IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, MONTH?? 2004 1

Control Over Noisy Channels

Sekhar Tatikondayiember, IEEEand Sanjoy MitterfFellow, IEEE,

Abstract— Communication is an important component of dis- Il. PROBLEM FORMULATION
tributed and networked controls systems. In our companion
paper we presented a framework for studying control problems  Consider the following linear time-invariant system:
with a digital noiseless communication channel connecting the
sensor to the controller [TM1]. Here we generalize that frame- Xy € Ay, X1 = AX;+BU;, Y =CXy, Vi>0 (1)
work by applying traditional information theoretic tools of source
coding and channel coding to the problem. We present a general where{ X} is aR%-valued state proces§l/; } is aR™-valued

necessary condition for observability and stabilizability for a control process, and; } is aR!-valued observation process
large class of communication channels. Then we study sufficiencyW have A }’Rdxd B RAxm do RI*d Th '
conditions for Internet-like channels that suffer erasures. ) ,? ave” = o e ! an' = : ?,
initial position, X, is distributed according to the probability
Index Terms—Linear control, Communication, Distributed density p(X,) with support on the open set, C R4 and
systems, Networked control finite differential entropyh(X,). See Figure 1.

Y;
. INTRODUCTION Plant = Encoder

Communication is an important component of distributed
and networked controls systems. A complete understanding of A vy Vi
the interaction between control and communication will need
to use tools frqm both control theory and information theory. U, Channel
In our companion paper we presented a framework for study-
ing control problems with a digital noiseless communication
channel connecting the sensor to the controller [TM1]. Here \ Y W
we generalize that framework by examining noisy communi-
cation channels. We apply the traditional information theoretic Controller < Decoder
tools of source coding and channel coding to the controls t

problem. See [TM1] for a review of the relevant previous
literature. Fig. 1. System

Here we study linear, discrete time, control problems with
a noisy communication channel connecting the sensor to the ,
controller. We view the initial condition and the procesS&h@nneél: The channel input and O“tplit alphabets are de-
disturbances as the source. The job of the encoder and decdtfipd Py V and W respectively. LetV" = (Vo,...,V;).
is to transmit information about this source across the noidf?® channel 'S rrt10<1:1e||ed as a sequence of stochastic ker-
channel in a causal, recursive manner. We apply the toolsQﬁItS {Ji(_Vth K W 12};' Specifically for each realization of
information theory [CT] to determine the minimum channél? > W , )ti (v, w'™7) the condmone:l P;?E’ab"'ty,O‘Wt
capacity needed to almost surely asymptotically observe aiyen (v';w'™") is denoted byP(W; | v',w'™"). At time ¢
stabilize the system. Specifically we provide a general nec&d€ encoder produces a channel input symiiok v, and the
sary condition on the channel capacity needed to achieve fijiannel outputs the ch?nntelloutput symbig| according to
control objectives. We then show that this capacity conditidi€ Probability P(W; | v, w™"). Some typical examples of
is sufficient for erasure channels. channels include:

In section two we present our problem formulation and ¢ Noiseless digital channel with rateR
introduce the general channel model. In section three we The channel input and output alphabets are the same:

present our necessary conditions. In section four we present ¥V = W. The alphabet size i§V| = 27 where R is
sufficient conditions for observability and stabilizability over ~ called therate of the channel. The channel is noiseless
Internet-like channels that suffer from erasures. and memoryless:

Manuscript received March 12 2002; first revision April 15, 2003; second p(Wy | yt7 wtfl) = { 1 !f Wi =
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nonnegative integer): In [TM1] we provided necessary rate conditions for the noise-
: _ less digital channel under the stronger conditions of asymptotic

t o, t—1 1T if Wy=vn L . . -
p(Wi | v',w'™7) = : observability and asymptotic stabilizability (as opposed to the

O |f Wt 7é Vt—A . ... .

almost sure version of the definition given above.) We repeat

o Erasure channel with erasure probability « propositions 3.1 and 3.2 of [TM1] here:

The channel input alphabet has sipé| = 2. The  proposition 3.1:A necessary condition on the rate for

channel output alphabet 18’ = VU { erasure symbo}.  asympotic observability is? > 3", 4, max{0,log [A(A)]}.
The channel is memoryless with erasure probability A necessary condition on the rate for asymptotic stabilizability

