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Chapter I

Introduction

The basic problem of off-line handwritten character recognition is easy to state. Given

a scanned image of someone's handwriting, we wish to generate an ASCII (or other

suitable computer readable format that is also easy to manipulate) representation of

the written text. This problem is important in many practical contexts ranging from

automatic sorting of physical mail to more automated check clearing systems. Of

course, many of us would also prefer to be able to write our calculations with paper

and pencil and have them converted into LaTeX for us automatically!

The difficulty of the problem arises primarily from the great variability in hand-

written characters. Even a given individual rarely writes the same character twice in

such a way that it looks the same. On the level of the scanned-in picture, it always

looks different. This difference is also not due to just simple additive noise. Rather,

the observed characters can differ by affine domain deformations such as scaling, slant-

ing, translation, and rotation. They also differ by non-linear domain deformations such

as changing the curvature of certain strokes. [1]

Most of the existing approaches to character recognition attempt to first extract

some features from the raw scanned image and then run these through some type of

classifier which actually decides which character is present. The main intuition behind

this approach is to choose features which distill the relevant information in the raw

image. These features are chosen so as to be as invariant as possible under the set of

possible deformations. Then, the classifier needs only to consider the feature vector
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which is generally of lower dimension than the raw scanned image. [1]

Unfortunately, most of these methods inherently rely upon having the input data

segmented into regions which contain at most one character. It is clear that if the

segmentation is done improperly, then these methods fail. In general, for handwritten

data, the segmentation problem is very difficult. [1] In addition, there is a serious

problem in picking feature sets. The choices are usually made on empirical grounds

and it is often hard to utilize a-priori knowledge of the handwriting process in a

principled way to guide feature selection.

A few years ago, Mohamed Akra proposed to think of the character recognition

problem in a different way. He suggested that we apply metaphors and ideas from

information theory. He also developed a particular method for doing character recogni-

tion involving deformable templates and a criterion which involved the local minimum

of the single-sided Haussdorf distance. [1] In particular, Akra's method did not require

segmenting the raw scanned data before the recognition process could begin. He tested

this method on scanned laser-printed material and it performed quite well. It also ap-

peared promising on some simple handwritten test examples. He also proposed that

the recognition problem inherently involved representation in a hierarchy of different

levels, though these ideas were never fully developed in his work.

We studied the application of Akra's method to a real database of scanned in-

dividual handwritten characters (from the Postal Service Zip Code Database). The

performance was very poor (less than 40% correct matches). Moreover, our attempts

to apply his method to this problem showed us that there were certain unanswered

theoretical questions as well.

In this thesis, we study a way of formulating the information-theoretic approach to

recognition so that it is more rigorous and fills in the gaps that we noticed while trying

to apply Akra's work. Rissanen's Minimum Description Length (MDL) principle [6]

(itself a formalization of Occam's Razor), provides us with some of the tools required

to do this. While Akra had used the MDL principle as a motivation behind his work,

he did not use it explicitly in his method. We feel that to get a more complete theory

of recognition, it needs to be used explicitly as it is in the recent work of Geman [4].
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The basic idea that we pursue is that the problem of recognition is actually the

problem of data representation, viewed at an appropriate level of abstraction. [2] This

gives us a natural cost function, the length of the representation, that we can use to

judge the goodness of a particular representation. Thus, the problem of recognition

can, conceptually at least, be reduced to a minimization of the length of the represent-

ation. All the specifics regarding what it is that we wish to recognize, etc. is captured

in the design of the language in which the representation is expressed.

:_A

V1,

-A
O-- M:,

"t.a Mississippi "g, g"Liechtenstein

O:

1�: !::;ZERO,

'gi? 'g,

Figure 1-1: A picture of character recognition

It is important here to stress that in the above idea, the design of the language

is critically important since all the problem specific parts of the recognition problem

in principle must be addressed in the language. This is made especially interesting

because unlike the statistical parameter estimation problems for which the MDL prin-

ciple was originally developed, in most recognition problems we have an "outside the

model" understanding of what constitutes a correct answer, namely whatever a human

would say. Thus, great care must be given to make sure that the models of the process

(from which the language follows in a natural way) are designed in a way that ensures

that the human's answer and the MDL formulation's answer agree most of the time.
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With such a formalization in hand, we implement it on a computer program and

then apply it to the same real database of scanned handwritten characters that was

difficult for Akra's method and discuss the results.
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Chapter 2

The Big Picture Of Recognition

In this section, we present what we think is a useful formal framework in which to

pose recognition problems.

2.1 Goal

Generally, the goal of recognition is to find the best acceptable representation for

the observed data in a manner consistent with all other relevant information at our

disposal.

2.2 The Basic F�-amework

We have an underlying set Eo of elementary observations.

We have an operation + which acts on subsets of E0 and returns other subsets

of E0. + can be considered to be the composition operation. For convenience, we

assume some simple properties for +. + should be commutative and associative. The

simplest, and prototypical, example for + is just the set union operator.

Definition 1 A model of Eo is a function rn which takes a single positive integer

argument 0 and returns a subset of E0.

While we formally can think of it as a single positive integer argument, we will
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actually think of it as a self-punctuated' into the finite number of positive integer

arguments.

A model class is just a set of models. Note that a finite model class can be turned

into a single model by creating a new model m' which has a first argument that tells

which model from the model class to use.

Definition 2 A representation R is a finite set of 0 values. R is said to represent 0

iff I(R) ER M'(0) = 0 where the sum uses the appropriate operator + mentioned

above.

Definition 3 The cost C(R) of a representation R is defined as follows: C(R)

ER L(O) where the L(O) function is just the "bit-length' of 0 when it is written as a

binary string. 2

In addition, we may wish to place a further restriction on what we consider ac-

ceptable representations. So, we define a set G which consists of all the acceptable

representations R.'

