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Abstract—We study in this paper randomized constructions of
binary linear codes that are invariant under the action of some
group on the bits of the codewords. We study a non-Abelian ran-
domized construction corresponding to the action of the dihedral
group on a single copy of itself as well as a randomized Abelian con-
struction based on the action of an Abelian group on a number of
disjoint copies of itself. Cyclic codes have been extensively studied
over the last 40 years. However, it is still an open question as to
whether there exist asymptotically good binary cyclic codes. We
argue that by using a slightly more complex group than a cyclic
group, namely, the dihedral group, the existence of asymptotically
good codes that are invariant under the action of the group on it-
self can be guaranteed. In particular, we show that, for infinitely
many block lengths, a random ideal in the binary group algebra of
the dihedral group is an asymptotically good rate-half code with
a high probability. We argue also that a random code that is in-
variant under the action of an Abelian group of odd order on

disjoint copies of itself satisfies the binary Gilbert–Varshamov
(GV) bound with a high probability for rate 1 under a condition
on the family of groups. The underlying condition is in terms of the
growth of the smallest dimension of a nontrivial 2-representation
of the group and is satisfied by roughly most Abelian groups of odd
order, and specifically by almost all cyclic groups of prime order.

Index Terms—Abelian codes, dihedral group, group actions,
group algebra, probabilistic method, quasi-cyclic codes.

I. INTRODUCTION

L INEAR codes that are symmetric in the sense of being in-
variant under the action of some group on the bits of the

codewords have been studied extensively before. However, we
still know very little about how the group structure can be ex-
ploited in order to establish bounds on the minimum distance or
to come up with decoding algorithms.

One example of such codes are codes that are invariant under
the action of some group on itself. When the group is cyclic
these are cyclic codes. Another example is when we have a
group acting on more than one copy of itself. When the group
is cyclic these are quasi-cyclic codes.

Manuscript received October 15, 2005. This work was supported by the Na-
tional Science Foundation under Grant CCR-0112487, by ARO under Grant
DAAD19-00-1-0466, by NSF:KDI under Grant ECS-9873451, and by ARO
under Grant to Brown University Subcontract 654-21256.

L. M. J. Bazzi is with the Department of Electrical and Computer Engi-
neering, American University of Beirut (AUB), Beirut 1107 2020, Lebanon
(e-mail: Louay.Bazzi@aub.edu.lb).

S. K. Mitter is with the Laboratory for Information and Decision Systems,
Department of Electrical Engineering and Computer Science, Massachusetts In-
stitute of Technology, Cambridge, MA 02139-4307 USA (e-mail: mitter@mit.
edu).

Communicated by R. J. McEliece, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2006.876244

A. Preliminaries

1) Binary Linear Codes: Unless otherwise specified, by a
code, we mean a binary linear code. The minimum distance of a
binary code is the minimum Hamming distance between two
distinct codewords or equivalently the minimum weight of a
nonzero codeword since the code is linear. Its minimum rela-
tive distance is its minimum distance normalized by the block
length. Its rate is the binary logarithm of the code size normal-
ized by the block length. By a binary code we mean implicitly
an infinite family of binary codes indexed by the block length.
We do not require that each positive integer be a block length,
we simply require that there are codes in the family of codes of
arbitrarily large block length. The rate (minimum relative dis-
tance, respectively) of the family of codes means the lim-inf
of the rate (minimum relative distance, respectively) of a code
in the family as the block length tends to infinity. An infinite
family of codes is called asymptotically good if both its rate and
its minimum distance are strictly positive. This is equivalent to
saying that the fraction of redundancy added is bounded by a
constant, and the minimum distance of the code grows linearly
with the block length. We say that a family of codes of rate
and minimum relative distance satisfies or achieves the bi-
nary GV (Gilbert–Varshamov) bound if , where
is the binary entropy function, i.e.,

. By abuse of notation, when asymptotic state-
ments are made, a code means implicitly an infinite family of
codes. For instance, “an asymptotically good code” means “an
asymptotically good infinite family of codes,” and “a code sat-
isfying the GV bound” means “an infinite family of codes satis-
fying the GV bound.” See [7] and [12] for a general background.

