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The Necessity and Sufficiency of Anytime Capacity
for Stabilization of a Linear System Over a Noisy

Communication Link—Part I: Scalar Systems
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Abstract—In this paper, we review how Shannon’s classical
notion of capacity is not enough to characterize a noisy commu-
nication channel if the channel is intended to be used as part of a
feedback loop to stabilize an unstable scalar linear system. While
classical capacity is not enough, another sense of capacity (pa-
rametrized by reliability) called “anytime capacity” is necessary
for the stabilization of an unstable process. The required rate
is given by the log of the unstable system gain and the required
reliability comes from the sense of stability desired. A conse-
quence of this necessity result is a sequential generalization of the
Schalkwijk–Kailath scheme for communication over the additive
white Gaussian noise (AWGN) channel with feedback. In cases
of sufficiently rich information patterns between the encoder and
decoder, adequate anytime capacity is also shown to be sufficient
for there to exist a stabilizing controller. These sufficiency results
are then generalized to cases with noisy observations, delayed
control actions, and without any explicit feedback between the ob-
server and the controller. Both necessary and sufficient conditions
are extended to continuous time systems as well. We close with
comments discussing a hierarchy of difficulty for communication
problems and how these results establish where stabilization
problems sit in that hierarchy.

Index Terms—Anytime decoding, control over noisy channels,
error exponents, feedback, real-time information theory, reliability
functions, sequential coding.

I. INTRODUCTION

FOR communication theorists, Shannon’s classical channel
capacity theorems are not just beautiful mathematical re-

sults, they are useful in practice as well. They let us summa-
rize a diverse range of channels by a single figure of merit:
the capacity. For most noninteractive point-to-point communi-
cation applications, the Shannon capacity of a channel provides
an upper bound on performance in terms of end-to-end distor-
tion through the distortion-rate function. As far as distortion is
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concerned, all that matters is the channel capacity and the na-
ture of the source. Given enough tolerance for end-to-end delay,
the source can be encoded into bits and those bits can be reli-
ably transported across the noisy channel if the rate is less than
the Shannon capacity. As long as the source, distortion, and
channel are well-behaved [1], [2], there is asymptotically no
loss in separating the problems of source and channel coding.
This provides a justification for the layered architecture that lets
engineers isolate the problem of reliable communication from
that of using the communicated information. Recent advances
in coding theory have also made it possible to approach the ca-
pacity bounds very closely in practical systems.

In order to extend our understanding of communication to
interactive settings, it is essential to have some model for in-
teraction. Schulman and others have studied interaction in the
context of distributed computation [3], [4]. The interaction there
is between computational agents that have access to some pri-
vate data and wish to perform a global computation in a dis-
tributed way. The computational agents can only communicate
with each other through noisy channels. In Schulman’s formula-
tion, capacity is not a question of major interest since constant
factor slowdowns are considered acceptable.1 Fundamentally,
this is a consequence of being able to design all the system dy-
namics. The rich field of automatic control provides an interac-
tive context to study capacity requirements since the plant dy-
namics are given, rather than something that can be designed. In
control, we consider interaction between an observer that gets
to see the plant and a controller that gets to control it. These two
can be connected by a noisy channel.

Shannon himself had suggested looking to control problems
for more insight into reliable communication [5].

“ can be pursued further and is related to a duality
between past and future2 and the notions of control and
knowledge. Thus we may have knowledge of the past and
cannot control it; we may control the future but have no
knowledge of it.”

We are far from the first to attempt to bring together informa-
tion and control theory. In [7], Ho, Kastner, and Wong drew out
a detailed diagram in which they summarized the then known
relationships among team theory, signaling, and information
theory from the perspective of distributed control. Rather
than taking such a broad perspective, we instead ask whether

1Furthermore, such constant factor slowdowns appear to be unavoidable when
facing the very general class of interactive computational problems.

2The differing roles of the past and future are made clear in [6].
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Shannon’s classical capacity is the appropriate characterization
for communication channels arising in distributed control
systems. Our interest is in understanding the fundamental
relationship between problems of stabilization and problems of
communication.

Tatikonda’s recent work on sequential rate distortion theory
provides an information-theoretic lower-bound on the achiev-
able performance of a control system over a channel. Because
this bound is sometimes infinite, it also implies that there is a
fundamental rate of information production, namely the sum of
the logs of the unstable eigenvalues of the plant, that is invari-
antly attached to an unstable linear discrete-time process [8],
[9]. This particular notion of rate was justified by showing how
to stabilize the system over a noiseless feedback link with ca-
pacity greater than the intrinsic rate for the unstable process.3

Nair et al. extended this to cover the case of unbounded dis-
turbances and observation noise under suitable conditions [10],
[11]. In addition to noiseless channels, the results were extended
for almost-sure stabilization in the context of undisturbed4 con-
trol systems with bounded initial conditions being stabilized
over certain noisy channels [12].

We had previously showed that it is possible to stabilize
persistently disturbed controlled Gauss–Markov processes
over suitable power-constrained additive white Gaussian noise
(AWGN) channels [13], [14] where it turns out that Shannon
capacity is tight and linear observers and controllers are suf-
ficient to achieve stabilization [15]. In contrast, we showed
that the Shannon capacity of the binary erasure channel (BEC)
is not sufficient to check stabilizability and introduced the
anytime capacity as a candidate figure of merit [16]. Following
up on our treatment of the BEC case, Martins et al. have studied
more general erasure-type models and have also incorporated
bounded model uncertainty in the plant [17]. There is also
related work by Elia that uses ideas from robust control to deal
with communication uncertainty in a mixed continuous/dis-
crete context, but restricting to linear operations [18], [19].
Basar and his students have also considered such problems
and have studied the impact of a noisy channels on both the
observations and the controls [20]. The area of control with
communications constraints continues to attract attention and
the reader is directed to the recent September 2004 issue of
IEEE TRANSACTIONS ON AUTOMATIC CONTROL and the articles
therein for a more comprehensive survey.

Many of the issues that arise in the control context also arise
for the conceptually simpler problem of merely estimating an
unstable open-loop process,5 across a noisy channel. For this
estimation problem in the limit of large, but finite, end-to-end
delays, we have proved a source coding theorem that shows
that the distortion-rate bound is achievable. Furthermore, it is
possible to characterize the information being produced by an
unstable process [23]. It turns out that such processes produce

3The sequential rate-distortion bound is generally not attained even at higher
rates except in the case of perfectly matched channels.

4In seminal work [12], there is no persistent disturbance acting on the unstable
plant.

5The unstable open-loop processes discussed here are first-order nonsta-
tionary autoregressive processes [21], of which an important special case is the
Wiener process considered by Berger [22].

two qualitatively distinct types of information when it comes
to transport over a noisy channel. In addition to the classical
Shannontype of information found in traditional rate-distortion
settings,6 there is an essential core of information that captures
the unstable nature of the source. While classical Shannon relia-
bility suffices for the classical information, this unstable core re-
quires anytime reliability for transport across a noisy channel.7

As also discussed in this paper, anytime reliability is a sense
of reliable transmission that lies between Shannon’s classical
-sense of reliable transmission and his zero-error reliability

[25]. In [23], we also review how the sense of anytime relia-
bility is linked to classical work on sequential tree codes with
bounded delay decoding.8

The new feature in control systems is their essential interac-
tivity. The information to be communicated is not a message
known in advance that is used by some completely separate en-
tity. Rather, it evolves through time and is used to control the
very process being encoded. This introduces two interesting is-
sues. First, causality is strictly enforced. The encoder and con-
troller must act in real time and so taking the limit of large delays
must be interpreted very carefully. Second, it is unclear what
the status of the controlled process is. If the controller succeeds
in stabilizing the process, it is no longer unstable. As explored
in Section II-D, a purely external noninteractive observer could
treat the question of encoding the controlled closed-loop system
state using classical tools for the encoding and communication
of a stationary ergodic process. Despite having to observe and
encode the exact same closed-loop process, the observer internal
to the control system requires a channel as good as that required
to communicate the unstable open-loop process. This seemingly
paradoxical situation illustrates what can happen when the en-
coding of information and its use are coupled together by inter-
activity.

In this paper (Part I), the basic equivalence between feed-
back stabilization and reliable communication is established.
The scalar problem (Fig. 2) is formally introduced in Section II
where classical capacity concepts are also shown to be inade-
quate. In Section III, it is shown that adequate feedback any-
time capacity is necessary for there to exist an observer/con-
troller pair able to stabilize the unstable system across the noisy
channel. This connection is also used to give a sequential any-
time version of the Schalkwijk–Kailath scheme for the AWGN
channel with noiseless feedback.

Section IV shows the sufficiency of feedback anytime ca-
pacity for situations where the observer has noiseless access to
the channel outputs. In Section V, these sufficiency results are
generalized to the case where the observer only has noisy ac-
cess to the plant state. Since the necessary and sufficient con-
ditions are tight in many cases, these results show the asymp-
totic equivalence between the problem of control with “noisy

6In [23], we show how the classical part of the information determines the
shape of the rate-distortion curve, while the unstable core is responsible for a
shift of this curve along the rate axis.

7How to communicate such unstable processes over noisy channels had been
an open problem since Berger had first developed a source-coding theorem
for the Wiener process [24]. Berger had conjectured that it was impossible to
transport such processes over generic noisy channels with asymptotically finite
end-to-end distortion using traditional means.

8Reference [26] raised the possibility of such a connection early on.
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Fig. 1. The “equivalence” between stabilization over noisy feedback channels
and reliable communication over noisy channels with feedback is the main result
established in this paper.

feedback” and the problem of reliable sequential communica-
tion with noiseless feedback (Fig. 1). In Section VI, these re-
sults are further extended to the continuous time setting. Finally,
Section VII justifies why the problem of stabilization of an un-
stable linear control system is “universal” in the same sense that
the Shannon formulation of reliable transmission of messages
over a noisy channel with (or without) feedback is universal.
This is done by introducing a hierarchy of communication prob-
lems in which problems at a given level are equivalent to each
other in terms of which channels are good enough to solve them.
Problems high in the hierarchy are fundamentally more chal-
lenging than the ones below them in terms of what they require
from the noisy channel.

In Part II, the necessity and sufficiency results are general-
ized to the case of multivariable control systems on an unstable
eigenvalue by eigenvalue basis. The role of anytime capacity is
played by a rate region corresponding to a vector of anytime re-
liabilities. If there is no explicit channel output feedback, the in-
trinsic delay of the control system’s input–output behavior plays
an important role. It shows that two systems with the same un-
stable eigenvalues can still have potentially different channel re-
quirements. These results establish that in interactive settings, a
single “application” can fundamentally require different senses
of reliability for its data streams. No single number can ade-
quately summarize the channel and any layered communication
architecture should allow applications to adjust reliabilities on
bitstreams.

There are many results in this paper. In order not to burden
the reader with repetitive details and unnecessarily lengthen this
paper, we have adopted a discursive style in some of the proofs.
The reader should not have any difficulty in filling in the omitted
details.

