific example of learning from generalized
samples discussed in the next section.

To state the result, we first need to describe the notion of choosing a “random”
straight line, i.e., a uniform distribution for the set of straight lines intersecting a
bounded domain. A line in the plane will be parameterized by the polar coordinates
7, 8 of the point on the line which is closest to the origin, where r > 0 and 0 < 6 < 27.
The set (manifold) of all lines in the plane parameterized in this way corresponds to
a semi-infinite cylinder. '

A well known result from stochastic geometry states that the unique measure
(up to a scale factor) on the set of lines which is invariant to rigid transformations
of the plane (translation, rotation) is drdf, i.e., uniform density in = and #. This
measure is thus independent of the choice of coordinate system, and is referred to
as the uniform measure (or density) for the set of straight lines in the plane. This
measure corresponds precisely to the surface area measure on the cylinder.

From this measure, a uniform probability measure can be obtained for the set of
all straight lines intersecting a bounded domain. Specifically, the set of straight lines
intersecting a bounded domain X, which we will denote by X, is a bounded subset
of the cylinder. The uniform probability measure on X is then just the surface area
measure of the cylinder suitably normalized (i.e., by the area of X)

We can now state the following classic result from stochastic geometry (see e.g.

[105, 11]).
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Theorem 7.3 Let X be a bounded conver subset of R?, and let ¢ C X be a rectifiable
curve. Suppose lines intersecting X are chosen uniformly, and let n(z,c) denote the

number of intersections of the random line & with the curve c. Then

En(z,c) = %L(C)

where L(c) denotes the length of the curve ¢ and A is the perimeter of X.

In the next section, for simplicity we will take X to be the unit square. In this
case, the theorem reduces simply to En(z,c) = 3£(c). »

A surprising (and powerful) aspect of this theorem is that the expected number
of intersections a random line makes with the curve ¢ depends only on the length of
¢ but is independent of any other geometric properties of c. In fact, the expression
on the left hand side (suitably normalized) can be used as a definition for the length
(or one-dimensional measure) of general sets in the plane [109].

An interesting implication of Theorem 7.3 is that the length of an unknown curve
can be estimated or “learned” if one is told the number of intersections between the
unknown curve and a collection of lines chosen randomly (from the uniform distribu-

tion). In fact, deterministic versions of this idea have been studied [113, 87].

7.3 Learning a Curve by Counting Intersections

with Lines

In this section, we consider a particular example of learning from generalized samples
— that of learning a curve by counting intersections with straight lines. For concrete-
ness we take X to be the unit square in R?, although our results easily extend to the
case where X is any bounded convex domain in RZ. We will consider concept classes
C' which are collections of curves contained in X. For example, one particular con-
cept class of interest will be the set of straight line segments contained in X. Other
concept classes will consist of more general curves in X satisfying certain regularity
constraints. The samples observed by the learner consist of randomly chosen straight
lines labeled as to the number of intersections the random line makes with the target
concept (i.e., the unknown curve). Recall, that with the 7,0 parameterization, the
set of lines intersecting X', which is the instance space X, is a bounded subset of the

semi-infinite cylinder. We consider learnability with respect to a fixed distribution,
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where the distribution P is the uniform distribution on X.

7.3.1 Learning a Line Segment

Consider the case where (' is the set of straight line segments in X. In this case,
given a concept ¢ € C, every straight line (except for a set of measure zero) intersects
c either exactly once or not at all. Thus, (' consists of subsets (i.e., binary valued
functions) of X, where each ¢ € ' contains exactly those straight lines # € X which
intersect the corresponding ¢ € C.

The metric dp on C and C induced by P is given by

dp(ci,c2) = dp(é1,¢2) = E|n(z,e1) — n(Z, c2)| = P(é,A8)

where, as in the previous section, n(&,c) is the number of intersections the line
makes with c. In the case of line segments n(&, c) is either one or zero, i.e. ¢ is binary

valued, so that

dp(cl,cz) = dp(él,éz) = P(CgACz)

where ¢,A¢; is the usual symmetric difference of ¢; and ¢. Hence, dp(cy,cy) is the
probability that a random line intersects exactly one of the two line segments c; and
ca.

In the case of line segments, a simple bound on the dp distance between two
segments can be obtained in terms of the distances between the endpoints of the

- segments.

Lemma 7.1 Let ¢q,c; be two line segments, and let a1,b; and az, by be the endpoints

of ¢1 and cy respectively. Then
) .
dp(er, ¢2) < 5 (|l — azlf + {[bx — B2[])

Proof: Since c¢j,c; are line segments, the distance dp(ci,cy) between ¢; and c; is
the probability that a random line intersects exactly one of ¢; and c,. Any line that
intersects exactly one of ¢;, c; must intersect one of the segments @ja; or b,b, joining

the endpoints of ¢; and c;. Therefore,
dp(c1,¢2) < P(8Naag # 0 or 2 Nbidy # 0) < P(E Naa; # 0) + P(2 N bib; #0)

Using Theorem 7.3, the probability that a random line intersects a line segment in
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the unit square is simply half the length of the line segment, from which the result

follows.
O

Using the previous lemma, we can bound the metric entropy of C (and hence C)

with respect to the metric induced by P.

Lemma 7.2 Let C' be the set of line segments contained in the unit square X, and

let P be the uniform distribution on the set of lines intersecting X. Then

N(e, G, P) = N(e,C', P) < é

Proof: We construct an e-cover for C' as follows. Consider a rectangular grid of
points in X with spacing V/2¢. Let C©) be the set of all line segments with endpoints
on this grid. There are 21? points in the grid, so that there are ;l; line segments in
C'(9). (Some of these segments are actually just points and could be eliminated from
(') since they are dp-distance zero from each other and the empty set. However,
we ignore this fact since there are just s> such points.) For any ¢ € (', there is a

¢ € C© such that each endpoint of ¢ is within € of an endpoint of c. Hence, from

Lemma 7.1 dp(c,c') < 3(e+ €) = € so that C'9) is an e-cover for C with ;i; elements.
O

The construction of the previous lemma allows us to obtain the following learning

result for straight line segments.

Theorem 7.4 Let C be the set of line segments in the unit square X. Then C' s
learnable by counting intersections with straight lines chosen uniformly using
2 8

m(e, 6) = e—zlnm

samples..

Proof: Let (' be the concept class over X corresponding to C'. Then ¢ € (' is defined
by é(#) = n(&,c), 1.e., &(&) is the number of intersections of the line # with c. Clearly,
0 < & < 1 (except for a set of measure zero) for every ¢ € C Using the construction
of Lemma 7.2, we have an §-cover of C' with 4/€* elements. Hence, the result follows
from Theorem 7.1.

a
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7.3.2 Learning Curves of Bounded Turn and Length

Now we consider the learnability of a much more general class of curves. First we
need some preliminary definitions. We will consider rectifiable curves parameterized

by arc length s, so that a curve c of length L is given by
¢ = {(w1(s),z2(s))|0 < s < L}

where z,(+) and z,(-) are continuous functions from [0, L] to R such that /2% + £ is
defined and equal to unity almost everywhere. If z; and z, are twice-differentiable at
3, then the curvature of ¢ at s, (s), is defined as the rate of change of the direction of
the tangent to the curve at s, and is given by K(s) = &,@; — &1z, The total absolute
curvature of ¢ will be denoted by x(c) and is defined by s(c) = [ |x(s)|ds

Alexandrov and Reshetnyak [2] have developed an interesting theory for irregular
curves. Among other things, they study the notion of the “turn” of a curve, which
is a generalization of total absolute curvature to curves which are not necessarily
twice-differentiable. For example, for a piecewise linear curve the turn is simply the
sum of the absolute angles between adjacent segments. The turn for more general
curves can be obtained by piecewise linear approximations. As expected, their notion
of turn reduces to the total absolute curvature of a curve for which the latter quantity
is defined. We will use the generalized notion of turn presented in [2] throughout, so
that our results will apply to curves which are not twice-differentiable (e.g., piecewise
linear curves). We let k(c) denote the turn of the curve c.

We will consider classes of curves of bounded length and bounded turn. Specifi-
cally, let C'x 1 be the set of all curves contained in the unit square whose length is less
than or equal to L and whose turn is less than or equal to K. Note that for curves
contained in a bounded domain, the length of a curve can be bounded in terms of
the turn of the curve and the diameter of the domain (Theorem 5.6.1 from [2]; for
differentiable curves see for example [105] p. 35). Hence, we really need only consider
classes of curves with a bound on the turn. However, for convenience we will carry
both parameters K and L explicitly. v

As before, the samples will be random lines chosen according to the uniform
distribution P on X, labeled as to the number of intersections the line makes with
the unknown curve c. However, with curves in ('r,; the number of intersections with
a given line can be any positive integer (as opposed to just zero or one for straight line

segments). Thus, the class (__7',-\-‘ 1 consists of a collection of integer valued functions on
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X as opposed to just subsets of X as in the previous section.
Also, as before, the results on learning for the set curves will be with respect to
the metric dp induced by the measure P. That is the dp distance between two curves

¢1 and c¢; or their corresponding functions ¢;, ¢, is given by
dp(c1,¢2) = dp(é1,¢2) = E|n(Z, 1) — n(Z, c2)]

where the expectation is taken over the random line & with respect to the uniform
measure P. This notion of distance between curves has been studied previously (e.g.,
see [113] and {105] p.38). For example, it is known that dp is in fact a metric on the
set of rectifiable curves, so that dp satisfies the triangle inequality and dp(cy,¢2) =0
implies ¢; = c;. (Note that in the references [105, 113] the notion of distance used is
actually %d p, but this makes no difference in the metric properties.)

To obtain a learning result for Cx ; we will show that each curve in Ck 1 can be
approximated (with respect to dp) by a bounded number of straight line segments.
The metric entropy computation for a single straight line segment can be extended to
provide a metric entropy bound for curves consisting of a bounded number of straight
line segments. Thus, by combining these two ideas we can obtain a metric entropy
bound for Ck,p which yields the desired learning result.

First, we need several properties of the dp metric for curves of bounded turn.

