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Abstract

We consider the problem of model-based object recognition and localization in the
presence of noise, spurious features, and occlusion. We address the case where the
model is allowed to be transformed by elements in a given space of allowable trans-
formations. Known algorithms for the problem either treat noise very accurately in
an unacceptable worst case running time, or may have unreliable output when noise
is allowed. We introduce the idea of tolerance which measures the robustness of a
recognition and localization method when noise is allowed. We present a collection of
algorithms for the problem, each achieving a different degree of tolerance. The main
result is a localization algorithm that achieves any desired tolerance in a relatively low
order worst case asymptotic running time. The time constant of the algorithm de-
pends on the ratio of the noise bound over the given tolerance bound. The solution we
provide is general enough to handle different cases of allowable transformations, such
as planar affine transformations, and scaled rigid motions in arbitrary dimensions.
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Chapter 1

Introduction

The problem being considered is a key one in model-based object recognition. The

ultimate goal is to enable a machine to recognize and locate models "in" noisy ob-

servations. Models and observations are finite sets of features. The features may

be points in the plane or in a higher dimensional space. The model is allowed to

be transformed by elements in a given space of allowable transformations. Allowable

transformations can be planar rigid motions, planar affine transformations, or - in gen-

eral - a class of parameterized mappings over the space of features. The "presence"

of the model in the observation is manifested by having - possibly many - subsets

of the observation that are noisy, transformed, and occluded instances of the model.

Transformed instances of the model are noisy in the sense that their corresponding

features are perturbed by noise vectors. In addition to being noisy, some features of

those instances may be missing, a phenomenon called occlusion. In addition to those

instances (if any), the observation - possibly - contains other features called spurious

features.

For a given space of allowable transformations, the objective is to develop a recog-

nition and localization algorithm that has the following characteristics. The algorithm

should take as input the model, the observation, and a collection of constraints de-

scribing the allowable noise and occlusion phenomena. In terms of recognition, the

algorithm should be able to decide whether the observation contains noisy, trans-

formed, and occluded instances of the model satisfying the given input constraints.
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In terms of localization, the algorithm should be able to report the locations of theses

instances.

The problem being considered has applications in Pattern Recognition, Image

Understanding, Robotics, and Astronomy. In these fields, the model is a 2D or 31)

pattern representing an ideal object. The observation is a processed version of a

set of measurements supplied by a sensory device in the machine environment. The

features in the observation are usually noisy due to sensing errors. The model is

possibly present in the observation among many other objects. Theses other objects

are the source of spurious features. Moreover, the model might be partially present in

the observation in the sense that some of its parts are hidden due to an overlap with

an other object. This leads to the occlusion phenomenon. The space of allowable

transformations depends on the specific application. It may consists of translation

only, planar rigid motions and scaling, or planar affine transformations. The latter

isequivalent to 3D rigid motions composed with weak perspective projections. It is

usually used to locate 3D objects in 2D observations.

1.1 Literature Survey

Due to its wide range of applications, the problem has attracted considerable atten-

tion. What might be considered as a solved problem is the case where there is no

noise (e.g., Huttenlocher & Ullman [1987], Huttenlocher & Ullman [1990]). Allowing

for noise makes the problem much more difficult. A large number of related research

efforts were reported, each for a specific class of allowable transformations.

Grimson & Lozano-Perez[1984,1987] presented an algorithm based on searching

the space of matchings between the model and the observation features. The algo-

rithm is robust and accurate, but it has a worst case exponential running time in

terms of the number of features in the model. This issue was treated using several

speedup heuristics.

Cass [1990] developed a polynomial algorithm for the case when allowable trans-

formations are planar rigid motions. The algorithm is robust with respect to noise,
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but suffers from a high (twelfth order) running time. Its worst case running time is

0(M6n6)' where m and n are the number of points in the model and the observation,

respectively.

Many research efforts handle the noise by heuristics. Related efforts treat noise by

adding heuristics to hypothesize and test techniques that where originally developed

for a noiseless setting (e.g., Baris & Ullman [1988], Huttenlocher & Ullman [1987],

Huttenlocher & Ullman [1990], Thompson & Mundy [1987], Costa et al. [1990],

Landman et al. [1990], Landman & Wolfson [1988], Van Gool et al. [1991] ). All the

above techniques are for the case when allowable transformations are affine transfor-

mations. Grimson, Huttenlocher, & Jacobs [19941 studied the methods on which such

techniques are based. They reported that there is a significant probability of error in

the output even with a moderate level of noise, suggesting the importance of good

verification and grouping techniques.

Other research effort were reported on restricted versions of the problem, such

as recognition - only algorithms that do not handle occlusion (Chew et al. [1997]).

Even in this restricted environment, the worst case running time is 0 (m3n2 log Mn)

in the setting of planar rigid motions. Other algorithms work under the assumption

that the number of points in the model and the observation are equal (e.g., Alt et

al. [1988] and Braid [1985] ), thus no spurious features or occlusion are allowed. The

corresponding worst case running times are 0(n 6) for translation only and 0(n 8) for

translation, rotation, and reflection.

1.2 Contribution

Known algorithms for the problem either treat noise very accurately in an unaccept-

able worst case running time, or may have unreliable output when noise is allowed.

We introduce the concept of tolerance which measures the robustness of a recognition

and localization method, when noise is allowed. We present a collection of localization

algorithms for the problem each achieving a different degree of tolerance. We start

with an efficient algorithm that achieves a tolerance bound in the order of the noise

8



bound. We build on this algorithm to reach any given tolerance bound at the cost of

increasing the algorithm constant. The correctness proof of the algorithms is based

on a robust mathematical treatment of the problem that leads to two interesting tight

bounds.

Tolerance

We briefly explain the idea of tolerance in the recognition framework. We need first

a tentative definition. Assume that m is the number of points in the model. Let

� > 0 be an upper bound on the noise norm and let p be an upper bound on the

number of points missing from an instance of the model in the observation. Say that

an allowable transformation is (�, p)-feasible if it maps at least m - p point of the

model to within �-distance of points in the observation.

Let /,t > 0. We say that a decision algorithm is a recognition algorithm that

achieves a tolerance y if it satisfies the following two conditions.

1. The input of the algorithm is the model, the observation, an upper bound � on

the noise norm, and an upper bound p on the number of points missing from

an instance of the model in the observation.

2. The output of the algorithm is guaranteed to be YES if there exists an

feasible transformation and NO if there are no (� + pp)-feasible transforma-

tions.

If, in addition, any positive value of p can be prespecified in the algorithm input, the

algorithm is said to achieve any given tolerance.

Thus [�, � + /-t) is the tolerance region of the algorithm. The algorithm is provably

accurate and robust in the region [0, �) U [� + /-t, oo), but its results are uncertain in

the region [�, � + M). Introducing the tolerance region is a relaxation of the problem

that dramatically reduces the time complexity. Note that - practically - values of P

such as � are sufficient in general.

In terms of localization, an accurate formulation of the idea is lengthy due to the

complicated setting of the problem. We will postpone this formulation to the next

section.
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Known Approaches

In terms of tolerance, known algorithms for the problem can be generally classified

into two categories: Algorithms that achieve zero tolerance and algorithms that have

unbounded (or unknown) tolerance.

The main disadvantage of the methods that achieve a zero tolerance is their time

requirements (e.g., Grimson & Lozano-Perez[1984,19871 is worst case exponential,

Cass [19901 is polynomial of twelfth order for planar rigid motions).

Research efforts that handle noise by heuristics have unbounded (or unknown) tol-

erance. Most related efforts allow for noise by adding heuristics to hypothesize and

test techniques that were originally developed for a noiseless setting (e.g., Baris & Ull-

man [1988], Huttenlocher & Ullman [19871, Huttenlocher & Ullman [1990], Thompson

& Mundy [1987], Costa et al. [1990], Landman et al. [1990], Landman & Wolfson

[1988], Van Gool et al. [1991] ). Grimson, Huttenlocher, & Jacobs [1994] studied the

methods on which such techniques are based. They reported that there is a significant

probability of error in the output even with a moderate level of noise, suggesting the

importance of good verification and grouping techniques.

Contribution

Our contribution is a collection of localization algorithms each achieving a different

level of tolerance. We start with a worst case efficient algorithm that achieves a

tolerance bound in the order of the noise bound. We build on this algorithm to reach

any given tolerance bound at the expense of increasing the algorithm constant. The

case when occlusion is allowed is considered independently, and the solution obtained

is general enough to handle different cases of allowable transformations. Mainly, we

concentrate in this work on two cases : planar affine transformations and scaled rigid

motions in arbitrary dimensions. We summarize below the worst case running times

in each of the two cases. Note that m and n are - respectively - the number of points

in the model and the observation. Note also that in all the bounds below the norm

used on the features space is the oo-norm.

In the planar affine setting, we show first how to achieve an tolerance bounded
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by 3� in 0(m' + n 3m log n) worst case running time when occlusion is not allowed

(i.e., p = 0) and in 0(n 3MI logn) when occlusion is allowed. Then we show how to

reach any given tolerance M in 0(m 4+ (6)'n',rn log n) worst case running time when

occlusion is not allowed and in 0((3�)6 n' M4 log n) when occlusion is allowed. We

show also that, under the assumption that the minimum distance between any two

distinct points in S is at least 8�, zero tolerance is achievable in 0 (m' + n3m log mn)

time when occlusion is not allowed. Observe that the (3�)6 time constant is very

crude in the sense that it is an upper bound on the worst case constant of a heuristic

free algorithm.

In the d-dimensional rigid motions and scaling setting, we have similar results.

We show first how to achieve a tolerance bounded by (1 + ON - 7))� in 0 (M3 +

n 2M log d-1 n) worst case running time when occlusion is not allowed, and in 0(n 2M3

log d-1 n) when occlusion is allowed. Then we show how to reach any given tolerance /-t

in 0(m 4 + (c6)2dn2rn logd- ' n) worst case running time when occlusion is not allowed,A
and in 0((,6)2d n2M3 logd- 1 n) when occlusion is allowed, where c = I + V3 (d - 1)

We show also that, under the assumption that the minimum distance between any

two distinct points in S is at least 2(2 + VT(d - zero tolerance is achievable

in 0(m 3 + n 2MH2d(M) + n 2 M logd- in) time when occlusion is not allowed (H2d(M)

is the time needed to test the feasibility of a 2d-dimensional linear program of M

constraints) -

An other contribution of this work is two tight bounds in the setting of finite

sets subject to affine transformations and scaled rigid motions. In each case, we

derive a tight bound that illustrates to what degree a finite set of points can be

approximated, with respect to the corresponding transformations space, by one of its

bounded cardinality subsets. In the planar affine case, we prove that any finite planar

set M (not lying on a line) contains a 3-point subset U satisfying: 11tIlm < 311t1lu, for

each affine transformation t, where 11tilm and 11t1lu are - respectively - the supnorms

of t on M and U. In the scaled rigid motions setting, we prove that any finite

d-dimensional set M (consisting of more than one point) contains a 2-point subset

U satisfying: 11tIlm < (I + Vr3(d - �1)) Pk, for each d-dimensional transformation t
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composed of rotation translation and scaling. Both bounds are used in the correctness

proof of the algorithms.
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Chapter 2

Problem Definition

In this section, we present a robust definition for the recognition and the localization

problem and we formalize the idea of tolerance. Due to the complicated nature of the

problem, we follow a differential approach. We start with the recognition case when

occlusion is not allowed. Then we move to the localization task again when occlusion

is not allowed. We formalize this task first without tolerance, then we modify the

definition to allow for tolerance. Finally, we generalize the ideas to the setting of

occlusion.

Notation:

.F = Rd• Let be the space of features. The model is a finite subset of F denoted

by M and the observation is a finite subset subset of F denoted by S. We shall

call the elements of T points and any finite subset of F a pattern. So, the model

M and the observation S are both patterns.

• The space of allowable transformations is a set of parameterized mappings from

.F to F denoted by A.

An example of F is the plane . Examples of A are: planar translation, planar affine

transformations, a subset of the space of affine transformation defined by some given

constraints, or planar rigid motions.

In order to deal with noise, we need a norm to measure its magnitude. Say that

is a norm on T.

13



Notation:

• If x is a point, let B,(x) be the E-neighborhood of x, i.e., B,(x) = ly E F; lix -

Y11 < --I.

• If V is a pattern, let B, (V) be the -- neighborhood of V, i.e., B�_ (V) = U�,,Ev B, (a).

2.1 Tolerance and Recognition

We start with case when occlusion is not allowed.

Definition 2.1.1 A transformation t in A Z's said to be Infeasible if t(M) c B�(S).

In other words, an allowable transformation is said to be Infeasible if it maps the

model inside the �-neighborhood of the observation.

To put it in another way, an allowable transformation is Infeasible if it maps the

points of the model to within �-distance of points in the observation.

The recognition problem is about checking the existence of noisy transformed

instances of the model in the observation.

Let p > 0. In the case when occlusion is not allowed, we say that a decision

algorithm is a recognition algorithm that achieves a tolerance /-t if it satisfies following

two conditions.

1. The algorithm input consists of the model M, the observation S, and an upper

bound � on the noise norm.

2. The algorithm output is YES if there exits Infeasible transformation and NO

if there are no (� + [L)-feasible transformations.

If, in addition, any positive value of M can be prespecified as an input to the algorithm,

we say that the algorithm achieves any given tolerance.

