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Abstract
Richardson [Richardson, 1993] has shown that a large class of one-dimensional sets in
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Chapter 1

Introduction

The techniques of tomography have been used extensively in computer vision and

medical imaging. Here we discuss a specific type of tomography called line inter-

section tomography (LIT). LIT allows us to reconstruct one-dimensional sets in the

plane from the set's line intersection function. This line intersection function counts

the number of times, including multiplicity, a given line intersects our image set.

Richardson [Richardson, 1993] has shown that this reconstruction can be carried out

with arbitrary precision for a class of sets called the C-sets. These are sets which can

be described as the union of a finite number of closed curves in the plane. Note an

important subset of the KC-sets is the class of curves in the plane.

Herein we give a summary of Richardson's work, describe in detail the line intersec-

tion function, prove a reconstruction algorithm, and provide some general heuristics

for implementing this algorithm.

1.1 Problem Background

Traditionally LIT has been used for the detection of boundaries of objects in an image.

Thirion [Thirion, 1992] has shown that LIT is very good for detecting boundaries of

highly contrasted objects like bones and blood vessels. In this way both internal and

external boundaries can be detected. LIT, though, works very poorly on occluded

objects. Unlike other transforms, Radon for example, that take the integral of the
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density over a slice of the image, LIT just counts intersections; so dense occluded

objects cannot be reconstructed.

LIT, from a historical point of view, derives its mathematical basis in integral

geometry. Specifically it concerns itself with the problem of determining when a one-

dimensional set in the plane is completely determined by its projections. Richardson

has shown that the KIC-sets are completely determined by their projections.

Finally LIT is related to the so called Hough transform of computer vision. The

Hough transform is used to determine line segments in an image. We will show in the

next section, though, that the Hough transform is limited to reconstructing objects

that are easily parameterized. The work described herein amounts to the inversion

of the Hough transform.

Until now there has been no efficient algorithm proposed for general curve recon-

struction using LIT.

1.2 Hough Transform

The Hough transform was developed to detect lines in computer images. It consists

of parameterizing all lines that lie in the plane by two parameters: namely the angle

it makes with some fixed coordinate system and the distance between the line and

the origin of said coordinate system. The parameter space is S1 x R1. We partition

this space into disjoint regions, usually boxes. We pick some representative point for

each region in the parameter space. For every point in the image and for every region

in the parameter space we check to see if the point lies on one of the lines in the

parameter region. If it does we mark a tally for that region. We say a representative

line is in the image if the value for its region is greater than some threshold.

We can generalize this transform to arbitrary feature identification [Leavers, 1992].

The features, though, must be parameterized be a small number of parameters. For

example the feature circle can be parameterized by two coordinates for the origin and

one for the radius. Thus the parameter space is three dimensional. One sees that

for complicated shapes the number of computations increases exponentially with the
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number of parameters.

Though the Hough transform works well for lines and other simple features it

does not do well on detecting arbitrary curves in images. The reason is that arbitrary

curves require many parameters to encode them. Kulkarni [Kulkarni, et. al. page

939] shows that it takes an exponential, in the accuracy parameter, number of rep-

resentative points to encode a curve of finite length and turn. (Turn is a measure of

the absolute total curvature of a curve.) Hough transform type algorithms have not

been used for general curve reconstruction.

1.3 Stochastic Approaches

Though Richardson provides a theory for reconstruction in the exact case, any algo-

rithm we devise will have to operate on partial information. Kulkarni provides one

such reconstruction in a stochastic setting. We provide a deterministic algorithm.

Kulkarni shows that all curves of finite length and finite turn can be reconstructed

to arbitrary accuracy by using a uniform sampling of the projection lines in the PAC

sense. Unfortunately there are two major problems with this reconstruction: the

number of sampling points is exponential in the accuracy parameter and we do not

reconstruct the original curve but instead its line intersection function.

What follows is a brief summary of the methods Kulkarni used that will be of help

to us in the following chapters.

Kulkarni uses the idea of metric entropy. Specifically let [X, d] be a metric space.

We say a set XE is an cover of X if every member x E X is less than away from

some member of X". The metric entropy is then the log2lXlI. The metric entropy idea

is similar to the idea of picking representative points discussed in previous section.

Let the line intersection function be no(l). This equals the number of times the

line I intersects the curve c.

We define a distance over the space of curves to be dp(cl, c2) = Enc,, (1) - n,, (1),

where the expectation is taken over the uniform distribution over the space of lines

1 E S1 x R 1. Though we are using dp to measure how close two curves are, it is

8



really a measure of how close the curve's respective line intersection functions are.

Richardson [Richardson, theorem 3.1] proves that if dp(cl, c2) = 0 then cl = c21-

almost everywhere. (Where W1 is the one-dimensional Hausdorff measure.)

Kulkarni shows that the space of curves of finite length and finite turn has a metric

entropy that is polynomic in e.

What Kulkarni's PAC algorithm does is sample the no(l) function at many dif-

ferent points 1. Then it finds the closest fit of the data to one of the n,(.) functions

in our -cover. We use a preexisting table to match our best fitting n,(-) to its un-

derlying curve. This table, though, will have an exponential number, in the accuracy

parameter, of entries. PAC arguments have been mainly used for proving existence of

algorithms. Usually effienciy does not come into play. This is the case with Kulkarni's

PAC algorithm.

1.4 Summary of Thesis

In chapter two we give a review of Richardson's work. We give a reconstruction

algorithm in chapter three. Then we give a detailed description of the line intersection

function in chapter four. In chapter five we discuss what "good approximation" means

and give some basic heuristics for implementing an LIT algorithm. Finally in chapter

six we conclude and discuss some open problems.
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Chapter 2

Background

Richardson has constructed a rigorous mathematical theory for the reconstruction of

certain one-dimensional sets in the plane. What follows is a summary of Richardson's

results and noted definitions and theorems that will be useful in the following chapters.

The basic idea is to model an image set A by a number of curves C = {ci). Each

curve c E C induces an extended indicatrix (tangent curve) in the space of lines g.

These extended indicatrices turn out to be closely related to the jumpset of the line

intersection function nA. Thus from nA one can reconstruct A.

2.1 Background

A one dimensional set in the plane is any set E C R 2 such that 0 < l1(E) < oo.

2.1.1 Curves

The following are the standard definitions for parameterized curves and curves. A

parameterized curve is a continuous function c: [a, b] -+ Rn which is non-constant

on any open subinterval. We say another curve c' : [c, d] -+ Rn is equivalent to c

if there exists a homeomorphism : [c, d] -+ [a, b] such that @(c) = a, @(d) = b,

and c' = c o T. An equivalence class over the parameterized curves is a curve. A

parameterized curve is closed if c(a) = c(b). We denote cl[tl,t2] to equal the curve c
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restricted to [tl, t2]. A non-closed curve is simple if it does not cross itself. The trace

of a curve c is: tr(c) := {x : c-l(x) 0}. An inflection point is a point where a

convex and a concave segment meet. A cusp is a point where two concave or two

convex segments meet with common tangent. A corner is a point where the incoming

and outgoing tangents to the point differ.

We now define total length and total absolute curvature. First we define length

and absolute curvature for piecewise linear curves. Let v, ..., v,n be a set of n + 1

points in Rn. Let ai be the line segment connecting vi-1 to vi. Call the set of

line segments P = {ai}. The length of the piecewise linear curve P is defined as

L(P) := zn 1 vi - vi-l I. Let the exterior angle between line segments ai and ai+l be

'pi for i = 1, ..., n - 1. Then the absolute curvature is K(P) = Z-l pi. For a general

curve c we define the length of c to be C(c) := sup {C(P) : P is inscribed in c}. The

absolute curvature is (c) := sup {icr(P) : P is inscribed in c}. Note that when c is

continuously differentiable then the above definition of length corresponds to f ICldt.

When c is twice differentiable then the above definition of curvature corresponds to

f(C) n(t)ldt, where c(t) is arclength parameterized and r(t) is the curvature at the

point c(t).

We say a curve is rectifiable if C(c) < oo. All rectifiable curves can be uniquely

parameterized by arclength. We let T,(t) denote the unit tangent vector wherever it

exists.

2.1.2 Lines and Angles

Let S1 be the unit circle and let 0 and *0 be two elements that form a basis for S1.

That is 0 A *0 = el A e2 where e, e2 are the standard orthonormal basis elements in

R2 . We let L(01, 02) equal the smaller of the two arcs of S1 with 01, 02 for endpoints.

Let IL(01, 02)1 equal the angle between the vectors 01 and 02. Finally let R(0 1, 02) =

sign((01, *02)) (01, 02)1. This is just the amount 02 must rotate to coincide with 01.

Since we are interested in the number of intersections a given line has with our

curve we need an analytic way to describe lines. As stated before a line can be

parameterized by a tangent angle and a distance from the origin. Specifically =
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R1 x S1. Let G = (p, 0) E S. Then let G = {x E R2 : (x, *0) = p}. Note that while G

is an oriented line its image in R2 is not. We can define a measure on as follows:

dg(G1, G2) = ((P1 - P2)2 + I(0 1, 0)2))2.

