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Abstract

The problem of character template estimation (CTE) refers to extracting proper
models for the shapes of characters and a set of font metrics to dictate alignment
between adjacent characters. This thesis develops a maximum likelihood approach
to CTE for estimating bitmap templates within the framework of document image
decoding (DID). An iterative procedure is developed for template estimation given a
text image and a transcription of the text. The transcription and image need not be
aligned nor is it necessary for the individual glyphs in the image to be segmentable
prior to CTE. The proposed approach is demonstrated on text in a variety of fonts,
including a scriptlike font in which adjacent characters are connected.
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Chapter 1

Introduction

Character recognition is an area of pattern recognition that has received much atten-
tion with an increase in demand for automated processes that convert printed docu-
ments to electronic documents. Two major techniques used in character recognition
are feature extraction and bitmap template matching. Feature extraction strategies
start with a test pattern and measure a number of features that are known, in ad-
vance, to be good descriptors for the pattern. Template matching strategies compare
the test pattern with stored reference patterns.

Template based modern Optical Character Recognition (OCR) systems face the
problem of decoding the degraded image of a document accurately. These systems
rely on knowledge of what each character looks like, and perform recognition through
pattern matching across the image.

One problem with OCR systems of this type is that they are not capable of
maintaining high OCR accuracy across a heterogeneous document collection. One
key observation is that image quality is likely to be relatively uniform across the
pages of a single document, reflecting constancy in the physical degradation process
involved. The concern is that the character template models used by an OCR system
are a reflection of what an ideal character looks like, and might not be well suited
to recognize document images where each observed instance of a character has been
similarly degraded. One proposed solution is to adapt the character templates by

training them on a set of sample images and the corresponding transcriptions so that
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the new templates are able to more accurately recognize similar images.

In other situations we sometimes find document images for which we do not have
models for the shapes of the characters that comprise it, but for which we would like
to recongize a large number of images. One solution to this problem is to manually
draw each character model. This would be a very tedious enterprise, the models would
have to be drawn to represent the observed image in some optimal sense (by hand
this would probably be how well the character templates look), and would probably
suffer from inaccuracies introduced by the artist. Another solution is to segment a
sample image, label individual glyphs using the corresponding transcription of that
image, and train the character templates as before. This is tedious and sometimes
error prone on images having a lot of blur, or non-segmentable text like arabic or
musical scores.

This thesis addresses the two related character template estimation (CTE) prob-
lems. In the first problem, suppose one is given a possibly non-perfect transcription,
a degraded document image, and an alignment of the transcription to the image con-
sisting of a set of glyph label, glyph position pairs. The problem consists of estimating
the bitmap character templates that were used to create the image. This problem
differs from the classical simple estimation problem of fitting a character template
to a set of observed character images in that we do not have isolated characters.
Rather we know only the location of each character origin, but do not know which of
the pixels in the vicinity of the origin belong to the character and which belong to
neighboring characters.

The second problem we address is a generalization of the first; we are now only
ziven a document image, a transcription of each text line in the image and the vertical
position of each text line baseline. Unlike the first problem, we are not given the
horizontal positions of the characters in a line; the transcription gives an ordered
sequence of observed characters but not their exact locations.

A desirable characteristic of any approach to character template estimation is that
it be based on strong theoretical foundations. This will give us several advantages

over ad-hoc (hand-tuned) procedures. First, we will be able to justify our procedures
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on theoretical analyses rather than just on empirical results. Second, we will be
able to extend the results to a general class of images that follow an assumed model
of document generation. Third, we will be able to provide an explicit measure of
optimality to the problem against which we can measure our success.

This research develops an approach to CTE within the framework developed by the
document image decoding group (DID) at the Xerox Palo Alto Research Center [11].
The DID approach models document generation and decoding in terms of classical
communication theory, where every stage of the process is explicitly modeled using
detection and estimation theory, language formalisms, and adherence to statistical
and probabilistic principles.

In the DID model, an ideal document image is generated from a set of ideal char-
acter templates by “painting” these templates on an image canvass in some logical
arrangement. The document is then degraded through printing, handling, and scan-
ning, which introduces distortions such as stains, skew, blurring, thinning, stretching,
pen marks, and other similar alterations. Finally, the observed document is decoded
by generating the most likely original clean image making explicit reference to the
imaging procedure and noise model.

The rest of this thesis is organized as follows. Chapter 2 presents the theoretical
framework of document image decoding and establishes the basic definitions and
notation that will be used throughout this thesis. Chapter 3 formalizes the problem
of character template estimation given labeled origins on a document image and shows
that it is an NP-complete problem. This chapter also provides a suite of algorithms
designed to efficiently estimate a set of templates, and evaluates their performance
experimentally. Chapter 4 formalizes the problem of character template estimation
given baselines and transcription only, presents an iterative approach based on the
results of chapter 3 and related document recognition techniques, and evaluates the
approach experimentally on different types of images. Finally, chapter 5 presents a

summary and discusses future directions.
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Chapter 2

Document Image Decoding Models

As an important background to this research, we first review the theoretical frame-
work of document image decoding (DID) upon which this thesis is based [12, 11]. We
begin with the basic communication problem provided to us by information theory,
shown in figure 2-1. The DID framework casts the problem of document image recog-
nition in terms of classical communication theory, where every stage of the process
shown below is explicitly modeled using detection and estimation theory, language
formalisms, and adherence to statistical and probabilistic principles.

In this view, a message source randomly produces a message X; an encoder de-
terministically encodes X into an ideal bitmapped image Z’; a channel randomly
degrades the ideal image Z’ into an observed image Z; and a decoder deterministically
maps T into a reconstructed message, or logical document structure, X.

We discuss the the main elements of this framework — source, encoder, channel,

decoder — as applied to images, in the following sections.

X T I X
Channel

A 4

Decoder ——

Y

Encoder

Y

Source

Figure 2-1: Communication System
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2.1 Image Source Model

The typestyle is a visual property of the printed output; it is not part of the doc-
ument’s logical structure. For this reason, the source and the encoder must be re-
garded as separate modules; the source producing a message that someone is trying
to communicate, and the encoder providing a model for putting that message into a
bitmapped image that we see as a document.

In the framework described in [11], the message source and the encoder are merged
into a single image source that simultaneously generates a message and a typographic
structure. The model for the stochastic source and encoder is partly motivated by
the sidebearing model of character shape and positioning [9]. In order to understand
the stochastic source model and the encoder, we must first describe this document

production model that is embedded within their descriptions.

2.1.1 Sidebearing Model

Character shape and positioning in digital typography is usually based on some vari-
ant of the sidebearing model [9] shown in figure 2-2. This model specifies glyph align-
ment parameters that specify the relative locations of the local coordinate systems of
adjacent characters in a line of text.

A character template is a bitmap spanning the x-y plane with a distinguished local
origin. An instance of a character on a page is known as a character glyph. The set
of black pixel positions of a template is called the support of that template.

A set of parameters that describe the relative placement of glyphs with respect
to one another are called font metrics. In this thesis, we will be primarly concerned
with font metrics that determine horizontal letterspacing.

The character coordinate system is the space in which an individual character
shape is defined. All metrics are interpreted in the character coordinate space. The
origin of the character is the point (0,0) in the character coordinate system. The
setwidth of a character ) is the vector displacement, AQ = (Az,Ay), from the local

origin of that character to the point at which the origin of the next character is nor-
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—w i}

..............................

A Y.

Figure 2-2: Sidebearing model for character placement. Character origins are in-
dicated by crosses. (a) Character spacing and alignment parameters. (b) Example
of negative sidebearings. The character bounding boxes overlap, but the character
supports do not.

mally placed when imaging consecutive characters. Most Indo-European alphabets,
including Roman, have Az > 0 and Ay = 0; other alphabets have Az < 0, such as
Semitic, or non-zero Ay, such as Oriental.

The bounding boz of a character is the smallest rectangle, oriented with the char-
acter coordinate axes, that will just enclose the character’s shape. The width of a
character is the corresponding width w of the bounding box. The left sidebearing is
the horizontal displacement A from the origin of the character to the left edge of the
bounding box. Similarly, the right sidebearing is the horizontal displacement p from
the right edge of the bounding box to the origin of the next character. The depth
below baseline is the vertical distance y from the character origin to the bottom of
the character bounding box.

The horizontal component of the setwidth is related to the sidebearings and the

bounding box width by the relation
Az =X+ w+p. (2.1)
The intercharacter spacing term d is related to sidebearings by
d=p+ A\ (2.2)

where the subscripts [ and r indicate the left and right members of a character pair,

15



(a) (b)

Figure 2-3: Greekings of Adobe Times-Italic. The origin and setwidth of the “}” are
indicated by crosses. The gray region is the superposition of all characters from the
font. (a) Right Greeking; each character is right-aligned with the origin. (b) Left
Greeking; each character is left-aligned with the origin.

respectively.

Why use the sidebearing model? It provides great flexibility and can be generalized
to a wide range of images. Consider a font for music notation. Musical symbols are
not arranged one after the other as in text. However, by correctly specifying the
font metrics for each glyph, as explained in [14], the sidebearing model is useful for
describing images of music.

The design of typefaces implicitly carries with it a characteristic that will turn
out to be a very important one for character template estimation, the notion of
non-overlapping template supports. The non-overlapping support observation can be
formalized as follows (we assume that all character images are from the same font).

Let Y € Y be a character template drawn from a set of templates Y. Let Y[Zo]
denote Y shifted from an arbitrary origin (0,0) so that its origin is located at &o.
Define

Gr= | Y[-Ay] (2.3)
Yey

to be the right greeking of ). Recall that the setwidth of a character @), denoted by
&Q = (Az, Ay) is the vector displacement from the character origin to the point at
which the origin of the next character is normally placed when imaging consecutive

characters of a word. Loosely then, Gg is the superposition of font characters aligned
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(pr(t), Ah Y(t))

®@ o o o O ® o o o O
t

Figure 2-4: A Simple Stochastic Image Source

on the right. We can similarly define the left greeking of Y as

Gr = | Y[0]. (2.4)
Yey
The observation about non-overlapping support of characters may then be for-

malized by the following two conditions

YNGr = 0, (2.5)
Y[-Ay]nGp = 0 (2.6)

for each Y € Y. This is illustrated in figure 2-3.

Although this thesis will deal mostly with documents generated using conventional
letterform typography, there are extensions of this research to the analysis of images
such as musical scores. Qur initial approach will show that enforcing the templates

to have non-overlapping supports produces visually pleasing results.

2.1.2 Stochastic Image Source

The stochastic image source is modeled by a Markov source, as shown in figure 2-4.
A Markov source is a Markov chain with the additional characteristic of transitional
attributes; when described as a directed graph, every transition arc ¢ of the Markov
chain is labeled with a triple,! (pr(t), A, Y (t)), where pr(t) is the transition proba-
bility, Y(¢) is a template, and A is a displacement vector. The Markov chain has a
unique initial state ny, and a final trap state ng.

The displacement vector of a transition is analogous to the setwidth of the tem-

!This is a simplified version of the Markov source presented in [11]
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plate associated with that transition. In our formulation, the displacement vectors
associated with every transition are assumed to satisfy the requirement that the sup-
ports of two consecutively imaged templates do not overlap with each other. We will
also impose the general requirement that the support of any imaged template does
not overlap with the support of any other template on that image.

As the chain evolves according to its transition probabilities, a path 7 through the
Markov source is described as the sequence of transitions the chain takes: 7 = t;...tp,
where t; is a transition out of the initial state n;. A complete path is a path for which
tp is a transition into the final trap state ngp.

A complete path 7 = t;...tp through the Markov image source defines an asso-
ciated document image as follows. Imagine an image automaton that begins in an
initial position on the image canvass which we will take to be the upper left hand
corner of that canvass.? With each transition ¢;, the imager takes the corresponding
template Y'(¢;), positions the origin of the template at its current position and paints
the image of that template on the canvass. It then updates its location on the canvass
by the vector &t.-, and waits for the next transition until the Markov chain enters the
final state np, and the image has been generated. It must be noted that the template
Y (t;) can be a null template, such as a carriage return or small transitions to adjust
intercharacter spacing, in which case the layout information is entirely carried by Ati.

The above imaging procedure can be interpreted as forming a union of templates
across the canvass at given locations defined by the sequence of displacement vectors
At;; in other words, through the evolution of the Markov chain, the imager “paints”
template Y (¢;) on the canvass at position j;}) A, ;- We define the sequence of posi-

tions &, ... Zp41 associated with each path 7 by

&H =0 (2.7)

—

fi-{-l = .’Ez + At;- (28)

2This particular coordinate system uses this corner as origin, and defines positive z to the right,
and positive y down.
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If we define the function f : t; — {1,2,...,T} that maps® transition ¢; to a template
in the set of all possible imaging templates J = {Y(l),Y(z), ... ,Y(T)}, such that

Y(t;) = YY®), then the imager forms the associated document image Z’ as

P
T = YUz, (2.9)
i=1
The transition probabilities pr(t) of the Markov source give us a probability distri-

bution on complete paths by

P
Pr(r) = [[ pr(t:). (2.10)

=1

Under the assumption that every path produces a unique image,* then Pr(Z’) = Pr(r).

We must point out that for a given transition ¢, the transition probability pr(t)
of the Markov source cannot be interpreted as the independent probability of the
corresponding template Y(®), In a given Markov chain, two distinct transitions
with different transition probabilities might have the same template associated with
them. For this model, the probability distribution of clean images is a function of the

possible paths through the Markov source, and not of the imaged templates.

2.2 Channel Model

The channel introduces distortions into a document through printing, photo-copying,
handling and scanning. These distortions appear to us as random noise, pen marks,
stains, skew, rotations, blurring, and other similar perturbations. A noisy channel
is a random system that establishes a statistical relationship between its input and
its output; it’s output is not completely determined by the input. Although realistic
document image defect models can be very complicated, an independent, asymmetric
bit-flip noise channel shown in figure 2-5 is proposed in [11] for simplicity. This choice

yields very nice analytical and experimental results.

3f(-) assigns to each transition a label corresponding to a template in Y
4[11] deals with the more general case of more than one message path defining any given image
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Figure 2-5: Asymmetric Bit-Flip Noise Model

In the ideal binary image I’ = {y; | ¢ € Q}, every pixel is indexed by Q. We will
assume that images are rectangular so that  is the integer lattice [0, W) x [0, H),
where W and H are the image width and height, respectively. The channel maps the
ideal image into an observed image Z = {z; | ¢ € 2} by introducing distortions.

The asymmetric bit-flip channel is completely characterized by two numbers, oy
and ap, which represent the probability that each black (white) pixel in an ideal image
y; gets mapped to a black (white) pixel in the observed image z;. These parameters
are assumed to be constant over the image.

With this model, the probability of an observed image Z given an ideal clean

image 7’ is simply

Pr(z(Z) = I] [od (1 = ao)*] "™ [ (1= a)®5]*.  (211)

i€Qd

If we let Zy be the all-white background image, then

Pr(Z|To) = [ o8 ™ (1 — o) (2.12)
1EQ

and we can normalize Pr(Z|Z’) into a likelihood ratio form that will give us several

advantages and be easier to manipulate

S Pr(Z|T') s
PrIiT) = Pr(l'||1' =11 ()" (ragia) (2.13)
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We define the log normalized probability as

L(Z|T) = logPr(Z|T") (2.14)
= log (L5 )z{:} y; + log (__0_1_(1—63(())3—&1))2;1 yiz; (2.15)

t€ 1€
= ||Z'llog (352) + 17" A Zllog (=321 ) (2.16)

where ||Z’|| gives the number of black pixels in Z’, and I’ AZ denotes the bitwise
logical AND of images Z’ and Z. This log normalized probability has a very important
decomposition property. If an image Y is generated as a union of templates whose

support does not overlap as in (2.9), then it is easy to see that

L(I|T) = fj L(Z|Y e [z)). (2.17)
i=1

The quantity £(Z|Z') is the lognormalized probability that describes the degree of
matching between an observed image 7 and a template constructed image Z'. In
image decoding, £(Z|Z’) gives a matching score for any image I’ we consider to be
the original clean one that generated the observed image 7 through the noise channel.
Equation (2.17) can be interpreted as the aggregate likelihood of every independent

template that makes up the ideal image across the observed image.
We define £(:) as the likelihood function of its argument. This notation will be

used extensively to refer to likelihood, and its use will be aparent from context.

