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Abstract—There is an increasing interest in studying control
systems employing multiple sensors and actuators that are geo-
graphically distributed. Communication is an important compo-
nent of these distributed and networked control systems. Hence,
there is a need to understand the interactions between the control
components and the communication components of the distributed
system. In this paper, we formulate a control problem with a com-
munication channel connecting the sensor to the controller. Our
task involves designing the channel encoder and channel decoder
along with the controller to achieve different control objectives.
We provide upper and lower bounds on the channel rate required
to achieve these different control objectives. In many cases, these
bounds are tight. In doing so, we characterize the “information
complexity” of different control objectives.

Index Terms—Communication, distributed systems, linear con-
trol, networked control.

I. INTRODUCTION

N THIS PAPER, we study linear, discrete time, control prob-

lems under communication constraints. Communication is
an important component of distributed and networked control
systems. Hence, there is a need to understand the fundamental
relationship between how the control parts and the communica-
tion parts of the distributed system interact. A recent report on
future research directions in control listed understanding con-
trol over communication networks as a major challenge for the
controls field [10].

We examine observability and stabilizability under a commu-
nication constraint. The communication constraint is modeled
as a discrete-time, noiseless, digital channel connecting the
sensor to the controller. For each time step this channel is
capable of transmitting R bits without error. Our goal is to
determine the minimum rate required on the channel to achieve
our control objectives. In doing so, we characterize the “infor-
mation complexity” of different control objectives. This paper
presents a framework for treating communication issues in
control problems.

This task entails specifying what the encoder, decoder, and
controller, know and when they know it. This specification is
called the information pattern [19]. We distinguish between two
information patterns. In the first information pattern, we assume
that the encoder has access to the control signals being applied
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to the plant. This may occur, for example, when the encoder is
co-located with the plant. In the second information pattern, we
assume that the encoder is geographically separated from the
plant and hence observes the state, or output, but not the control
signals being applied. We discuss the important role different
information patterns can have on the control design.

We compute a lower bound on the rate required to achieve
the different control objectives. This lower bound is indepen-
dent of the information pattern in place and depends only on the
plant. Specifically we show that a necessary condition on the
rate for asymptotic observability and asymptotic stabilizability
in a linear, discrete time, system is

R > Z max{0,log |A(A)[}
A(4)

where the sum is over the eigenvalues of the A matrix; see (1).
This result relates the speed of the dynamics of the plant to the
information rate of the channel. In the case where the encoder
observes the control signals, the co-location case, we show that
for any rate larger than this lower bound there exists an en-
coder, decoder, and controller that achieves the control objec-
tive. Hence, this bound is also sufficient. We then discuss upper
bounds for systems where the encoder is geographically sep-
arated from the plant and, hence, does not have access to the
control signals.

Typical communication channels are noisy and have delays.
A complete understanding of the interaction between control
and communication will need to use tools from both control
theory and information theory. A necessary step in developing
such a theory requires understanding the interaction between
control and noiseless channels with bit rate constraints. This is
the case examined in this paper. In general, one is interested in
the relationship between control performance and communica-
tion rate. Understanding observability and stabilizability under
communication constraints is an important initial step toward
that larger goal.

In our companion paper, we extend these results [16] by
showing the strong connection between control and the tra-
ditional information theoretic problems of source coding and
channel coding. We present a general necessary condition for
observability and stabilizability for a large class of noisy com-
munication channels. Then, we study sufficiency conditions for
Internet-like channels that suffer erasures.

Our problem formulation was inspired by [5]. There they
formulated a linear quadratic control (LQC) problem under
a rate-constrained channel. They discussed the interactions
between coding, delay, and performance. The papers of Wong
and Brockett were also influential [20], [21]. They provide
conditions connecting the channel rate to the dynamics of the
system to insure stabilizability of the system. We strengthen
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and generalize these results. Specifically, we present necessary
and sufficient conditions on the channel for the multivariate
case. Furthermore, we examine the role different information
patterns have in determining the channel rate.

Elia and Mitter examined the stabilizability problem in the
case where the encoder is time invariant [ 7]. They use a Lyapunov
based synthesis scheme to design the underlying quantizers.
Our work differs in that we allow for time-varying encoders.
Liberzon and Brockett have also examined a Lyapunov based
design with time-varying encoders [4]. They give upper bounds
on the rate required to achieve stabilizability. A time-varying
coding scheme is also presented in [13]. In this paper, we not
only present bounds but also present conditions under which
these bounds are tight.

Nair and Evans give rate conditions for stabilizability of an
ARMA model [11]. In [12], they provide a rate condition sim-
ilar to ours for insuring convergence. In contrast, our formu-
lation allows us to analyze systems with process disturbances
and different information patterns. Baillieul presents sufficient
rate conditions for the multivariate case with a single input and
an A matrix with only real distinct eigenvalues [2], [3]. Here,
we present a general framework for analyzing the multivariate
state-space case with multiple inputs and arbitrary A matrix.
This framework allows us to prove necessary and sufficient rate
conditions, treat different information patterns, and design en-
coding/decoding schemes that can treat output observations and
are robust to process disturbances. Furthermore this framework
lends itself to the treatment of control over more complicated
communication channels as discussed in [16]. The work here
can be found in [14] and has appeared in preliminary form in
[15] and [17].

Here, are four observations that will motivate our analysis.

Observation 1: Why feedback?: If there is no uncertainty
in the initial position, no uncertainty in the plant dynamics, and
there are no process disturbances then one can achieve most
control objectives using an open loop controller. A closed-loop
controller for the same problem is often less complex to realize.
Furthermore, a closed-loop controller can more robustly deal
with the aforementioned uncertainties in initial position, plant
dynamics and process disturbances. Thus, the point of feedback,
if we bar complexity considerations, is to transmit from the plant
to the controller information about the uncertainty in the state
of the plant and the plant uncertainty itself that the controller
does not know. The question then becomes what information
is relevant and what communication scheme should be used to
transmit that information.

Observation 2: Full observation performance: If the obser-
vation mechanism is instantaneous and the communication link
is a lossless, infinite bandwidth, channel then we call the ob-
servation a full observation. We assume the control objective of
interest is achievable under full observation. Clearly, if an ob-
jective cannot be achieved under full observation it cannot be
achieved under the rate constrained observation. Equivalently,
if a control objective can be achieved under a rate constrained
observation then it can be achieved under full observation.

Observation 3: Number of control sequences: In a time
horizon T the decoder will receive one of at most 27 channel
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symbol sequences. If the encoder, decoder, and controller are
also deterministic then the number of different possible control
sequences in this time must be smaller than or equal to 277,
Intuitively, then a control objective under rate R can be achieved
only if we can approximate well the control sequences for the
full observation problem by one of only 27% control sequences.
Thus, in terms of the underlying quantization problem one may
think of quantization as living in the control sequence space.

