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Abstract

A typical wireless communication network for mobile users consists of a centrally-
located and stationary base-station with mobile nodes communicating with the base-
station. A Packet Radio Network is a wireless network without a base-station, in
which nodes are typically mobile. The nodes have equal capabilities, and peer-to-
peer multi-hop communication is allowed. However, multi-hop routing in Packet
Radio Networks involves a number of issues which interact in a complex fashion. The
primary source of this complexity is that unlike point-to-point wireline networks in
which each channel is utilized by a single pair of nodes, the radio channel in the
packet radio network must be shared by all the nodes. As a result a node cannot
transmit and receive simultaneously. Therefore scheduling is required to ensure that
no node transmits and receives simultaneously.

We look at scheduling within the larger framework of minimum power routing
in packet radio networks. The corresponding mathematical programming problem
proves to be difficult, and we investigate a suboptimal approach that simplifies the
mathematics, with the hope that it will give us insight into the dynamics of the
problem. The suboptimal approach relies on decoupling the routing and scheduling
components of the larger problem, solving each one separately. We focus on solving
the scheduling component.
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Chapter 1

Introduction

A typical wireless communication network for mobile users consists of a centrally-
located and stationary base-station with mobile nodes communicating with the base-
station. A Packet Radio Network (PRNET) is a wireless network without a base-
station, consisting of nodes that are typically mobile. Fig. 1-1 shows an example
of a PRNET. What distinguishes Packet Radio N etworks (PRNETS) from a typical
commercial cellular system is that the communication nodes in PRNETS are equal
peers, in the sense that they have equal capabilities. In contrast, in a cellular system
the base-station is a much more sophisticated piece of equipment than the cellular
phone.

A PRNET has several advantages. It does not require centralized control. It has
the potential of fast (and ad-hoc) deployment and set-up of a network. Therefore
PRNETS are useful for communication between members of a rescue team, soldiers
in an infantry unit, or in any situation where a communication infrastructure is not
available.

Each node in a PRNET can receive and transmit radio signals, which implies that
nodes can communicate directly, or through intermediate nodes. Looking at Fig. 1-1
again, we see that Node 2 is out of the transmission range of Node 3, and vice versa.
However, the two nodes can still communicate through Node 1. For example, Node 3
can send the message (intended for Node 2) to Node 1, and the latter then forwards

it to Node 2. This is referred to as multi-hop routing. The number of intermediate
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Figure 1-1: An Example of a Packet Radio Network

nodes can be more than one. In addition to allowing communication with out-of-
transmission-range nodes, multi-hop routing can lower the network power use, as we

will see in Subsection 1.3.5.

1.1 Routing in Packet Radio Networks

In this thesis we focus on scheduling in PRNETSs, but we do so within the larger
framework of routing in packet radio networks. The function of routing is to guide
the data through the communication to its intended destination. The path that the
data takes from its source to its destination depends on the criterion used in routing.
For example a popular routing criterion in PRNETSs is minimum-number-of-hops
routing. Another routing criteria is minimum-delay routing. We are interested in
minimum-average-network-power routing. The reason for choosing this criterion is
that by minimizing the power used in data transmissions, we maximize the lifetimes
of the node batteries.

Research in the area of PRNETSs has been going on for more than two decades.

At a first glance, PRNETS seem to be a simple extension of the technology of packet



switched networks. However, two central issues make PRNETSs much harder to im-

plement:
1. The nodes in the network share the same communication channel.
2. Packets need to be routed in a highly dynamic network.

In this thesis we will be concerned mostly with the first of these two issues. The
fact that the nodes use the same communication channel means that their trans-
missions interfere with each other. Moreover (and more importantly for us) it also
implies that no node can transmit and receive simultaneously. This last constraint
is important because it necessitates scheduling in a PRNET. By scheduling we mean

designating the time intervals in which a node can transmit.

1.2 Choice of Multiaccess Scheme

The multiaccess scheme is the method by which the nodes share the communication
channel. There are three main multiaccess schemes: frequency-division multiaccess
(FDMA), time-division multiaccess (TDMA), and code-division multiaccess (CDMA).
For information on the first two, see [1], and for information on the third see [2].
Our choice for the multiaccess scheme is a combination of TDMA and CDMA
(CDMA/TDMA). TDMA facilitates scheduling as it allows each node to transmit in
certain time slots, and receive in the remaining time slots. Within each time slot, we
allow several nodes to transmit, so there is still a need to share the channel among
those transmitting nodes, and we do so using CDMA. CDMA has several advantages.
It allows a node to transmit to several receivers, and allows receivers to receive from
several transmitters. In CDMA, when a node reduces its transmitted power, the
other nodes benefit from that reduction in the form of lower interference (see [3]).
In addition CDMA provides protection against intentional jamming and listening-
in. This is advantageous because one of the main uses of PRNETSs is in military

communications.
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1.3 Problem Statement and Model

We consider a wireless network with a set of N mobile nodes. The goal of our
larger framework is to find the minimum average network power routing for
this wireless network, allowing the possibility of multi-hop transmissions. Network
power refers to the total power used by all the nodes. Each node is powered by a
battery, and therefore minimizing average network power (ANP) is important because
it helps maximize the lifetime of the batteries. Note that we will not address the issue
of comparable levels of power use among individual nodes; rather we will focus on

minimizing the overall power use in the network.

1.3.1 Assumption of Acceptable Connection

We assume that a transmitting node can adjust its radiated power level, such that
the intended receiving node receives the transmitted signal at the required signal-
to-interference ratio (SIR). The required SIR is the ratio that guarantees a specified
symbol error rate. In other words, it is the ratio that ensures that the received data
is not too garbled. We assume perfect power control, which implies that the trans-
mitting node can adjust its radiated power level instantaneously, and has perfect
information to adjust its power level appropriately. Power control is important, be-
cause whenever a node transmits, it interferes with transmissions from other nodes.
If a node transmits at too high a power it will create unnecessarily high interference
for the other nodes, which in turn will have to increase their power to overcome the
extra interference. The end result will be inefficient use of power, which goes against
our goal of minimizing average network power. However, we note that perfect power
control is a strong assumption, and is extremely hard to achieve in practice. Indeed

the problem of power control in wireless networks is an active area of research.