A zero value of p means that the output is YES if and only if there exists an

Infeasible transformation. A positive value of p means that [�, � + [i) is a tolerance

region of such an algorithm. The algorithm is accurate and robust in the region

[0, �) U [� + p, oc), but its output is uncertain in the region + /_t). As long as the
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algorithm achieves a small value of p or as long as p is prespecifiable as an input, the

relaxed problem is practically as relevant as the original one. Practically, values of p

such as � are sufficient in general.

The motivation behind introducing the tolerance idea is that known methods ei-

ther deal with noise very accurately (have zero tolerance) in a very high order worst

case running time or may have unreliable worst case performance in terms of noise

(have unbounded tolerance). This motivates introducing a measure of performance

in terms of noise and searching for algorithms that can achieve low levels (not neces-

sarily zero) of tolerance in an acceptable time. The reason why a zero tolerance level

may be, in general, computationally expensive is that, for high dimensional allowable

transformations, the set of Infeasible transformations has a very complicated bound-

ary structure that makes testing its emptiness computationally expensive as function

of the number of points in the model and the observation. Allowing for occlusion and

working in the localization setting makes the computational price even higher. For

an example, see Cass [1990].

2.2 Localization

Let us move to the localization problem while still not allowing for occlusion. To

simplify the process, we start with a definition that does not include tolerance, then

we accommodate the definition to the tolerance setting.

The localization problem is about computing a set of allowable transformations

that "represents the locations" of the noisy transformed instances of the model in the

observation, if any. So we are interested in the Infeasible transformations. First, note

that - usually - there are infinitely many Infeasible transformations.

Example: Consider the simple case where Y is the plane and A consists of translation -

only. Say that the model consists of a single point a, and the observation S consists of a

single point 0. In this setting, the Infeasible transformations are the translation vectors in

6-neighborhood of the point 3 - a.

This means that we can not ask for an algorithm that computes all the Infeasible
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transformations. The natural alternative is to compute a representative subset of

the Infeasible transformations. One way to formalize the notion of a representative

subset is through sampling. In order to formalize the idea, we need a distance function

between allowable transformations, which we define below.

Definition 2.2.1 Given a pattern V, let E(V) to be the set of all mappings to F

from patterns containing V, and define jov to be the mapping pv : E(V) x E(V) P,

given by:

PV(hj, h2) =- 11h, - h2j1pv =- max 11hi(ce) - h2(Ce)11-
aEV

To simplify the notations we denote H-11PV by II-11v-

Note that pv satisfies the triangle inequality regardless of whether or not the

involved mappings have the same domain. Note also that pv is a metric on the set of

all the mappings to T whose domain is equal to V. But it need not be a metric over

the set of allowable transformations if V is an arbitrary pattern (Remember that the

set A of allowable transformation is set of parameterized mappings defined on J7).

Definition 2.2.2 We say that a pattern V is regular if Vt1, t2 A, I I tl - t2 I I V - 0

implies that tj = t2-

The regularity of a pattern V guarantees that pv is a metric over A and in general a

norm over the vector space generated by A (the other defining conditions of a norm

are inherited from the norm of F).

Assumption In what follows we assume that the model M is regular.

We will see soon that the regularity assumption is far from being restrictive (in the

planar affine case, for instance, it is equivalent to the fact that the pattern contains

three noncollinear points)

We are now in a position to formalize the sampling idea.

Notation: If X be a subset of A. By the 6-neighborhood of X we mean the set of

all the transformations in A that are within 6-distance to elements in X, where the

distance is measured with respect to the metric pm.
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The localization problem can be simply stated as follows "Compute a set of Infeasible

transformations whose 6-neighborhood covers (i.e., contains) all the Infeasible trans-

formations, for some 6 in the order of �".

This is equivalent to saying: compute any subset X of the space of allowable

transformations satisfying :

1. covering condition: for each Infeasible transformation tj, there exists a trans-

formations t2 in X such that Iltl - t2JIM < 6-

2. feasibility condition: each transformation in X is Infeasible.

for some 6 in the order of �.

The covering condition means that any Infeasible transformations is represented

by (i.e., close to) some transformation in the output. In contrast to the value of

/_t, the value of 6 is not critical, as long it is not very large compared to �. The

value of 6 represents to what extent the algorithm is able to distinguish between close

occurrences of the model in the observation.

A solution of the above localization problem implies a solution of the correspond-

ing recognition problem regardless of the value of 6. If Q is an algorithm of this

localization problem, we can build a recognition algorithm Q' by answering YES if

and only if the output of Q is not empty. Regardless of the value of 6, it is easy to

see that answer of Q' is YES if and only if there exist an Infeasible transformations

Now we accommodate the above definition to allow for tolerance. Tolerance can be

introduced by allowing some of the transformations in the output to be (�+y)-feasible

and not Infeasible.

Let p > 0. Consider the case when occlusion is not allowed. Say that an algorithm

is a localization algorithm that achieves a tolerance y if it satisfies the following two

conditions. The algorithm input consists of the model M, the observation S, and an

upper bound � on the noise norm. The algorithm output is a set of (� + p)-feasible

transformations whose 6-neighborhood covers all the Infeasible transformations, for

some 6 in the order of �. Here again, if - in addition - any positive value of y can
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be prespecified as an input to the algorithm, we say that the algorithm achieves any

given tolerance.

Let X be the output of such an algorithm. The above conditions on the output

are equivalent to:

1. covering condition: for each Infeasible transformation tj, there exists a trans-

formation t2 in X such that Iltl - t2JIM < J

2. relaxed feasibility condition: each transformation in X is (� + p)-feasible.

Once again a solution of the above localization problem implies a solution of corre-

sponding recognition problem regardless of the value of J. Given any such localization

algorithm Q. We can build a recognition algorithm Q' by answering YES if and only

if the output of Q is not empty. Regardless of the value of 6, it is easy to see that

answer of Q' is YES if there exists an Infeasible transformation and NO if there are

no (� + p)-feasible transformation.

Observe that, in general, tolerance can not be removed from the output by adding

a verification stage because discarding those elements of the output that fails the

Infeasibility test may violate the covering condition for all the 6's.

2.3 Occlusion

Extending the above definitions to allow for occlusion is simple. First we need to

extend the feasibility notion to subsets of the model. In what follows p, is an upper

bound on the number points missing from an instance of the model in the observation.

Definition 2.3.1 If t is an allowable transformation

1. Say that t is �-feasible on a pattern V if t(V) C B� (S)

2. Say that t is (�, p) -feasible if it is �-feasible on a regular subset of M containing at

least m - p points.
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To put it in an other way, an allowable transformation is (�, p)-feasible if it maps at

least m -p point of the model to within �-distance of points in S (with the additional

requirement that those points form a regular pattern) -

In the occlusion setting, given a bound p on the number of missing points in M

as an additional input, we say that the recognition algorithm achieves a p tolerance

if its output X is a subset of the space of allowable transformations satisfying :

1. covering condition: If V is a regular subset of M containing at least m - p

points, then for each transformation tj that is Infeasible on V, there exists a

transformation t2 in X such that I I t1 - t2 11 V < 6

2. relaxed Feasibility condition: each transformation in X is (� + p, p)-feasible,

for some 6 in the order of
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Chapter 3

Summary of Results

.F = p2We start in Chapter 4 with the case when , and A is the space of planar affine

transformations. We will be using the oo-norml on.F, i.e., 11 (x, y) 11 = rnaxfx, yj. We

begin with case where occlusion is not allowed.

In Section 4.2, we present a localization algorithm Q, that has an unbounded

tolerance: The algorithm takes as input M, S , � and any 3-point regular subset U

of M. The algorithm achieves in O(n 3m log n) time an �A (U, M) tolerance, where

A (U, M) _- sup INIM,
jtEA* -II Iti I u <i}

and A* is the vector space generated by A. The tolerance of this routine is scaled by

A(U, M), a value that may be very large for an arbitrary U. Q, works by trying all

the mappings form U to S. For each mapping it computes in 0(1) time the unique

affine transformation that agrees with the mapping on U. Then it tests in 0 (m log n)

time the (� + �A (U, M))-feasibility of hypothesized transformation before adding it

to the output.

In Section 4.3, we describe Q2, a localization algorithm that achieves a tolerance

'The motivation behind selecting the oo-norm is that it will highly simplify the involved compu-

tational and analytical problems. However, it should be noted that the main results in this work are

not dependent on the usage of the oc-norm. Essentially, any well behaved norm should work, but it

may require more complicated computational and analytical techniques. While presenting the work,

we briefly explain how to generalize the results to the 2-norm.
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bounded by 3� in O(Tn 4 + n 3mlogn) time : First, we prove that any regular model

M contains a 3-point regular subset U satisfying A (U, M) < 3. Then we show how to

compute in 0(m 4) time the 3-point regular subset U* of M that minimizes A (U, M).

This means that A (U*, M) < 3. By supplying U* to QI, we end up with a tolerance

bounded by 3�-

In Section 4.4, we describe how any given tolerance p can be achieved 0(m 4 +

(3�)6n3M log n) time. The new tool is an observation processing routine. The routineA
computes in linear time a new observation whose IL -neighborhood is equal toA(U*,M)

the �-neighborhood of S. It turns out that if we run Q, on the modified observation

and a new value of � equal to A , the tolerance in its output decreases to p. Due
A(U.,M)

the the fact that A (U* 7 M) < 3, the size of the modified observation is bounded by

11)2 n.
A

In Section 4.5, we show that zero tolerance can be achieved in 0(m 4+n 3M logmn)

time if the minimum distance between any two distinct points in S is bounded by 8�.

The idea is a verification stage on top Of Q2 that makes use of the given hypothesis

on S.

In Section 4.6, we generalize the idea to the occlusion setting. First, we construct

'PI, a modified version of Q, that partially handles occlusion. The input of 'PI is

(M7 S7 U, �, p) , where p is the bound on the number of missing points in the model.

'PI partially handles occlusion in the sense that the points of U are not allowed

to be missing. The running time of 'PI is 0(n 3mlogn) and the tolerance in its

output is �A (U, M). Next, we construct P2, an algorithm that handles occlusion in

0(n 3M4 logn) time and achieves a tolerance bonded by 3� (Essentially, this is the

main result of this section). For each 3-point regular subset U Of M, P2 computes

a new model VU equal to the largest subset V of M satisfying A (U, V) < 3. Then

for each such U it runs Pi on (Vu7SU,�,p) if JVul > m -p. The output Of'P2 is

the union of the sets returned by 'PI in each run. The main idea in the correctness

proof Of P2 is the fact that any regular model V contains a 3-point regular subset

U satisfying A (U, V) < 3. Finally, we show how to handle occlusion while achieving

any given tolerance p in 0((M)6 n3M4 log n) time. The idea is pretty much like the
IL
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one in the case when occlusion is not treated: feed P2 with a new observation and

new value of �.

In Chapter 5, we describe how to generalize the results to the case when the

space of allowable transformations consists of d-dimensional rigid motion and scal-

ing. The main new result needed for the generalization is another tight bound on

A (U, M). We show that, in the setting of this new set of allowable transformations,

each model M contains a 2-point subset U satisfying A (U, M) < I + ji(d - 1).

Using this new bound we generalize all the previous results to the following. In

the case when occlusion is not allowed, a tolerance bounded by I + V�(d - 1) can

be achieved in 0(m' + n 2M logd-i n) time. Any given tolerance 1-t can be achieved

in 0 (m 3 + ( (1+ A )2dn2M log d-1 n) time. A zero tolerance can be achieved in

0 (M3 +H(m)n 2 M +n 2M logd- 1 n) if the distance between any two distinct points in S

is at least 2(2 + Vr3(d - 1))�, where H2d(M) is the time needed to test the feasibility

of a linear program of 2d variables and m constraints. In the occlusion setting, a

tolerance bounded by I + �5(d - �1) can be achieved in O(n 2 M' log d-1 n) time and

any given tolerance M can be achieved in 0(("+ )2dn 2M, log d-1 n) time.
A

Finally, in Chapter 6 we present a sampling algorithm that can be used to reduce

the number of points in the observation while keeping its information content with

respect to recognition unaffected. The sampling algorithm computes in O(n(log d-1 n+

hd-1 log h)) time a locally optimal subset S' of S whose �-neighborhood is equal to

the �-neighborhood of S, where h is the maximum number of points in S lying in a

2�-neighborhood.
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Chapter 4

Localization in the Setting of

Planar Affine Transformation

In this chapter we will be working in the framework of planar affine transformation.

Thus the space of features -'F = R' and and the space of allowable transformation A

is the set of planar affine transformations. We will present the solution in a form that

can be easily generalized to other case.

4.1 Regular Patterns

Let A* be the vector space generated by A. In the setting of affine transformation it

is obvious that A* == A.

Note:

e In terms of A*, the regularity condition can be restated as: A pattern is regular

iff Vt E A*, t IV - 0 implies that t - 0.

The regularity condition in the case case of affine transformation is equivalent to

a simple condition. It is well known that a planar affine transformation is completely

determined by its restriction to any three noncollinear points. So, it is not hard to see

that: a pattern is regular iff it contains three noncollinear points. For completeness,

we prove this equivalence in the appendix of this section.
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We introduce below a measure between a regular pattern and a pattern.

Definition 4.1.1 If V is a pattern and U is a regular pattern define A(U, V) by

A(U, V) sup INIV.
jtEA*;jjtjju<ij

Note:

The supremum can be replaced by a maximum because I v is continuous and

f t (E A*; I I t I I u < I I is compact due to the fact the U is regular (if U is not

regular, the resulting region become unbounded). So, specifically, due to the

regularity of U, A (U, V) is always less than oo. This will become clear as we

proceed.