Observation 4: State estimation error: The choice of
channel rate influences the level of state estimation error in
our observer. If the state estimation error increases with time
in an unbounded fashion there will come a point when we
can no longer satisfy the control objective. In this case, there
is essentially no useful feedback. Thus, unless the control
objective can be achieved via an open loop controller, i.e., a
controller without access to any feedback, we cannot hope
to achieve the control objective. Hence, in a rough sense, the
state estimation error should grow at a slower rate than the
state dynamics. We are interested in characterizing the largest
tolerable level of state estimation error that still insures that the
control objective is satisfied.

We conclude this introduction with a summary of the paper. In
Section II, we formulate the problem. In Section III, we provide
necessary conditions on the channel rate required to achieve ob-
servability and stabilizability. These bounds are independent of
the information pattern chosen. Our next objective is to provide
schemes that can achieve this bound. This depends heavily on
the choice of information pattern. In Section IV, we discuss en-
coders with different information patterns. We conclude Sec-
tion IV with an explicit quantizer construction and prove our
main technical lemma.

In Section V, we treat encoder class one. This is the class
where the encoder has access to the control signals. Here we
show that the lower bounds provided in Section III can be
attained. Specifically we provide a scheme that achieves the
control objectives. In Section VI, we examine encoder class
two. This encoder class has a more realistic information pattern.
The rates, though, required to achieve the control objectives
are larger than those in encoder class one. We conclude in
Section VII.

II. PROBLEM SETUP

We consider the following linear time-invariant system:

X0€A07 Xt_;,_l:AXt-l-BUt Y;:CXt VtZO

(1)
where { X;} is a R?-valued state process, {U;} is a R™-valued
control process, and {Y;} is a R!-valued observation process.
We have A € R™? B € R®™™ and C € R'*?. The initial
position Xy € Ag where Ay C R? is assumed to be an open set.
If C = I, where [ is the identity matrix, then we have full-state
observation at the encoder; see Fig. 1.

The communication channel is modeled as a noiseless dig-
ital channel that can transmit at each time step one of 27 sym-
bols denoted o € %, |X| = 2. Specifically at each time step
the channel can transmit without error R bits of information.

Throughout this paper, log refers to logarithm base 2.
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Fig. 1. System.

A. Information Pattern

The control problems we look at involve the design of an en-
coder, decoder, and controller. Here, we specify the information
pattern of each component. Let Xt = (X, ..., Xy).

1) Encoder: The encoder at time ¢ is a map

& : RIUHD « B x R™ — ¥ taking

(Yt o=t U™ =0y

In Section IV, we will discuss different restrictions on the avail-
able inputs to the encoder. The available inputs to the encoder
are commonly called the Information Pattern of the encoder
[19]. For example, the encoder may not have access to the past
controls.

2) Decoder: The decoder at time ¢ is a map

Dy : 2 x R™ — R? taking
(O't7Ut71) HXt.

The output of the decoder is an estimate of the state of the plant.
We discuss how this estimate is computed in Section IV.
3) Controller: The controller at time ¢ is a map

Cy : R? — R™ taking
Xt — Ut~

Note that we are assuming that the controller takes as input only
the decoder’s state estimate. Hence, we are assuming a separa-
tion structure between the decoder and the controller. We will
show that for encoders in encoder class one, to be defined in
Section IV, there is no loss of generality in making this separa-
tion assumption.

III. LOWER BOUNDS THAT ARE INDEPENDENT OF THE
INFORMATION PATTERN

We now examine necessary conditions on the channel rate
to insure observability and stabilizability. Note that the usual
algebraic conditions for observability, e.g., certain Grammians
having full rank, are still necessary but no longer sufficient. The
additional necessary conditions take the form of lower bounds
on the channel rate. These lower bounds will be universal in the
sense that they hold independently of the actual encoder, de-
coder, and controller used. They hold independently of the in-
formation pattern in place.! In Section V, we show that there

Note the analogy with Fano’s inequality used in converse theorems in infor-
mation theory [6]. Fano’s inequality holds independently of the actual encoder
and decoder used.
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exists an information pattern, described in the definition of en-
coder class one, such that these lower bounds can be achieved.
Thus, these lower bounds are tight.

A. Observability

The purpose of any good observer is to distinguish points in
the state—space. In a time horizon of 7', we have at most oTR
possible symbols arriving at the decoder. Thus, at time 7" we
must be able to approximate the state by one of at most 277
points.

Definition 3.1: Let the error be e, = Xy — Xt where Xt
is the state estimate. System (1) is asymptotically observable if
there exists an encoder and decoder such that the following hold
for any control sequence {U;}.

1) Stability: V € > 0, 36(€) such that || Xg||2 < 6(¢) implies

lletlle < €, Vit > 0.
2) Uniform attractivity: ¥ ¢ > 0,V ¢ > 03T (e, ¢) such that
| Xoll2 < 6 implies |let]|2 < €, ¥Vt > T(e,d).
Point one states that the error cannot grow without bound for
bounded X. The second point states that the error decreases to
zero uniformly in Xg. Uniform attractivity is defined for all 6.
Thus our definition of asymptotic observability is global.

Traditional definitions of observability state that given
enough time one can identify the initial condition exactly. Then
once you know the initial condition and the controls, you can
compute the state at any time in the future. In our case, at time
t we can only distinguish between 2% initial positions. Hence,
there will be a certain amount of error in our state estimate of
Xj. This error will propagate (due to the unstable modes of the
system) in our estimate of any future X;. It is for this reason
that we introduce this definition of asymptotic observability.

Now, we are prepared to give a necessary condition on the
rate required to achieve asymptotic observability. Let > A(A)
represent the sum over the eigenvalues of A. For a given set
Q C R? define the diam(Q) = sup, ,cq |z — yll2.

Proposition 3.1: A necessary condition for system (1) to be
asymptotically observable is & > 3, ;) max{0, log [A(4)][}.

Proof: Assume without loss of generality that the initial
uncertainty contains the bounded set 2y = {X : || X2 <
L} C Ag. Note, possibly after a coordinate transformation, that
the matrix A can be written in the form

[As AJ

where the A block corresponds to the stable subspace (that sub-
space corresponding to the eigenvalues of A that are strictly in-
side the unit circle) and the A, block corresponds to the margin-
ally stable and unstable subspace (that subspace corresponding
to the eigenvalues of A that are either on the unit circle or out-
side the unit circle.) Let II; represent the projection onto the
stable subspace.

Fix an arbitrary control sequence {U;}. Then, X; = A* X+
oy where oy = Zﬁ;é A'"=1=1 BU;. For any control sequence
we have lim;_ o II;(X; — ;) = 0. Thus, knowledge of the
control signals alone is enough to estimate the projection of the
state onto the stable subspace. Hence, without loss of generality,
we can restrict our attention to A matrices that contain only
marginally stable and unstable eigenvalues.
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The set of points that X; can take contains the following:
O = {X : X = A' Xy + o for some X, € QO} .

If the system is asymptotically observable then it must be the
case that Ve > 0and V Xy € Qg thereis a T'(e, L) such that for
t > T(e, L) we have ||e;]|2 < e. In particular this must hold for
€ < L. A lower bound on the rate can be computed by counting
the number of regions of diameter less than 2e it takes to cover
Q fort > T(e, L).