1.3.2 Network Topology

As mentioned earlier, there are N mobile nodes in the wireless network. We denote

the ' node by d;, where naturally 1 < i < N. If d; sends data bits directly to d;,
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then we say that d; is sending bits on the link from d; to d;. We will use the shorthand
notation L(4, j) to denote the link from d; to d;. Note that £(3,7) and L(j,4) are two
distinct links.

The network topology can be described by a complete symmetric digraph. A
complete symmetric digraph has both links £(z, j) and £(7, ) for every pair of nodes
d; and d;. The digraph is complete because any node can adjust its power level
until any other node falls into its transmission range. In other words, each link
represents potential direct communication between the two nodes. However, if the

power required for that communication is too high, then that link will not be used.

1.3.3 End-to-End Sessions

We assume that the network data traffic is in steady state, and that there are S
end-to-end communication sessions among the N nodes. Associated with Session s
(1 < s < S9), there is a required average end-to-end transmission rate of r°
bits/second. Furthermore, if d; is the origin node of Session s, and d; is the destination

node of Session s then we define:
[ ] O(S) = dz

e D(s)=d,

1.3.4 The Traffic Vector

The traffic vector summarizes the required steady-state end-to-end data rates. We

denote the traffic vector by r = [r! 72...75]7, where r° is the end-to-end data rate

for Session s.

1.3.5 Multi-hop Transmissions

Consider Session s, where O(s) = d;, and D(s) = d;. Session s may be realized by d;

sending Session s’s bits to a third node, di, and di forwarding those bits on L(k, j).

12



Figure 1-2: The power advantage of multi-hop routing

We refer to such a realization of the session as multi-hop transmission. Note that
multi-hop transmissions can occur over several intermediate nodes.

Our study of multi-hop transmissions is motivated by our objective to minimize
the average network power. The attenuation of radiated power is not linear in the
distance; rather it is proportional to a value between the distance squared and the
distance to the sixth power (see [4]). In other words, at distance A from the source,
the power of a signal is proportional to (%)a, where 2 < a < 6. As a result, direct
transmission may be more costly (power-wise) to the network as a whole than multi-
hop transmissions. We illustrate this point using the following example: consider
the PRNET in Fig. 1-2, and suppose we want to send a message from d; to d;.
There are two possible paths, namely dy — ds — d; and dy — d7. Let the distances
between these three nodes be as indicated in the figure, and assume the power to
be proportional to the square distance, with a proportionality constant k. Then the
power associated with dy — ds — d7 is 52k, and that associated with dy — d7 is 81k.
Therefore in this case multi-hop routing is more efficient.

If bits are transmitted on a link, then that link is called active. In a multi-hop

network, several sessions may be using a particular link as a hop. In that case, the
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Figure 1-3: Correspondence between f;;’s and ¢,,’s.

link will carry bits belonging to all those sessions. We shall subsequently refer to
bits belonging to Session s as Type s bits. In the same vein, let f;; be the total
bit-rate on L(i,7), then f;; = ¥5_; zf;, where zi; is the bit-rate of Type s bits on
L(3,7). In some cases it will more convenient for us to use a different notation to
describe the total bit-rate on a link. That notation is ¢,,, with 1 < m < M, where
M is the total number of active links in the network. We emphasize that there is a

one-to-one correspondence between the f;;’s and the ¢,,’s. Fig. 1-3 illustrates the
J g

correspondence between the f;;’s and the ¢,,’s for a network with 4 active links.

1.3.6 Frames and Slots

Recall that TDMA is part of our multi-access scheme. Therefore, data is sent in
successive frames. Each frame contains K time slots. In each slot a subset of the
nodes transmit, and a different mutually exclusive subset of nodes receive. The same
slot (i.e. with the same combination of transmitters and receivers) may occur more
than once in the frame.

Figure 1-4 shows two successive and identical frames. Each frame consists of 3
slots. The length of each slot is [, and the length of a frame is L.

We use the term frame-average to refer to averages taken over the frame length.
For example, the frame-average power of a node is the total energy radiated by that
node over the length of the frame, divided by L, the length of the frame. Similarly,

the term slot-average refers to averages taken over the slot length. In addition to
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Figure 1-4: Illustration of Frames and Slots

le Xd2

Figure 1-5: Simple Network with Three Nodes

slot-average and frame-average powers, we will also encounter the terms slot-average
and frame-average bit rates.

At this point we need to modify our definition of the parameters f;; and z;; to
fij[k] and z3;[k] respectively. fi;[k] is the total slot-average bit-rate on L£(%, ) in Slot
k, and z;[k] is the slot-average bit-rate of Type s bits on L(3, 5) in Slot k.

1.3.7 Simple Example

In this subsection, we provide a simple example to illustrate the concepts and def-
initions discussed so far. Consider the simple network in Figure 1-5. The network
contains three nodes d;, dy, and ds. By assumption, data traffic is in steady-state,
and the network uses the CDMA/TDMA multi-access scheme.

Suppose there are two ongoing end-to-end sessions in the network in Figure 1-5:
1. Session 1: O(1) = dy, D(1) = ds, and r! = 10 bits/second.

15
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Figure 1-6: Frame for the Simple Network Example
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X -
+ — 4 5ession 1
—_ Session 2
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Figure 1-7: Paths of Session 1 and Session 2.

2. Session 2: O(2) = dy, D(2) = d3, and r? = 20 bits/second.

Let the slot length be [ = 2 seconds. Recall that z;[k] is the slot-average rate of
Type s bits on L(z,7) in Slot k. Suppose we have the following transmissions in the

network:

e z1,[1] = 30 bits/second (Session 1 bits from d; to d; in Slot 1.)
e z2,[1] = 45 bits/second (Relay Session 2 traffic through ds.)

e z2,[2] = 15 bits/second

e 12,[3] = 60 bits/second (Forward Session 2 traffic to ds.)