So, what is the MDL principle? It is quite simple. It says for a given observation

0, we should pick that representation R E GJI(R) = 0 that has the minimal cost

C(R). We can express this in terms of a function MDL which is defined as follows:

Definition 4

MDL(OirnG) = argmin C(R) (2.1)
REGII(R)=O

This can be understood as follows. Ignore G for a moment. Each realization R or

0 in effect covers 0 with rn'(0i) sets relative to the composition operation +. So, we

can conceptually imagine covering 0 with a very redundant cover C = U R where the

R range over all those R which represent 0. Now, the MDL cover is the minimum

cost sub-cover that still represents 0.

'This allows the single integer to be uniquely decodable
'At first glance it may seem that this is a little dishonest since we are neglecting to tell the number

of elements in R. But, since we have assumed that the Oi are each self punctuated, we can represent
the set R as just a single long bit-string consisting of the Oi arranged in any order. We can then
unambiguously break up this string.

'In the present work, we only care about G defined in extension. For real problems, we don't
anticipate having G enumerated for us - rather it will probably be defined implicitly.
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2.2.1 Example - Line Segments In The Plane

To give ourselves a concrete example of what we are talking about, let us think of the

following problem:

We observe a scanned-in black and white image that is NxN pixels in size. (Assume

N is an integral power of two for simplicity.) We know that it was generated in the

following manner: Someone used a computer drawing program that could only draw

line segments to create the image. This was laser printed on a somewhat dirty printer,

and then scanned back in. We wish to recover the original set of lines.

00
000 0 0

00 0
00 0

0
0 0

0
0

0
0

06 0
00 0

0

0 0 0 004D
0

0
0

0 0 0 0

Figure 2-1: The dirty image

This is how we set up the recognition problem in our framework:

The set EO consists of ordered triplets of the form (i, j, k) where 0 < i < N,

0 < j < N, and k E R.

The + operation is also pretty natural. We define J(ijk1)J + J(iJk2)J

j, ki + k2) I while I (i 1, ii, ki) } + I (i2, i2, k2) } = f (i 1) ii I ki) 7 1 (i2 i i2, k2) } as long

as (iiii) :� (i2J2). Everything else follows from commutativity and associativity.

Basically the + operation is just the normal function adding operation.

The model consists of a function m(O) that can be written in the following way:

nwhite i i", if/, iflW returning arn(i1J1,i2J2,nb1ackii11JO1i .... i'nblack � 4black 4i. I
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Figure 2-2: The ideal image

I valued line from (il, j1) to (i2, i2) Plus (in the sense of the + operation defined above)

nblack additional I valued points at (il , A), (il I plus nuhit, additional -I0 nbl..k I inbl..k )

valued points at (ill, jolt), (il1w [0, N - 1], j E [0, N - 1]}.0 n lile I in"white Plus I (i I il 0) I i E

Here all of the i and j values are encoded using 1092(N) bits in the natural fashion.

The n values are encoded using a standard self-punctuating code for the positive

integers. We just let G be all of 2z+ 1 so we accept any representation.

Now, we encode our observed scanned in image into a 10, 11 valued function on

the domain [0, N - 1] x [0, N - 1]. Call this our observation 0.

Then, the representation R = MDL(Olm, G) corresponds well to our intuitive idea

of what the best representation is. We can see that usually R = 101, 02, - . .}. Here each

of the Ois corresponds to the lines in the picture and we can see that all of the other

black and white pixels will be crammed into one of the Oi terms. In other words, we

will represent the image as a set of lines in the plane, one of which may be corrupted

by additive noise.
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2.3 Models And Their Parameters

In the above Basic Framework, all of the details are thrown into the construction of the

models themselves. So, at this point, We would like to describe some useful properties

of models.

For convenience, let us think in terms of many parameters rather than just the one

integer. Assume that everything is nicely self punctuated.

Now, at each level of abstraction, there are two different kind of parameters to a

model. We call them style parameters and fit parameters.

Definition 5 Style parameters are those parameters for which all possible values take

the same number of bits to encode.

These can be thought of as fixed-cost parameters or as the parameters which paramet-

erize "costless deformations." No particular value for these parameters is any better

than any other. For example, in our single character recognition case, these will be

translation, small rotation, shear, etc. Hence the fixed cost. Probabilistically viewed,

these are the parameters over which the probability density is uniform.

Definition 6 Fit parameters are all those parameters which are not style parameters.

These can be thought of as the variable-cost parameters. These characterize "costly

deformations". For example, the in our single character case, these are things like

small displacements of single points, added noise pixels, removed noise pixels, etc.

Certain parameters (like no or less noise) are "better" than others and hence take

fewer bits to encode. Probabilistically viewed, these are the parameters over which

the probability density is non-uniform.

For convenience, we will usually rearrange the parameters so as to mostly write:

0 = ostyleofit.

These two different kind of parameters have a nice interpretation if we think of

the model as representing a data channel. This channel has two inputs. One is the

user. He wishes to convey a particular message to us, we have no prior over what that

16



message is. For example, he might command the source to generate "the numeral '5'

in italics, 10pt size, 3 pixels thick, located at (5,6) on the paper." The second input

comes from "nature" or "noise." This represents the random distortions introduced by

the channel to the information being sent. It need not simply be an additive process.

For example, if a part of the channel is a human hand, nature could make the hand

shake slightly, inducing domain deformations, etc. The important thing is that these

are modeled probabilistically. See Figure 3-3 for a graphical depiction.

So, we see that there is often a natural correspondence between models (with their

embedded decoding of the parameters) and our physical intuition regarding the true

source of the phenomenon. In fact, it is this natural correspondence that enables us

to make principled use of our intuitions and a-priori knowledge in designing models.

2.3.1 Example - Line Segments In The Plane

Let us return to our existing model for lines in the plane. What are the the style

parameters? What are the fit parameters?

It is clear that the style parameters are the first four arguments to M, namely the

il, il, i2, j2 which tell where the line is supposed to go. All the rest, the parameters

corresponding to where we should add single pixel noise, are fit parameters. This is

understandable in terms of our intuitive model as well. The user decides where each

line is going to start and finish. Nature, in this case the noise introduced by the printer

and the scanner, adds white and black pixels to the whole thing.