II. PROBLEM DEFINITION AND BASIC CHALLENGES

Section II-A formally introduces the control problem of
stabilizing an unstable scalar linear system driven by both
a control signal and a bounded disturbance. In Section II-B,
classical notions of capacity are reviewed along with how to sta-
bilize an unstable system with a finite rate noiseless channel. In
Section II-C, it is shown by example that the classical concepts
are inadequate when it comes to evaluating a noisy channel for
control purposes. Shannon’s regular capacity is too optimistic
and zero-error capacity is too pessimistic. Finally, Section II-D
shows that the core issue of interactivity is different than merely
requiring the encoders and decoders to be delay-free.

Fig. 2. Control over a noisy communication channel. The unstable scalar
system is persistently disturbed by W and must be kept stable in closed-loop
through the actions of O; C.

A. The Control Problem

(1)

where is a -valued state process. is a -valued
control process and is a bounded noise/disturbance
process s.t. . This bound is assumed to hold with
certainty. For convenience, we also assume a known initial
condition .

To make things interesting, consider so the open-loop
system is exponentially unstable. The distributed nature of the
problem (shown in Fig. 2) comes from having a noisy com-
munication channel in the feedback path. The observer/encoder
system observes and generates inputs to the channel.
It may or may not have access to the control signals or past
channel outputs as well. The decoder/controller9 system
observes channel outputs and generates control signals .
Both are allowed to have unbounded memory and to be
nonlinear in general.

Definition 2.1: A closed-loop dynamic system with state
is -stable if for all .

This definition requires the probability of a large state value
to be appropriately bounded. A looser sense of stability is given
by the following.

Definition 2.2: A closed-loop dynamic system with state
is -stable if there exists a constant s.t. for all

.
In both definitions, the bound is required to hold for all

possible sequences of bounded disturbances that satisfy
the given bound . We do not assume any specific proba-
bility model governing the disturbances. Rather than having to
specify a specific target for the tail probability , holding the

-moment within bounds is a way of keeping large deviations
rare. The larger is, the more strongly very large deviations
are penalized. The advantage of -stability is that it allows
constant factors to be ignored while making sharp asymptotic

9Because the decoder and controller are both on the same side of the commu-
nication channel, they can be lumped together into a single box.
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statements. Furthermore, Section III-C shows that for generic
DMCs, no sense stronger than -stability is feasible.

The goal in this paper is to find necessary and sufficient con-
ditions on the noisy channel for there to exist an observer
and controller so that the closed loop system shown in Fig. 2
is stable in the sense of definitions 2.1 or 2.2. The problem is
considered under different information patterns corresponding
to different assumptions about what information is available at
the observer . The controller is always assumed to just have
access to the entire past history10 of channel outputs.

For discrete-time linear systems, the intrinsic rate of infor-
mation production (in units of bits per time) equals the sum of
the logarithms (base ) of the unstable eigenvalues [9]. In the
scalar case studied here, this is just . This means that it is
generically11 impossible to stabilize the system in any reason-
able sense if the feedback channel’s Shannon classical capacity

.

B. Classical Notions of Channels and Capacity

Definition 2.3: A discrete time channel is a probabilistic
system with an input. At every time step , it takes an input

and produces an output with probability12

where the notation is shorthand for the se-
quence . In general, the current channel output is
allowed to depend on all inputs so far as well as on past outputs.

The channel is memoryless if conditioned on , is inde-
pendent of any other random variable in the system that occurs
at time or earlier. All that needs to be specified is .

The maximum rate achievable for a given sense of reliable
communication is called the associated capacity. Shannon’s
classical reliability requires that after a suitably large end-to-end
delay13 that the average probability of error on each bit is
below a specified . Shannon classical capacity can also be
calculated in the case of memoryless channels by solving an
optimization problem

where the maximization is over the input probability distribu-
tion and represents the mutual information through the
channel [1]. This is referred to as a single letter characterization
of channel capacity for memoryless channels. Similar formulae
exist using limits in cases of channels with memory. There is
another sense of reliability and its associated capacity called
zero-error capacity which requires the probability of error to be

10In Section III.C.3, it is shown that anything less than that can not work in
general.

11There are pathological cases where it is possible to stabilize a system with
less rate. These occur when the driving disturbance is particularly structured
instead of just being unknown but bounded. An example is when the disturbance
only takes on values �1 while � = 4. Clearly only one bit per unit time is
required even though log � = 2.

12This is a probability mass function in the case of discrete alphabets B, but
is more generally an appropriate probability measure over the output alphabet
B.

13Traditionally, the community has used block-length for a block code as the
fundamental quantity rather than delay. It is easy to see that doing encoding and
decoding in blocks of size n corresponds to a delay of between n and 2n on the
individual bits being communicated.

exactly zero with sufficiently large . It does not have a simple
single-letter characterization [25].

Example 2.1: Consider a system (1) with and
. Suppose that the memoryless communication channel is a

noiseless one bit channel. So and
while

. This channel has
.

Use a memoryless observer

if
if

and memoryless controller

if
if

Assume that the closed loop system state is within the interval
. If it is positive, then it is in the interval . At the

next time, would be in the interval . The ap-
plied control of shifts the state back to within the interval

. The same argument holds by symmetry on the neg-
ative side. Since it starts at 0, by induction it will stay within

forever. As a consequence, the second moment will
stay less than 4 for all time, and all the other moments will be
similarly bounded.

In addition to the Shannon and zero-error senses of relia-
bility, information theory has various reliability functions. Such
reliability functions (or error exponents) are traditionally con-
sidered an internal matter for channel coding and were viewed
as mathematically tractable proxies for the issue of implemen-
tation complexity [1]. Reliability functions study how fast the
probability of error goes to zero as the relevant system param-
eter is increased. Thus, the reliability functions for block-codes
are given in terms of the block length, reliability functions for
convolutional codes in terms of the constraint length [27], and
reliability functions for variable-length codes in terms of the
expected block length [28]. With the rise of sparse code con-
structions and iterative decoding, the prominence of error expo-
nents in channel coding has diminished since the computational
burden is not superlinear in the block-length.

For memoryless channels, the presence or absence of feed-
back does not alter the classical Shannon capacity [1]. More
surprisingly, for symmetric DMC’s, the fixed block coding reli-
ability functions also do not change with feedback, at least in the
high rate regime [29]. From a control perspective, this is the first
indication that neither Shannon’s capacity nor block-coding re-
liability functions are the perfect fit for control applications.

C. Counterexample Showing Classical Concepts are
Inadequate

We use erasure channels to construct a counterexample
showing the inadequacy of the Shannon classical capacity in
characterizing channels for control. While both erasure and
AWGN channels are easy to deal with, it turns out that AWGN
channels can not be used for a counterexample since they can be
treated in the classical LQG framework [15]. The deeper reason
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for why AWGN channels do not provide a counterexample is
given in Section III-C4.

1) Erasure Channels: The packet erasure channel models
situations where errors can be reliably detected at the receiver.
In the model, sometimes the packet being sent does not make
it through with probability , but otherwise it makes it through
correctly. Explicitly, Definition 2.4.

Definition 2.4: The -bit packet erasure channel is a mem-
oryless channel with and

while .
It is well known that the Shannon capacity of the packet

erasure channel is bits per channel use regardless
of whether the encoder has feedback or not [1]. Furthermore,
because a long string of erasures is always possible, the zero-
error capacity of this channel is . There are also variable-
length packet erasure channels where the packet-length is some-
thing the encoder can choose. See [30] for a discussion of such
channels.

To construct a simple counterexample, consider a further
abstraction.

Definition 2.5: The real packet erasure channel has
and while .

This model has also been explored in the context of Kalman
filtering with lossy observations [31], [32]. It has infinite clas-
sical capacity since a single real number can carry arbitrarily
many bits within its binary expansion, while the zero-error ca-
pacity remains .

2) The Inadequacy of Shannon Capacity: Consider the
problem from Example 2.1, except over the real erasure
channel instead of the one bit noiseless channel. The goal is
for the second moment to be bounded and recall that

. Let so that there is a 50% chance of any real
number being erased. Assume the bounded disturbance , as-
sume that it is zero-mean and iid with variance . By assuming
an explicit probability model for the disturbance, the problem
is only made easier as compared to the arbitrarily-varying but
bounded model introduced earlier.

In this case, the optimal control is obvious—set as
the channel input and use as the control. With every
successful reception, the system state is reset to the initial con-
dition of zero. For an arbitrary time , the time since it was last
reset is distributed like a geometric- random variable. Thus,
the second moment is

This diverges as since .

Fig. 3. The control system with an additional passive joint source–channel en-
coder E watching the closed loop state X and communicating it to a passive
estimator D . The controller C implicitly needs a good causal estimate for X
and the passive estimator D explicitly needs the same thing. Which requires
the better channel?

Notice that the root of the problem is that . In-
tuitively, the system is exploding faster than the noisy channel
is able to give reliability. This causes the second moment to di-
verge. In contrast, the first moment is bounded for all
since .

The adequacy of the channel depends on which moment is
required to be bounded. Thus no single-number characteriza-
tion like classical capacity can give the figure-of-merit needed
to evaluate a channel for control applications.

D. Noninteractive Observation of a Closed-Loop Process

Consider the system shown in Fig. 3. In this, there is an ad-
ditional passive joint source–channel encoder watching the
closed loop state and communicating it to a passive estimator

through a second independent noisy channel. Both the pas-
sive and internal observers have access to the same plant state
and we can also require the passive encoder and decoder to be
causal—no end-to-end delay is permitted. At first glance, it cer-
tainly appears that the communication situations are symmetric.
If anything, the internal observer is better off since it also has ac-
cess to the control signals while the passive observer is denied
access to them.

Suppose that the closed-loop process (1) had already been
stabilized by the observer and controller system of 2.1, so that
the second moment for all . Suppose that the noisy
channel facing the passive encoder is the real -erasure channel
of the previous section. It is interesting to consider how well the
passive observer does at estimating this process.

The optimal encoding rule is clear, set . It is
certainly feasible to use itself as the estimator for
the process. This passive observation system clearly achieves

since the probability of nonera-
sure is . The causal decoding rule is able to achieve a finite
end-to-end squared error distortion over this noisy channel in
a causal and memoryless way.

This example makes it clear that the challenge here is arising
from interactivity, not simply being forced to be delay-free. The
passive external encoder and decoder do not have to face the
unstable nature of the source while the internal observer and
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controller do. An error made while estimating by the passive
decoder has no consequence for the next state while a
similar error by the controller does.

III. ANYTIME CAPACITY AND ITS NECESSITY

Anytime reliability is introduced and related to classical no-
tions of reliability in [23]. Here, the focus is on the maximum
rate achievable for a given sense of reliability rather than the
maximum reliability possible at a given rate. The two are of
course related since fundamentally there is an underlying region
of feasible rate/reliability pairs.

Since the open-loop system state has the potential to grow ex-
ponentially, the controller’s knowledge of the past must become
certain at a fast rate in order to prevent a bad decision made in
the past from continuing to corrupt the future. When viewed in
the context of reliably communicating bits from an encoder to a
decoder, this suggests that the estimates of the bits at the decoder
must become increasingly reliable with time. The sense of any-
time reliability is made precise in Section III-A. Section III-B
then establishes the key result of this paper relating the problem
of stabilization to the reliable communication of messages in
the anytime sense. Finally, some consequences of this connec-
tion are studied in Section III-C. Among these consequences is a
sequential generalization of the Schalkwijk–Kailath scheme for
communication over an AWGN channel that achieves a doubly
exponential convergence to zero of the probability of bit error
universally over all delays simultaneously.

