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Abstract

A symmetric version of the Neyman-Pearson test is developed for discrimi-
nating between sets of hypotheses and is extended to encompass a new for-
mulation of the problem of parameter estimation based on finite data sets.
Such problems can arise in distributed sensing and localization problems in
sensor networks, where sensor data must be compressed to account for com-
munication constraints. In this setting it is natural to focus on methods that
balance coarse resolution of the estimates for achieving higher reliability.
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1 Introduction

In this paper we present a new approach to statistical modeling and
estimation with finite data. This problem is motivated by the need to provide
a framework for highly nonstationary situations where the complexity of
the environment often exceeds the ability to collect meaningful data. For
example, in communications this situation arises when the coherence time
is significant relative to the delay spread. Historically, statistical methods
address this issue by appealing to Occam’s razor, which has lead to many
approaches which in general result in choosing the estimates by optimizing a
combination of model complexity and empirical error Barron et. al. (1998).
Our approach here, in contrast, is to treat the parameter estimation problem
as a ‘continuum’ hypothesis testing problem and consider the minimization
of an appropriate ‘worst case’ risk, leading to a minmax problem. This in
turn leads to a convex optimization problem resulting in a test that can be
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viewed as a direct generalization of the celebrated Neyman-Pearson lemma
Lehmann (1997). Another interesting feature of our treatment is that we
choose among sets of hypotheses rather than individual hypotheses, the idea
being to make inference with prescribed accuracy in the parameter space (in
contrast with the classical ‘confidence intervals’ which specify accuracy with
reference to the underlying probability space).

The paper is organized as follows: The next section gives a novel treat-
ment of composite hypothesis testing using convex programming tools. Clas-
sical hypothesis testing has a special role for the null hypothesis. A sym-
metrized version that avoids this and treats all hypothesis sets on an equal
footing is developed in section 3. This results in a ‘minmax’ problem remi-
niscent of the minmax formulation in Bayesian statistics. Section 4 contains
our main result, viz., an extension of the above to the problem of parameter
estimation based on finite data sets, casting it as a ‘continuum hypothesis
testing’ problem. While these results are not surprising in view of their sim-
ilarity to Bayesian minmax, they are arrived at from a somewhat different
perspective.

2 Revisiting the Neyman-Pearson Lemma

Consider M + 1 disjoint compact subsets g, -- ,0;s of a Polish space

S, with © 2 U; ©;. © will be our parameter space. We associate with it
a family of probability densities fy(-),0 € O, on R? (say) for some d > 1.
We shall assume that fy(x) is jointly continuous in €,z. The problem we
address is: Given an observation Y generated according to one of these
densities, say fy(-) for some 6 € O;, come up with the best guess y(Y) €
{0,1,2,--- , M} of the index i. To define what we mean by ‘best’ here, we
introduce the following notation: Let Py(-) denote the probability under
0 € © and let ay,--- ,aps be given positive scalars. Following the classical
hypothesis testing framework, we seek to find y(Y) so as to

Minimize sup Py(y(Y) #0)
[ASICN)

subject to  sup Py(y(Y) #1) < «;, 1<i< M.
0cO;
Note that if ©;’s were singletons, this would reduce to the classical multiple
hypothesis testing problem Lehmann (1997). In particular, ©( plays the
special role of the ‘null hypothesis’. Let P(---) denote the Polish space
of probability measures on the Polish space ‘---’ with Prohorov topology

(Borkar (1995), Chapter 2). Let Q 2 {\ = [Ao, -+, Am] : A > 0 Vi, Ao = 1}
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and I 2 Q x M P(O;). Our main result is:

THEOREM 2.1 There ezist \* € Q,n} € P(0;),0 < i < M, such that the
optimal y(Y') is given by: v(Y) =1 if

ﬁ/ﬁme)>an/ﬁme%

] 13

3 [ @) = maxx; [ )

7>t

In turn, \*,{r*} are the solutions of the convexr programming problem

o rer (/ s, (o f oo s )‘“‘D )

Before proving this theorem, we introduce some relaxations of the above
optimization problem. The first is:

Minimize sup /W(dH)Pg(fy(Y) #0)
TEP(O0)

subject to  sup /W(dQ)Pg(’Y(Y) #1) <aq;, 1<i< M.
TEP(O;)

