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Abstract— Communication is an important component of dis-
tributed and networked controls systems. In our companion
paper we presented a framework for studying control problems
with a digital noiseless communication channel connecting the
sensor to the controller [TM1]. Here we generalize that frame-
work by applying traditional information theoretic tools of source
coding and channel coding to the problem. We present a general
necessary condition for observability and stabilizability for a
large class of communication channels. Then we study sufficiency
conditions for Internet-like channels that suffer erasures.

Index Terms— Linear control, Communication, Distributed
systems, Networked control

I. I NTRODUCTION

Communication is an important component of distributed
and networked controls systems. A complete understanding of
the interaction between control and communication will need
to use tools from both control theory and information theory.
In our companion paper we presented a framework for study-
ing control problems with a digital noiseless communication
channel connecting the sensor to the controller [TM1]. Here
we generalize that framework by examining noisy communi-
cation channels. We apply the traditional information theoretic
tools of source coding and channel coding to the controls
problem. See [TM1] for a review of the relevant previous
literature.

Here we study linear, discrete time, control problems with
a noisy communication channel connecting the sensor to the
controller. We view the initial condition and the process
disturbances as the source. The job of the encoder and decoder
is to transmit information about this source across the noisy
channel in a causal, recursive manner. We apply the tools of
information theory [CT] to determine the minimum channel
capacity needed to almost surely asymptotically observe and
stabilize the system. Specifically we provide a general neces-
sary condition on the channel capacity needed to achieve the
control objectives. We then show that this capacity condition
is sufficient for erasure channels.

In section two we present our problem formulation and
introduce the general channel model. In section three we
present our necessary conditions. In section four we present
sufficient conditions for observability and stabilizability over
Internet-like channels that suffer from erasures.
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II. PROBLEM FORMULATION

Consider the following linear time-invariant system:

X0 ∈ Λ0, Xt+1 = AXt +BUt, Yt = CXt, ∀t ≥ 0 (1)

where{Xt} is aRd-valued state process,{Ut} is aRm-valued
control process, and{Yt} is aRl-valued observation process.
We haveA ∈ Rd×d, B ∈ Rd×m , and C ∈ Rl×d. The
initial position,X0, is distributed according to the probability
density p(X0) with support on the open setΛ0 ⊆ Rd and
finite differential entropyh(X0). See Figure 1.
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Channel: The channel input and output alphabets are de-
noted by V and W respectively. LetV t .= (V0, ..., Vt).
The channel is modelled as a sequence of stochastic ker-
nels{P (Wt | vt, wt−1)}. Specifically for each realization of
(V t,W t−1) = (vt, wt−1) the conditional probability ofWt

given (vt, wt−1) is denoted byP (Wt | vt, wt−1). At time t
the encoder produces a channel input symbolVt = vt and the
channel outputs the channel output symbolWt according to
the probabilityP (Wt | vt, wt−1). Some typical examples of
channels include:

• Noiseless digital channel with rateR
The channel input and output alphabets are the same:
V = W. The alphabet size is|V| = 2R where R is
called therate of the channel. The channel is noiseless
and memoryless:

p(Wt | vt, wt−1) =
{

1 if Wt = vt

0 if Wt 6= vt

This is the channel we examined in our companion
paper [TM1].

• Delayed noiseless digital channel with delay∆
This is a noiseless digital channel with delay∆ (∆ is a
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nonnegative integer):

p(Wt | vt, wt−1) =
{

1 if Wt = vt−∆

0 if Wt 6= vt−∆

• Erasure channel with erasure probability α
The channel input alphabet has size|V| = 2R. The
channel output alphabet isW = V ∪{ erasure symbol}.
The channel is memoryless with erasure probabilityα ∈
[0, 1]:

p(Wt | vt, wt−1) =





1− α if Wt = vt

α if Wt = erasure symbol
0 else

Thus with probabilityα the packetof R bits is erased.
This channel is often used as a simplified model of packet
loss on Internet-like channels.

• Memoryless Gaussian channel with powerρ
The channel input and output alphabets are the real line:
V = W = R. The channel is memoryless with powerρ:

Wt = Vt + Nt

whereNt is a Gaussian random variable with mean zero
and variance1. The input symbolVt satisfies the power
constraint:E(V 2

t ) ≤ ρ. This channel is often used as a
simplified model of a wireless channel.