17



2.4 Hierarchy

Hierarchy often occurs naturally in most recognition problems - phenomena can be

viewed at many different levels. We believe that the key to understanding hierarchy

in this framework is to understand how to abstract models, and how this abstraction

affects MDL.

First, we know that we can abstract things by creating a new observation class:

El. The elements of El are model-parameter pairs (m, 0) (or equivalently, values for

0 arguments to rn' ). The + operation is simple set union. We can now consider

models over this El. This process can be continued indefinitely creating hierarchies

upon hierarchies of models. Now, it is important to remember that for every model

m that models the observation class Ej there exist natural models M'-j that model

the observation class Ej for 0 < j < i.

k (0) =Definition 7 rn I(,rnk-'(0)), with the base case being defined as follows:

MO(O) _- 0 (2.2)

We can similarly define a natural tower of representations as well.

Definition 8 Given a representation R which exists at the level i, we set R' R,

and recursively define R k -, I(R'-')

Now, let us look at the nature of the models that exist on these higher levels.

Suppose that rn (0) = 10o, 01, . . . , 0,j.' Now, what needs to be in O? We claim that

it is reasonable to expect that the 0 should contain copies of all of the fit parameters

that are inside the Oi. We need some new notation to handle what is left.

Definition 9 0""style and Ometaf't are those style parameters and fit parameters

respectively which are used to determine the style parameters of the model directly

below the one in question.

'Remember here that the Oi are the parameters for the model on the immediately lower level

18



ostyle
k

r ----------------

metaf it
0 Mkk

Of it I
k

ometastyle
k-1

r

metaf it
Ok-1 Mk-1

of it
k-1

0metastyle
k-2

metaf it
Ok-2 Mk-2

Figure 2-3: A picture of parameters.

Basically, if we think of each Oi as being decomposable into Ostyle and 01't, theni T

0 contains a virtual copy of each of the 01't parameters while the Otyle are functions

metastyle metaf it of it fitof the other parts of 0. So, we can say that 0 = (O I 0 1 1 7 02 1 so,

the model generates the 0�tyl' as a function of ometastyle and ometafil . All of the fit

parameters are just copied from 01't. We say that a model with this property respects

the lower level. Furthermore, we should restrict the Gi sets so that if something is

allowed in the fit parameters on level i, it should be allowed on the higher levels as

well. In other words, we assume that if R E Gi, then I(R) E Gi-1. (Otherwise we just

restrict Gi such that it is true)

The key idea here is that what looks like style (ie. it looks arbitrary) on one level,
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may actually be understandable (non-arbitrary) on a higher level. Also, what is valid

�4 noise" on a given level should not be disallowed on a higher one.5 This kind of

abstraction is in general the reason to consider a higher level in the first place!

Looking at the above kind of hierarchy, it seems strange that we are carrying

around all of the extra fit parameters. This is not really a problem since we are

free to mentally ignore these extra fit parameters since they don't really make any

difference to our understanding of what the model does. We can think of them as only

existing on the lower levels. See Figure 2-3 for a visualization. To avoid even that,

we make another kind of abstraction, one that collapses all those fit parameters into

a single more compact fit parameter.

2.4.1 Hierarchy's Interaction With MDL

To understand this second kind of abstraction, we have to first establish the relation-

ship between MDL and abstraction. Consider a model Mk for level k of the hierarchy

and a particular observation 0 which lives at the base level Eo. Suppose f? is the best

possible representation of 0 relative to m k . Now, we intuitively see that if 0 E _�, then

101 is the best possible representation for mk(O). Moreover, this sort of sub-optimality

holds on lower levels as well. So, if 0 E fj , then f 01 is the best possible representation
k

Of Mk 3_�(O) - but only relative to the fit parameters. The style parameters need to be

taken as a given.

Let us make the above more precise.

Definition 10 Suppose we have a hierarchy of the type specified above. We have

a tower of observation classes E0, El,... and corresponding models mo, ml,... and

constraint sets Gi, all of which respect their lower levels. Suppose we also have an

observation Oi at some level i.

Now, define f? = MDL(0j lMk-i , Gk).k

In plain English, this means that f? is the best possible representation of Oi relative

'This is not a harsh restriction. We can always concoct additional style parameters that vary
what kind of noise we allow. Then, these can be controlled from above.
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to the model Mk (when viewed as representing things in Ei) that satisfies "constraint"

Gk-

Now, fix i < i < k. Consider any O' E k-j. This O' can be written as (O IstyleIolf it

Now, we define a G'j as follows. G'j = Gj n 1101 10 = (O'sty'6, A), A E Z+J This G'j is

the constraint which is established by the higher levels. We claim O' is optimal relative

to this constraint set.

Theorem 1 L(O') = C(MDL(mj(O') Imj, Gj)).

Proof: Suppose otherwise. So, we have a 0" such that mj(o") = mj(o,), of/

(olslyle , A), and L(O") < L(O'). Then, we know that L(A) < L(O'f"). But, since all

the models respect the hierarchy, we know that a copy of O'f't is sitting inside at least

one �1 E k. We can construct a new 0" simply by substituting A for O'f" in the

appropriate place. Then, we know that since L(A) < L(O'J"), L(�') < L(�I). So, we

can construct a new k with O'l replaced with O'. It is obvious that C(R') < C(R) whileI

klk-i = kk-i = Oi. But this violates our definition of k as MDL(Oi JMk, Gk)

Actually the previous result can be extended to apply not just to a single O' E f?

but to any subset of f&j. We can use similar arguments to establish it.

Moreover, notice that the only aspect of the O'J" that we used was that a copy of

it existed in the representation at the highest level. So, if there is a style parameter

with the same property, the identical result will hold.

We can see that since there is this recursiveness to the optimal solutions, we know

that not all of the sub-solutions will be used. In other words, at any level i, there

are 0 values that are never the MDL solution to anything. So, why should we bother

even considering them? We can take any model rni with associated constraint Gi and

construct a new constraint (�3i as follows.

Definition 11 R'-= R whenever

(VO E R,30' E R'10style = Olstyle) A (Vol E Rl) 30 E Rjostyle =0Istyle (2-3)

Intuitively the equivalence relation _' captures everything that any higher level
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that respects this one can possibly care about. Now, we can define the G'j using the

following.