This is clearly equivalent to the original problem. Define p;(z) = I{y(z) =

i} for 0 < i < M. Then o() = [po(-),- -+, oum()] € Hy where

Hy 2 () =), ynam ()] : mi is measurable R* — {0,1}

for 0 <i< M, an() =1}
i
We view Hj as a subset of

H 2 {Ino(),- ()] : mi is measurable R — [0,1]

for 0 <i <M, Zm() =1},

viewed as a convex compact subset of L. (R%)™*! endowed with the weak*
topology. The above optimization problem can now be restated as:

Minimize sup // (d8) fo(x)(1 — po(x))dx

71'673 @0

subject to  sup // (dO) fo(x)(1 — pi(z))de < a;, 1<i< M,
TeP(O
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where the minimization is over Hy.

PROOF OF THEOREM 1. Letting A € Q denote the Lagrange multipliers
associated with the above convex programming problem, we consider the
associated saddle point problem

(do) (1 — dz
(;relgt A?r?}xeF (//7?0 fe 900( ))

g 2:) s ([ [ e - oo - a>> |

We consider the relaxation
(d6) )(1— dz
min A{mwftxeF <//7ro ) fo(x vo())

+;Ai ( [ [ witan) fo@) 1 - itoyas - a>> S

By the saddle point theorem for Lagrange multipliers (Luenberger (1969),
p. 219), (1) equals

(/\{mﬂ?xemrprgg <//7T0 d9 fe 1—‘;00( ))d

+> N ( mi(dO) fo(x)(1 — pi(z))dr — ozi)) .
Yo ([ [rims
This in turn equals
“a grlj?err&ag (//Wo (d0) fo(x)po(z) d
M
S [ [ mitan fo@rentors 1= 3 x - ai>) . ©
i=1 1=1
The inner maximum is clearly attained at ¢* given by
dite) = 1{x [man) (o) > maxs; [ (a0,
Ai/m(tw)fa(ﬂﬂ) > I?ggikj/ﬁj(de)fe(i)}
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Thus (2) equals

" ofrer (/ g, ([ mtami) “—D e )

The expression being minimized is easily see to be continuous. Since the do-
main is compact, a minimum is attained at some (A\*, {n}}). This completes
the proof. O

The saddle point (\*, ") satisfies ¢* € Hj, so that the relaxation is
equivalent to the original problem. For M = 1, the theorem is seen to
reduce to the ‘ratio test’: Pick the null hypothesis if

J mo(d6) f5(Y)
Jmi(d6) fo(Y)

and not otherwise. If in addition ©;,7 = 0, 1, are singletons, this reduces to
the familiar Neyman-Pearson test.

2 >\13

3 A Symmetrized Problem

The classical hypothesis testing formulation accords a special status to
the null hypothesis. We now consider a variation where all hypotheses are
treated the same. Thus we consider the minmax problem

Py(v(Y) #14).
o2 B VO 70

Redefine @ by Q 2 {A = [Ag,--+, An] : A > 0 Vi, M \; = 1}. Define T as
before. By familiar arguments, we consider the relaxation

min A{mW?XEF/ZA [ )o@ - pia)do
- A{mn?’(g%/ZA [ mitan) @)1 - i)

= ()\{mn?xd‘nrprgg <1—/Z>\ /771 d9 f0( )‘Pz( ) )
= 1- Ag:?eF?eag/ZA /7Tz (d0) fo(z)pi(z)dz

= 1— min max A'/?rdH x)dx
(A,{m})er/ ; <l i(d0) fo(z)
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Thus exactly as in Theorem 1 above, we are lead to:

THEOREM 3.1 For the symmetrized problem above, there exist \* € Q, 7} €
P(©;),0 <i < M, such that the optimal y(Y') is given by: v(Y) =1 if

5 [ w@fy) > max; [ o) sw)
5 [ wi@n) > wax; [ snw)

7>

In turn, \*,{r*} are the solutions of the convexr programming problem

(/\,{rfrlil}r;er/ogiﬁ (Ai/m(dﬁ)fg(w)> dz.