[0, 1]: is R > 37, 4 max{0,log [\(A)|}.
1—a if W, = vy Our goal is to determine properties of the channel that
p(Wy | vt wt™1) = o if W, = erasure symbol ensure almost sure asymptotic observability and stabilizability
0 else for general channels. To that end we need a measure of channel
Thus with probabilitya the packetof R bits is erased. quality. Shannon’s channel capacity turns out to be the correct

This channel is often used as a simplified model of packel.c o <
. P P Channel CapacityGiven a channe{ P(W; | v, w'~'}, the

loss on Internet-like channels. . : . ; '
Shannon capacitpver a time horizon of lengtfi” is defined

o Memoryless Gaussian channel with powep ; i
) . as the supremum of the mutual information over all channel
The channel input and output alphabets are the real ling:

Y =W = R. The channel is memoryless with power nput distributionsP (V" ~1). Specifically

W, =V, + N, = sup I(VTLWTY)
P(VT-1)
where N, is a Gaussian random variable with mean zero _ _ _ _
and variancel. The input symboll; satisfies the power WhereI(-_; -)is the mutuz_il mformf'mon [CT]. (_See the appendix
constraint: E(V;2) < p. This channel is often used as dor a review of mutual information.) Here time starts at zero

simplified model of a wireless channel. henceV”~! = (Vg,...,Vr_1). We list the channel capacity
for the channels described above:
A. Information Pattern o Noiseless digital channel with rateR: Cgap: TR.
The control problems we look at involve the design of * D&idyed noiseless digital channel with delayA:
- S _ (1~ AR

an encoder, decoder, and controller. Just as in [TM1] we T " . . cap
specify the information pattern [Wit] of each component. The ¢ Erasure channel with erasure probability a: Cr™" =
difference here is the addition of a more general channel. (1-a)TR. ) _ cap

a) Encoder:: The encoder at time is a map + Memoryless Gaussian channel with powep: C™" =

L(t41) ot ot _ b1 i Llog(1 + p). Here the supremization in the definition
&t RETUXVIXR™ — Y taking (Y5, V7L, U = i of Shannon capacity is over alP(V7~!) such that

b) Decoder:: The decoder at time is a map E(V?) <p, Vi

. _ . Rate-Distortion: As we have seen in [TM1] we need to
. t+1 mt d t t—1
Dy : W XR™ = RT taking (W5, U77) — Xy be able to transmit information about the initial condition to
The output of the decoder is an estimate of the state of ttfee decoder and controller. One way to measure how much
plant. information is needed to reconstruct the initial condition to
c) Controller:: The controller at time is a map some distortion fidelity is given by the rate distortion function.
¢, RS R™ taking X o U Let the spurceX have dIStI‘IbutIO.nP(X). Let d(x,x)
be a distortion measure. Here a distortion measure is any
Note that we are assuming the controller takes as input only th@nnegative function that measures the relative fidelity in
decoder’s state estimate. Hence we are assuming a separagonnstructing: by &. Given a sourcé’(X) therate distortion
structure between the decoder and the controller. function is defined as the infimum of the mutual information
over all channelsP (X |x), that satisfy the distortion condi-
tion [CT]:
I1l. NECESSARYCONDITIONS
Here we examine observability and stabilizability oveR(D)= inf {I(X;X) such that E(d(X,X)) gD}.
general communication channels. See the appendix for back- P(X | )
ground material on information theory. X Note that the expectation is taken with respect to the joint
R Definition 3.1: Let the error be E; = X; — X; where measureP(z, &) = P(i|z)P(z).
X is the state estimate. System (1)alnost surely asymp-  \ye il find the following parameterized family of distor-

totically observableif there exists a control sequend®:} oy measures useful in determining conditions for almost sure
and an encoder and decoder such that the state eSt'maHBQervabiIity and stabilizability:
error ||E¢||2 — 0 almost surely. System (1) ialmost surely

asymptotically stabilizablé there exists an encoder, decoder, (o, 7) = { 0 ifllz—z|2<e

and controller such thatX;||, — 0 almost surely. 1 ifflz—2fs>e wheree > 0.
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This choice of distortion measure will allow us to compute thBr(é; = 1) < D. Then
probability thatX and X are farther tham apart. Specifically

E (df(X,X)) = Pr(|X — X[z > o).
Data-Processing Inequality:;The traditional information