The motivation behind this definition is that

Lemma 4.1.1 Vt E A*, IItjIv < A(U, V)IItIIu

proof.- If t = 0, then IItjIv = IItIIu = 0 , hence IItIIv = A(UM)IItIIu. On the other

hand if t =� 0, then IItIIu :� 0 because U is regular, so

litliv = 11 t IV < sup IIhIIv < sup IIhIIv = A(U, V),
PHU PHU jhEA*;jjhjju=jj ' 11U=1} jhEA'-jjhjju<1}PHU I

where the first equality is meaningful because A* is a vector space.

Notes:

11t1ju :f�, 1 is equivalent to t(U) is a subset of the 1-neighborhood of the origin.

Moreover, the 1-neighborhood of the origin is a unit square centered at the

origin; this the case because we are using the oo-norm. These observations

lead to the following intuitive view of A (U, V): The value of A (U, V) is the

radius of the smallest enclosing square of the region spanned by t(V) as t spans

the subset of A* consisting of the transformations that maps U inside the unit

square centered at the origin. See Figures 4-1,4-2, and 4-3 for different examples.
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e If U C V, then A(U, V) > 1.

Appendix

Proposition 4.1.2 A pattern is regular iff it contains three noncollinear points

proof: Assume that V contains 3 noncollinear points, Say al, a2 and a3- In order to

show that V is regular we have to demonstrate that Vt G A*, t IV = 0 implies t = 0.

Consider any t C- A* with tIV = 0. Specifically we have t(ai) = 0 for i = 1, 2, 3. Let

H2,,2 and r2,,, be respectively the linear transformation matrix and the translation

vector of t (i.e. t(x) Hx + r, Vx E R21 I). So we have Hai + r = 0 for Z' = 1, 213.

Noting that Hai + r [HIr] Cei , we obtain

[HIr] a, a2 a3 0.

a, a2 a3
The matrix A is invertible because a,, a2 and a3 are noncollinear: If

I I I -

A [ pi P2 P3 ]T 0, we get pi a, +P2a2 +P3a3 - 0 and Pi +P2 +P3 = 0, but al, a2, a3

are affinely independent (the general notion of noncollinearity), so pi = P2 - P3 - 0

by the definition of affine independence. It follows that [HIr] -- 0 and hence t = 0.

To proof the converse, assume that all points in V belongs to the same line. We

need to find a nonzero element t of A* with tIV -- 0. Say that V = la,,. - -, asi.

To construct t, let 0 be a planar point not on the line containing V and not at the

origin. The points a,, a2 and 0 are noncollinear, so there exists a unique affine

transformation t that maps a, and OZ2 to the origin and 0 to 3. We know that t :A 0

because 40) = 0. We also have t(ai) - t(a2) - 0. To see why t(ai) = 0, for all

i > 3, let H and r be respectively the linear transformation matrix and the translation

vector of t. Because the points of V are on the same line , for each i > 3, we can find

a a real number ki such that ai = ki(a2 - a,) + a,. For each i > 3, we have

t (ai) = Hai + r -- H (ki (a2 - a,) + cei) + r = ki ((Ha2 + r) - (Hai + r)) + (Hai + r) -- 0.
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4.2 Unbounded Tolerance

We describe a localization algorithm Q, that has an unbounded tolerance. The

algorithm takes as input M, S , � and any 3-point regular subset U of M. We show

that the algorithm achieves in 0(n 3m, log n) time an � A (U, M) tolerance, a value that

may be very large for an arbitrary U.

Note that if U is a 3-point regular subset of M, and f is a mapping from U to S,

then there exits a unique affine transformation t that agree with f on U, i.e., tjU = f -

This is an other way of saying that a planar affine transformation is uniquely specified

by it restriction to any three noncollinear points.

Algorithm 4.2.1 Consider the following algorithm that takes a's input: the model

M, the observation S, the noise bound �, and any 3-point regular subset U of M.

Q, - " On input (M, S, U,

1. compute A(U, M)

2. initialize X to the empty set

3. repeat the following for each mapping f from U to S

4. compute the unique affine transformation that agrees with f on U,

i. e, compute the element t of A satisfying f -_ t I U

5. check if t is (� + �A (U, M)) -feasible

6. if so add t to X

7. return X "

Q, works by trying all the mappings form U to S. For each mapping it computes

the unique affine transformation that agrees with the mapping on U, then it tests the

(� + � A (U, M))-feasibility of the hypothesized transformations before adding them to

the output.

Proof of correctness

In order to establish the result, we need first to look at the feasibility condition from

a different angle.
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Lemma 4.2.2 A transformation t E A Z's E-feasible iff there exits a mapping g

M -+ S such that 119 - OM < �-

proof: If t is E-feasible , then by definition t(M) C B�(S). So for each point a in M

there exists a point 0 in S such that a C: BJO) or llce - �11 < �. If for each a in M,

we let g(a) be any such �, we obtain a mapping g : M -4 S that is �-close to t with

respect to pm.

If on the other hand there exits a mapping g : M -- � S s.t. jig - tllm < �. Then

Va E M, Ilt(a) - g(a)ll < � or t(a) C Bjg(a)) c BjS). So, t(M) C S . 0

Theorem 4.2.3 (An �A(U, M) tolerance) The output X of Q, is a set of (� +

�A (U, M)) -feasible transformations whose �A (U, M) -neighborhood covers all the

feasible transformations.

Proof: We have to show that

N covering condition: for each Infeasible transformations t', there exists a transfor-

mation t in X such that lit - t1lim < �A(ul M)_

(ii) relaxed feasibility condition: each transformations in X is (� + �A (U, M))-feasible

First (ii) is true because only those transformations that passed the feasibility

test at line 5 where added to the output. We only have to proof (i). To prove (i)

consider any Infeasible transformations t'. Using Lemma 4.2.2 let g : M -4 S be such

that lit' - gilm < �. And finally let t be the unique transformation in A satisfying

t I U =: g I U. We show first that t - t'l I m < �A (U, M), then we conclude that t E X

This will establish (ii).

We have

Ilt-t'llm <_ AAM)llt-t'llu (4.1)

-_ A(UM)llg-t'llu (4.2)

< AW, M)119 - t'llm (4.3)

< � A (U, M), (4.4)
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where (4.1) follows from Lemma 4.1.1, (4-2) follows from the fact that tlu = MU,

and (4.3) from the fact U C M. Now

11t - AM < 11g - t'llm + 11t - t'llm < 11g - t'llm + AA M)11g - t'llm < � + �A(U' M),

where the second inequality follows from (4.3). To see why t G X, let f -- g1U.

Note that f is mapping from U to S. Moreover, t is the unique transformation in A

satisfying tjU = f. So t was computed at Line 4 when the mapping f was considered

in the loop of line 3. Now t must have passed the test at Line 5 because by Lemma

4.2.2 it is (� + �A(U, M))-feasible due to the fact that 11t - gllm < � + �A(U, M). So,

it must have been added to X at Line 6. n

We have shown that the tolerance in the output of Q, is �A(U, M). The reader

might be a bit confused because the value of A (U, M) is computed in Q1. At the

end of this section, we will briefly describe an alternative algorithm that leads

to the same worst case tolerance (�A(U, M)). The alternative algorithm might be

more transparent because the value of A (U, M) is not needed in the computational

process. The alternative algorithm even leads to lower average tolerance, but it is

more complicated than Q1.

Time analysis

We will elaborate on the computational tools needed to realize Q1. We will postpone

the computation of A (U, M) until the next section; In Proposition 4.3.4 we show how

to compute A (U, M) in O(m) time. We need to know how to do the feasibility test in

Line 5 and how to compute the affine transformation that agree with the hypothesized

mapping on U in Line 4. Both tasks are essentially easy. We first show that the

feasibility test can be done in 0 (m log n) assuming an 0 (n log n) preprocessing time

of S. Then we describe how the transformation t in Line 3 can be efficiently computed

in constant time. We have O(ISIM) - 0(n') mapping from U to S and each mapping

require an 0 (,m log n) processing time. After adding the 0 (n log n) time needed to

preprocess S, we end up with an 0 (n log n + n 3mlogn) -- O(n 3m log n) time needed

by Q, to halt.
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Given a transformation t E A, t is E-feasible iff t(M) c B,(S). This is equivalent

to saying Va E M, B, (t (a)) c B, (S) or B, (t(a)) n S =A 0. To sum up : t is E-feasible

iff B, (t (a)) n S =,4 0, Va E M. Note that B, (x) is a square centered at x, since we are

using the oo-norm. So, we can test the E-feasibility of t by passing over each a Cz M,

and checking whether the square B,(t(a) contain points from S. We declare t to be

E-feasible iff for each a E M, the intersection of the corresponding square with S is

nonempty. Assuming that S is suitably preprocessed, the number of points in the

intersection of S with a query square can be efficiently computed. In fact, assuming

that an 0 (n log n) preprocessing for a given n-points planar set, the number of points

in the intersection of a query rectangular region with the set can be computed in

0 (log n) (See [21 page 578). Thus, assuming an 0 (n log n) preprocessing time for S

the E-feasibility of t can be tested in 0 (m log n).

We are left with the simple task of computing the affine transformation that agrees

on U with a given mapping from U to S.

Notation: Each planar affine transformation t is uniquely specified by a 2 x 2 matrix

H and a 2 x I translation vector r. We denote this correspondence by t - (H,,r). So,
2XIt - (H, r) means t(x) = Hx + r, Vx E R .

Say that f is a mapping from U to S. If t is the affine transformation that agrees

with f on U, then t (H, r), where

H r f (a,) f (a2) f (a3) al a2 a3 (4.5)
I 1 1 -, 3x3

and a,, a2, a3 are the (2 x 1) points of U. The reason is simple, -we have t(ai)
a.

Hai + r - f (ai), i =1 7 2,3. Noting that Hai + r H I r we obtain

[H al a2 a3 f (al) f (a2) f (a3)

Equation (4.5) follows from the fact that the matrix Au 01 a2 a3 is invertible
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due to the noncollinearity of a,, a2, a3- So, given a mapping f from U to S the (H, r)

representation of the affine transformation that agree with f on U can be computed

in constant time by multiplying the matrix 2 x 3 matrix [ f (al) f (a2) f (a3)] with

the inverse of the 3 x 3 matrix Au. Note that Au depends only on U, so the inverse

need to be computed only once.

To sum up, we have shown that

Theorem 4.2.4 Q, runs in O(n 3m log n) time.

Notes:

• If we are given some constraints on the A (for example, on the scaling and

slanting parameters) the constraints can be used in the hypothesis generation

process to eliminate many mappings from U to S. The mappings that are

consistent with constraints can be generated by a recursive process on the points

of U. This leads to a large speed up factor.

• If the norm used on F is the 2-norm, the same tolerance and running time

bounds holds. The only difference is in the feasibility test implementation.

Here the test can be done by computing the nearest neighbor in of t(a), for

each a E T. This requires constructing the Voronoi diagram of S instead of

preprocessing it for rectangular range searching purposes.

An equivalent algorithm '

We briefly describe an alternative algorithm that leads to the same worst case

tolerance (�A (U, M)) in the same worst case running time. might be more trans-

parent than Q, because the value of A(U, M) is not needed in the computational

process. It even leads to lower average tolerance, but it is more complicated than Q.

Algorithm 4.2.5 Consider the following algorithm that takes as input: the model

M, the observation S, the noise bound �, and any 3-point regular subset U of M.

'This part can be skipped without any loss of continuity.
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On input (M, S, U,

1. initialize X to the empty set

2. repeat the following for each mapping f from U to S

3. compute the unique affine transformation that agrees with f on U,

i.e, compute the element t of A satisfying f -- tlU

4. compute the set of transformations C = ft' (E A lit' - f Ilu < �j

5. for each a E M

6. compute the planar region R = C(a) + B�(O)

7. check if R n S =� 0

8. if each point in M leads to a nonempty intersection add t to X

9. return X '

Note: C (a) means f t'(a); t' E C I and C (a) + B� (0) means f x + y; x c C (a) and

y E B�(O)J, i.e., the Minkowsky sum of C(a) with the �-square centered at the

origin.

We will show in Appendix A that is equivalent to Q1 in the sense that the

output of satisfies the same conditions of that of In other words, the output of

is a set of (� + �A (U, M))-feasible transformations whose �A (U, M)-neighborhood

covers all the Infeasible transformations.

Regarding the implementation of we shall argue in Appendix A also that

runs in 0(n 3m log n) time. Briefly, each of the C's computed at Line 4 is a 6D-convex

polytope that can be written as the product of two 3D-convex polytopes C, and C2

each having 0(1) extreme points and computable in 0(1) time. As for the R's, each

R is a planar rectangular region that can be computed from the extreme points of C,

and C2 in 0 (I) time.

The link between Q, and Q' is that the diameter of the smallest enclosing square

of C(a) can be as high as �A (U, M). Thus, the diameter of the smallest enclosing

square of R is bounded by � + �A(U, M). So when the feasibility test in Q, is done

at � + � A (U, M), the worst case diameter of R is assumed.
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4.3 A Tolerance Bounded by 3�

We described in the previous section an algorithm Q, that has an �A (U, M) tolerance.

To minimize tolerance, we have to minimize A (U, M).