A. Anytime Reliability and Capacity

The entire message is not assumed to be known ahead of time.
Rather, it is made available gradually as time evolves. For sim-
plicity of notation, let be the bit message that the channel
encoder gets at time . At the channel decoder, no target delay is
assumed—i.e., the channel decoder does not necessarily know
when the message will be needed by the application. A past
message may even be needed more than once by the appli-
cation. Consequently, the anytime decoder produces estimates

which are the best estimates for message at time based
on all the channel outputs received so far. If the application is
using the past messages with a delay , the relevant probability
of error is . This corresponds to an un-
corrected error anywhere in the distant past (i.e., on messages

) beyond channel uses ago.
Definition 3.1: As illustrated in Fig. 4, a rate communica-

tion system over a noisy channel is an encoder and decoder
pair such that as follows.

• -bit message enters14 the encoder at discrete time
• The encoder produces a channel input at integer times

based on all information that it has seen so far. For en-
coders with access to feedback with delay , this also
includes the past channel outputs .

• The decoder produces updated channel estimates for
all based on all channel outputs observed till time .

14In what follows, messages are considered to be composed of bits for sim-
plicity of exposition. The ith bit arrives at the encoder at time and thus M
is composed of the bits S .

Fig. 4. The problem of communicating messages in an anytime fashion. Both
the encoder E and decoder D are causal maps and the decoder in principle pro-
vides updated estimates for all past messages. These estimates must converge
to the true message values appropriately rapidly with increasing delay.

A rate sequential communication system achieves anytime
reliability if there exists a constant such that

(2)

holds for every . The probability is taken over the channel
noise, the bit messages , and all of the common random-
ness available in the system.

If (2) holds for every possible realization of the messages ,
then the system is said to achieve uniform anytime reliability .

Communication systems that achieve anytime reliability are
called anytime codes and similarly for uniform anytime codes.

We could alternatively have bounded the probability of error
by and interpreted as the minimum delay
imposed by the communication system.

Definition 3.2: The -anytime capacity of a channel
is the least upper bound of the rates (in bits) at which the
channel can be used to construct a rate communication system
that achieves uniform anytime reliability .

Feedback anytime capacity is used to refer to the anytime
capacity when the encoder has access to noiseless feedback of
the channel outputs with unit delay.

The requirement for exponential decay in the probability of
error with delay is reminiscent of the block-coding reliability
functions of a channel given in [1]. There is one crucial
difference. With standard error exponents, both the encoder and
decoder vary with blocklength or delay . Here, the encoding is
required to be fixed and the decoder in principle has to work at
all delays since it must produce updated estimates of the mes-
sage at all times .

This additional requirement is why it is called “anytime” ca-
pacity. The decoding process can be queried for a given bit at
any time and the answer is required to be increasingly accurate
the longer we wait. The anytime reliability specifies the expo-
nential rate at which the quality of the answers must improve.
The anytime sense of reliable transmission lies between that rep-
resented by classical zero-error capacity (probability of error
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becomes zero at a large but finite delay) and classical capacity
(probability of error becomes something small at a large but

finite delay). It is clear that .
By using a random coding argument over infinite tree codes,

it is possible to show the existence of anytime codes without
using feedback between the encoder and decoder for all rates
less than the Shannon capacity. This shows:

where is Gallager’s random coding error exponent calcu-
lated in base 2 and is the rate in bits [23], [33]. Since feedback
plays an essential role in control, it turns out that we are inter-
ested in the anytime capacity with feedback. It is interesting to
note that there are many channels for which the block-coding
error exponents are not increased at all with feedback while the
anytime reliabilities are increased considerably [6].

B. Necessity of Anytime Capacity

Anytime reliability and capacity are defined in terms of dig-
ital messages that must be reliably communicated from point
to point. Stability is a notion involving the analog value of the
state of a plant in interaction with a controller over a noisy
feedback channel. At first glance, these two problems appear to
have nothing in common except the noisy channel. Even on that
point there is a difference. The observer/encoder in the con-
trol system may have no explicit access to the noisy output of
the channel. It can appear to be using the noisy channel without
feedback. Despite this, it turns out that the relevant digital com-
munication problem involves access to the noisy channel with
noiseless channel feedback coming back to the message en-
coder.

Theorem 3.3: For a given noisy channel and , if
there exists an observer and controller for the unstable
scalar system that achieves for all sequences of
bounded driving noise , then the channel’s feedback
anytime capacity bits per channel use.

The proof of this spans the next few sections. Assume that
there is an observer/controller pair that can -stabilize an
unstable system with a particular and are robust to all bounded
disturbances of size . The goal is to use the pair to construct
a rate anytime encoder and decoder for the channel
with noiseless feedback, thereby reducing15 the problem of any-
time communication to a problem of stabilization.

The heart of the construction is illustrated in Fig. 5. The
“black-box” observer and controller are wrapped around a sim-
ulated plant mimicking (1). Since the must be generated
by the black-box controller and the is prespecified, the
disturbances must be used to carry the message. So, the
encoder must embed the messages into an appropriate
sequence , taking care to stay within the size limit.

15In traditional rate-distortion theory, this “necessity” direction is shown by
going through the mutual information characterizations of both the rate-distor-
tion function and the channel capacity function. In the case of stabilization, mu-
tual information is not discriminating enough and so the reduction of anytime
reliable communication to stabilization must be done directly.

Fig. 5. The construction of a feedback anytime code from a control system.
The messages are used to generate the fW g inputs which are causally com-
bined to generate f �X g within the encoder. The channel outputs are used to
generate control signals at both the encoder and decoder. Since the simulated
plant is stable, � ~X and �X are close to each other. The past message bits are
estimated from the ~X at the decoder.

While both the observer and controller can be simulated at the
encoder thanks to the noiseless channel output feedback, at the
decoder only the channel outputs are available. Consequently,
these channel outputs are connected to a copy of the black-box
controller , thereby giving access to the controls at the de-
coder. To extract the messages from these control signals, they
are first causally preprocessed through a simulated copy of the
unstable plant, except with no disturbance input. All past mes-
sages are then estimated from the current state of this simulated
plant.

The key is to think of the simulated plant state as the sum of
the states of two different unstable LTI systems. The first, with
state denoted , is driven entirely by the controls and starts in
state .

(3)

is available at both the decoder and the encoder due to the
presence of noiseless feedback.16 The other, with state denoted

, is driven entirely by a simulated driving noise that is gener-
ated from the data stream to be communicated

(4)

The sum behaves exactly like it was coming
from (1) and is fed to the observer which uses it to generate
inputs for the noisy channel.

The fact that the original observer/controller pair stabilized
the original system implies that is small
and hence stays close to .

16If the controller is randomized, then the randomness is required to be
common and shared between the encoder and decoder.
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Fig. 6. The data bits are used to sequentially refine a point on a Cantor set.
Its natural tree structure allows bits to be encoded sequentially. The Cantor set
also has finite gaps between all points corresponding to bit sequences that first
differ in a particular bit position. These gaps allow the uniformly reliable ex-
traction of bit values from noisy observations.

1) Encoding Data Into the State: As long as the bound
is satisfied, the encoder is free to choose any disturbance17 for
the simulated plant. The choice will be determined by the data
rate and the specific messages to be sent. Rather than working
with general messages , consider a bitstream with bit be-
coming available at time . Everything generalizes naturally to
nonbinary alphabets for the messages, but the notation is cleaner
in the binary case with .

is the part of driven only by the

This looks like the representation of a fractional number in
base which is then multiplied by . This is exploited in
the encoding (illustrated in Fig. 6) by choosing the bounded
disturbance sequence so that18

(5)

where is the th bit19 of data that the anytime encoder has to
send and is just the total number of bits that are available
by time . are constants to be specified.

To see that (5) is always possible to achieve by appropriate
choice of , use induction. (5) clearly holds for . Now
assume that it holds for time and consider time

17In [23], a similar strategy is followed assuming a specific density for the iid
disturbanceW . In that context, it is important to choose a simulated disturbance
sequence that behaves stochastically like W . This is accomplished by using
common randomness shared between the encoder and decoder to dither the kind
of disturbances produced here into ones with the desired density.

18For a rough understanding, ignore the � and suppose that the message were
encoded in binary. It is intuitive that any good estimate of the �X state is going
to agree with �X in all the high order bits. Since the system is unstable, all the
encoded bits eventually become high-order bits as time goes on. So no bit error
could persist for too long and still keep the estimate close to �X . The � in the
encoding is a technical device to make this reasoning hold uniformly for all bit
strings, rather than merely “typical” ones. This is important since we are aiming
for exponentially small bounds and so cannot neglect rare events.

19For the next section, it is convenient to have the disturbances balanced
around zero and so we choose to represent the bit S as +1 or �1 rather than
the usual 1 or 0.

So setting

(6)

gives the desired result. Manipulate (6) to get

To keep this bounded, choose

(7)

which is strictly positive if . Applying that substitu-
tion gives

So by choosing

(8)

the simulated disturbance is guaranteed to stay within the spec-
ified bounds.

2) Extracting Data Bits From the State Estimate: Given a
channel with access to noiseless feedback, for any rate

, it is possible to encode bits into the simulated scalar
plant so that the uncontrolled process behaves like (5) by using
disturbances given in (6) and the formulas (7) and (8). At the
output end of the noisy channel, it is possible to extract estimates

for the th bit sent for which the error event

(9)

and thus

(10)
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Proof: Here is used to denote members of the underlying
sample space.20

The decoder has which is close to since
is small. To see how to extract bits from , first consider

how to recursively extract those bits from .
Starting with the first bit, notice that the set of all possible

that have is separated from the set of all possible
that have by a gap of

Notice that this worst-case gap21 is a positive number that is
growing exponentially in . If the first bits are the same,
then both sides can be scaled by to get the same
expressions above and so by induction, it quickly follows that
the minimum gap between the encoded state corresponding to
two sequences of bits that first differ in bit position is given by

if

otherwise
(11)

Because the gaps are all positive, (11) shows that it is always
possible to perfectly extract the data bits from by using an
iterative procedure.22 To extract bit information from an input

1) Initialize threshold and counter .
2) Compare input to . If , set . If

, set .
3) Increment counter and update threshold

4) Goto step 2) as long as
Since the gaps given by (11) are always positive, the proce-

dure works perfectly if applied to input . At the decoder,
apply the procedure to instead.

With this, (9) is easy to verify by looking at the complemen-

tary event . The bound (11) thus implies
that we are less than halfway across the minimum gap for bit
at time . Consequently, there is no error in the step 2) compar-
ison of the procedure at iterations .

20If the bits to be sent are deterministic, this is the sample space giving channel
noise realizations.

21The typical gap is larger and so the probability of error is actually lower
than this bound says it is.

22This is a minor twist on the procedure followed by serial A/D converters.