A. Information Pattern

The control problems we look at involve the design of
an encoder, decoder, and controller. Just as in [TM1] we
specify the information pattern [Wit] of each component. The
difference here is the addition of a more general channel.

a) Encoder:: The encoder at timet is a map

Et : Rl(t+1)×Vt×Rmt → V taking (Y t, V t−1, U t−1) 7→ Vt.

b) Decoder:: The decoder at timet is a map

Dt : Wt+1 × Rmt → Rd taking (W t, U t−1) 7→ X̂t.

The output of the decoder is an estimate of the state of the
plant.

c) Controller:: The controller at timet is a map

Ct : Rd → Rm taking X̂t 7→ Ut.

Note that we are assuming the controller takes as input only the
decoder’s state estimate. Hence we are assuming a separation
structure between the decoder and the controller.

III. N ECESSARYCONDITIONS

Here we examine observability and stabilizability over
general communication channels. See the appendix for back-
ground material on information theory.

Definition 3.1: Let the error be Et = Xt − X̂t where
X̂t is the state estimate. System (1) isalmost surely asymp-
totically observableif there exists a control sequence{Ut}
and an encoder and decoder such that the state estimation
error ‖Et‖2 → 0 almost surely. System (1) isalmost surely
asymptotically stabilizableif there exists an encoder, decoder,
and controller such that‖Xt‖2 → 0 almost surely.

In [TM1] we provided necessary rate conditions for the noise-
less digital channel under the stronger conditions of asymptotic
observability and asymptotic stabilizability (as opposed to the
almost sure version of the definition given above.) We repeat
propositions 3.1 and 3.2 of [TM1] here:

Proposition 3.1:A necessary condition on the rate for
asymptotic observability isR ≥ ∑

λ(A) max{0, log |λ(A)|}.
A necessary condition on the rate for asymptotic stabilizability
is R ≥ ∑

λ(A) max{0, log |λ(A)|}.
Our goal is to determine properties of the channel that

ensure almost sure asymptotic observability and stabilizability
for general channels. To that end we need a measure of channel
quality. Shannon’s channel capacity turns out to be the correct
measure.

Channel Capacity:Given a channel{P (Wt | vt, wt−1}, the
Shannon capacityover a time horizon of lengthT is defined
as the supremum of the mutual information over all channel
input distributionsP (V T−1). Specifically

C
cap
T = sup

P (V T−1)

I(V T−1; WT−1)

whereI(·; ·) is the mutual information [CT]. (See the appendix
for a review of mutual information.) Here time starts at zero
henceV T−1 = (V0, ..., VT−1). We list the channel capacity
for the channels described above:

• Noiseless digital channel with rateR: C
cap
T = TR.

• Delayed noiseless digital channel with delay∆:
C

cap
T = (T −∆)R.

• Erasure channel with erasure probability α: C
cap
T =

(1− α)TR.

• Memoryless Gaussian channel with powerρ: C
cap
T =

T
2 log(1 + ρ). Here the supremization in the definition
of Shannon capacity is over allP (V T−1) such that
E(V 2

i ) ≤ ρ, ∀i.
Rate-Distortion: As we have seen in [TM1] we need to

be able to transmit information about the initial condition to
the decoder and controller. One way to measure how much
information is needed to reconstruct the initial condition to
some distortion fidelity is given by the rate distortion function.

Let the sourceX have distributionP (X). Let d(x, x̂)
be a distortion measure. Here a distortion measure is any
nonnegative function that measures the relative fidelity in
reconstructingx by x̂. Given a sourceP (X) therate distortion
function is defined as the infimum of the mutual information
over all channels,P (X̂|x), that satisfy the distortion condi-
tion [CT]:

R(D) = inf
P (X̂ | x)

{
I(X; X̂) such that E

(
d(X, X̂)

)
≤ D

}
.

Note that the expectation is taken with respect to the joint
measureP (x, x̂) = P (x̂|x)P (x).