I(X4; Xy)
= (X5 04, Xe) — I( Xy 0 | Xy)

theoretic setup involves a sourcé that we wish to transmit = I(X; ; 6, X;) — (H(ét | X)) — H(6, | Xt,f(t))
over a channelP(W|v) and produce a reconstructioX o) ) .
satisfying some fidelity criterion. We have discussed both the = I(X:; 0, X¢) — H(d: | Xy)
rate distortion function and the Shannon capacity. = h(X,)—h(Xy| 6, X)) — H(O: | Xy)
A necessary condition for reconstructing upto some hX,) — h(X, | 6, = 0,X,) Pr(6, = 0)

distortion D using the channel once is 5 -
g WX, | 6 =1,X,)Pr(6, = 1) — H(S, | Xy)

(
hXy) —h(X, — X; | 6: = 0, X3)

R(D) < 7P 2 Y
To prove (2) we will need the following data-processing —h(X¢ | 0 =1,X;)D — %
inequality whose proof can be foundAin [CT]. © R 1
Lemma 3.1:Let X — V — W — X be a Markov chain > h(Xy) - WXy —Xi | 6:=0)— h(X¢)D — 3
thenI(X; X) < I(V;W). @ )
We can generalize our encoder and decoder by modelling them > h(X;) — log(Kqe?) — h(X;)D — -
as stochastic kernels. Deterministic encoders and decoders can %
be modelled as stochastic kernels that are Dirac measures. = h(A'X()(1 — D) — log(Kqe®) — 3
Then for any encode®(V|z) and decoderf’(fﬂw) such © o1
that the resulting joint distributio® (X, V, W, X) satisfies the = (1-D)(tlog|A] + h(Xo)) — log(Kqe®) — 5

distortion boundE(d(X, X)) < D we have: ) L _
where (a) follows becausg is a deterministic function ok

R(D) = inf I(X; X) aant. Point (b) follows becausé; is a binary value ran(_jom
EP(;;(}@) b variable whose discrete er}t_rop.y cannot be larger @dﬁo[nt
. (c) follows because conditioning reduces entropy. Point (d)
< I(X5X) follows becausé| X; — X;||» < e and the uniform distribution
< I(V; W) maximizes the continuous entropy over all random variables
< sup I(V; W) with bounded support. Point (e) follows becauged! X) =
P(V) tlog |A| + h(Xo). (See the appendix.)
= P The lower bound is independent & X;|z,). Hence
Thus we have shown (2). More generally we will want to Ri(D) = P(}gfm)I(X“Xt)
reconstruct the sourcéX by using the channell’ times
instead of just once. In this cas¥ — (Vg,...,Vr—1) — 2 t(1-D) Z log |A(A4)]
(Wo,...Wp_1) — X forms a Markov chain. Thus (4)
I(X;X) < I(VTfl’WTflg and a necessary condition for + <(1 — D)A(Xo) — log(Kae?) — 1> )
reconstruction is?(D) < C2P 2

The following technical lemma gives a lower bound on thg
rate distortion function for reconstructing, = A*X, attime  For any given channel defir@€®@P = lim infy_ o, LS
t under the distortion measurté(z, 7). We now present our necessary conditions for almost sure
Lemma 3.2:Assume X, has densityp(X,) with finite observability and stabilizability for general channels.
differential entropy h(X,). Let R{(D) represent the rate Proposition 3.2: For system (1) a necessary condition on
distortion function for the sourceX; = A'X, under the the channel capacity for almost sure asymptotic observability

distortion measuré(x, &). Then is ¢cap > > a4y max{0, log [A(A)[}.
Proof: Assume that there exists an encoder and decoder such
R{(D) > t(1-D) Z log [A(A)] that system (1) is almost surely asymptotically observable.
A(4) As in proposition 3.1 of [TM1] we see that, possibly after
a1 a coordinate transformation, the matrk can be written in
+ ((1 - D)h‘(XO) - IOg(KdG ) - 2) the form
As
where K4 is the constant in the formula for the volume of a [ Ay ]

d—d|men.5|onal sphere. . . . where theA, block corresponds to the stable subspace (that
) _Proqf. _Let_&t = d°(Xy, Xp). _Let _P(Xt’Xt) pe _any subspace corresponding to the eigenvaluesAothat are
joint distribution such that the distortion constraint is meEtrictIy inside the unit circle) and thel, block corresponds

E (de(XnXt)) = Pr(||[X: — X¢[l2 > €) < D. Hence the tg the marginally stable and unstable subspace (that subspace
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corresponding to the eigenvalues 4fthat are either on the where
unit circle or outside the unit circle.)