Lemma 7.3 If ¢;,c; are curves with a common endpoint (so that c; Uc; is a curve)

and similarly for c{,c, then
dP(Cl @] Cz,Cll U Clz) S dP(Cl, C;) + dP(Cz,C’z)

Proof: For any line # (except for a set of measure zero), n(z,c; U cz) = n(&,¢;) +

n{Z,cy) and similarly for ¢!, c,,. Therefore
) y 1r%2 )

. 1
dp(c1Ucy,ci Uch) = EEln(:E,cl Uez) — n(&,c; Ucy)
1
= EEln'('i7C1) —1L(:‘E,C’1)+n(.’E,C2)—TI‘(.’E,C’2)|

1 , 1 s -
< §E|n.(:E, c1) — n(&, )| + EE'In(:c,cz) —n(z, ch)|
= dp(e1, i) +dp(cz,c3)
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By induction, this result can clearly be extended to unions of any finite number

of curves. The case of a finite number of curves will be used in Lemma 7.6 below.

Lemma 7.4 Ifc is a curve and ¢ is the line segment joining the endpoints of c, then

dp(e,) = 3 (£(e) ~ £(&)

Proof: Each line can intersect ¢ at most once, and every line intersecting ¢ also
intersects c. Therefore, n(z,c) > n(Z, ¢) so that |n(Z,c) — n(&, ¢)| = n(z,c) — n(z, é)

for all lines Z (except a set of measure zero). Hence,

dp(c, &) = Eln(#, ) — n(#,8)| = E (n(z, ¢) — n(&,8) = %E(c) _ %c(e)

where the last inequality follows from the stochastic geometry result (Theorem 7.3).
0

We will make use of the following result from [2].

Theorem 7.5 (Alexandrov and Reshetnyak) Let c be a curve in R™ with x(c) <

m, and let o be the distance between its endpoints. Then

«

COs ﬂfl

2

L(c) <

FEquality is obtained iff ¢ consists of two line segments of equal length.

Lemma 7.5 For 0 < a < w/6, (1/cosa) —1 < a? so that if ¢ is a curve with turn

k(c) < /6 and ¢ is the line connecting the endpoints of ¢ then

£(¢)

dp(C,é) S 3

K*(c)

Proof: Let g(a) = 1/cosa and h(a) = 1+ a®. For 0 < a < 7/6, sina < 1/2 and
cosa > 1/3/2 so that j(a) = 2sina/cos®a + 1/ cosa < 3—;\4/5 + % = % < 2=
h(a). Combining §(«) < h(a) with the fact that g(0) = k(0) and ¢g(0) = h(0) gives
g(a) < h(a) and so 1/cosa—1 < a? for 0 < a < 7/6.

Now, using the above result, Lemma 7.4, and Theorem 7.5 we have

dp(e,) = 3 (£(e) = £(&)) < L) (;()/2 - 1) < H
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O

Lemma 7.6 If c € Cg then for each ¢ > 0 the curve c can be approzimated to

within € by an inscribed piecewise linear curve with at most %& segments.

Proof: As usual, let s denote arc length along c. Since #(c) < K, for any a > 0,
we can find a decomposition of ¢ into at most [K/a| pieces £1,...,{[k/a) such that

k(€;) < a for each i. For example, let so = 0 and let
= sup{si_; < s < L|s(c(si_1,8)) < a}

where ¢(s;_1,s) is the part of the curve ¢ between arc length s;_; and s inclusive.
Then, let ¢; = ¢(si_1,8:). By definition, x({;) < . The turn of a curve satisfies
k(c(s,s') > r(c(s,t)) + &(c(t,s")) for any s <t < &' and K(c(s,s")) — 0 as &' — s
from the right ([2], Corollaries 2 and 3, p. 121). From these properties it follows that
if s; < L then for any 7 > 0, s(c(0,s; + 7)) > ia. Since x(c) < K we must have
s; = L for some 1 < [K/a].

Now, let ¢; be the line segment joining the ends of ¢;. Clearly, the union of the
{; form a piecewise linear curve inscribed in ¢ (i.e., with endpoints of the segments
lying on ¢). From Lemmas 7.3 and 7.5, and the fact that L(£;) < L(c) < L, we have

K/« K
dp(c, "/“e)<zdp(£,,f)< ;’2 —§£a

8¢
approximation to ¢ by an inscribed piecewise linear curve.

Thus, for o < 25, dp(c, uX/eg) < € so that K = K’L segments suffice for an e-

O

Theorem 7.6 Let Ck 1 be the set of all curves in the unit square with turn bounded
by I and length bounded by L. Let P be the uniform distribution on the set of lines
intersecting the unit square, and let dp be the metric on Uk, defined by dp(cy,c2) =
En(&,c1) — n(&,¢;)|. Then the metric entropy of Cg,p with respect to dp satisfies

KA4L? 1“'%
N(e,Cg1,P) <
8et

Proof: We construct an e-cover for C' as follows. Consider a rectangular grid of

points in the unit square with spacing —I“@‘— Let C};}L be the set of all piecewise
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linear curves with at most % segments the endpoints of which all lie on this grid.

There are K*L?/8¢* points in the grid, so that there are at most (K *4L?/8et)1+K*L/4c

distinct curves in C}E’L.

To show that C'l(rf')L is an e-cover for Ck r, let ¢ € Ck,p. By Lemma 7.6 there is a

piecewise linear curve ¢ with at most K4—26L segments such that dp(c,¢) < ¢/2. We can

find a curve ¢’ € C}E’)L close to ¢ by finding a point on the grid within _,%fL of each

endpoint of a segment in ¢. By Lemma 7.1 each line segment of ¢’ is a distance at
most R"’;—ZL (with respect to dp) from the corresponding line segment of ¢. Since é,¢'
KL
4

consist of at most <~ segments, applying Lemma 7.3 we get dp(¢,c') < ¢/2. Hence,

by the triangle inequality dp(c,c’) <e.

We can now prove a learning result for curves of bounded turn and length.

Theorem 7.7 Let Ck,p be the set of all curves in the unit square with turn bounded
by K and length bounded by L. Then (g, ts learnable by counting intersections with

straight lines chosen uniformly using

m(e, 8) =

K2 9 (2rire\ it
2¢t lng( )

P

Proof: Let Ck p be the concept class over X corresponding to Ck . Then é € C is
defined by &(z) = n(&,c), i.e., é(z) is the number of intersections of the line & with c.

Using the construction of Theorem 7.6, we have an ;-cover, CE/D), of Ck,r with
(2IK4L?/€*)'+1°L/2¢ elements. Furthermore, each element of the £-cover consists of at
most Kz—zf line segments. Since a line # can intersect each segment at most once, we
have 0 < ¢(z) < %Z—L for every ¢&; € C'/2). Hence, the result follows from Theorem

7.1.
O

It is interesting to note that C’K,L has infinite pseudo dimension (generalized VC
dimension), so that one would not expect Cx 1 to be distribution-free learnable. That
the pseudo dimension is infinite can be seen as follows. First, assume that A, L > 2x.
For each k, let &,,...,%, be the set of lines corresponding to the sides of a k-gon
inscribed in the unit circle. For any subset G of these k lines, we can find a curve
cg € Ck, so that n(z;,cg) = 2 for &; € G and n(&i,cg) = 0 for ©; ¢ G. Such a
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curve can be obtained by taking a point on the unit circle in each arc corresponding
to #; € G, and taking cg to be the boundary of the convex hull of these points.
Then, x(cg) = 27 and L(cg) < 27 so that c¢ € Ck,p- Thus, the set &;,...,%; is
shattered by Ck 1, and since k is arbitrary the pseudo dimension of C'K,  is infinite.
For K, L < 2r we can apply essentially the same construction over an arc of the unit

circle and without taking cg to be a closed curve.

7.3.3 Connections With the Stochastic Geometry Result

For the class of curves whose length and curvature are bounded by constants, the
learnability result of Theorem 7.7 can be thought of as a refinement of the stochastic
geometry result. First, using the expression for the expected number of intersections,
one can estimate or “learn” the length of ¢ from a set of generalized samples. The
learnability result makes the much stronger statement that the curve c itself can be
learned (from which the length can then be estimated). However, we emphasize that
the learning of the curve is with respect to the metric dp. To show that the length

can be estimated, we need only note that

|£(Cl) - L(C2)| = %E(n(y,cl) - "(y,Cz))| < %Eln(y,cl) — n(y, Cz)l = %dP(ClaCZ)

so that if we learn ¢ to within € then the length of ¢ can be obtained to within €/2.
Second, for the class of curves considered, we have a uniform learning result.
Hence, this refines the stochastic geometry result by guaranteeing uniform conver-

gence of empirical estimates of length to true length for the class of curves considered.

7.4 Discussion and Open Problems

We introduced a model of learning from generalized samples, and considered an appli-
cation of this model to a problem of reconstructing a curve by counting intersections
with random lines. The curve reconstruction problem is closely related to a well
known result from stochastic geometry. The stochastic geometry result (Theorem
7.3) suggests that the length of a curve can be estimated by counting the number of
intersections with an appropriate set of lines, and this has been studied by others.
Our results show that for certain classes of curves the curve itself can be learned from
such information. Furthermore, over these classes of curves the estimates of length

from a random sample converge uniformly to the true length of a curve.
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The learning result for the curves is in terms of a metric induced by the uniform
measure on the set of lines. Although some properties of this metric are known, to
better understand the implications of the learning result, it would be useful to obtain
further properties of this metric. One approach might be to obtain relationships
between this metric and other metrics on sets of curves (e.g., Hausdorff metric, dg).

For example, we conjecture that over the class Ck

{cl,cz|d;11(l£.cz)>€} dp(e1,c2) > 0
This result combined with the learning result with respect to dp would immediately
imply a learning result with respect to dy.

The stochastic geometry result holds for any bounded convex subset of the plane,
and as we mentioned before, our results can be extended to this case as well. Further-
more, results analogous to Theorem 7.3 can be shown in higher dimensions and in
some non-Euclidean spaces [105]. Some results on curves of bounded turn analogous
to those we needed also can be obtained more generally [2]. Hence, learning results
should be obtainable for these cases.

Regarding other possible extensions for the problem of learning a curve, note that
the stochastic geometry result is not true for distributions other than the uniform
distribution. Also, we are not aware of any generalizations to cases where param-
eterized curves other than lines are chosen randomly. However, learnability results
likely hold true for some other distributions and perhaps for other randomly chosen
parameterized curves, although the metric entropy computations may be difficult.