We will find the following parameterized family of distor-
tion measures useful in determining conditions for almost sure
observability and stabilizability:

dε(x, x̂) .=
{

0 if ‖x− x̂‖2 ≤ ε
1 if ‖x− x̂‖2 > ε

whereε > 0.
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This choice of distortion measure will allow us to compute the
probability thatX andX̂ are farther thanε apart. Specifically
E

(
dε(X, X̂)

)
= Pr(‖X − X̂‖2 > ε).

Data-Processing Inequality:The traditional information
theoretic setup involves a sourceX that we wish to transmit
over a channelP (W |v) and produce a reconstruction̂X
satisfying some fidelity criterion. We have discussed both the
rate distortion function and the Shannon capacity.

A necessary condition for reconstructingX upto some
distortionD using the channel once is

R(D) ≤ C
cap
1 (2)

To prove (2) we will need the following data-processing
inequality whose proof can be found in [CT].

Lemma 3.1:Let X → V → W → X̂ be a Markov chain
thenI(X; X̂) ≤ I(V ;W ).
We can generalize our encoder and decoder by modelling them
as stochastic kernels. Deterministic encoders and decoders can
be modelled as stochastic kernels that are Dirac measures.
Then for any encoderP (V |x) and decoderP (X̂|w) such
that the resulting joint distributionP (X,V, W, X̂) satisfies the
distortion boundE(d(X, X̂)) ≤ D we have:

R(D) = inf
P (X̂|x)

EP (d(X, X̂)) ≤ D

I(X; X̂)

≤ I(X; X̂)
≤ I(V ; W )
≤ sup

P (V )

I(V ; W )

= C
cap
1 .

Thus we have shown (2). More generally we will want to
reconstruct the sourceX by using the channelT times
instead of just once. In this caseX → (V0, ..., VT−1) →
(W0, ...,WT−1) → X̂ forms a Markov chain. Thus
I(X; X̂) ≤ I(V T−1,WT−1) and a necessary condition for
reconstruction isR(D) ≤ C

cap
T .

The following technical lemma gives a lower bound on the
rate distortion function for reconstructingXt = AtX0 at time
t under the distortion measuredε(x, x̂).

Lemma 3.2:Assume X0 has densityp(X0) with finite
differential entropy h(X0). Let Rε

t(D) represent the rate
distortion function for the sourceXt = AtX0 under the
distortion measuredε(x, x̂). Then

Rε
t(D) ≥ t(1−D)

∑

λ(A)

log |λ(A)|

+
(

(1−D)h(X0)− log(Kdε
d)− 1

2

)

whereKd is the constant in the formula for the volume of a
d-dimensional sphere.

Proof: Let δt = dε(Xt, X̂t). Let P (Xt, X̂t) be any
joint distribution such that the distortion constraint is met:
E

(
dε(Xt, X̂t)

)
= Pr(‖Xt − X̂t‖2 > ε) ≤ D. Hence the

Pr(δt = 1) ≤ D. Then

I(Xt; X̂t)
= I(Xt ; δt, X̂t)− I(Xt; δt | X̂t)

= I(Xt ; δt, X̂t)−
(
H(δt | X̂t)−H(δt | Xt, X̂t)

)

(a)
= I(Xt ; δt, X̂t)−H(δt | X̂t)
= h(Xt)− h(Xt | δt, X̂t)−H(δt | X̂t)
= h(Xt)− h(Xt | δt = 0, X̂t) Pr(δt = 0)

−h(Xt | δt = 1, X̂t) Pr(δt = 1)−H(δt | X̂t)
(b)

≥ h(Xt)− h(Xt − X̂t | δt = 0, X̂t)

−h(Xt | δt = 1, X̂t)D − 1
2

(c)

≥ h(Xt)− h(Xt − X̂t | δt = 0)− h(Xt)D − 1
2

(d)

≥ h(Xt)− log(Kdε
d)− h(Xt)D − 1

2

= h(AtX0)(1−D)− log(Kdε
d)− 1

2
(e)
= (1−D) (t log |A|+ h(X0))− log(Kdε

d)− 1
2

where (a) follows becauseδt is a deterministic function ofXt

andX̂t. Point (b) follows becauseδt is a binary value random
variable whose discrete entropy cannot be larger than1

2 . Point
(c) follows because conditioning reduces entropy. Point (d)
follows because‖Xt− X̂t‖2 ≤ ε and the uniform distribution
maximizes the continuous entropy over all random variables
with bounded support. Point (e) follows becauseh(AtX0) =
t log |A|+ h(X0). (See the appendix.)