If the diameter of a set @ C R is less than 2¢ then the volume
of that set must be less than K ze? (where K is the constant in
the formula for the volume of a sphere in IR".) Thus, to cover €24
by regions of diameter 2¢ we need at least

1 log volume(£2;)

t g }(ded

log |det( A?)|volume(£2g)
Kged

>

01
t

R

KqL¢
}(déd

d, L
=) log|\(4)| + —log =

1 1
=7 log |det(A")| + 7 log

where a) follows from [1, Th. 10.38]. Note that since
e < L the term (d/t)log(L/e) is positive. Thus,
R > 30\4)max{0,log[A(A)[} is a necessary condition
for asymptotic observability. O

The following corollary shows that the rate bound in Propo-
sition 3.1 continues to be necessary to insure bounded error in
the case when there are additive process disturbances.

Corollary 3.1: Consider the case of bounded additive
process disturbances: X1 AX; + BU, + W, where
[Will2 < D. Therate R > 4 max{0,log |A(A)|} is nec-
essary to insure that the state estimation error lim sup,_, . ||et||2
is bounded.

Proof: As in Proposition 3.1, we can assume without loss
of generality that the initial uncertainty set contains the bounded
set Q9 = {X : || X]|l2 £ L} C Ay. Also, we can partition
the matrix A into the A; and A, blocks. Let II; represent the
projection onto the stable subspace.

Fix an arbitrary control sequence {U, }. Then, X; = A" X, +
t—1 4t—1—j t—1 4t—1—j
Y im0 AT T/ BW; + oy where oy = ). A'” 177 BU;. For
any control sequence, we have

lim sup ||, (X; — o) ||y
t—oo

t—1
= limsup [ [|[T A" L+ |[TL. ) A=) ||B||2D
t—oo =0 )
< 00.

Because the initial position X and the disturbances W; are
bounded knowledge of the control signals alone is enough to
insure that the error in the estimate of the projection of the state
onto the stable subspace remains bounded. Thus, without loss of
generality, we can restrict our attention to A matrices that con-
tain only marginally stable and unstable eigenvalues.
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The set of points that X; can take contains the following:

t—1
Q, = {X X =A'Xog+ > ATVIBW, + oy

=0

V Xo € Qo Wiz < D}.

Let Q210 = IX . X = A*X( + « for some X € 0} be the
set of points X; € (2; where all the disturbances are set to zero.

If there exists an encoder and decoder such that the estimation
error is bounded then there must be a § < oo and a T'(L) such
that ||e¢||2 < B fort > T(L). A lower bound on the rate can be
computed by counting the number of regions of diameter less
than 2/ it takes to cover §2; for ¢ > T'(L). Thus, we require a
rate of at least

1. volume(£2;)
>-log——
R > / og K7
3;) L volume(Z€10)
—t Kd[))d
b) d L
> 3 log )]+ §log
A(4)

where a) follows because Q27°"° C €, and b) follows from
Proposition 3.1. Note that (d/t) log (L/3) is bounded and be-
comes negligible as ¢t — oo. O

Note that in the preceding proposition the necessary condi-
tion only depends on the uniform attractivity condition and not
on the stability condition in the definition of asymptotic observ-
ability. Similarly, in the preceding corollary the necessary con-
dition only depends on the boundedness condition.

B. Stabilizability

In this section, we discuss stabilizability under a rate con-
straint. The lower bound uses a counting argument similar to
that given in Proposition 3.1.

Definition 3.2: System (1) is asymptotically stabilizable if
there exists an encoder, decoder, and controller such that the
following holds.

1) Stability: V e > 0, 36(¢) such that || Xg||2 < 6(¢) implies

[[X¢lle < e, ViE>0.
2) Uniform attractivity: ¥V e > 0, § > 03T (e, §) such that
| Xoll2 < & implies || Xy]|2 <€, ViE>T.
Point one states that the state cannot grow unbounded for
bounded Xj. The second point states that the state decreases
to zero uniformly in X.

Proposition 3.2: Assume (A, B) is a stabilizable pair. A nec-
essary condition for (1) to be asymptotically stabilizable is R >
ZA(A) max{0, log |A(A)[}.

Proof: As in Proposition 3.1, we can assume without loss
of generality that the initial uncertainty set contains the bounded
set Qg = {X : || X||2 € L} C Ap and that the matrix A has
only unstable and marginally stable eigenvalues.

For a given control sequence Uy, U1, . .., U;—1 we have X,
AtXo+ Zf;é At=1=iBU;. If the system is asymptotically sta-
bilizable then it must be the case that V¢ > 0 and V Xy €
o there exists a T'(¢, L) such that V ¢ > T(¢, L) we have
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| Xt|]2 < e. In particular this must hold for ¢ < L. For this
value of € define the sets I', parameterized by the control se-
quences Uy, ...,U;_1, to be

FUé_l = {X() . ||Xt||2 S 6}'

Note that X; depends linearly on Uy, ..., U;_1, hence, all the I"
sets are linear translations of each other. Thus, each I" set has the
same volume: volume(T') = |det A~*| K 4¢?. A lower bound on
the rate can be computed by counting how many I sets it takes

to cover 29. Now

1 volume(Qp)
Zlog —— Y
t volume(T")

1 KyL¢
|det A=t K ge?

= > oA + 1o ().

A(A)

R>

= log
;8

Since € < L the term (d/t)log(L/e) is positive. We may
conclude that R > 3, 4 max{0,log [\(A)[} is a necessary
condition for asymptotic stabilizability. O

IV. ENCODER CLASSES, PRIMITIVE QUANTIZERS, AND THE
KEY TECHNICAL LEMMA

In this section, we define two different encoder classes of
interest, then we present the primitive quantizer, and we end
with a statement and proof of the key technical lemma.

A. Encoder Classes

Recall that the encoder at time ¢ is a map &; that takes
(Yt ot~ U'=1) — o0y. In this case, the encoder knows the
past outputs, past channel symbols, and past controls. In some
cases, it is unreasonable to allow the encoder access to the
past controls. For example, the encoder may be geographically
separated from the plant.

At one extreme, one can consider an encoder with access to
all the past information (Y, o'=1, U*~1). At the other extreme,
one can consider an encoder with access to only Y;. There are
many cases in between. We will provide an encoder, decoder,
and controller for both of these two extreme cases. It will turn
out that the encoder with access to the control signals has a lower
rate requirement than the encoder without access to the control
signals. These two cases shed light on the importance of the
information pattern at the encoder for determining the channel
rates required to achieve different control objectives.

Encoder Class One: In this class, the encoder at time ¢ is a
map, &, that takes (Y?, 0'=1, U*=1) - 0. The decoder at time
t is a map, D, that takes (0%, U'~1) +— X,. We assume that
both the encoder and decoder have knowledge of the dynamics
of the plant. We further assume that the encoder knows D; and
the decoder knows &;. We do not assume that the encoder or
decoder knows the controller maps C;.

Encoder Class Two: In this class, the encoder at time ¢ is a
map, &, taking Y; — 0. The encoder does not know the values
of the control signals. We will assume, though, that it knows
the control policy C;. The decoder at time ¢ is a map that takes
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(¢, U'=1) — X,. Finally, we assume that the encoder knows
D; and the decoder knows &;.