Algorithm 4.3.1 Consider the following algorithm that takes as input: the model

M, the observation S, and the noise bound

Q2 = " On input (M, S, �)

1. Compute U* the 3-point regular subset of M that minimizes A (U, M), i.e.,

A (U*, M) < A (U, M), VU a 3 -point regular -subset of M.

2. Run Q, on (M, S, U*, �) and return its output. "

Before knowing how to compute U*, we need to know what can we expect from Q2,

i.e., what values of tolerance we are guarantee to go below?

Theorem 4.3.2 Any regular pattern M contains a regular subset U consisting of 3

points and satisfying A(U, M) < 3.

proof: The norm 11.11 on the feature space was - by default - the 00-norm. In this

proof we will be dealing with both the oo-norm and the 2-norm. In order to avoid

confusion, we will write I 1. I 1,,, instead of I 1. I 1. Let U = f a,,3, -yj, where a and 3 are

the farthest points in M with respect to the 2-norm, and -y is a point farthest from

the Line passing through a and 0 again with respect to the 2-norm. We will show

that A (U, M) < 3. In order to establish this fact, we need the following.

Lemma 4.3.3 for each point 0 G M, there exist 3 points Ph P2, and P3 in the convex

span 2 of U such that 0 - P1 + P2 - P3 -

2By the convex span of a planar set A, we mean the set of all convex combinations of the points
in A. This should not be confused with the convex hull of A which means the minimal subset of A
whose convex span is equal to that of A.
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proof: Without loss of generality, we can assume that the coordinates of a,,3, and -Y

are respectively (a, 0), (b, 0) and (0, c), where a, c >- 0. So,

11 01 - 02112 �� I a - b 1, VOj, 02 E M (4.6)

loyl < C, V0 (E M. (4.7)

Note that c should be 0 0 because M is regular. Note also that b should be < 0:

First, b can't be in (0, a] because otherwise we get

11-Y - a112 = 11 (-a, C) 112 > a > a - b = la - bl,

which contradicts 4.6. Moreover, b can't be larger than a because otherwise we get

II-/ - 0112 = 11 (-b, C) 112 > b > b - a = la - bl,

which again contradicts (4-6). Now, consider any 0 c M. We have two cases to

consider when Oy > 0 and when Oy < 0.

Case 1: (when Oy > 0) We can express 0 as 0 - (0, 0) + (0, OY) - (0, 0). We will

show that (O., 0), (0, Oy), (0, 0) G conv(U) (If A is a subset of the plane, by conv (A)

we mean the convex span A, i.e., the set of of all convex combinations of the points in

A ). We start with the origin, b < 0 < a hence (0, 0) c conv f (a, 0), (b, 0) I c conv (U).

Now, consider (O., 0). It is sufficient to demonstrate that b < Ox < a, because then

(Ox, 0) E conv f (a, 0), (b, 0) I c conv (U). First, Ox can't be smaller than b, because

otherwise we get

Ila - 0112 = 11 (a - O., -0y)112 > la - 0.1 > la - bl,

which contradicts (4.6). Similarly Ox can't be larger than a because otherwise we get

110 - 0112 - II (Ox - b, -0y)112 >- IOx - bl > la - bl.
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Finally, consider (0, Oy). We are assuming that Oy > 0 and we know from (4.7) that

oy < c, so we have 0 < Oy < c. Therefore (0, Oy) E conv f (0, 0), (0, c) I C conv (U) -

Case 2: (when 0Y < 0) We can express 0 as 0 = (0, 0) + (0�,, 0) - (0, -0y). We

know form the previous case that (0, 0) is in the convex span of U. Using exactly

the same argument we conclude also that (0,,, 0) E conv (U) - As for (0, - Oy), we are

assuming that 0Y < 0 and we know from (4.7) that 10y I < c, so we have 0 < -0Y < C.

It follows that (0, -0y) c convf (0, 0), (0, c) I C conv (U). This proves the lemma. 7

Now, by definition,

A (U, M) sup max Ilt(O)II.-
ftEA*;jjtjju<1j OEM

The constraint IItIIu < I is equivalent to t(U) C B1(0). Because the square BI(O)

is convex, we can write the constraint as conv(t(U)) C BI(O). Now, convexity is

invariant under affine transformations, i.e., conv(t(U)) = t(conv(U)) (See Webster

[19921). So the constraint is equivalent to t(conv(U)) C BI(O), or in other words,

I I t (x) I 1,,,, < 1, Vx C: conv (U). Consider any point 0 E M and any t E A satisfying the

constraint. Using the previous lemma, write 0 = PI + P2 - P3, for some PI, P2, and P3

in the convex span of U. Say that H and r are the linear transformation matrix and

the translation vector representation of t. We have

1140) 1100 = IIHO + r1j. II-H(P1 + P2 - P3) + r1j.

= IIH(PI + P2 P3) + r + r - rll,,,

= II (-Hp, + r) + (HP2 + r) - (HP3 + r) II.

< IIHpI + r1j. + IIHP2 + r1j. + IIHP3 + r1j.

= IIt(P1)II. + IIt(P2)II. + Ilt(P3)11.

< 3.

This is true for any 0 E M. It follows that A (U, M) < 3. El

Notes:
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• The bound in the above theorem is tight in the sense that there are M's where

the best 3-point regular subset U of M achieves a value of A(U, M) - 3. An

example is the case when M consists of the four corners of a square (This might

be the only set, up to affine transformations, where the bound become tight).

• If the 2-norm is the one under consideration, the same bound holds. In fact the

proof of the above theorem did not use any special feature of the 00-norm.

Returning to Q2, this means that A (U*, M) < 3, and consequently the tolerance

achieved by Q2 is bounded by 3�. Now, we are left with task of computing U*.

The following proposition says that if U consists of 3 points, then A(U, M) can be

computed in 0(m) time. Therefore, U* can be computed in 0(m') time because

we have 0(m 3) 3-point regular U to test before reaching the one that achieves the

minimum. We know from the previous section that Q, runs in 0(n 3M log n) time.

SO Q2 runs in 0 (m 4 + n 3m log n).

Proposition 4.3.4 If U -- jozj,..., akj Zs a regular subset of M , then

A (U, M) = max max X (4-8)
OEM xER1 X3 ;-ek<xA<ek

where
a, a2 ... ak

A - andek=[l I ... 1 11xk

3xk

Moreover, the region defined by the constraint -ek < xA -< ek Zs bounded (this shows

that A (U, M) Z's always less than oo) .

2. A (U, M) can be co mp uted in 0 (m k log k) tim e.

proof: By definition,

A (U, M) sup max 11t(o) 11 - max sup lit(Al
jtEA';jjtjju<i} )3EM 3EM jtEA';jjtiju<1}

36



Using the linear transformation-translation representation of t, we can write

sup 1140) 11
jt,2A*;jjtjju:�1j

as

sup I 11HO + r1j; (H, r) E R'x' x R'x' and JjHaj + r1l < 1, i = 1, k

sup [Hjr] [Hjr] E 'x 3and [Hjr] < 1,i = I,. .. ,k

X E RIX3sup X and x < 1, i = 1,.. k

sup X ;X E R 1x3 ; -ek < xA < ek

Noting that the region defined by the constraints is symmetric, we obtain

sup lit(O)II - sup (4.9)
ftEA*-iiou<ii fxER' X3 ;-ek<XA<ek}

I - - -

Now we show that the region E =jx E R1x3; -ek < xA < ekj is bounded. The

pattern U is regular, so it contains 3 noncollinear points. Without loss of generality
a, a2 a3

we can assume that aja2,a3 are noncollinear. Let B and F

fX (E R1x3; -C3 < xB < e3j. E C F, so it is sufficient to show that F is bounded.

If x E F, then -e3 < xB <_ e3 . Hence llxBll,,, < 1. As we argued in the proof of

Proposition 4.1.2, the matrix B is invertible because a,, a2, a3 are noncollinear. So

amin(B), the smallest singular value of B, is not zero. Therefore

I 11xB11. < I < 00
11XII. amin (B) Ormin (B)

It follows that F (and hence E) is bounded.

The region E is also closed, so it is compact. Therefore, the continuous function

h,3 (x) = x 13 achieves a maximum over E. So the supremurn in (4.9) can be replaced

by a maximum, which leads to Equation 4.8.

Now, to compute A (U, M), we have to solve m linear programs, each for an a in
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M, and each of 3 variables and 2k constraints. Being 3-dimensional linear Programs,

each is solvable in 0(k log k) (See Muller Preparata [1978]), so the overall time

needed to compute A (U, M) is 0 (mk log k) M

Note:

9 The same expression of A (U, M) holds in the 2-norm setting.

To sum up, we have just proved that

Theorem 4.3.5 (a tolerance bounded by 3�) Q2 computes in 0(m 4+ n 3m log n)

time a set of (� + 3�)-feasible transformation whose 3�-neighberhood covers all the

Infeasible transformations.

Notes:

• Observe that the proof of Theorem 4.3.2 is constructive. In fact, the U suggested

by the proof can be computed in 0 (m log m): We can compute the two farthest

points in M in 0(,mlogm) time and the point farthest from the line passing

through them in 0(m) time, which leads to an overall 0(mlogm) time need

by the algorithm induced from the proof to halt. The reason behind finding U*

by brute force is that the U suggested by that proof does not always minimize

A (U, M). The bound 3 is tight in the sense that there are rare M's (probably

only one up to affine transformations) where the best U achieves a value of

A (U, M) equal to 3. But, on the average, the value of A (U*, M) is less than

this. It was found experimentally that A (U*, M) is on the average in the order

of 1.8. So, finding U* by brute force leads - on the average - to a lower tolerance.

Note that the algorithm induced from the proof of Theorem 4.3.2 can relaxed to

give hints to the brute force approach in order to discard many computational

branches at earlier stages. Note also that the computation of U* can be a seen

as a model preprocessing stage.

• Figure 4-1 illustrates several values of A (U*, M) for different M's, M is shown

together with the U* that minimize A (U, M)
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e To see to what degree a bad choice of U can lead to a large value of A (U, M),

see Figure 4-2. In fact, for any real number N, there exists an M and a 3-point

regular subset U of M with A (U, M) > N.

We know that the lowest value of A(U, M) is 1 because U C M. It is interesting

to note that this value is achieved when U is the convex hull of M.

Theorem 4.3.6 A (convhull'(M), M) = 1.

prooh Let V = convhull(M). We show that JjtjjV < I if and only if jjtjjM :� 1, Vt E A.

This lead us to

A(V, M) sup INIM - sup litlim = I.
ftEA*;jjtjjv<1} jtEA*-1jjtjjm<1}

Because V C M, we have jjtjjv < 11tIlm, hence 11tIlm < I implies jjtjjv < 1. To show

the other direction, assume that Jjtjjv < 1. jjtjjv < 1 is equivalent to t(V) c B1(0).

Because the square B1(0) is convex, we also have conv(t(V)) c B1(0). Convex-

ity is invariant under affine transformations, so conv(t(V)) = t(conv(V))- On the

other hand, conv(V) = conv(M) because V is the convex hull of M. It follows that

t(conv(M)) c B1(0), hence t(M) E B1(0), or 11tIlm < 1. M

This makes sense, since - as we argued before - the value of A (U, M) is the radius

of the smallest enclosing square of the region spanned by t(M) as t spans the subset

of A* consisting of the transformations that maps U inside the unit neighborhood

centered at the origin. So A(U, M) - in some sense - measures to what degree the

convex span of U is a good approximation of the convex span of M. Figure 4-2 shows

different values of A (U, M) in the case when U consists of more than 3 points. It is

clear from the defintion of A (U, M) and from those figures that A (U, M) decreases

as the number of points in U increases (compare Figure 4-1.d and Figure 4-2.a).

To sum up, in the setting where occlusion is not allowed, we have shown how

a tolerance bounded by 3� can be achieved in 0(m 4 + n 2M log n) time. Such a

3By the convex hull of a planar set A, we mean the minimal subset of A whose convex span is
equal to that of A. This should not be confused with the convex span of A which we denote by
conv(A) and by which we mean the set of of all convex combinations of the points in A.
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tolerance might be sufficient for practical purposes. In fact the author is not aware of

a localization algorithm that achieves a similar or better output quality in a similar or

lower worst case running time. But the natural question to ask is: can we do better

than this? i.e., can we achieve lower values of tolerance? This is the topic of the next

section.
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Figure 4-1: This figure illustrates four models each with the corresponding 3-point
regular subset U* that minimizes A(U, M). In each case, the points of M are the set
of the x's, the points of U* are distinguished by the o's and the edges of their convex
span.
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Figure 4-2: This figure illustrates how a bad selection of U can lead to very large
value of A(U, M). In each case, the points of M are the set of the x's, the points of
U are distinguished by the o's and the edges of their convex span.
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Figure 4-3: This figure illustrates values of A(U, M) when U is a subset of M con-
taining more than 3 points. In each case, the points of M are the set of the x's, the
points of U are distinguished by the o's and the edges of their convex span.
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4.4 Any Given Tolerance

In this section we build on the results of the previous sections to reach any given

uncertainly. In Section 4.2, we started with an algorithm called Q, that had an

�A(U, M) tolerance. In the previous section, we decreased the tolerance of Q, by

minimizing A (U, M) and we proved that the minimum is less than 3. Now, once

A (U, M) is minimized, how can we reach lower values of tolerance? we are not allowed

to decrease � because it is a given input. Is this true? We can: decrease and replace

S by a new observation whose neighborhood with respect to the new is equal to

the original �-neighborhood of S. The point is that the Infeasible transformations

depends on the �-neighborhood of S, not on the points in S.