The lower bound is independent ofP (X̂t|xt). Hence

Rε
t(D) = inf

P (X̂t|xt)
I(Xt; X̂t)

≥ t(1−D)
∑

λ(A)

log |λ(A)|

+
(

(1−D)h(X0)− log(Kdε
d)− 1

2

)
.

¤
For any given channel defineCcap .= lim infT→∞ 1

T C
cap
T .

We now present our necessary conditions for almost sure
observability and stabilizability for general channels.

Proposition 3.2:For system (1) a necessary condition on
the channel capacity for almost sure asymptotic observability
is Ccap≥ ∑

λ(A) max{0, log |λ(A)|}.
Proof: Assume that there exists an encoder and decoder such

that system (1) is almost surely asymptotically observable.
As in proposition 3.1 of [TM1] we see that, possibly after
a coordinate transformation, the matrixA can be written in
the form [

As

Au

]

where theAs block corresponds to the stable subspace (that
subspace corresponding to the eigenvalues ofA that are
strictly inside the unit circle) and theAu block corresponds
to the marginally stable and unstable subspace (that subspace



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, MONTH?? 2004 4

corresponding to the eigenvalues ofA that are either on the
unit circle or outside the unit circle.)

Let Πs represent the projection onto the stable subspace.
Fix an arbitrary control sequence{Ut}. ThenXt = AtX0 +
αt whereαt =

∑t−1
j=0 At−1−jBUj . For any control sequence

we havelimt→∞Πs(Xt − αt) = 0. Thus knowledge of the
control signals alone is enough to estimate the projection of the
state onto the stable subspace. Thus, without loss of generality,
we can restrict our attention toA matrices that contain only
unstable eigenvalues.

By almost sure asymptotic observability we know that for
anyε > 0 there exists aT (ε) such that the errorEt = Xt−X̂t

satisfies

Pr

(
sup

t≥T (ε)

‖Et‖2 > ε

)
≤ ε.

Thus for t ≥ T (ε) we have

E
(
dε(Xt, X̂t)

)

= 0× Pr(‖Xt − X̂t‖2 ≤ ε) + 1× Pr(‖Xt − X̂t‖2 > ε)
≤ ε.

Then by the data processing inequality and lemma 3.2 the
channel capacity and rate distortion function must satisfy for
all t ≥ T (ε):

1
t
C

cap
t ≥ 1

t
Rε

t(ε)

≥ (1− ε)
∑

λ(A)

log |λ(A)|

+
1
t

(
(1− ε)h(X0)− log(Kdε

d)− 1
2

)
.

Hence

Ccap = lim inf
t→∞

1
t
C

cap
t

≥ lim inf
t→∞


(1− ε)

∑

λ(A)

log |λ(A)|

+
1
t

(
(1− ε)h(X0)− log(Kdε

d)− 1
2

)]

= (1− ε)
∑

λ(A)

log |λ(A)|.

Since ε can be chosen arbitrarily small we see
Ccap ≥ ∑

λ(A) log |λ(A)| and, if we reintroduce
A matrices with some stable eigenvalues, we get
Ccap≥ ∑

λ(A) max{0, log |λ(A)|}. ¤
Proposition 3.3:For system (1) with(A, B) a stabiliz-

able pair a necessary condition on the channel capac-
ity for almost sure asymptotic stabilizability isCcap ≥∑

λ(A) max{0, log |λ(A)|}.
Proof: Assume there exists an encoder, decoder, and con-

troller such that the system (1) is almost surely asymptotically
stabilizable. For a given control sequenceU0, U1, ..., Ut−1 we
have

Xt = AtX0 − αt(U0, ..., Ut−1)

where

αt(U0, ..., Ut−1)
.= −

t−1∑

i=0

At−1−iBUi.

Almost sure asymptotic stabilizability implies that for anyε
there exists aT (ε) such that

Pr

(
sup

t≥T (ε)

‖Xt‖2 > ε

)
≤ ε.