3) Probability of Error for Bounded Moment and Other
Senses of Stability: Proof of Theorem 3.3: Using Markov’s
inequality:

Combining with Lemma 3.1, gives

Since represents the delay between the time that bit was
ready to be sent and the decoding time, the theorem is proved.

All that was needed from the bounded moment sense of sta-
bility was some bound on the probability that took on large
values. Thus, the proof above immediately generalizes to other
senses of stochastic stability if we suitably generalize the sense
of anytime capacity to allow for other bounds on the probability
of error with delay.

Definition 3.4: A rate communication system achieves -
anytime reliability given by a function if

is assumed to be for all negative values of .
The -anytime capacity of a noisy channel is the

least upper bound of the rates at which the channel can be used
to construct a sequential communication system that achieves

-anytime reliability given by the function .
Notice that for -anytime capacity, for some
.
Theorem 3.5: For a given noisy channel and decreasing func-

tion , if there exists an observer and controller for the
unstable scalar system that achieves
for all sequences of bounded driving noise , then

for the noisy channel considered with the
encoder having access to noiseless feedback and having
the form for some constant .

Proof: For any rate

Since the delay , the theorem is proved.

C. Implications

At this point, it is interesting to consider a few implications
of Theorem 3.5.

1) Weaker Senses of Stability Than -Moment: There are
senses of stability weaker than specifying a specific th moment
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or a specific tail decay target . An example is given by the
requirement uniformly for all .
This can be explored by taking the limit of as .
We have shown elsewhere [23], [33] that:

where is the Shannon classical capacity. This holds for all dis-
crete memoryless channels since the -anytime reliability goes
to zero at Shannon capacity but is for all lower rates even
without feedback being available at the encoder. Thus, classical
Shannon capacity is the natural candidate for the relevant figure
of merit.

To see why Shannon capacity can not be beaten, it is useful
to consider an even more lax sense of stability. Suppose the re-
quirement were only that
uniformly for all . This imposes the constraint that the prob-
ability of a large state stays below for all time. Theorem
3.5 would thus only requires the probability of decoding error
to be less than . However, Wolfowitz’ strong converse to
the coding theorem[1] implies that since the block-length in this
case is effectively going to infinity, the Shannon capacity of the
noisy channel still must satisfy . Adding a finite tol-
erance for unboundedly large states does not get around the need
to be able to communicate bits reliably.

2) Stronger Senses of Stability Than -Moment: Having
decrease only as a power law might not be suitable for certain
applications. Unfortunately, this is all that can be hoped for in
generic situations. Consider a DMC with no zero entries in its
transition matrix. Define . For such a channel,
with or without feedback, the probability of error after time
steps is lower bounded by since that lower bounds the prob-
ability of all channel output sequences of length . This implies
that the probability of error can drop no more than exponen-
tially in for such DMCs. Tighter upper-bounds on anytime
reliability with feedback are available in [34] and [6].

Theorem 3.5 therefore implies that the only -senses of sta-
bility which are possible over such channels are those for which

which is a power law. This rules out the “risk sensitive” sense
of stability in which is required to decrease exponentially. In
the context of Theorem 3.3, this also implies that there is an
beyond which all moments must be infinite!

Corollary 3.1: If any unstable process is controlled over a
discrete memoryless channel with no feedback zero-error ca-
pacity, then the resulting state can have at best a power-law
bound (Pareto distribution) on its tail.

This is very much related to how sequential decoding must
have computational effort distributions with at best a Pareto dis-
tribution [35]. In both cases, the result follows from the inter-
action of two exponentials. The difference is that the compu-
tational search effort distributions assumed a particular struc-
ture on the decoding algorithm while the bound here is funda-

mental to the stabilization problem regardless of the observers
or controllers.

Thus for DMCs and a given , we are either limited to a
power-law tail for the controlled state because of an anytime
reliability that is at most singly exponential in delay or it is pos-
sible to hold the state inside a finite box since there is adequate
feedback zero-error capacity. Nothing in between can happen
with a DMC.

3) Limiting the Controller Effort or Memory: If there was a
hard limit on actuator effort ( for some ), then
the only way to maintain stability is to also have a hard limit
on how big the state can get. Theorem 3.5 immediately gives
a fundamental requirement for feedback zero-error capacity

since for sufficiently large .
Similarly, consider limited-memory time-invariant con-

trollers which only have access to the past channel outputs. If
the channel has a finite output alphabet and no randomization
is permitted at the controller, limited memory immediately
translates into only a finite number of possible control inputs.
Since there must be a largest one, it reduces to the case of
having a hard limit on actuator effort.

We conjecture that even with randomization and time-vari-
ation, finite memory at the controller requires that the channel
must have feedback zero-error capacity . Intuitively, if
the channel has zero-error capacity , it can misbehave
for arbitrarily long times and build up a huge “backlog” of un-
certainty that can not be resolved at the controller. With finite
memory, the controller has no way of knowing what uncertainty
it is actually facing and so is unable to properly interpret the
channel outputs to devise the proper control signals.

4) The AWGN Case With an Average Input Power Constraint:
The tight relationship between control and communication es-
tablished in Theorem 3.5 allows the construction of sequential
codes for noisy channels with noiseless feedback if we know
how to stabilize linear plants over such channels. Consider the
problem of stabilizing an unstable plant driven by finite vari-
ance driving noise over an AWGN channel. A linear observer
and controller strategy achieve mean-square stability for such
systems since the problem fits into the standard LQG frame-
work [14].

By looking more closely at the actual tail probabilities
achieved by the linear observer/controller strategy, we obtain
a natural anytime generalization of Schalkwijk and Kailath’s
scheme [36], [37] for communicating over the power con-
strained additive white Gaussian noise channel with noiseless
feedback. Its properties are summarized in Fig. 7, but the
highlight is that it achieves doubly exponential reliability with
delay, universally over all sufficiently long delays.

Theorem 3.6: It is possible to communicate bits reli-
ably across a discrete-time average-power constrained AWGN
channel with noiseless feedback at any rate
while achieving a -anytime reliability of at least

(12)

for some constant that depends only on the rate , power
constraint , and channel noise power .
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Fig. 7. Quick comparison of the Schalkwijk–Kailath scheme to the anytime
generalization in this paper.

Proof: To avoid having to drag around, just normalize
units so as to consider power constraint and a channel
with iid unit variance noise . Choose the for the simulated
(1) so that .

The observer/encoder used is a linear map

(13)

so the channel output . Use a linear controller

(14)

giving the closed-loop system

(15)

where the are constants to be chosen. For the closed-loop
system to be stable

(16)

Thus . Assuming (16) holds and temporarily
setting the for analysis, it is clear that the closed-loop

is Gaussian with a growing variance asymptotically tending
to

(17)

The channel input power satisfies

Since , define and substitute to
get

(18)

By setting , the left-hand side of (18) is identically
as desired. All that remains is to verify the stability condition

(16)

So the closed-loop system is stable and the channel noise alone
results in an average input power of at most .

Rather than optimizing the choice of and to get the best
tradeoff point, just set and for simplicity. In
that case, .

Now consider the impact of the alone on the closed-loop
control system. These are going through a stable system and so
by expanding the recursion (15) and setting

which is a constant that can be made as small as desired by
choice of . Assume that the data stream to be transmitted
is independent of the channel noise . Then, the total average
input power is bounded by

Since , we can choose an small enough so that the
channel input satisfies the average power constraint regardless
of the message bits to be sent.

All that remains is to see what this control system meets
for such arbitrary, but bounded, disturbances. is asymptoti-
cally the sum of a Gaussian with zero mean and variance
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together with the closed-loop impact of the disturbance .
Since the total impact of the disturbance part is bounded

Ignoring the details of the constants, this gives an
. Applying Theorem

3.5 immediately gives (12) since .
Since the convergence is double exponential, it is faster than

any exponential and hence

for all on the AWGN channel. If the additive channel
noise were not Gaussian, but had bounded support with the same
variance, then this proof immediately reveals that the zero-error
capacity of such a bounded noise channel with feedback satis-
fies: .

In the Gaussian case, it is not immediately clear whether there
are ideas analogous to those in [38] that can be used to further
boost the -anytime reliability beyond double exponential. It is
clear that if it were possible, it would require nonlinear control
strategies.

The AWGN case is merely one example. Theorem 3.5 gives
a way to lower-bound the anytime capacity for channels with
feedback in cases where the optimal control behavior is easy to
see. The finite moments of the closed-loop state reveal what any-
time reliability is being achieved. Often, there is a simple upper-
bound that matches up with the lower-bound thereby giving the
anytime capacity itself. The BEC case discussed in [16], [33],
and [6] is such an example. In addition, Theorem 3.5 gives us
the ability to mix and match communication and control tools to
study a problem. This is exploited in [30] and [39] to understand
the feedback anytime capacity of constrained packet erasure
channels and the power constrained AWGN+erasure channel.
In [40], these results are extended to the Gilbert-Eliot channel
with feedback. It is also exploited in [34] to lower bound the
anytime reliability achieved by a particular code for the BSC
with feedback.

IV. THE SUFFICIENCY OF ANYTIME CAPACITY

A. Overview

When characterizing a noisy channel for control, the choice
of information pattern [41] can be critical [14]. The sufficiency
result is first established for cases with an explicit noiseless
feedback path from the channel outputs back to the observer.
Section IV-E takes a quick look at the simpler problem of al-
most-sure stabilization when the system is undisturbed and all
the uncertainty comes from either the channel or the initial con-
dition. Then, in Section IV-F, the impact of viewing time in

Fig. 8. Virtual controller for R = 1. How the virtual state �X evolves.

blocks of size and only acting on the slower time-scale is ex-
amined. Finally, Sections IV-G and -H give models for bound-
edly noisy or quantized controls and/or observations and show
that such bounded noise can be tolerated.

To prove the sufficiency theorem addressing the situation il-
lustrated in Fig. 2, we need to design an observer/controller
pair that deals with the analog plant and communicates across
the channel by using an anytime communication system. The
anytime communication system works with noiseless feedback
from the channel output available at the bit encoder and is con-
sidered a “black box.”

Theorem 4.1: For a given noisy channel, if there exists an
anytime encoder/decoder pair with access to noiseless feedback
that achieves , then it is possible to stabi-
lize an unstable scalar plant with parameter that is driven by
bounded driving noise through the noisy channel by using an
observer that has noiseless access to the noisy channel outputs.
Furthermore, there exists a constant so that

.
To prove this theorem, explicit constructions are given for the

observer and controller in the next sections.

B. Observer

Since the observer has access to the channel outputs, it can
run a copy of the controller and hence has access to the control
signals . Since , and the observer
receives from the plant, the observer also effectively has ac-
cess to the . However, it is not sufficient to merely encode
the independently to some precision.23 Instead, the observer
will act as though it is working with a virtual controller through
a noiseless channel of finite rate in the manner of Example
2.1. The resulting bits will be sent through the anytime code.