Definition 12 JR E Gi JC(R) = C(MDL(Rj Imj, (Gi n IR's.t.R' RJ))j

In particular, it is clear that replacing Gi with will not change the behavior

with respect to MDL on either this or on higher levels. By the recursiveness property

that we already know, it suffices to look at the level immediately above i. First we

define a new induced constraint set Oi+,(A) as follows.

Definition 13 Gj+j (A) R E Gj+j I I(R) E A}

Now, it is easy to see that if for j < Z' - 1, R = MDL(Ojlm k-j , Gj+j), theni+1

R E Gj+j Gi as well. So, as far as MDL is concerned, we have not really further

restricted Gi+j at all!

13If we wish, we can actually describe another more restrictive constraint set as

follows:

Definition 14 f R E GjJR = MDL(Rjlrnj, (Gi n f R`s-t.R' = Rj)j

The key difference here is that we are arbitrarily choosing only one of the minimal

representations R.

Now, we have possibly confused the MDL function on higher levels. But, not by

much. In fact 7 it is easy to that if for j < i - 1, R = MDL(Oj lmk-j, Gj+j), andi+1

R' = MDL(Ojlm k-j oi+ 1 (Of then C(R) = C(R') as well. Once again, so far as

MDL is concerned, we have not really further restricted Gj+j in any important way!

Notice that in general, by restricting the Gi we are making much of the information

in the fit parameters redundant. After all, we know that at level i + I that the multitude

of fit parameters that we are carrying around must be such that they are consistent

with That means that we can save some bits by taking advantage of that fact. So,

we can construct a new model 7ni+l such that it can be viewed as taking a parameter

of the form: 0 = (0-etastyle , ometafit, ofit ) where the Ofit captures all of the information

in the old (Of't, Of't,. . .) parameters relative to the now known This is the more

compact fit parameter we were referring to earlier.
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All we need to do to specify ?;n'i+l is give a function f,+, (0-etastyle, Ometafit, Ofit ) that

returns the old (Of't, Of't,. parameters. We define it as follows. Consider a non-

empty set A = (Mi+1)-1 (R) where R E Now, let B = (rni+l)-l (f R' E JR

RI). Now, pick a 0 E A. Write 0 = (O meta I 0lower ) where O-eta = (Ometastyle, Ometafit)

and Olower = (Ofit, Ofit, Let C(Ometa = 10meta = Ometa}.
1 2 fO E B Finally, let

D (Ometa) = folower I (Ometa, slower ) EC(Ometa)l So, what we need Of it to do is to select

an element out of D in such a way that is proportional to the length of the element

of D that is being selected. We can do this by building an appropriate Huffman-like

code.

It is important to notice that fnii + 1 does not respect the lower level since it does

not carry a copy of the lower level's parameters. The interesting question is whether

or not replacing mi+1 with rhi+1 substantially changes the behavior of MDL. We do

not yet have a good answer to this question in general and it is the subject of current

investigation.
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2.5 Complexity

So far, we have not discussed the computational complexity of recognition in the above

framework. Obviously, we would like recognition problems posed in this framework

to be tractable.

For the system to be tractable, we need to first make a few assumptions.

1. The composition operation + on every level needs to be polynomial-time in its

two arguments. This is the case for most useful + operations.

2. All the models m k must be such that computing m'(0) is polynomial-time in the

length L(O) and the size of m k (0) itself.

3. Checking membership in Gk can be done in polynomial time in the length of R

and the description of G.

With these basic restrictions in place, we will first show that in general, the decision

problem associated with the optimization problem above (minimizing the description

length) belongs to NP. First, let us formally state the decision problem.

Problem 1 Given as input an observation 0, a model hierarchy (MkGk ), k E [1, 1],

and an upper bound D, does there exist a representation R E Gi such that R' = 0

and L(R) < D?

To see that the above decision problem is in NP, all we need to do is exhibit the

efficient witness of a YES answer. This witness is clearly the representation R itself.

By the assumptions I and 2, we can efficiently compute what this represents at every

level. So, we can see that it indeed does have R' = 0 in polynomial time. Membership

in G1 is also easy to check by assumption I So, this decision problem has been shown

now to be in the class NP.

Now, the question remains in the mind whether this framework allows us to

consider intractable problems, i.e. is it NP-Hard? The answer to this question is

again YES. We show this by a reduction from MINIMAL-SET-COVER [3], a known NP-

Complete problem.
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The MINIMAL-SET-COVER problem (Figure 2-4) is as follows

Problem 2 Given a finite set X and a family fi E F of subsets fi C X satisfying

X U F, Find a subset C C F such that X U C and IC I is minimized.

.............................
Set to b covered

...... .. .................... I

Cover�"ag sets

§ .....................

13

Figure 2-4: The MINIMAL-SET-COVER problem

We map into a hierarchy with only 1 level as follows. Let EO X and let the

composition operation + just be ordinary set union. Let rn be defined as follows:

m (0) = fo where 0 i s j ust encoded as a fixed 1092 1 F I length string'. We j ust let G be

all of 2-+ , so we accept any representation. Finally, we set 0 = X.

Now, it is clear that a valid solution R = 01,02.... 7 0, to this problem, is just

an enumeration of indices of the fi E Cs such that U C = X. Since the length of

the representation R is just 1092IF1 times ICI, an optimal solution of one tells us the

optimal solution to the other. The reduction clearly takes polynomial time and so

we have succeeded in showing that the framework we have given is NP-complete in

general.

2.5.1 Complexity Discussion

Now that we have established that solving problems in this framework is in general as

hard as solving any other NP-complete problem, should we be disappointed?

'So we see that all we have is a style parameter, there are no fit parameters
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It seems the answer to this question is a definite NO. As Ristad shows in [7],

the most important of recognition problems, the understanding of human natural lan-

guage, must contain NP-complete elements. In particular, he argues that determining

the reference of anaphoric pronouns is NP-complete. So, if our framework were not

capable of handling NP-complete problems we should reject it as being too weak to

tackle interesting problems.