We can view αt as a reconstruction ofAtX0 with dis-
tortion E (dε(AtX0, αt)) ≤ ε. By proposition 3.2 a nec-
essary condition to achieve this distortion isCcap ≥∑

λ(A) max{0, log |λ(A)|}. ¤
In the previous proposition we interpreted the follow-

ing function of the control signals,αt(U0, ..., Ut−1) =
−∑t−1

i=0 At−1−iBUi, as a reconstruction ofAtX0. We can
view a particular sequence of control signals as a “codeword”
in a reconstruction codebook [CT].

In proving the necessary conditions above we did not need
to explicitly describe the encoder, decoder, and controller nor
did we use the assumption of separation between the observer
and the controller. Hence the conditions hold independently
of the choice of these components. In the next section we
will provide explicit constructions of the encoder, decoder, and
controller that can achieve almost sure asymptotic observabil-
ity and stabilizability for the erasure channel.

IV. A CHIEVABILITY RESULTS

In this section we first quickly review our achievability
results from [TM1] and then treat control over an erasure
channel.

Recall that the encoder at timet is a mapEt that takes
(Y t, V t−1, U t−1) 7→ Vt. In this case the encoder knows the
past states, past channel input symbols, and past controls. In
our companion paper we distinguished between two different
encoder classes: one where the encoder observes the control
signals, calledencoder class 1, and one where it does not,
called encoder class 2[TM1]. In this paper we restrict our
attention to the situation where the encoder observes the
control signals being applied to the plant.

Often times the rate condition for the noiseless digital
channel will not be an integer. We can achieve an average rate
by employing a time-sharing scheme as discussed in [TM1].
Hence the statement “a rateR can be achieved” should be
interpreted to mean a fixed rate in the caseR is an integer
and an average rate in the caseR is a not an integer. We
repeat propositions 5.3 and 5.4 of [TM1] here:

Proposition 4.1:For system (1) with(A,C) an observable
pair a sufficient condition for asymptotic observability over a
noiseless digital channel isR >

∑
λ(A) max{0, log |λ(A)|}.

For system (1) with(A,C) an observable pair and(A, B) a
stabilizable pair a sufficient condition on the rate for asymp-
totic stabilizability over a noiseless digital channel isR >∑

λ(A) max{0, log |λ(A)|}.
We will need the following technical lemma 5.1 of [TM1]:

Lemma 4.1:Let A be a stable matrix. LetBt be a set of
matrices such that‖Bt‖ ≤ L < ∞ and limt→∞ ‖Bt‖ = 0.
Let St =

∑t−1
i=0 At−1−iBi. Then limt→∞ ‖St‖ = 0.
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From section 3 we know that the Shannon capacity of an
erasure channel with erasure probabilityα overT channel uses
is C

cap
T = (1 − α)TR. At each time step this channel will

with probability 1 − α deliver a “packet” of sizeR bits and
with probability α drop that “packet.”

From proposition 3.2 we know a necessary condition for
almost sure asymptotic observability isCcap = (1 − α)R ≥∑

λ(A) max{0, | log λ(A)|}. Hence we require a packet size of
at least

R ≥ 1
1− α

∑

λ(A)

max{0, | log λ(A)|}.

Now we examine sufficiency. To that end we will extend
the erasure channel model to include acknowledgements.
Specifically the decoder will feed back to the encoder an
acknowledgment whether the packet was erased or not. This
acknowledgment feature is common in the TCP network
protocol. The encoder then knows what information has been
delivered to the decoder. Hence, in the language of [TM1],
we say that the encoder and decoder are equi-memory. Be-
cause the erasure channel is memoryless, acknowledgement
feedback cannot increase the channel capacity [CT]. Hence
the necessity condition above continues to hold for erasure
channels with acknowledgement feedback. We discuss how to
relax this acknowledgment feature at the end of this section.

For simplicity we consider the system (1),Xt+1 = AXt +
BUt, with full state observation,C = I, at the encoder. The
partially observed case can be treated in the manner described
in [TM1].

Proposition 4.2:Given system (1), a bound on
Λ0, and an erasure channel with erasure probability
α and feedback acknowledgements the packet size
R > 1

1−α

∑
λ(A) max{0, | log λ(A)} is sufficient to ensure

almost sure asymptotic observability.
Proof: We first treat the scalar case:Xt+1 = aXt+bUt. Let

Et = Xt− X̂t andE0 = X0 ∈ Λ0 ⊆ [−L0, L0]. At time t let
Lt represent the box that the error lives in:Et ∈ [−Lt, Lt].
We will construct a scheme such thatLt → 0 almost surely
and henceEt → 0 almost surely.