2.1.3 Generalized Sets

Since it is possible for a curve to cross itself we need a notion of multiplicity. We

define a generalized set to be any set with multiplicity. If A is a set in Rn then we

denote A(x) to be the multiplicity of the member x in A. The multiplicity can be

infinite. Richardson has shown how to generalize the notions of Hausdorff measure and

trace to deal with generalized sets. Specifically Vt°(A) = fR2 A(x)d'T ° and /1 (A) =

fR2 A(x)d7- 1 and gtrc(x) := {c-(x) mod L(c)}l. We let nA(G) = fG A(x)d- ° . For

a given curve c we denote nc := ngtrc

2.1.4 C-Sets

We call a generalized set A a K-set if there exists a finite set of closed curves with

finite total absolute curvature C = {cl, ..., cn} such that 7W/(i2A - gtrCI) = 0 where

trC = UcEctrc and gtrC = EcEc gtrc. We say in this case that C represents A. If

2A = gtrC then we say C represents A exactly. Two sets C1, C2 are equivalent if

7-l(Ig_trC 1 - g-trC2 J) = 0. The factor of two is required because we are trying to

approximate a set A by closed curves. For example we cannot approximate a simple

nonclosed curve by a closed curve.

We define (C) = CeC l<(c). Now we can define the curvature of an arbitrary

IK-set A. Define *(A) := inf {nI(C): C represents A}.

Note that n* does not correspond to our general notion of curvature rn for curves.

For example take a simple non-closed curve c with curvature I(c). Then *(c) =

K(c) + 7r. This is because C can represent the image set A but it cannot represent the

"total turn" of A. In general for a given set A our intuitive notion of curvature will

equal r* minus 7r for every endpoint in A.2/ V VI IIrII 1 1
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2.1.5 Tangency and Regularity

Finally we discuss tangency and regularity. There are three different but related

notions of tangency: tangency to a plane set, parametric tangency to a curve, and

generalized tangency.

To define tangency to a plane set we need the notion of density. For any set

E C R2 let the density of E at x be e(E, x) = limp+o+ 17- l(Bp(x) n E). We say x

is a regular point of E when O(E, x) = 1.

We define a sector at x in the direction of y with width to be S(x, y, e) := {z c

R2 : (z-x, y) > (1-e)IyIz-xl}. We say y is a tangentto E at x if (EnS(x, y, e)) > 0

and for every e > 0 we have E(E\S(x, y, e)\S(x, -y, E)) = 0. We say E has a tangent

line at x if both y and -y are tangent to E at x.

Note because 6 acts locally like R2 we can use the above definitions for sets on S.

We say a curve c has unit left tangent To(t-) at x = c(t) if To(t-) = limti-t- Ic(t)-c(t)

exists and has unit right tangent T,(t+) at x = c(t) if T,(t+) = limtj-+t+ (t,)-ct) ex-

ists. We say a curve c has a tangent line at x = c(t) if TC(t-) = T (t+).

Note that if y is a tangent line to trc at x = c(t) then g = Tc(t).

We define a generalized tangent to a point x = c(t) to be any vector which is a

positive linear combination of Tc(t-) and Tc(t+).

2.1.6 Richardson's Main Theorem

We define the following pseudo-metric on the space of generalized sets: d(Al, A 2) =

f InAl(G) - nA2(G)IdG.

Theorem 1 If Al and A 2 are IC-sets, then dz(A1 , A 2) = 0 if and only if 71(1A1 -

A2 1) = 0.

Proof: Richardson, theorem 3.1.

If we can approximate nA in the dz sense then we can approximate the underlying

set A in the U1 - measure sense. Note dz is just a deterministic version of Kulkarni's

dp.
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2.2 Curves in R2

Since we are interested in reconstructing curves, or more specifically sets of curves,

we will need a few local properties of curves. To simplify our work we assume that

c(t) is arclength parameterized.

Theorem 2 If c is closed then in(c) > 2r.

Proof: Richardson, theorem 4.1

This next lemma will be used throughout the paper. It basically states that

absolutely continuous curves of finite length and finite total absolute curvature have

one-sided tangents everywhere.

Lemma 1 The following hold for all t in the interior of the domain of c, and the

corresponding one-sided versions of (i) and (ii) hold at the endpoints of non-closed

curves.

(i) lime o+K(c[tt+E]) = lim +o+K(cl[t-E,t]) = 0.

(ii) Tc has right and left limits at t, Tc(t+) and To(t-), respectively.

(iii) If t E (a, b), then (c[a,b]) = ((c[a,t]) + IL(T(t-), T,(t+)) + (I[t,b])

Proof: Richardson, lemma 4.3.

Line (ii) states that the one-sided tangents exist everywhere. Line (iii) states that

the total arc curvature is equal to the sum of the curvature upto the point and the

curvature after the point and any curvature at the point. That is L(TC(t-),TC(t+))

denotes the the angle through which the tangent moves at the point c(t).

In general we will allow Tc(t) to be any element in (T(t-),T(t+)). (I.e. it is a

generalized tangent.) Let .J := t : T,(t+) T,(t-)}. The tangent hull is To(t)

L(T(t-),T(t+)). Also we will find it convenient later to talk about T,(t)

T,(t) U -T,(t). We will in general be interested in the unoriented properties of c.

This is because the line intersection function nc does not tell us anything about the

direction of parameterization of the curves in C.

Lemma 2 Assume T,(t+) L -T,(t-). If t t, ti' t, and i - 0, where i =

Ic(t')-(tl)l, then 0 E Tc(t). Conversely, if 0 E T,(t), then such sequences exist.
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Proof: Richardson, lemma 4.5

Note that when To(t+) = -Tc(t-) it is not clear which way the tangent will turn.

2.3 Extended Indicatrix

As usual let c(t) be an arclength parameterized curve. This time we insist it be closed.

In this section we will show how the curve c induces a curve on g called the extended

indicatrix. The indicatrix will be closed, parameterized by arc curvature, and have

period rn(c).

We will use the variable s to denote the arc curvature parameter. Intuitively

s(t) = f I(t') Idt' + E (angles at all corners upto time t).

The mapping s(t) is not invertible in general so we define:

7T(s) := inf{t E [0, oo) : (CI[O,t]) > s).

Lines have no curvature so they do not contribute anything to the total absolute

curvature. We say an interval [a, b] is a line segment in c if there exists a 0 such that

c(t) = c(a) + (t - a)O for t E [a, b]. An interval is a maximal line segment if it is not

a proper subinterval of another line segment. Let L, := U{(a, b) : [a, b] is a maximal

line segment in c}.

Note that if 7T(s+) > T(s-), then [(s+), Tc(s-)] is a maximal line segment in

c. (Richardson, lemma 5.1)

Definition 1 If c is a closed rectifiable curve of finite total absolute curvature in R2,

then we define its extended indicatrix i : R -+ by

O-c(S) := (Pc(s),Oc(s)),

where O,(s) E Tc(wT(s)) is defined by the condition (cl[o,c(s)])+I(0(s), T(T(S)-))l =

s. And p(s) := (c(r(s)), *(s)).

Lemma 3 If 0 T(t), then there exists a unique s E R such that t E [rC(s-), Tr(s+)]
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and 4'(s) = ((c(t), *0), 0).

Proof: Richardson, lemma 5.2.

This lemma shows that if 0 is a tangent or a generalized tangent to c at c(t) then

((c(t), *0), 0) must lie on the extended indicatrix.

Theorem 3 The function Xc(s) is a closed rectifiable curve of period n(c), and the

function Oc(s) is an arclength parameterized closed rectifiable curve.

Proof: Richarson, theorem 5.3.

An important part of the reconstruction of c depends on the tangents to 4cO on .

Lemma 4 For any s E R, there exists sequences sj t s and Sk ; s such that

(i)limjPoo (c(5j) PC(s)) = c(T(s-)), Oc(s)).
R (0 -j), (s))

Pc(Sk) - (s) ) -(
(i(Ci(mk (+)), O.)(S))

Proof: Richardson, lemma 5.4.

A point x E R2 can be decomposed into x = (x, *0) * 0 + (x, 9)0. Where 0 and *0

are taken to be unit vectors as described in section 2.1.2. We know p = (x, *0) and

by lemma 4 we know (x, 0).

When (i) and (ii) converge to the same limit for all sequences sj s and k s

we see that piC has one-sided tangents at Xc(s). They are equal only when rT(s-) =

rT(s+). When Tc(s-) = Tc(s+) and the limits are unique then there exists a tangent

at ,(s) and therefore there is a locally unique preimage. Richardson defines the

following map Y: T(g)\{(: dO(~) = 0} -+ R2 by

Y(():= 0 dj o 0

where (p, 0) = 7r(~) and T(5) is the tangent bundle to 5. This mapping allows

us to map a given tangent G tr4' to a point x E trc where G is tangent to c at

x. In some sense this is akin to the inverse function theorem. Since 'CO is absolutely

continuous we know that tangents exist almost everywhere.
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Theorem 4 A closed rectifiable curve of finite total absolute curvature is uniquely

represented by its extended indicatrix.