The frame length is L = 3 x 2 = 6 seconds. Fig. 1-6 shows the active links in each
slot. Note that the first slot and the second are identical from the perspective of which
links are active (i.e. they have identical transmission matrices). Fig. 1-7 shows the
paths of the two sessions. Session 2 is realized by multi-hopping. The frame-average

bit-rate for Session 1 is the number of bits delivered in one frame divided by the frame

length which is equal to % = 10 bits/second. Similarly the frame-average bit-rate
for Session 2 is 82 = 20 bits/second. Therefore we clearly satisfy the required

session rates 7! and 72, with the routing described above.
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Finally, note that Session 2 is spread over several slots, i.e. z%,[1], 72,[2] and
z1,3]. We may want to spread the traffic on a link over several slots if the capacit

2,[3]. Wi tt d the traffi link 1 slots if the capacity

of the channel cannot accommodate the required slot-average bit-rate, if we were to

transmit in one slot.

1.4 Thesis Outline

As mentioned earlier, we want to investigate scheduling in PRNET's within the larger
framework of minimum-average-network-power routing in PRNETSs. Accordingly, we
devote Chapter 2 to the formulation of the minimum-average-network-power problem.
The problem is formulated in the form of a mathematical programming problem,
which in turn is shown to be difficult to solve. In Chapter 3 we propose a suboptimal
approach to the routing problem. The suboptimal approach involves the sub-problem
of scheduling, to which most of Chapter 3 is devoted. Finally, we make our conclusions

in Chapter 4.
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Chapter 2

Initial Approach: Direct

Optimization

The problem of finding minimum average network power (ANP) routing involves
finding the optimal number of slots in a frame, the optimal allocation of traffic among
the slots, and the optimal paths for the different sessions.

In this section we formulate the optimization problem, whose solution is the mini-
mum ANP routing solution. More accurately, we will present two formulations of the
optimization problem. The first is more intuitive than the second, but it suffers from
the lack of a unique optimal solution as we will discuss in Section 2.1. The second,
presented in Section 2.2, has a more cumbersome formulation, however its optimal
solution will be more useful to us.

We emphasize that both formulations find the optimal routing for a snapshot (in
time) of the network, which implies that the nodes are treated as stationary nodes,
and the required end-to-end rates are treated as steady-state rates. It is unlikely that
the solution found through the problem formulations in this section will be used in
real life networks. First the formulations assume global knowledge of the network, and
centralized control. In addition the problem formulated in this section is so complex
that is unlikely it can be solved in real time.

What we hope to get out of the solution is insight into what constitutes optimal

routing. Hopefully we can use that insight to construct fast good heuristic methods.
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2.1 Mathematical Formulation 1

The direct objective in this formulation is to find the routing resulting in the lowest
frame-average network power. This is done by finding the optimal frame-average
powers for different frame lengths (in terms of the number of slots in the frame), and
then finding the overall optimal solution among them.

We start by defining the parameters in this formulation. Let

e K be the number of slots in the frame.

! be the length of a slot.

o z,[k] be the slot-average bit-rate of Type s bits transmitted on L(%,7) in Slot
k.

o Flk] = [fi;[K]], where fi5[k] is the total slot-average bit-rate of bits transmitted
on L(%,7) in Slot k.

» Plk] = [P[k]], where Pi[k] is the slot-average power radiated by d; in Slot k.
® 7° be the required average bit-rate for Session s.

* yi[k] be a binary logical variable, used as a tool (in conjunction with M below)
to ensure no simultaneous reception and transmission by the same node. It is

equal to 1 if d; is transmitting in Slot % and 0 otherwise.
e M be a number larger than any feasible rate of transmission.

e Qi(.) be a function mapping the matrix F[k] to the vector P[k], in such a way
that the sum of the powers in the vector P[k] is minimized, while maintaining

acceptably small error probabilities in the transmission of Flk].
The optimization problem is formulated as follows:

1

minimize over pos. integers

19



such that, for¢,j =1,....N; k=1,....K;and s =1,...,S

0,2 =j Noself — transmission
and such that, for 3,5 =1,...,N;and k=1,.. K
s
flk] = a3;[k]
s=1
and such that, for¢=1,....N;and k=1,.. K

Yio filk] < Mylk]

. (No simultaneous transmit/receive)
Yo fiilk] < M(1 — yi[k])

yi[k] € {0’ 1}

and such that, for £k =1,.. K,
Pk] = Qi(F[k])
and such that, fori=1,.. ,N;and s =1,...,5

Kréif d; = O(s)

K N N
S alkl =Y wk) = { —Krtifd; = D(s)
k=1 j=1 i—1

Flow out Flow in 0 otherwise

2.1.1 Lack of a Unique Optimal Solution

20

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

The above mathematical programming problem does not have a unique optimal so-
lution. Suppose we find that K* is the length of a frame (in slots) that achieves
minimum ANP routing. Then we can construct a frame of length 2K™*, that also
achieves minimum ANP routing. This is done by duplicating each slot in the original

frame (the one of length K*), to create the new frame of length 2K*. Indeed for



every multiple of K*, there is an associated frame with that length, that also achieves
minimum ANP routing.
We need to find another formulation to the optimization problem, because the

solution to this optimization problem does not provide much insight.

2.2 Mathematical Formulation 2

Unfortunately, the formulation of the new optimization problem presented in this
section, requires us to temporarily depart from some of the ideas that we thus far
established.

First, in this formulation, we no longer restrict the slots to have a fixed length.
On the other hand, a slot may only appear once in a frame. In other words, a frame
may not contain two vslots with the same combination of transmitters and receivers.
Finally, we fix the frame length, L, to be equal to 1 second, and require it to include
all g(N) different slots (see Eq. 3.7). ¢(N) represents the total number of possible
transmitter/receiver combinations in a network with N nodes.