The decoder feeds back acknowledgments to the encoder.
Hence the encoder can compute the decoder’s uncertainty set
[−Lt, Lt]. At time t + 1 the encoder partitions the interval
[−|a|Lt, |a|Lt] into 2R equal sized regions and sends the
index of that region across the channel. If the erasure channel
does not drop the packet thenLt+1 = |a|

2R Lt. If the packet
is dropped thenLt+1 = |a|Lt. This can be described by
the stochastic difference equation:Lt+1 = |a|FtLt where
the random variablesFt are IID with common distribution:
Pr(Ft = 1) = α andPr(Ft = 2−R) = 1− α.

Since Lt = L0

∏t−1
j=0 |a|Fj we need to show that∏t−1

j=0 |a|Fj → 0 almost surely. By the strong law of large
numbers we know1

t

∑t−1
j=0 log |a|Fj → E(log |a|F ) almost

surely.
If E(log |a|F ) < 0 then

t−1∏

j=0

|a|Fj = 2t( 1
t

Pt−1
j=0 log |a|Fj) → 0 a.s.

This result can be found in any standard text on large devia-
tions. See for example [DZ]. Now

E(log |a|F ) = α log |a|+(1−α) log
|a|
2R

= log |a|−(1−α)R.

ThusE(log |a|F ) is negative if and only ifR > log |a|
1−α .

In the vector case the stochastic difference equation takes
the formL(t + 1) = ΥFR(t)L(t) where

P (FR(t)) =
{

α if FR(t) = diag(1, ..., 1)
1− α if FR(t) = diag(2−R1 , ..., 2−Rd)

and Υ is described in section 4 of [TM1]. SinceL(0) is
bounded we need only show that

∏t−1
j=0 ΥFR(j) converges to

zero almost surely. SinceΥ is upper triangular andFR(t) is a
random diagonal matrix we see from the argument above that
each eigenvalue of

∏t−1
j=0 ΥFR(j) converges to zero almost

surely if and only ifRi > log |λi|
1−α for eachi = 1, ..., d. ¤

Proposition 4.3:Given an erasure channel with erasure
probability α and feedback acknowledgments the packet size
R > 1

1−α

∑
λA

max{0, | log λ(A)} is sufficient to ensure
almost sure asymptotic stabilizability.

Proof: Let K be a stabilizing controller, i.e.A + BK is
stable. Apply the certainty equivalent controllerUt = KX̂t

whereX̂t is the decoder’s state estimate. As before letet =
Xt − X̂t. Then

Xt = (A + BK)tX0 −
t−1∑

j=0

(A + BK)t−1−jBKej

Since A + BK is stable the first addend in the above
equation goes to zero almost surely. By proposition 4.3 we
know that the state estimation error converges to zero almost
surely:limt→∞ ‖et‖ = 0 a.s. Hence by lemma 4.1 the second
addend goes to zero almost surely.¤

Now we consider the case when there are process distur-
bances:

Xt+1 = AXt + BUt + Zt, Yt = Xt, t ≥ 0 (3)

where‖Zt‖2 ≤ D.
Proposition 4.4:Given system (3), a bound on the

Λ0, and an erasure channel with erasure probabilityα
and feedback acknowledgements the packet sizeR >

1
1−α

∑
λA

max{0, | log λ(A)} is sufficient to ensure that the
state estimation error is bounded almost surely.

Proof: We first treat the scalar case:Xt+1 = aXt+bUt+Zt.
Assume thatE0 = X0 ∈ [−L0, L0]. At time t let Lt be such
thatEt ∈ [−Lt, Lt]. We will construct a scheme such that the
sequenceLt is bounded almost surely.