Proof: Richardson, theorem 5.5.

If G = (p, 0) then let -G = (-p, -0). Define gtr ±i c := gtr' + gtr - Vc and

tr i I/Jc := trV) U tr - V), This allows us to remove any explicit orientation on the

curves.

Note when T,(t+) = -T,(t-) then ±O(s(t)) is the whole space S1. That is we

can turn both clockwise and counterclockwise 7r degrees at the point c(t).

Theorem 5 If is tangent to tr ± hi and ±irg(() = ±i4c(s), then c(%T(s)) = :().

Proof: Richardson, theorem 5.6. If ~ is tangent to tr +- at V4c (s), then, for every

sequence Gi - 7rg(), {Gi} C tr i 'ci, we have dp() = limi- o-). By lemma 4,

TC(s-) = %r(s+) and -(c(T%(s)), 0) = d(), hence c(%T(s)) = Y(F). If rg(~) = -c(s),

then -(c(r(s)), 0) = dp()) still holds since R(01, 02) = 7(-01, -02), and the theorem

follows. D]

We assume our image space is bounded by a circle of radius R centered at the

origin. That is A C {x E R 2 : lx < R}.

Lemma 5 If the image space is bounded by a circle of radius R then both p and dp(W)

are bounded by R.

Proof: We know x = F(J) := p * 0 - d() 0 . Since Ix is bounded by R. We seedO(t) p

that p and dp( ) are bounded by R. This is true for all x E A except on a set of

measure zero. But by continuity the result follows on this set of measure zero. El

2.4 C-sets and Regularity

Until now we have been discussing properties of one curve c. But Richardson has

shown that we can generalize this to IC-sets. We will define the generalized indicatrix

to be gtr ± tc := ,,Ec gtr ± bC and tr ± Ibc := UcEctr ± ,.
We define an arc-segment of A to be any subset E C A such that E = trcl(a,b) for

some simple curve c define on [a, b] and A(x) is constant on E.
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Lemma 6 If A is an exact IC-set and if x E A, then there exist arbitrarily small r

and = (r, x) such that A n (Br+(z)\Br_-(x)) is a union of disjoint arc-segments

of A.

Proof: Richardson, lemma 6.1.

A corollary of this lemma is:

Corollary 1 If C is equivalent to C' then gtrC = gtrC'.

This states that there is only one exact IC-set for a IC-set A but that there are

many realizations of it in terms of sets of curves C.

We can now generalize theorem 5.

Theorem 6 If is tangent to tr ± bc and ±irg~(J) = +c(s), then c(rc(s)) = ().

Proof: Richardson, theorem 6.2. We note that either is tangent to one of the

extended indicatrices ?$ or that tr ± 7bc has a tangent line at r () but none of the

extended indicatrices tr + do. In the latter case it then follows that either ~ or -~

is a one-sided tangent to tr + c. E

The exceptional case described in theorem 6 occurs when there exist curves c1, c2 E

C which have inflectional points with the same tangent at the same point x E R2.

See Figure 2-1.

To understand this better note that 0cb(s) has a tangent everywhere except at

points where pc(s)-P(S) = (c(T(s-)),(s)) or limk- Pc(Sk) -C(S
R(O.(sj),O.(s)) 'R(Oc(sk),'o(,))

-(c(rc(s+)),O,(s)) fail to exist or whenever r(s-) T(s+). And 4C'(s) has a tan-

gent line everywhere it has a tangent except when dO(s-) dO(s+) Which of courseds Tds

represents an inflection point.

Lemma 7 If nc(G) = oo then G E tr ± bc, but tr ± Oc does not have a tangent at

G.

Proof: Richardson, lemma 6.3.
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The only points of the extended indicatrix that do not have tangents are those

G c tr ±t ec that represent lines in the curves C, multi-tangents, and those points

that represent the limit point of an infinite oscillation.

It turns out that if nc(G) is uncountably infinite then G must lie on a line segment

of c. If nc(G) is countably infinite then c must oscillate around the line G an infinite

number of times. We can find curves with infinite oscillation that still have finite

turn and finite length. For example take the function e- t2 sin(l) for t [0, 1]. We

will discuss this again in chapter 3.

Next we show why the jumpset of nc can be used to find the extended indicatrix.

Lemma 8 If tr + Ic has a tangent at G = (p, 0) and ±+;b(s) = fG, then

lim_ 4o+lim_+O+C Ic-(G) n ((s) - 6, Tr(s) + )1 E {0, 1, 2}

limsO+ limo+ Ic-l(G) n (r-e(s) - 6, r(s) + 6)1 + Ic-(G_e) n ((s) - 6, T(s) ±6)1 = 2

Proof: Richardson, lemma 6.5.

Where G = (p + , 9) and G_- = (p - , ). The value one occurs in the first

equation of lemma 8 when c(Tr(s)) is an inflection point on the curve c.

See Figure 2-2.

2.5 Total Curvature Minimization

For any exact K-set A corollary 1 tells us that all exact representations have the same

generalized traces; but they may have different total absolute curvature. As we will

see in the next section the function nc gives us information only on the curvature

minimal representation. This section describes some properties of curvature minimal

sets. We will also show the surprising fact that even though curvature minimality is

a global property it can be described completely locally.

Theorem 7 Every C - set has a curvature minimal representation.

Proof: Richardson, theorem 6.6.
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To measure total absolute curvature we need a way to measure the curvature at

every point x E R2. Define:

gTanC(x) () := {(l(t E c-l(x) : T(t+) = 0}modL(c)I
cEC

+It E c-1(x) : -Tc(t-) = 0}modL(c)l)

That is gTanC(x)(0) equals the number of arc-segments that leave the point x

in the 0 direction.

Let gTanC(x) = {O, ...9m} equal the generalized set of angles with associated

multiplicity. It contains all the tangential angles of all the arc-segments leaving the

point x. Our job is to match the different arc-segments in a curvature minimal way.

We call a matching that matches Tc(t+) to -Tc(t-) at x, wc(x). We call any

such matching K-optimal if it is a curvature minimal matching. That is for every

possible matching w(x) over gTanC(x) we have to minimize the function k(x) =

E= IL(i,- -(i))I

Lemma 9 If C is curvature minimal , then the matching wc(x) is K-optimal on

gTanC(x) for all x E R2.

Proof: Richardson, lemma 6.7.

The converse is also true. We can describe curvature minimality in a completely

local way. The intuition is as follows: given two equivalent sets C and C' their

generalized traces must agree everywhere. Thus C and C' can differ only in the way

they connect at crossings. Specifically they can only differ at points of crossings where

there is a choice of how to match paths.

Lemma 10 If wc(x) is K-optimal for all x E R2, then C is curvature minimal.

Proof: We prove that if C is not curvature minimal then it is not K-optimal

everywhere. Let C be any non-minimal curvature representation of A. Let C be a

curvature minimal representation. By corollary 1 gtrC = gtrC. Now k(x) < k(x)

for all x E R2 . If there was one point x where k(x) > k(x) then C would not be a
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curvature minimal representation since we could change the matching of C at x to

that of the matching C uses at x.

Now there must be at least one point x where k(x) < k(x) is a strict inequality.

Otherwise * (C) and *(C) would be the same. But this states that C is not K-

optimal at the point x. O

An obvious question to ask is whether the curvature minimal representation is

unique. As we will see in the next section the answer is no.

2.6 Relation of nc to 0c

As stated before the jumpset of the function nc is closely related to the tr ± ?Pc.

Lemma 8 gives us some intuition as to why this is the case. See Figure 2-2.

Lemma 11 If G V tr ±i 4c, then nc is constant on Bp(G) for some p > 0.

Proof: Richardson, lemma 7.1.

Note this implies that Snc C tr +f "c. By lemma

in C are not counted in Snc so the subset is strict.

The determination of tr ± c is not enough to

multiplicities of the Do functions: gtr ± 0c.

Theorem 8 If tr ± 0c has a tangent line at G =

gtr ±i c(G). If furthermore C is curvature minimal

almost all G E tr ±i tc.

8 we see that inflection points

reconstruct C. We need the

(p, 0), then n+ (G) -n- (G) <

then the equality holds for W71-

Proof: We will give a pseudo-proof of this result. A more rigourous proof can be

found in Richardson, theorem 7.3. First we note that the slope of J is bounded. Now

since is a tangent line to tr ± -Pc we know that G = rg () is not tangent to an

isolated inflection point of some curve c E C. We say isolated because it is possible

for G to be a tangent line to separate inflectional points as described in theorem 6.