We will be working with two different observations S and S'. So to avoid any

confusion in the definitions of feasible transformations, we need a more accurate

notation.

Definition 4.4.1 Define C�(M, S) to be the set of �-fea8ible transformations with

respect to the model M and the observation S, i.e.,

C�(M, S) = f t C- A; t(M) C SI

Theorem 4.4.1 (Any given tolerance) Given any tolerance bound A, we can compute

in 0(n 4 + (4)6 n3rnlogn) time a set of (� + p)-feasible transformations, whose /-t-
It

neighborhood covers all the Infeasible transformations.

Proof.- Consider the following algorithm that takes as input: The model M, the

observation S, the error bound �, and a tolerance bound 1-t.

Q3 = " On input (M, S, �' /-t)

1. Compute U* the 3-point regular subset of M that minimizes A (U, M)

2. Compute a planar set S' satisfying B A(0 (S') - B6 (S), i.e.,,M)
whose A -neighborhood is equal to the �-neighberhood of S.

A(U*,M)

3. Run Q, on (M, S', U*, and return its output.A(U-,T)
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Consider the following realization of Q3. Let A* -- A(U*, M). We can compute S'

as follows: Pick each 0 G S and cover the square B�(O) by a collection Z,3 of squares

each with a radius �'* in such a way that the union of those squares is equal to B� (0) -

Then let S' to be the set of the centers of the squares in the union of the Z'3's as '3

spans S. Each B6P) can be covered by r 6 ]2 such squares. So a set S' containing

n rl�12 points and satisfying Bu,,(S') = B6(S) can be constructed in linear time.

We know from Theorem 4.3.2 that A* < 3, so the cardinality of S' is at most n r 36 2,
A

i-e., IS11 = 0((36)2n).
IL

According to Theorem 4.2.4, the time needed by Q1 to halt is

0 (I S, 13M log I S, 1) - 0 (((36) 2n)3M log (3�)2 n) - 0 ((36)'n 3M log n).
A /i IL

We argued in the previous sections that U* can be computed in 0(m 4) time. SO,

runs in 0(m 4 + (36)6 n 3M log n) time.
A

Let and let X be the output of Q, and hence that Of Q3. From The-A(U*,T)

orem 4.2.3, we know that X is a subset of C61+61A* (M, S') whose �W-neighborhood

covers C61 (M, S').

The set S' is constructed in such a way that B� (S) = B6, (S'). It follows from

Definition 4.4.1 that

C6, (M, S/) = C6 (M, S). (4.10)

On the other hand, because B6(S) = B6,(S'), we also have

B6/+6/A' (S') B6,+2�k7A* (S') B6,+Ij - U BA (x)
aES' aES'xEB�I(a)

U B,, (x) U B1, (x)
xEB�f (S,) xEB�(S)

U U Bv (x) = U B6+1, (a) - B6+1, (S) I
aES XEB� (a) aES

thus

C6/+6/ A* (M, S') - C6+1, (M, S), (4.11)

which follows also from Definition 4.4.1. Noting that 1-t and using (4.10)
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and (4.11) we obtain that X is a subset of C6+,,(M, S) whose /t-neighborhood covers

C6(M, S), which is the notational form of the theorem statement.

Notes:

• The exact time constant is ('(",1)6)6 which is - on the average - less than (16)6
P It

(see Figure 4-1).

• It is important to understand that Q3 is a simple algorithm presented for the

sake of a simple proof of the worst case time bound in the above theorem.

Rather than dealing with Q, as a black box as is the case with Q3, Q, can be

opened and adapted to the setting by many techniques that leads to a better

average running time. One such technique, is a multiresolution approach that

gradually decrease the tolerance. The idea is that by verifying the hypothe-

sized transformations at earlier stages, many computational branches can be

discarded if the transformations fail the feasibility test.

• Even in Q the technique we used to construct S' contains only what is needed

to prove the worst case bound. By adding another stage to the process of

construction, we might be able to remove many points from S' while keeping

B2�_(S') - B6(S). In a rather general setting, we will present in Chapter 6 a

sampling algorithm that takes as input a pattern V and a real number E > 0.

The output of the sampling algorithm is a locally optimal sampling of of V, i.e., a

subset V' of V satisfying: B, (V') -_ B, (V) and Va E V', B, (V'- f a 1) 7� B, (V).

As far as the construction of S' is concerned, after constructing S' as explained

in the proof, we can run the sampling algorithm on (S', ".) and assign its output

to S'. This technique is supposed to dramatically reduce the number of points

in S' when S is dense with respect to �.

The error bound � is a number used to create a mathematical model for the

noise. Unless the value assigned to � was a magic number, going for a very

small p compared to � is practically meaningless.
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In the 2-norm setting the same result holds asymptotically. The idea behind

Q3 is highly dependent on the usage of the oo-norm. The reason is that not

any neighborhood is a space filler like the square. Nevertheless, the asymptotic

time bound is generalizable to the 2-norm. In this setting, it is clear that we

can not cover a ball by a collection of smaller balls, each lying inside the larger

ball. What we can do is cover the ball by a collection of smaller balls, the

center of each lying inside the larger ball. This construction will enlarge the �-

neighborhood of S, but it is not hard to show that it can decrease the tolerance

to any desired value. The difference here is in the cardinality of the needed

smaller balls. Although the lowest cardinality is hard to find, asymptotically,

an 0((�)2) cardinality is achievable in linear time.
P

So far we have seen how to achieve any given tolerance when occlusion is not

allowed and when the space of allowable transformations consists of the planar affine

transformations. In the next section, we will see how to reach zero tolerance under a

density assumption on the observations.
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4.5 Zero Tolerance and Sparse Observations

If the observation is not dense with respect to �, a zero uncertainly can be achieved in

a time bound similar to the 3� tolerance bound. The new component is a verification

stage added On top Of Q2. Recall that Q2 computes in 0 (TO + n3m log n) time

a set of 4�-feasible transformations whose 3�-neighborhood covers all the Infeasible

transformations.

Theorem 4.5.1 If Va,0 E S with a zA 0, we have Ila -,311 > 8�. Then a set of

Infeasible transformations whose 2�-neighborhoods cover all the Infeasible transforma-

ti o ns can be co mp uted in 0 (0 + n3 m log mn) tim e.

proof.- Consider the following algorithm

Q = " On input (M' S, �)

1. initialize k to the empty set

2. run Q2 on (M, S, �) and let X be its output

3. for each t C- X

4. compute the closest mapping M -+ S to t, i.e., argming:M--+S lit - AM

5. test the emptiness of the set N - f t' E A; I I t'l I m < � 1

6 . if .1� 7� 0, pick any element i of 1� and add it to

7. return k"

Let C� be the set of Infeasible transformations. Using Lemma 4.2.2, we express C6 as

as follows

C6 - f t G A; 3g : M -+ S s-t- lit - gilm < �j (4.12)

We know from section 4.3 that the output X Of Q2 satisfies:

(a) relaxed feasibility condition: X C C46.

(b) covering condition: Vt' E C�,3t E X s-t- lit - t'llm < 3�.

And we want to show that

(i) feasibility condition: X C C�
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(ii)covering condition: Vt' E C�, 3t EE � s-t- lit - t'llm < 2�.

First, (i) follows from (4.12) because any i added to ± at Line 6 is �-close to the

corresponding �.

Rather than proving (ii), we prove something stronger. Define 9� to be the set of

Infeasible mappings, i.e.,

9� = Ig : M -4 S; 3t E A S-t. lit - glIM < �J-

We show that 9� is equal to the set 0 containing each mapping � that was computed

at line 4 and that lead to a nonempty 1� at line 5. This will establish (ii) because if

tl E C�, then I I t' - g I I m < � for some g E 9�, but this means that g G d and thus g is

�-close to a transformation t E k, which proves (ii) since

lit - t'llm < lit - glIM + jlg - t'llm < � + 2�.

is clearly a subset of 96 because it only contains mappings that are �-close to

allowable transformations, so we only need to show that 96 C 0.

Consider any g E 96. Using (b), let t E X s.t. lit - glIM < 4�. Let � be the closest

mapping to t. We will show that g

We have

llg - �Jlm < lit - glIM + lit - �Jlm < 211t - gllm < 8�,

where the second inequality follows form the fact that is the closest mapping to

t. Now if g :A �, then g(a) 0 �(a), for at least one a M. This means that g(a)

and � (a) are two distinct points of S with I I g (a) - � (a) I I m < I I g -m < 8�, which

contradicts the given hypothesis on S. Therefore, g

When Q4 passed over t in the loop at Line 3, the mapping � was computed at

Line 5. We know that � - g E !96, hence it follows form the definition of !96 that the

corresponding .1� is not empty. Therefore, an element i of 1� must have been added

to k at Line 6. This means that g E d.
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Since this is true for any g E 9�, it follows that G6 C d, which completes the

proof of (ii). Note that due to the test done at Line 6 we did not need the feasibility

condition on X in the proof.

We still have to find the running time Of Q4- We know from Section 4.3 that

Q2 runs in 0 (n 3m log n) time. We also know that the size of the output X Of Q2

is 0 (n 3). We argue below that each � can be computed in in 0(,rnlogn) given

an 0(nlogn) preprocessing time for S. We also argue that the emptiness of each

1� can be tested in 0(mlogm) time, and an element of J�T can be computed in

0(m log m) time if it is not empty. Thus the overall time needed by Q4 to halt is

0(n log n + n 3mlogn + n 3 (M log n + m log m)) = 0(n 3M log mn).

Consider any t G X. In order to construct the closest mapping � to t, we need

to compute the nearest neighbor in S of t(a), for each a E M. Due to the special

setting of the problem, this can be done by computing the intersection of B46(t(a))

with S. The distance assumption on S implies that B46(t(a)) n S can not contain

more than one point. And the 4�-feasibility of t (from (a)) implies that B46(t(a)) n S

is not empty. So B46(t(a)) n S contains one and only one point. It follows that the

nearest neighbor of t(a) is B46(t(a)) n S. We can preprocess S in 0(nlogn) time

so that the intersection of a query rectangular region R with S can be computed in

0 (I R n S I + log n) (See [21 page 578). This leads to an 0 (m log n) overall time needed

to compute �.

Now consider any �, by construction

N - ft' E A; Ilt' - �Jjm < �j

We argue below that the emptiness of 1� is reducible to solving two 3D-linear programs

each of 2m constraints, and thus computable in 0 (m log m) time. Let a,, . . . , am be

the points of M, and let Oi = � (ai) for i = 1, . . . , m. If we denote by H2,< 2 and r2 < 1

- respectively - the linear transformations matrix and the translation vector of t', we
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can write the constraint Ilt' - �Jjm < as

Cei
[H Id < M.

XI
If we let [Hjrj where XI, X2 E R'x', we can reduce the constraint to

-X2-

ai
1XI -Axi M, (4.13)

ai
IX2 M. (4.14)

So �T =,4 0 if and only if each of the 2m constraints 3D-linear programs given by (4.13)

and (4.14) are feasible. The feasibility of each of the linear programs can be tested in

0 (,m log m) time using a half space intersection algorithm due to Muller & Preparata

[1978]. If they are both feasible, this algorithm leads to the corresponding 3D-convex

polytopes (they are bounded because M is regular). So, to compute an element of

N, we only need to pick an element of each of the resulting convex polytopes.

Note:

9 The theorem still holds if the minimum distance between any two distinct points

in S is at least 2 (I + A (U-, M))
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4.6 Handling Occlusion

In this section, see show how to handle occlusion. In Q1, we were hypothesizing

mappings from U to S and testing the (�A(U, M) + �)-feasibility of the affine trans-

formations that agreed with those mappings. The output of Q, consisted of those

affine transformations that passed the (� + �A(U, M))-feasibility test. Q, can be

simply modified to handle weak occlusion, by which we mean the case when the

points in U are not allowed to be missing. This can be done by simply testing the

(�A (U, M) + �, p)-feasibility of the hypothesized transformation rather than their

(�A (U, M) + �)-feasibility.

Algorithm 4.6.1 Consider the following algorithm that takes as input: the model

M� the observation S, the noise bound �, a regular subset U of M consisting of 3

noncollinear points, and a bound p on the number of points missing form the instances

of M in S.

'Pi = ' On input (M, S, U, �, P)

1. compute A (U, M)

2. initialize X to the empty set

3. repeat the following for each mapping f from U to S

4. compute the unique transformation t E A satisfying f - tjU

5. check if t is (� + �A (U, M), p) -feasible

6. if so add t to X

7. return X "

We remind the reader that

Defintion 2.3.1 If t is an allowable transformation

1. t is said to be Infeasible on a pattern V if t(V) C B� (S).

2. t is said to be (�, p) -feasible if it Z's Infeasible on a regularsubset of M containing

at least m - p, points.
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To put it in an other way, t is (�,p)-feasible if it maps at least m - p point of the

model to within �-distance of points in S (with the additional requirement that those

points form a regular pattern).

Using exactly the same argument of Lemma 4.2.2, we get

Lemma 4.6.2 A transformation t is Infeasible on a pattern V iff there exits a map-

ping g : V -4 S such that 119 - OV < �-

The proof that 'PI partially handles occlusion is essentially very similar to the

correctness proof of QI.

Theorem 4.6.3 (weak occlusion and �A(U, M) tolerance) 'PI computes in O(n 3M log n)

time a set X of allowable transformations satisfying:

(i) relaxed feasibility condition: each transformation in X is (� + �A (U, M), p) -

feasible.