2.3 Decoder Model

The decoder takes as input a noisy version of the original image and tries to invert
the effects of the encoder and noisy channel. The decoder can then output a re-
constructed image, a transcription of the document image, or some other structural
information about the document. The decoder must, therefore, incorporate within
itself knowledge of the source and channel models.

Due to the stochastic nature of the channel model, there is more than one input
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image that could account for the observed output image. There is not a one-to-one
correspondence between every input and every output. Instead, there exists a prob-
ability distribution between an observed noisy image and every possible clean image
that could have been constructed using the source model. For example, although
an all-white image could have generated an observed document through the noise
channel, this is a highly improbable event. Intuitively, the image that has the high-
est number of matching symbols will be the one that generated the document.® We
formalize our intuition by reverting to decision theory.

Given the finite set of templates and the document production rules embedded in
the source model, there is only a finite sample space of clean images that the source
model can generate on the image canvass, Z3,7;,...,Z). Furthermore, given the
complete description of the Markov source model, we can also associate an a-prior:
probability to each sample in the space of clean images, Pr(Z}), as shown in section
2.1.

Now, given the noise model and all possible clean images, we can associate a
probability to the event that the observed noisy image was generated from a given
clean image, Pr(Z|Z), as shown in section 2.2.

All the decoder has to do now is to decide on the “best” clean image. Let us
generalize and assume that we have a set of costs, C;, of deciding Z; as the original
image when the true original image is Z;. We must now specify a decision rule for
the decoder to choose one of the n clean images based on the observed image 7, such
that the expected cost of choosing the wrong image is minimized. This is exactly the

M-ary hypothesis testing problem, where we have:
e M hypotheses I3, T, . .., Iy with a-priori probabilities Pr(Z}).
e A set of costs, Cyj, of deciding I} when I is true.

e The set of distributions Pr(Z|Z!) of our observation given that each of the hy-

potheses is correct.

5This intuition is partly correct, as we will see, it ignores the a-priori probability that a given
document was generated by the source model.
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If the set of costs have the form C;; = 1 — §;;, then it is well-known [21] that the

optimal decision rule is the maximum a-posteriori (MAP) rule,

A

I' = argmaxPr(Z'|T) (2.18)
Il
Pr(Z|Z') Pr(Z")
= 2.19
argglax Pr(T) (2.19)
= argmax Pr(Z|Z') Pr(Z") (2.20)
II

We can normalize Pr(Z|Z") above by Pr(Z|Zo) since it does not depend on Z’, and
from the monotonicity of the logarithm, we can also maximize the logarithm of the

resulting function,

R Pr(Z|T") Px(Z")
= 2.21
7 arggmx log Pr(Z1Ty) (2.21)
= argmax [log Pr(Z|T") + log Pr(I’)] (2.22)
II
= argmax [L(Z|Z') + log Pr(Z')] (2.23)
II
P
= argmax {Z [,C(I|Y(f(t"))[:2'i]) + log pr(ti)] } (2.24)
r 1=1

where the last equality used the results from section 2.2. Under the assumption that
every clean image 7’ is produced by a unique path 7 through the image source, we
can equivalently talk about the path through the source that optimally represents the

observed image in the MAP sense.

© = argmax L(Z,r) (2.25)
= argmax (L(Z|T") + log Pr(x)] (2.26)
= argmax {z_j [L(Z|Y D (Z]) + log pr(ti)]} . (2.27)

Both approaches can be interpreted as a maximization of the likelihood of the observed
image given a clean image and the a-priori probability that this clean image came
from the markov source. MAP decoding tries to find a clean template reconstructed

image that most probably generated the observed image through the noise channel,
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so that in the MAP sense, this template reconstructed image is the original image.

MAP decoding of an observed image Z with respect to a given image source
involves finding a complete path 7 through that source which maximizes £(Z, ) over
all complete paths through the Markov source. In [11] it is shown that MAP decoding
can be reduced to solving the following recurrence relation

L(n,7) = max {L(v,&— A) + LEZIYVOD[E - Ay)) + log pr(t) } (2.28)

t|t:v—n

where n and v are variables representing states in the Markov source and ¢ represents a
transition into state n. The maximization in (2.28) can be computed using a dynamic
programming algorithm called a Viterb: algorithm.

The recurrence term L(n,Z) gives the best likelihood score if a path through
the source had gone through state n at a position in the image plane Z during the
generation of the clean image. The main recurrence arises from the fact that to go

—

through (n, Z) while generating the image, the previous stage must have been (v, Z —
At), for some transition ¢ going from v to n. The first term in the sum, L(v, % — &t)
accounts for the a-posteriori probability of reaching the previous stage (v,Z — At),
the second term L£(Z|Y U]z — A,]) gives a matching score for the template ¥ /) at
location (& — At) on the observed image, and the last term log pr(¢) accounts for the
a-priori probability of continuing this path by taking transition . The maximization
in this recursion gives the best path through the source of reaching (n, ) from among
all the possible previous states.

By performing this maximization for each node n and image position z, the result
is a complete path through the source that maximizes the matching score between
all of the imaged templates through that path, 5, L(Z|YY®[z]) = L(Z|T'), and
the a-priori probability of that path, 35 | log pr(t;) = log Pr(r).
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2.4 Background Definitions

In this section we give a few basic definitions that will help establish consistent no-

tation throughout the rest of this thesis.

Y® will denote the ith labeled character template. This can be a normal

printing character, a space character, or a null template.

y= {Y(l), Y® .. Y(T)} will denote the set of all character templates used to

generate the observed image.
Z will be the observed image.
7 will be a complete path through an image source.

I' = UL, YU®)[Z] will denote the template reconstructed image given the

path through a stochastic image source and the set of imaged characters ).

The operator ||Q|| gives the number of black pixels in Q. The argument Q can

be an image or a vector of image pixels.

The operator |Q| gives the total number of pixels in an image Q, or the number
of elements in a set Q. If Q is a collection of sets, the operator gives the number

of sets in Q.
X AW denotes the bitwise logical AND of images X and W.
(—Q) denotes the inverse of an image Q, i.e. bitwise complement.

Z; will denote the j** observed instance of a character. This image may or may

not be that of an isolated character.

Z ={Z1,2,,...,Zn} denotes the set of observed instances of a given character.
L(-) is a likelihood function. Its specific definition will be aparent from context.

The assignment operator A «— B evaluates B first and assigns the result to A.
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Chapter 3

Character Template Estimation

with Origins Known

Using the models and notation reviewed in the previous chapter, we pose the first
problem. Given a complete path 79 = %4,...,t{p, a mapping function f : t; —
{1,...,T}, the set of displacement vectors A't,., and the observed document image
7 generated by this path, the question is how to determine the set of templates
Yy = {Y(l),Y(z),...,Y(T)} that optimally represent the observed image Z. This
problem is equivalent to saying that we are given the origin of every glyph on the
document image, a label on each origin, and we are trying to determine the image of
the templates corresponding to each label.

Using the results of section 2.3, this quantitatively translates to finding the set of
templates ) that maximizes the likelihood of the observed image given the template

reconstructed image,
P
argmax L£(Z|T') = argmax Y L(Z|YUEN[Z]). (3.1)
Y ' =

This problem would be very easy if we were given the isolated observed instances
of every given character. The variable to be estimated would be the original character
template, Y, and the measurements of this template would be all the isolated observed

instances of that character, Z. Estimation theory would now dictate that the best
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estimate of that template is given to us by the Maximum Likelihood estimator Y =
maxy Pr{Z | Y}.

This “best” estimate of each individual template also maximizes £(Z|Z'). Simply
note that the terms in the sum on equation (3.1) can be re-grouped into classes
corresponding to the likelihood of a given template given all of its observed images.
Maximizing each one of these classes individually maximizes the sum of the classes,
and consequently L(Z|Z").

Unfortunately, given a document image with character origins, there is no in-
formation about the locality of the character glyphs with respect to this origin. In
addition, any local region about this origin may contain pixels belonging to the de-
sired character and extraneous pixels belonging to other glyphs in the vicinity of the
origin. This problem differs from the classical simple estimation problem of fitting
a character template to a set of observed character images in that we do not have
isolated characters. Rather we know only the location of each character origin, but
do not know which of the pixels in the vicinity of the origin belong to the character
and which belong to neighboring characters.

We will tackle this problem as follows. We will obtain the observed instances of
every character by extracting a fixed size region of image about each of the labeled
character origins on the image. We will treat this set of character images as a set
of isolated characters and perform the optimization described above. The resulting
set of templates will contain a lot of noise, mainly because the observed instances
for each character are not isolated characters. We will then proceed to “clean” these

templates by enforcing the disjoint template support requirement.

3.1 Independent Maximum Likelihood Template
Estimation

In Maximum Likelihood Estimation, we assume that the variable to be estimated is

unknown. Furthermore, we assume that we have a probabilistic model of the relation-
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Figure 3-1: Maximum Likelihood Template Estimation

ship between the variable to be estimated, Y, and its measurements, Z. Maximum
Likelihood then tells us to take as an estimate of Y the value that makes its actually

observed values of Z as likely as possible. That is,
Y= max Pr{Z|Y}. (3.2)

Figure 3.1 illustrates the ML template estimation scenario. The observed in-
stances of a character, Z = {Z,,Z,,...,Zn}, are obtained by extracting a fixed size
image region about each of the labeled origins of that character. We will assume the
extracted glyphs are rectangular with width W, and height H, so that G is the integer
lattice [0, W,) x [0, H,), and in each binary image, Z; = {z;, | i € G}, every pixel is
indexed by G.

Let us denote the :th indexed pixel of template Y by y;. Through the noise
channel, this pixel maps to the ith indexed pixel in every observed instance. We will

define the observed data vector of y; as Z; = {21,, 22, ..., 2n;}. The probability of Z;
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given the source pixel y; and the noise model parameters oy and a; is

Pr{Z; | yi,a0,n} = H [ o (1-o z"] [az]'(l—al (- z")]y . (33)

J=1

Assuming pixels are independent of each other, we can write the probability of the

observed images given their template and the channel parameters as

Pr {Z I Y,O’o,al} = H PI‘{Z,‘ I yi,aO)al} (34)
i€g
N (1-z,,) z; Yi
- 11 [ ~#)(1 — aq ] [a (1 — ag)=0] " (3.5)
1€G j=1

Substituting (3.5) into (3.2) we write the Maximum Likelihood decision rule as
- N —zi. 1a-w) v
¥ = max [TTT [of ™1 005 " [ (1-a)®=]".  (36)

This maximization cannot be performed analytically, but can be done iteratively
via a gradient search. Specifically, starting with arbitrary values for o and oy, we
obtain a new template Y’ by maximizing (3.6) for Y using fixed values of ap and a;
then we update the channel parameters by maximizing (3.6) for ap and ¢; using Y”.
This procedure is repeated until we converge to some local maximum. The following
two sections derive the maximizing values for Y, ag, and o; at every iteration, and

derive a test to assess convergence of this procedure.

3.1.1 Optimize Y with oy and «; fixed

Given the observed set of images Z = {Z;, Z,,. .., Zn} of a template Y, our objective
is to decide whether to assign a value of 0 or 1 to every pixel y; in Y. Sincey; € {0,1},

we have a binary hypothesis testing problem and the ML decision rule is

y;=0

Pr{Z;|yi =0,00,01} z Pr{Z;|yi=1,00,c1}. (3.7)

yi=1

29



Setting y; = 0 and y; = 1 in (3.3) we have

N (1-z ¥;=0 N _
[Too (a5 2 T[eaf(1— a0 (3.8)
7=1 yi=l =1
al Q (1—g)(1-0q)\ % .
0 —0)(1-0)\%i >
]11(1—011)( Qo0 ) yEl L. (3'9)

Taking logarithms and noting that E;-Vﬂ z;; = || Zil|, we rewrite (3.9) as

y;=0

Nlog ($28-) + 1| 2;||log (=520 -au)) %1 0. (3.10)

We must be careful of the values of each of the log terms. There are two regions of

values for the a’s to consider:

o o >1— ap.

In this case, log (1_321') > 0 and log (LM) < 0. We rewrite the ML

Qo

decision rule as follows

y;=0
[671)81
~l|Z:llog (agiian) 2 —MNog (%) (3.11)
Y

Iz g Lo ()
N y"<=0 log(ﬁ%];a—l))

(3.12)

o 0 <1— ap.

In this case, log( ) < 0 and log (Mﬂl) > 0. We rewrite the ML

Qo

decision rule as follows

¥;=0
I2llog (2=208=2) "2 g (152) 19

24 "5 los (%)
N S log ()

(3.14)
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Figure 3-2: Pixel Assignment Threshold Function

In both cases, we find the same threshold on the number of black pixels that must

be present at each position ¢ in the observed images, but with different hypotheses

deciding whether the template should have that pixel assigned to black or white. In

the region a; > 1 — ap, foreground pixels are more likely to be observed as black than

is the normal case. In the region a3 < 1 — ag, background

which

background pixels,

pixels are more likely to be observed as black than foreground pixels, and the channel

Figure 3-2 shows a plot of this

can be interpreted as producing “reverse video”.

threshold as a function of the channel parameters.

One of the interesting things to point out from the analytical expressions and plot

is that there are four regions of interest:

I oy >1—ap and ag < 3.

of the threshold function

“normal” case where the threshold sets the minimum fraction of

&)

This is the

black pixels that must be present in the observed data vector to decide that the

associated template pixel is black. The threshold is strictly greater than 1.
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IT

II1

IV

In this region foreground pixels are more likely to be observed as black than

background pixels. Since a3 > the channel has a tendency to conserve

1
29
black pixels. With no restriction on «yp, except that ag < «;, there can be a
large added contribution to the observation of black from background pixels if

1 —agp> % This possibility is accounted for by having a large threshold.

a; > 1 —ap and ap > a.

This is the “normal” case where the threshold sets the minimum fraction of
black pixels that must be present in the observed data vector to decide that the
associated template pixel is black. The threshold is strictly less than %

In this region foreground pixels are more likely to be observed as black than

background pixels. Since oo > %, the channel has a tendency to conserve
background pixels, which means that the observed black pixels more likely came
from foreground pixels only, and since there is little contribution to black from

background pixels, this explains the low threshold.

a1 <1 —apand ap < a3.
This is the “reverse video” case where the threshold sets the minimum fraction
of black pixels that must be present in the observed data vector to decide that

the associated template pixel is white. The threshold is strictly greater than %

In this region background pixels are more likely to be observed as black than
foreground pixels. Since 1 — ag > %, the channel has a tendency to flip back-
ground pixels. With no restriction on «;, except that oy > ap, there can be
a large added contribution to the observation of black pixels from foreground

pixels if a; > . This possibility is accounted for by having a large threshold.

a1 <1 —apand ag > o.
This is the “reverse video” case where the threshold sets the minimum fraction
of black pixels that must be present in the observed data vector to decide that

the associated template pixel is white. The threshold is strictly less than 1.
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In this region background pixels are more likely to be observed as black than
foreground pixels. Since a; < %, the channel has a tendency to flip foreground
pixels, which means that the observed black pixels more likely came from back-
ground pixels only, and since there is little contribution to the black from fore-

ground pixels, this explains the low threshold.

In the case of ag = @4, the threshold becomes %, which is what one would expect
since both hypotheses are equally likely. It is also interesting to note that the analysis
carried out on regions III and IV would be the same as that of regions I and IT if the
hypotheses were switched and the threshold was compared to the fraction of white
pixels in the observed data vector Z; instead.