Just as in proposition 4.3 the encoder can compute the
decoder’s uncertainty set[−Lt, Lt]. If the erasure channel does
not drop the packet at timet thenLt+1 = |a|

2R Lt + D. If the
packet is dropped thenLt+1 = |a|Lt + D. This is described
by the stochastic difference equation:

Lt+1 = |a|FtLt + D
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where the random variablesFt are IID with common distri-
bution: Pr(Ft = 1) = α andPr(Ft = 2−R) = 1− α. Now

Lt = L0

t−1∏

i=0

|a|Fi +
t−1∑

i=0




t−1∏

j=i+1

|a|Fj


 D.

By proposition 4.3 we know that ifR > log |a|
1−α then the first

addend converges to zero almost surely. We need to show that
the second addend converges almost surely to a finite limit.

First note that
∑t−1

i=0

(∏i−1
j=0 |a|Fj

)
has the same dis-

tribution as
∑t−1

i=0

(∏t−1
j=i+1 |a|Fj

)
. Choose δ so that

E(log |a|F ) + δ < 0. By the strong law of large numbers
we have

lim sup
T→∞

(
T−1∏

i=0

|a|Fi

) 1
T

= lim sup
T→∞

2
1
T

PT−1
i=0 log |a|Fi

≤ 2(E(log |a|F )+δ)

< 1 almost surely.

Hence, by applying Cauchy’s root criterion, we see that the
serieslimt→∞

∑t−1
i=0

(∏i−1
j=0 |a|Fj

)
converges almost surely.

For the vector case, we know from proposition 5.2 of
[TM1], that the stochastic difference equation takes the form

L(t + 1) = ΥFR(t)L(t) + D




1
1
...
1




where

P (FR(t)) =
{

α if FR(t) = diag(1, ..., 1)
1− α if FR(t) = diag(2−R1 , ..., 2−Rd)

As in the scalar case we need to show that the product

lim
t→∞

t−1∑

i=0




i−1∏

j=0

ΥFR(j)




converges almost surely. SinceΥ is upper triangular andFR(t)
is a random diagonal matrix we see from the argument above
that this series converges if and only ifRi > log |λi|

1−α for each
i = 1, ..., d. See theorem 1.1 of [BP] and [Kes] for more
details.¤

In propositions 4.2-4.4 we assumed that there exists ac-
knowledgement feedback from the decoder to the encoder.
Relaxing this assumption is in general difficult. There are,
though, a few scenarios where we do not need an explicit
feedback acknowledgement. We discuss two here. Both require
signaling the occurrence of an erasure via the control signalUt.
In this way the control takes on a “dual effect:” that of satis-
fying the control objective and of helping the encoder/decoder
estimate the state. This signalling will ensure that the encoder
continues to track the decoder’s estimate of the state.

Scenario 1: Here we assume that the encoder knows the
control policyK whereUt = KX̂t. We will prove using in-
duction that the encoder can compute the decoder’s estimate at
each time step. At time zero the encoder knows the decoder’s

state estimate. Assume that at timet−1 the encoder knows the
decoder’s state estimate:̂Xt−1. At time t the decoder’s state
estimate, based on̂Xt−1 and the channel message, can take
one of two values depending on whether there was an erasure
or not. Hence the controlUt can take one of two values.
The encoder, by observingUt and using its knowledge of the
control lawK, can determine whether an erasure has occurred
or not and hence can determine the decoder’s estimateX̂t.
Thus the encoder can compute the decoder’s estimate at each
time step.

Scenario 2: Here we assume that the controller adds sig-
nalling information,βt, to the control signal:Ut = KX̂t +βt.
Then

Xt = (A + BK)tX0 −
t−1∑

j=0

(A + BK)t−i−jB(Kej − βj).

By lemma 4.1, if limt→∞ βt = 0 then the sum
limt→∞

∑t−1
j=0(A + BK)t−i−jBβj = 0 and hence does not

effect the long term behavior of the state. We now show how
to chooseβt. Fix an integerM and assume that the controller
knows if an erasure has occurred or not. Let

βt =
{ −2−MtbKX̂tc2−Mt if erasure
−2−MtbKX̂tc2−Mt + 2−Mtones(m) if no erasure

wherebKX̂tc2−Mt is a{0, 1}m-valued vector that contains the
coefficient of2−Mt in the component-wise binary expansion
of the vectorKX̂t and ones(m) is them−dimensional vector
of all ones. Note thatβt → 0. The controller applies the
control Ut = KX̂t + βt to the plant. In wordsUt replaces
the coefficient of2−Mt in the binary expansion ofKX̂t by a
vector of all zeroes or all ones depending on whether there was
an erasure or not. The encoder observes the control applied.
Thus it can determine the coefficient of2−Mt in the binary
expansion ofUt. Hence the encoder will know if an erasure has
occurred or not. Thus the encoder can compute the decoder’s
estimate at each time step.