B. Equi-Memory

The encoder and decoder need to work together. The job of
the decoder upon receiving the channel symbol o, is to recover
the quantization region the observation Y; fell into. To achieve
this the decoder needs to know what the encoder operation is.
Knowledge of the map &; is not enough to insure this. To remedy
this, we now introduce the notion of equi-memory [8].

We define a state for the encoder and decoder. This requires
specifying the information pattern [19] of each encoder and de-
coder. The maximal amount of information the encoder can ob-
serve at time ¢ is (Y=L o!=1 Ut~1) € R x Bt x R™. Let
the information pattern of the encoder be I; C R!* x Xt x R™?.
For the decoder let .J; = (o'71,Ut~1) € Xt x R™*. Finally, let
Qo) = {Ye: &(Ye, It) = o}

Definition 4.1: An encoder/decoder pair are said to be
equi-memory if the information (.J;, 0¢) is sufficient to deter-
mine the set Qy, (o). Specifically there exists a map taking
(0", U1) = Qr, o(o0).

In words, this definition states that the information in .J; along
with the quantization symbol o is sufficient to determine which
particular quantization region the observation Y; fell into. We
will assume throughout this paper that the encoder/decoder pairs
we use are equi-memory. For encoder class one this means that
I; = (Y*71,0'=1 U'=1) and hence the primitive quantizer
should be chosen on the basis of the information (o!=*, U*~1).
For encoder class two this means that I, = ) and hence the
primitive quantizer should not depend on any of the control or
channel signals.

C. Primitive Quantizer

The encoders in both encoder classes will be restricted to
apply the following primitive quantizer at each time step.

Definition 4.2: A primitive quantizer is a four-tuple
(c,R,L,®) where ¢ € R? represents the centroid,
= (Ry,...,Rq) € R%7T represents the rate vector,
= (Ly,...,Lq)" € Rt represents the dynamic range,
and ® is an invertible matrix that represents a coordinate
transformation. This quantizer partitions the region

R
L

A={XeR': (X —¢)
S {[—Ll,Ll] X - X [—Ld7Ld]}}

into boxes with side lengths (2L;/2%:). Let R = Y\, R;.
Each of the 2% boxes is represented by an element o € X.. Upon
observing X the (¢, R, L, ®)-quantizer

1) subtracts off c;

2) applies the coordinate transformation ®;

3) determines which box it falls into (points that land on the
boundary of more than one box are given the label of one
of those boxes according to some fixed priority rule);

4) and then transmits the o representing that box.

If X falls outside the region A then the quantizer transmits a
special symbol representing an overflow. Thus, we have 2% + 1
symbols. The set A is called the support of the quantizer.



TATIKONDA AND MITTER: CONTROL UNDER COMMUNICATION CONSTRAINTS

Fig. 2. Primitive quantizer.

Fig. 2 shows a two-dimensional primitive quantizer with
R;1 = 3 and R, = 2. Here the dynamic range in both directions
are equal: L; = Ly = 1 and c is the origin. The rate of this
primitive quantizer is R = 5.

For both encoder class one and encoder class two, the
encoding map &; based on its information I} selects a
(¢, R, L, ®)-quantizer. Upon observing Y; it computes the
appropriate o, and transmits it across the channel. The decoder
needs to know which quantizer was selected so that it may
decode the received symbol o appropriately. This is assured by
equi-memory. Specifically, the equi-memory condition forces
the encoder and decoder to make decisions, in this case choose
a primitive quantizer, based on the same information.

One may ask why we have chosen boxes instead of more gen-
eral polytopes to partition A. Using general polytopes may lead
to a lower rate than the rate one gets when restricting oneself to
boxes. However, the analysis for the boxes case is much easier
and they are simpler to implement in practice. Moreover, we will
show that for certain cases encoders using primitive quantizers
are sufficient to achieve the information theoretic lower bounds
proved in Section III.

D. Key Technical Lemma

The growth of the uncertainty in the state is determined by
the A matrix. Let us consider the uncontrolled system: X; 1 =
AX;. Assume Xy € {[-L, L] x --- x [-L, L]}. We would like
a way to compute a box that bounds the set that X, lives in
given the box that X lives in. In particular, we will characterize
the growth of the box that upper bounds the state in terms of the
dynamics of the state.

We first treat the simple case where the A matrix has
only real eigenvalues each with geometric multiplicity one.

Let ® diagonalize A: PA®~! = YT = diag[\i,...,\d].
Let Zt = (I)Xf Then Zt—l—l = QXt—l—l = @AXf =
DADZ, = T2 X Z € {|~L,L] x -~ x [~L, L]} then

Ziga € {[=IMIL, L] x - x [=[Aal L Al L]}

We now generalize this idea to general A matrices. The con-
struction we present requires the real Jordan canonical form.
The following result can be found in [9, Sec. 6.4].

Theorem 4.1: For A € R there exists a real valued
nonsingular matrix ® and a real valued matrix Y such
that PAP~1 T diag[Jq, ..., Jm]|. Where each Jj,
7J = 1,...,m, is a Jordan block of dimension (geometric
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multiplicity) d;. Clearly dy + - - - + d,,, = d. The Jordan block
associated with a real eigenvalue A takes the form

Al
Al

A

The Jordan block associated with the complex conjugate pair of
eigenvalues A\ = p(cosf £ isinf)

D I
D I

D

cosf sinf
where D = pr(f) and r(0) = | sin COS9:| (p>0).

Define H = diag[H1, ..., H,,] where each H; is associ-
ated with one of the Jordan blocks J;. Specifically, H; = I
if .J; is the Jordan block with real eigenvalue \; and H; =
diag[r(6)~1,...,r(#) 1] if J; is the Jordan block associated
with the complex conjugate eigenvalues p(cosf =+ isinf). If
A has all real eigenvalues then H = I. The following lemma,
proved in Appendix, shows that T and any power of the matrix
H commute.

Lemma4.1: H'TH ' =17T.

As before, let Xy11 = AX; and let 7, = H'®X,. Note
that if A has real eigenvalues then 7Z; = ®X;. The H is
needed to undue the effects caused by the dynamics of the
complex conjugate eigenvalue pairs. In general, T will not be
an upper triangular matrix but the matrix HY will be an upper
triangular matrix with real-valued eigenvalues. The magnitude
of these eigenvalues are the same as the magnitude of the
corresponding eigenvalues of Y. Now, Z; 11 = HT1® X, | =
HYO0AX, =H'T'0AO1H-!Z, HYIYH~tZ,
HY Z; where the last equality follows from Lemma 4.1.

We need a way to bound the growth of the operator HY. This
is an upper triangular matrix which can be written in the fol-
lowing block diagonal form HY = diag[K}, ..., K] where
K; = J; if J; is the Jordan block associated with a real eigen-
value and

K; =H,J,
pl r(0)
pl  r(6)7!

pl

if J; is the jordan block associated with a complex conjugate
eigenvalue pair. The eigenvalues of the upper triangular matrix
K; are all equal to p.