2) Finite Semisimple Rings and Group Algebras: We as-
semble in this section some basic properties of finite rings with
identity and group algebras that we are going to use later. See
[1]–[9].

Let be a finite ring with identity.
A nonzero left ideal of is called irreducible or minimal if

it is not the direct sum of two nonzero left ideals of .
The ring is called simple if it has no proper two-sided ideal.

Every simple ring is isomorphic to a matrix algebra
over some finite field , where the matrix algebra is
the -algebra consisting of all the matrices over . In
a simple ring, all the nonzero irreducible left ideals are isomor-
phic. Moreover, if is a simple ring isomorphic to , then

can be expressed as a direct sum , where the
are irreducible left ideals. The decomposition is not unique un-
less .

The radical of is the intersection of all the maximal left (or,
equivalently, right) ideals of . The radical of is a two-sided
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ideal. A (left or right) ideal is called nilpotent if for
some integer . The radical of contains all the nilpotent (left
and right) ideals of , and it is the largest nilpotent ideal of .

The ring is called semisimple if its radical is zero. A simple
ring is semisimple. Every semisimple ring is the direct sum

of two-sided ideals that are simple as rings. More-
over the decomposition is unique, and for all .

Let be a finite group and a finite field. The group algebra
of over is the -algebra consisting of formal sums

of the form over , where .
The group algebra is semisimple if and only if the char-

acteristic of does not divide the order of .
3) Group Action Codes: A binary linear code invariant under

the action of a group is defined as follows. Consider an action
of a finite group on a finite set , and say that a (binary
-linear) code is -invariant if it satisfies the following. Let
be the -dimensional -vector space written as the set of

formal sums . Consider the induced
action of on by (say left) translation .
Then we say that is -invariant if is a subset of closed
under addition and under translation by the elements of . In
other words, is -invariant if is an -submodule of

(again with the left multiplication convention). Note that
if is an element of , then the vector represen-
tation of the corresponding codeword is . Note also
that when talking about the asymptotic properties of a group ac-
tion code, we implicitly mean that we have an infinite family of
group actions , with the group acting on the set
via . The family is indexed by the block length of
the -invariant code .

B. Literature on Group Action Codes

1) Cyclic and Abelian Codes: Binary Abelian codes are in-
variant under the action of an Abelian group on a single copy
of itself, i.e., they are ideals in the binary group algebra .
Cyclic codes correspond to the special case when is cyclic.
These codes, and specifically cyclic codes, have been exten-
sively studied over the last 40 years. See, for instance, [14].
However, the existence of asymptotically good binary cyclic or
Abelian codes in general is still an open question.

2) Codes in the Binary Group Algebra of the Dihedral Group:
These codes are invariant under the action of the dihedral group

on itself, i.e., they are ideals in the binary group algebra
. The Dihedral group contains element. It is

generated by and subject to the relations ,
and .

Codes in the binary group algebra of the dihedral group were
introduced by MacWilliams [11] in the setting of self dual
codes. As far as we know, nothing was known before our work
about their asymptotic distance properties.

3) Quasi-Cyclic Codes: Quasi-cyclic codes are invariant
under the action of a cyclic group on disjoint copies of itself,
i.e., they are -submodules of .

Quasi-cyclic codes were first studied by Chen, Peterson, and
Weldon [2] in the setting when is prime. The result
in [2] says that if is a primitive root of (i.e., generates

, a random quasi-cyclic code, i.e., an -submodule of
generated by a random element of , achieves

the bound with a high probability. Without assuming the
ERH (Extended Riemann Hypothesis), it is not known whether
there are infinitely many primes with the above property. A later
result by Kasami [5] shows that if instead of working in ,
we work in , where can vary and is fixed to the largest
known prime such that is a primitive root of , a random
quasi-cyclic code achieves a slightly weaker bound than the GV
bound.

A subsequent work by Chepyzhov [3] shows that in the cyclic
prime case the condition in [2] that requires to be a primitive
root of can be relaxed to requiring that the size of the mul-
tiplicative group generated by in grows faster than ,
and hence the ERH can be avoided as it is not hard to show that
there are infinitely many such primes.

