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Abstract

All methods used to determine the number of linear relations and the linear relations
themselves in a cloud of data are based on assumptions. These assumptions can
include specific information known about the system but in general the biases are
a priori assumed without any justification accept that it makes the identification
process computationally manageable. Recently Professor Rudolf Kalman discovered
a bias free identification method which he calls generalized least squares (GLS). In
this paper we explore the structure of all GLS solutions and relate these solutions
to existing identification methods. We show that all GLS solutions are in fact total
least squares (TLS) solutions. Finally we discuss the problems of using maximum
likelihood as a performance criterion over the GLS scheme.
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Chapter 1

Introduction

1.1 Identification Problem and Results

The most basic identification problem is that of determining first the number of

linear relations in a cloud of data and second determining what these relations are.

Most existing identification methods rely upon assumptions. In fact we have already

assumed that the relations are linear. Some of these assumptions incorporate specific

information known about the model and are therefore reasonable. We can call such

reasonable assumptions constraints. But in most identification cases the assumptions

have no a priori explanations. The only reason one chooses these assumptions is

either ignorance of the basic identification problem or ease of computation of a given

solution scheme. In this thesis we hope to discern what the underlying assumptions

are for different identification methods.

In the case where there is no noise in the data we can uniquely determine the

number of relations and the relations themselves. When we add noise, though, it

not clear that we can do this identification uniquely. By a continuity argument we

believe that as the noise in the system goes to zero we should be able to determine

the relations uniquely. We believe that if the noise in the system is smaller than some

value then the system can be identified uniquely. For the case where the exact data

lies on a hyperplane (an n−1 dimensional subspace in Rn) we can, given suitable noise

constraints, determine the relationship exactly. That is we can determine the number
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of relations to be one exactly. The exact relation itself may still be ambiguous. It

is not so clear, though, how to determine the system when the exact system lies on

lower-dimensional subspace of Rn.

The two fundamental questions involved in identifying linear relations in noisy

data are: first, how many relations the exact data supports (here on called the rank

of the system), and second, what are the relations themselves. These two questions

are clearly not independent of each other. For example even if we are able to identify

the rank of the system there are many different relations (i.e. planes) that have that

same rank. On the other hand if we are able to determine the relations themselves

then we can uniquely identify the rank. Similarly given the relation there are many

different noises we can place on the data. But for a given noise there is still only

one relation, the exact relation. In summary we may never know the exact relations

but we may be able to identify the exact rank. For most of this paper we will be

interested in answering the first question of determining rank independently of the

second question of determining the exact relations.

The purpose of this paper to describe the assumptions of different identification

problems. First we discuss the assumptions of existing identification methods. Then

we examine some of the problems with the so-called Frisch identification method.

Following the work of Professor R. Kalman (Kalman, 1990) we study Kalman’s gen-

eralized least squares (GLS) method. We explore the structure and provide a new

canonical structure for all GLS solutions. We then relate the GLS method to other

known methods like total least squares (TLS) and principal component decomposi-

tion. Finally we give a description of the maximum likelihood method as a perfor-

mance criterion over a scheme.

1.2 Problem Formalization

Let us formalize this identification problem.

Definition 1 Define the cloud of data points to be the set {xt ∈ Rn | t = 1, ..., T}.
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Here, n is the number of components in any measurement and T is the total

number of measurements. We assume T > n. Let X be an n × T matrix of data.

That is X = [x1, x2, ..., xT ]. Let Σ = 1
T
Σtxtx

′
t =

1
T
XX ′. Later we will see that this is

the covariance matrix of the sample data.

Following Kalman’s notation let q equal the rank of the system. That is q is the

number of linear relations supported by the data. For example if q = 1 then the exact

data lies on an n− 1 dimensional plane in Rn. If q = n− 1 then the exact data lies

on a one-dimensional subspace in Rn.

It is impossible for any identification scheme to have no underlying assumptions.

We need to make some assumptions on the structure of the noise before we can hope

to analyze this problem. The following assumptions will hold throughout this paper:

Assumption 1: Assume 0 < q < n. That is assume the exact part of the data does

indeed support q linear relations. We do not allow q = 0 or n because these are

degenerate cases. When q = 0 there are no relations. The data lies in all of Rn.

When q = n the exact data lies on a point in Rn.

Assumption 2: We will not assume a priori any probabilistic nature to the noise in

the system. The reason for this is we are not sure what is causing the noise. If

the data represents repeated measurements of some physical experiment then

we may assume the noise is probabilistic, say following a Gaussian distribution.

But if the data is economic in nature then there is no notion of repeatability

of the experiment. For different economic measurements it is very hard to keep

the conditions the same, whereas for physical measurements it is not so hard

to keep the conditions the same. Thus in the economic data example the noise

may not be purely random but instead caused by changes in the overall system

that have occurred between measurements.

Assumption 3: We will assume the noise is additive. This is a prejudice but most

everyone accepts this assumption. Maybe in future analysis one can assume the

noise has some other form. Additive noise implies we can decompose xt = x̂t+x̃t

for all t. Here x̂t is the signal part of the data and x̃t is the noise part of the
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data. Thus we also see that X = X̂ + X̃, where X̂ and X̃ denote the true and

noisy parts of the data respectively.

Assumption 4: We further assume the exact part of the data and the noisy part of

the data are orthogonal. That is Σtx̂tx̃
′
t = X̂X̃ ′ = 0. Note that this orthogonal-

ity in T -space. This is our strongest assumption. Ordinary least squares (OLS)

assumes this data orthogonality implicitly. In fact for OLS this orthogonality

result follows directly from the Gauss-Markov theorem. From now on we will

call this assumption the data orthogonality assumption.

Assumption 5: We will assume that all the measurements have zero mean. That

is ΣT
t=1xt = 0. Similarly Σtx̂t = 0 and Σtx̃t = 0. The transformation from a

given data set to a zero-mean data set is just an affine transformation. Thus

this assumption is unnecessary for the calculations we will be making. It makes

the problem, though, easier if we can identify an origin in this way. Note that Σ

is a true sample covariance matrix. To see this note that the covariance matrix

between the ith and the jth component equals var(yi, yj) = Σtyityjt− ȳiȳj. (Here

yi is a T×1 vector containing all the component i measurements.) But ȳiȳj = 0.

So Σ is the sample covariance.

By assumption 3 we see that the covariance matrix Σ = 1
T
XX ′ can be decomposed

into Σ = Σ̂+Σ̃ where Σ̂ = 1
T
X̂X̂ ′ and Σ̃ = 1

T
X̃X̃ ′. To see this note that Σ = 1

T
XX ′ =

1
T
(X̂ + X̃)(X̂ + X̃)′ = 1

T
X̂X̂ ′ + 1

T
X̃X̃ ′ + 1

T
X̂X̃ ′ + 1

T
X̃X̂ ′ = Σ̂ + Σ̃ because the last

two addends are zero by data orthogonality.