For each block K associated with a real eigenvalue \j;,
define

Al 1
A1

s
|

A



1062

For each block K associated with a complex eigenvalue
p(cos @ + isinf), define

pl O
_ pl O
Kj= :
pl
11
where O = [1 1].
Finally, define T = diag[K1,..., K]

Lemma 4.2: If Z; is in the box determined by L (i.e., Z; €
{[=L1,L1] x -+ x [=Lq, Lq4]}) then Z;,1 is in the box deter-
mined by TL.

Proof: We know Z;,1 = HY Z;. By construction Tisa
matrix whose 7jth entry is greater than or equal to the absolute
value of the ijth entry of HY. Thus, if Z; is in the box deter-
mined by L then Z,,; will be in the box determined by YL.O

We are now in a position to state the key technical lemma.
This lemma shows how the growth in the box representing the
uncertainty in the location of the state is determined by both
the dynamics of the plant as well as the information transmitted
across the channel. For a given rate vector R = (Ry,...,Ry)’
define:

5
Il

2~ R

Lemma 4.3: 1f for all i we have R; > max{0, log |\;|}, then
TF@ is stable. If there exists at least one ¢ such that R; <
max{0, log [A;|}, then T Fp is unstable.

Proof: The matrix Y is an upper triangular matrix whose
eigenvalues have the same magnitude as the corresponding
eigenvalues of the A matrix. The matrix YF 'R is an upper
triangular matrix with the values |\;|2~ % along its diagonal.

If for all ¢ the rate R, > max{0,log|A;|} then
0 < M2 < 1 and, hence, all of the eigenvalues of
T Fg will be stable. If R; < max{0,log |);|} for at least one i
then TFE will have at least one unstable eigenvalue. O

Example: Let A = {_3 _13} R = [g] and L(t) =

0
i . The size of the box determined by L(t) will expand due

to the dynamics of the system and then shrink due to the rate of
information we transmit. Specifically, L(t + 1) =

o= [} ][ o [f]

V. ENCODER CLASS ONE

In this section, we provide sufficient conditions on the rate for
observability and stabilizability for systems with encoders re-
stricted to encoder class one. In particular, we show that we can
achieve the lower bounds proved in Section III. Furthermore,
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we show that the rate of convergence depends on the difference
between the channel rate used and the lower bound.?

A. Observability

Our first proposition treats asymptotic observability when the
encoder observes the state (Y; = X;.) We follow this with
two corollaries. The first provides a rate of convergence and the
second shows that we can treat the case where the bound on the
initial condition is unknown. We then generalize our basic ob-
servability result to systems with additive process disturbances
and systems with output observations.

The results in this section are based on the following idea.
At time ¢ the encoder first computes the decoder’s estimate of
the state. It can compute this estimate because it knows both the
policy of the decoder and the control and channel signals avail-
able to the decoder. The encoder then computes the difference,
the innovation, between the true value of the state and the de-
coder’s estimate of the state. Next, the encoder chooses a prim-
itive quantizer and quantizes this innovation. It then transmits
to the decoder the appropriate channel symbol corresponding
to this quantization value. The decoder, due to equi-memory,
knows which primitive quantizer the encoder used and hence
can decode this channel symbol and update its state estimate. In
the following, we show that such a scheme leads to asymptotic
observability for all rates satisfying the given rate bound.

There are many situations where the rate bounds presented
in Section III will be noninteger. Clearly, we cannot send a
noninteger number of bits at each time step. However, if we
use a time-sharing scheme we can, on average, send a nonin-
teger number of bits. We define the average rate of an encoding
scheme to be limsup,_, . (1/7) th_Ol R(t) where R(t) is the
number of bits transmitted at time ¢. We treat both the fixed rate
and average rate cases in the following proposition. Let [x] rep-
resent the smallest integer larger than or equal to x.

Proposition 5.1: For (1), encoders restricted to encoder class
one C = I, and bounded initial set A

a) a sufficient condition on the fixed rate for asymptotic ob-
servability is R > 37 ) max{0, [log [A\(A)[]};

b) a sufficient condition on the average rate for asymptotic
observability is B > 3, 4y max{0,log [A(A)[}.

Proof: We will restrict our encoder and decoder to be equi-
memory. We prove part a) first. Because A is bounded we know
there exists a constant L such that Ag C {X : || X||s < L}. Let
® diagonalize A into real Jordan canonical form: ?A®~1 = 7T,
For X € Ag we have ||2X||2 < ||2]||| X2 < [|®]|L. At time
zero choose a (¢(0), R, L(0), ®(0))-quantizer where ¢(0) is the
origin and ®(0) = . Let L;(0) = ||®||L V ¢ and choose the
rate vector R such that each component R; is an integer and
R; > max{0, [log |A:|]}. ¢ = 1,...,d. Apply this quantizer
to Xo and transmit oo. Because the box determined by L(0)
contains Ay the channel symbol oy will not be the overflow
symbol.

2We can make an analogy with the rate distortion theorem in information
theory. If the channel rate C' is less than the rate distortion rate R then one
cannot transmit information reliably (i.e., we cannot insure that the probability
of decoding error converges to zero with time.) If R < C', then one can transmit
reliably [6], [16].
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At time t let the state estimate, Xt, be the centroid of the
region defined by ;. Due to equi-memory both the encoder and
decoder can determine this centroid. We update the quantizer
parameters as follows.

1) The centroid of the ¢ 4 1th quantizer is just the one-step

ahead state prediction (the encoder observes the controls)

2) The coordinate transformation evolves as
O(t+1) = H*'d = HO(t).

As in Section IV let Z; = H'® X, represent the state in
the new coordinates. Then

Zy1 = HYZ, + HOBU,.

3) The size of the dynamic range of the ¢+ 1th quantizer will

evolve according to
L(t+1) = TFrL(2).

The Fr term captures the decrease in state estimation
error at time ¢ due to applying the primitive quantizer
while T term captures the growth in the one-step ahead
error due to the dynamics of the plant. By Lemma 4.3,
TFE is a stable matrix. Thus, the dimensions of the dy-
namic range are decreasing in time.

This completes our description of the encoder and decoder.

By construction, the state X; never leaves the range of the ¢th
quantizer with support A;, where

Ay ={X €R?: ®(t)(X — ¢(t))
€ {[=La(t), La ()] x -+ x [=La(t), La(t)]} }-

Now, define
Q= {X eR®: ®(1)(X - X;)
. {[_Ll(t) Ll(t)] S [_Ld(t) La(t)

2R1 ’ 2R1 2Rd ’ 2Rd

i}

One can think of A; as containing the one-step ahead state pre-
diction error for X; and €; as containing the state estimation
error for X; based on A; and the new information provided by
the channel symbol ;. Now

lleclls < sup [[X = Xil2
Xe,

sup
XeQ,

sup [[@(6) ' 2(£)(X — Xo)ll2
Xe,

o) ()X - %)

IN

<lle®) " I FrL(®)]2
<[ e NFlII(TER) NILO)]2
< Var||o||o~ I FrlII(TFz)" |-
Since ||®||, |® ||, and || Fg|| are all bounded we see that there

exists a constant v such that ||e¢||s < yL||(TFg)!||. Since TFg
is a stable matrix the error goes to zero as ¢ — oo. Thus we
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have shown the uniform attractivity condition in the definition of
asymptotic observability holds. Furthermore, for any € > 0 we
can find an L small enough so that forall ¢ > 0 we have ||e;||2 <
€. Thus the stability condition in the definition of asymptotic
observability holds as well.