We define the number of matching pixels ©; = E;-V:l zj;, and the number of mis-
matching pixels A; = N — Zj-v:I zj;, so that ©; and A; are the number of pixels that
are ON and OFF, respectively, in the observed image vector Z;. We can alternatively

write the ML decision rule (3.10) as follows

(A + 0;) log (122-) + O;log (1=90)0-01)) ”S’ 0 (3.15)
yi=1
y;=0
(Ai + ©;) log (122-) ~ ©;log ((T_%%ga—l)) z: 0 (3.16)
Oilog (124-) — Ajlog (122-) E 0. (3.17)

In this last form, we interpret the formula ©;log (1—?&3) — Ajlog (ITQ&T) as the likeli-
hood score of pixel y;, which we will occasionally denote by £(y;). Notice the presence
of a pixel matching score ©;log (1—21)3) and a pixel mismatching score A;log (1%2—1).
Both threshold equations, (3.12) and (3.14), disguise the fact that the ML rule will
only assign a pixel to template Y if its likelihood score is positive, as is explicitly

shown here.
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3.1.2 Optimize oy and o; with Y fixed

Given a fixed character template Y, and its corresponding set of observed images
Z ={Z1,Z,...,7Zn}, the objective is to find the channel parameters that maximize
the likelihood of Z, given by equation (3.5). We can equivalently maximize the log-
likelihood of Z. After some algebra we find that

N
logPr{Z |Y,a0,n} = logao) Y (1 —wi)(l—2z;)+
i€g j=1
N

log(1 —ag)d > (1 —ya)zj +

i€g j=1

N
10g alz Z yizj,- +

1€G j=1

log(1 — oy EZyl — z;,). (3.18)

i€g j=1

We can now derive analytical expressions that can be easily computed for the maxi-

mizing values of o and oy. For oy,

o N
——logPr{ZlY,ao,al}— ZZ (1 —y)(1—zj) SN (1 = yi)z,
Jag 0;eg j=1 — ®0eg j=1

(3.19)
Setting the derivative to zero we solve for the maximizing value of g
N
22 (=) —z)
ap = ———— T < (3.20)
Yo (=g =z)+ > > (1-wi)z,
i€g j=1 i€g j=1
N
Z Z (I —y)(1 = 2;)
1€G j=1
= ~ (3.21)
2.2 (1—y)
1€G =1
N
2l Il
i=1
a = . (3.22)
’ NI(=Y)]
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A subtlety with the expression for aq in (3.22) is that it is very sensitive to the size
of the template and of the observed images. Since the expression involves operations
on the inverse of the original images, we can make g arbitrarily close to 1 simply
by using large sized template canvasses. Through the noise channel we expect some
white pixels to turn black, and ag to have a fixed value that is realistically not 1.
Background noise is observed when a white pixel in the original undistorted image is
mapped to a black pixel in the observed image; it originates from “white” pixels in
the original document being realized as “black” in the observed image. However, this
effect is only present in the the mapping of the pixels of the original document image
to pixels of the observed image. The appropriate value for g should be calculated
from the discrepancies between the observed image and the original image. Given the
set of templates ) we generate a template reconstructed image 7’ to be the assumed

original image, as described in section 2.1, so that
) 1-yi . i
Pr{I | T, a0,m} =] [o§™01 —ao)z‘]( v o7 (1= o))" (3.23)
1€Q

Equation (3.23) is the likelihood function of the observed image given the recon-
structed image. Similarly as before, we can find the maximizing values for g and o
by setting to zero the partial derivatives of the logarithm of this likelihood function.

With some algebra we find that

logPr{Z | I, a0,an} = logagd (1 —yi)(1—z)+

i€
log(1 — o) (1 —yi)zi +
i€Q
log alz Yizi +
i€Q
log(1 — 1)) yi(1 — 2). (3.24)
1€Q

Once again, we can derive analytical expressions that can be easily computed for the

35



maximizing values of ag and a;. For ag,

0
%log Pr{Z |T, a0,a1} = aiz (1—-y)(1—2)— o (1—yi)z.  (3.25)

0ien — Q0;cq

Setting the derivative to zero and solving for oy we get

> (1 =y)(1~-=)

R SIETTERES IR (520
> (1—y)(1—2)
_ i€Q ST ) (3.27)
L IEDACD)
S [T 2

The numerator ||(=Z') A(—=Z)|| gives the number of white pixels in the recon-
structed image that were realized as white pixels in the observed image. Divided by
the total number of white pixels present in the reconstructed image ||(—Z")||, this frac-
tion is the probability that a white pixel is mapped to a white pixel; the background

channel parameter ag. We follow the same procedure to solve for a;,

1
1-0[1

—8—logPr {T|T,a0,00} = =) yizi —

1
dey Y

>yl = 2). (3.29)

1€Q

Setting the derivative to zero we solve for the maximizing value of a;

Z Yizi
o = € (3.30)
! Sz 4+ Y il — 2z)
i€Q i€Q
Z Yizi

R (11 (3.31)

T

1€Q

17 AZ|
o = . (3.32)
1 IZ']
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In the expression for oy, the numerator ||Z’ AZ|| gives the number of black pixels
in the assumed original image that were mapped to black pixels in the observed image.
Divided by the total number of black pixels present in the reconstructed image ||Z'||,
this fraction is the probability that a black pixel is mapped as a black pixel; the

foreground channel parameter o.

3.1.3 Assumptions

There is one subtlety that we must pay attention to. In the calculation of the channel
parameters, we made the implicit assumption that the templates in the reconstructed
image were disjoint. This is not generally true in this case since every estimated
template will contain an estimate of its character, along with extraneous information
originating from other characters in the vicinity of every instance of that character.
Thus, in the template reconstructed image, there will be a lot of overlapping between
the support of every template. This introduces extra noise in the reconstructed image

that will be reflected in low values for a;.

3.1.4 Convergence of ), ap, a;

The goal of template estimation is to estimate a set of templates ) that maximize the
likelihood of the observed image given the template reconstructed image. The process
we follow is an iterative one where we switch back and forth between maximizing for
the bitmap templates, and then maximizing for the channel parameters, using the
updated estimates of one to update the estimates of the others and vice versa.

To test for convergence we calculate the value of our objective function at every
iteration and compare it to its value in the previous one. Let us denote our template
reconstructed image and channel parameters at the nth iteration by {I(’n),ao,al},
and at the next iteration by {Z{, ), ag, @1 }. With this notation our convergence test

looks as follows
Pr {I | I(I'n,+l)? ap, 0/1}
Pr {I | I(’n),ao,al}

<n (3.33)
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where 7 is the desired measure of convergence. We cast (3.33) into a more convenient

form by taking the log:
log Pr {I | Zint1ys 0‘67“’1} — log Pr {I | Z{»y» o, al} < logn. (3.34)

When the log-probability differences of our objective function between two iterations
falls below the set threshold, we stop iterating. A little algebra on (3.24) shows that
each of the log-probability terms above can be written as

log Pr{Z | T',a0,ca} = |Z|logao — ||Z|llog (;28-) — |T'|llog (12&) +

1-&p

IZ AT[log (e8es_—). (3.35)

Equation (3.35) above is the convergence measure for the template estimation
and channel parameters estimation procedure. It shows the quantities that need to
be computed at every step of the iteration to compare to those of the previous step

in order to assess convergence.

3.1.5 Experimental Results

We will use the image in figure 3-3 to illustrate the procedure we have just described.
The image was obtained by scanning the original image at a resolution of 300dpi.
Figure 3-4 shows the locations of all the character origins on the page. The origins
were obtained by running a commercial OCR program on the image that returned
bounding box information on each character, as well as a label corresponding to
the character at that location. The origin of each character was then taken to be
at the lower left corner of the bounding box for that character. The recognition
routines used connected components to isolate each character, and extract bounding
box information from the isolated characters. In some cases, adjacent characters were
connected in the observed image, such as the ry in Recovery in the second line, or mm
in the first line after ECONOMICS, and were identified as a single character and labeled

as the first observed character. For this reason, only the first glyph in these cases
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has an origin, the other glyph was not given an individual label or an origin by the
recognizer.

With the origins known, we proceed to obtain the observed instances of a character
by extracting a fixed size image region about each of the origins of that character.

Figure 3-5 shows all the observed instances of the character “a”. Note the proper

image for the “a” is in the middle of all the canvasses, and surrounded by complete
and partial images of other characters. There are slight differences between each of
the observed instances of the “a”, particularly in the edges and in the thickness of
each glyph. These are the variations that the ML template tries to capture through
the noise model. In the estimation procedure we implicitly assume that the presence
of other character images are extreme artifacts due to the noise model. This is not
true, and in the next section we discuss how to deal with them.

Figure 3-6 shows all the ML templates after having applied the Maximum Likeli-
hood template estimation routine to all the observed images of each character. Note
the presence of the proper support in each character template. In the case of the “h”,
notice the marked presence of the corresponding images for the characters “t” and
“e” to either side. This is because the character “h” occurred most frequently in the
word the, and the pattern for the “t” and the “e” cannot be distinguished from the
one for the “h”. There are a few degenerate cases to observe, namely the templates
for the “M” and for the “N”. Both these character occur only once in the original
image, and the best estimate for each one is simply the observed instance.

Figure 3-7 shows the Maximum Likelihood template reconstructed image. The
template reconstructed image is generated by placing the origin of each character
template at all origins on the image plane that are labeled with that character, and
painting the corresponding template image on the canvass. The discrepancies between
the template reconstructed image and the original image are very marked. This exam-
ple shows the high degree of overlap that exists between all of the imaged templates,
which is clearly in violation of the non-overlapping criterion that was emphasized
by the document generation models, and results in a very unreadable reconstructed

image. The next section develops an approach that refines these ML, templates.
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Figure 7. Recovery of different fractions in the top of the jigbed.

The relation between the time, during which the various fractions go to
the top of the bed and the l/w-ratio has not been quantified. It is
however clear that if the l/w-ratio increases, the separation of the Asg
becomes more difficult or for a high recovery of SiC even impossible. For
this reason the recovery has to be low for a high grade SiC product. with
increasing jig time more SiC will move to the top, because in the last
stage of the demixing process the separation will take place based on the
difference in shape of the particles.

ECONOMICS

The 3-8 mﬁ fraction of the jaw crusher product contains, according to
figure 2, 20 wt percent of the total Asg/SiC mixture. With 70% SiC in
the feed and 40% recovery, 1100 ton SiC can be extracted by jigging.
According to the German mother company of Elektroschmelzwerk Delfzijl

Figure 3-3: Original Image
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Figure 3-4: Character Origins
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Figure 3-7: Maximum Likelihood Template Reconstructed Image
3.2 Maximum Likelihood Template Refinement

Through the independent ML template estimation routine described above, every
template contains an estimate for the shape of each character. These templates also
have extraneous information that does not correspond to the actual template. This is
a result of the nature of the character samples. Recall that one of the problems we are
addressing is the lack of isolated characters to train our templates. Given the origins,
we simply extract a region of image about this origin, hoping to capture the entire
character image corresponding to the label associated with that origin. Assuming we
capture the entire image of a given character, we also capture the images of other
characters in the vicinity of this one. All the character samples for a given label
then contain this extra information that carries through the ML template estimation
routine, as seen in figure 3-6. This simple procedure gives a superset of correct pixels
for each character template. Simply notice that the presence of extra pixels in each
character sample yields a high value for 1 — o, the foreground noise probability, in
the mapping from the reconstructed image to the observed image. This results in a

lower threshold for the number of black pixels that must be present in the data vector
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for each template pixel, and therefore the estimation will be very tolerant of small
numbers of black pixels in each data vector, which intuitively results in a superset of
correct pixels. Our goal is to now remove pixels from all the templates so that only
the “proper” character template image remains in each one.

The central problem is that the reconstructed image does not visually represent
what we expect the assumed original image to look like. The template reconstructed
image should minimize the error probability between what we are estimating to be the
original template reconstructed image, Z’, and the observed sample image, Z. Given
the set of ML templates, we reconstruct our assumed original image by placing at
every origin location in the image canvass the template associated with every labeled
origin. The template reconstructed image is very hard to understand because the
templates overlap extensively; this overlapping is in violation of the non-overlapping
criterion imposed by our model. Therefore, our “cleaning” routine must somehow
maximize the fit between the observed image and the template reconstructed image
while strictly enforcing the non-overlapping criterion.

The approach must be a principled one, where we do not make any assumption
as to the shape and/or positioning of the character with respect to the origins we are
given. Using ad-hoc techniques, such as looking for connected components, makes the
assumption that we have some prior knowledge about the characters. This might not
necessarily be true for certain types of fonts, such as cursive, where all the characters
within a word are connected.

To clean the templates, we must decide which pixels in a template belong to that
character, and which pixels do not. To be precise in our analysis, we define a few
terms. We will refer to a template pixel w (w € G) as a template indexed pizel. We
will refer to a pixel in the template reconstructed image y (y € §2) as an image indezed
pizel. Every template indexed pixel is mapped to a set of locations on the image plane
corresponding to the relative location of this pixel on the template ! with respect to
all the origins of that template on the image plane. The term conflicting pizels refers

to the event that more than one template indexed pixel contributes to a particular

1With respect to the local origin of the template.
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black pixel in the reconstructed image; in other words, two template indexed pixels
are said to be in conflict if they are mapped to at least one same location in the
template reconstructed image plane.

Associated with the decision to maintain or erase a template pixel is a measure of
the improvement or deterioration between the reconstructed image and the original
image; specifically, every pixel y carries a “score” associated with it which is its
likelihood score £(y). The specifics of how this likelihood score plays a part in the
template cleaning process will be addressed later.

We now begin the analysis of template cleaning procedure. As a first case we
will consider a single template pixel that maps to several locations on the template
reconstructed image without any conflicts. In the event that a pixel has no conflicts,
then it is obvious that it will contribute its entire likelihood score to the likelihood
score of the reconstructed image. If we erase this template pixel, we must erase the
pixels at all the locations on the reconstructed image where it mapped to, incuring a
change in the likelihood of observed image equal to the likelihood score of that pixel.

Let us look at the case where two pixels from two different templates always map to
the same locations on the reconstructed image. Turning one of these template pixels
off does not necessarily correspond to turning that pixel off in every location of the
reconstructed image where that particular template occurs. The other template will
still contribute its black pixel to those locations, and turning one of these template
pixels off does not change the reconstructed image. As a result of this, the likelihood
score of the reconstructed image will not change. The only thing that has been gained
here is reconciliation with the non-overlapping criterion. Thus, the likelihood score
of each pixel does not entirely contribute to the likelihood score of the reconstructed
image when there are conflicts. There is a penalty that is carried on the likelihood of
each pixel when it is in conflict with other pixels.

Assume we have the more complicated case of multiple conflicts in a given image
pixel, further assume that each of these pixels maps to different locations on the
reconstructed image. At each of these other locations, these pixels can also be in

conflict with pixels from other templates, and so on. Each of these pixels will have
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a certain score associated with them. In order to decide which pixels to turn off, we
must also consider all the conflict dependencies that stem out of a given pixel. When
conflicts exist, we must somehow measure the aggregate measure of likelihood to the
reconstructed image from all of the conflicting pixels, and then decide which of these
pixels must be turned off so as to maximize the likelihood of the observed image and
satisfy non-overlapping.

Clearly, we must consider all conflicts that propagate from every candidate pixel
in the reconstructed image in order to decide which choice of pixel assignments max-
imizes the fit between the reconstructed and observed image while enforcing the non-
overlapping criterion. This entails generating a “conflict closure” that contains all the
conflict dependencies stemming from every pixel in that closure. We now formalize
the definition of this closure.

If a particular template Y9 is imaged n times in the observed image, then every
ON pixel w € G of that template has a mapping to n distinct locations in the template
reconstructed image. We define the function S, = {(z1,%1),---,(Zn,¥n)}, Sw C &,
that returns the set of all locations on the template reconstructed image where a
given template pixel w can be found.