Let A be an n× q matrix with full rank q. For a given Σ̂ and a given q if A′Σ̂ = 0

then we know the columns of the matrix A are q linearly independent basis vectors

that span the null space of Σ̂. The columns of A can be thought of as the normals to

q different hyperplanes (n− 1 dimensional planes in Rn). The intersection of these q

hyperplanes contains the subspace that the exact data determine. The dimension of

this intersection is n− q. This is also the rank of Σ̂.

The basic identification problem can thus be restated: Given a sample data co-

variance matrix Σ determine uniquely if possible a factorization Σ = Σ̂+Σ̃ that “best

8



fits” the data. From a given Σ̂ we can determine q = corankΣ̂ (corank = n – rank)

and we can determine A the matrix of linear relations. A is just any matrix whose

columns span the null space of Σ̂. Note we cannot determine A uniquely. We can

though determine A uniquely up to similarity.

Definition 2 Two matrices An×q and Bn×q are called similar if there exists an in-

vertible matrix U q×q such that A = BU . We denote similarity by A ∼ B.

This definition can be found in Kalman, 1990, Definition 3.22.

Note that 0 = A′Σ̂ = UB′Σ̂ ⇒ B′Σ̂ = 0. The null space of Σ̂ determines the

exact solution plane.

We can restate the problem more abstractly: For any positive definite, symmetric

matrix Σ we want to decompose it into two nonnegative definite symmetric matrices

Σ̂ and Σ̃. We need to find the decomposition that “best fits” the data.

As stated now the problem has no unique solution (Kalman, 1990, Theorem 3.15).

For any given Σ and any matrix An×q and any q we can find a decomposition of Σ

such that A′Σ̂ = 0. We will prove this in Theorem 9. Obviously this result is of

no use to us. We must describe what “best fit” means. To do this we need to add

constraints to the problem. We call a set of constraints (that determine the prejudice

of a given method) a scheme. Thus a scheme is a set of rules that help us decompose

Σ. Sometimes schemes are determined by knowledge of the data but unfortunately

most schemes are chosen arbitrarily. In most cases, though, there is no a priori reason

for choosing a given scheme over another scheme. Schemes impose structure on the

relationships in the data. For example the elementary least squares (ELS) scheme

implies that n − 1 of the variables are exact and only one of the variables is noisy.

Thus we see the ELS scheme imposes a structure on the noise.

Given a scheme there may be many solutions to a given identification problem.

We will need a way to distinguish the best solution over all the solutions in a given

scheme. We will call any such criterion a performance criterion. That is we want to

find the optimum solution over a scheme. For example one performance criterion is

the norm of Σ̃ which can be minimized. Note that performance criteria are different
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than schemes in that they do not impose any structural relations on the data. Instead

they optimize some criterion over a set of possible solutions.
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Chapter 2

Existing Schemes

This chapter will describe existing schemes for identification of systems in noisy data.

We then discuss their respective biases. Most identification schemes rely on some

sort of regression type method. Here we will discuss elementary least squares (ELS),

ordinary least squares (OLS), and principal components (SVD). We will then discuss

the Frisch scheme. (Much of this chapter is a summary of chapters three through five

of Kalman’s Nine Lectures on Identification).

2.1 Elementary Least Squares

The usual setup for an ELS problem is the following. Find the best A(n−1)×1 such that

we minimize the squared 2 norm of Y T×1−XT×(n−1)A. We have assumed that of the

n measured variables n−1 of them are exact. That is X is exact and Y is noisy. The

well known solution is A = (X ′X)−1X ′Y. Note that in the ELS scheme there are n

different solutions. In general practical considerations will tell help us determine the

noisy component but in the absence of such evidence we need a performance criterion

to tell us which of the n solutions is “best.” In our new notation the ELS scheme can

be rewritten as: For any given Σ an ELS scheme is a decomposition Σ = Σ̂+Σ̃. Where

Σ̃ has all zero non-diagonal components and only one nonzero diagonal component.

Thus we see that there are at most n ELS solutions. We will show later that there

are indeed n ELS solutions satisfying this notational scheme. There are three main
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assumptions in this scheme:

1. We assume that some of the variables are exact.

2. Often times people make the mistake of assuming the noisy variable is caused

by the exact variables. They believe by choosing one variable inexact they are

in some sense imposing causality on the system. In general we do not have any

sense of causal relation in noisy data.

3. We assume that there is only one relation in the data. That is we are assuming

a priori that the data lies on an n− 1 dimensional subspace (i.e. q = 1).

Note also that we need to decide which of the n variables is noisy. Again, this

is often decided on practical considerations. This could also be considered a fourth

assumption because we need to decide which one is the best solution. If we consider

a performance criterion as part of the determination of unique solution then this

may not be a assumption because the performance criterion will determine the best

solution over a scheme.

2.2 Ordinary Least Squares

One way to deal with the q = 1 bias is to use the OLS scheme. In this scheme we

try to find that A(n−q)×q that minimizes the squared two norm of Y T×q −XT×(n−q)A.

That is we have q noisy variables dependent on n − q exact variables. Once again

the solution is A = (X ′X)−1X ′Y . For a given q there are n combination q solutions.

In our notation the OLS scheme is: for any Σ we want to find a decomposition such

that Σ̃’s upper left q× q matrix is nonzero but the rest of Σ̃ must be zero. Note that

OLS schemes contain the ELS schemes.

It is a remarkable fact that the solution to our notational scheme is the same

solution as that of the OLS minimization problem. Kalman proves that the two

methods are equivalent (Kalman, 1990, Theorem 3.3).
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The OLS scheme also suffers from the same biases as ELS. We assume that some

of the variables are exact, we choose which ones will be exact and inexact, and we

choose the value of q all a priori.

The following theorem will shed some light on the structure of the matrices A.

Theorem 1 The matrix Σ−1 contains the regression coefficients for the OLS solu-

tions. That is any q rows of Σ−1 will be a regression solution. Let the columns of A

contain any q rows of Σ−1. In particular the rows of Σ−1 are the n different q = 1

solutions.

Proof: See Kalman, 1990, Theorem 3.3.

Note that as a result of this theorem we see that all OLS solutions where q > 1 are

just combinations of ELS solutions. That is the solution space for a given OLS scheme

is in the intersection of q ELS solution spaces. We will later explore the simplex

constructed from the positive linear combinations of the ELS regression coefficients.

2.3 Principal Components

Principal components scheme (SVD) does not assume some of the variables are exact.

Instead it assumes each component is noisy. Because of this this scheme is sometimes

called the total least squares (TLS) method or the error-in-variables method. The

SVD scheme is formulated as follows. Let the eigenvalue-eigenvector decomposition

of Σ = UΛU ′, where U is the orthonormal matrix of eigenvectors and Λ is the

diagonal matrix of eigenvalues. In the SVD solution we decompose Λ into two diagonal

matrices. For a given q we select q of the eigenvalues of Λ to represent those principle

components that make up the noise of the observed signal and the remaining n − q

eigenvalues to represent those principle components that make up the true signal of

the observed signal.. We can decompose Λ = Λ̂ + Λ̃. Λ̃ consists of q of the diagonal

components of Λ. Thus Σ̂ = U Λ̂U ′ and Σ̃ = U Λ̃U ′.