This tells us that the curve tr tPc does not make a r degree turn at G. Therefore

there exists a ball Bp(G) that is divided into two regions, an upper and a lower region,
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by tr ±i c. nc will be constant over the two connected components, by lemma 11

and lemma 6. Thus n+(G) - nc(G) can be replaced with nc(G+) - nc(G_). Thus

by lemma 8 the jump in nc at G divided by two is equal to the gtr + 'c(G). The

factor of two comes into play because gtr + ibc(G) = gtr - Ec(G). 

2.7 Richardson's Reconstruction

In this section we describe Richardson's approach to reconstructing a /C-set A from

nA. In the next chapter we will propose a similar approach with some changes that

aid in algorithmic constructions later.

We define two functions: FrrVe(x, 0), rfneLa(x, 0) : R 2 x S1 - R.

Let E T(9) where 7rg(~) = G = (p, 0). If is tangent to SnA, set

urve (x, 0) := n+ (G) - n (G).

If no such exists for a given (x, 0) pair then set rpcre(x, 0) = 0. This captures all

the curved parts of the set A.

Now let

Fnear (x, ) := 2 [liminfro+ _nBr(x) AdlJ
2r

Where L.J is the floor function. This captures all the linear parts of the set A.

Now let us define the generalized set A in R2 by

rA() := SPoeSl(rlsnear + rcurve)(x, 0).

This recovers most of the original set A except points of inflection, endpoints, and

multi-tangents.

Lemma 12 Let A be an exact K-set and C any curvature minimal representation of

A. Then FA < g-trC and the equality holds on a dense subset of A.

Proof: Richardson, lemma 8.3.
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Finally we can reconstruct all of A by the following two operations:

A = OcllA.

Where OA(x) := limsupro0+ fJBr(x) Ad'° 0 and clA(x) := limsuprosupyeB(x)A(y).

The closure operation allows us to pick up the endpoints and inflectional points that

were missed because they do not have tangent lines in their respective extended in-

dicatrix. The circledot function adjusts the multiplicity of A for crossings.

In summary Richardson's reconstruction requires two scans over R2 . One scan

looks for curved parts the other looks for linear parts. For every point x E R2 we look

to see what contributes more the curved or the linear parts of the image. Then finally

we "clean-up" the measure zero error by using the circledot and closure functions.
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Chapter 3

Reconstruction

We are interested in implementing a reconstruction algorithm. To this end it will be

necessary to enforce some regularity conditions on the types of sets we would like to

reconstruct.

Richardson's reconstruction algorithm, section 2.7, requires two passes of nA. The

first pass looks for the the curved parts of A and the second pass looks for the linear

parts of A. One of Richardson's open problems concerns whether A can be recovered

just from FrCA 'e. Another way to state this question is are both parses of R 2 necessary?

By restricting the class curves to be reconstructed we can use F"u rve to reconstruct

the linear parts of A.

In what follows we will show that one can reconstruct the linear parts of A by

looking at the so-called singularities of tr ± 4ic.

Let C be a curvature minimal representation of the exact K-set A.

Definition 2 A singularity of tr f bc is any point G E tr ±i 4c that does not have

a tangent line and/or is not a regular point.

We will now motivate why looking at singularities can be helpful in reconstructing

the linear parts of A. Take for example a curve c containing a line segment and its

corresponding indicatrix C,. We know that 0, will have a corner at a point G E 

where the line G represents the tangent to the line segment. To determine the length

and position of the line segment, though, we need to know the slopes of troI coming

26



into and leaving the point G. But once we know these, and by using the fact that

the curve c is continuous, we can reconstruct the whole line segment.

We will show that one can classify the singularities and thus reconstruct all the

linear segments. In general there are a countable number of singularities. We need

to know both where the singularities are and also what the slopes of 'ic are coming

and leaving the singularity G.

That is we need to ensure that the left and right tangents of tc exist at every

singularity. We first give an example of a curve where the right and left tangents of

tic do not exist around a singularity. Then we will show how to restrict the class of

curves so that this problem will not occur.

Specifically consider the curve c(t) = (t, e-2sin(-)) over the interval t E [-1, 1].

It can be shown that this curve has both finite length and finite turn. But note that

the line equal to the x-axis crosses this curve an infinite number of times. Thus by

lemma 7 the right and left-sided tangents at t = 0 of 0c do not exist.

To get around these problems we will assume that our curves only have a finite

number of inflection points. This avoids the problems of rapid oscillation. This

condition allows us to partition C into a finite number of concave and convex pieces.

Thus we are able to do away with the differentiability problems, such as the one

discussed in the example above.

The next section will show that the set of curves with finite inflection is still very

large and expressive.

3.1 Curves With Finite Number of Inflection Points

Definition 3 Let D1 = (so - , so) and D2 = (so, so + 6). Then x is an inflection

point if there exists a 6 > 0 such that O(s) is increasing (decreasing) on D1 and O(s)

is decreasing (increasing) on D2.

Lemma 13 If nc(G) = oo and T7(so-) = Tc(so+) then the curve c has an infinite

number of inflection points.

Proof: By Richardson, lemma 6.3, there exists ti t t such that c(ti) E G and there
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exist ti (ti, ti+l) such that (c(t') - c(t), *.) attains a non-zero extrema at t' = ti.

This in turn implies 0 E Tc(ti). WLOG assume t is a maximal extrema. Then there

must exist a minimal extrema tj, where j > i. This implies 0c(t') is decreasing for t'

close to but greater than ti and 0,(t') is increasing for t' close to but less than tj. By

continuity of 0c(t') there must exist a t E (ti, tj) such that c(i) is an inflection point.

Thus there are an infinite number of inflection points in c. 

If our curves C have finite number of inflection points then we will not have the

rapid oscillation problem.

We now show that curves with finite number of inflection points are -dense in

the space of curves of finite length and turn. We will do this by approximating curves

by piecewise linear curves. Let CK,L equal the space of curves with length less than

L and turn less than K and let CK,L,n be those curves in CK,L with < n inflection

points.

A piecewise linear curve of n segments has at most n - 3 inflection points. The

worst case of n - 3 occurs when the piecewise linear curve has a sawtooth behavior.

Lemma 14 Let c E CK,L. Then we can find a piecewise linear curve with n seg-

ments such that d1(c, ) < e = K 2L.

Proof: Kulkarni, lemma 6, implies that one can get d (c, a) < with a curve 

with at most K 2 L linear segments. 

Theorem 9 The space CK,L,n is -dense with respect to d, in CK,L where e(n) =

K 2L
8(n+3) 

Proof: Use lemma 14 and fact that piecewise linear curves with n segments have

at most n - 3 inflection points. O

In chapter 5 we will be using the Hausdorff metric to approximate curves. CK,L,n

is still e-dense in CK,L with respect to this metric.

Lemma 15 Let a be the line segment that connects the endpoints of c. Then dH(c, a) <

£(c)/2.
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Divide the curve c and c' into segments ci and c' such that trc = Utrci and

trc' = Utrci.

Lemma 16 dH(c, c') < max dH(ci, c').

Lemma 17 Let c E CK,L. Then we can find a piecewise linear curve c with n seg-

ments such that dH(c, c) < = L/2n.

Proof: Divide the curve c into n segments ci each of length L(c)/n. Then let ci be

the line segment connecting the endpoints of ci. Then dH(Ci, ci) < £(c)/2n < L/2n.

And dH(c, ) < L/2n. 0

Theorem 10 The space CK,L,n is E-dense with respect to dH in CK,L where e(n) =
L

2(n+3) 

Proof: Use lemma 17 and fact that piecewise linear curves with n segments have

at most n - 3 inflection points. 

Thus we have shown that as n -+ oo we can get arbitrarily close approximations

in both the di and dH sense.

3.2 Reconstruction Theorem

We provide a reconstruction algorithm for all exact K-sets A represented by C where

the curves ci C C have a finite number of inflection points.

Define A(G) := nc(G+) -nc(G_). Then gtr c(G) = OcllA(G) for all points

G where gtr ± V)c(G) has finite value. We do not "catch" those points G with

multiplicity of infinity. See lemma 7. But it does not matter in our reconstruction.

The closure fills in cusps in the bc/ curve caused by inflection points in the respective

c curve. And the circledot fills in crossings of the 'c, curves caused by multi-tangency

and r degree turns in the curves c.

Then it is easy to see that FrPrVe(x, 0) = {x = (~) : where ~ is a tangent line at

a regular point of gtr + ic}.
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We know 4ic is rectifiable by theorem 3. Because it has a finite number of inflection

points it also has finite turn. To see this note that each inflection point gives at most

a turn of r. But there are only a finite number of them. There may be a countable

number of corners. But the sum of the angles in each corner must sum to a finite

value. This is because the size of the angle measures the length of the line segment.

And C is rectifiable.

Now by the local Euclidean nature of g and the fact that %c has finite length and

turn we can extend lemma 6 to the extended indicatrix.