4) Quadratic Residue Codes: Let be a prime such that
is a quadratic residue, i.e., (mod 8). Consider the

decomposition over , where
, , is the set

of quadratic residues modulo , and is a primi-
tive th root of in an extension field of . Binary quadratic
residues codes are the ideals of gen-
erated by one the polynomial or one of their products
with the polynomial .

Other than being cyclic codes, these codes are invariant under
the action of the subgroup

of on by affine transformations. They are also ex-
tendible from to in such a way they are invariant
under the action of by fractional linear transforma-
tions on . See [7], [14], and [17]. It is not known if
binary quadratic residue codes can be asymptotically good.

5) Cayley Graphs Codes: Sipser and Spielman [16] con-
structed explicit binary asymptotically good low density parity
check codes based on the explicit constructions of Cayley
graphs expanders of Lubotzky, Phillips, and Sarnak [10],
and Margulis [8]. The underlying Cayley graph group is

prime. These codes are realized as unbalanced
bipartite graphs in such a way that the codewords are defined
on the edges of the Cayley graph. They are invariant under the
action of on more than one copy of itself.

C. Summary of Results

1) Asymptotically Good Codes in the Group Algebra of the
Dihedral Group: The most natural class of group action codes
are those that are invariant under the action of a group on
itself, i.e., those that are ideals in the binary group algebra
of a group . The case when is cyclic (respectively, Abelian)
corresponds to the case of cyclic (respectively, Abelian) codes.
Such codes are very well studied. As mentioned before, yet it is
still an open question whether there exist asymptotically good
cyclic or Abelian codes. The case when is non-Abelian was
studied and introduced by MacWilliams [11] in the setting of the
dihedral group . However, it was not noted that this group
algebra contains asymptotically good codes.

Our result in Section III says that if we use a slightly stronger
group than a cyclic group, and namely the dihedral group, the
existence of asymptotically good codes can be guaranteed in the
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group algebra. In particular, we show that for infinitely many
, a random ideal in is an asymptotically good rate

binary code. The first condition we need on is that the
smallest size of the multiplicative group generated by in as

runs over the prime divisors of (or equivalently the smallest
dimension of a nontrivial -representation of ) grows
asymptotically faster than . We require also for simplicity
another condition and we argue that it is satisfied by all the
primes (mod 8). By random here, we mean according
to some specific distribution, based on the -representations of

, which we specify later. The implicit bound on the relative
minimum distance is , where is the binary entropy
function.

As far as we know, this is the first provably good randomized
construction of codes that are ideals in the group algebra of a
group. We do not know if it was previously known that there
exists asymptotically good codes that are ideals in the group
algebra of a group.

We leave the corresponding analysis till the end since it is
based on the analysis of the quasi-Abelian case that we overview
next.

2) Quasi-Abelian Codes Up To the GV Bound: Rather than
considering the action of a group on itself, one can consider
the action of on disjoint copy of itself. This means looking at
codes that are -submodules of . When is cyclic,
these are quasi-cyclic codes.

We consider the case when is an Abelian group of odd
order. Our result in Section II is that if the dimension
of the smallest irreducible -representation of grows faster
than logarithmically in the order of the , then an -sub-
module of generated by a random element of
achieves the GV bound at rate with a high probability.
Here, random means almost uniformly in a suitable sense that
we specify later. Roughly, almost all Abelian groups of odd
order satisfy the above condition. This includes almost all cyclic
groups of prime order. Since is Abelian, depends only
on the order of , and it is the smallest size of the multiplica-
tive group generated by in , where runs over the prime
divisors of .

Comparing our result with the existing literature on quasi-
cyclic codes surveyed in Section I-B-3), we see that the innova-
tion in our result is in the fact that it holds for Abelian groups
that are not necessarily cyclic of prime order which has the ad-
vantage of supplying more block lengths. Our condition on the
order of the group is a generalization of the condition of Chep-
yzhov [3] from cyclic groups of prime order to arbitrary Abelian
groups of odd order.