(ii) weak covering condition: If V is a regularsubset of M containing U and at

least m - p points, then for each transformation t', that is Infeasible on V, there

exists a transformation t in X such that I I t - t, I I V < �A A M) -

proof.- First (i) is true because only those transformations that passed the feasibility

test in Line 5 were added to the output. To prove (ii) consider any regular subset V of

M containing U and at least m - p points. Let t be an Infeasible transformation on V.

Using Lemma 4.6.2, let g : V -4 S such that I I g - t v < �. Finally, let t be the unique

transformation in A satisfying t I U = g I U. We show first that t - t'l I v < � A (U, M),

then we conclude that t E X. We have

11t - t'11V < A(U, V)jjt - t'llu (4.15)

< A(U, M) 11t - t'llu (4.16)

= AW, M)119 - t'llu (4.17)

• A(U, M)jjg - t'11v (4.18)

• �A (U, M), (4.19)
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where (4.15) follows from Lemma 4.1.1, (4.16) follows from the fact that V c M,

(4.17) from the fact that t I U - g I U, and (4-18) from the fact U C V. Now,

lit - gllv < Jig - t'llv + lit - t'llv < � + �A(U, M)

To see why t E X, let f - glU. Note that f is mapping from U to S. Moreover,

t is the unique transformation in A satisfying t I U = f - So t was computed at Line

4 when the mapping f was considered in the loop of Line 3. Now t must have

passed the test at Line 5 because it is (� + �A (U, M), p)-feasible due to the fact

lit - gllv < � + �A(U, M) and IVI > m - p (This follows from Lemma 4.6.2). So it

must have been added to X at Line 6.

We still have to find the running time of 'Pl. First, we need to know how to

do the feasibility test in Line 5. Let E = � + � A (U, M). We want a routine that

checks whether an element t of A is (Ep)-feasible. The story is similar to that of

the E-feasibility test: Assuming an 0(nlogn) preprocessing time for S, this can be

done in 0(mlogn) time by passing over each element a of M and computing the

number of points in the intersection of the square B,(a) with S. t is declared to be

(El A-feasible iff at least m - p of the a's lead to a nonempty intersection.

We have 0(nl) mappings to work with, and each mapping needs an 0(mlogn)

processing time. After adding the 0 (n log n) preprocessing time of S, we end up with

an 0(nlogn + n'mlogn) - 0(n'mlogn) total time needed byPi to halt. M

The tolerance of P, is �A (U, M). It can be decreased to a value bounded by 3�

by supplying Q, with the U* that minimize A (U, M). But this technique still suffers

from the fact that the points of U* are not allowed to be missing. Of course we can

not run P, on each 3-point regular subset U of M and take the union of the outputs.

This new technique does not require any special points in M to be nonmissing, but it

suffers from an unbounded tolerance. The tolerance of this technique can be as large

as possible because for each real number N, there exits a model M and a three points

regular subset U of M with A (U, M) > N (see Figure 4-2). What is the solution ?

Algorithm 4.6.4 Consider the following algorithm that takes as input: the model
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M, the observation S, the error bound �, and a bound p on the number of points

missing form the instances of M in S.

P2 = " On input (M, S, 6, P)

1. Initialize X to the empty set

2. for each regular subset U of M consisting of 3 noncollinear points

3. Compute Vu = f a E M; A(U, f al) < 31

4. If JVul > Tn - p

5. run 'Pi on (Vu, S, U, �, p) and add its output to X

6. return X. "

Remark: the number m used in 'PI is not the number of points in the first input of

-Pi (i.e. Vu), it is the same number used in P2, i.e, the number of points in M.

P2 considers each 3-point regular U of M, it computes a new model Vu equal the

maximal subset of M with A (U, VU) < 3, then if VU is large enough, P2 runs 'PI on

the input (Vu, S, U, �, p) - The Output Of P2 is the union of the sets returned by 'Pi

in each run. Why is P2 a solution? The main reason is Theorem 4.3.2, which can be

written as

Theorem 4.3.2 Any regular pattern V contains a 3-point regular subset U with

A (U, V) < 3.

Informally, the idea is the following. Q2 will work fine under the assumption that

points in U are guaranteed to be nonmissing. What Q3 does is that it guarantees

that this is always the case. The point is is that if some points in an instance of M in

S are missing then the subset V of M corresponding to this occluded instance should

contain some U0 with A (U0, V) < 3. Q3 is considering this Uo and it is working with

a new model VU,, that provably contains V because Vu,, is the maximal subset V of

M with A (U, V) < 3. We will present below a formal version of this argument.

First, note that given any 3-point regular subset U , the maximal subset V of M

with A (U, V) < 3 exists because
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Lemma 4.6.5 If U is a regular pattern and V is a pattern then

A (U, V) -_ max A (U, I al)
ac-V

proof:

A (U, V) = sup 11t11V sup max 11t(a) 11 - max sup 11t111a}

jtEA*;ijtiju<i} jtEA*;iiou<1} aCV aEV ftEA*;viiu<i}

= maxA(Ujcej)-
aEV

El

Another way of saying this is A (U, VI U V2) = maxf A (U, VI), A (U, V2)1. Now, we

are dealing with many models and soon we will be dealing with more than one obser-

vation. In order to avoid any confusion in the notions of Infeasible transformations,

we need a more accurate notation.

Definition 4.6. 1 Define CP (M, S) to be the set of (�, p) -feasible transformations with

respect to the model M and the observation S, i.e.,

CP(M, S) U C� (V, S),
VERegP(M)

where RegP(M) is set of regular subsets of M containing at least m - p, points, and

C� (V, S) - It E A t (V) C B� (S) 1.

The following theorem shows that P2 handles occlusion and achieves a 3� tolerance

in 0(n 3M 4log n) time.

Theorem 4.6.6 (Occlusion and a tolerance bounded by 3�) P2 computes in 0(n 3 M4

logn) time a set of allowable transformations satisfying:

(i) relaxed feasibility condition: X C CP�+3� (M, S)

00 covering condition: if V G RegP (M), then Vt' E q (V, S), 3t C X, S. t. t - t, V <

3�-
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proof.- If U is a 3-point regular subset of M with JVUJ > m-p, let XU be the output of

'PI on the input (Vu, S, U, �, p). If we let U - JU; U is a 3-point regular subset of MI,

we can write the output Of P2 as

X U XU. (4.20)

UC-U-IVUI>M-P

From Theorem 4.6.3 we know that for VU C U,

(a) relaxed feasibility condition: XU C C'�+�A(U' VU) MU I S)

(b) weak covering condition: if V Cz RegP(Vu) and U C Vu, then Vt' E Q(V, S),:�t G

XU, S.t. lit - t1liv < �A(U' VU).

Using (4.20) and (a) we obtain

X C U CP MU, S) = U U C�+6A(U' VU) (V, S)�+�A(U' VU)
UEU;jVUj>M-P UEU VERegP(VU)

From Lemma 4.6.5 we know that VU E U,

A (U, Vu) = max A (U, f al) < 3.
aEVu

It follows that � + �A(u, vu) < 4�, hence

XC U U C4� (V, S) C U C4� (V, S) = Cp� (M, S).
UEU VERegP(VU) VERegP(M)

This proves W -

To prove (ii) , consider any regular subset V of M containing at least m - p points

and let t' C C�(V, S). By defintion V is regular. Therefore, according to Theorem

4.3-2, V contains a 3-point regular subset U0 with A (U0, V) < 3. So Va c V,

A (Uo, Jaj) < A(Uo, V) < 3.

Hence, V C Vuo. To sum up, U0 is an element of U and V is a regular subset of Vuo
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containing U0 and at least m - A moreover t' E Q(V, S), it follows from (b) that

there exists t E Xu, (hence t (E X) s-t-

11t - t'11v < � + �A(Uo, Vuj < � + � max A(Uo, fal) < � + 3� = 4�.
aEVUO

Summing it up again, for any regular subset V of M containing at least M - p points,

and for each t' E Q (V, S), we can find a t E X, such that t - t'l I v < 3�. This proves

(ii).

We still have to find the running time Of 'P2- We have 0 (M3 ) 3-point regular

subset U to work with. The time needed by 'PI on each U is according to Theorem

31V4.6.3 is 0 (n U I log n) = 0 (n 3M log n). We show below how Vu can be computed

in O(Tn) time, this leads to an 0 (M3 (Tn + n 3Tn log n)) - 0 (n 3M4 logn) time needed

by P2 to halt. We can compute Vu by computing A (U, f al) for each a E M and

returning the a's satisfying A (U, f aj) < 3. In Proposition 4.3-4, the regularity of the

model and the fact that U is a subset of the model was not used in the proof, the

result still holds even if the model consists of a single point, i.e., A (U, f al) can be

computed in 0(jfajj.jUj) - 0(l) time. Note that in this case

a 01 02 03
A (U, far) - max X where Au

xEiRl X 3;-e3<xAu<e3

and e3 I]. This leads to an 0 (m) overall time needed to compute Vu.

It is important to note that if p is small compared to m, the number of the

submodels that will passe the cardinality test at Line 4 (i.e. JVul > m - p) is much

less than m 3. For practical purposes, it might be wiser to preprocess M by computing

first all the VU s and storing those that passes the cardinality test, this leads to a

time constant much less than 1.

To achieve lower values of tolerance we proceed in exactly the same mentality of

Section 4.4.

Theorem 4.6.7 (Occlusion and any given tolerance) Given any tolerance bound P >

0, we can Compute in 0((3�)6 n3M4 logn) time a set of allowable transformations
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satisfying:

(i) relaxed feasibility condition: X C CP+j' (M, S)

0i) covering condition: if V E RegP (M), then Vt' Q (V, S); :�t E X s. t. t - t'l I v <

P -

proof.- Consider the following algorithm

P3 = " On input (M, S, �' /-t, P)

1. Compute a planar set S' satisfying B t, (S') = B� (S)
3

3. Run P2 on (M, S', �-, p) and return its output.3

We can compute S' as in the nonocclusion case: We can pick each 3 E S, and

cover the square B� (0) by a collection Z,3 of squares the radius of each is " in such3

a way that the union of these squares is equal to B� (0). Then we can set S' to

be the set of centers of the squares in the union of the Z,3's. Each B� (,3) can be

covered by r � ]2 such squares. So a set S' containing n r3�]2 point and satisfying
p13 IL

B,- (S') = B�(S) can be constructed in linear time. The cardinality of S' is at most
3

n(3 + 1) 2. i.e., IS11 = 0((3�)2n)- According to Theorem 4.6-7, the time needed by

P2 (hence 'P3) to halt is O(ISI13MI log IS11) = 0(((36)2n)3M4 log (36)2 n). SO, P3 runs
It It

in 0((36)6n3M4 log n) time.
IL

let X be the output Of P3. From Theorem 4.2.3, we know that

(a) relaxed feasibility condition: X C CP, (M, S')
43

(b) covering condition: if V C- RegP (M), then Vt' c- C /, (V, S'), 3t E X, s. t. t - t' V <
3

3 3'

It is sufficient to show that C6 (V, S) = CA (V, S'), VV E RegP (M) and Cp+,, (M, S)
3 6

CP, (M, S'). The first follows from the fact that BL (S') - B6(S) and the second from
43 3

the fact that

B4 /' W) U R. +,, (a) U U Bj, (x) U B,, (x)
3 3

aES' CeES' xEBI, (a) xEBf W)
3

U B1, (x) U U B1, (x) == U B�+,, (oz) = B6+1, (S)
XEB�(S) aES xEB� (a) aES
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Chapter 5

Extending the Results to Rigid

1\4otions and Scaling in Arbitrary

Dimensions

In this section, we generalize all the previous results to the case when A consists of

d-dimensional rigid motions and scaling. Thus, F = R d and A is the set of all the

mappings from F to F that can be written as

d,1t(x)-sGx+rVxGR

for some real scalar s, d x d real unitary matrix G, and a d x I translation vector

r. We denote this correspondence by t - (s, G, r). Here again the vector space A*

generated by A is equal to A. As for the regularity condition it is equivalent to the

fact the the pattern contains more than one point (the proof is trivial).

As in the affine case, if U is a regular pattern and V is a pattern, define A (U, V)

by

A (U, V) sup INIV.
jtEA*;jjtjju<i}

In order to generalize the previous results, essentially, we only need a bound on

A (U, M) similar to that in Theorem 4.3.2. We also need to know how to compute
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A (U, M). The other results can be essentially adapted by replacing 3 by 2 in all

the places where the cardinality of U was involved. The reason is that we only need

two distinct points to specify an element of A. There are also other minor technical

points that needs elaboration. We will elaborate on those points after establishing the

following bound on A (U, M), which is basically the main new result of this section.

Theorem 5.0.8 Any regular pattern M contains a regular subset U consisting of 2

points and satisfying A (U, M) < I + V3(d - I)-

proof: The norm 11-11 on the feature space was by default the 00-norm. In this proof

we will be dealing with both the oo-norm and the 2-norm. In order to avoid confusion,

we will write instead of 11.11. Let U = la, �J, where a and 0 are the farthest

points in M with respect to the 2-norm, i.e.,

Ila - 0112 > JIPI - P2112, VP1,P2 E M- (5.1)

By definition,

,A (U, M) sup lItlIM sup max Ilt(O) II.-
ftEA*;iitjju<* ItEA*;i itooii. <iiwom. <-l} OEM

Consider any t E A* satisfying

Ilt(a)ll. < I and llt(�)Il. < 1. (5.2)

We need to show that t (0) I + V3 (d - 1), VO Cz M.