There is an interesting connection between the example of learning a curve dis-
cussed here and a problem of computing the length of curves from discrete approx-
imations. In particular, it was shown in Chapter 3 that computing the length of
a curve from its digitization on a rectangular grid requires a nonlocal computation
(even for just straight line segments), although computing the length of a line seg-
ment from discrete approximations on a random tesselation can be done locally. The
construction is esseutially a learning problem with intersection samples from random
straight lines. Furthermore, the construction provides insight as to why local compu-
tation fails for a rectangular digitization and suggests that appropriate deterministic
digitizations would still allow local computations. This is related to the work in [87].

We considered here only one particular example of learning from generalized sam-

ples. However, we expect that this framework can be applied to a number of problems
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in signal/image processing, geometric reconstruction, stereology, stochastic geometry,
etc., to provide learnability results and sample size bounds under a PAC criterion. As
previously mentioned, learning with generalized samples is in essence simply a trans-
formation to a different standard learning problem, although the variety available in
choosing this transformation (i.e., the form of the generalized samples) should allow
the learning framework and results to be applied a broad range of problems.

For example, the generalized samples could consist of choosing certain random sets
and returning the integral of the concept over these sets. Other possibilities might be
to return weighted integrals of the concept where the weighting function is selected
* randomly from a suitable set (e.g., an orthonormal basis), or to sample derivatives of
the concept at random points. One interesting application would be to problems in
tomographic reconstruction. In these problems, one is interested in reconstructing a
function from a set of projections of the function onto lower dimensional subspaces.
One could have the generalized samples consist of choosing random lines labeled ac-
cording to the integral of the unknown function along the line. This would correspond
to a problem in tomographic reconstruction with random ray sampling. Alternative-
ly, as previously mentioned, one could combine the general framework discussed by
Haussler [56] with generalized samples, and consider an application to tomography
where the generalized samples consist of entire projections. This would be more in
line with standard problems in tomography, but with the directions of the projections
being chosen randomly.

For more geometric problems in which the concepts are subsets of X, some inter-
esting generalized samples might be to draw random (parameterized) subsets (e.g.,
disks, lines, or other parameterized curves) of X labeled as to whether or not the
random set intersects or is contained in the target concept. Other possibilities might
be to label the random set as to the number of intersections (or length, area, or
volume of the intersection, as appropriate) with the unknown concept. One interest-
ing application to consider would be the reconstruction of a convex set from various
types of data (e.g., see [61, 76, 110, 95]). For example, the generalized samples could
be random lines labeled as to whether or not they intersect the convex set (which
would provide bounds on the support function). This is actually just a special case
of learning a curve which is closed and convex, although tighter bounds should be
obtainable due to the added restrictions. Alternatively, the lines could be labeled as
to the length of the intersection (which is like the tomography problem with random
ray sampling in the case of binary objects). A third possibility (which is actually just
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learning from standard samples) would be to obtain samples of the support function.

Formulating learning from generalized samples in the general framework of Haus-
sler [56] allows issues such as noisy samples to be treated in a unified framework.
Application of the framework to a particular problem reduces the question of estima-
tion/learning under a PAC criterion to a metric entropy (or generalized VC dimen-
sion) computation. This is not meant to imply that suck a computation is easy. On
the contrary, the metric entropy computation is the essence of the problem and can
be quite difficult. Another problem which can be difficult is interpreting the learning
criterion on the original space induced by the distribution on the generalized sam-
ples. The induced metric is a natural one given the type of information available,
but it may be difficult to understand the properties it endows on the original concept
class. Finally, although this approach may provide sample size bounds for a variety

of problems, it leaves wide open the question of finding good algorithms.
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Chapter 8

Can One Decide the Type of the
Mean from the Empirical

Measure?

8.1 Introduction

Consider the following hypothesis testing problem: Let xq,z,,: - denote a sequence
of ii.d. random variables with marginal law Pr, with support [0,1]. The mean
of Pr, denoted iy, belongs either to a (known) set A which has measure 0 or to
its complement B = A°. We want to decide, based on the observation sequence
Ty,Tq, - ,T, whether iy € A or not.

This problem was considered by Cover in [28], where he treated the case of A =
Qlo,1), the set of rationals in [0,1], and more generally the case of countable A. He
proposed there a test which, for any measure with iy € A, will make (a.s.) only a
finite number of mistakes, and for measures with ji; € B\ IV, the test makes (a.s.) only
a finite number of mistakes, where IV is a set of Lebesgue measure 0. Some extensions
of this result were considered by Koplowitz [66], who showed various properties of sets
A which allowed for such a decision and gave some characterizations of the set V.

In this chapter, we extend the result of [28] by allowing the set A to be uncountable,
not necessarily of measure 0, such that it satisfies the following structural assumption:

Assumption There exists a monotone sequence of sets A, increasing to A and

an appropriate positive sequence €(m) —,, o 0 such that, for each m, the open blow

up B,, = (v ze(m))é{:c : d(z,A,) < {/2¢(m)} is such that the Lebesgue measure
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of B\ A, is smaller than 1/m?. (We will use the fact that the open blow ups B,
satisfy (d(An,BS,))? > 2¢(m) > 0.)

We note that this Assumption implies that if A has Lebesgue measure zero then
it is a countable union of nowhere dense sets (i.e., is of the first category). The
Assumption is satisfied by a class of interesting uncountable sets A, e.g. the Cantor
set. Obviously, for countable sets, the Assumnption is satisfied. For more along thes:
lines, c.f. Lemma 8.1 and the remarks which follow Theorem 8.1.

In Section 8.2, we describe a decision algorithm which changes its decisions after
increasingly longer and longer intervals. Those intervals are chosen using entropy
bounds. We prove that this algorithm shares the properties of Cover’s decision rule,
i.e. it makes a finite number of mistakes a.s. on the set A and on A\ for an
appropriate set N of Lebesgue measure 0. (A characterization of N follows from our
proof and is related to the one given in [66]). In Section 8.3, the results are extended

to allow a (countable) sub-decision inside the set A.

8.2 Classifying the Mean in A Versus A°

We begin by first describing the proposed decision rule. Let B(m) be a given sequence
of increasing positive integers, to be defined below. For any input sequence z,,%3,. .,

parse 1,&2,... into the subsequences
Xm—L—(:l‘.,_;(,;l_l), s :1313(,")_1) 1<m< oo

Let 7w} denote the empirical mean of the sequence X™. At the end of each parsing,
make a decision whether fiy € A according to whether iF € B, or not. Between
parsings, don’t change the decision. For the sequence B3(m) defined below in equation

(8.7), we claim:

Theorem 8.1  a) For any measure Pr with fip € A, the decision rule will make
(a.s.) only a finite number of mistakes, i.e. for a.e. w there etists an n(w) such
that the decision is A for all n > n(w).

b) For any measure Pr with Jig € A\N, where N is a set of Lebesgue measure 0,
the decision rule will make (a.s.) only a finite number of mistakes, 1.e. for a.e.

w there exists an n(w) such that the decision is A° for all n > n(w).
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Before proving the theorem, we introduce some notation and define the sequence
B(m). For a set E C [0,1], E° denotes the complement of E and E denotes the
closure of E, whereas E° denotes the interior of E. Let p be a probability measure
‘with support in [0,1). The mean of p is denoted z. Let M,(A)=E (exp(Az)) denote
the moment generating function of y and let A(A)=1log(M(])). Let I,(z) = sup,(Az—

A(X)) be the Legendre transform of A(X), and let H(v|x) denote the relative entropy

of v with respect to y, i.e. H(v|p) = [y dv(z)log(%) if &

g ~) exists and oo otherwise.
743 IJ

It is known that both I(z) and H(v|u) are convex, lower semicontinuous functions
(e.g, see [32]). Further, it is well known that for any open (closed) set C in [0, 1],

inf I,(z) = inf H(v|pe) (8.1)

wel {Vﬂl: zdv(z)€C} ‘
Next, let ;Tn;}; Y.~ , z; denote the empirical mean of the sequence z,,,, -, z,,
and let L, = 1‘ Y, 6;, denote the empirical measure of the sequence zy,x,, -+, z,. By

the classical Cramer theorem, one has that, for any closed set C, and any probability

measure g with support in [0, 1], (c.f., [32], proof of Lemma 1.2.5),
Pu(fn € €) < 2exp(—n inf L(z)). (8-2)

We next define the sequence F(m): for any m, let B,, be the open cover of the

set A,, described in the Assumption above. For any m, compute

Imz (e :ngm} zlelgf IIJ('U) (83)

Note that by (8.1), one also has that

I, = inf inf H . 8.4
P AR . N (v|u) (8.4)
Since d( A, BS)? > 2¢(m), one has that I, > ¢(m). Indeed, by [32], Exercise
3.2.24, 2H(v|p) > |lv — pll?,, > (d(Am, B:,))?, where the last inequality holds for
{vim, € B} and {p :7i € A,,}. Next, let

a(m)élog 2 —I}Zlogm (8.5)
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Note that, by (8.2), for any u such that @ € A4,,,

1
FPu(Fagm) € By,) < - (8.6)
Finally, let
B(m) =2 afi),  B(0)=0. (8.7)
=1

Proof of Theorem 8.1:

a) Assume fip € A. Then there exists an m such that i; € A,,. Note however
that the event of making an error infinitely often is equivalent to the event of

making an error at the parsing intervals infinitely often. However,

fo o] (= =] 1
Z Prob error in m-th parsing < Z — < oo
m=1 m=1 m
where we have used (8.6) above. Therefore, part a) of the theorem follows by

the Borel-Cantelli lemma.

b) Let C,, denote the 24/2¢(m) blow up of B,,. Let

N= U Cn\4
n=1m=n
Clearly, the Lebesgue measure of NV is zero. Now we may repeat the arguments
of part a) in the following way: let i € B\N. For an mq large enough,
Br € CF, for all m > mgy. On the other hand, d(@g, Bn)? > 2¢(m) by our
construction. Noting that the rate function inf.cp,, Ip.(z) > €(m), the proof

follows identically as in part a).

Remarks

1) The theorem could have been proved by obtaining (8.6) using more traditional

bounds but with a slower decision procedure (i.e., larger a(m)).

2) It 1s interesting to note that the Cantor set satisfies the Assumption. Indeed,

the covering sets B,, are just the intervals associated with the Cantor partition.
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3) By modifying the structure of the decision rule, one may also make a hypothesis

test inside A. This is pursued in Section 8.3.