II. RANDOMIZED CONSTRUCTION FROM

ABELIAN GROUPS ACTIONS

We establish in this section the Claims of Section I-C-2). We
consider the case when is an Abelian group of odd order. We
argue in Theorems 2.1 and 2.4 that if the dimension of the
smallest irreducible -representation of grows faster than
logarithmically in the order of the , then an -submodule
of generated by a random element of achieves
the GV bound with a high probability. Since is Abelian,
depends only on the order of , and it is the smallest size of

the multiplicative group generated by in , where runs
over the prime divisors of . See Lemma 2.5. We note that
roughly, almost all Abelian group of odd order satisfy the above
condition.

Theorem 2.1: Let be a finite Abelian group of odd order
, and consider its binary group algebra

Consider the randomized construction of codes

where are selected uniformly at random from .
Let be the smallest dimension of a nontrivial -rep-

resentation of or, equivalently, the smallest dimension of a
nontrivial1 -module, or equivalently the smallest dimen-
sion of a nontrivial irreducible ideal in .

If is such that , then the prob-
ability that the minimum relative distance of the code
is below or the rate of is below is at most

, where is the binary entropy
function.

Therefore, if grows asymptotically faster than ,
then the code achieves the GV bound for rate with a
high probability.

Proof: Let . Let be the probability that
has dimension below and minimum distance below ,
where is say below for the moment. is at most the prob-

ability that there is an and ,
such that the event

occurs. This is true since is either
, or , and thus

, , or . The first two values are above and the last
can only decrease the rank of by 1. Thus, by the union
bound on

(1)

where

and is the ideal generated by in . Note that we excluded
the case and since they can only happen when
and , respectively.

1By a trivial [G]-module, we mean a R-module M such that
rm = m; 8m 2 M and r 2 [G].
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For all , the ideal is nontrivial, so
. Thus

for all (2)

Let

an ideal of

so we have

(3)

For any , and any , we have

and

(4)

where , and if is an ideal, by we mean

The term is the value of and .
Indeed, for any

where is given by .
Replacing (2), (3), and (4) in (1), we get

(5)

Note that so far we have not used any property that depends
on being Abelian. Note also that the maximum above can be
replaced by an expected value, but we will not need that.

Lemma 2.2: If is an ideal in of dimension , then
, where is the binary entropy function.

Proof: This follows from the work of Piret [13] and Sh-
parlinsky [15]. In fact this holds when , and is an
arbitrary group of size . The result in [13] and [15] says the
following.

Let be an index set of size and let be a subset of
of size . Call a subset of an information set of if the
projection map form to is a bijection (thus

). Call balanced if there exists and information sets
of such that for all in , the number of such

that is exactly (note that the need not be distinct).
The result of [13] and [15] asserts that if is balanced then the
number of vectors in of weight is at most . The
proof is a double-counting argument. This is directly applicable
to the case when is ideal in . The reason is that since

is linear it must contain an information set of size ,
and since is invariant under the action of , the are
informations sets also. These information sets make balanced
because for each in , the number of such that is
exactly .

Lemma 2.3: , where .
Proof: Here we use the fact that is Abelian. In general,

since is odd, is semisimple. Let be
the unique decomposition of into indecomposable two-sided
ideals. The are simple rings. Since is Abelian the are
irreducible and they are the only irreducible ideals in (Each

is actually a field with its idempotent as a unit element).
Thus, each ideal in is of the form for some subset

of . This fact is the reason behind the claimed
bound on ; if were non-Abelian, then can be much
larger than this because each may contain many irreducible
ideals. Without loss of generality, say that is the trivial one
dimensional ideal, i.e., . Thus, for each ,
the dimension of is at least . So, .
If is an ideal of dimension , then it is a direct sum of at most

of the . There are at most such direct sum, so
.

Note that we can get a sharper bound, but this is sufficient for
our purpose.

Replacing the estimates in Lemmas 2.2 and 2.3 in (5), we get

since is convex

If , we get

This completes the proof of Theorem 2.1.
Note that the fact that the estimate of Lemma 2.3 fails for

non-Abelian groups does not mean that they do not lead to good
codes in the setting of this randomized construction. All that it
says is that the argument may need some modifications. In any
case, however, it will become clear in Section III that the reason
why Lemma 2.3 fails for non-Abelian groups makes them sub-
ject to a more natural randomized construction.

More generally we have Theorem 2.4.
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Theorem 2.4: Let be an Abelian group of order , and
consider the randomized codes construction

where are selected uniformly at random from ,
and is the set of even weight strings in .