Let II; represent the projection onto the stable subspace.
Fix an arbitrary control sequendé/;}. Then X; = A* X, +
a; Whereq, = Z;;}J A*=1=i BU;. For any control sequence
we havelim;_, II;(X; — az) = 0. Thus knowledge of the
control signals alone is enough to estimate the projection of the P (

T

t—1
@ (Up, ..., Up—1) = =Y _ A" BU;.
1=0

Almost sure asymptotic stabilizability implies that for aay
there exists &'(¢) such that

state onto the stable subspace. Thus, without loss of generality,
we can restrict our attention td matrices that contain only
unstable eigenvalues. We can viewa; as a reconstruction ofd’X, with dis-

By almost sure asymptotic observability we know that folortion E (d°(A'Xy,a;)) < e. By proposition 3.2 a nec-
anye > 0 there exists &'(¢) such that the erroE, = X,— X, essary condition to achieve this distortion &P >
satisfies >x(a) max{0,log [A(A)[}. O

sup || X2 > 6) <e.

t>T(e)

In the previous proposition we interpreted the follow-
Pr (gl;p | Eell2 > 6) se ing function of the control signalse;(Ug,...,Ui—1) =
=T — 17 At1-iBU;, as a reconstruction oft’X,. We can
Thus fort > T'(¢) we have view a particular sequence of control signals as a “codeword”
in a reconstruction codebook [CT].
E (de(Xt,Xt)) In proving the necessary conditions above we did not need

. . to explicitly describe the encoder, decoder, and controller nor
0 x Pr(|X; — Xill2 < €) + 1 x Pr([|X¢ — Xifl2 > €) did we use the assumption of separation between the observer

< e and the controller. Hence the conditions hold independently

o ) of the choice of these components. In the next section we

Then by the data processing inequality and lemma 3.2 they 1ovide explicit constructions of the encoder, decoder, and

channel capacity and rate distortion function must satisfy fafqjler that can achieve almost sure asymptotic observabil-

all t > T(e): ity and stabilizability for the erasure channel.

1 _cap
Tt

1 €
; > ;Rt(e) IV. ACHIEVABILITY RESULTS

> (1—¢) Z log |A\(A)| In this section we first quickly review our achievability
results from [TM1] and then treat control over an erasure
1 1 channel.
+- ((1 — €)h(Xo) — log(K4e?) — ) Recall that the encoder at timeis a map¢&, that takes
t 2 (Yt V=1 U'=1) +— V,. In this case the encoder knows the
Hence past states, past channel input symbols, and past controls. In
1 our companion paper we distinguished between two different
CcCP —  fiminf - AP encoder classes: one where the encoder observes the control
t—oo t t . .
signals, calledencoder class ,1and one where it does not,
called encoder class 2TM1]. In this paper we restrict our
attention to the situation where the encoder observes the
control signals being applied to the plant.
+1 <(1 — €)h(Xo) — log(Kae?) — 1)] Often times the rate condition for the noiseless digital
t 2 channel will not be an integer. We can achieve an average rate
= (1—¢) Z log [A(A)|. by employing a time-sharing scheme as discussed in [TM1].
AA) Hence the statement “a rate can be achieved” should be
) o interpreted to mean a fixed rate in the cdgds an integer
Slgge ¢ can be chosen arbitrarily small we segnq an average rate in the caBeis a not an integer. We
ceap =z Yaalog|A(4)] and, if we reintroduce repeat propositions 5.3 and 5.4 of [TM1] here:
Acamatrlces with some stable eigenvalues, we getproposition 4.1: For system (1) with 4, C') an observable
P> 37, 4y max{0, log |A(A)[}. O pair a sufficient condition for asymptotic observability over a
Proposition 3.3:For system (1) with(4,B) a stabiliz- noiseless digital channel i > 3, ,, max{0,log|A(A)|}.
able pair a necessary condition on the channel capats, system (1) with(4, C') an observable pair an@4, B) a
ity for almost sure asymptotic stabilizability i€“#P > giapilizable pair a sufficient condition on the rate for asymp-
Z,\(A) max{0, log [A(A)[}. totic stabilizability over a noiseless digital channel iis >
Proof: Assume there exists an encoder, decoder, and C%\/\ oy max{0,log [A(A)[}.
troller such that the system (1) is almost surely asymptoticalye will need the following technical lemma 5.1 of [TM1]:
stabilizable. For a given control sequeriég Uy, ...,U; 1 we Lemma 4.1:Let A be a stable matrix. LeB, be a set of
have matrices such thatB;|| < L < oo andlim; .. || B:|| = 0.
X = AtX() — at(U(), ceey Utfl) Let S; = Zf;é At_l_iBi. Thenlimt*,oo ||StH =0.