A conflict closure can now be formally defined as the transitive closure of all pixels
sets that conflict with each other, as was described above. The transitive closure of a
relation can be defined as follows: If P is a “seed” pixel from which we’d like to trace

its conflict closure, let

P, = PU{z|(Jy)(y € Pand S, NS, # 0)}
P, = P U{z|(3y)(y € Phand S, NS, # 0)}

Py = P,U{z|(Qy)(y € P,and S; NS, # 0)}.

Since the universe of possible conflicting pixels is bounded by the number of pixels in
all templates, at some stage, this construction will fail to enlarge the set; Poy1 = Fh.

P, is then said to be the transitive closure of P. We will refer to this transitive closure
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by the name conflict cluster, or just simply cluster, and denote it by the symbol C.
We define S¢ = {Su;, Swyy- - -5 Sw, } to be the set of image locations of every cluster
element. We also define the conflict dependencies between an element w € C and
every other element in that cluster by the set D, = {z | z # w, S, N S,, # 0}. Notice
from the definition of a cluster that D,, # 0 Vw € C. Associated with every cluster
then, is a collection of subsets of C that contains the conflict dependencies between

every element in that cluster, D¢ = Uyee {Dw}. Thus we will specify a cluster by:

C = {w,wq,...,wn} (3.36)
Sc¢ = {SuwiySuwss--+ySun}t (3.37)
De = {DuwysDuyy--oy Dy} (3.38)

In any given template reconstructed image there will be at least one cluster. We will
identify different clusters by the index i, as in C;. There are several important features
about conflict clusters to point out.

Every template indexed pixel in Y necessarily belongs to one unique conflict cluster
C;. Specifically, if there are a total of M conflict clusters in a template reconstructed

image and T templates in ), then

. (3.39)

M T )
> e =3 e

From the definition of a cluster it follows that every conflict cluster is independent of

every other conflict cluster

CGNeC; =10 (3.40)

for ¢ # j.

Every cluster builds its own corresponding section of “patches” across the recon-
structed image. Every element w of a cluster contributes a black pixel in the template
reconstructed image at all the locations in S,,. From all other template indexed pixels
in C; there is a corresponding contribution of black pixels in the reconstructed image.

More than one template indexed pixel in C; may contribute to any particular image
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indexed pixel. This follows from the definition, and is as a result of the fact that
members of a given cluster share conflict locations on the reconstructed image. A
cluster, then, clearly maps to a set of locations on the reconstructed image. This set
forms a cover for all distinct locations of elements of a cluster C; on the reconstructed
image, {S,} Yw € C;. We define the set of image indexed pixels that forms a cover

for the image locations of a given cluster as {y};. Formally stated, C; = {y};, where

{v}:i= U Su (3.41)

weC;

The set {y}; contains the image indexed pixels that form the image “patches”
we referred to earlier for a cluster. Since every template indexed pixel belongs to a
cluster, the locations on the image to where this pixel maps to will also belong to
some set {y};. And since the reconstructed image is made up of all black template

indexed pixels, it follows that

; {y}l = I1Z']|. (3.42)

The sets {y}; are also independent of each other. Since clusters are independent,
C;NC; =0 for ¢ # j, and their corresponding sets of image indexed pixels form a

cover for each of them, C; = {y}; and C; — {y}; it follows that
{y}:in{y}; =0 (3.43)

for ¢ # 7.

Thus we have shown that conflict clusters and their associated sets of image in-
dexed pixels are independent of others. We have also shown that every template
indexed pixel in Y is referenced by some cluster, and that every pixel in the re-
constructed image is referenced by an element of some cluster cover in Z'. In the
analysis, then, we will only consider one conflict cluster and apply the results to all

of the clusters.

Let us go back and ask ourselves the relevance of generating these clusters to the
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refinement of the templates. We need to be able to determine which pixels in the
ML templates need to be turned off such that their supports do not overlap in the
template reconstructed image, and the resulting templates maximize Pr {Z | 7'}. As
the argument showed, in order to question the assignment of each black pixel in a
template to see if it should be left or cleared, we must also question the assignment
of all other template pixels it conflicts with, and all of their conflicts in turn. This
led to the generation of conflict clusters to capture all possible conflict dependencies

between template pixels. Given these clusters, we now face two tasks.

o The first task, refered to as Cluster Likelihood, is to find a measure of how good

a particular choice of ON/OFF assignments to pixels in a cluster is.

e The second task, refered to as Cluster Assignment, is to design an algorithm that

can find an ON/OFF assignment to a cluster that maximizes Cluster Likelihood.

3.2.1 Cluster Likelihood

For a given cluster C = {wy, wy,...,w,} there is an associated pixel assignment space
U= {Yws»Yway- - - » Yun }, Where v, € {ON,OFF}, that assigns each one of the template
indexed pixels in a cluster to be either turned ON or OFF in its respective template.
A particular partition of this space, I';, gives a valid pixel assignment to a cluster such
that there are no conflicts between the template indexed pixels w for which v,, = ON.

For a given cluster C and its associated set of image indexed pixels {y}, there is
also an associated set of pixels in the observed image that {y} maps to through the
noise channel. We will define this set as {2}, and denote the mapping by {y}—>{z}.
Given a cluster cover {y}, its associated mapping to the observed image {z}, the

noise model, and a partition I'; on {y}, we define:

= number of pixels in the cover (|{z}| = |[{y}]).

= number of ON pixels in {2z} (in the observed image).

A

I

number of ON pixels in {y} (in the template reconstructed image).
number of ON pixels in {y} that are ON in {z}.
A = number of ON pixels in {y} that are OFF in {z}.

¢
@
X
©

il
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Figure 3-8: Cluster Cover Through Noise Model {y}——{z}

Figure 3-8 illustrates how the quantities in these variables map through the noise
channel, giving us a stochastic relation between {y} and {z}. The variables ¢ and ¢
only depend on the particular cluster we are dealing with. The variables ¥, A, and
O, where ¥ = O 4+ A, depend on the particular choice of assignment I';. Through the
noise model, and refering to figure 3-8, the probability of a partition I';; that is, of a

given assignment of ON/OFF pixel sequence is
Pr{{z} [ {}} = o’ V(1 — ) Do (1 — o)™ (3.44)
After some algebra the log-probability can be written as
log Pr{{z} | {y}} = ¢log o + plog (%Q) — Alog (rac%) + Olog (ITCXO[L()). (3.45)

From partition to partition, the quantities ¢ and ¢ remain constant, since the cluster
does not change. Thus the likelihood measure difference for partitions in a given

cluster cover is given by

Olog (1%,1%) — Alog (—QL) (3.46)

1-

Notice the match and mismatching scores for good (@) and bad (A) pixel assignments.

The partition we are looking for is the one that maximizes (3.46). For a symmetric
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noise channel, where o = a4, note that the best partition has the largest number
of matching pixels, ©, and the smallest number of mismatching pixels, A, which is
intuitively what one would expect.

The Cluster Assignment Problem attempts to pick a set of pixels from the cluster

C that maximize the cluster likelihood score £(C) = Olog (Tgé—(;) —Alog (i%g;) from
among all possible assignments. This is the measure we were looking for. What
remains now is to find an algorithm that can quickly and efficiently find a valid
pixel assignment that maximizes cluster likelihood. In appendix A we prove that the

Cluster Assignment Problem is NP-complete.

3.2.2 Assumptions

We will assume that the channel parameters a9 and a; do not change for different
cluster assignments I';. There are two reasons for making this assumption. The first
is that if we assume that the number of elements in a cluster C is small compared
to the quantities |Z|, || Z||, || Z’|l, and ||Z AZ’||, then different partitions of the conflict
space I['; will not appreciably affect the values of ag and ;. Simply note that the

channel parameters can be rewritten as

Z1 = IZ = 17"l + IZ AT’
Z] =1zl

_ 1ZAT
ap = ———

Izl

and an incremental analysis shows that the channel parameters are not affected by
small variations of ||Z’|| and || ZAZ'|.
The second reason is that in the implementation this would avoid having to re-

compute the optimal channel parameters for every assignment I;.
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3.2.3 Cluster Assignment

Given a conflict cluster C = {w;,...,w,}, the Cluster Assignment Problem, or CAP
for short, is to choose a subset C’ C C of pixels to turn ON such that cluster likelihood
is maximized. As appendix A shows, the CAP under strict observation of the non-
overlapping criterion is NP-complete. The theory of NP-completeness tells us that
we can expect any algorithm designed to find an optimal pixel assignment to be
exponential in cost. What if we remove the non-overlapping criterion such that the
template reconstructed image still yields the most likely candidate to have produced
the observed image? Appendix A shows that this variant of the CAP is also NP-
complete.

To have labeled the Cluster Assignment Problem NP-complete, implies that this
problem is inherently intractable. There is no known algorithm that can solve an
NP-complete problem quickly. The answer can be obtained by searching all possible
combinations to find out which one has the highest likelihood score. However, this
scheme is operationally impractical when the number of elements to be searched
through in the space of solutions is large.

By relaxing the optimality criterion in the CAP we transform this combinatorial
optimization problem, where our goal is to find an optimal valid solution, into a
semi-optimization problem, where we tolerate less than optimal solutions. OQur main
objective now is to develop an “efficient” algorithm that can find an ON/OFF as-
signment to a cluster that maximizes its cluster likelihood. By efficient we mean an
algorithm that arrives at a good solution in a relatively fast way.

We will focus on solutions to the CAP under strict observation of the non-
overlapping criterion. The goal now is to select the set of non-conflicting cluster
elements C' C C, where D, N D, = @ Yu,v € C, such that £(C') = ¥ ecr L(w)
is maximized. A greedy algorithm seems like a very attractive strategy to do this.
The greedy algorithm tries to maximize the aggregate likelihood by maximizing the
likelihood of individual elements in that set. The greedy algorithm used in the CAP

is shown in figure 3-9.
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Given: C
begin
1. P:=90
2. c':=C
3. whileC'#0 do
begin
4. p = argmax L(w)
weC!
5. CeC-p
6. P—PUp
T. K={z|lze€C, S:.NS,#0}
8. CC-K
end
9. 7 — ON Vpe P
10. ~,— OFFVYpeC-P
end

Figure 3-9: Greedy CAP Algorithm

The greedy algorithm first selects the cluster pixel p with the highest likelihood
score, removes it from the cluster C’, and adds it to the set P. Next it finds all
the conflicts to p, K, and removes them from the cluster C’. The algorithm then
selects the next highest scoring pixel from the modified cluster C’ and repeats the
procedure until C’ is empty. On completion, the set P will contain the individually
highest scoring pixels from the cluster C. The algorithm terminates by making ON
assignments to all the pixels in P and assigning all other pixels OFF.

Figure 3-10 shows the results of applying the greedy algorithm to the templates in
the example of figures 3-3, 3-4, 3-5, and 3-6. Figure 3-11 shows the greedy template
reconstructed image. In the reconstructed image some characters are missing, such
as the “u” in Figure in the second line, or the “u” in crusher in the 12th line. This
is because we did not have origins for these glyphs initially, and their images were not
used in the estimation routine. There are also some origin misplacements, namely the

“r” in Recovery. This is because the recognizer calculated the bounding box for the

“r” in some instances using the adjacent image for the “y”, which resulted in a much

lower left hand corner for the bounding box, which we use as origin. We also point
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Figure 3-10: Maximum Likelihood Templates Through Greedy Algorithm

out that the transcription was not perfect, and there were some characters that were
labeled incorrectly, such as the “/” in the fourth line labeled as an “I”, or the “/” in
the 13th line after the word Asg labeled as an “i”. Careful inspection of the greedy
templates in figure 3-10 show that these mislabelings did not affect the estimation of
the templates. Tests carried out on other images further showed that the template
estimation routine is not affected by a small number of mislabelings, and thus the
transcription need not be perfect to obtain a good set of estimated templates.

The algorithm performs well as a first approximation to a solution. Although we
have certainly not achieved the most optimal solution, the results are very aesthet-

ically pleasing. Intuitively, the likelihood scores for every pixel in a template that
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Fig re 7. Recover of different fractions in the top of the jigbed.

The relation between the tine, during which the various fractions go to
the top of the bed and the 1l;w-ratio has not been quantified. Tt is
however clear that if the l/w-ratio increases, the separation of the Asg
becomes more difficult or for a high recover of SiC even impossible. For
this reason the recovery has to be low for a high grade Sit product. With
increasing jig time more Sit will move: to the top, because in the last

stage of the demixing process the separation will take place based on the
difference in shape of the particles.

ECONOMICS

Tl}e :=g:m fraction of the jaw cr sher product contains, according to
figure 2, 20 wt percent of the total Asgjsic mixture. With 70% sic in
the feed and 40% recover , 1100 ton Sit can be:extracted by jigging.
According to the Ger an mother company of Elektroschmelzwerk Delfzijl.

Figure 3-11: Greedy Template Reconstructed Image

correspond to the “proper” character image should be higher than for others. We
expect this because every observed image of a character contains the actual character
image, along with images of other characters in the vicinity of every instance. There is
always a similar pattern of pixels corresponding to the proper shape of the character
across all images, and the pixels from this pattern contribute a very high likelihood
score to the template pixels. In contrast, presence of other pixels in the ML template
corresponds to images of other characters. The likelihood score for any of these pixels
depends on the relative frequency of pixels from other characters at that location in
the extracted images. Since these pixels do not necessarily form a consistent pattern
from image to image, we can expect to have a larger number of mismatching pixels
from these template pixels, and thus a lower likelihood score. We will refer to the
template pixels that correspond to the true shape of that character as true pizels, and
to the pixels in a template that correspond to other templates as ghost pizels. When
placing a template in all its corresponding positions on the reconstructed image, the
likelihood score of a true pixel should be higher than that of every other ghost pixel

that maps at that location. From the document generation models, a true pixel will
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never map to conflict with another true pixel.?

The argument above relies on the consistency of character shape from glyph to
glyph in every observed instance of that character. We expect the likelihood score of
a true pixel to always be higher than the likelihood score of any other ghost pixel it
conflicts with. But as the experiment shows, that is not always the case. Notice the

t(f” ({3 ) B (1
?

presence of “holes” in a lot of the characters, such as the “h”, m”, “r”, or “f”.

Upon closer inspection, we find that these holes are pixels that were awarded to the

[43 e” [1P%})

template of the character “e”. What is going on here? The character “e” occurred

substantially more than any other character on the image. In all of its observed

instances, the shape of the actual “e” repeated itself and the likelihood of these true

pixels was captured by the greedy algorithm. Yet the greedy algorithm also awarded
«.»

ghost pixels to the “e”. By the sheer number of times that the character “e” was

present on the image, a consistent pattern arising from other distinct images also
appears in the ML template for the “e”. This is the extra spot we find in the “e”.
How does this come about? The greedy algorithm assigns a pixel that is better than
all of its conflicts individually. The algorithm does not consider the possibility that
an assignment to several conflicting pixels of less individual likelihood can yield a
larger aggregate likelihood. In our example, we find that the extra spot in the “e”
corresponds to holes in the images of other characters. There are two approaches we
can take in order to resolve this.

In the first approach, we can modify the greedy algorithm as follows. Before
making an assignment to the next considered highest-scoring pixel, we should “look-
ahead” and compare to the aggregate likelihood of all the conflicts to this pixel,
which we will call candidates. If the likelihood score of the next highest-scoring pixel
is less than the sum of the likelihoods of all the conflicts to this pixel, then we should
assign all of the candidate pixels ON, and the considered pixel OFF. Otherwise, the
algorithm should proceed as before. As described, this is a one level deep search

through all possible assignments. A problem with this approach, however, is that

there are no assignments on the cluster pixels initially, and in order to justify the

2This is not necessarily true in reality, where templates are designed to overlap slightly.
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presence of a pixel in the candidate list we must verify in its candidacy that its
possible assignment would contribute a larger likelihood score than all of its conflicts
together. But considering these conflicts requires justifying their candidacy in turn,
and so forth. This approach is clearly not well suited to resolve this problem.