The observer is constructed to keep the state uncertainty at the
virtual controller inside a box of size by using bits at the rate

. As illustrated in Fig. 8, it does this by simulating a virtual
process governed by

(19)

23This is because the unstable plant will eventually blow up even tiny uncor-
rected discrepancies between the encoded and actualW .
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where the represent the computed actions of the virtual con-
troller. This gives rise to a virtual counterpart of

(20)

which satisfies the relationship . Because will
be kept within a box, it is known that is close to . The
actual controller will pick controls designed to keep close to

.
Because of the rate constraint, the virtual control takes on

one of values. For simplicity of exposition, we
ignore the integer effects and consider it to be one of values24

and proceed by induction. Assume that is known to lie within
. Then will lie within . By choosing

control values uniformly spaced within that interval, it is
guaranteed that will lie within . Finally,
the state will be disturbed by and so will be known to
lie within .

Since the initial condition has no uncertainty, induction will
be complete if

(21)

To get the minimum required as a function of , we can solve
for (21) being an equality. This occurs25 when for
every case where . Since the slope on the left
hand side of (21) is less than 1, any larger also works.

Since they arose from dividing the uncertainty window to
disjoint segments, it is clear that the virtual controls can be
encoded causally using bits per unit time. These bits are sent
to the anytime encoder for transport over the noisy channel.

C. Controller

The controller uses the updated bit estimates from the any-
time decoder to choose a control to attempt to make the true
state stay close to the virtual state . It does this by having
a pair of internal models as shown in Fig. 9.

The first, from (3), models the unstable system driven only
by the actual controls. The second is its best estimate , based
on the current bit estimates from the anytime decoder, of where
the unstable system should be driven only by the virtual controls

. Of course, the controller does not have the exact virtual con-
trols, only its best estimates for them

(22)

This is not given in recursive form since all of the past estimates
for the virtual controls are subject to reestimation at the current
time . The control is chosen to make

(23)

24For the details of how to deal with fractionalR, please see the causal source
code discussion in [33].

25In reality, the uncertainty approaches this from below since the system starts
at the known initial condition 0.

Fig. 9. The controller remembers what it did in the past and uses the anytime
decoder to get an updated sense of where the observer wants it to go. It then
applies a control designed to correct for any past errors and move the state to be
close to the virtual state controlled by the observer.

D. Evaluating Stability

Proof of Theorem 4.1: With controls given by (23), the true
state can be written as

Notice that the actual state differs from the virtual state
only due to errors in virtual control estimation due to channel
noise. If there were no errors in the prefix and arbitrarily
bad errors for , then we could start at and see how
much the errors could have propagated since then

Comparing this with , and noticing that the maximum pos-
sible difference between two virtual controls is gives

Since , if we know that there were no errors in the
prefix of estimated virtual controls until time steps ago, then

(24)
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(24) immediately gives

where bounds the probability of error for the -anytime code
and is some constant.

Specializing to the case of -anytime capacity, it is clear that

which gives a power-law bound on the tail. If the goal is a finite
th moment,

As long as , the integral above converges and hence
the controlled process has a bounded -moment.

Lemma 4.1: It is possible to control an unstable scalar process
driven by a bounded disturbance over a noisy channel so that
the -moment of stays finite for all time if the channel has
feedback anytime capacity for some

and the observer is allowed to observe the noisy channel
outputs and the state exactly.

Aside from the usual gap between and , this shows that
the necessity condition in Theorem 3.3 is tight. Since there are
no assumptions on the disturbance process except for its bound-
edness, the sufficiency theorems here automatically cover the
case of stochastic disturbances having any sort of memory struc-
ture as long as they remain bounded in support.

E. Almost-Sure Stability

Control theorists are sometimes interested in an even simpler
problem for which there is no disturbance (i.e., for all )
but the initial condition is unknown to within some bound .
For this problem, the goal is ensuring that the state tends to
zero almost surely. This short section constructively shows that
any sufficiency result for -stability also extends to almost-sure
stabilization. To do this, we consider the system

(25)

and use it to prove a key lemma:
Lemma 4.1: If it is possible to -stabilize a persistently dis-

turbed system from (25) when driven by any driving noise

bounded by , then there exists a time-varying observer with
noiseless access to the state and a time-varying controller so that
any undisturbed system (1) with initial condition ,

, and can be stabilized in the sense that
there exists a so that

(26)

Proof: Since for , it is immediately clear that
the system of (25) can be related to the original system of (1) by
the following scaling relationships:

It is possible to use an observer/controller design for the system
of (25) to construct one for the original system (1) through the
same mapping. The input to the observer constructed with
in mind will just be and the controls just need to be
scaled down by a factor so that they will properly apply to
the system.

Since (25) can be -stabilized, there exists a so that for
all

which immediately yields (26).
Lemma 4.1 can be used to get almost-sure stability by

noticing that

which is bounded. It immediately follows that:

almost-surely

which is summarized in the following theorem.
Theorem 4.3: If it is possible to -stabilize a persistently

disturbed system from (25) when driven by any driving noise
bounded by , then there exists a time-varying observer

with noiseless access to the state and a time-varying controller
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so that any undisturbed system (1) with initial condition
, , and can be stabilized in the almost-

sure26 sense

almost-surely

The important thing to notice about Lemma 4.1 and Theorem
4.3 is that they do not depend on the detailed structure of the
original problem except for the need to observe the state per-
fectly at the encoder and to be able to apply controls with per-
fect precision. It is clear that if either the state observation or the
control application was limited in precision, then there would be
no way to drive the state to zero almost surely.

Theorem 4.3 is used in Section V to get Corollary 5.3 which
says that for almost-sure stabilization of an undisturbed plant
across a discrete memoryless channel (DMC), Shannon capacity
larger than suffices regardless of the information pattern.

F. Time in Blocks and Delayed Observations

In the discussion so far, time has operated at the same scale
for channel uses, system dynamics, plant observations, and con-
trol application. Furthermore, the only structural delay in the
system was the one-step-delay across the noisy channel needed
to allow the interconnection of the controller, observer, channel,
and plant to make sense. It is interesting to consider different
parts of the system operating at slightly different time scales
and to see the impact of fixed and known delays in the system.

1) Observing and Controlling the Plant on a Slower Time
Scale: In the control context, it is natural to consider cases
where the plant evolves on a slower time scale than commu-
nication. Formally, suppose that time is grouped into blocks of
size and the observer is restricted to only encode the value of

at times that are integer multiples of . Similarly, suppose
that the controller only takes an action27 immediately before the
observer will sample the state. The effective system dynamics
change to

(27)

where . Observe that is
known to be bounded within an interval of size .
Essentially, everything has just scaled up by a factor of .
Thus all the results above continue to hold above for a system
described by (27) at times which are integer multiples of .
The rate must be larger than bits per time
steps which translates to bits per time step. The anytime
reliability for delay measured
in units of time-steps translates into for delay
measured in unit time steps. This is the same as it was for the
system described by (1).

The only remaining question is what happens to the state at
times within the blocks since no controls are being applied while
the state continues to grow on its own. At such times, the state

26Here, the probability is over the channel’s noisy actions and any random-
ness present at the observer and controller. The convergence holds for every
possible initial condition and so it does not matter if the initial condition is in-
cluded in the probability model.

27The controller can take “no action” by setting U = 0.

has just grown by a factor of at most with an additive term
of at most

which is finite since the original is finite. Thus, Theorem 4.4
follows.

Theorem 4.4: If for all , it is possible to stabilize a
particular unstable scalar system with gain and arbitrary dis-
turbance signal bounded by when we are allowed uses of
a particular channel between when the control-system evolves,
then for any it is also possible to stabilize an unstable
scalar system with gain that evolves on the same time scale
as the channel using an observer restricted to only observe the
system every time steps.

By simple application of Theorem 4.4, it is known that The-
orem 4.2 and similarly Theorem 3.3 continue to hold even if
the observers/controllers only get access to the analog system
at timesteps that are integer multiples of some . This is used
when considering noisy observations in Section IV-H and in the
context of vector-valued states in Part II.

2) Known Fixed Delays: Similarly, we can study cases where
the assumed “round trip delay” is larger than one. Suppose the
control signal applied at time depends only on channel outputs
up to time for some .

It is easy to see that while this sort of deterministic delay does
degrade performance, it does not change stability. The proof
of Theorem 4.1 goes through as before. Specifically, in Sec-
tion IV-C, (22) will change to:

(28)

Everything else proceeds as before, just that in place of for the
probability of error we will have . Specifically, in place of
(24), we now know only that

(29)

This is just a change in the constant factor and results in a
smaller (more negative) constant to deal with the larger un-
certainty. This change of constant does not make a bounded
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-moment become unbounded. The result is summarized in the
following theorem:

Theorem 4.5: Theorems 4.1 and 4.2 continue to hold if the
control signal is required to depend only on the channel out-
puts up through time where . Only the constants
grow larger.

G. Noisy or Quantized Controls

The control signals may not be able to be set by the con-
troller to infinite precision. The applied control at the plant
might be different from the intended control generated at the
controller. This section considers the case of -precise controls
where the difference is bounded so for some
constant to reflect the noise at the controller. It is easy to see
that the plant dynamics now effectively change from (1) to

where the term can be considered the new
bounded disturbance for the system. So in place of , we simply
use the new bound . Thus, all the previous results continue
to hold in the case of boundedly noisy control signals.

Theorem 4.6: If for all , it is possible to stabilize a par-
ticular unstable scalar system with arbitrary disturbance signal
bounded by given the ability to apply precise control signals,
then for all and , it remains possible to stabi-
lize the same unstable scalar system with arbitrary disturbance
signal bounded by given the ability to apply only -precise
control signals.

H. Noisy or Quantized Observations

The observer of Section IV.B has exact knowledge of the state
. Suppose that the observation is instead
where is known to be within a bound . For

example, this models situations where the input to the encoder
has already been quantized to some resolution.28

The observer needs to ensure that the virtual state is within
an interval of size . To do this, just choose a large enough

so that and both pick out the same in-
terval for the state. As Fig. 10 illustrates, this is not quite enough
since the intervals used in Section IV-B are partitions of the real
line. Meanwhile, each observation of gives rise to an
uncertainty window for
that might straddle a boundary of the partition.29 Doubling the
number of intervals and having them overlap by half ensures
that the uncertainty window can always fit inside a single in-
terval. Such a doubling increases the data rate by at most an ad-
ditional bit. To amortize this additional bit, Theorem 4.4 from
Section IV-F is used and time is considered in blocks of size

. Then, the required rate for achievability with blocked time is
bits per time-steps or bits

28The quantization is assumed to be coarse, but with infinite dynamic range.
Section III-C tells us that finite dynamic range will impose the requirement of
zero-error capacity on the link.

29This will not arise for statically quantized states since those will have fixed
boundaries. In that case, nothing needs to be done except ensuring that the par-
titions respect those boundaries.

Fig. 10. With noisy observations, no strict partition of the line can adequately
capture the uncertainty since it can straddle the boundary of two regions. By
doubling the number of bins, it is guaranteed that the uncertainty arising from
observation noise can be contained inside a single bin.

per time step. Since can be large enough, is good
enough. Delayed control actions also causes no new concerns.
Thus, we get the following corollary to Theorems 4.2 and 4.5.