The important part of the complexity analysis is that under the relatively mild

conditions given above, the complexity of problems in this framework will be no more

than NP. This is intuitively plausible as well. We would like recognition problems to

possess efficient witnesses, this squares well with the fact that once a human recognizes

something, the now known answer becomes clear.

2.6 General Discussion

Now that we have sketched the broad outlines of our general framework, it will be

good to review what is good about it. The first advantage is its ability to incorporate

a-priori knowledge of the problem domain in a clean and principled manner. We

simply build it in to the models. Second, the framework has a strongly generative

feel to it. This is desirable because it corresponds well to the results being obtained

in Linguistics. It holds out the potential of being able to unify natural language

understanding and acquisition with all other human perceptual tasks. Furthermore,

on the "input" end of the framework, we can use partial information, at whatever

level, whenever it is available to us by incorporating it into the constraint sets G and

the base-level observation. On the "output" end, we are free to take as output the

representation at any level of the hierarchy, not just the top. 7

Finally, it is appealing on philosophical grounds. This framework takes as a given

that things appear to be "what they are" not because they "are reallw' that thing

and they possess the distinctive, if sometimes hidden, features, that mark that thing.

Rather, it says that the recognition of things is a purely mental process the outcome of

71n other words, we will make the choice of what is relevant output based on other considerations.
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which is crucially determined by the (mostly) innate and learned mental models. We

avoid postulating the existence of special "-ness" qualities like "fiveness, chairness,

etc..." in the world, keeping the abstractions where they belong, in the minds of the

recognizers.

In this general approach, the idea is to make the "innate" models do most of the

work. The role of what is traditionally called learning is in comparison, minor. Rather

than focusing on training systems with thousands if not millions of samples, the focus

is on building in the right generative models. This accords well with the empirical

facts about how children can acquire a word in their language upon a single exposure.

Closer to home, when children are taught how to read and write, it doesn't take a

thousand or even a hundred examples of a number for them to be able to recognize

it. Show them how to make a few -fives and they can do recognize most all of what

adults will call fives with little further help.

What we have built in this section is a theoretical tool to formally pose recognition

problems in a way that incorporates our a-priori knowledge. The proper way of evalu-

ating the usefulness of this tool is to try and pose a real problem using it - and then

to see how well it performs.' This is what is covered in the remainder of this thesis.

'In other words, how well do the right answers in the framework, the MDL answers, agree with
the answers given by a human.
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Chapter 3

Our Picture �� Character

Recognition

Now that we have seen some general properties of the framework that we are proposing,

we introduce the problem on which we have chosen to test this framework: handwritten

character recognition. In particular, we will look at a problem with only one level in

the hierarchy - identifying single isolated handwritten numerals.

The data we used is from the Postal Service Zip-Code Database. It consists of

16x16 centered gray-scale images of isolated handwritten numerals' taken from real

human-written 2 zip-codes and labeled with the "correct"' value. The database was

already divided into two parts, a 7291 sample "Training set" and a 2007 sample "Test

set."' We ignored the gray-scale information and decided to just pick an arbitrary

threshold and work with the resulting binary-valued black and white images .5 you

can see a few sample characters and the effect of thresholding by examining Figure

10,1,2,3,4,5,6,7,8,9
2By many different writers. The data is quite variable.
'From what the humans thought the zip-code was.
4This division was not really used by us except that we developed the algorithm looking only at

a few images from the "Training set" and present our results on images from the "Test set." The
distinction is more relevant to more traditional approaches, such as connectionist models, that rely
on extensive training.

'We did this because Akra's approach, based on domain-deformations only, could not handle
gray-scale information. This work in this thesis has its roots in trying to test Akra's approach on a
real-world difficult data set. In principle, our framework can handle gray-scale data as we discuss in
a later section.
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3-1 and Figure 3-2.

.. .......

Figure 3-1: Sample gray-scale characters

Figure 3-2: Sample thresholded characters

3.1 A-yriori Knowledge

As we have discussed before, the advantage of our approach is that it enables a prin-

cipled use of a-priori knowledge of the problem domain. In our case, our intuitive

understanding of the handwriting process was as follows: We know that the writer

will be writing exactly one character, which one is up to her. The writer has an idea

of the form of the character that she will be tracing out. This can be thought of as

an "ideal form" which is scaled, translated, rotated, and sheared 6 so as to fit the par-

ticular purposes of the writer. The writer also uses a reasonably fixed-width writing

implement (pencil or pen) to write out the character.

In the process of writing out the character, the hand carries out the commands

of the mind imperfectly, introducing some jitter as the character is traced out. This

jitter has the general property that smaller displacements are more common than large

ones.

Finally, in the process of scanning in the character, some pixels are turned on, and

others are turned off. Once again, this noise is such that fewer pixels are flipped more

often than many ones are.

'Of course, the writer can not use any affine transformation, only ones within a known limited
range. But within that range, we have no reason to prefer one over the other.
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3.2 The Model

We translated the above intuitions almost directly into the model we used. Our

objective was to see how well we can do with just the simple straightforward way of

translating these intuitions.

The first task is to identify the underlying set of elementary observations E0. In

our case, it is clear that this should be the set of binary-valued functions on a 16x16

grid, in our case identified with the lattice points of [0, 15] x [0, 15]. The choice of +

is not that important in our problem, but to make things definite, let us choose the

simple function XOR as usually defined on images.

The second task is to identify what will be a part of the style parameters and what

will be a part of the fit parameters. From the above discussion, we know that the

style parameters are the ones that are arbitrary at this level of understanding - we

have no reason to prefer one value for them over another.' So, in this case, the style

parameters are:

1. The character to be drawn

2. The "style" of the character - which affine transformation to use

3. The width of the writing implement

As we know, all that remains are the fit parameters8:

1. Where and how-much to jitter

2. Which extra pixels were turned off

3. Which extra pixels were turned on

'We can also think of these as being costless deformations. It is important to remember that
while they are costless at this level, they will be costly at some higher level of the hierarchy that
takes advantage of more information about how these particular characters were chosen. But at this
level, there is no need to put a cost on them.