The optimal solution therefore will consist of a frame with ¢(V) slots. Slot &k will
have length [*[k]. Note that the optimal length of a slot might be 0. Since the length
of the frame is fixed to be 1, I*[k| represents the fraction of time that slot occupies in
the frame.

When we revert to the scheme with equal-length slots, and variable-length frame,
we allow multiple occurrences of the same slot in the frame. The number of identical
slots divided by the total number of slots in a frame is then equal to the fraction
given by the optimal solution to the optimization problem presented here.

As with the previous section, we start by defining the parameters in the optimiza-

tion problem. Let

e K be the total number of slots in the frame. K is equal to the total number of

different combinations of transmitters and receivers (i.e. ¢(V)).

e /[k] (1 <k < K) be the length of Slot k. 0 < I[k] <1, and K |i[k] =L =1.

21



e z:,[k] be the slot-average rate (bits/sec) of transmission of bits of Type s on

L(i,7) in Slot k.

e F[k] = fi;[k], where f;;[k] is the slot-average rate (bits/sec) of transmission of

bits of all types on L(3, j) in Slot k.

e P[k] = [P,[k]], where P[k] is the slot-average power radiated by d; in Slot k.

o Pp.i[k] is the total slot-average power radiated by the network in Slot k. P,e[k] =

YL, Pilk].

e Q;(.) be a function mapping the matrix F[k] to the vector P[k], in such a way

that the sum of the powers in the vector P[k] is minimized, while maintaining

acceptably small error probabilities in the transmission of F[k].

The problem can now be formulated as:

min 352 PR = 3 Pra KK

k=11i=1

such that,
K

k] = 1
k=1

and such that, fors, j=1,.. ,N; k=1,...,K;and s =1,...,5,

> 0, if ailk] = 1
IR B
= 0, 1fau[k] =0

and such that, for ¢, j=1,...,Nand k=1,... K
S
figlk] =3 ;K]
s=1
and such that, for £ =1,... K,

Plk] = Qi(F[k])
k] > 0

22
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and such that, for: =1,...,N;and s =1,...,S

r*if d; = O(s)
Z Z Ty [k]l[k] Z Z z5;[k] l[k] —r%if d; = D(s) (2.14)

k1_71 kl]l

rwi
Flow out Flow in 0 otherwise

2.2.1 Solving Mathematical Formulation 2

The above mathematical formulation is a multi-commodity flow problem. Solving
it would be a difficult task for a number of reasons. The number of variables is
proportional to the number of different combinations of transmitters and receivers.
As we will see in the next chapter this number grows exponentially with the num-
ber of nodes in the network, rendering the optimization problem hard to solve by
virtue of the number of variables involved. In addition, the function Q;(F[k]) is not
known. Recall that Q; finds the required average-powers of the nodes to achieve the
rates in F[k]|, minimizing the sum of those powers while maintaining acceptably low
error probabilities. This is an unsolved problem in information theory (The Inter-
ference Channel Problem). In practice (e.g. spread spectrum cellular networks), a
suboptimal solution is implemented. The suboptimal solution insures that the signal-
to-interference ratio for each received signal is above a certain ratio (see [2]). Not
knowing Q; (F[k]) is problematic for us, since if we are to have any hope of solving

the optimization problem above (optimally), we will need that function.

2.3 Convexity of Power

Even though we do not have an explicit expression for Q;(F[k]), we show in this
section that it is at least convex. We start by giving the definitions for convex sets

and convex functions.

Definition 1 A set X in R™ is said to be conver if for each x;, x5 € X, and for

each B € [0,1], Bx; + (1 — B)x2 € X.
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Definition 2 Let f : X — R, where X is a nonempty convez set in R™. The function

[ 1s said to be conver on X if for each x,, x; € X, and for each B € (0,1)
f(Bx1+ (1 = B)xz2) < Bf(x1) + (1 = B) f(x2)

Let ¢ be a vector in RM, where M is the number of active links in the network.
The m™ element of ¢ is the average bit-rate along the m® active link. That is, if link
m goes from d; to d;, then ¢, = f;;. Here, the issue of slots is not relevant since we
are simply studying the relationship between flow and power for a given set of active
links. A vector ¢ is achievable, if there exists a transmission strategy such that the
rates indicated in the vector can be achieved with arbitrarily small probabilities of

€rror.

Theorem 1 Let ®, a set in RM, be the set of achievable network rate vectors. ® is

a conver Set.

Proof: Suppose we have two achievable rate vectors ¢, and ¢, Consider a time
interval of length 7. For any § € [0,1], let ¢, = ST. If for the first ¢; seconds the
network transmits at network rate vector ?1 and for the last 7" — ¢; seconds at rate
vector @,,' then the following rate vector w = B¢, + (1 — B)4, is achieved.
Therefore 8¢, + (1 — B)¢, € ®. This implies that for each ¢ , ¢, € ®, and for each

B €[0,1], B¢, + (1 — B)¢, € ®. Therefore, @ is a convex set.

Theorem 2 Let ® be a nonempty conver set in RM. Let Poey (@) be the minimum

network power required to achieve ¢, where ¢ € ®. Poet(9) is conver.

Proof: For each pair ¢,, ¢, € ® and for each § € (0,1), let ¢, = B¢, + (1 — 6)8,.
Now consider a time interval of length 7" seconds long. Let t; = 8T. If we transmit at
network rate vector ¢, for the first ¢, seconds, and at network rate vector ¢, for the
last T—t; seconds,? then the average network rate vector will be w = fo,+

(1-8)¢, = ¢,- Furthermore, the average power over the interval of length 7' will be

1We assume that ¢; and T — t; are sufficiently long to achieve those rate vectors.
2Aga,in we assume that ¢, and T — t; are sufficiently long to achieve those rate vectors.
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nPnet(:#El)+(§—t1)Pnet(£2) = BP.e @1) +(1 =) Ppet (Qz) This implies that the network can

achieve the network rate vector ¢, with average power of Ppes(@,) + (1 — ) Paet(8,)-
By definition Ppe;(¢) is the minimum average power required to achieve the network
rate vector ¢. This implies that Prei(@,) < BPuei(¢;) + (1 — B)Paei(9,) Therefore,

Pret(¢) is convex.