If grows asymptotically faster than , then the
code achieves the GV bound for rate with a high
probability.

Proof: The proof is by the same argument in Theorem 2.1.
We need this even weight technicality in order to avoid the dom-
inance of some bad events when is large enough. The fact that
the have even weight will take care of the case when
since then always.

Lemma 2.5: Since is Abelian, depends only on the
order of and is given by

a prime divisor of

where is the multiplicative subgroup generated by in .
Proof: Since is Abelian, decompose as

, where and is prime. Thus,
. If is a nontrivial -representation

of , then the restriction of to one of the must be non-
trivial, thus . Conversely, given a represen-
tation of , we can extend to via

. Thus, . Therefore,
we can assume without loss of generality that is cyclic of
order a power of a prime, say . Then, the dimensions of
the irreducible -representations of are precisely the sizes of
the equivalence classes in , where if
(mod ) for some . The trivial representation corresponds to
the class consisting of 0. Thus

where

Now, , where gcd , as can be
easily checked. Thus

because for all , and hence the claim
since .

Now, if is a nondecreasing function, let

So any family of Abelian groups whose orders is in leads
to rate codes up to the attainment of the GV bound as long
as .

Let be the set of primes in .
Lemma 2.6: When is infinite and

contains almost all the primes.
Proof: This statement appears in Chepyzhov [3], but we

include a proof for completeness. Say that a prime is bad if it
is not in , and let be the set of bad primes less than .
If is a bad prime, then there exists integers and such that

and . Since is nondecreasing,
we have

and prime

and hence the lemma follows from the prime numbers density
theorem.

So we have many infinite families of Abelian groups that lead
to codes up to the GV bound in the sense of Theorem 2.1, such
as the following:

• the cyclic groups of prime order, where the primes are in
, and ;

• any version of the Abelian groups of order , where
, and for some

prespecified constant ;
• any version of the Abelian groups of order , where

, and is a prespecified
constant.

III. DIHEDRAL GROUP RANDOMIZED CONSTRUCTION

In this section, we establish the claim of Section I-C-1). We
argue in Theorem 3.4 that for infinitely many block lengths, a
random ideal in the binary group algebra of the dihedral
group is an asymptotically good rate binary code. We
show that the condition, we require on is satisfied by almost
half the primes, namely all primes such that is a nonquadratic
residue mod (i.e., (mod 8)) and such that the size of the
multiplicative group generated by in grows asymptotically
faster than . By random here, we mean according to some
specific distribution based on the -representations of in
Theorem 3.3. The implicit bound on the relative minimum dis-
tance is , where is the binary entropy function.

Let be odd, and consider the dihedral group

has elements: for and .
We are interested in the the structure of in terms of

its ideals. We will work with left ideals. Note that since the char-
acteristic 2 of divides the even order of , the ring
is not semisimple, i.e., its radical is nonzero.

Let be the subgroup of generated by , and the
subgroup generated by . Note that is normal. Let
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Any element of can be represented uniquely as
, where . If is an element of ,

define

and note that is a ring automorphism. From the
relation , we get for all , and hence

for all .
Since is semisimple (because is odd), let

be the unique decomposition of into two-sided ideals, where
each is a simple ring. Each must be a field since is
commutative and a simple commutative ring is a field (the ma-
trix algebra over the field is commutative iff ).

One of the is the ideal generated by ,
and it consists of 0 and . Assume that the are ordered
so that .

The automorphism maps each to some . We impose a
restriction on the order of . We assume that is such that

for (6)

We need this assumption to simplify the analysis.
We argue below that this assumption is satisfied for infinitely

many values of .
Lemma 3.1: Assumption (6) is satisfied for all prime values
of such that (mod 8).
Proof: Assume that is a prime . Assume further that

(mod 8), or equivalently, is a nonquadratic residue
mod . Realize as , and let be a prim-
itive th root of in a extension of ; thus, the irreducible
decomposition of over is

where

In these terms, the , where , are in one-to-one correspon-
dence with the cosets . The ideal corresponding
to is generated by

Thus is generated by . Hence
iff . This holds for all iff ,
which can be guaranteed when is a nonquadratic-residue since
in such a case (mod ).