A(A4)

Y

W%HPQZMWM
A(A)
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From section 3 we know that the Shannon capacity of arhis result can be found in any standard text on large devia-
erasure channel with erasure probabititpver?’ channel uses tions. See for example [DZ]. Now
is Cgap = (1 — a)TR. At each time step this channel will
with probability 1 — o deliver a “packet” of sizez bits and  E(1og |a|F) = alog |a|+ (1—a) log la| = log |a|— (1—)R.
with probability o drop that “packet.” 2R

From proposition 3.2 we know a necessary condition fi
almost sure asymptotic observability (3P = (1 — a)R >
> x4y max{0, [log A(4)[}. Hence we require a packet size o{
at least

log |a|

l—a *

In the vector case the stochastic difference equation takes
he formL(¢t + 1) = YFg(¢t)L(t) where

0IrhusE(log |a|F') is negative if and only ifR >

1
R> —— max{0, |log A(A)|}. Q if I =diag1,...,1
1_%%:) {0 oAt P(FR(“):{ I—a if Flﬁ(t)E:(thiag(;a‘glgl,...,2)—Rd)

Now we examine sufficiency. To that end we will extend 4 T is described in section 4 of [TM1]. Sinc&(0) is

the erasure channel model to include acknowledgemens,,nqed we need only show tHEK —. TFx(j) converges to
Specifically the decoder will feed back to the encoderﬁ I -

knowled t whether th ket d ; ro almost surely. SincE is upper triangular and’z(¢) is a
acknowledgment whether Ineé packet was erased or not. dom diagonal matrix we see from the argument above that
acknowledgment feature is common in the TCP networ

. . ch eigenvalue of['_{, TFx(j) converges to zero almost
protocol. The encoder then knows what information has been g 1o log%(j) g

delivered to the decoder. Hence, in the language of [TMzjUrely if and only ifz; > £l for eachi = 1, ey @ O
we say that the encoder and decoder are equi-memory. Bel?rop95|t|0n 4.3:Given an erasure channel with erasure
cause the erasure channel is memoryless, acknowledgeni$APability o and feedback acknowledgments the packet size
feedback cannot increase the channel capacity [CT]. HerGe > Toa 2ox, max{0,[logA(A)} is sufficient to ensure
the necessity condition above continues to hold for erasi#n0st sure asymptotic stabilizability.
channels with acknowledgement feedback. We discuss how td’roof: Let K" be a stabilizing controller, i.eA + BK is
relax this acknowledgment feature at the end of this sectioftable. Apply the certainty equivalent controllgf = KX,

For simplicity we consider the system (1¥;.1 = AX; + where X, is the decoder’s state estimate. As beforeelet=

BU,, with full state observation’ = I, at the encoder. The Xt — Xt. Then

partially observed case can be treated in the manner described 1
in [TM1]. Xy =(A+BK)'Xo - Y (A+ BK)"" '/ BKe;
Proposition 4.2:Given system (1), a bound on =0

Ag, and an erasure channel with erasure probability
a and feedback acknowledgements the packet sizeSince A + BK is stable the first addend in the above
R > ﬁ ZA(A) max{0, | log A\(4)} is sufficient to ensure equation goes to zero almost surely. By proposition 4.3 we
almost sure asymptotic observability. know that the state estimation error converges to zero almost
Proof: We first treat the scalar cas&;,; = aX;+bU,. Let surely:lim; . [e:|| = 0 a.s. Hence by lemma 4.1 the second
E,=X,—X,andEy = X, € A C [~ Lo, Lo). At time t let addend goes to zero almost surély.
L, represent the box that the error lives ifl; € [— Ly, Ly]. Now we consider the case when there are process distur-
We will construct a scheme such thaf — 0 almost surely bances:
and henceF; — 0 almost surely.
The decoder feeds back acknowledgments to the encoder. Xt+1 = AX¢ +BU+Z;, Yi=X;, t>0 (3)
Hence the encoder can compute the decoder’s uncertainty set
[~ L;, L;]. At time ¢ + 1 the encoder partitions the intervalVNerellZllz < D.
(—la|L, |a|L] into 28 equal sized regions and sends the Proposition 4.4:Given system (3), a bound on the