We conclude this section by a (partial) characterization of the sets A of measure

0 which satisfy the Assumption:

Lemma 8.1 A set A which is of measure 0 and which satisfies the Assumption is of
the first category (i.e., A is a countable union of nowhere dense sets). Conversely,
a closed set A of Lebesque measure zero satisfies the Assumption if A is of the first

calegory.

Proof:

(==) From the Assumption, A = UnA,,. We need only show that each A,, 1s
nowhere dense. But this follows immediately from the existence of a sequence of open
blow ups of A,, with arbitrarily small Lebesgue measure (namely, By for k > m).

(«<=) If A is of the first category then A = U;S; where each 5; is nowhere dense.
Let A, = U™,S;. Clearly, the A,, monotonically increase to A. Also, since A, is
nowhere dense, and A is closed, |A®)] — 0 as § — 0 where | - | denotes Lebesgue
measure and A®) = {z : d(x, A) < §} is the (open) é-neighborhood of A,. For each
m, choose any 6, > 0 such that |Al¥=)| < 1/m?. Then the Assumption is satisfied

with B, = A¢m) and e(m) = 62,/2.

8.3 Countable Hypothesis Testing

In this section, we refine the decision rule to allow for deciding among a countable
set of hypotheses. In addition to deciding whether or not iy € A, we also make a
hypothesis test inside A. Suppose that A is written as A = UZ,S; where the 5; are
disjoint. We are interested not only in whether iz € A, but if so to which of the 5;
does fip belong. Specifically, we wish to decide among the following countable set of
hypotheses:

H :up €S, 1=12,...

Ho:Tir ¢ A

For the theorem below, restrictions must be placed on the decomposition of A. Name-

ly, we assume that the S; are pairwise positively separated meaning that d(S:,S;) >0
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for every i # j. (Note that, as before, A is required to satisfy the structural Assump-
tion of the introduction.)

We modify our previous decision rule as follows. At the end of each parsing
(defined by the sequence #(m)), find the least index k (if one exists) such that 7i,(,.
is contained in the ,/2¢(m) open blow up of Sx N A,.. If such a k exists, then decide

that fip € Si. Otherwise (if Maqmy € (Si N Am)V2™) for all ©) decide that fip ¢ A.
Alternatively, we can think of this decision procedure as first deciding whether or not
fiy € A as before. Then, if the decision is that fiy € A, make a refinement by deciding
that 7ip € Sk where k is the least index such that mqm) € (SN Am)(m).

Theorem 8.2 If A = UR,S; satisfies the Assumption and the S; are pairwise posi-
tively separated then

a) For any measure Pr with fir € S; for some i, the decision rule will make (a.s.)
only a finite number of mistakes, i.e. for a.e. w there ezists an n(w) such that

the decision is S; for all n > n(w).

b) For any measure Pr with fiy € A°\N, where N is a set of Lebesgue measure 0,
the decision rule will make (a.s.) only a finite number of mistakes, i.e. for a.e.

w there exists an n(w) such that the decision is A° for all n > n(w).

Proof:
a) Suppose that iy € S;. By the same considerations that led to (8.6), for any p

such that 7 € S; N A,, we have
1
Pulfiatmy # (551 An) VD) < 58

Since iy € S; C A, for sufficiently large m, fiy € An. Also, since the 5; are pairwise
positively separated and 7 is finite, for large enough m the sets (S;n Am)(m) and
(SinN Am_)(\ﬁ:(:)) are disjoint for all j < i. That is, for sufficiently large m, denoted
mo(i), as long as f, () € (5 N A,,,)(\/ze(—"‘” we have Tl ) € (S5; N Am)(‘/z_‘(;“)) for all
j < i. Hence, for all m > mo(7), i is the least index satisfying the requirements of the
decision procedure (so that a correct decision is made) iff fi .,y € (5: N Am)(\/m).
Therefore,

Z Prob error in m-th parsing < me(z) + Z P (g (m) ¢ (SN Am)(\/ZE(‘m)))

m=1 m=mg(1)+1
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: — 1
Smo(l)+2m<00

m=1 """
so that part a) follows by the Borel-Cantelli Lemma.
b) This part is identical to part b) of Theorem 8.1.

Remarks

1) Cover’s result on countable hypothesis testing is a special case of this result
since every countable set A clearly satisfies the Assumption and can be written

as the union of pairwise positively separated sets.

2) If oneis willing to allow the test to fail for some pointsin A4, then the requirement
that the S; be pairwise positively separated can be dropped. The set NV, C A
on which the test fails in the general case can be characterized, and presumably

conditions on the S; for which N, is a null set could be obtained.

8.4 A Symmetric Decision Criterion and the Lebesgue

Density Theorem

In the previous sections as well as in [28, 66] mistakes were allowed on a set of measure
zero, but only in A°. In this sense, the criterion was asymmetric in the roles played
by A and A°. Suppose instead we allow mistakes on any set of measure zero (i.e., in
either A and/or A°). In this section, we consider such a symmetric decision criterion
and show that in this case the test can be accomplished for any (measurable) A. The
essential approach is based on the Lebesgue density theorem, but much of the details
of the parsing and large deviations bounds are the same as those in Section 8.2.

Let A be a measurable set. The Lebesgue density of A at a point z is defined as

m(AN B.(x))
m(B,(x))

Dy(z)= ling.)

when the limit exists. Below we state the Lebesgue density theorem which is a

classical result from measure theory.

Theorem 8.3 (Lebsgue Density Theorem) For any measurable set A, D 4(z) ex-
ists and equals 1 ifc € A and 0 if x ¢ A except for a set of Lebesgue measure 0.
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Proof: See [41], p.14.
a

We will construct a decision procedure for the symmetric criterion based on this
theorem. The essential idea is that, based on convergence of the empirical mean
obtained from the observation sequence, we can compute an approximation to the
Lebesgue density of A at the true mean. Aslong as our approximation to the Lebesgue
density of A at ji converges, by the Lebesgue density theorem we can make a correct
decision as to whether or not fi € A except on a set of measure zero.

Specifically, the decision procedure is as follows. Let é, be any positive sequence

with &, — 0. As before parse the input sequence 1,3, ... into the subsequences

Xn-L—(:lfg(,l_l), ey :vﬁ(n)—l)

where the parsing sequence 3(n) will be defined below (and depends on the choice
of §,,). At the end of each parsing compute the ‘relative measure’ of A in an interval

fin — On, fin + &,) around the empirical mean f,, of the n-th subinterval. l.e., compute
i i i p

, 2 m(AN By, (fn)
n=— 26”

where B, () is the open ball of radius r centered at z, fin is the empirical mean of
the sequence X™, and m(-) denotes Lebesgue measure. Decide i € A if d, > 1/2 and
decide i ¢ A otherwise.

Since 8, — 0, we have that D4 (i) = limu_eo m(A N By, (@))/m(Bs, (). Since
we decide i € A iff d, > 1/2, we will eventually stop making incorrect decisions as
long as there exists N such that for n > N |d, — m(A N By, (f))/m(Bs. ()| < 1/4.
But, we have |m(AN Bs,(fin)) — m(AN B, (i))| < |fin — @, so that if |fin — ft| < 8,/2
then we will make a correct decision.

Now, we can find an appropriate parsing sequence ((n) using large deviations

techniques as before. Specifically, we can find F(n) such that
P(|ftn — 1| > 64/2) < 1/n’

For example, let

inf inf H(vn)
{mEn=p} {V:EUE-B_ﬁfk ()<}

L(i) =
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and let I, = inf; I,(). For n and v such that En = i and |Ev — ji| > §,,/2 we have
H(nlv) > 3lIn = vllvar > d(f, Bey (2)°)" = 67/4, and so I, > 8%/4. As before let

log2 + 2logn
a(n)ng—g

Finally, let (again as beforé)

We can show the following result.

Theorem 8.4 For any measurable A, there is a set Ny of Lebesque measure zero
such that for any measure p with ji ¢ Ny the decision procedure a.s. makes only a

finite number of mistakes in deciding whether or not i € A.

Proof: Let Ny be the set on which D4(z) is not equal to the characteristic function

of A at . By the Lebesgue density theorem, Ny has measure zero. Now for it ¢ N,

o0 - e o)
Z Prob. error in n-th parsing < N + Z Prob. error in n-th parsing
n=1 n=N+1

. = N -
< N+ Y Plo-al> D)
n=N+1

= 1
< N+ Z — <0
n=N+1 n
Hence, the theorem follows by the Borel-Cantelli lemma and the fact that making an
error infinitely often is equivalent to making an error at the parsing intervals infinitely

often.

a

Remarks:

1) As before this should be extendible to a countable hypothesis test. In this case,
we expect that the test could be accomplished for an arbitrary (measurable)

partition except on some set of measure zero.

2) Perhaps the results of Sections 8.2 and 8.3 on making no errors inside A can be
obtained by computing the Lebesgue density of blow ups of the A4,’s that were

used in those sections.
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3) It may be possible to extend the results by requiring the set on which mistakes
are made to be of measure zero with respect some measure other than Lebesgue
measure. Essentially the same argument should go through as long as a density

theorem analogous to the Lebesgue density theorem holds.

8.5 Discussion and Open Problems

We provided a sufficient condition under which the mean of an unknown random
variable can be determined a.s. to belong to a set A or its complement. Our criterion
extends previous results [28, 66] on this problem. It would be interesting to obtain a
better understanding of the structural assumption required for our decision procedure.
We provided a result which under certain conditions relates the structural assumption
to the notion of first category, but other equivalent characterizations of sets which
satisfy the assumption are lacking.

There are several directions that may be worthwhile to pursue further. First, a
natural generalization is to consider splitting the set of probability measures on [0, 1]
into two classes (not necessarily according to the means of the distributions), and
attempting to decide which class the unknown measure belongs. This is pursued in
Chapter 9. Another interesting direction would be to obtain necessary conditions
under which a test satisfying the same criteria could be performed. Dembo and Peres
[31] have some recent results along these lines. A perhaps difficult direction would
be to study optimal rates for the decision procedure, e.g., in terms of the decay rate
of the probability of an incorrect decision. A generalization which should not be too
difficult would be to require the set NV on which failure is allowed to be of measure zero
with respect to some different measure. That is, we considered the case in which IV
is required to be of Lebesgue measure zero. Instead, one could consider an arbitrary
probability measure on the interval [0,1] and require N to have probability zero.
We feel that there are connections between the “learning model” presented in this
chapter and other more standard learning models, such as the PAC model discussed
in previous chapters and identification in the limit [47]. A somewhat vague, but

perhaps extremely interesting, direction would be to develop such connections.