2.4 Conclusion

In this chapter, we investigated the possibility of solving the minimum ANP routing
problem using direct optimization. However it seems that this path is a blind alley.
One of the main problems is the exponential growth in the number of variables. This
growth comes about from the enumeration of all possible scheduling combinations in
a PRNET. The other main problem is that we cannot express network power as a
function of the link flows.

What we learn from mathematical programming formulations in this chapter is
that the solution has two components: scheduling and routing. The routing compo-
nent dictates the path(s) the data follows, and the scheduling component determines
the number of slots in a frame, and the transmit/receive configuration in each slot.
We note that the scheduling and routing components depend on each other (in other
words they are intertwined).

In the next chapter we consider a suboptimal approach, in which routing and
scheduling are assumed to be independent, with the hope that optimality is sacrificed

for insight.
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Chapter 3

Scheduling

As mentioned at the end the last chapter, we are considering a suboptimal approach
in which we separate the routing component from the scheduling component in the
hope to gain insight into the dynamics of the problem. The main focus of this chapter

is the scheduling component, but first we briefly discuss the routing component.

3.1 The Routing Component

Consider the network in Figure 3-1. We assume that somehow a “length” is associated
with each arc. We envision this “length” to be an empirical function of the power
used on that link, the average interference experienced by the receiving node, the
congestion on that link and possibly other factors. The task becomes that of finding
the shortest path (for a source-destination pair of nodes) in terms of those lengths.
The shortest path problem is well-understood, and indeed the distributed Bellman-
Ford algorithm can be applied (provided arc lengths not change too rapidly), which

is very useful since we have a distributed network.

3.2 The Scheduling Component

Suppose the solution to the routing component dictates that the links indicated in

Figure 3-2 must be active within the span of one frame (without considering the

26



Figure 3-1: Routing in a Packet Radio Network

simultaneous transmit/receive constraint). Generally, some links need to be active
more frequently than others, but assume for now that all links are equally active.
The task becomes that of scheduling transmissions such that no node is transmitting
and receiving in the same slot. One feasible frame consists of the four slots shown in

Fig. 3-3, Fig. 3-4, Fig. 3-5 and Fig. 3-6.

3.2.1 The Transmission Matrix

Each time slot k in the CDMA /TDMA scheme has an associated transmission matrix.
We denote the k™ such transmission matrix by the 0-1 matrix A[k] = [a;;[k]], where
a;j[k] is 1 if d; is transmitting to d; in the k*® slot, and 0 otherwise.

Suppose, for example, we have a network of three nodes (d;, ds, and d3), where
in the first slot d; transmits to both d; and d3, and in the second slot dy and d3 both

transmit to d;. Then,
011

Alll=10 0 0 (3.1)
1000
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Figure 3-2: Active links in a frame as dictated by routing component.

Slot 1

Figure 3-3: Active links in Slot 1.
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Slot 2

Figure 3-4: Active links in Slot 2.

JIRN

® O,

Slot 3

Figure 3-5: Active links in Slot 3.
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JFRN

® O,

Slot 4

Figure 3-6: Active links in Slot 4.

and
000

AR2l=110 0 (3.2)
100

Not every 0-1 matrix is an admissible transmission matrix. For example the

following matrix
110

Akl={0 0 1 (3.3)

00O
is not admissible because a;;[k] = 1 implying d, is transmitting to itself, which is
nonsensical. Furthermore, according to this matrix, ds is receiving and transmitting

simultaneously, which is not possible. Below we give the definition of an admissible

transmission matrix:

Definition 3 Let A[k] be an N x N 0-1 matriz. A[k] is an admissible transmis-

sion matrix if and only if in the transmission pattern described by Alk],

1. There is at least one transmission. Equivalently, A[k] # 0.
2. No node is both transmitting and receiving.
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3. No node is transmitting to itself. Equivalently, a; =0 for 1 <¢ < N.
The theorem below provides an easy test for the admissibility of a transmission matrix:

Theorem 3 Let A[k] be an N x N 0-1 matriz. A[k] is an admissible transmission

matrix if and only if A[k]A[k] =0 and A[k] # 0.

Proof: If A[k] is an admissible transmission matrix, then A[k] # 0. Further, let
v,[k] be a row vector whose ' element is the sum of the entries in the i** column of
Alk]. If the i*! element of v, [k] is nonzero, then d; is receiving in Slot k. Similarly,
let v [k] be a column vector, whose i*® element is the sum of the entries in the it®
row of A[k]. If the i*® element of v [k] is nonzero, then d; is transmitting in Slot .
If A[k] is an admissible transmission matrix, then the i*® element of v [k] and the it}
element of v, [k] cannot both be nonzero. This implies that v,[k]v[k] = 0. This can

be rewritten as:

(u"A[k]) (A[k]u) = 0 (3.4)

whereu=[11...11]T.
= uT(A[k]A[k)u =0 (3.5)
= A[k]Alk]=0 (3.6)

which follows since A[k] is non-negative. Therefore, if A[k] is an admissible trans-
mission matrix, then A[k]A[k] =0, and A[k] # 0.

Now, if A[k] # O then the first condition in Definition 3 is directly satisfied.
Further, if A[k]A[k] = O then every row in A[k] is orthogonal to every column. In
particular the product of the i** row and the ¢*! column is 0, for 1 < ¢ < N. This
implies that a%+ other nonnegative terms = 0. Therefore a; = 0, for 1 < 3 < N,
thus satisfying the third condition in Definition 3. Finally, if A[k]A[k] = O then
v, [k]v.[k] = 0. This in turn implies that no node is both transmitting and receiving
in Slot k, which satisfies the second condition in Definition 3.

Q.E.D.
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g(NV)
2

12

86

840
11642
227892

Table 3.1: Growth of the number of admissible matrices with V.