'We can also think of them as costly deformations. Then, we can think of the more costly
deformations as representing less likely events.
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Now that we know the basic parameters, it just remains to spell out how each of

them is encoded. It should be clear that the encoding of the style parameter's is mostly

uninteresting since whatever it is, the code length remains constant.' So, we just used

a straightforward uniform code. For example, we used 4 bits to decide which character

(0-9) was to be drawn since 3 < 109210 < 4. The model then used this parameter to

pick out an ideal form for the given character. This ideal form consisted of an ordered

set of points in the Euclidean plane. This ideal form is then deformed by the specified

affine transformation.

So, let us focus on the interesting fit parameters. First, let us address the easier

numbers 2 and 3 above. Since there are 256 pixels in the 16x16 image, we can specify

any one of them uniquely using 8 = 1092256 bits. So, we used a simple two part code

for these parts. First, we used a simple self-punctuated code for the natural numbers

to tell how many pixels we were turning off. If there were n such pixels, this could

be done in 2 * 1092n bits using a simple code using a 0 to mark the least significant

bit and ls to mark all other ones. For example, the number 3 can be represented as

1101. After the number n was encoded, it just remained to use 8 * n bits to tell which

10pixels to turn off. The identical code was used for which pixels to turn on

The more interesting part is fit parameter number 1, the "jitter parameter." We

decided to encode it as follows. We thought of the ideal form as hitting particular

points in order. The jitter was just a displacement of each of these points. So, to

tell the "jitter parameter," we had to tell the displacement vectors for each of the

points in the ideal form. To do this, we first told the "maximum magnitude" of the

displacement. Then, for every point in the ideal form, we told what displacement

vector to apply to it.

Since we are talking about pixels here, we can think of everything as happening

on the lattice points of the normal Euclidean plane. So, if we identify the zero dis-

9 Since we know that in the current application there is only one character, the length of the style
parameters is a constant added to the cost of each representation of the observed image - it does not
affect MDL at all! If we were to consider things at a higher level which allowed multiple characters
in a single image, then it would be much more relevant.

10alternatively, we can just think of both together as which pixels to flip - XOR with the image
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placement vector with the point (0, 0), we can naturally associate every other lattice

point with another displacement vector. Suppose that the maximum displacement is
11the vector (XI Y) . Now, if we draw a shaded closed disk in the plane, centered at the

origin, with its circumference touching the point (XI Y), then we know that every other

displacement vector for the points of this ideal form must be associated with one of

the M lattice points that is in this disk. Sol in order to communicate the "maximum

magnitude," all we need to encode is which disk we are talking about.

But, this is simple since the possible disks are all linearly ordered by radius and

so they can be neatly enumerated. For example, disk 0 is the disk of radius 0, disk

I is of radius 1, disk 2 is of radius v�_2, etc. For these disks, the Ms are also easy to

compute. For example, Mo = 1, Ml = 5, M2 = 9, etc. So, we just give the number

r of the radius using the same simple self-punctuating code we use above for telling

the number of pixels to flip in parts 2 and 3, and then can just use N * 1092Mr bits

to tell all of the jitter vectors where N is the number of points in the ideal form and

1092Mr is the number of bits needed to tell the displacement vector of any one point

given that we know the maximum displacement.

With the above encoding, all that we have to specify is the constraint set G. In

our case, we merely say that it is all the representations R that consist of only a single

valid 0 since we know a-priori that we are only recognizing a single character.

So, in this formulation, the right answer to the handwritten character recognition

problem is just the style parameter encoding which character to be drawn (number I

in the list of style parameters above) in the shortest 0 such that m(O) = 0, where 0

is the binary-valued image to be recognized. So,

RightAnswer(O) = WhichCharacter(MDL(Olm, Q (3-1)

1 1 So, Vlx2 + y2 is the single sided Haussdorf distance from the deformed ideal form to the observed
image
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3.2.1 Extensions And Refinements

Many refinements are possible to this simple model. To show how these can be

addressed, we consider a simple one - extending this model to deal with gray-scale

images.

The first thing to do is to change the underlying elementary observation set so as

to make it possible to represent gray-scale. Instead of binary-valued functions, we

allow functions that take values in a range, say 0 to 255 inclusive.

Now, we just take our existing model and raise it to the next higher level of the

hierarchy. Then, to go from binary-valued images to gray ones, we just implement a

simple model with a single 256 bit style parameter12 , and one fit parameter for every

pixel in the image, 256 fit parameters in total. If a given pixel's binary value (given

in the style parameter) is a 0, we think of it as being a light colored pixel and we use

a self-punctuating code (the corresponding fit parameter) for the gray value of that

pixel. If it is a 1, we think of it as being a dark colored pixel and we use (255 - a

self punctuating code) for the gray value. Basically, this expresses a preference for

light-colored pixels to be light and dark-colored pixels to be dark.

This may not be the optimum extension to gray-scale 13 , but it shows how it can

be done in principle.

12Since the higher level model produces as its output a 16x16 binary-valued image.
"In fact, it probably isn't. It does not take into account the a-priori knowledge that we have that

says that pixels at the center of the stroke will tend to be darker than pixels at the outer edges.
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Figure 3-3: Our knowledge of the writing process
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Figure 3-4: A picture of the encoding in action: The first image is the image to be
recognized. The second represents the ideal form (style 1). Next, the affinely deformed
ideal form (style 2). Then, the "jittered" deformed ideal form (fit 1). The next one
takes into account the width of the pen (style 3). Next, the pixels to be turned off (fit
2). Then, what happens when we turn them off. Finally, the pixels to be turned on
(fit 3).
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Chapter 4

Implementation and Results

4.1 Experimental Set Up

To implement the model presented in the previous section, a recognition-workbench

shown in Figure 4-1 was developed on a Pentium. workstation running Linux 1.2.13

and X11R6. The tool was written in C++ and used TCL as its command language

with TK as its graphical widget set. It was designed with ease of use and extensibility

in mind. The code was not optimized for running-time and "brute-force" exhaustive

search algorithms were used for the optimization of description length. The goal of the

experiment was merely to establish a kind of "proof of concept" and to build a work-

bench software environment that would allow easy exploration of possible models and

optimization techniques.