Lemma 18 If G E gtr fbc and C has a finite number of inflection points then there

exists arbitrarily small r and E = (r, G) > 0 such that gtri f c n (Br+,(G)\Br_,(G))

is a union of disjoint arc-segments of gtr ±i fc.

This allows us to identify the singularities by the slopes of the incoming arc-

segments.

Theorem 11 Let A be an exact IC-set with curvature minimal representation C.

Let the curves ci) = C all have finite number of inflection points. Then one can

reconstruct A from A(G).

Proof: From A(G) we can reconstruct gtr ±i c. In turn we can reconstruct

rFre(x, 0). Which in turn we can reconstruct rurV . To reconstruct the linear parts

we can use the height information of A(G). Specifically we will show in the next

chapter that every singularity can be uniquely identified and mapped back to the

curves in R2 that created it. 1
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Chapter 4

Singularities

In this chapter we classify all the kinds of behavior that one can expect of the function

nc (more specifically its jump set S,,), 0b, for all c E C, and g tr ± 'c. As was shown

in chapter two all points of trC that have nonnegative curvature can be reconstructed

from the function T (except for a countable set of points representing inflection points

and multi-tangents, and points of infinite oscillation). Unfortunately line segments

do not map under F. By assumption, though, the curves c are closed and continuous

and therefore their extended indicatrices 0, are closed and continuous. By using this

continuity condition we will show how to reconstruct those parts of c E C that have

zero curvature.

Just as for points in R2 there will be points G E g where multiple arc-segments

of tr ± tc meet. For R2 the matching problem consisted of matching the incoming

arc-segments in a curvature minimal way. In g the condition for matching is different

but we can use a similar notation. And as in R2 the matching will not in general

be unique. This is because curvature minimal representations of a C-set A are not

necessarily unique.

First we describe the singularities of tr if c. We prove some continuity conditions

on nc. We then describe the basic curve structures found in R2 , provide a matching

algorithm, and prove its uniqueness in reconstructing the original curve.
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4.1 Types of Singularities

Let C be a curvature minimal representation of the exact K-set A. From now on

assume the curves in C have a finite number of inflection points. For every c E C let

0c be its extended indicatrix.

We know from section 2.3 that c will have a tangent when /b(s) is differentiable

at s and T(s-) = Tr(s+). It will have a tangent line everywhere it has a tangent

except when d, (s-) dc(s+)ds ds

If Tc(s-) Tm(s+) , then by lemma 4, we see that d 8- dP 1s+. That is the

incoming and out going slopes are different. We see Vk has a corner at ,c(s) which

represents a line segment in R2 .

When Tc(s-) = (s+) but dO() dC(sD+) then acb has a cusp at ,(s) whichds ds

represents an inflection point in R2 .

Do has a countable number of corners because each corner represents a line segment

in c and c has finite length. V), has a finite number of cusps because each cusp

represents an inflection point in c and c E CK,L,n,

Note that locally g = R1 x S1 = R1 x R1. We can thus define things like tangents

on in terms of the parameterized curves that lie on . Specifically let Tc(S+)

limsits C(s-c(s)l and T (s-) = imsj i(sj)-c(s) . Note if is tangent to tr i f'

at ±ifc (s) then i±T+ = il.

By an extension of lemma 1 we get:

Lemma 19 For all s in the interior of the domain of '/ we have T,, has right and

left limits at s, T (s-) and T, (s+) respectively.

We have shown that tr i+ VC will have a tangent line everywhere except at points

'c(s) which represent inflection points, line segments, and multi-tangents in R2. The

same happens when we generalize to tr ± c. It has tangent lines everywhere except

at points which represent inflection points, line segments, and multi-tangents. The

only new event that can happen occurs when two cusps in R2 meet at a point. Like

in theorem 6. See Figure 2-1.

Lemma 20 There are a countable number of singularities in tr ± c.
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4.2 The Matching Problem

Remember that nc(G+) = limsupfonc(Ge) and nc(G_) = limsupElonc(G_E). Define,

as before, A(G) = nc(G+) - nc(G_).

Following Richardson's lead:

Define

gTanVbc(a) := Y{l{s E 4-'(G): TC(s+) = a}mod(c (s))I
cEC

+I{s E :-'(G): T,(s-) =-a}modC(O(s))l}

Note that gTanc(G) is a generalized set of angles. If a E gTanoc(G) then

a = TV,w(s+) or a = -T,(s-) for some c E C and s E (O,n(c)). Define A(a) =

nc((c(s+))+)- nc((c(s+))-) or A(a) = nc((%c(s-))+) - nc((c(s-))_) respec-

tively. A(a) measures the sign and the magnitude of the nc jump on the arc-segment

represented by a. Note for closed curves c, A will always be even and that A equals

the multiplicity of the underlying arc-segment of bc.

Since the tangents are bounded we see that the angles a are confined to two

separate intervals of S1. Note when is tangent to %c at %1c(s) and Tpc(s) = a then

)> d(d) where t, are the elementary basis vectors on g.
Let us order the elements of gTanc(G) = {a, ... am} by slope. Specifically for

i < j we have ,) > (ok))(aO)- (aj,'

The matching we choose on gTanoc(G) has no effect on the total absolute cur-

vature of C. But it does effect the lengths of line segments in C. Specifically let ec

have a corner at G = (p, 0) with incoming and outgoing angles a and a 2. Then the

line segment represented by this corner has length Ip * 0(a G) - (p * 0- (a2') ) =<a~,p (_, (c[ =<(a,>) (a2 ,>

We will show in section 4.6 how to appropriately match the angles a.

Lemma 21 Let c, c2 E C. Then nlc 2 = nc,+nc2 and g_TanVuc2 (G) = g_Tanb, (G)+

gTanc2(G) and Ac uc2(a) = Ac (a) + Ac2(a).
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Remember nc = ngtrc and n,,uc 2 := ngtrcl+g-trc 2 . This last lemma is important

for it allows us to "stack" elementary curves on top of each other to create more

complex behaviors in g.

4.3 Types of Curve Behavior

Assume C is curvature minimal with a finite number of inflection points. There are

nine basic types of curve behavior for cl(ta,t+a) around the point x = c(t) E R2 for

finite inflection curves.

Let x E trC. Then there exists a c e C such that x = c(t) for some t E [O, £(c)).

Let 0 E To(t). Note this is a directed tangent. By lemma 3 there exists a uniquely

determined so · R such that t E [c(so-), T(so+)] and bc(so) = ((c(t), *0)), 0).

We say x is an endpoint if +T,(t+) = -T,(t-).

We list the cases:

Case A: No endpoints near x.

+Tc(T(SO-)+) -TC(Tc(so-)-)

+Tc(T.(SO+)+) -Tc(Tc(so+)-)

Al A point x = c(t) is concave up with respect to if there exist 61, 62 such that for

all t E (Tr(so-) - 61,Tr(so-)) we have (c(t) - c(T,(s-)),*0) > 0 and for all

t' ((so+), T~(so+) + 62) we have (c(t') - c(Tc(so-)), *0) > 0. See Figure 4-1.

A2 A point x = c(t) is concave down with respect to 0 if there exist 61, 62 such that

for all t E ((so-) - 61, Tr(so-)) we have (c(t) - c(T(so-)), *) < 0 and for all

t' E ((so+), Tc(So+) + 62) we have (c(t') - c(T,(so-)), *) < O0. See Figure 4-2.

A3 A point x = c(t) is up-down inflectional with respect to if there exist 61, 62 such

that for all t (T,(so-) -61, Tc(so-)) we have (c(t)-c(r(o-)), *0) > 0 and for

all t' E ((so+),7 T(so+) + 2) we have (c(t') - c(%T(so-)), *0) < 0. See Figure

4-3.
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A4 A point x = c(t) is down-up inflectional with respect to 0 if there exist 61, 62 such

that for all t (c(so-)- 6 1, Tc(so-)) we have (c(t)-c(r-(s-)), *0) < O and for

all t' E ((s+), T7-(s+) + 62) we have (c(t') - c(T-(so-)), *0) > 0. See Figure

4-4.

Case B Right endpoint near x.

+TC(rC(S-)+) #-T(Tc(so-)-)

+TC(TC(so+)+) =-TC(T(o+)-)

B1 A point x = c(t) is concave up with a right endpoint with respect to 0 if there exists

a 6 such that for all t E (T(so-)- 6 , To(so-)) we have (c(t) - c(T,(so-)), *0) > O.

See Figure 4-5.

B2 A point x = c(t) is concave down with a right endpoint with respect to 0 if

there exists a 6 such that for all t E (Tc(So-) - 6, T,(So-)) we have (c(t) -

c(rc(So-)), *0) < O. See Figure 4-6.

Left endpoint near x.

+T(TC(SO-)+) = -TC(T(So-)-)

+Tc(C(SO+)+) -T(s(o+)-)

B3 A point x = c(t) is concave up with a left endpoint with respect to 0 if there exists

a 6 such that for all t ((so+), Tc(so+)+6) we have (c(t)-c(CT(s+)), *0) > 0.