It is of interest to know the number of distinct admissible transmission matrices
there are for a network of N nodes (see Subsection 2.2). Suppose there are i active
receivers. Then we have at least 1 and at most (N — ) active transmitters among
the remaining nodes. For each of the active receivers, there are (2(¥~% — 1) possible
combinations of transmitters sending to that receiver. In other words, for each active

receiver there are (2(¥N~% — 1) possible ways of being an active receiver, which implies

that for the 4 active receivers there are (2(N=% — 1)* ways. There are ways of
1
choosing ¢ active receivers among N nodes. Therefore the total number of admissible

transmission matrices for an N-node network, g(N), is given by

=Y [ V] - 7

Table 3.1 shows how the number of admissible matrices grows with N, the number
of nodes in the network.
For a network with 3 nodes, d;, d, and ds, the number of distinct admissible

matrices is ¢(3) =3 x 34+ 3 x 1 = 12 (see Eq. 3.7). These matrices are:

010
1. | 0 0 0 | which corresponds to {d; — da}.

0 00
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which corresponds to {d; — d3}.

which corresponds to {d; — da,d; — d3}.

which corresponds to {d; — ds,dy — d3}.

which corresponds to {d; — dz,ds — dp}.

which corresponds to {d» — d;}.

which corresponds to {dy — d3}.

which corresponds to {dy — dy,d> — d3}.

which corresponds to {dy — di,d3s — d; }.
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10. | 0 0 0 | which corresponds to {d; — d;}.

11. | 0 0 0 | which corresponds to {d3 — d»}.

12. | 0 0 0 | which corresponds to {ds — di,d3 — da2}.

L -

Note that the transmission matrix

0 00
00O
110

is a superset (i.e. contains) the two matrices

and _
00 OW

000
010

This is significant, because in the mathematical formulation in Section 2.2 we argued
that the number of slots in the frame is equal to the total number of combinations
of transmitters and receivers, which is exactly equal to the number of admissible
transmission matrices. An alternative approach would be to set the number of slots

in the frame equal to the number of supersets. Then within each slot, the algorithm
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would be allowed to divide the slot in mini-slots, where each mini-slot is characterized
by a subset of the superset. Dividing a slot into mini-slots would occur if for example
power is minimized in that slot by a time-sharing transmission scheme. The number

of supersets in a network of NV nodes is

V) = 3 ( N ) (39)

=1 ]

p(N) still grows exponentially, but not as rapidly as g(V).

3.2.2 Minimal Decomposition

Revisiting the problem of scheduling the transmissions in Figure 3-2, we see that the
active links in that network correspond to the following (non-admissible) transmission

matrix:

o O O = O O O
= o O O O o o ©
= O O = O O O o
O =R - = O O O ©

o O O O = = = O
o O O O o o o =~
O O O O o O O =
o = O O = o O O
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We implemented those active links over four slots. Algebraically, what we did was

decompose S into four admissible transmission matrices:

- E - - -

01110000 00100000 00000000
10000000 00000000 00000000O0
10000000 00000000 10000000
10001000 [00000000 00001000
60010011 |ooo10011]| |000000o0 0
00000001 00000001 00000000
00001001 00000000 00001000
(00000110 00000000] 00000100
(01010000 [00000000

00000000 10000000

00000000 0000000 O

, |00000000) 10000000

00000000 0000000 O

00000000 0000000 O

0000000 1 0000000 0

(00000000] 00000010

It turns out we can decompose S into a smaller number of admissible transmission

matrices:

(0111000 0] (00o000000|] [01110000
10000000 000000O0O 00000000
10000000 10000000 0000000 O
10001000 _[00000000| [00000000
00010011 00000000 00010011
00000001 00000001 00000000
00001001 0000100 1 00000000
00000110 00000000] [00000000
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o O O O O o o ©
= O O O o o o o
_ O O O o o o ©
o O O O o o o o

o O O O = O = O
o O O o o o o o
o O o o o o o o
o O O O = O O O

It is of interest to decompose S into the smallest number of admissible transmission
matrices possible. The smaller the number of matrices we decompose into, the shorter
the frame length, as each admissible transmission matrix is associated with a slot
in the frame. Typically, the shorter the frame length the smaller and the more
controllable the delay of an end-to-end session.

Unfortunately, the problem of minimal decomposition appears to be an NP-Hard

problem, as we show in the next subsection.

3.2.3 Proving NP-Hardness of Minimal Decomposition

A coloring of a (undirected) graph G is an assignment of colors to the vertices of the
graph, such that no two vertices joined by an arc have the same color. Two non-
adjacent vertices (i.e. not linked by an arc) may have the same color. The minimum
number of colors required to color the graph is called the chromatic number of the
graph and is denoted by X(G).

It is known that finding the chromatic number for an undirected graph G is an
NP-Hard problem (see [9]). In [8], an extension to that result is given in the following

theorem:

Theorem 4 Unless NP C ZPP!, it is intractable’? to approzimate X(G) to within

1ZPP denotes the class of languages decidable by a random expected polynomial-time algorithm
that makes no errors.

2 According to [9], a problem is intractable “it is so hard that no polynomial time algorithm can
possibly solve it.”
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N'=¢ for any constant € > 0.3

where N is the number of nodes in the graph.

We shall refer to the problem of approximating the chromatic number to within
N'"¢ for any constant ¢ > 0 as the Chromatic Approximation problem. The Chro-
matic Approximation problem is shown to be NP-Hard in [8]*. We note that tradi-
tionally an NP-Hard problem is said to be solvable in polynomial time unless P =
NP. In [8] this condition is modified slightly to “unless NP C ZPP”.

The problem of Minimal Decomposition is shown to be NP-Hard through the
traditional method of transforming a known NP-Hard problem (in this case, the
Chromatic Approximation problem) to the problem of interest (in this case, the Min-
imal Decomposition problem). This transformation is done in the following manner:
let G be an undirected graph, whose chromatic number we want to approximate to
within N1=¢. We transform G into a directed graph G’ by replacing each undirected
arc with two directed edges (in opposite directions) as shown in Figure 3-7. Note that
this transformation can be done in polynomial time.