ExAMPLE 1 Consider four hypotheses, Hi, £ = 0, 1, 2, 3. Suppose we are
given the following family of distributions:

Consider hypothesis sets ©1 = {Hy, H1}, ©2 = {Hs, H3}, that must be
discriminated based on observation y € IR. It follows by direct numerical
verification that

Wl fus(y) > fa, (W)} C{y | fm(y) > fu,(y)}, k€ {0, 1}.

Therefore the hypothesis Hs is not a factor and the optimal solution is given
by comparing Hj against the set ©1. The optimal solution turns out to be:

O, ify <

N

v(y) =
O, ify>

N

ExampPLE 2 Consider four hypotheses as in the previous example, but
now with distributions defined by:

fHk(y) = N(kv 1)'

Consider overlapping hypothesis sets ©1 = {Hy, Hy, Hy}, ©9 = {Ho, H3, Hy},
that must be discriminated based on observation y € IR. (This does not ex-
actly fit the formulation above because of lack of disjointness, but is included
here in order to motivate the developments of the next section.) In this case,
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irrespective of how the observations are partitioned into the two sets, the
worst-case hypothesis is the one that is common to both the sets, which is
Hy in the example. Therefore, it follows that the optimal solution in this
situation is given by:

)\] = 1, Vj, 7T0(H2) == 11 FI(HQ) =1L

The worst-case probability of error is 1/2 for this situation. Therefore over-
lapping hypothesis structures do not provide improvements in error prob-
ability for this formulation. In the next section we formulate an estima-
tion problem where such structures lead to significant improvements in error
probability.

4 Parameter Estimation with Finite Data

We now consider the problem of estimating a parameter § € © 2 a
compact convex subset of some R™,m > 1, with an associated family of
densities fy(-) as above. The difference with the foregoing will be that instead
of choosing among a finite family ©;,0 < i < M, of subsets of © as above,
we now seek to find the ‘best’ Borel subset of ©® of diameter not exceeding
a prescribed € > 0 so as to minimize the worst case risk. Specifically, let
(YY) denote one such set, chosen as a function of the observation Y. Then
we seek to make the choice thereof so as to minimize

sup Py(6 ¢ ¢(V)). (3)
0e®
This formulation is from Venkatesh et al. (2002).

Since a larger set can only reduce the risk and the largest set of diameter
not exceeding € is the closed ball of radius ¢, it suffices to consider only
P(Y) of the form {z € O : ||z —n(Y)|| < €}. For € > 0, this problem may
be viewed as a dual of the traditional interval estimation problem, insofar
as we prescribe the confidence level € in terms of the natural metric of the
parameter space rather than in terms of probabilities over its inverse image
in the underlying sample space. For ¢ = 0, we recover the point estimation
problem.

We strengthen our continuity assumption on fy,0 € O, to:

(1) The maps 0 — fy(x),2 € R? are bounded and continuously differen-
tiable with

sgpllvafo(x)H <q(z)
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for some ¢(-) > 0 with [ g(z)dz < co. (As will be clear later, this assumption
could be relaxed further.)
Let D(0O) denote the set of continuous probability densities over ©. Then

the set Po(0) = {$(0)d0 : ¢(-) € D(O)} is dense in P(O). Let B denote the
set of closed balls of diameter € with centers in ©, endowed with the metric
topology of the Hausdorff metric. Let M denote the set of measurable maps
¥ : R — B and C the set of measurable maps 1 : R¢ — ©. We may identify
an element 1 of the former family with an element n of the latter such that
n(y) is the centre of 1(y). Thus we shall use these interchangeably. Let H
denote the collection of random variables {n(Y’) : n € C}. We metrize H by
the metric

P (Y),12(Y) 2 sup Byl|[m (V) = na(V)]] A 1],
fcO

where Ey[ - | denotes the expectation under Py for 6 € O.
LEMMA 1. (H,p) is a complete separable metric space.