We will now prove part b) by specifying a time-sharing en-
coder and decoder scheme. In this case, the channel rate used
at each time step can vary. Pick any R; > max{0,log|X\;|f},
1 = 1,...,d. There exist nonnegative integers M, «;, 3;, 1 =
1,...,d such that

M
We will show that there exists an encoder and decoder scheme
with average rate less than or equal to Z,‘le R;.

First, we need to specify a periodic schedule based on epochs
of length M. Attime ¢ apply a (¢(t), R(¢), L(t), ®(t))-quantizer
where ¢(t) and ®(t) evolve as before. The sides of the dynamic
range now evolve as L(t + 1) = TFg()L(t) where R(t) =

R, > a; + > max{0,log |\;|}, i1=1,...,d.

Ri(t) = a;+1, iftmod M € {0,1,...,6;, —1}
T ay, ift mod M € {G;,...,M —1}.
Foreachi=1,...,d, we have (1/T) 3:01 R;(t) =

Tmod M

%((T — Tmod M) (ai + %) + ; Ri(T)>

(o2
+ % ((—TmodM) (a + %) + TrjziM va(T)>-

The second addend goes to zero as 1T — oo. Thus,
for T large enough we have: max{0,log|\;|} <
(1/T) ETZ_OI R;(t) < R;. Hence, for T large enough we
have: 31, max{0,log |\il} < (1/T)Zi, Ty’ Ralt) <
Z;lzl R;.

Now, we need to show that under this time-sharing scheme
the estimation error goes to zero as t — oo. As before

lleellz < 126 Il Fren LIl

where  L(t) (Hizl TFE(T)) L(0). The matrix
Hiu:l TFE(t) is an upper triangular matrix. Using an ar-
gument similar to Lemma 4.3, we see that it is stable. Thus
leellz < 126 Il Fren LIl
M (t—(tmod M) /M)
<[12) Il Fre (H TF@(r))
T=1

(tmod M)
II Fae| ILO)]-

=1

which goes to zero as ¢t — oo. O
For the rest of this paper, the statement “a sufficient condition
for property X toholdis R > 3, 4, max{0,log [A(4)[}” will
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be taken to mean we are using the fixed rate scheme for integer
rates and the average rate scheme for noninteger rates.

Corollary 5.1: For both the fixed rate and average rate en-
coding schemes described in Proposition 5.1 the rate of con-
vergence is ||eg||o < kt(dmax—1)g—t(mini(Ri—log[Xi(A)))) where
K is a constant independent of f.

Proof: We treat the fixed rate case. A similar ar-
gument can be used for the average rate case. The
decay of ||[(YFg)!|| is determined by the largest eigen-
value of YTF ®. The largest eigenvalue is given by
max; 2(-Fitlog[Ai(A)) " There exists a constant 7 such
that [|[(TFg)!|| < nt(dmex—1)o-t(mini(Fi—log|A:(A)) where
dmax 18 the_multiplicity of the largest eigenvalue. Thus

leell> < VaLl| | @) Il E- NI (TFR)
< ot (Admax—1) g —t(min (Ri—log |\: (4)]))

for a constant k independent of ¢ (Recall ||[®(¢)7!]] <
=) < o) 0

Next, we treat the case when A is bounded but the encoder
does not a priori know that bound.

Corollary 5.2: For (1), encoders restricted to encoder class
one, and C' = I a sufficient condition on the rate for asymptotic
observability is B > 3 4 max{0,10g|)\(A)|}.. N

Proof: For the case when a bound on the initial uncer-
tainty, Ag, is unknown one must first “capture” the state in the
quantizer domain. Let ® be as in Proposition 5.1. At time zero
apply the primitive quantizer (¢(0), R(0), L(0), ®) where ¢(0)
is the origin, ®(0) = ®, and L;(0) = LV i for some fixed L. If
upon observing X the quantizer transmits an overflow symbol
then update the quantizer as follows: ¢(t + 1) = Ac(t) + BU,,
®(t) = H'®, and L(t + 1) = 2YL(t). Since L(t) is growing
at a rate faster than the dynamics of the state process eventually
the quantizer will capture the state. At this point, proceed as we
did in Proposition 5.1. (Strictly speaking, we are using one extra
symbol for the overflow message. However, as £ — oo the over-
head due to these overflow messages is amortized out.) O

We now consider the case of bounded additive process
disturbances

Xey1 =AXy + BU+ W, Y, = Xy, t>0 (2
where ||W;||2 < D. In Corollary 3.1, we provided a necessary
condition to insure bounded error. The following proposition
provides a related sufficient condition.

Proposition 5.2: For (2), encoders restricted to en-
coder class one, and bounded initial set Ao the rate
R > 34 max{0,log|A(A)[} is sufficient to insure
lim sup,_, .. ||et||2 is bounded.

Proof: First, we prove the fixed rate case. We follow the
proof in Proposition 5.1. The state dynamics in the new coordi-
nates are: Zy11 = HYZ; + ®(t + 1)BU; + ®(t + 1)W,. We
update the L(t) as follows:

L(t +1) = TFRL(t) + D[|®(t + 1)
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Here, we expand the size of the dynamic range of the quantizer

to take into account the dynamics of the plant, the information

transmitted across the channel, and the bounded process distur-

bances. For shorthand, denote the second addend by A(t). Then,

we can write L(t) = (TFg)'L(0) + 30— (Y Fr)' " 7 h(j).
As in Proposition 5.1, we have

lledlls <1@(8) I FrL()]2
<[ @)~ | Frl
t—1
X (||(TF_)tL(O)||2+ Z(TFE)t‘l_jh(j)
j=0 9

< Vd||et) || Fgll

+imw&wwwmﬂmg
< Va|o(t) 1Pl

» (uﬁFEmw)nQ

t—1
+ DI Y |(TFp)" ||> :
7=0

The matrix (TFE) is stable. Hence, the first term goes to zero
as t — oo. For the second term, note that there exists a constant
r such that ||(TFg)t|| < rt(dmex—1)gt(mini(Fi—log[Ai(4)])

Thus, the series is summable. Hence, there exists
an 7 such that lim,_oo 3 irg [[(TFR) )] <
(n/1 — 2~ mini(Ri=log |Ai)y  Therefore lim,_, . |Je:| <
(nV/dD/1 — 27 mins(Ri=log ) | §(1) = ||| @]||| FRl|. A similar
argument can be used for the average rate case. O

Due to the noise term W, there will always be a nonzero state
estimation error. But if the channel rate goes to infinity then we
see that || Fg|| = max; 27% — 0 and, as we expect, the bound
on the estimation error in the previous proposition goes to zero.