Next we show how the solutions to Chromatic Approximation and Minimal De-
composition are related. Given X(G), we can find a feasible decomposition for G”:
let the colors of G be 1,2,..., & (G). Now we label every node in G’ by the binary
representation of its color in G. The number of digits of each label is [log, X(G)].
We can construct a schedule of length 2[log, X(@)], whereby in the first slot, any
node whose label’s first digit is 0 may transmit to any node whose label’s first digit
is 1. In the second slot, we reverse the direction and allow nodes with first digit 1 to
transmit to nodes with first digit 0. In the third and fourth slot we repeat the process
for the second digit in the labels. We continue this process for all digits. Because the
binary labels are derived from the node colors (in G), any two adjacent nodes will
differ in at least one digit of their respective binary labels. Therefore, each directed

arc in G' can be placed in at least one slot of the 2[log, X(G)] slots.

%“An algorithm approximates a function f(z) within a ratio ¢(z), if on any input z the algorithm
outputs two numbers {(z) and u(z) such that I(z) < f(z) <u(z), and u(z)/l(z) < q(z)” ([8]).

4 Although Theorem 4 does not specifically classify the Chromatic Approximation problem as an
NP-Hard problem, this classification is stated elsewhere in 8]
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G/

Figure 3-7: Transforming an undirected edge to two directed edges.

Let K* the number of slots in the minimal decomposition of the transformed graph

G'. Since 2[log, X(G)] is the number of slots in a feasible decomposition,

K*

IN

2[log, X (G)]
< 2(log, X(G) + 1) (3.9)

We can also use the solution to minimal decomposition to upper-bound the chro-
matic number of G: given G, transform it to G’ and find the latter’s minimal de-
composition. The minimal decomposition consists of K* slots. Now, we label each
node with a K*-digit binary label. If a node is transmitting in the k** slot (where
1< k < K*), then we set the kt digit of its label equal to 1, otherwise the k' digit
is set equal to 0. Since each node transmits to each of its adjacent nodes in exactly
one slot, adjacent nodes will have different labels. Thus we have found a coloring for

G with 25" colors. This implies,

X(G) < 2% (3.10)
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From Eq. 3.9 and Eq. 3.10 we get
2K*/2-1 < x(G) < 2¥° (3.11)

Since the chromatic number cannot exceed the number of nodes in the graph, we can
modify Eq. 3.11 to
2K /271 < X(@) < min(2X", NV) (3.12)

where N is the total number of nodes in G. If N > 2K" then X(G) will be approxi-

mated to within

K*
2 = 2.2K/2

< 2N

2(K*/2)-1

If N < 2K" then X(G) will be approximated to within

N 2N
9K*/2—-1 —  9K*/2
< 2VN

Therefore, using the minimal decomposition solution we can approximate X (G)
to within 24/N. In order to use Theorem 4 we need to get the ratio in the form of
N'~¢. We note that for N > 5 and ¢ = 0.01, 2y/N < N'~¢. Therefore, using the
minimal decomposition solution we can approximate X'(G) to within N!~¢, where
e =0.01. °

To summarize, we have shown thaf the problem of Chromatic Approximation® can
be solved by reducing it (in polynomial time) to the Minimal Decomposition problem,

and solving the latter problem. The solution to Minimal Decomposition corresponds

SFor graphs with 4 or fewer nodes, we solve for X(G) exactly, by enumerating of all possible
solutions. This gives us an approximation ratio of 1 which is still less than N!~¢. The time required
to enumerate all possible solutions for graphs with 4 or fewer nodes is bounded by a constant.

6More accurately, Chromatic Approximation with € = 0.01
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to a solution to Chromatic Approximation by virtue of the following inequalities,
2K"/2-1 < X(@) < min(2%", N)

and
min(2X°, N) -
2K*/2-1 <N ‘
where in this case € = 0.01. Since the NP-Hard problem of Chromatic Approximation

(with € = 0.01) reduces to the Minimal Decomposition problem in polynomial time,

we conclude that Minimal Decomposition is also NP-Hard.”

3.2.4 Evaluation of Suboptimal Approach

We resorted to the suboptimal approach of decoupling scheduling from routing be-
cause direct optimization (i.e. solving the mathematical programming problem in
Chapter 2) is extremely difficult to solve. The hope was that the suboptimal approach
can provide some insight into the dynamics of the solution, and/or help develop fast
heuristic methods for solving the routing problem. Unfortunately, the minimal de-
composition problem is NP-Hard, implying that it is intractable to find a the optimal
solution. Another shortcoming of the suboptimal approach is the assumption that the
routing component can ignore scheduling, when in all likelihood, the router depends
heavily on the schedule in order to determine the arc “lengths” mentioned in Section
3.1.

An alternative approach is to apply a non-optimal pre-determined schedule to the
network. The routing algorithm is then restricted to consider only the paths that are
permitted by the pre-determined schedule. In the next two subsections, we investigate

two different schemes for pre-determined scheduling.

" Another way of looking at this is as follows: if Minimal Decomposition is solvable in polynomial
time, then Chromatic Approximation will also be solvable in polynomial time. However, since
Chromatic Approximation is NP-Hard, we believe it is not solvable in polynomial time, which in
turn implies that Minimal Decomposition is not solvable in polynomial time either i.e. it too is
NP-Hard.
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3.2.5 Pre-Determined Scheduling: Node Coloring

The simplest scheme for pre-determined scheduling is to color half the nodes white
and the other half black. The frame then will consist of two slots. In the first slot the
white nodes transmit to the black slots, and in the second slot the blacks transmit to
the whites.

The fact that the frame consists of only two slots should be appealing to us.
However, there is a price for the short frame length. Two nodes with the same color
cannot communicate directly with each other. This is not favorable since if two nodes
with the same color are stranded, then there will be no way for them to communicate

(directly or indirectly).