Corollary 4.1: It is possible to control an unstable scalar
process driven by a bounded disturbance over a noisy channel so
that the -moment of stays finite for all time if the channel
has feedback anytime capacity for some

and the observer is allowed to observe the noisy
channel outputs exactly and has a boundedly noisy view of the
state.

This is true even if the control is only allowed to depend
on channel outputs up through time where .

V. RELAXING FEEDBACK

In this section, we relax the (unrealistic) assumption that the
observer can observe the outputs of the noisy channel directly.
This change of information pattern has the potential to make
the problem more difficult. In distributed control, this was first
brought out in [42] by the famous Witsenhausen counterex-
ample. This showed that even in the case of LQG problems,
nonlinear solutions can be optimal when the information pat-
terns are not classical. This same example also showed how the
“control” signals can start to play a dual role—simultaneously
being used for control and to communicate missing information
from one party to another [43]. Information theory also has ex-
perience with the new challenges that arise in distributed prob-
lems of source and channel coding [44].

This section restricts the information pattern in stages. First,
we consider the problem of Fig. 11 in which the observer can
see the controls but not the channel outputs. Then, we consider
the problem of Fig. 12 that restricts the observer to only see the
states . This section is divided based on the approach rather
than the problem.

In Section V-A, the solutions are based on anytime codes
without feedback. These give rise to sufficient conditions that
are more restrictive than the necessary conditions of Theorem
3.3. The main result is Theorem 5.2—a random construction
that shows it is possible, in the case of DMCs, to have nearly
memoryless time-varying observers and still achieve stability
without any feedback. All the complexity can in principle be
shifted to the controller side.

In Section V-A, the solutions are based on explicitly commu-
nicating the channel outputs back to the observer through either
the control signals or by making the plant itself “dance” in a
stable way that communicates limited information noiselessly
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Fig. 11. Control over a noisy communication channel without explicit feedback
of channel outputs.

Fig. 12. Control over a noisy communication channel without any explicit
feedback path from controller to observer except through the plant.

with no delay. Such solutions give rise to tight sufficient con-
ditions. These are not as constructive, but serve to establish the
fundamental connection between stabilization and communica-
tion with noiseless feedback.

A. Using Anytime Codes Without Feedback

Noisefree access to the control signals is not problematic in
the case of Corollary 4.1 since the control signals are calculated
from the perfect channel feedback. Without such perfect feed-
back, it is more realistic to consider only noisy access to the con-
trol signals. Furthermore, observe that in Section IV-B, knowl-
edge of the actual applied controls is used to calculate from
the observed . Thus, any bounded observation
noise on the control signals just translates into an effectively
larger bound on the state observation noise. By Corollary 4.1,
any finite can be dealt with and thus:

Fig. 13. A 15-regularly labeled lattice-based quantizer. If the observer had
known the controls, it would have centered the lattice to cover the top bar ex-
actly. Because it does not, one additional quantization bin must be added at the
end so that the uncertainty never covers two bins bearing the same label.

Corollary 5.1: It is possible to control an unstable scalar
process driven by a bounded disturbance over a noisy channel so
that the -moment of stays finite for all time if the channel
without feedback has for some
and the observer is allowed noisy access to the control signals
and the state process as long as the noise on both is bounded.

As discussed in [6], without noiseless feedback the anytime
capacity will tend to be considerably lower for a given , and so
there will be a gap between the necessary condition established
in Theorem 3.3 and the sufficient condition in Corollary 5.1.

Next, consider the problem of Fig. 12 that restricts the ob-
server to only see the states . The challenge is that the ob-
server of Section IV-B needs to know the controls in order to
remove their effect so as to focus only on encoding the virtual
process . As such, a new type of observer is required.

Definition 5.1: A -lattice based quantizer is a map (de-
picted in Fig. 13) that maps inputs to integer bins . The th
bin spans and is assigned to

near the center of the bin.
A -regularly labeled -lattice based quantizer is one which

outputs when the input is assigned to bin —one for
which the bin labels repeat periodically.

A randomly labeled -lattice based quantizer is one which
outputs when the input is assigned to bin where the
are drawn independent and identically distributed (i.i.d.) from a
specified distribution.

Lattice based quantizers have some nice properties as follows.
Lemma 5.1:
a) If with observation noise

, then as long as , the bin selected
by a -lattice based quantizer facing input is
guaranteed to contain .

b) There exists a constant depending only on so
that if is within a single particular bin, then can
be in no more than possible adjacent bins whose po-
sitions are a function of the control inputs applied during
those time periods as well as the original bin index for

.
c) If then knowing the -regular label assigned

to is enough to determine a bin guaranteed
to contain assuming knowledge of a bin containing

as well as the control inputs applied during those
time periods.

Proof of [a]: implies
. But by assumption
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and hence
which is the extent of the bin .
Proof of [b]: First, suppose that the control actions were

all zero during the interval in question. Because the system is
linear, without loss of generality, assume that we start in the

bin, . After time-steps, this can reach at most
without disturbances. The bounded disturbances can

contribute at most

to each side, resulting in an interval of with total length
.

By linearity, the effect of any control inputs is a simple trans-
lation and is therefore just translates the interval by some pos-
itive or negative amount. Because of the overlapping nature of
the bins, a single interval can overlap with at most 2 additional
partial bins at the boundaries.

Since the bins are spaced by , the number of possible bins
the state can be in is bounded by and so

makes property [b] true.
Proof that [a], [b] [c]: [a] guarantees that the bin cor-

responding to is guaranteed to contain . [b]
guarantees there are only at most adjacent bins that
the state could be in. Since the modulo operation used to assign
regular labels only assigns the same label to a bin positions
away or further, all of the positions have distinct labels and
hence the labeling of picks out the unique correct
bin.

Lemma 5.1 allows the observer to just use regular -lattice
quantizer to translate the state positions into bins since the con-
trol actions are side-information that is known perfectly at the
intended recipient (the controller). The overhead implied by the
constant can be amortized by looking at time in blocks of
and so does not asymptotically cost any rate. This can be used to
extend Corollary 5.1 to cases without any access to the control.
Every time-units, the observer can just apply the appropriate
regular -lattice quantizer and send the bin labels through an
anytime code that operates without feedback. However, anytime
codes without feedback have a natural tree structure since the
impact of the distant past must never die out. In the stabiliza-
tion context, this tree structure forces the observer/encoder to
remember the bin sequence corresponding to all the past states.
This seems wasteful since closed-loop stability implies that the
plant state will keep returning to the bins in the neighborhood
of the origin. This suggests that this memory at the observer is
not necessary.

Theorem 5.2: It is possible to control an unstable scalar
process driven by a bounded disturbance over a DMC so
that the -moment of stays finite for all time if the
channel without feedback has random coding error exponent

for some and the observer is
allowed boundedly noisy access to the state process.

Furthermore, there exists an so this is possible by
using an observer consisting of a time-varying randomly la-
beled -lattice based quantizer that samples the state every
time steps and outputs a random label for the bin index. The
random labels are chosen iid from according to the distribu-
tion that maximizes the random coding error exponent at . The
controller must have access to the common randomness used to
choose the random bin labels.

Proof: Fix a rate for which .
Lemma 5.1 applies to our quantizer. Pick large enough so
that where the comes from property [b] above.
This gives the following.

d) Conditioned on actual past controls applied, the set of
possible paths that the states could have
taken through the quantization bins is a subset of a trellis
that has a maximum branching factor of Furthermore,
the total length covered by the -stage descendants of any
particular bin is bounded above by .

Not all such paths through the trellis are necessarily possible,
but all possible paths do lie within the trellis. Fig. 14 shows what
such a trellis looks like and Fig. 15 shows its tree like local
property. Furthermore, the labels on each bin are iid through
both time and across bins.

Call two paths of length through the trellis disjoint with
depth if their last common node was at depth and the paths
are disjoint after that. Consequently, we have the following.

e) If two paths are disjoint in the trellis at a depth of , then
the channel inputs corresponding to the past channel
uses are independent of each other.

The suboptimal controller just searches for the ML path
through the trellis. The trellis itself is constructed based on the
controller’s memory of all past applied controls. Once an ML
path has been identified, a control signal is applied based on the
bin estimate at the end of the ML path. The control signal just
attempts to drive the center of that bin to zero.

Consider an error event at depth . This represents the case
that the maximum likelihood path last intersected with the true
path time steps ago. By property [d] above, the control will
be based on a state estimate that can be at most bins away
from the true state. Thus, we have the following.

f) If an error event at depth occurs at time , the state
can be no larger than for some constant

that does not depend on or .
Property [f] plays the role of (24) in this proof.
By property [d], there are no more than possible false

paths that last intersected the true path stages ago. By the
memorylessness of the channel, the log-likelihood of each path
is the sum of the likelihood of the “prefix” of the path leading
up to stages ago and the “suffix” of the path from that point
onward. For a path that is disjoint from the true path at a depth
of to beat all paths that end up at the true final state, the false
path must have a suffix log-likelihood that beats the suffix log-
likelihood of at least the true path. Property [e] guarantees that
the channel inputs corresponding to the false paths are pairwise
independent of the true inputs for the past channel uses.
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Fig. 14. A short segment of the randomly labeled regular trellis from the point of view of the controller that knows the actual control signals applied in the past.
The example has R = log 3 and � � 2:4 with � large.

Fig. 15. Locally, the trellis looks like a tree with the nodes corresponding to the
intervals where the state might have been and the levels of the tree correspond
to the time. It is not a tree because paths can remerge, but all labels on disjoint
paths are chosen so that they are independent of each other.

All that is required to apply Gallager’s random block-coding
analysis of Chapter 5 in [1] is such a pairwise independence30

between the true and false codewords for a code of length .
g) The probability that the ML path diverges from the true

path at depth is no more than .

30Notice that pairwise independence is also obtained if the random labels
were assigned using an appropriate random time-varying infinite constraint-
length convolutional code (with the symbol-merging tricks of Fig. 6.2.1 of [1]
to match the desired channel input-distribution) applied to the binary expan-
sion of the integer j corresponding to the selected bin at each stage. Since the
closed-loop system is stable, the state is presumably small and the bin is close
to 0. As such, all of the higher order bits in the binary expansion of the bin label
are zeros and do not cause any computational burden when operating the convo-
lutional code. This is related to the feedback convolutional codes with variable
constraint-lengths discussed further in [6]. Because of this, the computational
burden of running this observer is nonincreasing with time.

All that remains is to analyze the -moment by combining [g]
and [f] and using the union bound to compute the expectation

where the final geometric sum converges since
.

Although the condition in Theorem 5.2 is not tight, the re-
sult has several nice features. First, it allows easy verification of
sufficiency for a good channel since is easy to calculate.
Structurally, it demonstrates that there is no need to use very
complex observers. The intrinsic memory in the plant can play
the role of the memory that would otherwise need to be imple-
mented in a channel code. The complexity can be shifted to the
controller, and even that complexity is not too bad. Sequential
decoding can be used at the controller since it is known to have
the same asymptotic performance with respect to delay as the
ML decoder [45], [46]. Because the closed-loop system is stable
and thereby renews itself constantly, the computational burden
of running sequential decoding (and hence the controller) does
not grow unboundedly with time [47].
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Since for all and the ca-
pacity-achieving distribution , Theorem 5.2 can also be
recast in a weaker Shannon capacity-centric form:

Corollary 5.2: If the observer is allowed boundedly noisy
access to the plant state, and the noisy channel is a DMC with
Shannon capacity , then there exists some and
an observer/controller pair that stabilizes the system in closed
loop so that the -moment of stays finite for all time.