Example: Consider the scalar system: Xy =
aX; + bU; + W;. In this case, the limit of the error is
bounded as lim;_, o, |e| < (D/2% — |a]).

Now, we consider (1) with general observation equation Y; =
CX;. Assume that the pair (A, C) is observable. We will need
the following technical lemma which is proved in Appendix.

Lemma 5.1: Let A be a stable matrix. Let B; be a set of
matrices such that || B|| < K < oo and the lim;_, || B:|| = 0.
Let S, = Y \_o A'™"'*B,. Then limy_.o. ||S;|| = 0.

Proposition 5.3: For (1), encoders restricted to encoder class
one, and bounded initial set A a sufficient condition for asymp-
totic observability is B > 3 4y max{0,log [A(4)]}.

Proof: At time t, the encoder receives Y, U*~!. Assume
that the encoder has access to an observer that produces a state
estimate X,. Specifically the encoder applies a Luenberger ob-
server: Xy = AX;_1 + BU;_y + M(Y;_1 — CX,;_1) where
M is chosen so that A — MC is stable. The estimation error
of this observer is &; = X; — X; = (A — MC)é;_;. Thus
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e = (A= MO)teg and ||e| < I(A—MCY!|[[eol| < nalleoll
for some constant 7 and 0 < « < 1. The observer’s initial state
error ||&g|| is bounded because Ag is bounded. Hence, as t — oo
the observer’s state error €; goes to zero.

We will construct an encoder and decoder that asymptoti-
cally observes the observer state X;. The observer’s estimation
error goes to zero, hence, the encoder and decoder will asymp-
totically observe X;. The observer’s state estimate evolves as
X; = AXi_1+ BU;_1 + MCée:_,. We will treat the MCé,_,
term as a process disturbance.

First, we treat the fixed rate scheme. As in Proposition 5.2,
we update L(¢) as follows:

L(t+1) = TFRL(t) + ca'|| MC|||[e]||| @ (¢ + 1)||

where ¢ = (/). Denote the second addend by a'h(t). Then,
L(t) = (TFp)'L(0) + Y2 —o(TFr)* "t =9 a7 h(j). Since TFi
is stable the first term goes to zero. Because lim;_, o a*A(t) = 0
(h(t) is uniformly bounded in ¢) Lemma 5.1 implies that the
second term goes to zero. Thus, as ¢ — oo the error in the de-
coder’s estimate of the encoder’s observer state converges to
zero. Thus, the rate condition is sufficient for asymptotic ob-
servability. A time-sharing argument can be used for the average
rate case. O

The general prescription for observability in encoder class
one is to transmit a finer and finer description of the zero con-
trol input response state trajectory. If there are no disturbances
this is equivalent to successively refining the initial position.
Specifically, if we allow the encoder “infinite” memory then it
need only transmit a finer and finer description of Xy. How-
ever, assuming that the encoder can have in memory a perfect
description of X for all time ¢ is unrealistic. Furthermore, it is
not robust to disturbances. For this reason, we have proposed
a recursive structure for the encoders in encoder class one. As
we have shown, this recursive structure can be used for systems
with process disturbances and output observations.

B. Stabilizability

For encoder class one, we can combine the properties of
asymptotic observability and full state feedback stability to
get output feedback stability. Assume that the pair (A4, B) is
stabilizable and the pair (A, C) is observable.

Proposition 5.4: For (1), encoder restricted to encoder class
one, and the initial set Ay bounded a sufficient condition for
asymptotic stabilizability is B > 3, 4y max{0,log [A(A)[}.

Proof: Let K be a stabilizing controller, i.e., A + BK is
stable. Apply the certainty equivalent controller Uy = K X,
where Xt is the decoder’s state estimate. We will show that
under this control law the system is stable. Let e; = X; — X,.
Then X; = (A + BK)'Xy — ¥./_(A + BK)'"'1"IBKe;.
By Proposition 5.3 we can asymptotically observe the state.
Thus, the lim;_, ||et]]2 = 0. Since A + BK is stable and
Ag is bounded the first addend in the aforementioned equa-
tion goes to zero. By Lemma 5.1 so does the second. Hence
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lim;_, || X¢||2 = 0. Thus, we have shown the uniform attrac-
tivity condition in the definition of asymptotic stabilizability
holds. Furthermore, for any ¢ > 0 we can find an L small
enough so that for all ¢ > 0 we have || X¢||]2 < €. Thus, the
stability condition in the definition of asymptotic stabilizability
holds as well. O

This result is related to a general result of Vidyasagar that
states if a system is state feedback stabilizable and output ob-
servable then it is output feedback stabilizable [18]. Further-
more, the certainty equivalent controller applied to the state es-
timate is a stabilizing controller. The difference here is that due
to the encoder and decoder the “observation equation” will de-
pend on the past states and controls.

We can treat the case when A is bounded but the encoder
does not a priori know that bound.

Corollary 5.3: For system (1), encoder restricted to encoder
class one, and C' = T a sufficient condition for asymptotic sta-
bilizability is B > 3 4y max{0,log |A\(4)[}.

Proof: Apply the zero control until the encoder, using the
technique in Corollary 5.2, “captures” the state. Then, proceed
as in Proposition 5.4. O

Example: Consider the scalar system X; 11 = aX; +bUys,
a > 1,|Xo| < L. Choose a controller k such that |a + bk| < 1.
Under full state feedback, the magnitude of the state is strictly
decreasing to the origin: |X;| = |a + bk|"|Xo|. Under a rate
R > log a and the scheme proposed previously, we see | X;| <
|+ bk[*[Xo| + Y25 la + bk|*~'=7|bk|(1/277) L. There can
exist trajectories that initially are not strictly decreasing to the
origin. One can consider this the price of learning the state under
a rate constraint; see [7].

VI. ENCODER CLASS TWO

In this section, we examine observability and stabilizability
for encoders restricted to encoder class two. For this encoder
class we assume that the encoder knows the control law though
not the actual control signals.

A. Observability

For encoder class one, we showed there exist encoders that
can asymptotically observe the state. Furthermore, because the
encoder observed the controls, asymptotic observability held in-
dependently of the control signals chosen. Here, we will show
that the condition of observability for encoders in encoder class
two depends on the control signals chosen.

Proposition 6.1: For (1), with unstable A, encoder restricted
to encoder class two, initial set Ag, C' = I, and controls set to
zero there is no finite rate encoder in encoder class two such that
the estimation error is bounded.

Proof: As in Proposition 3.1, we can assume without loss
of generality that the initial uncertainty set contains the bounded
set Q9 = {X : ||X]|l2 < L} C Ao and that the A matrix
contains only marginally stable and unstable eigenvalues. The
set of points that X; can take contains the following set 2, =
{X : X = AtX07X0 € QQ}

If there exists an encoder and decoder in encoder class two
such that the estimation error is bounded then there must be
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af < ooand a T(L) such that ||e;]]s < f fort > T(L).
A lower bound on the rate can be computed by counting the
number of regions of diameter less than 2 it takes to cover 2,
fort > T(L).