The ideal forms shown in Figure 4-2 of the characters were hand generated in

an ad-hoc fashion after brief visual examination of some of the training data in the

data set. In keeping with the philosophy of this approach, we only used 14 of these

ideal forms.' As you can see, we had only one ideal form each for the 0,1,5,6,7,9

and two each for the 2,3,4,8. The range of acceptable affine transformations was also

determined in an ad-hoc fashion after brief visual examination of the training data. No

'We draw inspiration from two sources. The first is our anecdotal knowledge that one does not
need to show a child a thousand copies of the number "I" for the child to be able to recognize it, one
or two examples are enough for the child to do quite well. The second is the well-documented ability
of children to acquire words of natural-language in a single hearing of a word. [5]
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systematic use was made of the training data in the generation of models or acceptable

transformations.

The experiment was run against the first 420 samples in the test data.

4.2 Results

The overall results of the experiment were promising. In comparison with Akra's

recognition rate of 40%, we were able to achieve recognition rates of 86% with only

the 14 ideal forms shown in Figure 4-2. We can see the result of the algorithm on a

few selected samples in Figure 4-3. Each row shows the output for a different sample

character image. Within each row, the first (leftmost) image is of the image together

with its label. The rest of the entries in the row are for the given models, sorted by the

minimal number of bits needed to represent the image using that model. For each of

the models, three numbers are given. The first is the label of the model. The second is

the single-sided Haussdorf distance from the affinely deformed ideal form representing

the model and the observed image. The third is the number of bits needed to encode

the observed image using this model. In the picture, you can see the deformed ideal

form superimposed on the image of the character to be recognized.

If we don't just look at the single best model and instead allow some ambiguity,

the performance numbers become more interesting. We will consider ambiguity in

the following manner - rather than just selecting the best model (in terms of bits

needed to represent the given image), we will select a set of models. Presumably,

the ambiguity at this level will be resolved by a higher level. So, we will consider

ourselves to have correctly recognized the image if the "true" mode12 is a member of

the ambiguous-set for the image. The first way that we will define the ambiguous-set

is to fix its cardinality, k. Then, we will pick the best k models and say that they are

in the ambiguous-set. This is a traditional way of looking at ambiguity and it just

uses the bit-length as a tool for defining a total-ordering over the models relative to the

image. Graphically, we see its performance in Figure 4-4. The dashed line represents

2The one selected by the human
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the best existing algorithm's performance on this data set.

Defining the ambiguous-set in this manner is not our only choice. We can make

better use of the information at hand. Rather than just choosing a fixed number k

of models, we can consider the set of models relative to whom the representation of

the image is within N bits of the minimum length representation. The recognition

performance using this definition of the ambiguous-set is shown in Figure 4-5 and in

Table 4. L We can compare this to the previous method of defining the ambiguous-set

by looking at Figure 4-6 which shows us that the resulting ambiguous-sets are not

too big on average as shown in Table 4.2'. In fact, we found that just by going to

N = 60 bits, we were able to boost recognition performance (in that we were getting

the right answer within that 60 bit window) to 97% while still only having an average

of 1.7 candidates within this 60 bit window! This is particularly impressive when

you consider that some of the best existing algorithms for this problem, statistical

algorithms that used all 7291 training points and full gray-scale information, were also

performing in the 95% range.' The best existing algorithm achieved a recognition

rate of 97.4%5 using all 7291 training points, gray-scale information, and a-priori

7knowledge' in the form of the distance-measure used - the Tangent distance .[8]

But, is taking a "window" of N bits meaningful? It seems the answer is a clear yes.

To see why, we must think of this problem as existing within a hierarchical framework.

We are looking at the lowest level models of the presumed hierarchy - the level of

individual characters. Because there presumably exist higher levels (words, sentences,

etc.), it does not make sense to only consider the single representation at this level

with minimal description length, but rather a set of possible ones. Why should these

"windows" be measured out in bits and not in other ways like "top M choices" and

'It is not clear that taking the average is actually meaningful in this case. We suspect that perhaps
some notion of the "typical" set-size will be more useful. This is a topic of ongoing work.

'Humans perform in the 98% range given the gray-scale data. Human performance data on the
binary-valued images is not available.

'To be fair, this is when the algorithm was asked to produce what it thought the one best answer
was. How well it would do with ambiguity sets is unknown.

6They also used the fact that characters' classifications are mostly invariant under small affine
transformations

7Basically, this approximated small affine transformations by a hyper-plane tangent to the 256
dimensional vector representation of the image
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Recognition Performance
Ambiguity Total 'O' 4 1 1 421 431 441 4 51 461 4 71 C81

0 bits 0.86 0.94 0.93 0.85 0.96 0.80 0.52 0.98 1.00 0.77 0.85
10 bits 0.87 0.94 0.95 0.88 0.96 0.83 0.57 0.98 1.00 0.77 0.85
20 bits 0.90 0.95 0.95 0.90 0.96 0.87 0.71 0.98 1.00 0.77 0.87
30 bits 0.92 0.95 1.00 0.90 1.00 0.87 0.71 1.00 1.00 0.83 0.92
40 bits 0.93 0.95 1.00 0.95 1.00 0.90 0.71 1.00 1.00 0.86 0.92
50 bits 0.96 0.95 1.00 0.98 1.00 0.97 0.86 1.00 1.00 0.89 0.92
60 bits 0.97 0.97 1.00 0.98 1.00 0.97 0.90 1.00 1.00 0.91 0.95
70 bits 0.98 0.97 1.00 0.98 1.00 0.97 1.00 1.00 1.00 0.97 0.97
80 bits 0.99 0.98 Ff _,O 0- 10.981 1.00 1.00 I 1.00 I1.00 I 1.00 10.97 107977

Table 4.1: Recognition performance (fraction correct) for each individual character as
the ambiguity window varies.