3.2.6 Pre-Determined Scheduling: Logarithmic Labeling

Suppose we label each node with a binary label. Each binary label is a binary string
of length [log, N, where N as you recall is the number of nodes in the network.
Now, in the first slot we allow each node with a label 0 * % % % (% implies “0 or 1”)
to potentially transmit to all the nodes with labels 1 % * * x*. In the second slot, we
reverse the direction, and allow nodes with labels 1 x * x %% to transmit to nodes with
labels O * * x *%. The scheduling proceeds as shown in Fig. 3-8. The length of the
frame in this scheme is 2[log, N|. Since each node’s label differs from another’s in at
least one digit, each node will be able transmit to every other node (not necessarily
simultaneously), at least once in a frame. Note that Node 000000 can transmit to
Node 111111 in six of the twelve frame slots.

We can generalize this approach to label nodes using base m instead of base 2
(what we did above). Let K be the length of the frame, then by similar analysis to
what we did above,

K = m]log,, N] (3.13)

We now see whether base-2 or binary labeling is optimal in terms of the resulting

frame length. To simplify the mathematics, we temporarily ignore the integrality
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Slot # Transmissions
1 0 *« *x x x x — 1 x x *x x x
2 1 x % x x x — 0 * x * * =x
3 ¥ 0 *x x x *x — *x 1 x % *x %
4 * 1 % % *x *x — x 0 *x * * %
) * x 0 % *x x — x *x 1 *x % x
6 * % 1 % *x *x — *x *x 0 * * x
12 ¥ % % *x *x 1 — *x *x *x *x *x 0

Figure 3-8: Scheduling using binary labeling

constraint and say

K =mlog,, N

Then,

%_lnN_m In N 1 _InN InN (3.14)
dm  Ilnm (Inm)?2m  Ilnm  (Inm)? '

Setting the first derivative to zero, we get m* = e. We check the sign of the first

derivative,

(3.15)

dm? m(nm)? \Inm

d’K InN ( 2 )
For m* = e, the second derivative is positive, which implies that we have a minimum.
However, the base needs to be an integer, therefore the optimal base is either 2 or
3. In Fig. 3-9 we plot 2log, N and 3log; N. From that plot, it seems that base 3 is
optimal. But a more careful analysis is needed, since the number of slots in the frame
is really m[log,, n]. As Figure 3-10 and Figure 3-11 indicate, neither base 2 nor base
3 labeling dominates the other, even if we allow the number of nodes in the network

to grow to up to 2000000, which is too large for the packet radio networks we have

in mind. Therefore, for our purposes, it is fair to say that both of them are optimal.
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We are curious to see how large the packet radio network must get, before ternary

labeling completely dominates binary labeling. We want

3[logs N < 2[log, N1

The worst-case scenario (in terms of the ceiling functions) occurs when

[log, N| = logy N

and

[logs N1 =logg N +1—¢

for arbitrarily small e. We rewrite the above inequality as

3(logy +1) < 2log, N

to which the solution is N > 2.65 x 108. Therefore, for networks with more than
N > 2.65 x 10® nodes, we are guaranteed that ternary labeling dominates binary
labeling. However, as we indicated earlier, this size is too large for the kind of

networks we are considering.

3.3 Conclusion

In this chapter we focused on scheduling in PRNETs. We first considered minimal
decomposition scheduling, which would construct the smallest possible frame, given a
set of paths dictated by the router. In a mobile network, the topology of the network
is constantly changing. This implies that data routes are also constantly changing,
which would necessitate resolving the minimal decomposition problem many times.
Therefore, even if minimal decomposition were not NP-Hard, it would be a difficult
task to find a distributed algorithm that constantly updates the minimal decomposi-
tion solution.

We also proposed two pre-determined scheduling schemes, and it seems that the
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logarithmic labeling scheme suits our purposes better, since it allows each node to
communicate directly with each other node. Moreover, certain links are active in
more than one slot, thus giving the router more freedom in determining the routes.
In addition, in logarithmic labeling the frame length grows only logarithmically with

the size of the network.
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Chapter 4

Conclusion

Any PRNET routing algorithm (regardless of the optimality criterion) must deal with
the constraint that no node can transmit and receive simultaneously. Therefore, em-
bedded in the routing algorithm there is a scheduling component; and hence optimal
routing involves optimizing scheduling according to some criterion or another. In this
thesis we investigated optimizing scheduling according to the criterion of minimal de-
composition, which turned out to be an NP-Hard problem. Due to the combinatorial
nature of scheduling, one would guess that other optimality criteria (for scheduling)
also lead to NP-Hard problems. Even if they do not, or if we apply greedy algo-
rithms to solve the scheduling problem suboptimally, we will still have a problem.
This problem stems from the fact that we have a distributed network, which implies
that many messages between the nodes will be required to converge to the solution.
Furthermore, the network is mobile, which implies that rapid messages between the
nodes are required to keep the solution up-to-date. As a result, a potentially signifi-
cant fraction of the network capacity might be used to implement scheduling, instead
of being used to transfer data.

The complexity of optimal dynamic scheduling, and the fact that its implementa-
tion can potentially use up a significant fraction of the network capacity, leads us to
favor pre-determined scheduling. However, static pre-determined scheduling can be
costly in the long run, because its performance depends on the changing topology of

the network. A better approach would be to implement a quasi-static pre-determined
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scheduling. In quasi-static pre-determined scheduling, the schedule is updated at the
rate that significant topological changes occur. Between updates the pre-determined
scheduling remains fixed. We investigated two pre-determined scheduling schemes,
vertex coloring and logarithmic labeling, and concluded that logarithmic labeling is
more favorable.

As for future research, we need to investigate the issue of updating the pre-
determined schedule. We also propose investigating scheduling schemes for PRNET's
where the number of neighbors that a node has is limited. This limit may result
from technological constraints, or as [6] suggests may be desired to reduce interfer-
ence in the network. Finally, we need to find a routing algorithm that goes on top of
whichever scheduling scheme we decide on. Although we lose (routing) optimality by
fixing the scheduling first, and then routing accordingly, it is probably worth paying

such a price for the reduced complexity of the overall minimum ANP routing problem.
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