index of that region across the channel. If the erasure chanflel @nd an erasure channel with erasure probabiity
does not drop the packet theln,, — ';%'Lt. If the packet and feedback acknowledgements the packet ske >

is dropped thenL,.; = |a|L;. This can be described byﬁ >_x, max{0, [log A(A)} is sufficient to ensure that the

the stochastic difference equatiofiy,; = |a|F;L; where state estimation error is bounded almost surely.

the random variables’, are IID with common distribution: ~ Proof: We first treat the scalar cas& ., = aX;+bU;+Z;.

Pr(F,=1)=a andPr(F, =2"%) =1—q. Assume thatFy = X € [— Lo, Lo]. At time ¢ let L; be such
Since Ly = Ly [['—.|a|F; we need to show that that £, € [-L,, L,]. We will construct a scheme such that the

§=0 :
]_[;i;(l) la|F; — 0 almost surely. By the strong law of IargesequenCEL‘ is bounded almost surely.

numbers we know! 3°'~ log|a|F; — E(log|a|F) almost
surely.
If E(log|a|F) < 0 then

Just as in proposition 4.3 the encoder can compute the
decoder’s uncertainty st L;, L;]. If the erasure channel does
not drop the packet at timethen L, ; = 'Q%‘Lt + D. If the
packet is dropped theh;,; = |a|L; + D. This is described
t—1 ) by the stochastic difference equation:
H la|F; = 2t(c TjzologlalFy) _, g g,
=0 Liyy = |a|FiLy + D
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where the random variables; are [ID with common distri- state estimate. Assume that at timel the encoder knows the
bution: Pr(F; = 1) = a andPr(F; =27 ) =1 — a. Now decoder’s state estimatél; ;. At time ¢ the decoder’s state
) 1 estimate, based oX,;_; and the channel message, can take
- one of two values depending on whether there was an erasure
LOHMF’ +Z H lal 5 ) D or not. Hence the control/; can take one of two values.
The encoder, by observing; and using its knowledge of the
By proposition 4.3 we know that i > log Ial then the first control law K, can determine whether an erasure has occurred

addend converges to zero almost surely. 'We need to show a0t and hence can determine the decoder’s estintate
the second addend converges almost surely to a finite limitf hus the encoder can compute the decoder’s estimate at each

First note thaty ‘") (H. |a|F») has the same dis- M€ Step. .
I 1 Scenario 2: Here we assume that the controller adds sig-
tribution as >°.", (HJ —it1 |a|F) . Choose ¢ so that nalling information,3;, to the control signalt/; = K X; + 3.

E(log|a|F) + 6§ < 0. By the strong law of large numbersThen

i=0 \j=i+1

we have t—1
o L Xy =(A+BK)'Xo - Y (A+ BK)"""/B(Ke; - 3;).
lim sup (H |a|F> = limsup 91 Xi5' logalFi g=0
T—oo \j=0o T—oo By lemma 4.1, if lim;_..8 = 0 then the sum
< 9(E(oglalF)+5) limy o0 Z;;})(A + BK)'="=1Bg; = 0 and hence does not

effect the long term behavior of the state. We now show how
to chooses;. Fix an integerM and assume that the controller
Hence, by applying Cauchy’s root criterion, we see that theows if an erasure has occurred or not. Let
serieslim; ... Y1, (H;;}J \a|Fj) converges almost surely. MUK X, |yonie if erasure

For the vector case, we know from proposition 5.2 of: —{ 9=Mt| KX, |y s +2-Mtones(m)  if no erasure
[TM1], that the stochastic difference equation takes the form
where| K X, |, is a{0,1}™-valued vector that contains the

< 1 almost surely.