Definition 3.2: If is a field, by we mean the multiplica-
tive group of . More generally, if is a commutative ring with

identity, will denote the multiplicative group of the units of
.
Theorem 3.3: Let , where is the dihedral

group, and is odd. Assume further that (6) holds. Then, the
ring decomposes into a direct sum of two-sided ideals as

where the structure of the is as follows.
1) . The ideals of are ( is

two-sided), where

2) For , we have

Each such is simple as a ring and isomorphic as a ring to
, where . Moreover, contains

nonzero irreducible left ideal all isomorphic and
each of dimension . They are given by

where is a subfield of .
Note that because

is even. Hence, and, consequently, is not
semisimple. In fact it is not difficult to show that is the rad-
ical of .

Proof: The representations of are essentially similar to
the semisimple case corresponding to the situation when instead
of we have a field whose characteristic does not divide the
order of (see, for instance, [1] and [4]). We need, however,
to worry about the fact that the ring is not semisimple and fur-
thermore we need to list all the irreducible left ideals. This is
not hard since the group is simple to analyze.

Each is a two-sided ideal since for each
, and . The claimed structure will

essentially follow once we show that for all , we have the
following:

1) contains no other two-sided ideal, and is thus simple as
a ring;

2)
a) each is an irreducible left ideal;
b) iff ;
c) any nonzero left ideal in must contain one of the

.
To see why it is enough to establish 1) and 2), note first that the

fact that is simple implies that all the nonzero irreducible left
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ideals of are isomorphic and that is isomorphic to
for some finite field , where is such that and
the are irreducible (the decomposition is not unique unless

). Combining this with 2), which says that each is
irreducible, we see by dimensional considerations (

and )
that , and hence .

The claimed number of nonzero irreducible left ideals then
follows from the fact that, in general, the number of nonzero
irreducible left ideals in is . To see why this
is true, let be the set of principal left ideals of
that are not equal to 0 or . We will argue below that

for all ideals in . By dimensional considera-
tion, this implies that any ideal in must be irreducible, and the
ideals in are the only irreducible left ideals. The intersection
of two ideals in must be the zero ideal because they are ir-
reducible. Moreover, the ideals in are generated by rank-one
matrices (since for all ), i.e., elements
of . Thus, is a disjoint
union equal to . It follows that

We still have to show that for all ideals in . Let
. Since or must be generated by a some

rank-one matrix . Decompose as , where

, and and are invertible matrices. Thus

It follows that

Therefore, .
Proof of 1): Let , where , be

a nonzero element of , and consider the two-sided ideal
generated by . It is enough to show that (and hence

).
First, we show that must contains an element

, where , and . If ,
use . If , try for . Thus,

. Assume, for the sake of contradiction, that
, for all in . Hence, , for all in .

Since the square map is subjective (because
is odd), we get , for all in . This can only happen

if . However, then , which is not true.
Thus

is a nonzero element inside , where inversion is in as
a field. Note that since and the
characteristic of is . Consequently, contains , and hence

, since the two-sided ideal generated by is .
Proof of 2):

a) We have , for all . Thus,
, and

for all , and hence is a left
ideal. is an irreducible left ideal of since is an
irreducible ideal of and .

b) Let . The left ideal is generated by
since , where is the identity
element of the field . Let . Thus,

iff there exists such that
, i.e., and . Combining

both equalities, we get . Multiplying by the
multiplicative inverse of in , we obtain . Hence

iff there exists such that ,
which is equivalent to saying that .

c) If is a nonzero left ideal in , let be any
nonzero element of , where are not both zero.
If , i.e., , then

. If , consider the element of
. Since ,

we get that
(note that since ).

This completes the proof of Theorem 3.3.
Now, we know all the left ideals of . They are direct sums

of the form , where each is either 0, , one of
the if , or if .

Theorem 3.4: Let be an odd integer, and consider the
dihedral group . Assume further that (6) holds. Let

, and consider the unique decomposition

of into two-sided ideals as in Theorem 3.3.
Consider the following randomized code construction: gen-

erate a rate- random left ideal of as

where each is selected uniformly at random from one of the
nonzero irreducible left ideals of .

If is such that , then the proba-
bility that the minimum relative distance of is below is at
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most , where is the binary entropy
function.