Note that for a given q there are n combination q different SVD solutions that

we can choose from. Most people, though, choose the q smallest eigenvalues of Σ to
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be the q nonzero eigenvalues of Σ̃. One possible performance criterion over the SVD

scheme would be to minimize the two norm of Σ̃.

In the SVD scheme we have been able to eliminate two of the biases of the OLS

scheme. In the SVD scheme we no longer assume some of the variables are exact

or inexact. Instead we assume all the variables are noisy and subtract out an error

from each of them. We also remove the problem of deciding which q variables are

noisy but we add the bias of assuming which q eigenvalues correspond to the noisy

principal components. We also have the problem of determining q. In both OLS and

SVD we have to a priori determine q. It turns out that if we have extra information

about the system in the form of a norm limitation on the noise then we can determine

the q = 1 case uniquely. That is if the exact data only supports one relation and we

have suitable information about the size of the variances of the noisy variables we can

determine q = 1 uniquely. We will prove this in Theorem 4.

For now though let us see how the SVD solutions are related to the OLS solutions.

Is the SVD solution a linear combination of the OLS solutions? A more general

question we can ask is where does the SVD solution lie in the space of all solutions.

(We know from Theorem 9 in chapter 3 that any matrix An×q is a solution.) The SVD

solution is a linear combination of the ELS solutions. But this is obvious because the

n different ELS solutions form a basis for the space of Rn. This is because Σ−1 is

nonsingular.

Lemma 1 The SVD solution does not in general lie in the simplex of OLS solutions.

Proof: For a given q we need to find an SVD solution that does not lie in the

simplex of the n combination q OLS solutions. In particular we will show that there

exists a q = 1 SVD solution that does not lie in the simplex of the n ELS solutions.

We know A′Σ̂ = 0 where A is an n × 1 matrix. So 0 = A′Σ̂ = A′(Σ − Σ̃) ⇒ A′Σ =

A′Σ̃ ⇒ A = Σ−1Σ̃A ⇒ A = Σ−1(λi ∗ ui) where λi and ui are the eigenvalue and

eigenvector pair we have chosen for this SVD scheme. Now ui need not contain all

positive components; therefore A is not in the positive linear combination of the ELS

solutions. (At least one of the eigenvectors of Σ cannot be all positive.) The SVD
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solution therefore need not lie in the simplex of the ELS solutions.

2.4 Frisch Scheme

So far all the schemes we have discussed require us to a priori determine q. For

certain Frisch scheme problems we can determine q uniquely. The Frisch scheme is

any decomposition of Σ where Σ̃ is diagonal. This diagonalization constraint implies

that even the noise variables are uncorrelated. With this new condition it becomes

much harder to determine different q solutions. In fact we can find conditions where

certain values of q cannot exist.

As we have discussed before the ELS regressions can be used to define a simplex.

All solutions in this simplex are q = 1 Frisch solutions. Furthermore for any such Σ

that supports such a solution there are no other q > 1 Frisch solutions. Thus for this

simplex only q = 1 solutions can exist. The proof of this is given in Theorem 2.

It turns out that if Σ−1 has only positive components then a q = 1 Frisch solution

is the only possible solution. That is no solutions where q > 1 can exist. We can also

show that for any Σ there is a q = 1 solution. To see this note the ELS solution is

a Frisch solution. It can also be shown that if Σ−1 does not have positive entries (or

cannot be transformed into one) then there not only exists a q = 1 case but there also

exists a q > 1 solution. See Kalman, 1982. Thus for the Frisch scheme we can uniquely

determine a q = 1 solution when q = 1 is the only solution possible. All Σ’s support

a q = 1 solution though. If on the other hand we require that for a given Σ the best

solution is the Σ̃ with maximum corank then the positivity constraint holds always

for q = 1. If we require maximum corank solutions then all q = 1 solutions will have

positive Σ−1 matrices and vice-versa. One reason for insisting on maximum corank

solutions comes up when we deal with endogenous versus exogenous variables. We

would like to explain the most data with the least number of independent variables.

Thus by maximizing corank we are maximizing the number of endogenous variables

and minimizing the number of exogenous variables. This is just a version of “Occam’s

Razor” or the principle of parsimony.
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These results are summarized in the following theorem:

Theorem 2 Suppose all the entries of LΣ−1L, where L is a diagonal matrix consist-

ing of 1s and −1s, are positive numbers.

1) Then the only solutions that exist are q = 1 solutions.

2) Every coefficient vector A associated with a solution of the problem has positive

entries and is a positive linear combination of the elementary regression vectors,

that is A′ = Σbjs
j, bj > 0 for j = 1, ..., n, sj = jth column of Σ−1.

3) Any positive linear combination of the rows of Σ−1 induces a solution of the prob-

lem with Σ̃ = diag( b1
a1
, ..., bn

an
) where the bj’s are the same as in part 2.

Proof: See Kalman, 1982, page 149. One can see that it depends strongly on the

Perron-Frobenius theorem.

Note that the positivity of Σ−1 is not a necessary condition for the q = 1 case.

The following example is a case where the existence of a q = 1 solution does not imply

that Σ−1 has positive components.

Let

Σ =


2 1 1

1 2 1

1 1 2

 .

Σ is positive definite because its eigenvalues are 4, 1, and 1.

We see then that

Σ−1 =


.75 −.25 −.25

−.25 .75 −.25

−.25 −.25 .75

 .

This cannot be transformed into a strictly positive component matrix. We can

easily find, though, a q = 1 solution. Let

Σ̃ =


1 0 0

0 1 0

0 0 0

 .
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Thus we see that Σ̂ has corank = 1. We can also easily find a q = 2 solution by

allowing

Σ̃ =


1 0 0

0 1 0

0 0 1

 .

Once again if we require maximum corank then q = 2 is the only solution for the

above example. Note that for n = 3 the Frisch scheme is completely solved. If the

positivity constraint holds then q = 1; otherwise q = 2.

Complete Frisch solutions can be found in the n = 3, q = 2 case. But in general

the solution spaces are very intractable. In the cases where Σ−1 is not transformable

to a positive component matrix I explored the possibility of a norm limitation on the

noise covariance matrix in determining whether q = 1 or q = 2 for the n = 3 case.

The computations are difficult and laborious. I also do not think they are valuable.

Note that even if Σ−1 has positive components and we know q = 1 solution is the only

solution that can exist we still need to find the relation. There are sadly an infinite

number of them. Any solution in the simplex is an acceptable solution. So even if

we can determine q uniquely we cannot determine the relation uniquely. In fact the

dimension of any solution space is n−q(q+1)/2. To see this note that in general there

are q(q + 1)/2 degrees of freedom when solving the decomposition problem. For the

Frisch case we need only determine n values. (These are the diagonal values of Σ̃).

Therefore the combined solution space has dimension n− q(q+1)/2. A performance

criterion can help us determine which solution to choose.