Chapter 9

A General Classification Rule for

Probability Measures

9.1 Introduction

Let x;,...,z, beii.d. samples drawn from some distribution . We assume z; takes
values in some compact Polish space T, which for concreteness should be thought of
as [0,1]¢ C R Let M;(X) denote the space of probability measures on &. We put
on M;(X) the Prohorov metric, whose topology is equivalent to the weak topology.

We consider here the following problems:

P-1) Based on the sequence of observations (z1,z5,...), decide whether y € 4 or
i € A, where A is some given set satisfying certain structural properties (c.f.

A-1 below).

P-2) Based on the sequence of observations (1, Z,...), decide whether 4 € A; where
all A; C My(Z), 1 = 1,2,... are sets satisfying structural properties (c.f. A-1
below).

Relaxations of the basic assumption concerning the i.i.d. structure of the obser-
vations ¢, 3,... are presented in Sections 9.3 and 9.4.

Since M;(Z) is a Polish space, there exist on M;(X) many finite measures which
we may assume to be normalized to have a total mass 1. Suppose one is given a
particular measure, denoted GG, on M;(X¥). We assume that G charges all open sets
in My(X), i.e. for any open set &, G(®) > 0. G will play the role of the Lebesgue
measure in the following structural condition, which is reminiscent of the assumption
in [71}):

131
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A-1) There exists a sequence of open sets Ui, and closed sets B,,, and a sequence of

positive constants e(m) such that:

1) Y € A Imo(p) < 00 s.t. Ym > mo(p), t € Br.
2) d(Bn,Cg) = V2€(1n) > 0.

3) G(NFL1 Ur=n(Cm\4)) = 0.

The underlying idea here is the same as that in Chapter 8. A-1) is an embellish-
ment of the structural assumption in Chapter 8, which corresponds to the case where
B,, is a monotone sequence and C,, are taken as the 2 2¢(m) blow up of B,,. This
form of A-1) was proposed to us by A. Dembo and Y. Peres. We note that as in
Chapter 8, the assumption is immediately satisfied for countable sets A by taking as
B,, the union of the first m components of A and noting that, for a finite measure on
a metric space, G(B(z,6)\{r}) —s—0 0 where B(z,§) denotes the open ball of radius
& around z. More generally, A-1) is satisfied for any closed set by taking B, = A and
using for C,, a sequence of open sets which include A whose measure converges to the
outer measure of A. Since C,, is open and X is compact, it follows that d(4,C5,) > 0,
and A-1) is satisfied. By the same considerations, it also follows that A-1) is satisfied

for any countable union of closed sets.

9.2 Classification in A versus A€

The definition of success of the decision rule will be similar to the one used in [71].
Namely, a test which makes at each instant n a decision whether y € A or p € A°
based on 1,2, ... will be called successful if:
(S)Vu €A, as. w,3T(w) st. Vn>T(w), thedecisionis ‘A’
(S.2) IN C My(Z) s.t.
(S21)G(N)=0
(5.22)Vpu € A°\N, as. w, 3T(w) st. Vn> T(w), the decisionis ‘A°.
Note that the outcome is unspecified on N. Note also that the definition is
asymmetric in the roles played by A, A in the sense that errors in A are not allowed
at all.

Let p, = % Z 6, where &, is the probability measure concentrated at z;. We
=1
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recall that y, satisfies a large deviation principle, i.e.

1
—1 g < 1 1 —co n
;2£ H(#lx) < liminf, - log P(pn € A)
1 .
< lim SUPp o lOg P(I‘l’ﬂ € A)
n

—012{0 H(0|n) (9.1)

(N

where A(A°) denotes the closure (interior) of a set A C M;(X) in the weak topology,

respectively, and

40
dflog = if df << d -
H(Olp) = { /z: 8 gp NS (9.2)

00 otherwise

Before turning to a description of the proposed decision rule, we will need a
strengthened version of the upper bound in Sanov’s theorem (9.1). To do that, we

use the notion of metric entropy. Although metric entropy was defined in Chapter 5,

for convenience we repeat here the definition for the specific case at hand.
Definition Let ¢ > 0 be given. The metric entropy of a set B C M;(Z), denoted
N(e, B), is defined by

N(e,B) 2 inf {n|3y1,...,yn € Mi(Z) st. BCUT Bl o)} (9.3)

where B(y, €) denotes a ball of radius € (in the Prohorov metric) around y.

Similarly, for any given ¢, denote by N¥(e) the metric entropy of ¥, i.e.
NZ(e) £ inf {n|3%,..., 9. €L s.t. T C U} B(%,€)} (9.4)

where B(7;,¢) are taken in the metric corresponding to Z.

We claim now:

Lemma 9.1

T €
NeMyzy <2 (E)T e

€

N(e, My(T)) (9.5)

Proof: In order to prove the lemma, we will explicitly construct an e-cover of M;(X)
with N(e, M;(Z)) elements.
Let §1,...,9nz() be the centers of a set of € balls in & which create the cover
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NZE(e) in (9.4). Let &; 2 65, 1.e. the distribution concentrated at §;, and let

o € . NZ(e)

k
Define Y 2 {y € My(D): 3 (i, 51) - ik Jk) sty = D ,uf:} Note that V is a

a=1

finite set, for it includes at most (N—i(f)— + I)NB(G) members. Also, note that Y is an

e-cover of M;(X), i.e. for any y € M;(X) there exists a y € Y such that for any open

set (' C X, p(C) < y(C¢) + €. To see that, choose as y the following approximation
to

Let i, = a, a =1,...,N%(e) — 1, and choose jo = |t(B(Fas€)\ (U;:;ll B(ﬁk,e))J,

where by | x| we mean the closest approximation to x on the N—i(ﬁ j-net from below.

A NZ(e)-1 NZ(e) ]
Finally, let jyz = 1 — Z Jo- Take now y = Z pis. It follows that y is a

a=1 a=1

probability measure based on a finite number of atoins and, furthermore, d(y, 1) < e.

We need therefore only to estimate the cardinality of the set Y, denoted |Y|. Note
NZE(e)
that |Y| is just the number of vectors (ji,...,jns()) such that >  j = 1 and
=1
Ji € {Oaﬁe)’ﬁi)a"',l}'
It follows that

. T, NE(e) p1 T3 T2
l}' < (N—€L2+1) /(; ‘/0‘ /; dml...dlth(e)

NZEZ(e (9‘6)
(Niw + 1) “. NE‘I(C“)!
However, by Stirling’s formula
log (N=(e)!) > NZ(e)log NZ(e) — N%(¢) (9.7)

Substituting (9.7) into (9.6), one has

Nz(e) NE(E) - 1
V| < ( + 1) N (9.8)
€ (N=(e))"
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which implies that

N(€7M1(E)) < (% I(I]Q(:Néfzj)) z ;NE(E) -
= (5) 7 (L mm) Ts2(f) 7 = NeMi(D)

O

For completeness, we now prove a lower bound for the metric entropy of M;(X)
with respect to the Prohorov metric. This lower bound exhibits a behavior similar
to the upper bound of (9.5), so that these bounds cannot be much improved. In the
proof below, M(¢,Y,d) denotes the e-capacity (or packing number) of the space V'
with respect to the metric d. That is, M(¢, Y, d) represents the maximum number of
non-overlapping balls of diameter ¢ with respect to the metric d that can be packed

in Y. The well known relationship
N(2¢,Y,d) < M(2¢,Y,d) < N(e,Y,d)

between covering numbers and packing numbers is easy to show and is used in the

proof below.

Lemma 9.2 Let ¥ be compact Polish space with metric d, and let M*(X) denote the

set of probability measures on X with the Prohorov metric p. Then
N(e, MY(B),p) 2 (5 LN eze)
8e

Proof: First, we can find N = N(¢, X, d) points z;,..., &y which are pairwise greater
than or equal to € apart. Each measure supported on these NV points corresponds to a
point in RY in the natural way. Then, the set of all probability measures supported
on y,...,ry corresponds to the simplex SV in RV.

Now, let p, ¢ be points on the simplex S¥ and suppose that d, (p,q) > 2¢. Then on
some subset G C {1,..., N} of coordinates either Y ;copi < Yice @i+ €0 Ticapi <
Yice ¢ + €. Then, considered as probability measures on X, p(p, q) > € since there is
a closed set F' C I, namely F = {z; |{ € G}, for which either p(F) > ¢q(F*) + € or
g(F) > p(F*) + €. Hence,

(G/ZM ),p)>]"[€M(\_‘),p)>]‘f( d11)>N(2€5 du)

Finally, to get a lower bound on N(2¢,S",d. ), we note that the volume of the
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simplex SV is 1/N! while the volume of an ¢! ball of radius 2e is (4¢)" /N! which
implies N(2¢,SN,dpn) > (1/4€)N. Thus, N(e/2, M} (Z),p) > (1/4€)V (24 or equiva-
lently N(e, MY(Z),p) > (1/8¢)N(2eEd),

O

The existence of the bound N permits us to mimic the computation in [71] for
the case in hand. Indeed, a crucial step needed in [71] was bounding the probability

of complements of balls, for all n, uniformly over all measures, as follows:

Theorem 9.1

6

Pl < Bl 57) < ¥ (5,10 8

Proof: The proof follows the standard Chebycheff bound technique, without taking

n limits as in the large deviation framework. Indeed,

_ (6 ]
Pl € B(18)) < N (506(9) - sup  Plun € Blun5)
: YEM; (I),d(y,u) 26 <

Let P, denote the law of the random variable y,,. The second term can be bounded
as follows. By the Chebycheff bound, it follows that for any 6 € C,(X),

)
sup P(u. € B(y, 5))
yEM(T),d(y,u)>6
< sup / e"<Ov>en<b>gp (v)
yEM; (S).d(y,u)>8 I By, 5)
. 1 ‘

< exp (—n sup inf (< 8,v> —=log Ep,(e"<"> ))