PROOF. p is clearly a metric. Recalling that © is a bounded set, observe
that H is a complete metric space under each of the metrics

po(m (Y),ma(Y)) 2 Eglllm(Y) — n2(Y)|l]

by Theorem 1.5.1, p. 13, of Borkar (1995), with the metric convergence
corresponding to the convergence in probability under Py. A Cauchy se-
quence {7,(Y)} under p will be Cauchy with respect to each py and hence
it converges w.r.t. each. Since convergence in probability implies conver-
gence a.s. along a subsequence, it follows that the respective limits must
agree a.e. on the intersection of the supports of fy, for for any two dis-
tinct 6,0’. Thus we can consistently define a random variable 7, such that
M (Y) = Moo under each py, @ rational. To claim that it also does so under
p, we need to prove that this convergence is uniform in #. This follows from
assumption (T) above (which implies pointwise boundedness and equiconti-
nuity of pg(7n(Y), 700 (Y)) in #) and the Arzela-Ascoli theorem. Since 7, (Y")
is o(Y')—measurable for each n, so will be 7, and hence 7o, = 70(Y) a.s.
for a suitable 15 € C by Theorem 1.1.4, p. 5, of Borkar (1995). Separability
follows from the density of 7 of the type

n(y) = > ymI{y € An},
m=1
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where n > 1, the y;’s have rational components and A,,’s are disjoint axis-
parallel rectangles in R% with rational corners. O

The infimum of (3) equals

inf f max Py(0 & (Y))

PYEM

= 1— sup mlnPQ(OEQ,b( ))
d)EM

= 1— sup min /ﬂd@POE Y
sup min (d0) Py (0 € p(Y))

= 1— su min dO)YPy(||0 —n(Y)|| <
s i [ (@RI~ <

= 1— sup min // (dO) fo(x)I{]|0 — n(x)|| < e}dx.

(Y GH TEP(O

Consider
Flan(¥)) 2 / / 7(d6) fo()I{]10 — n(x)]] < e}da. (4)

This is linear and continuous in 7 on P(©), where the continuity follows
from that of (8,2) — fo(z). (The latter implies the continuity of § — Py in
total variation norm by Scheffe’s theorem. Thus 8 — Py(||6 —n(Y)|| < ¢)
is continuous.) F(m,n(Y")) is upper semicontinuous in 7(Y’) on H, because
B(z) 2 {z : ||z — z|]| < €} is a closed set. Therefore, taking the standard
relaxation of the above minmax problem, we consider

sup min /@(dn)F(ﬂ,n)

deP(H) TEP(O)

= inf sup /@(dn)F(Waﬂ)

TEP(O) pcp

(H)
=t sup [ [ xerssta)i1o ~n(ol| < epdzas

XeD(O© 77€C
dx) ,

= inf ( / sup [ /B O

where the first equality follows from the minmax theorem (Theorem 3 of Fan
(1953)), the second follows from the density of Py(0) in P(0O), and the final
equality follows by taking the optimum choice

n(Y) € arg max / MO) fo(V)dB

B(z)
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Thus we have:

THEOREM 4.1 If the convex minimization problem on the r.h.s. above has a
solution (i.e., the infimum is a minimum attained at) X*(-), then the closed
e—ball centered at § € arg max, fB(z) A*(0) fo(Y')dO is the optimum choice for
the relaxzed problem.

Unfortunately the existence of a minimizer A* is not guaranteed. Never-
theless, the foregoing suggests an approximation procedure whereby we may
replace the minimization over D(©) by minimization over a sufficiently rich
compact (in C(0©)) subset thereof. The minimizing A* will then be near-
optimal rather than optimal. For example, a computationally appealing
choice could be a finitely parametrized family.

Note also that we may replace Py(®) by any other convenient dense

subset of P(©), e.g., by P1(0) 2 the set of finitely supported probability
measures on ©. Minimization over 7 € P;(0) may then be approximated
by minimization over the set of finitely supported probability measures on ©
supported on at most N points for some large N > 1. Suppose 7% € P;(0)
is a minimizer. A test analogous to the above ensues, leading to the choice

n(y) €arg  max > T ({8} fo(Y).

z€ support(m*
prort( )GEB(z)ﬂsupport(ﬁ*)

Of course, this applies to the case when © itself is a finite set (see the example
below).

If the variation of fy(z) in 0 over an e—ball is small, the optimal decision
in Theorem 4.1 may be approximated by

n(Y) € argmax A(0) fo(Y').

The 7* above and ), A7} in the preceding section may be viewed as
‘worst case priors’, thus making contact with Bayesian hypothesis testing
Lehmann (1997). Finally, observe that the computational aspects hinge
on a convex programming problem for which many effective algorithms are

available Bertsekas (1999).