Furthermore, there exists an so this is possible by
using an observer consisting of a time-varying randomly-la-
beled -lattice based quantizer that samples the state every
time steps and outputs a random label for the bin index. This
random labels are chosen iid from the according to the ca-
pacity-achieving input distribution. The controller must have ac-
cess to the common randomness used to choose the random bin
labels.

Applying Theorem 4.3 to Corollary 5.2 immediately results
in the following new corollary.

Corollary 5.3: If the observer is allowed perfect access to
the plant state, and the noisy channel is a DMC with Shannon
capacity , then there exists an observer/controller
pair that stabilizes the system (1) in closed loop so that

almost surely

as long as the initial condition and the disturbances
.

Furthermore, there exists an so this is possible by
using an observer consisting of a time-varying randomly-la-
beled -lattice based quantizer that samples the state every
time steps and outputs a random label for the bin index. The

shrink geometrically with time, and the random labels are
chosen iid from the according to the capacity-achieving
input distribution. The controller must have access to the
common randomness used to choose the random bin labels.

B. Communicating the Channel Outputs Back to the Observer

In this section, the goal is to recover the tight condition on the
channel from Theorem 4.2. To do this, we construct a controller
that explicitly communicates the noisy channel outputs to the
observer using whatever “channels” are available to it. First we
consider using a noiseless control signal to embed the feedback
information. This motivates the technique used to communicate
the feedback information by making the plant itself dance in a
stable way that tells the observer the channel output.

1) Using the Controls to Communicate the Channel Outputs:
The idea is to “cheat”31 and communicate the channel outputs
through the controls. The control signal is thus serving dual

31We call this “cheating” since it violates the spirit of the requirement against
access to the channel outputs. However, it is important to establish this result be-
cause it points out the need for a serious future study where the communication
constraints back from the controller to the observer are modeled more carefully.
A more realistic model for the problem should have a sensor observing the plant
connected via a communication channel to the controller. The controller is then
connected to an actuator through another communication channel. The actuator
finally acts upon the plant itself. With no complexity constraints, this reduces
to the case studied here with the controller merely playing the role of a relay
bridging together two communication channels. The relay anytime reliability
will become the relevant quantity to study.

purposes—stabilization of the system and the communication
of channel outputs. Suppose the observer had noiseless access
to the control signals. The controller can choose to quantize its
real-valued controls to some suitable level and then use the in-
finite bits remaining in the fractional part to communicate the
channel outputs to the observer. The observer can then extract
these bits noiselessly and give them to the anytime encoder as
noiseless channel feedback.

Of course, this additional fractional part will introduce an
added disturbance to the plant. One approach is to just consider
the quantization and channel output communication terms to-
gether as a bounded noise on the control signals considered in
Section IV-G. This immediately yields the following.

Corollary 5.4: It is possible to control an unstable scalar
process driven by a bounded disturbance over a noisy channel so
that the -moment of stays finite for all time if the channel
has feedback anytime capacity for some

and the observer is allowed to observe the con-
trol signals perfectly.

However, the additional disturbance introduced by the quan-
tization of the original control signal and the introduction of the
new fractional part representing the channel output is known
perfectly at the controller end. Meanwhile, the output of the vir-
tual-process based observer does not depend on the actual ap-
plied controls anyway since it subtracts them off. So rather than
compensating for this quantization+signaling by expanding the
uncertainty and thus changing the at the observer, the con-
troller can just clean up after itself. This idea allows us to elim-
inate all access to the control signals at the observer and gener-
alizes to many cases of countably large channel output output
alphabets.

Removing Noiseless Access to the Controls at the Observer:
There are two tricks involved. The first is the idea of making the
plant “dance” appropriately and using the moves in the dance to
communicate the channel outputs. The second idea is to intro-
duce an artificial delay of 1 time step in the determination of the
“nondance” component of the control signals. This makes the
nondance component completely predictable by the observer
and allows the observer to clearly see the dance move corrupted
only by the bounded process disturbance. Putting it together
gives the following.

Theorem 5.3: Given a noisy channel with a countable al-
phabet, identify the channel output alphabet with the integers
and suppose that there exist so that the channel
outputs satisfy: for all regardless of
the channel inputs.

Then, it is possible to control an unstable scalar plant driven
by a bounded disturbance over that channel so that the -mo-
ment of stays finite for all time if the channel has feedback
anytime capacity for some even
if the observer is only allowed to observe the state corrupted
by bounded noise.

Proof: The overall strategy is illustrated in Fig. 16. The
channel output extraction at the observer is illustrated in Fig. 17
in the context of a channels with output alphabet size .

Let be the control that would be applied from The-
orem 4.5 as transformed by the action of Theorem 4.6 if neces-
sary. It only depends on the strictly past channel outputs.
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Fig. 16. Overlaying messages onto the control signal and recovering the messages at the observer. The control signal is generated based on unit-delayed channel
outputs with the current output being communicated back.

Fig. 17. How to communicate the channel outputs through the plant with state observations only. The controller restricts its main control signal to be calculated
with an extra delay of 1 time unit and then adjusts it by ��(U � U ) to eliminate the effect of the past communication. The final control signal applied is
shifted slightly to encode which b was received. The decoder uses the past b to align its decoding regions and then reads off b by using X � �X .

Let be the current channel output. The control applied is

(30)

where the function is the “dance move” corresponding to
the channel output.

First consider the case that perfect state observations
are available at observer. At time the observer can see
the control signal only as it is corrupted by the process
disturbance since . By observing

perfectly, the observer has in effect gained boundedly
noisy access to the with . Now suppose that the
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observations of were boundedly noisy with some . In
that case

In this case, the effective observation noise on the controls
is bounded by .

Just by looking at the state and its history, the observer has
access to with the property that . To ensure
decodability of , set so the channel outputs are
modulated to be integer multiples of .

At time , the observer is unchanged since there is
nothing for it to learn and no applied controls. At time ,
because of the induced delay of one extra time step, there are no
delayed controls ready to apply either and so the applied control
only consists of . This is observed up to precision and
so the observer can uniquely recover and feed it to its anytime
encoder.

Assume now that the observer was successful in learning
in the past. Then it can compute the term as well as the

using this knowledge and can subtract
both of them from its observed . This leaves only the
term which can be uniquely decoded given that the observation
noise is no more than in either direction. By induction, the
observer can effectively recover the past channel outputs from
its noiseless observations of the control signal and can thereby
operate the feedback anytime-encoder successfully.

The communication of each channel output only
impacts the very next state by shifting it by . At
the next time, it is canceled out by the correction term

. The nondancing controlled
state has at least a power-law tail

for some and . Then

Since , this converges and so the -moment of also
exists.

The channel output condition in 5.3 is clearly satisfied when-
ever the channel has a finite output alphabet. Beyond that case,
it is satisfied in generic situations when the input alphabet is fi-
nite and the transition probabilities individually have an
light enough tail for each one of the finite values.32 When the

32For example, an AWGN channel with a hard-input constraint and quantized
outputs.

channel input alphabet is itself countable, the condition is harder
to check.

If information must flow noiselessly from the controller to
the observer, the key question is to quantify the instantaneous
zero-error capacity of the effective channel through the plant.
Here, the bounded support of and the unconstrained nature
of are critical since they allow the instantaneous zero-error
capacity of that effective channel to be infinite. Of course, there
remains the problem of the dual-nature of the control signal—it
is simultaneously being asked to stabilize the plant as well as
to feedback information about the channel outputs. The the-
orem shows that the ability of the controller to move the plant
provides enough feedback to the encoder in the case of finite
channel output alphabets or channels with uniformly exponen-
tially bounded output statistics.

At an abstract level, the controller is faced with the problem
of causal “writing on dirty paper” [48] where the information
it wishes to convey in one time step is the channel output and
the dirty paper consists of the control signals it must apply to
keep the system stable and to counteract the effect of the writing
it did in previous time steps. Here, the problem is finessed by
introducing the artificial delay at the controller to ensure that
the “dirt” is side-information known both to the transmitter and
the receiver. For finite output alphabets, it is also possible to
take a direct “precoding” approach to do this by encoding the
channel outputs by placing the control to the appropriate value
modulo . This is a bounded perturbation of the
control inputs and Theorem 4.6 tells us that this does not break
stability if the is adjusted appropriately.

Finally, it might seem that this particular “dance” by the plant
will be a disaster for performance metrics beyond stabilization.
This is probably true, but we conjecture that such implicit feed-
back through the plant will be usable without much loss of per-
formance. If it has memory, the observer can notice when and
how the channel has misbehaved since the plant’s state will start
growing rather than staying near . The -lattice based quan-
tizer used in the observer for Theorem 5.2 could not exploit this
because it was memoryless and used uniformly sized bins re-
gardless of whether the state was large or small.

VI. CONTINUOUS TIME SYSTEMS

A. Overview

So far, we have considered a discrete-time model (1) for the
dynamic system that must be stabilized over the communication
link. This has simplified the discussion by having a common
clock that drives both the system and the uses of the noisy
channel. In general, there will be a that represents the time
between channel uses. This allows translating everything into
absolute time units

(31)

where the bounded disturbance and there is a
known initial condition . If the open-loop system is
unstable, then .

Sampling can be used to extend both the necessity and suf-
ficiency results to the continuous time case. The basic result is
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that stability requires an anytime capacity greater than nats
per second.

B. Necessity

For necessity, we are free to choose the disturbance signal
and consequently can restrict ourselves to piecewise con-

stant signals33 that stay constant for time . By sampling at the
rate , the sampled state evolves as

(32)

Notice that (32) is just a discrete time system with
taking the role of in (1), and the disturbance is bounded by

. All that remains is to reinterpret the earlier
theorem.

By setting to match up the sampling times to the
channel use times, it is clear that the appropriate anytime ca-
pacity must exceed bits per channel use.
By converting units to nats per second34, we get the intuitively
appealing result that the anytime capacity must be greater that
nats/s.35 Similarly, to hold the th moment constant, the proba-
bility of error must drop with delay faster than
where is in units of channel uses and thus has units of sec-
onds. Thus, we get the following pair of theorems.

Theorem 6.1: For a given noisy channel and , if there
exists an observer and controller for the unstable scalar
continuous time system that achieves for all

and bounded driving noise signals , then the
channel’s feedback anytime capacity nats
per second.

Theorem 6.2: For a given noisy channel and decreasing
function , if there exists an observer and controller
for the unstable continuous-time scalar system that achieves

for all and all bounded driving noise
signals , then nats per second for
the noisy channel considered with the encoder having access to
noiseless feedback and having the form
for some constant .

C. Sufficiency

For sufficiency, the disturbance is arbitrary but we are free
to sample the signal as desired at the observer and apply piece-
wise constant control signals. Sampling every units of time
gives rise to (32) only with the roles of and reversed. It is
clear that is still bounded
by substituting in the upper and lower bounds and then noticing
that .