GGC[,(E) UeB(yvzﬁ)ld(yvl-")Zé n

. 1
= exp (—n inf sup (< 8,v > —=log Ep (e"<> ))
UGB(y.%),d(y,u)Zé OGGb(E) n

= exp( n inf H(V|;L))

veB(y,),d(y.e)>6
< exp(—n. inf H(V|ﬂ))
veB(m§)
-

n (

aalon

) (9.9)

<

where the first equality in (9.9) follows from the min-max theorem for convex compact
sets (c.f. {39]), the second equality follows by ([32], Lemma 3.2.13), and the last
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inequality from the fact that ([32], Exercise 3.2.24) for any 6 € B(u,6/2)°,

< d(0,p1) <118 = plloar < 2H?(B]10)

[N

Corollary 9.1 Let B, C M;(Z) be a measurable set such that p € B,,. Let BE
denote an open set such that d( By, (BE)) > §. Then

P, (un € (BLY) <N (g,Ml(E)) (%)’ (9.10)

We can turn now to the proposed classification algorithm, much as in [71]. Define

4
e(m)

and note that, for all m > mg(pu),

[2logm+log2+NE( 6—'") (l—log %")] (9.11)

a(m) = 5

Pullaim € 05) < — (9.12)
Let o
Bm) = 3 ali), 4(0) = 0. (9.13)

For any input sequence @1, 2, ..., form the subsequences

X™E(Tg(m-1)"" "> Th(m)=1)-

The endpoints of these subsequences X™ form a parsing of the original sequence
®1,T3,.... Let uxm denote the empirical measure of the sequence X™. At the end of
each parsing, make a decision of whether yr € A according to whether fiy.. € C,, or
not. Between parsings, don’t change the decision.

We now claim:
Theorem 9.2 The decision rule defined by the parsing 3(m) as above is successful.

Proof: The proof is identical to the proof of Theorem 8.1 in Chapter 8 (or Theorem
1in [71]).
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9.3 Classification Among a Countable Number of
Sets

In this section, we refine the decision rule to allow for classification among a countable
number of sets. Specifically, if Ay, A3, ... are a countable number of subsets of M)
we are interested in deciding to which of the 4; the unknown measure p belongs. The
only assumption we make on the 4; is that each A; satisfies the structural assumption
(A-1). The A; are not required to be either disjoint or nested, although these special
cases are most commonly of interest in applications. In general, after a finite number
of observations one cannot expect to determine the membership status of g in all of the
A;. However, we will show that for all ; except in a set of G-measure zero in M!(X)
there is a decision procedure that a.s. will eventually determine the membership
of ¢ in any finite subset of the A;. In the special cases of disjoint or nested A;,
the membership status of y in any of the countable A; is completely determined by
membership in some finite subset. Hence, in these cases, except for & in a set of
(G-measure zero the membership of x in all the A; will a.s. be eventually determined.

We modify our previous decision rule as follows. The observations x;, ®,,... will
still be parsed into increasingly larger blocks in a manner to be defined below. How-
ever, now, at the end of the m-th block, we will make a decision as to the membership
of s in the first m of the A;. The decisions of whether p belongs to A4,,...,4,, are
made separately for each A; using a procedure similar to that of the previous section.

Specifically, for each A; let B;,, be a sequence of closed sets, C;,, a sequence of
open sets and €;,(m) —m_e 0 a positive sequence satisfying the requirements of the

structural assumption (A-1). From the same considerations that led to (9.12), for

ai(m) = ei(‘fn) 2log m + log 2 + N= (\/e,-(m)/Z) (1 — log 1/6,‘(’!77,)/2)] (9.14)

we have
Pulbaiom € Cm) € —5 (9.15)
As before, the observation sequence zy,z;,... will be parsed into non-overlapping
blocks
X™ = (Tam-1)415 -+ Ta(m)) (9.16)

where the 3(m) are defined below. At the end of the m-th block, a decision will

be made about the membership of ¢ in A4y,...,A,,. This decision will be made
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separately for each i = 1,...,m using the observation sequence X™ exactly as before.
That is, at the end of the parsing sequence X™, for i = 1,...,m decide that u € A;
according to whether or not pxm € C;,n, and don’t change the decision except at the

end of a parsing sequence. We define the parsing sequence (m) by 4(0) = 0 and
B(m) — B(m — 1) = sup, ,,, @i(m) or equivalently

m

B(m) = sup a;(k), B(0)=0 (9.17)

k=1 195"

For this decision rule we have the following theorem.

Theorem 9.3 Let A; C MYE) fori=1,2,... satisfy the structural assumption (A-
1). There is a set N C M1(Z) of G-measure zero such that for every p € M¥(Z)\ N
and every k < oo the decision rule will make (a.s.) only a finite number of mistakes
in deciding the membership of p in Aq,..., Ar. That is, given any ¢ € MY (Z)\ N,
for a.e. w there exists m(w) = m(w, i, k) such that for all m > m(w) the algorithm

‘makes a correct decision as to whether p € A; or p € AS fori=1,... k.

Proof: Let

No=[ U Cim \ 4 (9.18)

n=1m=n

and let -
N = U N; (9.19)

=1

Then from the assumption (A-1) it follows that the G-measure of each N; is zero, and
so the G-measure of IV is also zero.

Now, let u € MYZ)\ N, and let £ < oo. For each 1 = 1,...,k, there exists
m; < oo such that if u € A; then p € S, for all m > m,;, while if & € AS then
p € Cf,, for all m > m; (since u ¢ N;). Recall that at the end of the parsing
sequence X ™, the algorithm decides i € A; iff pexm € C; ., so that if i € A; then an
error is made about membership in A; iff yxm ¢ C;,, while if u ¢ A; an error is made
ff pxm € Cijm. If p € A; then using Corollary 9.1 and the fact that d(B; ., (5, )* >
2¢;(m), we have that the probability of making an incorrect decision is less than 1/m?
for m > mi(x). On the other hand, if u € A¢ then since B;,, C ((C'f‘m)\/"‘m)c we
also have probability of error less than 1/m? for m > m} (again using Corollary 9.1
and the expression for a(m)). Hence, for m > mo = max(mi,...,m¥) the probability

of making an error about the membership of  in any of A;,..., Ay is less than k/m?.
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Then

oo [ o] 1
> Prob{error in any A; on m—th parsing} < mo + k > — < oo

m=1 m=mg+1 m

so that the theorem follows by the Borel-Cantelli Lemma.
a

Note that if one also wants to make a correct decision after some finite time
whether or not u is in dny of the A; for i = 1,2,... then the decision procedure can
be easily modified to handle this. Specifically, it is easy to show that sets safisfying
the structural assumption are closed under countable union. Hence, one could include
in the hypothesis testing the set Ag = U, A;, so that after some finite time a correct
decision would be made about the membership of u € A,.

Also, it is worthwhile to note that if the A; have more structure then some im-
provements can be made. For example, if the membership status of pu in A; for
1 = 1,2,...1s determined by its membership status in some finite number of the A,
then a correct decision regarding the membership of  in all of the 4; can be guar-
anteed (a.s.) after some finite time (depending on y). This is the case for disjoint or
nested A;, which may be of particular interest in some applications. For these cases,
by letting Ap = U2, A; and running the decision rule on Ag, Ay, Ay, ... as mentioned

above, we have the following corollary of Theorem 9.3.

Corollary 9.2 Let A, C MY(Z) for i = 1,2,... satisfy the structural assumption
(A-1) and suppose the A; are either disjoint or nested. There is a set N C M;(X)
of G-measure zero such that for every p € M*(X)\ N the decision rule will make
(a.5.) only a finite number of mistakes in deciding the membership of p in all of the
A;. That is, given any p € MY (T)\ N, for a.e. w there ezists m(w) = m(w, p) such
that for all m > m(w) the algorithm makes a correct decision as to whether p € A,

foralli=1,2,....

It is worthwhile to note that the results of this section may be used also in the case
that ¥ is locally compact but not compact. In that case, one may first intersect the
A; with compact sets K,,, which sequentially approximate £ and then use m(n) — oo.
We do not consider this issue here.

We conclude this section with an example from the area of density estimation. Let

¥ = [0,1] and assume that zy,...,x, are i.i.d. and drawn from a distribution with
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law pg, § € ©. When some structure is given on the set F = Upco 14, there exists
a large body of literature which enables one to obtain estimates of the error after n
observations (e.g, see [33, 34, 50] and references contained therein). All these results
assume an a-priori structure, e.g. a bound on the L? norm of the density fp = %. If
such information is not given a-priori, it may be helpful to design a test to check for
this information and thus to be able to estimate eventually whether the distribution
belongs to a nice set and if so to apply the error estimates alluded to above.
Thus, let

A= {we mum): [[(BEe <y

Note that the sets A; are closed w.r.t. the Prohorov metric and therefore they satisfy
the structural assumption A-1). Moreover, they are nested and thus Corollary 9.2
may be applied to yield a decision rule which will asymptotically decide correctly on
the appropriate class of densities. This idea is in the spirit of a suggestion by Cover
[27], and the case where the A4; consist of single points (i.e., each A; contains a single
probability measure) is related to a model considered by Barron and Cover [12, 13].

It would be interesting to make a more formal comparison between the two models.