See Figure 4-7.

B4 A point x = c(t) is concave down with a left endpoint with respect to 0 if there ex-

ists a 6 such that for all t E ((so+), T(so+)+6) we have (c(t)-c(-(so+)), *0) <

0. See Figure 4-8.

Case C Two endpoints near x.
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+Tc(TC(SO-)+) = -T(TC(SO-))

+TC(r(O+)+) = -T-(Tr(sO+)-)

C A point x = c(t) is a line segment with respect to 0 if the above conditions hold.

See Figure 4-9.

Clearly we have exhausted all the possible curve structures in a neighborhood of

x = c(t) with respect to some interval (t - 6, t + 6).

Becuase we only have a finite number inflection points we do not need to worry

about the cases where there exist t 1,t 2 arbitrarily close to but less than Tr(so-)

such that (c(tl)- c(c(So-)), ) > O and (c(t2) - c(r(so-)), *O) < 0. Similarly

we could have t, t2 arbitrarily close to but greater than Tr(s+) such that (c(tl) -

c(rc(so+)), *0) > 0 and (c(t 2) - c(Tc(so+)), *0) < 0. That is we do not have the

problems of rapid oscillation.

Note for the above nine cases we were able to incorporate line segments. We are

interested in what Vl)c(so-E,so+E) looks like in 5. If we understand what the neigh-

borhoods looks like for each of the above elementary curve arc-segments we can

reconstruct more complicated phenomena by stacking them.

In order to study neighborhoods of G E g we need some continuity and regularity

results for tr ± c and Sc.

4.4 Continuity Results

Assume C is curvature minimal with a finite number of inflection points.

Theorem 12 Let G be a regular point of tr ± 4ac with a tangent line . Then

1. F(J) is concave up with respect to 0 if and only if A(G) > 0.

2. TF(~) is concave down with respect to 0 if and only if A(G) < 0.
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Proof: We will prove statement one. The other follows analogously. (=) Let

.F() = x = c(t) be concave up with respect to 0. Then there exist 61, 62 such

that for all t' E (t - 6l,t) and t" E (t, t + ) we have (c(t') - c(t)), *0) > 0 and

(c(t") - c(t), *0) > 0. By continuity of c there must exist some 6 > 0 such that for

all ry E (t - 6, t + 6)\{t} we have (c(y) - c(t), *0) > 0. Therefore for small enough

we can find a t < t and a t2 > t such that c-1(GE) = {tl, t2}. That is A\(G) > 0.

(=) nc(G+) - nc(G-) > 0 implies there exists an > 0 such that nc(G,) -

nc(G-c) > 0. Therefore there exists {t',t"} = c-(Gc) where t' < t and t" > t.

Which implies (c(t') - c(t), *0) > 0 and (c(t") - c(t), *0) > 0 E[

Theorem 13 If G is a regular point of tr ± ,Oc with tangent line then there exists a

neighborhood B (G) such that

1. all points G' Be(G) n tr + 'Ic are regular with tangent lines.

2. A(G') = A(G) for all G' E Be(G) n tr + tc

Proof: The first statement is just a result of lemma 18 and lemma 19. As-

sume a fixed c E C. For r and E1 small enough we see by lemma 6 that tr ± Oc n

(Br+E (G)\Br_l (G)) is a union of disjoint arc-segments of tr ± bc. Since tr + ic

has a countable number of singularities we see that each arc-segment must be regular

and have a tangent line over some E2 ball. We can relate this E2 to a neighborhood

of the parameterization variable s. Specifically for each c E C and each so E C,-(G)

there exists an e3 such that tr4CI(so-E3,SO+E3) is regular and has tangent lines.

To prove the second item we show there exists an < 3 such that for all s E

(s - , so + ) we have nc (4C(s)+) - n(%c(s)_) = A(4c(sO)) for each c E C.

Without loss of generality assume a given c E C and assume A(Oc (so)) > 0 then we

have by theorem 10 c(Tr(so)) is concave up with respect to 0. Therefore there exists a

6 > 0 such that for t E (c(so)-6, Tr(so)+6)\{r(so)} we have (c(t)-c(Tc(So)), *0) > 0

We will show the existence of such that for all s E (so-E, So) we have n(4(s)+)-

n,(Oc(s)_) = (Oc(so)) The other side, (so, so + ), follow analogously.

Since c(Tr(so)) is not an inflection point nor on a line segment we see there are

two cases:
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I) If T(T(So)-) 0 Tc(T(So)+) then we have a corner at C(T,(so)). Choose such

that T(T,(So)-) < 0c(so-e) < 0c(so). It is clear that for t E ((so), Tc(so)+6 ) we have

(c(t) - c((so)), *0c(So- )) > O. Now T(c(So)-) = limt ) c(o) c(Tc(S )) We also

have (T(T(SO)-), *Oc(so - e)) < O. Thus for ti sufficiently close to Tc(so) we have by

continuity that (c(t)-(((s)), *O(so - e)) < O. Which implies (c(ti) - c(%T(so)), *O(so -

)) > 0.

II) If TC(TC(So)-) = Tc(TC(So)+) then choose such that Tc(so) - 6 < T(So - ).

Let D1 = (7c(so) - 6, Tc(so - )) and D2 = ((so - c), Tc(so)). Note by continuity and

the fact that there are no inflection points over (c(so) - 6, Tc(so)) , the function O,(s)

is monotonically increasing over ((so) - 6, Tc(so)). Assume towards a contradiction

that there exists at l e D1 and at 2 E D2 such that (c(tl)-C(Tc(SO-e)), *0(So-e)) < 0

and (c(t 2) - c(T(So - )), *O(so - )) < 0. By continuity this would imply that there

were t E D1 and t E D2 such that Oc(t') < O(so - e) and 9c(t') > Oc(so - e) which

contradicts the fact that 0c is monotonically increasing. El

By theorem 13 A changes sign or magnitude only when we reach a singularity.

Thus if tr[Cl(a,b) is regular and has tangent lines then A is constant over it.

4.5 Types of Indicatrix Behavior

We are now ready to describe the associated indicatrix behavior to each of the nine

curve behaviors.

Let c E C such that x = c(t) for some t E [0,C £(c)). Let 0 E T(t)). By lemma

3 there exists a uniquely determined so E R1 such that t E [(So-), 7(So+)] and

c (so) = ((c(t), *0)), 0).

Let D1 = (so - , so) and D 2 = (so, So + ).

If there exists a 61 such that for all t E (c(so-) - 61, c(so-)) we have (c(t) -

c(%T(so-)), *0) > 0 then O,(s) increases over D 1. Similarly if there exists a 61 such

that for all t (-(so-) - 61, T(so-)) we have (c(t) - c(T(so-)), *0) < 0 then 0,(s)

decreases over D1.

If there exists a 62 such that for all t E ((so+), Tc(So+) + 62) we have (c(t) -
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c(Tc(So+)), *0) > 0 then 0C(s) increases over D2. Similarly if there exists a 62 such

that for all t (TC(So+), Tc(So+) + 62) we have (c(t) - c(-(sO+)), *0) < 0 then SC(s)
decreases over D2.

Al Point x = c(t) is concave up with respect to 0. Thus we see that 0c(s) is increasing

over D1 and D 2. Now by theorem 13 we see that trlD and tr'l[ID 2 are regular

and have tangent lines so A is constant over them. Since x is not an inflection

point we see that A is constant over (so - , so + ) and since x is concave up

we see by theorem 12 that A = 2. See Figure 4-1.

A2 Point x = c(t) is concave down with respect to 0. Thus we see that Os(s) is

decreasing over D1 and D2. Now by theorem 13 we see that trlo ID and tr4l[D 2

are regular and have tangent lines so A is constant over them. Since x is not

an inflection point we see that A is constant over (so - , so + ) and since x is

concave down we see by theorem 12 that A = -2. See Figure 4-2.

A3 Point x = c(t) is up-down inflectional with respect to . Thus we see that O,(s)

is increasing over D1 and decreasing over D 2. Now by theorem 13 we see that

tr/I]D and trCID 2 are regular and have tangent lines so A is constant over

them. Since x is an inflection point we see that A changes at x. That is A = +2

over D1 and A = -2 over D 2. It will always be the case that trQCbID1 will lie

under trCI D2. See Figure 4-3.

A4 Point x = c(t) is down-up inflectional with respect to 0. Thus we see that 0,(s)

is decreasing over D1 and increasing over D 2. Now by theorem 13 we see that

trCIlD1 and tr,[ID 2 are regular and have tangent lines so A is constant over

them. Since x is an inflection point we see that A changes at x. That is A = -2

over D1 and A = +2 over D 2. It will always be the case that tr]C D1 will lie

over trC ID2. See Figure 4-4.