In the second approach, we simply try to improve on the solution given to us by
the greedy algorithm. From the results of our example, we should try to assign the

“L”
(5

extra spot of the to all other possible locations where we can fit it, such as the “a”,
“b”, “1”, etc. We expect the change in likelihood to be positive in the re-assignment
of such pixels since this would yield a much closer fit between the reconstructed image
and the observed image. This procedure is carried out by local search algorithms.
The idea is very simple, the algorithm starts at some initial feasible solution and
uses subroutines to improve this solution by searching through a local neighborhood
of solutions, and if a better solution is found, it is adopted. There is a tradeoff
between searching through small and large neighborhoods. A large neighborhood
provides more possibilities for a better solution with the expense of longer search
time, whereas a small neighborhood might not provide a much better solution but
can be searched through very quickly.

There’s a fundamental difference between the two proposed approaches. The first
approach branches from the top of the search tree in all directions, trying to find the
solution that yields the best score. The second approach pursues the greedy algorithm
to a solution at the bottom of the search tree and then does a local search around
that solution. The advantages of the second approach are immediate. The greedy
algorithm gives a reasonable solution to the problem; the resulting templates are
aesthetically pleasing. The local search algorithm now tries to locally find a variant
of the solution that yields a higher likelihood score. The local search algorithm for
the greedy solution used in the CAP is shown in figure 3-12.

The local search algorithm, from now own refered to as the refinement procedure,
is a very conservative and straightforward routine. For every cluster, we first select
the currently ON assigned pixel that has the largest likelihood score, m. Following the

previous argument, a subset of all of the pixels that conflict with m will be considered

57



Given: I',C

begin
1. I":=T
2. (C:=C
3.  while there exists an z € C’ such that 7/, = ON do

begin
4. m = argmax L(w)
weC'|y,=ON
5. C'e—C—-m
6. U = CandidateList(m,C’, V)
7. V = ValidateCandidateList ()
8. M = ValidCandidateConflicts(V,C’, IV)
9. if EwGV ‘C(w) 2 ‘c(m) + EwEM 'C(w) then
10. Yw — ON Yw eV
11. Yw — 7., — OFF Yw e MUm
12. Q— QUM
end
13. v« ON Vwe {z|(Fy)(z €C,y € Q,z # y,7. = OFF,
SeNSy#0,5:nS, =0 Vv eCly,=0N)}
end

Figure 3-12: Local Search Algorithm for Greedy Solution

as candidate pixels to receive the pixel assignment. From all the conflicts with m, we
generate a candidate list & by selecting those pixels from the conflict list that either
have no other conflicts with ON pixels (except with m) or, if a particular conflict has
other conflicts of its own with pixels that are ON, then we include it as a candidate if
its score is larger than the sum of the scores of all of its conflicts. This is the first sign
of conservativeness in the algorithm. More than one OFF conflicts of m may share
conflicts with more than one ON pixel, such that considering all candidates together
may result in a larger likelihood score against all of their conflicts. The concern here
is that individually, these OFF candidates might not give a larger score than all of
their ON conflicts. This step is carried out by the procedure CandidateList(:).

Once we have a list of candidate pixels, we must make sure that an assignment
to all of these pixels still observes the non-overlapping criterion. Specifically, there

may exist conflicts between candidate pixels. We go through the candidate list in
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procedure CandidateList(m,C’,I");
begin
1. U:=10
2. K={z|ze€C S NS, # 0}
3. for each w € K do
begin
4, R ={z|lzr €4, =0N,S, NS, #0}
5. if L(w) > ¥,er L(p) then
6. U—UUw
end
7. return U
8. end

Figure 3-13: Procedure CandidateList(m,C’,I")

descending score order looking at all the conflicts of each pixel. Since some candidates
were chosen by comparing their score to the sum of their conflicts’ scores, they will
have conflicts with ON pixels and OFF pixels. We are only concerned with conflicts
between pixels in the candidate list. If a high scoring candidate pixel has a conflict
with one or more lower scoring candidate pixels, then we remove the lower scoring
candidate pixels from the candidate list. This is the second sign of conservativeness
in the algorithm. In the event of more than one conflict, the algorithm does not
consider the possibility that the aggregate score of all the conflicts is higher than the
likelihood score of the first pixel. These types of arbitrary candidacy measures are
instituted because verifying the alternatives increases the complexity of the search,
and thus the time that it takes for the algorithm to run.® This step is carried out by
the procedure ValidateCandidateList(:), which simply returns the list of pixels that
have been assigned ON that conflict with a set of valid candidate pixels.

We illustrate the local search algorithm by considering a pixel m and all of its

conflicts, U, that qualify to be candidates under the rules mentioned above.

3Experimentally we find that the algorithm in its conservative form is still very computationally
intensive.
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procedure ValidateCandidateList(2/);
begin
1. V=90
2. whileld # 0 do
begin
3. v = argmaxL(w)
weU
4. U~U-v
5. Ve—VUv
6. 73={x|:c€L{,an,S’v;é0}
7. U—U-R
end
8. return V
end

Figure 3-14: Procedure ValidateCandidateList(X/)

m

/ 1\

(——U ——) « conflicts of m; candidates

From this candidate list we clean up the conflicts between them. The idea of the
local search is that we want to replace the assignment of a pixel m with that of all
the candidates that could have received it instead if their likelihood is greater. This
means that the candidates are the immediate conflicts of the pixel m. But since there
might be new conflicts if we were to assign ON all the pixels in the candidate list, we
must remove these conflicts. This is done by validating the candidate list, & — V.
By considering the alternative of assigning ON all the pixels in the candidate list,
there is a likelihood change of turning ON all of the pixels in this candidate list and
having to turn OFF all of their conflicts, which include m and all other conflicts with
V, given by M.
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procedure ValidCandidateConflicts(V,C’,IV);
begin
1. M=
2. for allv eV do
begin
3. R ={z|z €4, =0N,S; NS, # 0}
4. Me—MUR
end
5. return M
end

Figure 3-15: Procedure ValidCandidateConflicts(V,C’,I")

m
/ 1\
(—— VYV ——) « valid candidates
/1 1T\\
(—— M ——) « conflicts to candidates
/1A
(————)  « this level not considered

Thus, we now compare the likelihood of maintaining m and M ON; to the likelihood
of turning ON the pixels in V instead. The third sign of conservativeness of this
algorithm is found in the depth of search. A more accurate measure would also con-
sider the candidates that stem out of the conflicts in M. This would entail grouping
all of the conflicts of M that are not in V, making sure that they are not in conflict
with themselves or with elements in V, and making sure their candidacy considers the
possibility of other ON conflicts that are not in M. Clearly, this would increase the
depth and accuracy of the search, but at the expense of complexity. In our algorithm
we stop at two levels, and execute the algorithm as described.

At every iteration we keep track of all the pixels M that we erase, since their
erasure presents the possibility of assignment to a previously unassigned pixel one
more level down in the search tree that we chose not to look at. The last step of the

algorithm is to go through all of the conflicts of every element in M at are unassigned
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Figure 3-16: Greedy Templates After Refinement

and that do not have any conflicts with assigned pixels, and assign them.

Figure 3-16 shows the results of applying the local search algorithm to the greedy
templates in our example. Figure 3-17 shows the refined template reconstructed
image. The results are impressive, the “proper” template images have, for the most
part, been properly extracted. Most extra material present in the templates that are
not part of the character are most likely artifacts due to the small number of instances
present.

Table 3.1 shows the channel parameters and likelihood scores for each of the three
sets of templates: ML, greedy, and refined. The likelihood score is computed as
L(Z|T) = || Z']log (1521) + |7 AZlog ((r=e3%55) - Table 3.2 lists the likelihood

(1-aop)(1-01)
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Fig re 7. Recover of different fractions in the top of the jigbed.

The relation between the tine, during which the various fractions go to
the top of the bed and the ljw-ratio has not been quantified. It is
however clear that if the l/w-ratio increases, the separation of the Asg
becomes more difficult or for a high recover of SiC even impossible. For
this reason the recover has to be low for a high grade Sit product. With
increasing jig time more Sit will move to the top, because in the last
stage of the demixing process the separation will take place based on the
difference in shape of the particles.

ECONOMICS

The :-8:m fraction of the jaw cr sher product contains, according to

figqure 2, 20 wt percent of the total Asgjsic mixture. With 70% Sic in

the feed and 40% recover , 1100 ton Sit can be extracted by jigging.

According to the Ger an mother company of Elektroschmelzwerk Delfzijl

Figure 3-17: Refined Template Reconstructed Image

Table 3.1: Experimental Results using ML Templates

Templates | [Tl | IZAZ'] ap ay L(Z|T')
ML 182038 | 126774 | 0.995949 | 0.692989 | 585795.8750
Greedy | 126908 | 115798 | 0.990376 0.912456 | 500144.8750
Refined | 132593 | 120903 | 0.993002 | 0.911835 560474.0625

score of the templates if the channel parameters were fixed ap = a; = 0.90 The
results for the ML templates scored much higher than the other two. The reason is
that there is a very good match between the observed image and the reconstructed
image, and the low value for a; compensates for the large portion of extra black pixels
in the reconstructed image by making the value of log (l—;x—c-;l) small. The difference
between the number of pixels in the AND of the images and the number of pixels
in the reconstructed image is substantial; there are a lot of extra pixels in the image
that add extra noise, and show up in the low value of ;. In the greedy templates
we find the channel parameters have values that we would expect for a reasonable
approximation to the original image. The number of pixels in the AND of the images

and in the reconstructed image are much closer to each other, off by about 10%,
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Table 3.2: Experimental Results with ag = a; = 0.90

Templates | || Z']] [ IZAZ||| a0 | @ L(Z|T")
ML 182938 | 126774 | 0.90 { 0.90 | 70610 log9
Greedy | 126908 | 115798 | 0.90 | 0.90 | 104688 log9
Refined | 132593 | 120903 | 0.90 | 0.90 | 109213 log9

meaning that the reconstructed image has achieved a much better match. In the
refined template reconstructed image, the number of pixels that match the observed
image went up by 120903 — 115798 = 5105 from the greedy reconstructed image. If
we compare this to the difference in the number of pixels in the refined reconstructed
from the greedy reconstructed, 132593 — 126908 = 5685 we see that 90% of the new
pixels are matching pixels, while only 10% are mismatching pixels. This is reflected

in the higher likelihood score for the refined template reconstructed image.

3.3 Summary of Chapter

In this chapter we have developed a procedure that estimates a set of character
templates from a document image and an associated set of labeled character origins,

as illustrated below

Image/

—_—

Transcription CTE - » Templates

Origins —

As the analysis has shown, there is no guarantee on the optimality of these tem-
plates; the output is judged on empirical results, and strong evidence is given to

support the intuitive analysis on the optimality of this procedure.
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Chapter 4

Character Template Estimation

(Given Baselines and Transcription

Having developed a procedure for estimating a set of character templates from known
origin locations, we now consider the more general problem of estimating the set of
character templates when only the baselines, along which the origins of each character
lie, are known. More formally stated, given a stochastic image source and an observed
document image generated from this source, the positions of each textline baseline,
and the sequence of imaged characters along each baseline, the question is how to
determine the set of templates that optimally represent the observed image.

This is a significantly more difficult problem than the first. In the first problem
we are given the origins of each character on the observed image, and we are asked
to estimate the shape of the templates. With every origin known, we know precisely
where each character template was imaged on the document page, and the procedure
used to estimate the templates is very straight forward. Every character glyph in
the observed data used by the estimation procedure is origin-aligned, which means
the estimated templates do not suffer from inaccuracies in the mapping of templates
to known origins. Knowledge of the origins carries with it some information on
the setwidth of each character as well; we can get very good setwidth estimates by
following a procedure similar to the one developed in [10].

In this new problem, the tools we have developed so far are not well suited to
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tackle it yet. The difficulties of this new problem is that we must now estimate two
things simultaneously, the setwidth of each template, and the origin locations of each

imaged character on the observed document page.

4.1 Overview

Conceptually, we would like to develop a procedure that is able to determine the ori-
gins of characters along a baseline in an image so we can then use the CTE procedure
to estimate the templates.

The systematic approach we take to the problem is as follows: We first develop
precise descriptions, in the context of the DID models, of the information we can
extract from knowledge of the baselines and transcription, and integrate these de-
scriptions into a page model. We then analyze the operation of the image decoder
module described in 2.3, and adapt it to use this page model.

We then develop an iterative procedure where given an initial set of templates
we estimate a set of origins on the page, then use the CTE procedure to update the

templates, and continue this process until we converge.

4.2 Page Model Given Baselines and Transcription

In this section we examine the general concept of a baseline and the role it plays
in the imaging and decoder models, and we also examine the relationship between
the transcription of a line of text and the imaging procedure of that text line. This
analysis develops a precise description of the information carried by the baselines and

transcription.

4.2.1 Baselines

A baseline is a curve serving for location of characters on a page. More precisely, a

baseline serves as a basis for the location of origins of characters as a line of text is

imaged.
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Generally we assume a baseline is a perfectly horizontal line along which characters
are imaged. The notion of a baseline, by its definition above, is more powerful than
this. In the most frequently encountered documents, baselines are horizontal. They
may or may not extend all the way across the image plane. In this thesis document,
for example, each baseline extends from inside one inch of the left edge of the paper, to
one inch from the right edge of the paper along a horizontal line. In other documents,
however, this is not true. Newspapers, for example, have multiple columns, and a
baseline for any column is very short. In other written languages, such as Chinese,
the “baselines” are vertical, the characters are read vertically along these baselines.
This example serves to point out that baselines form a path through the image plane
where consecutively placed characters are imaged.

More generally, a baseline can take on any shape. Consider a document where
there is only one line of text that spirals from one corner of the page into the center
of the page. Any character is still imaged so that its origin lies on the baseline, albeit
in a very unorthodox manner.

This instance brings up the issue of orientation of the imaged character along
the baseline. In the spiraling baseline situation, it makes more sense to image every
character so that its local coordinate system is aligned with a tangent to the base-
line at that point. In the class of documents this thesis considers, we will assume
that characters are imaged so that their local coordinate axes are aligned with the
coordinate axes of the image plane.

Another tacit issue that is not addressed in these examples is the relationship
between the transitional setwidth vectors of an image source and the production of
a textline image with the baselines when they are known. In the imaging procedure
described in section 2.1, the position of characters on the page was given by an
aggregate position indicator Z; = Ej-;}, A, ;» Under this representation, the sequence
of transitions through the Markov source and the particular choices for Atj seem to
specify the “baselines” on the image.

We reconcile these two notions by the following argument. Given a baseline we

can incorporate it into the imaging model as a constraint on the imaging path across
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the image plane. In section 2.1 the setwidth vectors updated the position of the
imager assuming a cartesian image plane coordinate system. A baseline model gives
flexibility to image a document differently without modifying the setwidth vectors
or path through the source. When imaging a new line of text, we simply impose
the constraint that the setwidth vectors update the position of the imager along the
baseline of that line of text.

Empirically, it has been discovered that having accurate baselines of documents
helps decode text images by running the image decoder along those paths without
spending too much effort trying to identify areas in a page where there is no text.

Consider a book, where every line is perfectly horizontal. We would like to scan
the book and run a decoder through the resulting image. As experience has taught
many of us, the reproduction of the image we see in the book to the image we transfer
to the computer is not ideal. Scanning or photocopying a book for scanning introduces
some severe distortions to the image that are not captured by our noise model, namely
edge effects. The photocopy of the page of a book will show the baselines “curving”
near the book binding.

The source model generated horizontal baselines, but the observed image shows
this is far from being true. If we assume that the images of each character are not
significantly distorted, then we can simply reconcile this observation by assuming
the model produced the textline along a baseline that was not horizontal, but rather
skewed /curved near the edge of the page.