ExaMPLE 3 This example illustrates the salient difference between
maximum-likelihood estimates and the proposed formulation. Consider a
discrete parameter set,

©={1,2,...,6}
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Let fo(z), 8 € ©, = € IR be a family of gaussian distributions over the reals
for each parameter, 0, i.e.,

We are interested in picking estimates 6(z) so that
max Proby{f & O(z) + 2}

is minimized. Nevertheless, the finite parameter set here ensures that the
expression in (4) is linear and continuous in 7. It can also be verified that
F(-,-) in (4) is upper semi-continuous in n(Y) € H. The statement of the
Theorem 4.1 then follows. Furthermore, the probability simplex P(©) being
compact guarantees the existence of the minimum.

We now discuss the example in more detail. The maximum likelihood
estimate is given by:

O (z) = argmaxy fo(x)

From this it follows that each parameter in the set © is picked based on the
following rule:

(1 if, z € (—00, 1+ 5]

2 if,ze(l+4,24 4
O (z) = 4

6 if,z€ (54 5,00)

\

The worst-case probability of error for the ML estimate is when the param-
eter 3 is picked while the actual value is 6. The probability of error in this
case is given by:

P, = erfc(3/20)

For our formulation, the task is reduced to mapping each value of z € R
to one of two possible subsets: ®1 =3 £2; ©9 = 4 + 2. Now, consider the
set-valued estimate, I'(z) € {©1, O2}. The optimal solution for the problem:

min max Proby{6 & 0(x) + 2}

0(x)
is given by:
0, ifz< %
I(z) =
Oy ifz> %
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This follows from the fact that — on account of significant overlap between
the two sets — the parameters ranging from 2 < 6 < 5 will always be iden-
tified (with probability one) within a diameter 2 irrespective of the decision
strategy. Therefore an error occurs only when either the parameter 1 or 6 is
the correct value. The probability of error is now given by:

P, = erfc(5/20)

which is considerably smaller than that obtained for ML. The next step is to
check whether the relaxation of the problem also yields the same risk. Notice
that the statement of the Theorem 4.1 requires us to pick a distribution 7
over 0 that solves the relaxed problem.

H%Tin magx;m/fk(xﬂ{k ¢ 0(x) £ 2}dz.

Upon closer observation the following values for the distribution 7 is optimal:
m =1/2; mg =1/2.

This will ensure that the estimator #(z) will pick the midpoint between 1
and 6 as a threshold. In turn, this threshold serves as the decision strategy
to choose among the two parameter sets. This is the same strategy obtained
for the primal problem.

In our next step we illustrate how the resolution affects the error proba-
bility. For this purpose, consider the same problem except that we want to
find estimators that minimize the error probability for a diameter equal to
one, i.e.,

max Probg{0 & 0(z) + 1}.
The ML estimator is unchanged and the probability of error increases as:
P, = erfc(1/20).

In the proposed scheme, the task is reduced to mapping the observations to
one of four possible choices:

{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}.

It follows based on arguments presented earlier that the largest error grows
as:
P, = erfc(1/0).

The example serves to show how the choice of a resolution has a signifi-
cant impact on the error probability. Figure 1 illustrates these aspects as a
function of increasing variance.
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FIGURE 1. ILLUSTRATION OF THE TRADEOFF BETWEEN RESOLUTION AND ACCURACY
FOR DIFFERENT NOISE VARIANCES FOR ML AND ‘NEW’ SCHEMES

5 Conclusions

We have considered the problem of estimating parameters up to a pre-
scribed accuracy in the parameter space based on a finite amount of data.
By casting it as a ‘continuum hypothesis testing’ problem, we are lead to a
minmax problem reminiscent of the classical Bayesian minmax. This formu-
lation has the advantage of a clear notion of optimality in finite data set-up
without appeal to any asymptotics. Computationally, it offers the possibility
of using standard nonlinear optimization tools such as primal-dual methods
for the purpose. The other notable feature has been our a priori specifica-
tion of accuracy in the parameter space with reference to which the inference
is done. This framework allows trading resolution for higher accuracy in a
natural way.
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