Note that when T(t+) = -T,(t-) we are at an endpoint. Thus the tangent Tc

has two choices on which direction to turn. Either clockwise or counter-clockwise
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at c(t). Note that clockwise behavior implies 0c(s) is decreasing over the turn and

counter-clockwise behavior implies that O,(s) is increasing over the turn.

Because c is closed and we have an endpoint in a neighborhood of t, c will trace

the image of trc near t twice.

B1 Point x = c(t) is concave up with right endpoint with respect to 0. Thus we see

that 60 is increasing over D1. P(s) can move in one of two directions over D2.

Thus we see that A = 4 over D1 and A = ±2 over D 2 depending on whether

we turn counter-clockwise or clockwise. See Figure 4-5.

B2 Point x = c(t) is concave down with right endpoint with respect to . Thus we

see that 0e is decreasing over D1. Xe(s) can move in one of two directions over

D2. Thus we see that A = -4 over D1 and A = 2 over D2 depending on

whether we turn counter-clockwise or clockwise. See Figure 4-6.

B3 Point x = c(t) is concave up with left endpoint with respect to . Thus we see

that 0, is increasing over D2. ,(s) can move in one of two directions over D 1.

Thus we see that A = 4 over D2 and A = ±2 over D1 depending on whether

we turn counter-clockwise or clockwise. See Figure 14-7.

B4 Point x = c(t) is concave down with left endpoint with respect to 0. Thus we see

that 60 is decreasing over D2. 4'(s) can move in one of two directions over D1.

Thus we see that A = -4 over D 2 and A = +2 over D1 depending on whether

we turn counter-clockwise or clockwise. See Figure 4-8.

C Point x = c(t) is a line segment with respect to 0. In this case we have a choice

of turning clockwise or counter-clockwise at either endpoint. So we have four

paths leaving G with A heights = ±2. See Figure 4-9.

Note that each indicatrix behavior can be determined uniquely from the others.

Theorem 14 The elementary curve behaviors are uniquely determined by their ele-

mentary indicatrix behavior.
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In summary if G E tr ± tc and is not a cusp then A will have the same value

and sign near G. If G E tr + Oc and is a cusp then will have the same magnitude

but different signs on the incoming and outgoing arc-segments. Specifically the arc-

segment that is above the other will always have a negative and the bottom one

will always a positive A.

4.6 Matching Algorithm and Uniqueness

We are now ready to give a matching algorithm. The algorithm always constructs

the shortest line segment that fits the data given so far. It always tries to match a

given angle a with the one closest to it in magnitude. Remember line segments are

determined by the difference between the incoming and outgoing a angles.

Let gTan(G) = oal, ..., an).

Algorithm:

for i = 1 to n

for j = i + 1 to n

if sgn (aj, *0) = sgn (ai, *0)

if (aj, *0) < 0 (shows aj, ai are to the left of 0)

if IA(aj) < 0 and A(ai) > 0 then match aoj to ai

else next j

if (aj, *0) > 0 (shows aj, ai are to the right of 0)

if AI(aj) > 0 and AI(ai) < 0 then match aoj to ai

else next j

else if sgn (j, *0)) : sgn (ai, *0)

if IA(aj) = A(ai) then match aoj to ai

else next j

next i

This is a legal matching because we are following the rules of reconstruction set

in the previous section.

Theorem 15 Let C have finite inflection. Given any behavior of tr i ±bc around a
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point G the above algorithm will find the unique behavior of trC determined by said

behavior around G.
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Chapter 5

Reconstruction Algorithms

In this chapter we discuss some requirements for efficient reconstruction algorithms.

Specifically we are given partial information about the function nA and from this

we are to reconstruct A. First we discuss what it means to be a good approxima-

tion. Then we discuss singularity detection. Next we describe a linear interpolation

algorithm. Then we take up the issue of noise.

5.1 Approximation

To determine if a reconstruction is good we need a measure of accuracy. For curves

people often use the following Hausdorff metric. Let c, c2 be curves in R2. Then

dH(trcl, trc 2) :=inf{trcl C c and trc 2 C c} where c7 is the n neighborhood of trc.

Specifically c := {x :infyetrcx - yj < 71}. dH(trcl, trc2) < e means that both curves

can fit in an -wide tube of the other curve.

Unfortunately there are some problems with this measure. Specifically there is no

constraint on the smoothness of the reconstructed curve. Some pathological problems

that can occur are: the reconstructed curve's length and total absolute curvature may

not be finite, and even if they are they may not tend smoothly to the real length and

curvature as goes to zero.

The above definition was given for curves but it can be easily generalized to K-

sets. Specifically if A is an exact K-set with curvature minimal representation C and
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A is a reconstruction with representation C we say

dH(A, A) := inf 7: A c Al and A C An} where A n := {x: infyEAlx - Yl < 7}.

If for each c E C there is a corresponding e C then we see that dH(A, A) <

maxcEcdH(trc, tr).
In section 5.3 we will show how we can achieve a good approximation of trC by

approximating A(G).

I would like to contrast the dH measure with that of dZ and W1 used by Richardson.

Specifically Richardson showed that if Al and A2 are IC-sets then dz(Al, A2 ) = 0 if

and only if W'1(Al - A2 1) = 0 (Theorem 1). Both of these measures are good for

dealing with outliers and multiplicities. Unfortunately they do not work well in the

dH sense. 7/1 takes into account the set difference between the two curves but does

not take into account the proximity of one curve to another curve. It is possible for

1t1 (Cl, C2 ) = - (C1) + (C2 ) but dH(cl, c2) < for arbitrarily small e.

We will use dH as our fitness measure. We will attempt to find at least one curve

in the -ball around c. A better formulation of this problem would use a calculus of

variations approach to select one of the curves in the e-ball. Richardson has suggested

that minimum total absolute curvature be the criterion for selection over this -ball.

The algorithm works by operating on the sphere bundle of G. Specifically we are

given some discretization of nA. From this we reconstruct the jump set of nA. From

which we reconstruct gtr ± 'A and the singularity set. Then by determining the

tangents to the set gtr ± OA we can use the function F and the singularity matching

algorithm of the last chapter to reconstruct A.

5.2 Approximation in g
Let A be an exact C-set with curvature minimal representation C.

We want a condition on our approximation of gtr ± bc that will insure a good

approximation of trC.

We know that a dense subset of the curved parts of trC can be recovered from

gtr ± ic by using the function F() = p* 0- P() where F is tangent to gtr ± c ata0(~)
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G = (p, 0). Note that this reconstruction depends on both gtr ±i ic and its tangents.

Therefore we need to approximate both gtr ± c and its tangents in order to get a

good approximation of c.

Let c E C and let %, be its respective extended indicatrix. We know tr4' will

have a countable number of singularities. Let this set of singularities be S. Segment

% into pieces 0' where the set of endpoints is S.

Define E(G) := dp((G)), whenever trtc has a tangent at G. We are interested

in the slope.

Define ()G) (i14(G), E'(G)). This is like a curve in the sphere bundle except

that we are interested in the slope and not the direction of the tangent.

Let G = (p, , A).

Then let 'b- = Uib/. Note this a curve in g : R1 x S1 x [-R, R] (Where R is the

radius of the boundary of our image space.) Note that this curve is discontinuous at

every singularity). We define a metric on 5: d(G 1, G2) := ((P1 - p2)2 + IL(01, 02)12 +

( - 2) 2 

We say two curves and 4' are similar if the singularity sets of and , S, S

are similar. That is if s E S then there exists and E S such that d (s, ) < and

vice-versa.

Theorem 16 If 41' and 02 are similar, and dH (lC1 , 4' C2) < e then dHR2 (trcl ,trc2) <

2e(R + 1) where R is the radius of the boundary circle.

The sub-subscripts of the dH measure are there to remind us of the spaces they

are operating on.

Proof: We will show for every x E trc1 there exists a y E trc2 such that Ix - yl <

2e(R + 1). There are two cases.

Case 1: x is a point of cl with nonzero curvature, with tangent G1 where G1 is

not a singular point of troc1

Case 2: x is a point of cl not accounted for by case 1. Specifically x is a point of

zero curvature, an endpoint, or a multi-tangency point. The point G1 that represents

it is a singular point of tr 1,,.
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For case 1: Since G1 is regular it has a tangent slope El. Since dH(l, c2) < 

there exists a G2 E %b2 such that G2 is regular with tangent slope E2 and do(Gi, G2) <

6.

Letting G1 = (pl,O1, E1) and G2 = (P2,02, 2) we can define a finer partition

of the distance between them. Specifically we know d(G 1, G2) < let IPl - P21 <

ep, Z(01, 02)1 < co, and 5l: - E21 < where ep + + < E2

Let x = F(Gl) = pi * 01 - E 10 1 and y = Y(G2) = P * 02 - 5202 where we

take the 's to be vectors. Thus Ix - y = P1 * 01 - lO1 - (P2 * 02 - 202)1 <

JP1 * 1 - P2 * 0 21 + lzl0 - 52021 < 2Reo + ep + e_ + e ee p + eoEs . The 0 terms are

bounded by il and both the p and the E terms are bounded by ±R. If we ignore

higher order terms we get x - yI < 2e(R + 1).