Consider any 0 C- M. We know form (5.1) that 110 - a112 <- Ila - 0112. The

transformation t consists only of translation, rotation, and scaling, so we also have

Ilt(O) - t(a)112 -< Ilt(a) - t(0)112)- (5-3)

More precisely, say that t - (s, G, r), using the fact that G is orthogonal, we obtain

Ilt(O) - t(a)112 = IlsGO + r - (sGa - r)112 = llsG(O - a) 112 = sllo - a112
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< slia-0112=llsG(a-0)112=11,sGa+r-(sG,3-r)112

Ilt(a) - t(O) 112 -

Similarly

VW - t(a)112 < Ilt(a) - t(0)112 (5.4)

because from (5.1) we know that 110 - 0112 < Ila - 0112. By squaring both sides of

each of (5.3) and (5.4) and adding them we get

211t(a) t (,3)112 > I I t (0) _ t (a) 11 2 + I I t (0) _ t (,3)112
2 - 2 2

t(a) + t(O) t(a) - t(O) 2

IIWO) - 2 2 112

t(a) + t(O) t(a) - t(,3)112
+11WO) - 2 ) + 2 2

211t(o) -t(a) + t(O) 112 + 211 t(a) - 40) 2
2 2 2 112,

After rearranging the terms we obtain

t(a) + 40) 112 < 311 t(a) - t(,3)112 (5-5)
110) - 2 2 - 2 2

We will bound I I t (a) I 1,, by I + V3 (d - 1) subject to the constraints in (5.5) and

(5.2). Say that t(a) = (a,,..., ad) , t(O) - (bi,..., bd), and t(o) -(XI, - -Xd). The

constraints in (5.5) and (5.2) become

d a- + b. d ai - bDxi - % 2 z )2 < 3 J:( 2 i)2 (5.6)
i=1 i=1

lail <1, lbil < 1, Vi G f dl. (5-7)

For any k E f 1, . . . , dl, after rearranging the terms of (5-6), we obtain

ak + b (ak - b d a. - b- ai + b- k)2 - 3 k)2 < 1: ( I 1 2 _ i)2
(Xk 2 2 2 (xi 2

i=Ii0k

d ai - bi
< 3( 2 )2
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d a- - b-
< (d - 1)3 max( ' ')'

i=1 2

We know from (5.7) that maxq ja.:�-L)2 < 1. It follows thatZ= 2 -

(Xk ak + bk )2 _ (ak - bk)2 < 3(d - 1)
2 2

Le,

ak - bk 2 ak + bk
Xk < 3(d - 1) + 3 2 + 2

Using the constraints in (5.7), we get

Xk <- max h (a, b)
(ab) GR2 ;jaj<1;jbj<1

where h (a, b) 3(d - 1) + 3 (a_b)2 + a+b The function h is convex because
2 2

V, A, A' > 0 with A + A'= 1, we have

b) + A'(al - bl ) 2 a + b a' + bf
h(Aa + Aaf, Ab + AW) + A + A/

2 2 2
2 2 a + b af + bl

< A + Af + A� � + Al
2 2

Ah(a, b) + A'h(a', Y),

where the inequality follows from the fact that the function (s �3(d - 1) + 3 2

9 2

is convex because

d2g(s) 3 3 82
3(d - 1) + -82 > O'VS G R.

d2S 4 4 3(d - 1) + 382 -
4

Therefore, the maximum of h over the convex region E a, b) E R2; I a< I b < I

is attained at one of the extreme points of E. E has four extreme points (I, I), (-I, I),

(1, - 1) and (- 1, - 1). We have h (1, 1) -- h (- 1, - 1) - VF3 �(d- T) + I and h (1, - 1)
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h(-1, 1) -- v/-3-d. So,

max h(a, b) = rnaxjV3(d - 1) + 1, V3-dj.
(ab)EE

Now (V3 (d - 1) + I)'- (v'-3--d)' -- 2 0 �(d- �1) - 2 > 0, Vd > 2. Hence rnax(ab)EE h (a, b)

N/i�(d- 7) + 1. Therefore, I Xk < I + V13 (d - 1) and this is true for any k C- f 1, . . . dj.

It follows that I + V�(d - 1), which completes the proof. F-1

Notes:

• This bound is tight in the sense that there are rare M's where the best 2-point

U achieves a value of A (U, M) = I + V3 (d - 1). One such M consists of the

three corners of an equilateral triangle (This is probably the only one up to

scaling and rigid motions).

• If the 2-norm is the one under consideration it can be shown that the bound is

2 if d > 2. This is in contrast to the affine case, where the bound 3 is also tight

in the 2-norm setting.

• Here again note that the U suggested by the proof can be competed in 0 (m log M)

time, but it does not always lead to the U with the lowest value of A (U, M).

As for the computation of A (U, M), we show below how this can be done in the

two dimensional case only and regardless of the number of points in U.

Proposition 5.0.9 If d - 2 and U a,, ak I is a regular subset of M then

-13- -O-

A (U, M) - max max maxf x I , xG I (5.9)
OEM XER1 X4 ;-ek<x[AjGA]<e,

0 0

where
0 1 0 0

a, a2 ... ak
-1 0 0 0

A G
0 0 0 1

0 0 ... 0 4xk

0 0 1 OJ 4x4
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and ek - [ 1 1... 1 1 1 . k - Moreover, the region defined by the constraint - ek <_

x[AIGA] < ek is bounded.

2. A (U, M) can be computed in 0 (mH4 (4k)) time, where H4 (4k) is the time needed

to solve a linear program of 4 variables and 4k constraints.

proof: By definition,

A (U, M) sup max Ilt(�) 11 - max sup II t(3)
JtEA;iiou<I} OEM '3EM tcA;iiou<1

Ilt(O)II as the supremum of XI X2+ X3We can write suPitEA;iioU<1} _X2 XI X4

00
subject to the constraint

[XI X2 X3 X41 (E R4; XI X2 ai + X3 < k
-X2 XI X4 00

Or in other words,

sup maxf I [xi X21,3 + X3 1, I [-X2 X1113 + X4 I 1,

[XI X2 X3 X41 (E R4; for i -k

I [XI X21 ai + X31 < 1

1 1_X2 X11ai + X41 <_ I

which leads to the superimum version of Equation (5.9) after some algebraic manipu-

lation. Note that the absolute value in the objective function can be removed because

the region defined by the constraints is symmetric.

Now we show that the region E =f x C R'X4; -ek < x[AIGA] < CkJ is bounded.

The pattern U is regular, so it contains more than one point, Le, k > 2. So let
a, a2

B= 1 1 and F = fx C: Rlx4; -e3 < x[BIGB] < e3l. E C F, so it is sufficient

L 0 0 J
to show that F is bounded.
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If x E F, then - e3 < x [B I GB] < e3 . Hence, I I x [B I GB] I 1,,,, < 1. It is easy to check
that det[BIGB] = Ila, - a2 11 2, So [BIGB] is invertible, and hence a

2 min([BIGB]), the

smallest singular value of [BIGB], is not zero. It follows that

114. < llx[BIGB]II. < I < 00.
01min ([B I GB]) 01min QB I GB])

Therefore F (and hence E) is bounded.

The region E is also closed, so it is compact. Therefore, the continuous function

h,3 (x) -- maxjx I , xG I

-0- 0

achieves a maximum over E. So the superimum can be replaced by a maximum,

which leads to Equation 5.9.

Now, to compute A (U, M), we have to solve 2m linear programs, two for each a

in M, and each of 4 variables and 4k constraints. Thus, the overall time needed to

compute A (U, M) is 0 (mH4 (4k)) - n

A similar result can be derived for an arbitrary d, but the equations are messy.

We leave it to the interested reader.

Note:

The above expression of A(U, M) does not hold for the 2-norm. In the 2-norm

setting and when U consists of two points only, A (U, M) has a simple closed

form expression that does not require solving a linear program.

Now, we start the adaptation process. Q, can be simply modified by replacing

the 3-point regular U with a 2-point U, and dealing with rigid motions and scaling

instead of affine transformations. The correctness proof of the algorithm still holds.

The only difference in the realization of Q, is in the feasibility test. In this setting,

rather than taking O(Tnlogn) time, the test takes O(mlog d-1 n) time because the

cardinality of the intersection of a query d-dimensional rectangular region with an n-

points d-dimensional set needs 0 (log d-1 n) computation time. As for the hypothesized
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transformations, each can be computed in constant time by solving a linear system of

0 (1) equations. So the overall running time of Q, is 0 (n'm log d-1 n) and it computes

a set of (�+�A(U, M))-feasible transformations whose �A(U, M)-neighberhood covers

all the Infeasible transformations. In Q2 we have to replace 3 by 2 whenever the

number of points in U or U* is involved. Using the bound that we have just established

in Theorem 5.0.8, we obtain

Theorem 5.0.10 (a tolerance bounded by (1 + V3(d - 1))�) JTn 0 (M3 + n2M log n)

time we can compute a set of (� + (1 + V3(d - Infeasible transformations whose

(I + Vi�(d- �1))�-neighborhood covers all the Infeasible transformations .

In Q3 the only difference is that when S' is computed the number of the A*

hypercubes needed to cover an �-hypercube is now ]2d - This leads to the fol-p/A*

lowing

Theorem 5.0.11 (Any given tolerance) Given any tolerance bound p, we can com-

pute in O(n 3 + ((I+ IL )2dn2m log n) time set of (� + p) -feasible transformations

whose 1-i-neighborhood covers all the Infeasible transformations.

In the affine case with sparse observations, we were lucky enough to be able to solve

a 6-dimensional linear program of m constraints in O(m log m) time by separating

it into two 3-dimensional linear programs. Here, the story is different. We have an

2dinseparable linear program in R

Theorem 5.0.12 (zero tolerance and sparse observations) If Va, 0 C: S with a :A

we have Ila - 311 > 2(2 + F3(d - 1))�. Then a set of �-feasible transformations

whose 2�-neighborhood covers all the Infeasible transformations can be computed in

O(M3 + n 2mHM(M) + n 2M logd- ' n) time, where H2d(M) is the time needed to solve

a 2d-dimensional linear program of m constraints.

Note that even when d =: 2, H2d(M) is expensive. This illustrates the price of zero

tolerance, even when occlusion is not allowed and when the observation is sparse

enough with respect to 6.

In the occlusion case, we first remind the reader of the following
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Definition 5.0.2 De ne C'(M, S) to be the set of (�, p) -feasible transformations with

respect to the model M and the observation S, i.e.,

CP(M, S) U C� (V, S))
VERegP(M)

where RegP(M) is set of regular subsets of M containing at least m - p, points, and

C�(V, S) - f t E A t(V) C (S)j-

By applying all the above changes to the occlusion case we obtain

Theorem 5.0.13 (Occlusion and a tolerance bounded by (I + V3(d - 1))� ) In

0 (n' M3 log n) time we can compute a set of allowable transformations satisfying:

(i) relaxed feasibility condition: X C CP (M, S)
Wi+N/3(d-l))�

(ii) covering condition: if V E RegP(M), then Vt' E Q(V, S),:�t C X, s.t. Ilt-t'11v <

(I + VT(d - 1))�.

Theorem 5.0.14 (Occlusion and any given tolerance) Given any tolerance bound

p > 0, we can compute in 0((('+ A 2dn2M 3logn) time aset of allowable trans-

formations satisfying:

(i) relaxed feasibility condition: X C CP�+IL (MI S)

(ii) covering condition: if V E RegP (M), then Vt' E Q (V, S); 3t E X s. t. t - t'l I V <

ft -

Notes:

In all the above, 2 + 13(d - 1) is a bound on A (U*, M) or A (U, Vu) which is

on the average less than this (See Figure 5-1 and note that when d is equal to

2, 1 + V3(d - 1) is equal to 2.7321). This means a lower tolerance in Theorem

5.0.10 & 5.0-13, a lower time constant in Theorem 5.0.11 & 5.0.14, and a lower

distance lower bound on the points of S in Theorem 5.0.12.
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• See Figure 5-2 to see the result of a bad selection of U.

• See Figure 5-3 for values of A(U, M) when U contains more than 2 points.

• A sampling stage and and a multiresolution technique can be embedded in the

prespecifiable tolerance algorithm for a better average time constant.

• If we are given some constraints on the A (for example on the scaling parameter)

the constraints can be used in the hypothesis generation process. This leads to

a large speed up factor.

• In the occlusion setting, when p is small compared to rn and during the sub-

model generation process, it is wiser to preprocess the model by storing those

submodels that passed the cardinality test because most of them will fail the

test. This leads to a better time.