The main assumption of the Frisch scheme is that the noise covariance matrix is

diagonal. This is a very strong assumption. But as a result of this assumption we

are able to sometimes determine q uniquely. This is a theme that will come up again

in this paper. If one wants to determine a solution uniquely then one will have to

impose strong constraints on the system. We will show in chapter four that the Frisch

scheme also fails to yield linear projection matrix.
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2.5 Nature of Solutions

The discussion of the Frisch scheme sheds light on the definition of a solution. We

need to define what we mean by unique solution. In general there are two types of

questions we need to ask:

1) What conditions on Σ (or Σ−1) and Σ̃ are needed given all other constraints

such that a q = k solution exists?

2) What conditions are needed given all the constraints such that a q = k solution

exists and no other q = i (i ̸= k) solutions exist?

The first question is an existence question whereas the second is a uniqueness

question. For OLS and SVD we can find any q solutions. We cannot, though, find

uniqueness of solutions. This may be the job of the performance criterion. For the

Frisch scheme, though, we can find solutions that satisfy both questions above.
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Chapter 3

Schemes in General

3.1 General Theorems

So far we have been discussing different identification schemes. We have shown,

though, that they all have built-in assumptions (or prejudices.) Let us now find

properties that all schemes must have. By doing this we hope to understand the basic

structures of all solution schemes. In general a scheme is any method of decomposing

Σ = Σ̂ + Σ̃ where corankΣ̂ = q.

We are trying to find conditions on the noise such that as the noise goes to zero

we can determine uniquely Σ̂ and q. To that end we describe three basic results that

all schemes satisfy.

Theorem 3 Fix any q, 0 < q < n. Let λ1(Σ) ≤ ... ≤ λn(Σ), where λi(Σ) denotes the

ith smallest eigenvalue of Σ. Then for all schemes such that corank Σ̂ = q and rank

Σ̃ = s (s ≥ q, it will be later shown that if s < q then no solution can exist) we have

λ1 + ...+ λq ≤ traceΣ̃ ≤ λn−s+1 + ...+ λn

and

λq ≤∥ Σ̃ ∥≤ λn.

Proof: See Kalman, 1990, theorem 4.5.
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Theorem 4 Let ∥Σ̃∥ ≤ ϵ for some ϵ > 0. Then there exist q = 1, ..., k solutions iff

ϵ ≥ λk(Σ).

Proof: From the preceding theorem and the fact that the two norm is equal to the

largest eigenvalue we see that if the largest eigenvalue of Σ̃ is λk then we can subtract

from Σ those k principal components. Thus we have shown the existence of a q = k

solution.

Theorem 5 λk(Σ) ≥ λk(Σ̂) ≥ λk(Σ)− λn(Σ̃).

Proof: This is an easy extension of Wilkinson’s theorem (Wilkinson, 1965, page

102).

In theorems three and four equality holds if we are using the SVD scheme. For

both of these two theorems we see that noise constraints can help us determine q. For

example if λ1 < ϵ < λ2 then we know q = 1 is the only value of q that can hold. The

data will support only one relation. This relation though is not unique. Note that if

λ1 < ϵ < λ3, we cannot tell if there is a q = 1 or a q = 2 solution. Note that if we

are insisting on maximum corank then q = 2 is the only solution. It is important to

realize that if the true data supports only one relation then as we reduce the noise we

will be able to determine q = 1 solution uniquely. This is because as the noise goes

to zero the norm of the noise covariance matrix will eventually get smaller than the

second smallest eigenvalue of Σ̂true. For a q = 2 solution we see that even if the noise

goes to zero the norm of the noise covariance matrix will only get smaller than the

third smallest eigenvalue of Σ̂true. We cannot know until the noise equals zero if none

or one of the two smallest eigenvalues of Σ represents true data. Therefore we cannot

determine whether q = 1 or q = 2. If we insist on maximum corank then q = 2 is the

only solution for this case.

The following theorem explains a little bit about the structure of solutions. This

theorem is an extension of one given in Kalman, 1982, page 149.

Theorem 6 Suppose Σ and Σ̃ are given. Then the maximum eigenvalue of Σ̃Σ−1 is 1

and it has geometric multiplicity = algebraic multiplicity = q. All its other eigenvalues

belong to [0, 1).
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Proof: First we show that the eigenvalues (the roots) of det(Σ − λΣ̃) = 0 are in

bijective correspondence to the eigenvalues of det(σI − Σ̃Σ−1) = 0.

det(Σ− λΣ̃) = det(I − λΣ̃Σ−1)Σ = λ detΣdet(
1

λ
I − Σ̃Σ−1).

Let σ = 1
λ
. Therefore λmin = σmax. To show that σmax = 1 we must show that

λmin = 1.

Assume toward a contradiction that λmin < 1. If x ∈ nullspace of Σ̃ then x
′
Σ̃x = 0

and x
′
λΣ̃x = 0. If x ̸∈ nullspace of Σ̃ then x

′
λminΣ̃x < x

′
Σ̃x.

Thus we see that if x ∈ nullspace of Σ̃ then x
′
Σ̂x = x

′
Σx − x

′
λΣ̃x > 0. If x ̸∈

nullspace of Σ̃ then x
′
Σ̂x = x

′
Σx − x

′
λΣ̃x > x

′
Σx − x

′
Σ̃x ≥ 0. Thus we see that

x
′
Σ̂x > 0 but this contradicts the fact that Σ̂ is strictly nonnegative definite.

Since Σ̂ has a nullspace of size q we see that the algebraic multiplicity of λ = 1

eigenvalue = geometric multiplicity of λ = 1 eigenvalue= q. All other values of

λ ∈ (1,∞). Thus σ = 1
λ
∈ [0, 1). The proof is done.

Lemma 2 The rank Σ̃ ≥ q.

Proof: If this were not the case then Σ̃Σ−1 could not have q eigenvalues equal to

1 by theorem six.

The matrix Σ̃Σ−1 is very important because it represents a projection-like matrix.

All its eigenvalues are between zero and one. If the rank Σ̃ = q then Σ̃Σ−1 will have

q eigenvalues = 1 and n − q eigenvalues = 0. Thus we see that when Σ̃ has rank q

the matrix Σ̃Σ−1 will indeed be a projection matrix.

If Σ̃Σ−1 contains only positive components then q = 1 is the only solution. This

follows from the Perron-Frobenius theorem on positive matrices. In general this is

not very useful because we don’t know what Σ̃ is. But for the Frisch scheme we know

that Σ̃ will always have nonnegative components. Thus we see how the positivity of

Σ−1 can be exploited in the Frisch scheme.

Unfortunately there does not exist much theory on how to “force” a matrix to

have its leading eigenvalue simple. One idea that is open for research is to treat Σ̃

as a perturbation matrix. We know the eigenvalues of Σ−1 and we would like to see
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how the largest eigenvalue changes when we multiply it by the perturbation Σ̃. This

is not an easy exercise because we cannot decompose Σ̃ into I + ϵH where H is some

perturbation matrix.

It turns out that we can reformulate the problem into solving a set of inequali-

ties. The problem as we have it now is: Decompose Σ into two nonnegative definite

matrices.

Lemma 3 Σ̂− Σ̂Σ−1Σ̂ = Σ̃− Σ̃Σ−1Σ̃.

