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On De Finetti coherence and Kolmogorov probability
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Abstract

This article addresses the problem of existence of a countably additive probability measure in the sense of
Kolmogorov that is consistent with a probability assignment to a family of sets which is coherent in the sense
of De Finetti.
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1. Introduction

De Finetti (1990) develops a subjectivistic theory of probability (De Finetti et al., 1990). In this
theory, probabilities are viewed as certain proportions of stakes a player chooses to pay to enter into
a lottery in which the stakes are set by a bookie. The probability assignments to various events are
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seen as being purely subjective since they depend on the player’s assessment of the likelihood of
various events occurring in the lottery. However, the player has to choose the probabilities in such a
way that he always has a chance to win whatever the stakes set by the bookie might be. De Finetti
calls such an assignment of probabilities coherent. In this short note we explore the relationship
between coherent assignments of probabilities and the modern probability theory in the sense of
Kolmogorov.
Modern probability theory works with probability measures on �-algebras and needs the speciG-

cation of probabilities of all the events in the �-algebra. There are, however, situations in which one
is interested in working with partial assignments of probabilities. In such cases the collection of all
events for which probabilities are known (or believed to be something) need not have any algebraic
structure (i.e., do not form an algebra or a ring or a �-system). In such cases, one would like to
know if there is a probability space (�;F;P) such that F contains all events of interest to us and
P assigns the same probabilities to these as we believe them to be. The purpose of this article is to
show that De Finetti’s coherence condition, to a very large extent, holds the key to this problem.
The next section considers the simpler case of a Gnite collection of events where the coherence

condition is in fact necessary and su@cient. Section 3 shows that this is so in general if one is willing
to settle for Gnite additivity. Section 4 gives the corresponding result for the countably additive case
under additional conditions.
For an extensive discussion of the history of these issues, see Fishburn (1986) and the references

therein. Kyborg and Smokler (1980) contains several original articles of historic interest. Diaconis
and Zabell (1982) addresses some issues similar to those studied in this paper.

2. Finite probability spaces

Let � be an arbitrary set and A= {Ai}Ni=1 a Gnite collection of nonempty subsets of �.

De�nition 1. A probability assessment on (�;A) is a function P̃ mapping each set A in A to a
number P̃(A)∈ [0; 1]. We denote a probability assessment by (�;A; P̃).

De�nition 2. A probability assessment (�;A; P̃) is said to be coherent if for all [c1; : : : ; cN ]∈RN ,

max
!∈�

N∑
i=1

ci[IAi(!)− P̃(Ai)]¿ 0: (1)

This can be given the following convex analytic interpretation. The vector [P̃(A1); : : : ; P̃(AN )] is
in the closed convex hull of the Gnite set

B= {[IA1(!); : : : ; IAN (!)] : !∈�}:
See for example Rockafellar (1970).
Therefore, probabilities p(e) can be assigned to each element e = (e1; : : : ; eN ) of the Gnite set B

such that

[P̃(A1); : : : ; P̃(AN )] =
∑
e∈B

ep(e):
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It is easy to see that the following collection of subsets of �:{⋂
i

I−1Ai (ei); e = (e1; : : : ; eN )∈B
}

form a partition that generate the same �-Geld as the collection A. The probabilities on the set B
can be thought of as probabilities of these partitions and therefore deGne a probability measure on
the �-Geld generated by the collection A. Therefore, we have the following theorem:

Theorem 1. Consider a probability assessment (�;A; P̃). Let F be the <nite algebra generated
by the collection A. Then there exists a probability measure P on (�;F) such that P(A) = P̃(A)
for all A in A if and only if the probability assessment (�;A; P̃) is coherent.

3. Finitely additive extensions

We Grst extend the above deGnitions as follows:

De�nition 3. For an arbitrary collection A of nonempty subsets of �, a probability assessment on
(�;A) is deGned exactly as in DeGnition 1, whereas a probability assignment (�;A; P̃) will be
said to be coherent if (1) holds for all Gnite subcollections {A1; : : : ; AN} ⊂ A and [c1; : : : ; cN ]∈RN ,
N¿ 1.