Thus, the same argument above holds and the sufficiency
Theorems 4.1, 4.2, and 5.3 as well as Corollaries 5.4 and 5.1
translate cleanly into continuous time. In each, the relevant any-
time capacity must be greater than nats per second. Since the
necessary and sufficient conditions are right next to each other,

33zero order hold
34Assuming that _X is in per second units.
35This truly justifies nats as the “natural” unit of information!

it is clear that the choice of sampling time does not impact the
sense of stability that can be achieved. Of course, this need not
be optimal in terms of performance.

Finally, if the channel we face is an input power-constrained
-bandwidth AWGN channel, more can be said. Section III-C4

makes it clear that nothing special is required in this case: using
linear controllers and observers is good enough if the average
power constraint is high enough. But what if the channel had a
hard amplitude constraint that allowed the encoder no more than

power per unit time? In this case, it is possible to generalize
Theorem 5.2 in an interesting way.

In [49], we give an explicit construction of a feedback-free
anytime code for the infinite bandwidth AWGN channel that
uses a sequential form of orthogonal signaling. In the -band-
width AWGN channel, pairwise orthogonality between code-
words plays the role that pairwise independence does for DMCs.
Applying that principle through the proof of Theorem 5.2, the
observer/encoder can simply be a time-invariant regular parti-
tion of the state space with the bins being labeled with orthog-
onal pulses, each with an energy equal to the hard limit for the
channel.36 The encoder just pieces together pulses with shapes
corresponding to where the state is at the sampling times. The
controller then searches for the most likely path based on the
channel output signal as well as the past control values, and then
applies a control based on the current estimate. This approach al-
lows the use of occasional bandwidth expansion to deal with un-
lucky streaks of channel noise while keeping the channel input
power constant. The details of this approach are given in [50].

VII. A HIERARCHY OF COMMUNICATION PROBLEMS

In this final section, we interpret some of the results in a
different way inspired by the approach used in computational
complexity theory. There, the scarce resource is the time and
space available for computation and the asymptotic question is
whether or not a certain family of problems (indexed by ) can
be solved using the limited amount of resource available. While
explicit algorithms for solving problems do play a role, “reduc-
tions” from one problem to another also feature prominently in
relating the resource requirements among related problems [51].

In communication, the scarce resource can be thought of as
being the available channel.37 Problems should be ordered by
what channels are good enough for them. We begin with some
simple definitions and then see how they apply to classical re-
sults from information theory. Finally, we interpret our current
results in this framework.

Definition 7.1: A communication problem is a partially spec-
ified random system together with an information pattern and a
performance objective. This is specified by a triple .
The partially specified random system in
which are real valued functions on . The output

36In particular, the following sequence of pulses work with an appropriate
scaling. For 0 � t � � , set g (t) = sgn(sin( t)) and g (t) =

sgn(sin( t)) and zero everywhere else. Here � is the time between
taking samples of the state. The g functions are orthogonal, and the ith func-
tion is the channel input corresponding to the ith lattice bin for the plant state
observation.

37This might in turn be related to other more primitive scarce resources like
power or bandwidth available for communication.
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Fig. 18. Abstractly, a communication problem consists of a partially specified
random system consisting of a known and possibly interactive source together
with an information pattern. The noisy channel and encoder/decoders need to
be specified before all the random variables become properly defined.

of the function is denoted . The information pattern iden-
tifies what variables each of the th encoders and decoders has
access to. The performance objective is a statement that must
evaluate to either true or false once the entire random system is
specified.

As depicted in Fig. 18, the communication problem is thus an
open system that awaits interconnection with encoder, channel,
and decoder maps. The channel is a measurable map from

into . The encoder and decoder are both represented
by a possibly time-varying sequence of real valued functions
compatible with the information pattern .

Once all the maps are specified, the random system becomes
completely specified by tying them to an underlying probability
space consisting of three i.i.d. sequences of contin-
uous uniform random variables on . The are connected
to the first input of while is connected to the first input
of the memoryless channel. As is usual, the output of the en-
coder is connected to the remaining input of the channel, and
all the past outputs of the channel are connected to the decoding
functions as per the information patterns. Finally, assume that
common randomness is made available to both the encoder
and decoder so that they may do random coding if desired. Once
everything is connected, it is possible to evaluate the truth or
falsehood of .

Definition 7.2: A channel is said to solve the problem if there
exist suitable encoder and decoder maps compatible with the
given information pattern so that the combined random system
satisfies the performance objective .

Communication problem is harder than problem if any
channel that solves also solves .

Each particular communication problem therefore divides
channels into two classes: those that solve it and those that do
not. Suitable families of communication problems, ordered by
hardness, can then be used to sort channels as well. Channels
that solve harder problems are better than ones that do not. The
equivalence of certain families of communication problems
means that they induce the same orderings on communication

channels. This will become clearer by the examples of the next
few sections.

A. Classical Examples

1) The Shannon Communication Problem: Shannon iden-
tified the problem of communicating bits reliably as one of
the core problems of communication. In our framework, this
problem is formalized as follows.

• if and otherwise. The functions
ignore all other inputs.

• The information pattern specifies that has access to
. The encoder information pattern is complete in the case

of communication with feedback: has access to as
well as . Without feedback, has access only to .

• The performance objective is satisfied if
for every .

The Shannon communication problem naturally comes in a
pair of families with feedback and without feedback.
These families are indexed by the tolerable probability of bit
error and end-to-end delay .

To obtain other rates , adjust the source functions as
follows:

• if
for integer . The possibly

time-varying functions ignore all other inputs.
These naturally result in families and for the

feedback and feedback-free cases respectively. It is immediately
clear that is harder than and furthermore problems
with smaller or are harder than those with larger ones. It is
also true that is harder than whenever
in that it is more challenging to communicate reliably at a high
rate rather than a low one.

The set of channels with classical Shannon feedback capacity
of at least is therefore

solves (33)

and similarly for . The classical result that feedback does
not increase capacity tells us that . Because of this,
we just call them both .

2) The Zero-Error Communication Problem: A second
problem is the one of zero error communication. It is defined
exactly the same as the Shannon communication problem
above, except that .

The channels that have feedback zero-error capacity of at
least with feedback are therefore

solves (34)

and similarly for . In this case, the result with and without

feedback can be different and furthermore,
[25]. In this sense, zero-error communication is fundamentally
a harder problem than -error communication.
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3) Estimation Problems With Distortion Constraints: Con-
sider iid real valued sources with cumulative distribution func-
tions .

• ignoring all the other inputs. This gives
the desired source statistics.

• The information patterns remain as in the Shannon
problem.

• The performance objective is satisfied if
.

Call these estimation problems and
(for the cases with/without feedback) and once again associate
them with the set of channels that solve them in the limit of large
delays

(35)

and similarly for . For cases where the distortion
is bounded, the existing separation result can be interpreted as
follows:

(36)

where is the information-theoretic rate-distortion curve.
The interpretation of this separation theorem is that in the

limit of large delays, estimation problems with a fidelity con-
straint are no harder or easier than Shannon communication
problems dealing with bits. Both families of problems induce
essentially the same partial order on channels.

B. Anytime Communication Problems

The anytime communication problems are natural gen-
eralizations of the binary data communication problems
above. Everything remains as in the Shannon communica-
tion problem, only the performance measure changes. Let

when written out in binary
notation. This can always be done and the parsing of the string
is unique no matter what the rate is

• is satisfied if for
every .

Call these problems when feedback is allowed and

when it is not permitted. Once again, it is clear that the
nonfeedback problems are harder than the corresponding feed-
back problems. Furthermore, is harder than
if in addition to the usual fact of being harder
than if . Similarly, smaller values are
harder than larger ones.

The channels with -anytime feedback capacity of at least
are then given by

solves

(37)

with a similar definition for . It is immediately clear that

The case of is defined as the limit

(38)

It turns out in this case that since
infinite random tree codes can be used to communicate reliably
at all rates below the Shannon capacity [23].

However, for other ,

and

with all of these being strict inclusion relations. and

are not subsets of each other in general.
In this sense, there is a nontrivial hierarchy of problems with

Shannon communication as the easiest example and zero-error
communication as the hardest.

C. Control and the Relation to Anytime Communication

The stabilization problems considered in this paper are dif-
ferent in that they are interactive. The formulation should be
apparent by comparing Fig. 18 with Fig. 2.

• represents the state of the scalar control problem with
unstable system dynamics given by . The is the
bounded disturbance and represents the control signal
used to generate .

• The information pattern with and without feedback is as
before.

• The performance objective is satisfied if
for all .

Call this problem for cases with feedback and

for cases without feedback available at the encoder.
The problem without feedback is harder than the problem with
feedback. It is also clear that is harder than
whenever and similarly for . The same holds if is
made larger or is made smaller

(39)

with a similar definition for . The necessity result of The-
orem 3.3 establishes that

while Theorem 4.2 establishes the other direction for the case
of feedback

(40)

Meanwhile without feedback and restricting to the set of finite
output alphabet channels (i.e., where the range of has finite
cardinality.) denoted , Theorem 5.3 implies
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Combining with (40) gives the following result for finite output
alphabet channels

(41)

Finally, notice how the mapping from to is
one-to-one and onto. By setting and it is
possible to translate in the opposite direction and this does
provide some additional insight. For example, in the anytime
communication problem, it is clear that increasing from
to while keeping constant at results in a harder problem.
When translated to stabilization, without the results established
here, it is far from obvious that the equivalent move from
to with a simultaneous drop in the required from 3 to 2
is also a move in a fundamentally harder direction.

D. Discussion

Traditionally, this hierarchy of communication problems
had not been explored since there were apparently only two
interesting levels: problems equivalent to classical Shannon
communication and those equivalent to zero-error communi-
cation. Anytime communication problems are intermediate
between the two. Though feedback anytime communication
problems are interesting on their own, the equivalence with
feedback stabilization makes them even more fundamental.

It is interesting to consider where Schulman’s interactive
computation problems fit in this sort of hierarchy. Because a
constant factor slowdown is permitted by the asymptotics, such
problems of interactive computation do not distinguish between
channels of different Shannon capacity. In the language of this
section, this means that Shannon communication problems are
harder than those of interactive computation considered in [3].

Furthermore, the noisy channel definition given here can be
extended to include channels with memory. Simply make the
current channel output depend on all the current and past and

. In that case, (40) will continue to hold. Since the finite-output
alphabet constructions never needed memorylessness, (41) will
also hold.

The constructive nature of the proofs for the underlying the-
orems makes them akin to the “reductions” used in theoret-
ical computer science to show that two problems belong to the
same complexity class. They are direct translations at the level
of problems and solutions. In contrast, the classical separation
results go through the mutual information characterization of

and . It would be interesting to study a suitable analog of
(36) for channels with memory. Feedback can now increase the
capacity so the with-feedback and feedback-free problems are
no longer equivalent. However, it would be nice to see a direct
reduction of Shannon’s communication problem to an estima-
tion problem that encompasses such cases as well. The asymp-
totic equivalence situation is likely even richer in the multiuser
setting where traditional separation theorems do not hold.
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