We will identify a given baseline : by its endpoints and by an equation describing
its path between these two points. The vector to the origin of the baseline will be
denoted by B:m and the vector to the endpoint of the baseline by B ;- The path of a
baseline can be described by a pair of parametric equations z(t) = g;(t) and y(t) =
h;i(t) in the interval 0 < ¢t < T; such that (z(0),y(0)) = B,, and (z(T}),y(T})) = By..
In this thesis, we will assume that baselines are straight lines, with possibly nonzero
slope, so that we don’t have to worry about the specifics of the particular functions
gi(t) and h;(t) for each baseline. Figure 4-1 shows an example of a straight baseline

and its corresponding endpoint vectors B, and B}.
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Figure 4-1: Baseline and Endpoint Vectors on Image Plane

4.2.2 Line Model

A line transcription is a sequence of character labels corresponding to the observed
sequence of imaged characters along a given baseline. Clearly the transcription carries
structural information about the placement of characters along that baseline. An
example of a line transcription is The cat walks through walls. This example
gives us the sequence of imaged templates along the baseline; it tells us that the
templates for “T”, “h”, “e”, “ 7, “c”, “a”, “”, « 7, “w”, “a”, etc. are imaged
from left to right along the same baseline. It must be stressed that the transcription
does not tell us anything else about what we see on the image. It does not tell us,
for example, that the intercharacter spacing is smaller than the “space” character;
one could imagine, for example, some strange font where the intercharacter spacing
is larger than the width of the space character. The transcription does not tell us
anything about the size of the characters either; it could be that upper-case letters
are smaller and skinnier than lower-case letters. The transcription does not tell us

anything about the shape of the characters; imagine the same sentence written in
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very different fonts, from Times-Roman to Mistral to ZapfChancery.

A transcription is simply an ordered sequence of labels with a one-to-one map-
ping to a sequence of observed image symbols that represent characters in a written
language. The only restriction is that the imaged characters follow the sidebearing
model for character shape and position.

Let us generalize and refer to a document transcription as a set of line tran-
scriptions {Ly, Ls,. .., Ly}, where each line transcription L; corresponds to one of N
observed lines of text. We will further refer to a line transcription as a sequence of n
observed symbols L = (18; ... Bn, where B; € {1,...,T} is a symbol corresponding to
one of the possible imaging templates, including the template for the space character,
as described in section 2.1.

Given a transcription L and a Markov source, we could trace a complete path
7 through the source that runs through all transitions that produced the imaged
templates corresponding to the observed sequence L = $15;. .. B,.. Given this path we
could then find the origins of all the imaged characters, as we did in the development
of the CTE procedure, and estimate the templates. Unfortunately, the path = used
to generate the sequence of imaged characters is not unique. As mentioned in section
2.1, some of the transitions in the source have null templates. A path that includes
these transitions will not affect the observation sequence, but will affect the layout of
the observed characters on the page.’

Given a Markov source then, the union of all complete paths 7 through that source
that yield the observed sequence 313; ... 3, will result in the model used to generate
any textline image with that observation sequence. We will refer to this model as
the line model. The line model used to generate an observed sequence $10;... By is
shown in figure 4-2.

The left-most state in the line model is the initial state n7, and the right-most state
is the final trap state ng. It is called a left-to-right model because it has a distinct
temporal structure in which transitions must always proceed to the right. This form

of the model is appropriate for written text because the progressive nature of the state

1Remember that transitions with null templates carry layout information in their attribute A,.
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Figure 4-2: Line Model

sequence is rather unambiguous, the observed character images will follow the order
in which the observation sequence is given. This model is also non-ergodic, which
means that the state of the chain will always move to the right and will eventually
find itself in the final state with probability one. The implication of this is that any
complete path through this model will always generate an imaged character sequence
corresponding to the observed sequence $,; ... B, which is exactly what is given to
us by the transcription.

As shown in figure 4-2, the cyclic transitions at every state have null templates,
and a setwidth vector A, = (1,0) that is a single unitary pixel shift. Every other
transition has an imaging template, Y(%) (possibly including the template for the
space character), and the associated setwidth vector for that template, 5,3_.. The
line model incorporates within itself a very intuitive notion of how a line of text is
imaged. Given a baseline, the imager positions itself at the beginning of that baseline.
2 As the chain evolves out of the initial state, each transition tells the imager exactly
what to do. If a cyclic transition to the same state occurs, shown in the figure as
circular arrows, the imager simply moves one pixel to the right along the baseline.
If a transition to a different state occurs, shown in the figure as horizontal arrows,
the imager takes the template corresponding to that transition, Y(%), positions the
origin of the template at its current position along the baseline, and paints the image

of that template on the page. The imager then updates its position by moving a

2The beginning of a baseline is defined as the leftmost point on the image plane that lies on that
baseline. This assumes that Ay = 0 and A; > 0 so that a line of text is generated from left to right
along that baseline.
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distance given by the setwidth vector of that template, Agi, along the baseline. The
unitary setwidth vector of cyclic transitions, 55, is used for fine adjustments of the
intercharacter spacing that is greater than the assigned setwidths.

After the last template Y(%») has been imaged, the chain continues to evolve
through the last cyclic transition; this is to allow the imager to finish its path through
the baseline. The last transition to the final trap state ny indicates that the imager
has reached the end of the baseline, at position B s on the image plane, and the text
line is finished.

Given a complete path through the line model, we obtain the set of character
origins at every location on the image where the path through the chain moves through
the horizontally shown transitions labeled f;; the origin is located at every position

on the image where a new template is imaged.

4.2.3 Page Model Using Separable Sources

As described in [19], a general source model does not take advantage of the hierar-
chical organization in the layout or format of a typical document page. Due to this
hierarchical layout, the analysis/decoding of one portion of the page can be com-
pletely separated from the analysis/decoding of another portion of the page. [19, 13]
introduce separable models to capture this hierarchical layout information.

A separable model consists of a number of image sources, organized in a hierar-
chy of parent-child relations, corresponding to the hierarchy of the layout. Separable
models have two features that make them very useful: locality, and positional con-

straints.

e Locality: A child source covers a smaller region of the page compared to its
parent. Technically, a child source will cover known smaller areas than are

allowed for the parent source.

e Positional Constraints: A parent source represents a coarse view of the
layout of the page. Constraints on the possible positions of a parent source on

the image plane are small.
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Figure 4-3: Page Model Given Baselines and Transcription

Following the ideas in [19], the separable model for an observed image given the
baselines and transcription is shown in figure 4-3. In this model we assume that the
imaging procedure of every line of text is independent of the imaging of every other
line of text. This independence allows us to “separate” the imaging procedure of the
entire page into smaller imaging units for each line.

In this model, the parent source deals with vertical motion down the page from
baseline to baseline, and the child sources deal with horizontal motion along each
baseline. We define the vector displacement from the endpoint of the (i —1)th baseline
to the origin of the ith baseline as AL.. = -éo.- - éf.'_1 Note that if a line model starts
at image location B:,, corresponding to the origin of its baseline, then by definition
we are guaranteed that any complete path through the line model will finish at image

location B}. With this we can now associate with each transition in the parent
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model a displacement vector that takes the imager to the beginning of the baseline
corresponding to the next line model. For convenience we define B o = 0 and EON n=
(W, H), so that the first transition in the parent model takes us to the beginning of
the first baseline, and the final transition in the parent model takes us to the end

corner of the image plane.

4.3 Alignment Algorithm — Modified Viterbi

One of the assumptions that allowed us to generate a page model by using separable
models was the fact that the hierarchical layout of a document made one section of
the page independent from other sections. The advantage of this is that the anal-
ysis/decoding of one portion of the page has no effect on the analysis/decoding of
another portion.

In the page model for images whose transcription and baselines are known, the
“decomposition” is based on the notion that the imaging of one line of text is in-
dependent from the imaging of other lines of text. Following the work in [19], each
child source is simply defined to cover the imaging procedure of text along a unique
baseline, whereas the parent source makes sure that every child is visited so that
every observed line of text is imaged.

As shown in [11], a Viterbi algorithm solves the recurrence relations required to
find the best path through a source that produces the MAP estimate of an observed
image. As a direct result of the independence between child sources, the decoding of
every textline is independent from the decoding of every other baseline, so that in
order to maximize the path through the parent source we can equivalently maximize
the path through each one of the line sources individually. This means that in order
to decode an image where baselines and transcription are known, we can simply run
the decoder along each baseline using the line model for that baseline.

The relation in (2.28) is the general recurrence relation for MAP decoding of an
unknown image. In the case where we are trying to decode along a given baseline

using the line model shown in figure 4-2, the recurrence relation in (2.28) now takes
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on the following form

L(nis1, &) = max {L(niy1,& — &) + log pr(e),
L(ni, % — Ag) + LEIZIYE)E - Ag)) +logpr(B)}  (4.1)

where n; and n,4; are variables representing states in the line source. The form of
the line model constrains transitions into state n;;; to come from either state n; or
state n;4; itself. This is why the maximization in the recurrence only has two terms.

The maximization on (4.1) can be easily obtained by using a Viterbi algorithm.
We will modify this Viterbi algorithm to return the set of character origins that
yield the MAP sequence of imaged characters along a baseline. The formal steps for
this modified Viterbi, from now on referred to as Alignment Procedure, are shown in
figure 4-4. In the Alignment algorithm there are n + 1 states, corresponding to the
number of templates plus a transition to the final state. The algorithm runs through
X points along the path of the baseline; the origin of the baseline is indicated by
z =1 and the endpoint is indicated by z = X.

A trellis structure efficiently implements the computation. The alignment pro-
cedure does a maximization over the individually most likely state of any sequence.
The solution determines the most likely position of every template across the base-
line following the dependencies in the observation sequence. Notice the use of the
setwidth information Ag, at every state, which enforces the sidebearing model rules
for positioning. A maximization over a single unitary pixel jump is done in order to
allow some flexibility in the interspace between characters that might be greater than
the assigned setwidth.

The alignment traces through the states in reverse order starting from the last
observation. To insure that the alignment procedure gives the most likely sequence
using all the templates in the sequence, the first element in the sequence is initialized
with a large initial score of M. This is similar to the “big M” method used in
optimization techniques. This insures the path through the trelllis is “pulled-back”

in the backward routine through all the elements (templates) in the sequence.
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begin
1. forz=1,...,X do
begin
2. L(ni,z) =4+M
3. forj=1,...,ndo
4, 6](113) =0
end
5. forz=1,...,X do
6. for j=1,...,ndo
begin
7. let Sc = L(nj41,z — 1) + log pr(e)
8. let S5 = L(nj,z — Ag,) + L(ZIY [z — Ag)]) + log pr(8;)
9. if Sp > S, then
10. 8i(z — Ag)) = +1
11. L(nj41,z) = max {S., Sp}
12. U,i(z) = argmax L(n;, k)
1<k<z—Ap, [6;(k)=+1
end
13. letzi,, =X
14. forj=n,n—1,...,1do
5. = Upa(ah)
end

Figure 4-4: Alignment Algorithm — Modified Viterbi

The alignment procedure is set up to run along a given baseline. In the actual
implementation, however, the baselines are not known exactly. The baselines are
estimated as straight lines (possibly with non-zero slope) using some image processing
techniques. Visual inspection of the example in figure 4-5 shows that individual
characters frequently lie above or below the estimated baseline, for example “F” in
Figure in the second line or “T” in The in the third line. We incorporate into the
alignment procedure a “jitter” that checks for character locations within a small
region surrounding the baseline at every z location®

£@y®el) = _max LAY (a,y)). (+2)

3This assumes that a straight baseline is a good first order approximation of the actual baseline
of a document.
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Figure 4-5: Typed Document Estimated Baselines

The “jitter” moves the template at any location along the baseline in the y-direction
by some amount bounded by +L, and records the best score. The value of L is
hand adjusted depending on how good the estimated baselines are with respect to
the origins of the observed characters. For the baselines in figure 4-5 a value of L =5
is sufficient to insure that all the origins are covered by the jitter.

Conceptually, the development of the alignment procedure is a module that, given
an observed image, the baselines, text transcription, and set of templates, returns the

set of origins in the observed image. The alignment procedure is illustrated below,

Image/
Transcription

S

Alignment [—— Origins
Templates —>

7



Image/ Image/
Transcription =~ > Transcription —>

Alignment CTE » Templates

Templates —— Origins ——»

\

Figure 4-6: Template Estimation Procedure Using Alignment and CTE Modules
4.4 Iterative Template Estimation Procedure Us-

ing Alignment and CTE Modules

There we have it, the alignment procedure is a modified decoder that is able to deter-
mine the origin locations of an ordered set of templates along baselines in an image
in the MAP sense. It appears that this procedure solves the problem we posed at the
beginning of this chapter, to develop a procedure that is able to determine the origins
of characters along a baseline in an image so we can then use the CTE procedure
to estimate the templates. Unfortunately, the flaw of the alignment procedure with
respect to our problem is that it assumes that we have initially the set of templates
and their setwidths that we are trying to estimate!

Using the alignment and CTE modules already developed, we establish the iter-
ative procedure shown in figure 4-6. As the block diagram shows, we use an initial
set of templates to find an initial set of origins on the image using the alignment
procedure. This set of origins is used to estimate a new set of templates using the
CTE procedure. The iteration arises from using this new set of templats to re-align
the image and re-estimate the set of templates.

We will first argue that the iterative scheme in figure 4-6 for estimating templates
converges to some local maximum. Then we detail the iterative procedure by de-
scribing the initial set of templates used in the loop, and the estimation routine for

character setwidths.
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4.4.1 Convergence of )

Before we provide an argument for this convergence, we will make several assumptions.

1. In the alignment procedure, the a-priori probability of a path is negligible, so
that L(Z,7) =~ L(Z|T").

This assumption simply states that in MAP decoding, the a-priori probability
of a path is negligible compared to the matching score of the reconstructed
image with the observed image. In other words, it doesn’t matter what path
the source takes, so long as the clean image generated by the output closely

matches the observed image.

Simply observe that MAP decoding maximizes £L(Z,n) = L(Z|Z') + log Pr(7),

and we can rewrite the likelihood score as

LEIIT) = |IZATlog (r=adtisgy) — I1T'lMog (728;) (4.3)

= IZAT)log (32) + (ITAT| - 7)) log (528-).  (4.4)

When the reconstructed image matches the observed image very closely so that
T ~ T', the likelihood score above will be dominated by ||Z AZ’}|. For large
images, this term grows as the number of black pixels in the observed image,

and will generally be much larger than |log Pr(r)]|.

2. Given a set of labeled origins, the CTE procedure yields the optimal set of tem-
plates that mazimize L(Z|T').

This assumption is based on experimental results. In the examples presented
earlier, the greedy+refinement procedure yielded a set of templates that were
aesthetically pleasing and that generated a very good recomstructed image.
Based on these observations, the assumption then is that the CTE procedure

maximizes L(Z|Z¢rg).

3. The alignment procedure mazimizes L(Z|I') while enforcing the non-overlapping

criterion, or at least while minimizing the amount of overlap between the tem-
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plates in the reconstructed clean image.

The alignment procedure we presented in section 4.3 does not enforce the notion
of non-overlapping templates. In its maximization, it does not record the level
of overlap between templates as it calculates £(Z|Y/()[F]) for each distinct
template. The maximization implicitly assumes the templates will be disjoint,
regardless of where each one is positioned on the image. This will generally
be a very difficult goal to achieve; if the templates are suboptimal then an
arrangement across the page that allows overlap between them might yield a

better match for the reconstructed image.

Since our goal is to estimate a set of imaged-disjoint templates, we will relax this
requirement on the alignment procedure and assume that it tries to minimize

the amount of overlap between templates as it maximizes L(Z|Z;;,,.)-

Given these assumptions, let us summarize what we have:

e Given a set of templates, the alignment procedure finds the set of origins that

maximize L(Z|Z;,,)-

o Given a set of origins, the CTE procedure finds the set of disjoint templates

that maximize L(Z|Z5rg)-

Intuitively, the alignment procedure tries to reconstruct the best image using the
templates is has. If the alignment observed the non-overlapping criterion, its set of
origins would correspond to the set of locations where one could place the templates
such that they did not overlap and maximized £(Z|Z;;,,,)-

On the other hand, the refinement procedure derives the best set of non-overlapping
templates for the origins it is given. Given the set of origins derived from the align-
ment procedure, the refinement procedure would then either derive the same set of
templates that were used for alignment, since they were assumed to not overlap in
the first place, or it would find a new set of templates that still did not overlap but
with a higher likelihood score. It could not do any more worse because the original

set of non-overlapping templates place a bounding score on L(Z|Zorg).
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(0,0) AO

(a) (b)

Figure 4-7: Template Image Canvass. (a) Local Coordinate System. (b) Initial
Template. Origin is indicated by a cross, initial setwidth vector is A.