For case 2: There are three subcases depending on whether, x, is a point of

inflection, of multi-tangency, or on a line. The first two are irrelevant since they have

measure zero and can be reconstructed by interpolation. The last case, though, takes

special consideration.

Let G be the line that the line segment containing x is on and let ax and b be the

endpoints of the line segment. For some t E (0, 1) we have x = tax+(1-t)b,. We know

from case 1 that there exist points points ay, by E c2 such that lax -ayl < 2(R + 1)

and b - byl < 2(R + 1). We need to find a point on the line connecting a to by

that is 2(R + 1) close to x. Let y = tay + (1 - t)by. Then Ix - l = Itax + (1 - t)bx -

tay - ( - t)bl < tax- ay + (1 - t)lbx - by < 2(R + 1). El

We notice the error 2Reo + E, + e- depends heavily on . This is because small

changes in the angle 0 can have large effects on the radial components p and 

One way to get a better bound is to reduce the error. We impose a parameter-

ization on the two curves Oc, and 10c 2 that allow for zero error in 0. Specifically we

will parameterize the curve ',l by its 0 component. That is we match-up the graphs

of 'bcl and p-C2 with respect to the 0c component.

We can parameterize bc in a natural way. Remember from theorem 3 that c

is arc-length parameterized by the function s(t). Where s(t) is the total absolute

curvature of the curve cl[o,t]. This says that if do exists at so then there exists a· ~~~~~~~d
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neighborhood around so such that 0c(sl) - 0c(s2) = (S1 - s2) depending on whether

do = ±1 for all s1, 2 in neighborhood of so.

To parameterize 0c pick some point G E trb,. Let this be our starting point. It

does not matter where we start because all the ;b curves are closed. Let 0c(G) = 0c(0).

Do the same with pc(s) and E,(s). Note s E [0, ic(c)).

Given a parameterization of 0c, we can induce a parameterization on a similar

curve V2c2. Given 0c1(0) find that point G 2 = (P2, 02) E tri,, 2 such that 0c (0) = 02

and then call this G2 the starting point for .c2. Note this mutual parameterization is

local. We cannot extend it to the whole curve 4 bc2 because the two curves cl, c2 may

not have the same total absolute curvature.

The following theorem is local approximation theorem for mutually parameterized

curves.

Theorem 17 dH(trcl, trc2) < Sup'{[pcI (s) - p2 (s) + I'c (s) - c2 (s)I}.

Proof: Since we have eliminated eo errors we see from theorem 14 that dH(trcl, trc2) <

Ep + e-. 

5.3 Singularity Detection

Any reconstruction algorithm we propose depends on accurate knowledge of gtr ± iC

and accurate knowledge of its singularities. To this end we need a way to detect

singularities in our nA data.

In the case where we know nA completely and thus gtr ± ;bc completely we can

use the concept of density to determine the structure of the singularity.

Let G = (p, 0).

Let S,(G) = {G' E g : 0 - 0'l < and Ip - p'l < RIO - 0'1}. All arc-segments of

tr ± c that intersect G must go through this region. The area is 2eR where R is the

radius of the boundary of the image set.

The number of arc-segments entering a point G E g is just lim,,O+ t (&S(Gl)n tr±+Pc)
2RTo get the appropriate multiplicity information just take lim

To get the appropriate multiplicity information just take lim,_O+ W' (S,(G)ngtr+~ic)
2cR
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The number of arc-segments entering G from the left and right can be computed

by taking one-sided density limits. That is take the limit over the right or left side

of So(G). Once we know the number of arc-segments entering and leaving we can

start to piece the dual lattice information to construct the actual arc-segments and

A height information.

In the case of partial information we have two choices. If we know the values of

nA over a fixed lattice then we can take a discrete density to determine the number

of arc-segments entering G. For a given lattice we construct a dual lattice where the

dual lattice values are just the differences between the nA values. We know that all

points on the dual lattice with nonzero differences must be close to a member on

tr ±i /c. Thus by taking the discrete density over these points we can estimate the

number of arc-segments entering G.

The other approach is to use some sort of template matching. We have a set

of canonical singularities. For each singularity in our set we have another set of

deformable templates. These templates can be used in detection. This works well

when the number of types of singularities is finite. We can achieve finiteness by

assuming that there are no triple tangents in the image set.

5.4 Linear Interpolation

Assume we are able to detect singularities. Also assume we have nA information on

a rectangular lattice. We will give some conditions on the lattice spacing to ensure

that dH(cl, c2 ) < e. Let the lattice spacing distance be 6o and 6p.

Given a lattice construct its dual lattice. We say a node in the dual lattice is "on"

if its value is nonzero. We will use linear interpolation to connect the "on" nodes.

Specifically if G = (p, 0) is an "on" node and does not represent an inflection point

then there must be points G' = (p ± map, 0- e) and G" = (p ± np,, 0 + eo) that

are "on", where m, n integers with absolute value less than RJe. (We can put this

bound on m, n because we know the slopes of /c are bounded.) If G represents an

inflection point then there must exist G' = (p ± imp, 0- oS) and G" = (p inSp, - So)
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that are "on" or G' = (p m6p, + ) and G" = (p nSp, + 6o) that are "on."

Note that locally the linear interpolated curve and the original curve will be mutually

parameterized.

Given some V) let ~ curve be our linear interpolation of it. Then by theorem 17 we

have dH(, 4) • sups({p(s) - p(s)l + IE(s) - (s)i} < 6p + i. If we want dH(c, c) < 

we need 6, + A < . One possible solution is 6p =2 and 6e = for e < 1. This makes

intuitive sense. We need to know both p and the slope a. Thus < e. We need O()

lattice points to get accuracy.

The problem with this construction is that our reconstructed will have many

more singularities than V. This is because we have a corner at every "on" dual node.

We know corners represent line segments in R2 . So our reconstructed curve will be

very "jumpy." But as gets smaller the incoming and outgoing tangents at an "on"

node will get closer and thus the length of the corresponding line segment in R2 will

get smaller.

5.5 Spline Interpolation

One way around the "jumpiness" problem in linear interpolation is to use some other

kind of smooth interpolation. Splines are the obvious answers. They can be locally

determined so they satisfy our local approximation theorem. It is not so clear, though,

what order spline to use. We need to approximate p and its slope E, so we need a

spline that in some sense minimizes the magnitude of its slopes.

A good heuristic for setting 6, and 6o is 6 = 62 and 60 = e.

Note we should pick that spline algorithm that best suits our fidelity criteria. For

example minimum absolute curvature.

Because splines are smooth we do not have the problem of false singularities.

Splines also allow us to do one or many step predictions. Given a curve c and a

point x = c(t) we know that we can approximate c around x by a circle of radius

1(t) Circles in R2 get mapped to sine waves in . Therefore given some partially

reconstructed curve c, we can interpolate with respect to the underlying sine function.
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We can also use this sort of sine interpolation to detect singularities. If a point is not

where we have predicted it to be we have a candidate for a singularity.

5.6 Noise

Finally we come to the issue of noise. Noise is very domain specific. In the case of

LIT there are two main domains. One is that of medical imaging and the other is

that of computer vision. The former is continuous in some sense and the latter is

discrete in some sense.

For medical imaging problems there is uncertainty in the information we are given

about nA. This noise cannot in general be modeled unless one has direct access to

the equipment taking the measurements.

For computer vision problems we have the usual "discretization noise." The lines

that we "drop" on our image will have a width associated with them. It is then

possible that we may count more or less crossings of our "thick" line on our discretized

image. We do not have sub-pixel accuracy.

These are issues that need to be studied in order to construct a robust LIT algo-

rithm.
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Chapter 6

Conclusions and Open Problems

It is clear that LIT has potential in both the fields of medical imaging and computer

vision. It works well for detecting boundaries of non-occluded objects and transparent

objects. In the general case it can reconstruct a large class of one-dimensional sets.

In this thesis we have given summary of Richardson's mathematical groundwork.

We have described the line intersection function in complete detail. An approach to

implementing an algorithm was given.

A more general approach at reconstructing the original set A might be to consider

the problem as a regularization problem. We approximate the reconstructed curve

by a smooth function that tapers to zero outside some compact set around A. In

the limit these functions should uniformly approach A. Richardson has given some

conditions for uniform convergence of curves.

We should try to formulate this reconstruction problem as a calculus of variations

problem. This allows us to incorporate criteria, like smoothness or minimal total

curvature, that will help us select an appropriate curve in the -ball around c.

There remains the problem of implementing an algorithm on "real - life" data.

The issues of noise need to be looked at more closely.

Finally another open problem includes the generalization of this problem to higher

dimensional problems. It is not clear if one-dimensional objects lying in R' can be

reconstructed from its projections.
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