We Grst consider a countable A, enumerated as {A1; A2; : : :}. Let (�;A; P̃) be a coherent prob-
ability assessment. We shall denote by �(C) the �-algebra generated by a family C of sets. Let
An= {A1; : : : ; An} for n¿ 1. By Theorem 1, the set Pn of probabilities compatible with P̃ restricted
to An is nonempty for each n. Identifying Pn with a subset of the simplex of probability vectors
in R|�(An)|, one easily veriGes that it is convex compact. For m¿n, let �m;n(P) for P ∈Pm denote
the element of Pn obtained by restricting P to �(An).

Lemma 1.

(i) For k ¿m¿n, �m;n ◦�k;m =�k;n.
(ii) For m¿n, �m;n(Pm) ⊂ Pn and is compact nonempty.
(iii) For k ¿m¿n, �k;n(Pk) ⊂ �m;n(Pm).
(iv) P∗

n ,
⋂
m¿n �m;n(Pm) ⊂ Pn is compact nonempty.

(v) �m;n(P∗
m) =P∗

n for m¿n.

Proof. (i)–(iii) are easily veriGed. Step (iv) follows from the Gnite intersection property of families
of compact sets. Step (v) follows from the deGnition of P∗

n .

Pick �0n ∈P∗
n for n¿ 1 and for m¿n, let �m−nn =�m;n(�0n)∈P∗

n . Let {�n(k)1 } denote a subsequence
of {�n1} in P∗

1 converging to some �
∗
1 ∈P∗

1 . Let {�n(k(m))2 } denote a subsequence of {�n(k)2 } converging
to some �∗2 ∈P∗

2 . Proceeding thus and using a diagonal argument, we can pick �̃n ∈P∗
n , n¿ 1, such

that �m;n(�̃m)→ �∗n as n¡m→ ∞. Clearly, �m;n(�∗m) = �∗n . We have:
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Theorem 2. For an arbitrary family A of nonempty subsets of � with F= the algebra it gener-
ates, a probability assessment (�;A; P̃) is coherent if and only if there exists a <nitely additive
probability P on (�;F) that agrees with P̃ on A.

Proof. The ‘only if ’ part follows as in Theorem 2.1. For the ‘if ’ part, consider Grst a countableA. In
the above notation, set P=�∗n on An for n¿ 1. This consistently deGnes a Gnitely additive probability
on F=

⋃
n �(An). For arbitrary A, let (A�; ��), �∈I, denote a nested family of countable subsets

{A�} of A equipped with Gnitely additive probabilities {��} on the corresponding algebras {F�}
such that the following consistency condition holds: F�1 ⊂ F�2 implies ��2 restricts to ��1 on F�1 .
Then F =

⋃
�F� is the algebra generated by PA =

⋃
�A� and for A∈ PA, �(A) , ��(A) for any

� such that A� contains A, deGnes a Gnitely additive probability on (�;F) in a consistent way.
Consider the family of pairs (Â; �̂), where Â ⊂ A and �̂ is a Gnitely additive probability on the
algebra generated by Â. DeGne a partial order on this family by setting (B; �)¡ (D; �) if B ⊂ D
and � restricts to � on B. By the foregoing, this family is nonempty. Also, every ordered chain w.r.t.
this partial order has a least upper bound: for any ordered family {(A�; ��), �∈I}, PA, � deGned as
above would provide a least upper bound. Thus by Zorn’s lemma, there exists a maximal element
(A∗; �∗). We are done if A∗=A. Suppose not. Take A∈A−A∗. Then the algebra generated by
A∗ ∪ {A} is given by G̃

def
= {(A∩ B1)∪ (Ac ∩ B2) :B1; B2 ∈G}, where G is the algebra generated by

A. Extend �∗ to a Gnitely additive probability �̃ on G̃ by setting

�̃((A ∩ B1) ∪ (Ac ∩ B2)) def= P̃(A)�∗(B1) + (1− P̃(A))�∗(B2)
for B1; B2 ∈G. That this does indeed deGne a Gnitely additive probability on G̃ is easily veriGed.
Then (A∪ {A}; �̃) contradicts the maximality of (A∗; �∗). It follows that A∗=A. This completes
the proof.