Proof: See Kalman, 1990, page 2.5.

Theorem 7 Σ = Σ̂ + Σ̃, Σ̂ ≥ 0, and Σ̃ ≥ 0 iff Σ̂ ≥ Σ̂Σ−1Σ̂ iff Σ̃ ≥ Σ̃Σ−1Σ̃. This is

also called Bekker’s Theorem.

Proof: See Kalman, 1990, page 2.6.

This new formulation developed by Kalman will help us solve for Σ̃ in general.

The following theorem will help us reduce the space off all solutions and define

the region of solutions where a projection matrix exists.

First we define a new scheme called generalized least squares (GLS). A GLS scheme

is any scheme where Σ̃ = Σ̃Σ−1Σ̃. Thus we see by lemma 3 that that GLS scheme is

equivalent to Σ̂ = Σ̂Σ−1Σ̂.

Theorem 8 A projection matrix exists iff we use the GLS scheme.

Proof: Let Π = {P̂ | P̂ xt = x̂t for t = 1, ..., T}. We want to find that subset of

the solution space (i.e. those decompositions) that allows for a projection matrix to

exist.

Let X ∈ Rn∗T be the data matrix. Then we want to find all P̂ in Π such that

P̂X = X̂. Define P̃ = I − P̂ . So

X̃ = P̃X.

X̃X ′ = P̃XX ′

X̃(X̃ + X̂)′ = P̃Σ

Σ̃ + X̃X̂ ′ = P̃Σ

22



By data orthogonality the second addend on the left is zero. Therefore we see

P̃ = Σ̃Σ−1. Now since P̃ = P̃ 2 by the definition of a projection matrix we see that

Σ̃Σ−1 = Σ̃Σ−1Σ̃Σ−1 or Σ̃ = Σ̃Σ−1Σ̃. But this is the definition of the GLS scheme.

Note that by the projection principle the noise should be orthogonal to the data.

That is X̂X̃T = 0. But this is just assumption four.

It is important to have a projection matrix for our schemes. The decomposition of

Σ = Σ̂+ Σ̃ is only the first step in the identification process. Once we have discerned

q and A
′
and Σ̃ we still need to know what a given measurement’s exact and noisy

parts are. A projection matrix will do this for us. If the scheme is not GLS then the

projection of our measurement onto its exact part will be some nonlinear operator.

Since we would like to stay with linear operators we see that the GLS scheme is the

only way to go.

Let the noise covariance matrix of a GLS solution be denoted by Σ̃GLS. The

following lemmas describe the importance of GLS solutions.

Lemma 4 q = k and q ̸= i (i ̸= k) iff rank Σ̃GLS = k.

Proof: See Kalman, 1990, page 6.4.

Lemma 5 A q = k solution cannot exist if rank Σ̃ < k. So Σ̃GLS has the smallest

rank for a given q.

Proof: If the rank of Σ̃ < k then the number of eigenvalues of Σ̃Σ−1 equal to one

is less than k. Therefore there can be no q = k solutions.

Lemma 6 For a given A
′
the solution scheme with the smallest rank, trace, and

norm of Σ̃ is the GLS scheme.

Proof: See Kalman, 1990, page 6.4.

In general the Frisch scheme does not fall under the GLS scheme. Since it does

not fall under the GLS scheme it will not have a linear projection matrix. Take for

example

Σ =


2 1 1

1 2 1

1 1 2


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and

Σ̃ =


1 0 0

0 1 0

0 0 0

 .

Then it can be shown that the eigenvalues of Σ̃Σ−1 are 1, .6124, and 0. This is not a

projection matrix, and therefore is not a GLS solution.
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Chapter 4

GLS Solutions

Kalman has discovered the construction of all GLS solutions. What follows is a

summary of chapter three of his Nine Lectures on Identification.

Kalman’s definition of the GLS scheme is this: Given any symmetric Σ > 0 and

any q with 0 < q < n, a generalized least squares scheme is given by any pair Σ̂ ≥ 0

and Σ̃ ≥ 0 such that Σ = Σ̂ + Σ̃, rank Σ̃ = q, and Σ̃Σ−1 is a projection matrix.

The last condition Σ̃Σ−1 being a projection matrix is equivalent to Σ̃ = Σ̃Σ−1Σ̃.

Kalman has derived a canonical construction for every Σ̃ that satisfies this last equal-

ity.

Theorem 9 Given any symmetric positive definite matrix Σ > 0 and any q with

0 < q < n, let C be any n× q matrix with rank C = q. Then

Σ̃ = C(C
′
Σ−1C)−1C

′
,

is a GLS noise covariance matrix.

Proof: See Kalman, 1990, theorem 3.19.

It turns out that for a given C we can determine the matrix of linear relations A.

A′ = C ′Σ−1. To see why this works just substitute the above canonical formula for Σ̃

into the equation A′Σ = A′Σ̃. Up to the similarity of matrices as discussed before, A

and C are in bijective correspondence. Kalman has also proved that up to similarity,
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the matrix C appearing in C(C ′Σ−1C)−1C ′ is unique. (Kalman, 1990, Proposition

3.23).

Thus we see that for any given A there is one and only one C and one and only

one Σ̃GLS that is related to it.

The set of all GLS solutions contains all the elementary least squares solutions,

ordinary least squares solutions, and SVD solutions. Thus the set of GLS solutions is

very large. It is in fact too large for us to determine q or A
′
uniquely. To see why note

that the SVD solution is a GLS solution. We know that all q, 0 < q < n solutions

exist in the SVD scheme. Thus we cannot determine q uniquely.

In fact the GLS schemes really does not tell us much more than the two basic

theorems three and four. The GLS scheme is an underconstrained one and thus

needs more constraints if we want to get any real information out. Recall that in the

Frisch case we were able to find conditions on Σ (actually Σ−1) so that q = 1 is the

only solution. For GLS there are no conditions we can put on Σ (or its inverse) that

will help us determine q. This is because for GLS schemes the determination of q

and A
′
comes from the matrix C. Remember the equation C(C

′
Σ−1C)−1C

′
gets its

rank value from C. There are no conditions on Σ that will help us determine q. This

means that if we want to find conditions that will help us determine q we will need

to examine Σ̃.

The most obvious choice is to put a norm constraint on the noise covariance matrix

Σ̃. But in fact this gives us no more information than the general theorems three and

four. This is because the SVD solution belongs to GLS and in some sense the SVD

is the “best fit” in the absence of all other information.

Our derivation of the GLS scheme so far has been circuitous. Least squares implies

the minimization of some squared error. In the next chapter we show what it is we

are minimizing.

With the GLS scheme there is a one-to-one mapping between the plane we choose

in Rn (i.e the matrix A
′
) and its Σ̃GLS noise matrix. We can find a solution for every

plane of every dimension (0 < q < n). Obviously some planes are better solutions

than others. This makes the problem difficult. The data does not seem to tell us how
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to choose q or A
′
that will best fit the data.