At any time to > T'(L), we know that any X, € € isa
realizable state. To insure an error of size ( at time ¢y we would
need to transmit a total of at least

volume(£2,) L
— = log [\(A)| + dlog =
L o%) g A(4)]+dlog 5

log

bits over the t, time steps. Thus, for the first ¢y steps
we would need to transmit bits at a rate of at least
R > 3 \aylog|A(A)| + (d/to)log(L/B). By the same
argument, at time ¢; = t9 + N we would need to transmit
a total of at least 1), 4 log |A(A)| + (d/to)log(L/B)
bits over t; time steps. Encoders in encoder class two are
memoryless hence the encoder at any given time cannot depend
on any of the previous encodings of the state. Thus, we cannot
use any of the bits transmitted during the first ¢y time steps
to help aid the reconstruction of X, . Therefore over the time
interval from ¢ to ¢t; we would need to transmit bits at a rate of
atleast R > (1/N) (1 Yy log [A(A)] + dlog (L/ﬂ)). For
fixed N we see that the right-hand side grows to infinity as %o,
and hence 1, goes to infinity. Thus, there does not exist a finite
rate scheme that will insure bounded error. ]

In summary, the encoder at time ¢ cannot depend on the pre-
vious encodings and hence cannot compute the innovation with
respect to the previous encodings. Thus there can be no finite
rate encoder in encoder class two such that the estimation error
is bounded.

This result may seem like bad news. However, in most cases
we are interested in observability when the controls being ap-
plied are in the closed loop. We will now show that we can
achieve asymptotic observability and as a by-product of asymp-
totic stabilizability.

B. Stabilizability

Assume (A, B) is a stabilizable pair. Because the encoders
in encoder class two do not observe the control signals they
need to operate with the closed loop dynamics of A + BK and
not the open loop dynamics of A. We have assumed that the
encoder knows the control law K. Computing the minimal rate
is difficult for this class of encoders because in general the rate
will depend on the particular controller policy K.

Proposition 6.2: For (1), encoder restricted to encoder class
two, C = I, and bounded initial set A there exists a finite rate
such that the system is asymptotically stabilizable.

Proof: Choose K such that A + BK is stable. Let ¢ di-
agonalize (A + BK) into real Jordan canonical form: ®(A +
BK)®~! = 7. Assume Ag C {X : || X||2 < L}.For X € Ag
we have ||®X |2 < ||9]||X]l2 < ||®||L. At time zero choose
a (c(0), R, L(0), ®(0))-quantizer where ¢(0) is the origin and
®(0) = ®. Let L;(0) = ||®||L V 4. The rate vector R will be
determined shortly. Apply this quantizer to X and transmit oy.
Note that oy will not be the overflow symbol.

The encoder does not have access to the controls or the
past channel symbols. Thus, it can only evolve according to
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a schedule based on the control law. The state evolves as:
Xiy1 = (A+ BK)X,; — BKe;. Update the quantizer parame-
ters as follows: ¢(t) = 0 for all time and ®(¢ + 1) = H®(t).
Where H is defined as in Section IV but, in this case, it is
with respect to the matrix A + BK. Then, the state in the new
coordinates evolves as: Z; 11 = HYZ; — ®(¢t+ 1) BKe; where
€t = Xt — Xt. Let ft = Zt — Zt = @(t)@t Then

Zi1 = HYZ, — ®(t + 1)BKO (1) f;.

Observe that Z; is in the box determined by L(#) and the error
[t is in the box determined by F'r L(t). Let the boundary lengths
of the dynamic range evolve as

Lit+1) = {T + |8t + BK®(1)[[F} L(1).

The operator Y is stable because Y is stable. We can then
find a rate vector R with components large enough so that
T + ||®(t + 1)BK®1(t)||Fg is uniformly stable in ¢. Thus,
lim;_,~ L(t) = 0 and the system is asymptotically stabilizable.
O

Example: Consider the scalar system X1 = aX; + bU,.
Let k be such that |a + bk| < 1. Then

L(t+1)= <|a + bk| + E—i') L(t).

Letting R > max{0,log (|bk|/1 — |a + bk]|)} is sufficient to
ensure asymptotic stabilizability. If a« + bk = 0 then the rate
bound becomes R > max{0, log |a|}.

For both encoder class one and two, our strategy has been to
keep track of a region in which the state lies. The size and loca-
tion of this region are recursively updated. One might wonder
how these regions, determined by the dynamic range and sup-
port of the quantizer, are related to the Lyapunov level sets used
in Lyapunov theory. In Lyapunov theory one finds a suitable
Lyapunov function V' such that the value of V' decreases along
trajectories [4], [7]. For a finite channel rate it is impossible to
insure that V' decreases at every time step. This is because there
is always a region around the origin that is not under the influ-
ence of any control.

VII. CONCLUSION

In this paper, we formulated a discrete time, linear systems
control problem with a noiseless digital communication link.
We discussed the role of information patterns and control policy
knowledge in this context.

We first provided lower bounds on the rates required to
achieve asymptotic observability and asymptotic stabilizability.
These bounds hold independently of the information pattern
chosen. To compute upper bounds we explicitly described the
encoder, decoder, and controller schemes. We characterized
two different encoder structures based on whether the encoder
observed the control signals or not. Under the added structural
assumptions of equi-memory and use of a primitive quantizer
we showed that encoders in encoder class one can achieve these
lower bounds. For encoders in encoder class a weaker result
was provided.
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APPENDIX

Let A € R? < Then, by theorem 4.1 A has a real Jordan
canonical form.
Lemma4.1: H'TH-t =17T.

Proof: H'YH™! is the product of three block diagonal
matrices. Thus, we need only check that the result holds for each
of the blocks. The blocks come in two types: those associated
with real eigenvalues and those associated with complex eigen-
values. For the real eigenvalue case H; is identity. Thus, clearly
I*J;I7* = J;. Let us examine the complex conjugate eigen-
value case

pr(6) 19
H;JjHj_t = diag[r(§)™"] @) 1
pr(f)
x diag[r(0)’]
pr(0) 10 ;
_ pr(f) .
pr(6)
O

Lemma 5.1: Let A be a stable matrix. Let B; be a set of
matrices such that || B;|| < K and the limit lim;_, ., || B:|| = 0.
Let S; = Y10 A*"'*B,. Then, lim,_.,, ||S:|| = 0.

Proof: Since A is stable there exists ¢ > 0and 0 < A < 1
such that ||A*|| < ¢\’. For all € > 0 there exists a T'(¢) such
that || By|| < e,Vt > T(e). Lett > T(e). Then

t—1 t—1
D AT <Y ([ ATI|1B
7=0 7=0
t—1
<e Y ANTB
j=0
T(e)
<c AE—T(e)-1 Z AT(e)—-ig
§=0
t—1
+ Z )\t—j—l6
j=T(e)+1
¢ t—T(e)—1
<1 {NTOTK 4 e}

Now, ¢ > 0 can be chosen arbitrarily small and ¢ > T'(e) can
be chosen arbitrarily large. Hence, the bound can be made arbi-
trarily small. O
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