Moreover, there are infinitely many such such that (6)
holds and grows asymptotically faster than , for in-
stance for almost all the primes (mod 8).

Therefore, there are infinitely many integers such that the
left ideal of is an asymptotically good rate binary
code with a high probability.

Proof: First, recall that since is a direct sum of ideals
, each element of has a unique decomposition
, where . Recall also that since the decom-

position is into two sided ideals, we have for all
(because ). Thus if decomposes

as and as , we have . Fi-
nally, recall that each is a field being a simple commutative
ring.

Let , and let be the multiplicative group
of units of of . Thus

where is the multiplicative subgroup of the field . Note
that , where is the multiplicative
inverse of in the field . Finally, let be the subgroup of

given by .
Similarly, since is a direct sum of ideals , each

element of has a unique decomposition , where
. Moreover, since the decomposition is into two sided

ideals, we have for all . Thus if decomposes
as and as , we have .

Therefore, the above randomized construction is equivalent
to the following: pick a random left ideal

where is selected uniformly at random from . From
Section II, we know that there are infinitely many with

, and they contain specifically almost all the
primes. Combining with Lemma 3.1, we get that there are
infinitely many such such that (6) holds and grows
asymptotically faster than , for instance almost all the
primes (mod 8).

To establish the minimum distance bound, we follow the ar-
gument in Theorem 2.1. We will use the structure of the dihedral
group representations from Theorem 3.3 at the end in (9), (10),
and (11).

Observe the relation between this randomized construction
and the rate-half randomized construction in that Theorem 2.1.
This ensemble of codes is, in a suitable sense, a subfamily of
that ensemble.

Since is a group, for all in . Thus

for all in . Hence, the probability that the minimum
distance of is below when is selected uniformly
at random from , is the same as the probability that

has a minimum distance below , when and
are selected uniformly at random from .
Now we proceed as in Theorem 2.1. is the probability that

there is an , such that
. Thus, is at most

and this is at most

where , and . As
before, we have

where is the set of left ideals in of dimension .
Consider any , and any . We have

where

and this is at most

where , and is the set of elements in of weight .
Fix , any in , and any in . We will argue at the
end that

(7)

We have from Lemmas 2.2 and Lemma 2.3 that
, and .

Thus, modulo (7), we are done since by arguing as in Theorem
2.1, we get

since h is convex
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where the last bound holds when . The
difference is that now we have instead of . The reason
is that before we had instead of .

We still have to establish (7). The first thing to note is that
when and are selected uniformly at random from , each

is equally likely to occur as . The reason is
that if , where , then the event

can be expressed as

where (respectively, ) is the inverse of (respectively, )
in the multiplicative group , and where is the identity
element of group which acts also as an identity element for
the ring ( , where each is the identity element
of the field . Thus if , where , we have

). Therefore

since and . Since this is independent
of choice of , we get

(8)

Decompose uniquely as , where each ,
and let be the set of such that , thus . We
can express as

since, for , we have because is invertible
being a nonzero element of the field . Now

where we have used in the second equality the fact that is a
group (hence for all ) and the fact that is an
automorphism of (hence for all ).

We know from Theorem 3.3 that iff
as elements of . Thus

(9)

From Theorem 3.3, the are nonzero irreducible left ideals of
. Since the intersection of two left ideals is a left ideal, the

above union is a disjoint union. Hence

(10)

Using Theorem 3.3 again, we obtain

(11)

Hence

Noting that

since ( is divisible by ), we obtain

and hence (7) via (8).
This completes the proof of Theorem 3.4.
It is important to note that the bound we obtained

on the minimum relative distance is unlikely to be tight. We
ended up with this bound because our argument is based on
counting, and the construction does not have enough random-
ness so that a counting argument can go up to the GV bound,
i.e., up to .

IV. CONCLUSION

We studied two randomized constructions of binary linear
codes that are invariant under the action of some group on
the bits of the codewords: a randomized Abelian construction
based on the action of an Abelian group on a number of disjoint
copies of itself, and a non-Abelian randomized construction
corresponding the action of the dihedral group on a single
copy of itself. We argued that both ensembles of codes are
asymptotically good.
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