} coefficient of2—AMt in the component-wise binary expansion
L(t+1) = TFR(t)L(t) + D | . of the vectorK X; and onegn) is them—dlmensmnal.vector
- : of all ones. Note tha{3; — 0. The controller applies the
1 control U; = KX; + 0, to the plant. In worddJ; replaces

the coefficient of2~** in the binary expansion ok X; by a
vector of all zeroes or all ones depending on whether there was
P(Fp(t)) = { a if Fp(t) =diagl,..., 1) an erasure or not. The encoder observes the control applied.
l—a if Fp(t)=diag2~",...,27 ) Thus it can determine the coefficient &f »* in the binary
As in the scalar case we need to show that the product expansion olJ;. Hence the encoder will know if an erasure has
occurred or not. Thus the encoder can compute the decoder’s
Gt S el S estimate at each time step.
dim 1T Fr() Neither scenario is completely satisfactory. The first case
=0 \j=0 assumes the encoder knows the control policy. The second case
o ; is not robust if there is noise on the channel connecting the
converges almost surely. Sindeis upper triangular ande(t) ntroller to the plant. But both cases show that the necessary

is a random diagonal matrix we see from the argument abov’ giti ted i 3.9 and 3.3 tight
that thls series converges if and onlyRf > logM [ for each CONAitions presente In propositions an are tight even

i = . d. See theorem 1.1 of [BP] and [Iges] for morefor scenarios without explicit acknowledgement feedback.
detaﬂs.D
In propositions 4.2-4.4 we assumed that there exists ac- V. CONCLUSION

knowledgement feedback from the decoder to the encoderin this paper we have been concerned with almost sure
Relaxing this assumption is in general difficult. There ar@asymptotic observability and stabilizability. Sahai, in [Sa],
though, a few scenarios where we do not need an expliffta?], treats the case of mean-square observability. larys
feedback acknowledgement. We discuss two here. Both requiree capacityframework he presents channel capacity results
signaling the occurrence of an erasure via the control signal that ensure mean-square observability. In general the capacity
In this way the control takes on a “dual effect:” that of satissonditions are different under the almost sure and the mean-
fying the control objective and of helping the encoder/decodsquare convergence criteria.
estimate the state. This signalling will ensure that the encodeDepending on the control application, one may prefer an
continues to track the decoder’s estimate of the state. almost sure convergence criteria or a mean-square convergence
Scenario 1: Here we assume that the encoder knows tireria. In the former one is interested in finding a chan-
control policy K whereU; = K X,. We will prove using in- nel capacity so that almost all realizations of the system'’s
duction that the encoder can compute the decoder’s estimatéajectories are typical. And in fact with probability one
each time step. At time zero the encoder knows the decodealk realizations will satisfy the control objective. Atypical
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realizations, also called large deviations excursions, can ocolm) If Z = f(X) whereZ is discrete therfZ(Z | X) = 0.

but with probability approaching zero. If in addition, one(d) I(X;Z |Y)=I(X,Y;2) - I(Y;Z)

wants to penalize the atypical trajectories by the size of thefe) X — Y — Z forms a Markov chain if and only if
large deviation excursion then the mean-square formulation I(X;Z |Y)=0.

is appropriate. The fact that one gets different results underrhere are two extremal properties that will be important to
the almost sure convergence criteria and the mean-squgeif X is a discrete random variable taking dfi values then
convergence criteria is a generic property of the multiplicativg(X) < log M. If X admits a density with bounded support

law of large numbers [DZ]. A thenh(X) < log (volumgA)) [CT].
In this paper we examined linear systems with a commu-
nication channel connecting the plant to the controller. We ACKNOWLEDGMENT
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ture research directions include generalizing the achievabil
results to more general classes of channels and analyzing
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If X is a discrete random variable then its entropy is defined
as:

H(X) ==Y P(X =u;)log P(X = ;)
and its conditional entropy is defined as:

H(X|Y) = — / (Z P(X = 2,ly) log P(X = :ci|y>> pldy).

If X is a random variable admitting a densipy, then its
differential entropy is defined as:

h(X) = —/Px(l‘) log px (x)dx

and its conditional differential entropy is defined as:

nexiy) = - ( [t 1ong|y<x|y>da:) p(dy).

The following useful properties can be found in [CT]:
(@ I(X;Y)>0andI(X;Y) =
H(Y)—-H(Y|X) if Y is a discrete random variable
i h(Y) — h(Y|X) if Y admits a density for each
his implies conditioning reduces entropy.

(b) If X is a vector valued random variable admitting a
density thenh(AX) = h(X) + log |A| where|A4| is the
absolute value of the determinant af