The alignment procedure returns the origins that build the best image using the
templates it has. Applying the CTE procedure to these origins would then result in

a set of templates that can do no worse than the templates used for alignment:
L(Z|Zorg) 2 LT Tzign)- (4.5)

If the templates were optimal at the origins given through alignment, the refinement
procedure could do no better. But if they are not optimal, the CTE should find a
better set.

Since L(Z|T;1,,) < L(Z|Igrg) < L(Z|T' = I) by the argument above, we can
set up an iterative procedure where we go back and forth between estimating a set

of origins and templates, as shown in figure 4-6. The convergence of this iteration

occurs when L(Z|T;;;..) = L(Z|Torg)-

4.4.2 Initial Templates

Figure 4-7Ta shows an example of the template canvass and its associated local co-
ordinate system. Figure 4-7b shows an example of the initial templates used in the
iterative procedure.

In section 2.1.1 we discussed the idealization of a template as the image of a
character in a canvass spanning the x-y plane. The region of interest to us in such an
idealized template is the area containing the support of the character. We chose the
template canvass as a rectangular region with a local coordinate system as shown,

large enough to completely fit the image of any of the character glyphs on an observed

81



image.

In the sidebearing model a character template is endowed with an origin, a charac-
ter image positioned relative to that origin, a setwidth vector, and a few other metrics
that precisely define its placement in a document along side all other characters. In
this thesis, we only focus on estimating the character image and setwidth vector of
each template.

An issue that arises is the position of each estimated character image relative to
the origin of the template canvass. This is a problem we do not encounter when
the origins are known, we simply line up the origin of the template canvass with the
glyph origin on the image and extract as an observed instance of that character the
image area covered by the template canvass. All of these observed instances are then
guaranteed to be origin-aligned with the template canvass.

The problem now is that the template canvass has a fired local origin, and the
setwidth vectors are defined relative to this origin, but the character image in each
template can be positioned anywhere on the canvass. Experiments show that in the
iterative procedure the templates eventually “latch on” to the image of the character,
but the origin of the canvass does not necessarily line up with the true origin of
the character image. Arbitrary positions of a character image with respect to the
local origin can affect the alignment procedure very drastically. Consider the case
illustrated in figure 4-8a, where the image for the character “a” is positioned far to the
left of the local origin of its canvass, and the image for the character “t” is positioned
far to the right of the local origin. Figure 4-8b shows the image of the word at and its
baseline. We expect the alignment routine to line up the templates of the “a” and “t”
as shown in figure 4-8c, since this yields the best match for template reconstructed
version of the word at. Unfortunately, this alignment is invalid because the origin
of the “a” lies to the right of the origin of the “t”, which does not follow the line
model. But if the alignment in figure 4-8c can’t happen, then how did the templates
in figure 4-8a arise in the first place? The reason is that templates are estimated from
other samples as well, where alignment is possible with these templates.

This problem is not very serious if the true origin of a character latches near the
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T

Figure 4-8: Invalid Alignment Using Templates with Arbitrary Image Positions. (a)
Character images arbitrarily positioned with respect to origin. (b) Observed textline
image. (c) High scoring alignment of templates on textline image.

local origin of the template canvass. The extra slack can be accounted for with small
variations in the setwidth of each template. Once we have a final set of templates,
there are approaches we can take to correct the misplacement of each character with
respect to its origin, namely by considering the shift of the true origin of the character
from the local origin of the canvass, and performing a minimization routine on the
square of the difference between these measures. This approach is detailed in [10].
The reason for using as an initial template a black box at the origin of the template
canvass is such that the first alignment and subsequent ones “latch on” correctly to
the character glyphs in locations on the image that are close to the true origin of each
glyph. In an oversimplified description of the alignment procedure, each template is
positioned at the location on the baseline where there is a very high matching score
between the template and the observed image. Using such an initial template, the
first alignment will return a set of origins where the extracted images will contain
a pattern of black pixels that repeats itself at all locations where the template was

positioned, at the location where the inner “black box” maps to. This is because
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the score £L(Z|Y®)[z]) is highest where the dark block lines up with observed black
images, which hopefully correspond to some portion of the proper character at their
true origin.

The experimental results in figure 4-10 show how the images of each character
effectively “latched” near the canvass origin. In particular, notice the variations of
character placement about this origin in the template for the “G”, where the true
origin lies to the left of the local origin, and the template for the “,”, where the true
origin lies to the right of the local origin. In the case of other text images, however,

we have found templates with origins that are very far from the true origin for some

characters. This will be illustrated and discussed in section 4.5.

4.4.3 Setwidth Estimation

The templates start with an initial setwidth vector, 50, that runs through the length
of the initial dark block as shown in figure 4-7. One must be careful to choose the
length of Ao smaller than the smallest setwidth we can possibly encounter in the
training data. We make the assumption that the initial templates and continued
set of estimated templates latch on correctly to the true origin of every character
at the local origin of the template canvass, so that estimating the setwidth only
involves “stretching” the vector Ao. This assumption is partly based on experimental
results, where the character images are correctly positioned on the template canvass
(with small variations) with respect to its local origin. Without this assumption, the
setwidth estimation routine would need to consider stretching of the setwidth vector
as well as “shifting” of the origin, which is a much harder problem, and one we will
partly address in section 4.5.

The alignment procedure can be thought of as an elaborate pattern matcher if we
ignore the a-priori probabilities of a transition through the source: given a set of tem-
plates, the forward Viterbi runs an autocorrelation of every template on the textline
image, and the backward Viterbi simply selects the “peaks” of these autocorrelations
as an ordered sequence that observes the sidebearing model. The alignment proce-

dure is very sensitive to any overestimation of the setwidth vectors. The backward
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viterbi picks the highest scoring ordered sequence of template positions such that the
origins of two consecutively imaged characters lie at least as far apart as the length
of the setwidth vector of the character to the left. If a setwidth is overestimated, this
will result in the alignment procedure to miss the right alignment and throw off all
the estimated templates at the next iteration.

Experimental results show that without any modifications to the initial setwidth
vector zio, the character template images “congeal” to a state that is very close to
their final form after a few iterations. Our template estimation procedure waits until
this happens before it begins to modify the setwidths.

To avoid overestimating the setwidth, given the origin locations from the alignment
procedure we use a lower bound on the setwidth estimate at each iteration. We choose
the setwidth of a character c as the minimum distance from the origin of that character
to the origin of every other character imaged to the right of it. If we refer to the origins
on the alignment of a character ¢ by O, and to the origins on the alignment of all
characters immediately to the right of ¢ by O,,, then the estimate of the setwidth of

¢ at each iteration is defined by
A, = min[O,, — O] (4.6)

which is a very conservative estimate for the setwidth. Note that the setwidths are
strictly increasing, and that every setwidth estimate maintains the current alignment
of templates on the observed image; the position of the templates with respect to one

another on the page is not affected by new setwidth estimates.

4.4.4 Experimental Results

In this section we examine the results of the above procedure in three types of docu-
ments. The Typed document is one where all the characters have the same pitch. The
Old English document is one where the characters have different sizes and widths,
and the character images are not standard. The Mistral document is one where all

the characters within a word are connected. The characters of the first two document
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types are designed to be disjoint, while the Mistral document shows an example where
the characters are designed to touch so that a word is most of the time one connected
component. Each one of these documents displays different characteristics; we are
interested in the behaviour of our estimation routine on each one of them.

In figures 4-10 and 4-11 of the Typed example, the templates were allowed to
“congeal” for two iterations before the setwidth estimation routine (4.6) was imple-
mented. By the fourth iteration the templates had obtained the observed form and
did not change significantly in further iterations. The template reconstructed image
in figure 4-11 shows a very close match with the original image in figure 3-3. The
templates for the “F” and “T” are sparse because the alignment never really captured
the image for them. Partly to blame is the fact that there are only two instances of
each character, and they are both very far away from the estimated baselines and
the jitter probably missed them. The templates for the “M”, “N”, and “O” are also
very sparse because there are only one or two instances of each. In the reconstructed
image, though, the word ECONOMICS can be perfectly well read. The templates are
sparse because the estimation procedure assigned pixels arbitrarily between these
three templates. As the example shows, this is one possible reassignment of pixels
amongst these three templates that maximizes the fit between the reconstructed and
observed images. The intuitive solution, of course, is one that assigns pixels from
each separate component in the observed image to each corresponding template, as
expected. Figure 4-11 looks better than figure 3-17 because the transcription was
complete, i.e. all of the observed characters had labels, and the iterative routine
latched on relatively close to all of the true origins, so that the reconstructed image
was well aligned with the observed one.

In the Old English example, figures 4-12 through 4-17, the templates were al-
lowed to “congeal” for six iterations before the setwidth estimation routine was im-
plemented. By the tenth iteration the templates obtained the final form we see in
figure 4-16. The template reconstruted image looks very impressive. The greedy tem-
plates at the tenth iteration illustrate very well the limits of the greedy algorithm;

notice in particular the holes in most of the character templates whose corresponding
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pixels were assigned to the template for the “e”. The refined templates at the tenth
iteration show very clearly the advantages of a local search algorithm over the solution
given by greedy. The shapes of all the templates have been very well estimated, and
the resulting setwidth vectors are also good approximations to the actual setwidths
we would expect from the original templates. In some of the templates, such as the
“C”,“P”, “T” or “q”, there are small artifacts around the proper image for each of
the characters. These small pixel groups are due to the fact that there are very few
instances of these characters on the image.

In the Mistral example, figures 4-18 through 4-22, the templates were allowed to
“congeal” for six iterations before the setwidth estimation routine was implemented.
By the eight iteration the templates obtained the final form we see. This last example
serves to show that our assumption that the template canvass latches on to the origin
of the characters is not always true. In this case, the origins for some of the capital
letters are very far off. As a result, the estimated templates suffer from artifacts

[{P)]

introduced by wrong alignment, namely the incomplete “o” and “r”

templates as
well as some white spots throughout the other templates. This example also serves to
illustrate the need to fix this assumption. The following section examines an approach

that resolves this.

87



Figure 4-9: Typed Document Initial Templates
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Figure 4-10: Typed Document Estimated Templates after 4 Iterations
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83
rigure 7. Recovery of different fractions in the top of the jigbed.

the relation between the time, during which the various fractions go to
the top of the bed and the l/w-ratio has not been quantifjed.. It is
however clear that if the 1/w-ratio increases, the separation of the Asg
becomes more difficult or for a high recovery of SiC even impossible. ror
this reason the recovery has to be low for a high grade SiC product. With
increasing jig time more SiC will move to the top, because in the last
Stage of the demixing process the separation will take-place based on the
difference in shape of the particles.

ECONOMICS

vhe 3-8 mm fraction of the jaw crusher product contains, according to
figure 2, 20 wt percent of the total Asg/SiC mixture. With 70% Ssic in
the feed and 40% recovery, 1100 ton SiC can be extracted by jigging.
According to the German mother company of Elektroschmelzwerk Delfzijl

Figure 4-11: Typed Document Template Reconstructed Image after 4 Iterations
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Figure 4-12: Old English Original Document
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Figure 4-14: Old English Document Initial Templates
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Figure 4-15: Old English Document Greedy Templates after 10 Iterations
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Figure 4-16: Old English Document Refined Templates after 10 Iterations
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Figure 4-17: Old English Template Reconstructed Image after 10 Iterations
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Figure 4-18: Mistral Original Document
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Figure 4-19: Mistral Document Estimated Baselines
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Figure 4-20: Mistral Document Initial Templates
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Figure 4-21: Mistral Document Estimated Templates after 8 Iterations
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Figure 4-22: Mistral Document Template Reconstructed Image after 8 Iterations
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4.5 LTR and RTL Decoding

LTR decoding refers to running the alignment procedure from left to right along a
given baseline. RTL decoding refers to running the alignment procedure from right to
left along a given baseline. The set of templates obtained from the LTR decoding are
not the same as the templates obtained from the RTL decoding for several reasons.
In the alignment procedure, if there is more than one path through the trellis that
achieve the same score, the algorithm will always choose the first path that branches
through an imaged template, instead of a null transition. Another inherent difference
is that LTR decoding tries to latch on to the origin of each character and stretch the
setwidths, whereas RTL decoding tries to latch on to the setwidths and stretch the
origins.

The idea behind doing LTR and RTL decoding is to correlate the origins and
setwidths between both sets of templates to obtain a new set of metrics that will
yield a better alignment. In this section we examine the estimated templates from
the Mistral example. The templates look good, albeit not ideal, but we cannot apply
an estimation routine on the origins and setwidths (such as the one described in
[10]) because the alignment on the reconstructed image does not correspond to the
character placement on the original image. Refering to the template reconstructed
image in figure 4-22 we call attention to the word “For” in the fourth line and a
few other places as well. Careful observation of the template images used in the

“.”

reconstruction show that the templates for the letters “o” and “r”

occupy the space

“r” in the original image. This is due to the fact that the origin

of the single letter
for the “F” in the template is very far from the expected origin and this results in
very inaccurate alignment.

In contrast, the results for the Typed and Old English documents show that each
template character image is properly aligned with its corresponding observation in
the observed image. A metric estimation routine similar to the one described in [10]

can now easily correct for origin shifts in the least squared sense. We now present a

brief overview of this procedure.
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Figure 4-23: Metric Estimation on Aligned Characters. Estimated origins are indi-
cated by solid crosses. True origins are indicated by dotted crosses.

4.5.1 Template Metric Estimation

Given a relatively accurate template alignment, as shown in figure 4-23, the ob-
jective of metric estimation is to determine AQO; and A; from a set of measurements
of d. The kernel of the approach is to notice that for the ¢th pair of imaged templates,
the origin shift and setwidth of the left glyph, AQ,, and A, respectively, are related
to d; and to the origin shift of the right glyph, AO,;, by

AI,' - AOI'- + A(’)n + € =d; (47)

where ¢; is a random variable that accounts for small variations. The rest of the metric
estimation procedure deals with finding the least squares estimates of AQ; and A
that jointly minimize the total squared estimation error Ep = ¥; ¢2. The treatment
of this procedure is outside the scope of this thesis; but a detailed description of such
a procedure can be found in [10].

The metric estimation routine tacitly relies on the assumption that the character
template images were correctly aligned with the glyphs on the observed image so
that origin and setwidth estimation reduced to minimizing their variation in the
reconstructed image. For this reason, we focus on a way of modifying the origins and
setwidths of templates to obtain a good alignment that we can then apply the metric

estimation routine to.
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4.5.2 LTR and RTL Correlation

In any correlation between both sets of templates we must be careful to modify the
origins and setwidths so that the current alignment is still feasible. There are two

categories of metric correlation to consider:

o Cases where the setwidth vectors are “shrunk”, meaning the origin and length of

setwidth vectors are both “pulled in”, and the current alignment is still feasible.

e Cases where the origin is shifted out, and we need to consider possible overlap
of this shifted origin inside the setwidth vector of any character that is aligned

to the left of every character instance.

The LTR and RTL templates are correlated by aligning both sets of corresponding
character templates to where their matching score is greatest. Both sets of templates

” We assume

are taken after the iterative procedure has been allowed to “congeal.
that the only character that has the correct alignment is the space character, since
we construct it as a “white block” that is origin- aligned inside the template canvass.
In the setwidth estimation routine described earlier, if the lower bound on a setwidth
is given by the space character, then we mark that setwidth as “probably correct.”
The new origin and setwidth of both LTR and RTL templates is then taken to be

the intersection of their setwidth vectors, shown in figure 4-24, under the following

conditions.