Neither scenario is completely satisfactory. The first case
assumes the encoder knows the control policy. The second case
is not robust if there is noise on the channel connecting the
controller to the plant. But both cases show that the necessary
conditions presented in propositions 3.2 and 3.3 are tight even
for scenarios without explicit acknowledgement feedback.

V. CONCLUSION

In this paper we have been concerned with almost sure
asymptotic observability and stabilizability. Sahai, in [Sa],
[Sa2], treats the case of mean-square observability. In hisany-
time capacityframework he presents channel capacity results
that ensure mean-square observability. In general the capacity
conditions are different under the almost sure and the mean-
square convergence criteria.

Depending on the control application, one may prefer an
almost sure convergence criteria or a mean-square convergence
criteria. In the former one is interested in finding a chan-
nel capacity so that almost all realizations of the system’s
trajectories are typical. And in fact with probability one
all realizations will satisfy the control objective. Atypical
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realizations, also called large deviations excursions, can occur
but with probability approaching zero. If in addition, one
wants to penalize the atypical trajectories by the size of their
large deviation excursion then the mean-square formulation
is appropriate. The fact that one gets different results under
the almost sure convergence criteria and the mean-square
convergence criteria is a generic property of the multiplicative
law of large numbers [DZ].

In this paper we examined linear systems with a commu-
nication channel connecting the plant to the controller. We
generalized the necessity conditions first presented in [TM1]
to general noisy channels. We then examined control over
Internet-like channels that suffer erasures. Two important fu-
ture research directions include generalizing the achievability
results to more general classes of channels and analyzing
erasure channels without acknowledgement feedback.

APPENDIX

The mutual information between two random variablesX
andY with distributionP (X,Y ) is defined as

I(X; Y ) .=
{ ∫

log dP
dQdP if P << Q

+∞ else

whereQ(x, y) = P (x)×P (y) and dP
dQ is the Radon-Nikodym

derivative. The mutual information can be seen as a measure
of the dependence betweenX and Y . Under the measure
Q the random variablesX and Y are independent. Note
that the mutual information is a function ofP (X, Y ) =
P (Y |x)P (X). In the capacity computation one supremizes
the mutual information over input distributionsP (X) and
in the rate distortion computation one infimizes the mutual
information over forward channelsP (Y |x) subject to the
distortion criterion.

If X is a discrete random variable then its entropy is defined
as:

H(X) .= −
∑

i

P (X = xi) log P (X = xi)

and its conditional entropy is defined as:

H(X|Y ) .= −
∫ (∑

i

P (X = xi|y) log P (X = xi|y)

)
p(dy).

If X is a random variable admitting a density,pX , then its
differential entropy is defined as:

h(X) .= −
∫

pX(x) log pX(x)dx

and its conditional differential entropy is defined as:

h(X|Y ) .= −
∫ (∫

pX|Y (x|y) log pX|Y (x|y)dx

)
p(dy).

The following useful properties can be found in [CT]:
(a) I(X; Y ) ≥ 0 andI(X; Y ) ={

H(Y )−H(Y |X) if Y is a discrete random variable
h(Y )− h(Y |X) if Y admits a density for eachx

This implies conditioning reduces entropy.
(b) If X is a vector valued random variable admitting a

density thenh(AX) = h(X) + log |A| where |A| is the
absolute value of the determinant ofA.

(c) If Z = f(X) whereZ is discrete thenH(Z | X) = 0.
(d) I(X; Z | Y ) = I(X, Y ; Z)− I(Y ; Z)
(e) X → Y → Z forms a Markov chain if and only if

I(X; Z | Y ) = 0.

There are two extremal properties that will be important to
us. If X is a discrete random variable taking onM values then
H(X) ≤ log M. If X admits a density with bounded support
Λ thenh(X) ≤ log (volume(Λ)) [CT].
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