9.4 Applications to Order Determination of Markov

Processes

In this section, we extend the model of the observations to allow for a Markov depen-
dence in the observation. Specifically, let & be a compact Polish space as before, but
assume that the observations zi,...,, are the outcome of a Markov chain of order

J, Le.
Prob(zx € AlTi_1,Tk_2y...,T1) = *rrj(:c;c € Alze_1,Tk_2,+- - Th—j)

where A is a Borel measurable subset of & and k > j. We assume that j is unknown,
“and our task is to decide (correctly) on the order j. In order to avoid technicalities, we
assume that all Markov chains involved are ergodic and satisfy a uniformity condition
w.r.t. the initial conditions (c.f below), and therefore there exists a stationary measure

P,; € M{(Z7) such that for any measurable set A in I/,
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P,rj(A) = / d7l'j(1‘-2_,'|:l'-2_.,'_1,...,:tj)

{:Ezj,:rzj_l ..... IJ+1}EA
et d1r-’(:cj+1|:cj, .. .,:Bl)dP.,j(Z:j, ey 1‘-1) (920)

This pfoblem has already been considered in the literature. For a discussion of
available results we refer the reader to [83],[52]. Most of the results in the liter-
ature are either for the discrete alpha-bet setup or for the case of a linear model
Ttk = b1 @iTpti + €nyk, Where €, is a white sequence and a; are deterministic,
unknown constants. Here, we consider the general setup and show how a strongly
consistent decision rule may be constructed based on the general paradigm of this
paper. Towards this end, we need to extend the basic estimates of Section 2 to the
Markov case, as follows:

Let = 2%, define z; to be the coordinate map z;(w) = w;, and let the shift
operator be defined by zi(Tw) = zip1(w). Define the k-th order empirical measure
on M;(Z*) by

N,’: = % Z 5z,(T"w),z,(Tiw)....,zk(Tiu)
i=1
As before, we endow M;(Z*) with the Prohorov topology, and recall that under
the structural assumptions on the Markov chain described above, a large deviations
principle holds for the empirical measure ui*', viz. for any set A C M, (Z7*1) alarge
deviations statement of the form (9.1) holds, with the relative entropy H(v|u) being
replaced by

dO(y;41ly;s-- -
/ dB(y1,...,Yj41)log (Y4115 )
¥ dp(yi+0) Y5y -+ 91)

if do('lyja s vyl) << d“‘('lyja R ayl)
00 otherwise

H, (8]1) = (9.21)

For any measﬁre (1, .., Tx) € M;(ZF), denote by p; the marginal defined by

pil{zy, .. x:} € A) 2 p({zy, ...z} € A {mign, .. z} € TF7)

.....

measure ft;_k ® fli—(k=1)li—k...1 @ *** ® fiji-1,..,2 € M;(Z?) as the measure which, for
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any measurable set A C ¥?,

ik ® ﬁl'z:—(k—l)|i-k,...,1 ® -+ @ pifi-1,..2(A) =
/A dpik(T1, oo Timk)dhi (k1) iz 1(Tiz (k=1) | Ticks - - -, T1)
. dﬂi|i—1,...,z(mi|wi—1, ey :132) (9.22)

Let 7/ be a given j-th order Markov kernel, P,; its corresponding stationary measure,
and denote by Pr™ the stationary measure on () generated by this kernel. Assume
that the empirical measures pi*t*, k = 2,3,... are formed from a Markov sequence
generated by this kernel. In order to compufe explicitly the sequence of decision rules

as in the i.i.d. case, we need to derive the analog of Theorem 9.1 given below.

Theorem 9.4 .

1rJ [ J+k éB(( J+2)j®1rj®---®7rj,6))]

<N (g,Ml(EH")) e 4 N (— Ml(zf“)) e "(zEET)’

K

M (\'13+k)) == Dk

Proof: We prove the theorem first for the case k = 2. The general case follows by

induction.
(¥ ¢ B (1), @ 7! @ 7 6))]
< Pro [d(uit?, (1), @ 77 ® w’) > 6, (1)1, (13F); ® 77) < 8/4]
[d LJ+2)J+1,(#J+2) ® 7‘..1') > 6/4]
2 p 4P (9.23)

By repeating the argument in (9.9),

P] ] 6
_ < su Plii*? € B(y, =), (pi? € B(P,; ®?,-),
N (%,MI(E'H-Z)) UEMl(IE)’“) [’ ( ) ( )J+1 ( 4)

d(t?); @n @n’,y) > 6] (9.24)

Therefore, by the Chebycheff bound, denoting by P, the law of the random variable
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pi*?, it follows that for any 0 € Cy(T7+2),

Py

V ' 9.25
N (g,Ml(E.HZ)) (9.25)
< sup f en<Ow> —n<bu>
B yEM, (Ei+2) JB(v,)
L), 01 B ),0m1.5/4) e B (), 1 0ms 5)) AP (1)
[- -
; 1
<exp|—n sup inf (< f,v > —=log Epn(en<0,u> ))
6€Cy(2112) veB(v.§) (| B(v;@ni,§) n
- d(y,v; @i @ni) >4 ]
[- -
. _ .
<exp|-n inf sup (< 6,v > ——log Ep, (e"<%v> ))
peB(v.-f;)ﬂB(v] @ni,g,) 6eCy(Ti+2) n
L d(y,v; @mI@ni)>6 ]
However,
1 n<@,v>
sup (< f,v > ——log Ep, (e"<"*>)
n

§€Cy(Ti+2)

1 v
sup (< f,v>—=log E(eo(m‘""""+’)+"'+9(I“"'"""’“”‘))) (9.26)

6ECy(Di+2) n

sup (< 6,v > —llog E(ea(“"""’m"“”"'”(m““""""'z")))
6cB(Li+2) n

where B(Z7+2) denotes the space of bounded measurable functions on 39+2 and the
last equality follows from dominated convergence. We assume now that v is absolute-
ly continuous w.r.t. v;;; ® 77 and that the resulting Radon-Nikodym derivative is
uniformly bounded from above and below (these assumptions may be relaxed exactly
as in [32], pg. 69). In this case, we may take log § in (9.26) as this Radon-Nikodym
dv

T to obtain:

derivative, i.e. f(zy,...,2;42) = log ;

(< 0,v> —l log E(e"(mxv---@j+2_)+-"+0($n—;‘—1----'Eu)))
n

sup
9cB(Ti+2)
. 1
> H(v|lvjpr @ 77) — —log dv(za|Taoy, ... yTnoj_1)
n Tit+2
s dv(Tig|Tipa, . T )di (R, @)

= H(v|vjp ® n7) (9.27)
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Substituting (9.27) in (9.25) and recalling the inequality
2H/2(0)y0) > d(8, )

one obtains

Py
—7 ,
N (£, Ma(B+2))
<exp|—n inf H(v|vjp ® ™)
vEB(y.%)ﬂB((u{."’z)j@nj,{.)
d(y,(1h*?); @mi@n) 26
<exp|-n inf d(v,vjp @ m)2/4
veB(v.$) ) B(sit?) 877, 4)

d(y,(uit?);@mi@ni)>s

< exp[—n inf
veB(v.§) [ Bluit?) e )
d(,(uh*?); @I @mi)>6

(1d(v, (15*2); @ 79 ® 79) — d(vjar ® 70, (ki) @ 79 @ 77)] V 0)” /4]

< exp (~n (&/16)?) (9.28)
Similarly,
P, 2
N (&, My(25+1)) < ew (-n (5/527) (9.29)

Substituting (9.28), and (9.29) in (9.23) yields the theorem for k = 2. The general

case is similar and follows by induction.

O

We are now ready to return to the order determination problem described in the
beginning of this section. Since the set up here differs slightly from the one described
in the previous section, we repeat here the main definitions. ‘

Let A; C M;(2), ¢« = 0,1,..., be the set of stationary measures generated by
Markov chains of order 7 (with ¢ = 0 denoting the i.i.d. case), i.e. forz =0,1,2,...,

p € A = (1)isk = (1):i®7'®---@n" for some Markov kernel 7 and for all & =1,2,....

Note that the sets A; are closed.
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A natural candidate for covering sets ;. are §,. blow ups of the 4,. That is,
define

Cim={ve My(ZHm) Av,(v);®r' ® .- m') < 6, for some Markov kernel n'}

It is clear that Cim is open, and also that

ﬁ G (Ci,m\Ai) = 0.

n=1m=n

Therefore, by using Theorem 9.4 and the procedure described in Theorem 9.3, the
sets ;. are candidates for building a decision rule which, a.s., decides correctly in
finite time whether the given observation sequence was generated by a Markov chain
of order 7. In order to be able to do so, we need only to check that the complements of
the sets C;,,., which are closed, have the property that they may be covered by small
enough spheres (say, 6m/4 spheres), such that the union of those spheres belongs to

the complement of some Cim- This can be seen by using the following lemma:
Lemma 9.3 Let v,/ ¢ M (Z*). Assume that for some =+,
Av,(v); @' ®---@7) > 6.
Further assume that d(v,v') < 6,,/4. Then
A (V)@ @ @n) > 8m/2.

Proof: Note that d(v,v') < 6,n/4 implies that d((v)i, (v');) < 6,m/4 and that d((v)isq,
(v')i+1) < 6m/4. On the other hand, since 7 is a Markov kernel, it also follows that
d(v); ® n*, (v'); ® ) < /4 and therefore also that d((v), @ ' ® ... ® ™ (V) ®
T® Q1) < 6m/4. Hence,

d(V'a(V')z'@ﬂ‘i@---@ﬂ'i) > d(Vy(V)i®7r;®-..®Wi)—d(l/,u’)
—d((u)i®7|'i®"'®7ri,(u')i®1ri®...®,ri)
> bm/2

O

We have now completed all the preparatory steps required for the definition of the
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proposed decision rule. Indeed, let €;(mn) be a sequence of positive numbers, define

a;(m) = Z:i(('"n:;) [2 log m + log k + N (W) (1 —log \/Wﬂ
(9.30)

we have, by Lemma 9.3 and Theorem 9.4, that for any Markov measure u € A;,

i+m c 1
Pﬁl("’at(m) € Ci,m) < m (931)

The construction of the decision rule is then identical to the one described in Theorem
9.3, i.e. one forms the parsing of the observation sequence into the nonoverlapping
blocks X™ described in equation (9.16) with 3(m) chosen as in (9.17). At each step,
one forms, based on the block X™, the empirical measures of order m,m +1,...,2m.
The order estimate at the m-th step is now the smallest 7 such that p?:(rfn) € Cim- By
the results of section 3, this decision rule achieves a.s. only a finite number of errors,

regardless of the true order.

9.5 Discussion and Open Problems

In this chapter, we considered the problem of deciding whether an unknown proba-
bility measure belongs to one of several sets based on a set of random samples from
the unknown measure. These results represent a substantial generalization of the
results of Chapter 8 and those of [28, 66]. We briefly discussed an application of our
resulls to the problem of density estimation. It seems that much more work could
be done along these lines. In Section 9.4, we discussed an application/extension of
our ideas to the problem of order determination of a Markov chain. This application
consisted of partitioning the class of Markov measures into a countable number of
sets according to the order of each Markov measure. One could consider the problem
of partitioning the set of Markov measures in a more general manner and trying to
decide to which set of the partition an unknown measure belongs. This would be a
direct generalization of the results of Sections 9.2 and 9.3 to the Markov case.