1. If there is an overlap between the setwidths that is greater than the default
setwidth, then we simply do appropriate origin shifts on each template to match
origins on the ends of the intersection, and update the setwidth value on both

templates to be the size of the resulting overlap.

2. Ifthereis an overlap between the setwidths that is less than the default setwidth,
then we take the midpoint of the intersection as center of the new setwidth, and

set the new setwidth equal to the value of the default setwidth. *

4Notice that if there is no “overlap” between the setwidths, i.e. the setwidth vectors do not cover
the same space, then the overlap will be negative and rule 2 applies.
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RTL

LTR/

Figure 4-24: Alignment of LTR and RTL templates

The two conditions above are modified if any one or both of the templates’ setwidth
is marked as “probably correct.”

Suppose that the setwidth of the LTR template is marked. The correlation shifts
the origin of the RTL template to the setwidth of the LTR template, and resets the
setwidth of the RTL template to its default value. The origin of the LTR template is
then shifted so that the setwidth is reset to its default value. If the setwidth of the
RTL template is marked, the symmetric analysis is followed.

Suppose that the setwidth of both the LTR and RTL templates is marked. Then
we simply do appropriate origin shifts so that the origin of a template match up with
the setwidth of the dual template.

Whenever an origin is shifted out, we shrink the setwidth of any character with
whom the new origin location overlaps with. This is because any outwards origin
shift is due to a marked setwidth in the dual template, which is “probably correct”
due to the space character, and we have more confidence in this character than in an

estimated one.

4.5.3 Experimental Results

Figure 4-25 and figure 4-26 show the LTR and RTL templates at the sixth iteration.
The templates were allowed to “congeal” for six iterations before the setwidth esti-
mation was applied. These are the templates before they are correlated. Figure 4-27
and figure 4-28 are the result of correlating the LTR and RTL templates shown in

figure 4-25 and figure 4-26. These templates were then used again in the iterative pro-
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cedure without correlating them for two iterations. Figure 4-29 shows the templates
after eight iterations, with one correlation at the sixth iteration. Notice the origins
for all the templates are more or less near where one would expect the true character
origins to be at. These templates yield an accurate alignment on the observed image.
A metric estimation routine can now be applied to these templates to more precisely
determine the location of the character origins and setwidths.

Figure 4-30 shows the template reconstructed image for the templates in figure 4-
29. There are slight open spots in the reconstructed image because the font was
designed so that there is a slight overlap between characters as they are imaged. The
template estimation routines developed in this thesis enforce the non-overlapping
criterion, and this is an example where some allowance on overlapping would result

in a better match between the reconstructed and observed image.
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Figure 4-25: Mistral Document LTR Templates after 6 Iterations
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Figure 4-26: Mistral Document RTL Templates after 6 Iterations
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Figure 4-27: Mistral Document Correlated LTR Templates after 6 Iterations
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Figure 4-28: Mistral Document Correlated RTL Templates after 6 Iterations
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Figure 4-29: Mistral Document LTR Templates after 8 Iterations
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Figure 4-30: Mistral Document Template Reconstructed Image after 8 Iterations
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Chapter 5

Summary and Further Directions

5.1 Summary

The objective of most document image aﬁalysis systems is to convert paper or micro-
film based documents into a form that may be processed, searched, and stored by a
computer. Template based OCR systems rely on accurate character template models
for decoding document images and converting them into electronic documents. One
of the drawbacks of these systems is that image quality differs across a wide range
of document images, and the templates used by an OCR system might not be well
suited to recognize document images where each observed instance of a character has
been similarly degraded.

In this thesis we developed a procedure for training a set of character templates
from a set of sample images and the corresponding transcriptions. The goal of such
a procedure is to capture the image quality due to the physical degradation process,
so that the estimated templates can be used to more accurately recognize unknown
images of the same type.

Under the framework of DID, the problem of estimating character templates when
the character origins on an image are given was shown to be NP-complete, and a
combination of greedy+local search algorithms was provided that yielded very good
results. The problem was then generalized to instances where all we have is a docu-

ment image, the text baselines, and the transcription of each textline. Under the DID
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framework, the baselines and transcription were easily merged into a separable page
model. Using this page model and a modified image decoder, an iterative procedure
was then developed for estimating character templates. In this iterative procedure
we alternate between aligning a set of templates on the image and estimating the set
of character templates using the current alignment.

This iterative template estimation procedure was applied to three very different
images. In the Typed and Old English documents, the algorithm produced the proper
models for the character shapes. The Mistral document demonstrated the procedure
to be error prone. The font metrics of these templates were then modified by corre-
lating the LTR and RTL templates, which resulted in the proper template models.

The work presented in this thesis has by no means been completed. There are a
lot of extensions to consider by extending the analyses we have presented to a wider

class of images, such as musical scores, or grayscale images.

5.2 Further Directions

In this section we list a few natural extensions of the work presented in this thesis.

Relaxing Overlapping Criterion

In a wide class of images, the non overlapping criterion is not strictly enforced by
the imaging model. The Mistral document is one example where the typefaces are
designed to overlap slightly so that the characters in a word appear connected. The
extension from the greedy+refinement algorithms to allow overlapping should involve
very minor modifications to the refinement algorithm. Specifically, since the greedy
algorithm yields such good results, the refinement procedure should consider assign-
ing pixels ON if they would contribute a positive likelihood score given that other
templates have pixels that also contribute to the likelihood score of the reconstructed
image.

One could easily find examples where this approach might not work well. However,

given the earlier experimental results this sounds like a very attractive approach.
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Font Mislabelings

The problem to a lot of recognition errors using trained templates seems to be bad
templates as a result of font labeling problems, specifically lumping together dissimilar
fonts into the training procedure.

When similar characters of the same font are lumped together into the same
training data there is no clear method to determine that two or more different fonts
for a given character exist. The character estimation model needs to be more robust
to font mislabelings. One proposed approach is to use Minimum Description Length
principles to “separate” the instances of a given character into a fixed number of
different font templates. The likelihood of each of these font templates could be
measured with the observed instances of its corresponding images, and compared to
the likelihood of the original template, given that there is some measure of penalty for
a large number of font templates. This is to avoid identifing each observed instance
as a unique character template. How this “separation” can be carried out remains to

be examined.

Noise Model

There are a lot of effects that are not entirely captured by the simple asymmetric bit
flip noise model, such as thinning, stretching, or blurring. In a realistic situation, it
is more likely to encounter blurring near edges of a character, and to find that black
pixels inside the body of a character stay black. This indicates that a more realistic
noise model would condition the probability that a pixel is flipped on the number of
similarly colored pixels in its neighborhood. The use of grayscale images for template
training is another area that can be examined further.

For stretching, thinning, or thickening of glyphs we propose examining the use
of transformation functions for each template with an appropriate metric to mea-
sure large distortions from the nominal template image. Rotations could be esily
incorporated into the decoding routine similar to the “jitter” used earlier for baseline

outliers.
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Template Representation

In this thesis we generated template images from its observed instances by aligning
the instances from each other, forming a composite, and then applying a binarization
threshold to the composite image so that the template had values of 0 or 1.

A character template could be similarly represented as a probability distribution
matrix, where every pixel has a value proportional to the probability that it is ON in
an arbitrary instance. The shift to this representation would require modification to
the noise model, since it would now be incorporated into every template, and to the
decoding routines, where the matching score would now be a probabilistic function of
each template. This representation would have the advantage of easily incorporating
edge effects of characters, such as blurring, where pixels corresponding to the true
support of the template would have a very large probability, and pixels close to the

edges that are susceptible to fade would have lower probabilities.

Character Outliers

A subtle problem we find with characters that have few instances is the presence of
edge pixels from other characters being assigned to them. This problem can be found
in the Mistral example for the “T” template in figure 4-29. Notice the presence of
“edge” pixels corresponding to the template “/”. In the reconstructed image this
choice of pixel assignment yields a higher score than assigning these pixels to “/” be-
cause otherwise they would incurr a higher number of mismatches. Clearly, the notion
of connected components for characters should play a role in the template estimation
routines. It is not unreasonable to think that an added criterion for template images
is the number of connected components, which has some connection with Minimum

Description Length and Entropy principles, which were not addressed in this thesis.

Generalization to a 2-D model

Intuitively, a Markov source has the capability of generating a vast number of images

without restriction on the positioning of imaged characters on the image plane.
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In our character template estimation routines, we examined the 0-D problem
where we are given the exact locations of all imaged characters on a page, and the
1-D problem where we search along a one dimensional image path for the origin
locations of all imaged characters on a page. The extension of this work into a 2-D
problem would need to search for the origins in all the image plane. In other words,
estimate the character templates when we are only given a document image and its
corresponding transcription.

This problem has already been addressed in this thesis. Specifically, we used some
imaging processing techniques to estimate the baselines of a given document. This
estimate can be regarded as a heuristic on the position of characters on the page,
where we reduce the 2-D problem to a 1-D model. The difference is that the baseline
estimation procedures were supervised. The algorithms to estimate the baselines on
each of the three types of images used in this thesis were different, each one chosen
because they resulted in better estimates.

In a structured approach to the 2-D problem a total search through the entire
image plane needs to be carried out in order to estimate the templates. The use of
heuristic estimates of the baselines matching the transcription would require some

user intervention.
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Appendix A

Cluster Assignment Problem is

NP-complete

In this appendix we prove that the Cluster Assignment Problem, or CAP for short,
under strict observation of the non-overlapping criterion is NP-complete. We also
prove that the variant of the CAP where we relax the non-overlapping requirement
is also NP-complete.

NP-complete problems are a class of problems that cannot be solved by any known
polynomial algorithm. The significance of the identification of NP-complete problems
is the belief that they are not susceptible to efficient algorithmic solution; and that
any algorithm that correctly solves an NP-complete problem will require in worst
case an exponential amount of time, and hence will be impractical for all but very
small instances [2]. Therefore, proving that the CAP is NP-complete gives us some
vindication for designing an algorithm that yields a good solution to the CAP without
guarantee on its optimality.

The theory of NP-completeness is designed to be applied only to decision problems,
which have only two possible solutions, either a “yes” or a “no”. Since we are dealing
with an optimization problem that asks for a certain structure to have a maximum
“score” among all such structures, we associate this optimization problem with a
decision problem that includes a numerical bound B as an additional parameter and

asks whether there exists a structure of the required type having a score at least B.
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We present two known NP-complete problems that are essential in the proofs,
Independent Set (IS) and Minimum Cover (MC). Showing that IS or MC are special
cases of each particular formulation of the CAP shows that the CAP is at least as
hard as IS or MC, and since both IS and MC are NP-complete, so is the CAP.

Cluster Assignment Problem
Given a cluster C, choose a subset C' C C of pixels to turn ON such that cluster

likelihood is maximized.

Independent Set

Instance: Graph G = (V, E), positive integer K < |V|.

Question: Does GG contain an independent set of size K or more, i.e., a subset V' C V
such that |V’| > K and such that no two vertices in V' are joined by an edge in E7?

Minimum Cover

Instance: Collection C of subsets of a finite set S, positive integer K < |C|.
Question: Does C contain a cover for S of size K or less, i.e., a subset C' C C
with |C’| < K such that every element of S belongs to at least one member of C'?
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Theorem A.1 Cluster Assignment under strict observation of the non-overlapping

criterion is NP-complete.

Proof: =~ We transform Independent Set to CAP. Let the graph G = (V, E) and
positive integer K < |V| constitute an arbitrary instance of IS. We must construct a
cluster C such that C contains a subset C’ whose likelihood score £(C’) is K or more
if and only if G has an independent set of size K or more.

The construction of C merely replaces for each vertex v € V a template indexed
pixel v € C with likelihood score £(v) = 1, and for each edge {u,v} € E a conflict
between cluster elements u and v. The image locations of the template indexed pixels,

Sc, are irrelevant in this proof. The instance of CAP is completely specified by:

C = {v|veV} (A.1)
D = UV{D,,} (A.2)

where D, = {u | {u,v} € E}. This instance can easily be constructed in polynomial
time. Note that under strict observation of the non-overlapping criterion, a valid
solution to the CAP is a subset C’' C C such that there exist no conflicts between any
two distinct template indexed pixels u,v € C'; D, N D, = 0. In terms of the graph
G, it is easy to see that a valid solution equivalently picks a subset V' C V such that
no two vertices in V' are joined by an edge in E; V' is an independent set.

Suppose V! C V is an independent set of G with |V/| > K. The corresponding
subset C' C C is given by the elements in V' and has a likelihood score of £(C’) =
Ywev L(w) = Tyew 1 = |V'| 2 K.

Conversely, if C' C C is a solution to the CAP with likelihood score £(C') > K,
the corresponding independent set is given by the elements in C’, with size |V'| =

EwEC’ 1= zwecl c('ll)) = E(CI) 2 K. 0O
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Figure A-1: CAP Construction from Minimum Cover

Theorem A.2 Cluster Assignment with no restrictions is NP-complete.

Proof: = We transform Minimum Cover to CAP. Let the collection C of subsets of
a finite set S, and positive integer K < |C| constitute an arbitrary instance of MC.
We must construct a cluster C such that C contains a subset C’ whose likelihood score
L(C") is |S| — K or more if and only if C' contains a cover for S of size K or less.
Let {ai1,as,...,a|c|} be new distinct elements not in S. The construction of C
simply replaces for each ¢; € C a corresponding template indexed pixel w; € C.
The construction of the image indexed pixels of each cluster element, S,,, replaces
each member of ¢; with an image indexed pixel that is ON and one unique OFF
image indexed pixel a;; Sy; = ¢; U a;, where ¢;—{ON} and a;——OFF. Assume the
likelihood score of a matching pixel is 41, and of a mismatching -1. The conflict
dependencies between cluster elements, D¢, are irrelevant in this proof. The instance

of CAP is completely specified by:

C = {wi|1<i<|C|} (A.3)
Se = {{Su}l1<i<|Cl} (A4)
where Sy, = @; U ¢;. This instance can be easily constructed in polynomial time.

One such construction is illustrated in figure A-1, where each cluster element w; is
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represented by a tree with one branch that maps to one unique OFF pixel (white

filled circles), and other branches that map to ON pixels (black filled circles).

Suppose C’ C C forms a cover for S with |C’| < K. The corresponding subset C’

is given by the elements in C’, and has a likelihood score

£(C)

>

£(U Su)

weC’

L (cwUaw))

wel’!

LU ew)U (U aw)

weC’

L(U ew)+£L(U aw)

wel’

weC!

S| - 1C|
15| - K.

weC!

(A.5)
(A.6)
(A7)
(A.8)

(A.9)
(A.10)

Conversely, if C' C C is a solution to the CAP with likelihood score L(C') > |S|—K,

there is a corresponding subset C’' C C given by the elements of C'. Note that the

set C' might not be a cover for S. Suppose C' is a cover of S, then

£(C")

= ||

AV

IA

£(U Sw)

weC!

LU ew)+£(U au)

wel!

11— 1C"]
5] - K
K.

Now suppose C’ is not a cover of S, then

L(C')

L(U Sw)

weC!

L(U ew)+£L(U aw)

wel’!

15’ = 1|
S| - K.
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Take C* to be a cover of S such that C’ C C* C C, and every element ¢ € C* — C'
includes at least one new element in S not included by any other element in C* — C’,
then

£ U S.)20 (A.20)

weC*—C'
because adding a subset that includes at least one new element in S will increase the

likelihood by at least zero. Now, since,

L0 U Su) = £ U e+l U a) (A.21)
welC*-C’ weC*-C"' weC*-C'

= |S=8-|c*=C| (A.22)

= |S] =18 = |C* +|C| (A.23)

if we substitute (A.23) into (A.20) we have

S| = 1S =1C*|+1C"] = 0 (A.24)
IS|—1c* 2 |5 -1C| (A.25)

v

and since |S’| — |C'| > |S| — K from (A.19),

IS|—C* = |S|-K (A.26)
=|C* < K. (A.27)
a
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