4. Countably additive extensions

As is well known, not all Gnitely additive probabilities on �-algebras lead to countably additive
extensions. Thus to make a claim akin to the above for countably additive probability measures, we
need to impose additional conditions, stated in terms of our initial collection A of events. We give
such a condition below. For a set A∈A, let Ai denote A if i= 0 and Ac if i= 1. The condition is:
(†) If An ∈A, n¿ 1, satisGes

⋂
n A

i(n)
n =� for some choice of i(n)∈{0; 1}, n¿ 1, then

⋂N
n=1 A

i(n)
n =

� for some 16N ¡∞.

Remark.

(1) This condition is necessary. Consider, for example, a countable A = {A1; A2; : : :} and deGne
An = {A1; A2; : : : ; An} for n¿ 1. Let F denote the Boolean algebra generated by A. Suppose
that for some choice of i(n)∈{0; 1}, n¿ 1,

⋂
n A

i(n)
n =�, but

⋂N
n=1 A

i(n)
n 
= � for all Gnite N¿ 1.

DeGne a probability �n on (�; �(An)) by setting �n(A)=1 if A∈ �(An) contains
⋂n
m=1 A

i(m)
m and

zero otherwise. Then the Gnitely additive probability � deGned on (�;F) by �(A) = �n(A) for
A∈ �(An) is well-deGned and corresponds to a coherent probability assignment by Theorem 2.
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However,

lim
N→∞ �

(
N⋂
n=1

Ai(n)n

)
= 1 
= 0 = �(�):

Thus � does not extend to a countably additive probability on �(A). (This example is adapted
from Parthasarathy (1967, pp. 141–142)).

(2) As an example of a situation where (†) is satisGed, consider the case when each A∈A intersects
at most Gnitely many other sets in A. Then

⋂N
n=1 A

i(n)
n 
= � for 16N ¡∞ would perforce

imply that for large N ,
⋂N
n=1 A

i(n)
n equals the intersection of a Gxed Gnite subcollection of sets

from A, whence (†) follows.

Theorem 3. If a probability assignment (�;A; P̃) is coherent and A satis<es (†), then there exists
a countably additive probability P on (�; �(A)) that agrees with P̃ on A.

We shall need two preliminary lemmas.

Lemma 2. If B={A1; A2; : : :} ⊂ A is a countable subfamily, then the atoms of �(B) are precisely
the nonempty sets of the form

⋂
n A

i(n)
n , i(m)∈{0; 1}, n¿ 1.

Proof. Consider the collection of sets A with the property: Given any set C of the above form, either
C ⊂ A or C ⊂ Ac. It is easy to see that this is a sigma Geld that contains B, and therefore contains
�(B). Also, the latter contains sets of the form

⋂
n A

i(n)
n , {i(n)} as above. The claim follows.

Lemma 3. �(A) =
⋃
�(B) where the union is over all countable B ⊂ A.

Proof. The r.h.s. is clearly contained in the l.h.s. The claim follows on noting that the r.h.s. is also
a �-Geld.

Proof of Theorem 3. Let B={A1; A2; : : :} ⊂ A and An={A1; A2; : : : ; An}, n¿ 1. Then �(An), n¿ 1,
is an increasing family of (Gnite) �-Gelds and �(B) is the smallest �-Geld containing �(An), n¿ 1.
Let � be the Gnitely additive probability measure guaranteed by Theorem 2. Then by (†), Lemma
2 above and Theorem 4.1 (Parthasarathy, 1967, pp. 141–143), it extends to a unique countably
additive probability measure on �(B). Since B was an arbitrary countable subset of A, the claim
follows in view of Lemma 3 above.
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