As an interesting side note let us describe the duality between the noise and the

exact data. We know that Σ̃ has the following structure: Σ̃ = C(C ′ΣC)−1C ′. For

any Dn×(n−q) such that C ′Σ−1D = 0 we have Σ̂ = Σ − Σ̃ = Σ − C(C ′ΣC)−1C ′ =

D(D′ΣD)−1D′. This says that Σ̃GLS(C) = Σ̂GLS(D). (Kalman, 1990, page 6.9).

Because of the implicit data orthogonality condition we are able to get this duality

of the signal and the noise.
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Chapter 5

Relation of GLS to TLS

5.1 Relation of D-Norm to GLS

So far we have shown that GLS solutions have nice properties. Until now, though, we

have not been able to determine which GLS solution is best. We need to determine

a suitable criteria for “best fit”. In this chapter we will relate every GLS solution for

a given Σ to a TLS error minimization problem. To my knowledge this has not been

done before. Least squares methods imply a minimization. The minimization for

generalized least squares can be thought of as a TLS minimization. The description

of TLS given by Golub and Van Loan (Golub and Van Loan, 1980) assumes causality.

We will assume a more general model of TLS. That is we will not a priori assume

any causality in the variables.

We would like to discover a reason for choosing one GLS solution over another

GLS solution. One performance criterion would be to minimize the error over a given

norm. This norm will contain information the identifier has about the model.

Definition 3 For any n × T matrix X and any symmetric, nonnegative definite,

n× n matrix D, the D-Norm is written as ∥ X ∥D=∥ X ′DX ∥.

Problem Statement: Given a D we would like to find the noise covariance matrix

Σ̃ = 1
T
X̃X̃ ′ that minimizes ∥ X̃ ∥D.
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We assume D is a symmetric nonnegative definite matrix. It turns out that the

relation between the D space and the Σ̃ space is many-to-one for a given q. Later

we will try to reduce the size of the D space. The D matrix can be used to encode

information we have about the system.

Note that the minimization of ∥ X̃ ′DX̃ ∥ is not weighted least squares (WLS). To

see this note that a typical WLS problem involves the minimization of e′Qe where e

is the T × 1 vector of noise measurements. That is e measures the noise across all T

measurements. Here D weights each of the components whereas WLS weights each

of the different measurements.

Theorem 10 For every D there exists a minimization problem corresponding to one

GLS solution. For every GLS solution there exists at least one D corresponding to a

minimization problem.

Proof: Carried out throughout this chapter.

Note that if D = I then we are simply minimizing ∥ X̃ ′X̃ ∥ which equals the

minimization of 1
T
∥ X̃X̃ ′ ∥=∥ Σ̃ ∥. This is just the optimal SVD solution. Note that

if for a given q there are eigenvalues with multiplicity greater than one then we will

have a problem choosing which of the repeated eigenvalues represent the signal and

which of the repeated eigenvalues represent noise. We refer the reader to the Byrnes

and Willems’ paper.

Lemma 7 Every Σ̃ can be factored into Σ̃ = BB′, where Bn×q has full rank q, iff

B′Σ−1B = Iq.

First we show the existence of one B. Let the eigenvalue-eigenvector decomposition

of Σ̃ = UΛU ′, where Λ is the diagonal matrix of eigenvalues 0, ..., 0, σ1 ≤ ... ≤ σq.

Remember the rank of Σ̃GLS = q. Then let B = UΓ where
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Γ =



√
σ1 0 0 0 0

0
√
σ2 0 0 0

. . . . .

0 0 0 0
√
σq

0 0 0 0 0



n∗q

.

Proof: (⇒) Σ̃ = Σ̃Σ−1Σ̃ ⇒ BB′ = BB′Σ−1BB′ ⇒ (B′Σ−1B)2 = (B′Σ−1B)3. But

the determinant of (B′Σ−1B) ̸= 0 so B′Σ−1B = Iq.

(⇐) B′Σ−1B = Iq ⇒ BB′Σ−1BB′ = BB′ ⇒ Σ̃GLS = BB′ because any matrix Z

that satisfies Z = ZΣ−1Z can be shown to be a GLS noise covariance matrix. (This

follows from Bekker’s Theorem.) See Kalman, 1990, Theorem 3.19.

Lemma 8 Let U+ denote the pseudo-inverse of U , where U is an m × n matrix. If

∥ U ∥= 1 and U+U = In then ∥ UR ∥=∥ R ∥ . Similarly if ∥ U ∥= 1 and UU+ = Im

then ∥ RU ∥=∥ R ∥ .

Proof: By the Cauchy-Schwarz inequality we see ∥ UR ∥≤∥ U ∥∥ R ∥=∥ R ∥ .

Likewise ∥ UR ∥=∥ U+ ∥∥ UR ∥≥ ∥ U+UR ∥=∥ R ∥ . Note first that since U+U = In,

it follows that ∥ U+ ∥= 1. These two statement prove ∥ R ∥=∥ UR ∥ . Similarly one

can prove the second half of the lemma.

The problem at hand now is to find the X̃ that minimizes ∥ X̃ ′DX̃ ∥. Note that

once we have X̃ we have Σ̃ = 1
T
X̃X̃ ′. We also know that Σ̃ can be factored into

Σ̃ = BB′ where B′Σ−1B = Iq.

Lemma 9 For a given Σ̃ = 1
T
X̃X̃ ′ = BB′ we have ∥ X̃ ′DX̃ ∥=∥ B′DB ∥.

Proof: Let the eigenvalue-eigenvector decomposition of Σ̃ = BB′ = 1
T
X̃X̃ ′ =

UΛU ′. Let the singular value decomposition of X̃ = RST ′. Note that R = U and

1
T
SS ′ = Λ because UΛU ′ = 1

T
X̃X̃ ′ = 1

T
RST ′TS ′R′ = 1

T
RSS ′R′ and 1

T
SS ′ is diagonal.

From before we know that B = UΓ.

Now ∥ 1
T
X̃ ′DX̃ ∥=∥ 1

T
TS ′RTDRST ′ ∥=∥ 1

T
S ′R′DRS ∥=∥ 1

T
S ′U ′DUS ∥ .

Now ∥ B′DB ∥=∥ ΓU ′DUΓ ∥ .
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Now S =
√
T [Γ0] where the Γ has dimensions n×q and the 0 is a matrix of zeroes

with dimensions n × (T − q). The added T − q zero-valued columns do not change

the norm. Thus we see that ∥ 1
T
X̃ ′DX̃ ∥=∥ B′DB ∥.

Therefore we can restate the problem as: find a B satisfying B′Σ−1B = Iq and

minimizing ∥ B′DB ∥.

For q = 1 this calls for minimizing the scalar (b′Db)
1
2 given that b′Σ−1b = 1.

This suggests Lagrange multipliers. For q > 1 the matrix equations involved in the

Lagrange multiplier method become unwieldy.

Let us reformulate the problem again. Let C = Σ−1/2B, (B = Σ1/2C). Then

B′Σ−1B = C ′C and B′DB = C ′Σ1/2DΣ1/2C. Let Σnew = Σ1/2DΣ1/2. Essentially

what we are doing is transforming the variables through a linear transformation.