• Except for the zero tolerance result, all the results asymptotically hold for the

2-norms (In the zero tolerance setting, the resulting program become nonlinear).
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Figure 5-1: This figure illustrates four models each with the corresponding 2-point
regular subset U* that minimizes A (U, M) - In each case, the points of M are the set
of the x's, the points of U* are distinguished by the o's and the line connecting them.
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Figure 5-2: This figure illustrates how a bad selection of U can lead to very large
value of A(U, M). In each case, the points of M are the set of the x's, the points of
U are distinguished by the o's and the line connecting them.
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Figure 5-3: This figure illustrates values of A (U, M) when U is a subset of M con-
taining more than 2 points. In each case, the points of M are the set of the x's, the
points of U are distinguished by the o's and the edges of their convex span.
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Chapter 6

Pattern Sampling

In this chapter, we present a technique that can be used to remove points from

the observation while keeping its information content in terms of recognition and

localization unaffected. The idea is simple, the set of -- feasible transformation is

given by

C, (T, S) - It G A; t(M) C B, (S)

and the set of (Ep)-feasible transformation is given by

CP (T, S) U It c A; t(V) C B,(S)I.
VERegp(M)

So they both depend on the -- neighberhood of S rather than the points of S. This

means that if we can replace S by a new observation S' whose �-neighborhood is

equal to the �-neighborhood of S, he,

B�(S) = B�(S'), (6-1)

we get

Q (T, S) = Q (T, S') (6.2)

QP (T, S) = QP (T, S') (6.3)

C6+tL(T, S) - Q+j, (T, S) (6.4)
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op P1-11.6+1,(T, S) = Q+Iff, S'), (6-5)

where (6.4) and (6.5) follow from the fact that

B6+4(S') U B�+4(a) U U Bm (x) = U B4 (x)
aES' aES'xc-Bc(-) x E B� (SI)

U Bm (x) U U B1, (x) = U B�+I,(ce) - B6+1,(S)-
x E B� (S) aES xEB� (a) aES

Therefore, we can run all the previously described algorithms on S' instead of than S,

while knowing that the output will be satisfying the same conditions. The motivation

is that when S is dense with respect to � a large number of points can be removed

from S while keeping its �-neighborhood unaffected, this leads to a lower running

time. It is important to understand that there are cases where we can't remove any

point from S (for example when the distance between any two points in S is at least

2�). So in contrast to the other algorithms in this work, the algorithm of this section

does not make a worst case asymptotic difference. But, it reduces the observation to

an irreducible form.

Rather than asking for computing the minimal subset S' of S satisfying (6.1), we

will be looking for a locally optimal S', i.e., a subset S' of S that we can't remove any

point from without violating (6.1). The motivation behind this tactic is to reduce

computational complexity.

Proposition 6.0.15 Given an n-points subset S of R', asubset S' of S satisfying

(i) B� (S') = B� (S)

(ii) Va E S, B� (S' - f al) 7� B� (S)

can be computed in 0(n(log d-1 n+h d-1 log h)) time, where h is the maximum number

of points in S lying in a 2�-neighborhood.

proof: Consider the following greedy-like algorithm that takes as input a pattern S

and � > 0.

SAMPLE On input (SI

76



1. S' �- S

2. for each point a in S

3. if B�(a) C B�(S' - fal)

4. S' �- S'- far

5. return S'. "

Let a,, a2, an be the elements of S in the order considered by the loop in Line

2. Let Si be the value of S' in Line 3 for a = ai, and let S,,+, - S'. Note that

S'= Sn+1 C Sn C ... C Si C ... C SI = S-

We use induction to prove that B� (Si) = B� (S), for i I ... n + 1. Initially, B� (SI)

B�(S). Now assume that B6(Si) = B6(S). if Bjozi) B6(Si - fail), then Si+, = Si

and consequently B6 (Si+,) = B6 (Si) = B6 (S). Else if B6 (ai) C B6 (Si - f ai 1), then

Si+, -- Si - fail, and consequently

B6 (Si+,) - B� (Si - f ai 1) = B6 (Si - f ai 1) U B� (ai) - B6 (Si) = B6 (S)

where the third equality follows from the fact that B6 (ai) C B6 (Si - f ail). This

completes the induction. For i - n + 1, we obtain B6 (S') = B6 (S), which proves (i).

To prove (ii), assume that B6(S'- fail) = B�(S') for some ai G S'. We have

B6 (ai) C B� (SI) = B6 (S' - ai) C B6 (Si - I ai 1).

So ai must have been removed from Si at Line 4, which contradicts the fact that it

is still in S'.

In order to realize SAMPLE, we need to know how to do the test at Line 3.

We will see that given an O(n log d-I n) preprocessing time for S, this can be done

in 0 (log d-I n + hd-I log h) time. This leads to an overall 0 (n (log d-1 n + hd- I log h))

time needed by SAMPLE to halt. Checking whether B6(a) C B6(S'- far) can be

done as follows:
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1. compute H B2� (a) n s

2. compute G H n SI - f al

3. compute the collection of hyperrectangular regions Q = fB� (a) n B,(0);,3 E GI

4. check if the volume of the union of the elements of Q is equal to (2�)d

Given an 0(nlog d-i n) preprocessing time of S, the intersection of the query square

B2�(a) with S can be computed in O(Iog d-1 n + JHJ) time. Assuming that we are

marking each point of S removed from SI, we compute G in O(JHJ) time by passing

over each point in H and testing whether it is marked in 0(1) time. The volume of

the union of a collection of N hyperrectangular regions in d > 2 can be computed in

d-1 O(lOgd- jQjd-1 log JQJ) O(jogd-O(N log N) time. This leads to an 'n+IHI+ ln+

hd-1 logh) query time needed to test whether B�(a) C B�(S'- far). r-1
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Chapter 7

Open Questions

We conclude by a series of open questions in random order:

• Consider the following in the case of planar affine transformations. Let Mk be

a planar set consisting of k points uniformly distributed on a circle, Uk be a

(k - I)-cardinality subset of Mk, and Dk = AM, Uk) (note that Dk is a well

defined number). Show that: Vk > 4, any finite set M contains a k-points

regular subset U with A (U, M) < Dk (note that we established this result for

k = 3). Informally, the idea is that as the number of points in M increases

and as M becomes less symmetric, approximating the convex span of M by the

convex span of one of its bounded cardinality subsets becomes easier. A similar

bound sounds to be true for other cases of allowable transformations.

• Under a distance assumption on the observation, generalize the zero tolerance

result to the occlusion setting.

• Define discrete connectivity as follows: Say that a finite set (planar for instance)

is reconnected if the r-neighborhood of this set is connected. The derived upper

bounds on A (U, M) as M goes for the worst and U for the best does not make use

of any assumption on M. On the other hand, A (U*, M) approaches the derived

bounds as the model become more and more disconnected. Under a connectivity

assumption on M find a lower upper bound on A (U, M) (as a function of r for

instance). The idea is that usually the model is a connected object both ideally
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and in the observation, and a lower upper bound on A (U, M) means: A lower

upper bound on the initial tolerance, a lower upper bound on time constant

when the tolerance is given as an input, a lower distance assumptions on the

observation in the zero tolerance setting, and a lower number of the derived

submodels in the the occlusion setting.
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Appendix A

An Equivalent Startup Algorithm

We describe an algorithm equivalent to Q, (of section 4.2). leads to the same

worst case tolerance (�A(U, M)) in the same worst case running time (O(n 2M log n)).

might be more transparent than Q, because the value of A (U, M) is not needed

in the computational process. even leads to a lower average tolerance, but it is

more complicated than Q1.

Algorithm A.0.16 Consider the following algorithm that takes as input: the model

M, the observation S, the noise bound �, and any 3-point regular subset U of M.

On input (M, S, U,

1. initialize X to the empty set

2. repeat the following for each mapping f from U to S

3. compute the unique affine transformation that agrees with f on U,

i. e, compute the element t of A satisfying f - t I U

4. compute the set of transformations C = ft' c A; Ilt' - f Iju < �j

5. for each a E M

6. compute the planar region R - C(a) + B�(O)

7. check if R n S z,4 0

8. if each point in M leads to a nonempty intersection, add t to X

9. return X
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Remark: C (a) means f t'(a); t' E C I and C (a) + B6 (0) means f x + y; x E C (a) and

y E B6(0)1, i.e., the Minkowsky addition of C(a) with the �-square centered at the

origin.

Theorem A.0.17 (An �A(U, M) tolerance) The output X of Q' is a set of (� +

�A(UM))-feasible transformations whose �A(UM)-neighborhood covers all the

feasible transformations.

Proof: We have to show that

N covering condition: for each Infeasible transformations t', there exists a transfor-

mation t in X such that lit - t'llm < �A(U, M).

(ii) relaxed feasibility condition: each transformations in X is (� + �A (U, M))-feasible.

We prove (ii) first. Consider any t in X. Because t was added to X, we must have

(C(a) + B6(0)) n S:� 0, Va E M,

where C is the set of transformations computed at Line 4 when the mapping f = t I U

was considered. In other words, C It' E A; lit' - tllu < �J-

Construct the mapping g : M S by picking, for each a c M, g(a) form the

nonempty set (C(a) + B6(0)) n S. We argue below that lit - gllm < � + �A(U, M),

which by Lemma 4.2.2 implies that t is (� + �A(U, M))-feasible. This will establish

Consider any point a of M. We have g(a) c C(a) + BJO), or in other words,

g (a) < �, for some t' c C. It follows that

Ilt(a) - g(a)II < Ilt(a) - t'(a) II + Ilt'(a) - g(a) II (A. 1)

• sup Ilt(a) - t"(a) 11 + (A.2)
t1fec

• sup lit - t'llim + (A-3)
t/1EC

• sup A(U, M)Ilt - t"llu + 6 (A.4)
t11EC

• AA W + 61 (A.5)
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where (A.4) follows from Lemma 4.1.1 and (A-5) from the definition of C.

This is true for any a E M, therefore I I t - gI m < � + � A (U, M), which by Lemma

4.2.2 implies that t is (� + �A(U, M))-feasible, and hence the correctness of (ii).

To prove (i) consider any Infeasible transformations t'. Using Lemma 4.2.2 let

g : M --+ S S-t- lit' - gllm < �. And finally let t be the unique transformation in A

satisfying t I U. = g I U. We will shows that t - t'l I m < �A (U, M) and t E X. This will

establish (i). We have

lit - tIIIM < AWI M) lit - t'llu (A.6)

= AWI M)119 - t'llu (A-7)

• AWI M)119 - t1lim (A-8)

• �A (U, M), (A-9)

where (A.6) follows from Lemma 4.1.1, (A.7) follows from the fact that tlU = g1U,

and (A.8) from the fact U C M.

The transformation t agrees on U with a mapping from U to S. So to demonstrate

that t E X, we only have to show that

(C(a) + B� (0)) n S 0, Va E M, (A. I 0)

where C = ft" E A; lit" - t1ju < �J. Consider any a E M, we have 11g(a) - t(a)ll <

jjg - tIlm < �, or g(a) E t(a) + B6(0). So g(a) c C(a) + B6(0) because t E C. Noting

that g(a) C S also, we obtain (C(a) + B6(0)) n S 0. This is true for any a E M,

which proves (A.10) and hence (i). O

Regarding the realization of we argue below that each of the C's computed

at Line 4 is a 6D-convex polytope that can be written as the product of two 3D-

convex polytopes C, and C2, each having 0(1) extreme points, and each computable

in 0(1) time. We argue also that each of the R's is a planar rectangular region

that can be computed from the extreme points of C, and C2 in 0(1) time. Given

an 0(nlogn) preprocessing time for S the number of points in the intersection of a
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query rectangular region with S can be computed in 0 (log n) time. So, the feasibility

test performed on t in Lines 5 - 7 can be done in 0 (,m log n) time. This leads to an

overall 0 (n log n + n'm log n) = 0 (n'm log n) time needed by Q' to halt.

Consider any such C.

C = ft' E A; Ilt'- f 1ju < �J-

Let a,, a2, a3 be the points of U and let �j = f (ai) for i = 1, 2, 3. If we denote by

H2x2 and 'r2XI - respectively - the linear transformations matrix and the translation

vector of t', we can write the constraint Ilt' - f 1ju < � as

[Hjr] Ozi -,3i <�,i=1,2,3.

XI 3X1
If we let [Hjr] where XI, X2 G R we can reduce the constraint to

-X2

1XI ai -,3ixl <� i=1,2,3, (A. I 1)

ai
IX2 3jyj <� i-1,2,3. (A. 1 2)

Due to the regularity of U, each of the constraints defines a bounded region in R3

(This can be established using an argument similar to the one we used in the proof

of Proposition 4-3.4). So C is the product of two (open) 3D-convex polytopes C, and

C2, given respectively by (A.11) and (A.12). Each of the polytopes is determined by

6 halfspaces, so it has 0(l) extreme points and it is computable in 0(l) time.

Now, consider any such R.

R = C (oz) + B� (0).

If t is a planar affine transformation given by the linear transformation H and the

translation vector r, we can represent t by XI and X2, the two I x 3 vectors corre-
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sponding to the first and second row of [Hlr]2,13. Note that with this representation

a
XI

t(a) -_ [Hjr] a XI a

_X2_ XI

So we can express C(a) as

a
XI

C (a) (CI x C2) (a) t (a); t E C, x C2 XI CIX2 C2
a

-XI

C (a) CjLa where L, a
CIL, I

In other words, C(a) is the product of CIL, and C2L,, the images of the convex

polytopes C, and C2 by the linear transformation L,. Because L, is linear and C, is

a convex polytope, Cla is also a convex polytope whose set of extreme points is the

convex hull of the image of the set of extreme points of C, by L,. But CIL, is one

dimensional, so it is an (open) interval whose two extreme points can be computed

by maximizing and minimizing the linear transformation L, over the set of extreme

points of C1. Similarly, C2L, is an (open) interval that can be computed from the

extreme points of C2. It follows that C(a) is an (open) rectangular region that can

be computed in 0(l) time given the extreme points of C, and C2. Once C(a) is

computed, R can be simply computed by dilating the rectangular region C(G) with

the square B�M_
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