In Chapter 8, we considered a symmetric decision criteria for the problem of decid-
ing the mean. One could consider a similar criteria for the more general formulation
of the present chapter. For a proof analogous to that presented in Section 8.4 to go
through, one would need a result like the Lebesgue density theorem holding in spaces

much more general than R™ (specifically, M;(X)). In Section 8.5, we discussed sev-
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eral possible new directions to pursue for the problem of deciding the mean. Most
of these directions suggest analogous problem to pursue for the much more general
framework of the present chapter. In particular, it may be interesting to consider
conditions necessary to perform the classification (see [31]), rates of convergence, and

connections to other more standard learning models.



Chapter 10

Summary and Other Directions

In this chapter, we first summarize our results, and then discuss several other general
directions that may be interesting to pursue. Each section deals with a different
topic, although there are certainly some interrelations between the various topics.
Furthermore, the topics differ substantially in the degree to which they are well

defined, their scope, their expected difficulty, and their fundamental importance.

10.1 Summary

We studied a variety of problems in the areas of machine vision and machine learning.
The first part of the thesis dealt with computational problems in machine vision.
The second part of the thesis dealt with extensions of learning models with a view
towards extending the domain of applicability of learning results to areas such as
signal processing and machine vision.

We began by considering relationships between variational methods and discrete
Markov random field formulations for the problem of iinage restoration and segmenta-
tion. Previous discrete versions of the segmentation problem fail to properly approx-
imate the continuous formulation. We studied a number of properties of Minkowski
content and used these to obtain a discrete formulation which correctly approximates
the continuous segmentation problem. We then considered two other discrete versions
for which the convergence proofs were considerably easier and which may result in
more efficient implementations.

The results for the segmentation problem led us to consider a question concerning
the computation of the length of a digitized contour. Specifically, we considered a

parallel computation with a processor at each pixel of the digitized image. Notions
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of local and non-local computations were considered, based on definitions of Minsky
and Papert in their study of perceptrons. It was shown that for the usual rectangular
digitization, length cannot be computed locally. On the other hand, we showed that
for a random tesselation and an appropriate deterministic one, the length of straight
line segments can be computed locally.

Another problem in vision that we studied concerns the complexity of model based
recognition. Recently, model based approaches to object recognition have been a
subject of considerable interest. We showed that certain forimnulations of model based
recognition are NP-complete, so that efficient algorithins for these formulations are
not likely to exist. The results are helpful in suggesting approaches that may lead to
formulations with efficient algorithms.

Next, we considered a variety of extensions to the PAC model in machine learn-
ing. We began by showing some new relationships between metric entropy and the
Vapnik-Chervonenkis (VC) dimension. We then considered the problem of learning
over a class of distributions, and for certain special classes, we characterized when
such learning can take place. The results provide some information on when prior
knowledge regarding the distribution increases learnability.

Another extension of the PAC model that we considered involves active learning
using arbitrary binary valued queries. A number of researchers have considered the
use of various oracles and their effect on learnability. Our results provide bounds on
the maximum gain that can be expected from using finite valued oracles. Surprisingly,
asking arbitrary yes/no questions does not increase the set of learnable concept classes
in either the fixed distribution or distribution-free settings, but as expected it can
reduce the sample complexity.

A third extension of the PAC model that we considered involves learning from
generalized samples. In the usual PAC model, the data received by the learner consists
of values of the unknown concept at random points. We considered a model in which
the information received by the learner can consist of general operators applied to the
unknown concept. It appears that this model can be applied to a number of problems
in geometric reconstruction, stereology, and signal processing to provide sample size
bounds under a PAC criterion. We studied a particular application of the model to a
problem of reconstructing a curve by counting intersections with straight lines. Our
results our closely related to and, in a sense, refine a classical result from stochastic
geometry.

Finally, we considered a problem concerning the classification of an unknown
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probability measure from empirical data. Suppose we observe i.i.d. samples from an
unknown distribution and wish to decide to which of a countable number of classes
the unknown distribution belongs. The criteria for success is a type of almost sure
class identification in the limit. Using large deviations techniques, we simplified and
extended previous results in the case of classifying the mean. We also studied the
much more general case of classifying the measure itself, and considered applications

to density estimation and the problem of order determination of a Markov chain.

10.2 Nonuniform Learning, Misfit Versus Com-

plexity Tradeoff, and Universal Coding

The standard PAC model requires the number of samples needed for learning to be
uniformly bounded over all probability measures and all concepts. Various types of
nonuniform learning can and have been considered (15, 18, 25, 77]. In particular,
nonuniform learning with respect to the concepts in the concept class has received
the most attention [18, 25, 77]. Conditions and algorithms for this problem have
been obtained, but the fundamental limitations and optimality results are lacking.
In fact, in contrast with uniform learning where the uniform bound on the sample
size provides a measure of performance, a good measure of performance in the case
of nonuniform learning is not obvious.

For a fixed distribution, a concept class is uniformly learnable iff it has finite
metric entropy (see Chapter 5), i.e. iff a finite e-approximation can be found. If X
is a finite dimensional Euclidean space and P is any probability measure on X, then
it turns out that any concept class ' over X has a countable e-approximation for
each € > 0. This is sufficient to guarantee nonuniform learnability (with respect to
concepts). One can also consider nonuniform active learnability, where, as in Chapter
6, the learner is allowed to ask arbitrary binary valued questions. Then for a countable
e-approximation, active learning is essentially equivalent to coding the integers. In
this case, some fundamental limitations of active learnability are related to ideas on
universal coding and priors for the integers [40, 98, 99].

For distribution-free nonuniform learning, one typically takes ¢ = U ,C; with
Cy C €y C --- and the VC dimension of each C; finite but growing unboundedly
with <. The ‘complexity’ or ‘order’ of a concept c is the smallest k for which ¢ € Cj.

Typical learning algorithms for such problems either limit the complexity of the hy-
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pothesis as a function of the number of samples, or first estimate the complexity
of the target concept and then produce a hypothesis with complexity less than or
equal to the estimate. O. Zeitouni has suggested a possible way to measure optimal
performance for such a two step learning learning prdcedure, based on some work
that has been done in estimating the order of Markov chains. Specifically, requir-
ing the probability of overestimating the order to decrease exponentially at a given
rate, an optimal learning procedure is defined to have the fastest exponential rate
of decrease in underestimating the order. Such a criteria would allow comparisons
to be made between different learning algorithms and the best achievable, which at
present time is not possible. Finally, for both fixed distribution and distribution-free
nonuniform learning it may be interesting to formulate learning algorithms in terms
of the classic misfit vs. complexity tradeofl characteristic of minimum description

length approaches [98, 99].

10.3 Prior Information and Mean Sample Size

Bounds in Learning

A potentially powerful way to obtain stronger learnability results is to provide the
learner with prior information. Fixing the concept class (and the distribution in the
case of learnability under a fixed distribution) is in fact providing prior information.
A more general form of prior information might be to provide a prior distribution on
the concept class and/or over the class of distributions. D. Tse [116] has considered
a form of this in which the concept cluss is partitioned into disjoint subsets and a
probability is assigned to each subset. In general one may be able to put an arbitrary
measure on the concept class. One approach might be to assign discrete measures to
e-approximations. Assigning prior distributions would allow studying mean sample
size bounds as opposed to the usual worst-case bounds. Interestingly, active learning
with a prior distribution would essentially be formally equivalent to problems in

information theory.
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10.4 Learning Under General Metric Uncertain-
ty

In the standard PAC model, the probability distribution is used both to provide
random samples as well as to measure the performance of learning. One can imagine
situations where the goal is to learn according to some criteria not necessarily directly
tied to the means of gathering data. This suggests formulating a learning problem in a
general metric space setting where the metric need not be induced by the distribution
used to generate samples. One natural question that immediately comes to mind
is what compatibility conditions must be satisfied between the metric, the (fixed)
distribution, and the concept class to allow learning to take place. A special case of
this in which the metric is induced by a distribution (but not necessarily the same one
used to generate samples) would provide a sort of robustness result with respect to the
sampling distribution in the usual PAC model. For example, this would correspond
to the case in which noise is added to the samples prior to being labeled, so that the
learner is getting correct information, but not according to the correct distribution.
A more general model would allow some metric uncertainty in the sense that the
lJearner may not know the metric exactly but only that it belongs to some class of
metrics. This corresponds to the case in which the learner doesn’t know exactly the
criteria he is trying to optimize. This could be studied with respect to a variety of
information gathering mechanisms — i.e. fixed distribution, class of distributions,
active learning, learning by distances [16], etc. This model is natural in a sense
since it separates uncertainty in the information gathering from uncertainty in the
performance criteria. It is likely that learning can take place only if there are close
ties between the two, which would still be an interesting result. However, it may be
difficult to prove results in the general case since the powerful uniform convergence

results may no longer apply.

10.5 Learning with Unions of Hyperspheres and
Attribute Noise

An idea suggested by J. Koplowitz is to learn a concept by placing spheres (hyper-
spheres in general) around each positive example, and letting the radii of the spheres

decrease appropriately as the number of samples increases. This is a natural idea
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from the point of view of pattern recognition or density estimation, although as far as
we know it has not been studied formally in either the pattern recognition or density
estimation literature. Apparently some work in learning is currently being pursued
along these lines [63]. In general, the number of samples will depend on the target
concept, but perhaps distribution independent sample size bounds can be obtained.
Although this may result in nonuniform learning, it seems that a very broad class of
concepts will be learnable with this single representation for hypotheses, and the hy-
potheses can be easily generated from the data. Another potential advantage of this
representation is that it may be possible to prove results on learning with attribute
noise. This type of noise has been studied in discrete domains, but as far as we know

there has been no general treatment.

10.6 Tracking Time-Varying Concepts

An interesting problem suggested recently by D. Helmbold is to study the tracking or
learnability of mutable concepts. Some work is currently being pursued along these
lines [59]. For the dynamics of the target concept, some possibilities are to allow
“movement unrestricted in direction or smoothness but with a bounded rate, or if the
concept class is a differentiable manifold to consider flows on the concept class. The
type of result that one might hope or expect to obtain is that learnability can take
place if the dynamics of the target are not too large compared with the sampling rate,
and one would like the criteria for learnability to be somewhat robust with respect
to the specific concept class. Many interesting directions may arise by introducing

dynamics into the learning model.
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