The new minimization problem is thus to minimize ∥ C ′ΣnewC ∥ given C ′C = Iq.

For q = 1 we see the minimization of c′Σnewc given c′c = 1 occurs when c equals

the eigenvector related to the smallest eigenvalue of Σnew.

Example 1: Principal Components. In the SVD solution we assume D = I. That

is we assume that all the variables are equally noisy. Σnew = Σ = UΛU ′. So c = u1 is

the smallest eigenvector of U . Thenb = Σ1/2u1 ⇒ bb′ = σ1u1u
′
1 = Σ̃GLS.

Example 2: Elementary Least Squares:

This time we let

D =



0 0 0 0

0 1 0 0

. . . .

0 0 0 1

 .

This means we believe that only the first component is noisy. We know from chapter

two that

Σ̃ =


s−1
11 0 0

. . .

0 0 0

 .

(Here s11 is the upper left corner component of the matrix S = Σ−1.) Thus we see

that b′ = [s
−1/2
11 , 0, ..., 0]. It is easy to see that b′Σ−1b = 1. Now we need to show that

c = Σ−1/2b is the smallest eigenvector of Σnew. Since D has rank n− 1 and Σ1/2 has
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rank n we see that the smallest eigenvalue of Σnew = Σ1/2DΣ1/2 is zero. Thus Σnewc

should equal zero, as can be verified.

In general for the q = 1 case we need to show that the smallest eigenvector of

Σnew is indeed an acceptable solution. Let the eigenvalue-eigenvector decomposition

of Σnew = UΛU ′. Then c = u1 ⇒ b = Σ1/2u1. We need to show that Σ̃ = Σ̃Σ−1Σ̃.

But bb′Σ−1bb′ = Σ1/2u1u
′
1Σ

1/2Σ−1Σ1/2u1u
′
1Σ

1/2 = Σ1/2u1u
′
1Σ

1/2 = bb′, proving the

assertion.

Now we will tackle the problem for q > 1. We want to know what Cn×q will

minimize ∥ C ′ΣnewC ∥ given C ′C = Iq.

Lemma 10 ∥ C ′ΣnewC ∥≥ λq(Σnew) given C ′C = Iq.

Proof: By definition, ∥ C ′ΣnewC ∥= maxxx
′C ′ΣnewCx subject to x′x = 1. Let

y = Cx. Then we want to maximize y′Σnewy given y′y = x′C ′Cx = 1. Since C has

rank q, its columns must span a subspace of dimension q. That means y is a linear

combination of q vectors in Rn. We want to maximize over y and minimize over C

the scalar y′Σnewy. Minimization over C implies that the columns of C should be the

q smallest eigenvectors of Σnew. Maximization over y implies y = uq. This in turn

implies the minimum over C of ∥ C ′ΣnewC ∥= λq(Σnew).

Therefore we see that C should contain the smallest q eigenvectors of Σnew. (Once

again we run into trouble if we have repeated eigenvalues. Let us assume we do

not.) This is a direct generalization of the q = 1 case. We need to show that Σ̃ =

BB′ = Σ
1
2CC ′Σ

1
2 satisfies Σ̃ = Σ̃Σ−1Σ̃. Now Σ̃Σ−1Σ̃ = Σ

1
2CC ′Σ

1
2Σ−1Σ

1
2CC ′Σ

1
2 . But

C ′C = Iq, so the preceding implies Σ
1
2CC ′Σ

1
2 = Σ̃. Every Σ̃GLS can be written in the

form Σ̃ = Σ1/2CC ′Σ1/2. To see this note that every GLS solution has a corresponding

B matrix where Σ̃ = BB′. The matrices B and C are in one-to-one correspondence

because B = Σ
1
2C and Σ has full rank.

Thus we have shown that for any D we can determine a unique Σ̃GLS. Now we

need to show that every Σ̃ has a corresponding D. (Actually this reverse map is

one-to-many for a fixed q.)

Let Σ̃ = BB′. Then C = Σ−1/2B. Note C ′C = Iq by definition of B. To
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construct D let Σnew = Σ1/2DΣ1/2 = UΛU ′, where U contains the q columns of C

and the remaining n− q columns are chosen orthogonal to the first q. Choose Λ such

that its first q eigenvalues are smaller than the remaining n − q eigenvalues. Thus

D = Σ−1/2UΛU ′Σ−1/2.

5.2 Relationship of GLS to the Byrnes andWillems’

Paper

When minimizing the D-norm we formulated the following problem:

Minimize ∥ C ′ΣnewC ∥ given C ′C = Iq, where Σnew = Σ1/2DΣ1/2. (Remember we

have to determine q a priori.)

It turns out that the minimization of this problem occurs when C contains the

smallest q eigenvectors of Σnew. That is if the eigenvalue-eigenvector decomposition

of Σnew = UΛU ′, where σ1 ≤ σ2 ≤ ... ≤ σn, then C = Uq. If Σnew has distinct

eigenvalues then we can find a unique C and therefore we can find a unique Σ̃ =

Σ1/2CC ′Σ1/2. If the eigenvalues of Σnew are not distinct then it may be the case that

we cannot determine C and thus Σ̃ uniquely. This is reminiscent of the problem dealt

with in Byrnes and Willems’ paper.

We can restate the problem as:

Minimize gΣnew(π) =∥ Σnew −QπΣnew ∥2 where gΣnew(π) is the error function over

every plane π in Rn and Qπ is the projection matrix onto the plane π.

The solution to this problem is Qπ = UdU
′
d where d = n− q and Ud contains the d

eigenvectors related to the largest d eigenvalues of Σnew. Note this formulation of the

problem results in the same solution as the problem stated above. To see this note

that Pπ = I − Qπ = UqU
′
q, where this time Uq contains the q smallest eigenvectors

of Σnew. This new formulation is the same formulation used by Byrnes and Willems.

Thus we can use their results on Σnew.

Essentially all we have done is transform our given data matrix Σ into a new

one Σnew that takes into account our weighting matrix D. Thus as shown in Byrnes
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and Willems’ paper the solution set to min gΣnew is a connected submanifold of the

grassmanian G(d, n). After our analysis on Σnew we must reformulate the projection

matrix Qπ in terms of Σ and not Σnew.

For example the noise projection matrix for the Σnew problem is just CC ′, whereas

in the original Σ problem the noise projection matrix is Σ̃Σ−1 = Σ1/2CC ′Σ1/2Σ−1.

The solution plane for the Σnew problem is just all x such that C ′x = 0. The

solution plane for the original Σ problem then becomes all x such that C ′Σ− 1
2x = 0.

In summary we can use Byrnes and Willems’ results if we transform our original

data matrix Σ to Σnew = Σ1/2DΣ1/2.

34



Chapter 6

Problems with Common

Performance Criteria

There are many obvious performance criteria. Sadly many of them fail to help us

determine a “best fit” solution. They work fine if we have a very structured scheme

or we predetermine q. For GLS though we have a less structured solution space and we

do not predetermine q. Also the SVD solution is a member of the GLS solution. We

know in the absence of all other information the SVD solution has nice characteristics.