Average Ambiguous-Set Size
Ambiguity Total 'O' '1' 421 431 44) W 461 7) 4 8 491

0 bits 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10 bits 1.1 1.0 1.0 1.1 1.1 1.2 1.2 1.0 1.0 1.2 1.0

20 bits 1.2 1.1 1.0 1.2 1.1 1.3 1.5 1.0 1.0 1.5 1.1

30 bits 1.3 1.1 1.1 1.3 1.1 1.5 1.6 1.1 1.0 1.8 1.2

40 bits 1.4 1.1 1.1 1.6 1.2 1.7 1.7 1.1 1.0 2.3 1.3

50 bits 1.6 1.2 1.1 1.9 1.2 1.9 2.0 1.2 1.0 2.7 1.5

60 bits 1.7 1.3 1.1 2.2 1.2 2.1 2.2 1.3 1.0 3.1 1.7

70 bits 1.9 1.3 1.3 2.4 1.3 2.4 2.7 1.4 1.0 3.6 2.0

80 bits 2.2 1 1.4 1 1.4 2.8 1.4 2. �_ _T_9T1.4 1.0 4.3 2.4

Table 4.2: Mean ambiguous-set size for each individual character as the ambiguity

window varies.
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the like? The answer comes down again to the fact that it is bits that are the common

currency that we have in this framework. The choice of N comes from the specifics

on the models (or presumed models) at the higher level. For example, suppose that

we were trying to identify postal zip-codes. Suppose that we know that this higher

level is expected to have up to a 60 bit variation in the length of the encoding of the

fit parameters that are local to this level.' This tells us that it is certainly safe to only

look at answers for individual characters from the lower level that are within 60 bits

of the minimum description length value. This suggests a way that these formulations

can be used in practice to "prune" choices in a provably safe way.

We now take a closer look at the classification errors that we made. Typical

examples of classification errors can be seen in Figure 4-7 and Figure 4-8. When

we look at the performance in Table 4.1, we see that our errors were due mainly to

poor performance on a few numerals - in particularly a dismal 52% performance on

the number 5 (for which we had only I model). In contrast, our performance on the

numeral 7 was perfect at 100%. It seems that this problem was just due to the fact

that we had too few ideal forms for certain characters. When we had used only one

form for 8, its performance was also a dismal 51%. The addition of a single other

form for '8' boosted performance up to 77%. It seems quite likely that the addition

of even modestly more ideal forms will cause performance to improve dramatically.

'The fit parameters local to this level are the ones that help to define the style parameters at the
next lower level - not the ones that are just copies of the fit parameters at the lower levels. In the
language of this thesis, these truly higher level fit parameters are the O�'t.
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Figure 4-2: The ideal forms
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Figure 4-3: Recognition of selected characters
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Figure 4-4: Recognition performance vs ambiguous-set size
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Figure 4-5: Recognition performance vs bit-length ambiguity
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Figure 4-6: Average ambiguous-set size vs bit-length ambiguity
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2 a 6 3 5 z 3 0 9 a 4 2 7 4 1
2.0 2.0 1.0 1.0 2.0 1.41 110 2.0 2.0 2.0 2.0 1.41 1.0 1.0
461 488 480 514 517 525 528 553 624 644 658 701 712 821

Figure 4-7: A sample 2 that was misclassified

mum
5 6 5 2 8 3 3 0 4 a -9 7 1

1.0 1.41 2.0 2.0 2.0 1.0 2.24 2.0 1.0 2.83 3.0 2.0 2.0 0.0
349 414 4,21 427 463 468 484 494 502 509 519 533 546 549................................................................................................................. ..................................................................... ....................................... .................................................I.............................................................................

Figure 4-8: A sample 5 that was misclassified
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Chapter 5

Conclusions

In this thesis, we have presented a unified framework in which to pose recognition

problems. This framework has the advantage of allowing easy use of a-priori know-

ledge of the problem domain and it is compatible with the results coming out of the

generative Linguisticsi enterprise. We showed that the problems in the framework,

were in general, NP-complete by nature. We then attacked the problem of handwrit-

ten character recognition in this framework and showed how the results were quite

promising.

In future work, we expect to address the problem of recognition from another angle.

While the approach in this thesis allows the systematic use of a-priori knowledge of the

problem domain, it has no explicit way of dealing with any knowledge of the specific

application' for which the recognition problem is being solved. This is currently under

investigation.

In addition, we hope to further understand the framework and in particular come

up with definite conditions under which the problem must be NP-complete and under

what conditions a polynomial time deterministic algorithm is available. In those cases

where a polynomial time algorithm is not available, approximation methods should be

'We intend to pursue these intriguing connections in future work.
'An example of such an application is machine vision for robotic navigation. One may want to

avoid obstacles which are visually detected or navigate by landmarks. Presumably, knowledge of this
application should affect the formulation of the recognition problems.
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explored. Furthermore, the nature of the ambiguous-sets 3 and their potential impact

4on performance needs to be better understood.

We also intend to systematically attack the problem of "learning" in this coding-

based approach. The general idea is that what is usually called "learning" is just a

matter of recognizing appropriate style parameters at a higher level in the modeling

hierarchy. Once developed, the ideas of "learning" should allow us to make systematic

use of noisy "training data."

So, along with the above theoretical work, the framework should be applied in

a problem with more hierarchical levels. For example, we might try to attack the

problem of handwritten word recognition. In addition to being able to study hier-

archical modeling 5, we can then explore the interaction between hierarchical levels

and the MDL principle. In particular, we notice that in our formulation, there is no

communication from the higher levels to the lower levels in a way that depends on the

particulars of the data being "recognized." It seems clear that to achieve any kind of

computational efficiency, such "feedback" may be necessary to do early pruning and

hence avoid a combinatorial explosion. This is something which needs to be studied

in the context of a real application.

'Ambiguous-sets are defined in the discussion in 4.2.
'They may be used as a disciplined way to prune choices in a hierarchical formulation.
'How to do such modeling and quantifying the effect of simplifications in the models (undermod-

eling), is an interesting problem in its own right.
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