6.1 Maximization of Signal-to-Noise Ratio

When trying to maximize the signal-to-noise ratio (SNR) we try to maximize trace(Σ̂)/

trace(Σ̃). If we maximize this with respect to q then we see that this maximization

always implies q = 1. This is because we want to both maximize trace(Σ̂) and mini-

mize trace(Σ̃). The best way to do this is to use an SVD solution scheme where we let

Σ̃ contain the smallest eigenvalue of Σ. The problem with this performance criterion

is that it tries to blindly maximize the SNR. In this process it does nothing to deter-

mine which parts of the data are true signal or noise. It just tries to account for the

most data. But accounting for the most data possible is exactly the same thing as

assuming the q = 1 minimum eigenvalue SVD solution. (Kalman, 1989, pages 12-14.)
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6.2 Minimize Norm of Σ̃

This performance criteria tries to minimize ∥ Σ̃ ∥. Once again we see that the this

performance criterion does not take into account the structure in the data. It just

tries to account for the most data possible. This is the same as assuming q = 1 and

that the noise lies on the smallest eigenvector of Σ.

Note that if we do have other conditions on ∥ Σ̃ ∥ like a norm restriction on the

noise then we can as in chapter four sometimes determine q. In general though we

do not have any information on how large the noise can get so we cannot determine

q. This is just a restatement of theorem 9. Even as the noise goes to zero we can

always identify any q solution. It is only when the noise equals zero that we know q

uniquely.

6.3 Maximum Likelihood as a Performance Crite-

rion

Maximum likelihood is often used to estimate unknown parameters such as the mean

and variance of a random variable. We will show that it may be possible to use

maximum likelihood as a performance criterion if we make some new assumptions.

Note, though, that there has been some controversy over whether maximum likeli-

hood makes “sense” for our identification problem. In this chapter we will discuss

the problems of using maximum likelihood as a performance criterion over the GLS

scheme.

We now include the assumption that the noise is probabilistic in nature. Specif-

ically we assume that x = x̂ + x̃, where x̃ is a gaussian random variable with zero

mean and covariance Σ̃ and x̂ is unknown but deterministic. The maximum likelihood

procedure determines the parameters that best explains the data. In our problem we

are given xi for i = 1, ..., T and want to determine the x̂i for i = 1, ..., T .

In his lecture notes Kalman states that the maximum likelihood method fails as a

performance criterion. According to him one cannot use maximum likelihood meth-
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ods to determine Σ̃ unless q = 1. And even in the case where q = 1 the maximum

likelihood solution is just the SVD solution. Kalman attempts to maximize the like-

lihood of L(x̃i; Σ̃Pop) where Σ̃Pop is the noise population covariance matrix. Kalman

opts to determine the noise. He uses a two step procedure. We give a summary of

Kalman’s method:

Assumptions on the data: (Kalman, 1990, page 7.2.)

Assumption 1: xi = x̂i + x̃t for i = 1, ..., T are T independent random samples of a

Gaussian random vector x.

Assumption 2: For any xi, x̂i is the unknown mean of x such that there exists a

matrix A where A′x̂i = 0 for all i.

Assumption 3: covx̃ = Σ̃Pop, where Pop means population. These are independent

of t and they are nonnegative definite.

Assumption 4: E(x̃i) = 0 for all i.

The maximum likelihood function L is just the product of the probabilities of each

data vector. This follows from assumption one which states that the different mea-

surements are independent. From Anderson (Anderson, 1958, page 45) and Kalman

(Kalman,1990) we see that the function L is

L(x̃i; Σ̃Pop) = (2π)−nT/2(detΣ̃Pop)
−T/2 × exp[(−1

2
)
∑
i

∥ x̃i ∥2Σ̃−1
Pop

].

(Here T is the number of independent measurements.) This is equivalent to L(x̃i; Σ̃Pop) =

(2π)−nT/2(detΣ̃Pop)
−T/2 × exp[(−1

2
)traceΣ̃DataΣ̃

−1
Pop].

To maximize L we need to maximize with respect to both Σ̃Pop and x̃i (or Σ̃Data.)

First we will maximize with respect to Σ̃Pop. Then we will maximize with respect to

the data. This maximization procedure is used by Kalman. Maximizing with respect

to Σ̃Pop and then maximizing with respect to Σ̃Data may lead to problems because

the optimal Σ̃Pop depends on Σ̃Data. Specifically Σ̃optimum
Pop = 1

T
Σ̃Data (Anderson, 1958,

lemma 3.2.2).
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I believe that one should incorporate the model straight into the likelihood func-

tion. In this way we do not need to run two different maximizations on the likelihood

function. A critique of this whole procedure, though, is beyond the scope of this

thesis. The maximum likelihood method represents a promising direction of research.

38



Chapter 7

Conclusions

In this paper we have shown that the GLS solution scheme has many nice properties.

Among them we have shown that a linear projection matrix will exist iff we are using

the GLS scheme. We have also shown that every GLS problem is a TLS problem.

That is every GLS solution is an SVD solution under a suitable transformation, or

weighting, of the measured variables. We use the D-norm to carry out the weighting.

We have also related GLS to the work of Byrnes and Willems. We can use their work

to help us deal with repeated eigenvalues.

We have also shown that maximum likelihood may be used as a performance crite-

rion over different schemes. It is not clear that Kalman’s formulation of the maximum

likelihood scheme is the most appropriate one. Kalman chooses to maximize with re-

spect to both the signal and the model. I believe that any such maximum likelihood

method should some how incorporate the model into the likelihood function itself. It

appears that this latter method may be a topic of fruitful research.

Finally we have given a new canonical decomposition of all GLS solutions, Σ̃ =

Σ1/2CC ′Σ1/2, where C is any n × q matrix such that C ′C = Iq. Thus we see that

the number of GLS solutions for a given q is equal to the number of q-dimensional

subspaces of Rn.

There are many open questions that need to be resolved. We still do not have a

firm understanding of the structure of GLS solutions. We do not have a nonarbitrary

criteria for determining q. This research might entail the need for defining something
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like noisy rank.

It is not clear how to determine which GLS solution is the correct solution to

choose from. We need outside information to make this decision. The structure of

this outside information needs to be determined.

We need to determine criteria so that we can determine the maximum corank

solutions in the Frisch case. We have criteria only for the q = 1 case. We also need to

prove or disprove the statement: we can determine the model uniquely as the noise

goes to zero.

Finally it is my belief that the space of regressors is equal to the space of GLS

solutions. That is we can construct any GLS solution from a diagonal D matrix. A

diagonal D matrix represents a weighting where we have different variances on each

component. There are no cross variances among the components in this weighting

scheme. The space of regressors is obviously smaller than or equal to the GLS space.

It needs to be shown that it is either equal or strictly smaller than GLS.

In conclusion it appears that we cannot in general unambiguously determine q or

A without some outside information or outside criteria. This whole problem arose

because we wanted to examine what the underlying assumptions behind regressions

were. In this thesis we have discussed different identification schemes and different

performance criteria.
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