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Abstract

Our understanding of information in systems has been baseth® foundation of memoryless processes.
Extensions to stable Markov and auto-regressive procesmgeslassical. Berger proved a source coding theorem
for the marginally unstable Wiener process, but the infinideizon exponentially unstable case had been open
since Gray’'s 1970 paper. There were also no theorems shomliiag is needed to transport such processes across
noisy channels.

In this work, we give a fixed rate source coding theorem forittimite-horizon problem of coding an expo-
nentially unstable Markov process. The encoding naturaiults in two distinct bitstreams that have qualitatively
different QoS requirements for subsequent transport oveisy medium. The first stream captures the information
that is accumulating within the nonstationary process auglires sufficient anytime reliability on the part of any
channel used to transport the process. The second part abtiree-code captures the historical information that
dissipates within the process and is essentially classicabnverse demonstrating the fundamentally layered psatur
of such sources is given by means of information-embeddiegs.
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Source coding and channel requirements for unstable processes

. INTRODUCTION

The source and channel models studied in information th@oeynot just interesting in their own
right, but also provide insights into the architecture dfat@dle communication systems. Since Shannon’s
fundamental work, memoryless sources and channels hawysllbeen at the base of our understanding.
They have provided the key insight of separating source drahmel coding with the bit rate alone
appearing at the interface [1], [2]. The basic story has bexended to many different sources and
channels with memory for point-to-point communication. [3]

However, there are still many issues for which informatitvedretic understanding eludes us. Net-
working in particular has a whole host of such issues, leadiphremides and Hajek to entitle their
survey article “Information Theory and Communication Netkg An Unconsummated Union!” [4]. They
comment:

The interaction of source coding with network-induced getats across the classical network layers and has
to be better understood. The interplay between the distof the source output and the delay distortion induced
on the queue that this source output feeds into may hold tbeetsef a deeper connection between information
theory. Again, feedback and delay considerations are itaptr

Real communication networks and networked applicatiorsgaite complex. To move toward a quan-
titative and qualitative of understanding of such issuesitable models that exhibit at least some of the
right qualitative behavior are essential. In [5], [6], thelplem of stabilization of unstable plants across
a noisy feedback link was considered. There, delay and se#dbonsiderations became intertwined and
the notion of feedback anytime capacity was introduced. thbikze an otherwise unstable plant over a
noisy channel, not only is it necessary to have a channebbah supporting a certain minimal rate, but
the channel when used with noiseless feedback must als@dupigh enough error-exponent (called
the anytime reliability) in a delay-universal fashion. $hurns out to be a sufficient condition as well,
thereby establishing a separation theorem for stabitmatin [7], upper bounds are given for the fixed-
delay reliability functions of DMCs with and without feedlla@nd these bounds are shown to be tight
for certain classes of channels. Moreover, the fixed-deddiability functions with feedback are shown
to be fundamentally different from (and better than) thelitranal fixed-block reliability functions.

While the stabilization problem does provide certain impottinsights into interactive applications, the
separation theorem for stabilization given in [5], [6] isac®e — it only addresses performance as a binary
valued entity: stabilized or not stabilized. All that mastés the tail-behavior of the closed-loop process.
To get a more refined view of the problem in terms of asymptogidormance, this paper instead consider
the corresponding open-loop estimation problem. This éssemingly classical question of lossy source
coding for anunstablescalar Markov processes — mapping the source into bits ag ¢being what is
required to transport such bits using a point-to-point camitation system.

A. Communication of Markov Processes

Coding theorems for stable Markov and auto-regressive peaseunder mean-squared-error distortion
are now well established in the literature [8], [9]. We calesireal-valued Markov processes, modeled as:

Xy = AXy + W, (1)

where{W,},>, are white andX, is an independent initial condition uniformly distributed [—2, 4]
where(), > 0 and is small. The essence of the problem is depicted in Fitp fninimize the rate of the
encoding while maintaining an adequate fidelity of recargion. Once the source has been compressed,
the resulting bitstreams can presumably be reliably comoated across a wide variety of noisy channels.
The infinite horizon source coding problem (smoothing) islésign a source code minimizing the rate
R used to encode the process while keeping the reconstrudiige to the original source in an average
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Fig. 1. The point-to-point communication problem considered here gblaéis to minimize end-to-end average distortjgX, )A(t). Finite,
but possible large, end-to-end delay will be permitted. One of the kegsssxplored is what must be made available at the source/channel
interface.

sense lim,, ... = >, B[] X, — )A(t|*7]. The key issue is that any given encoder/decoder system @anest h
a bounded delay when used over a fixed-rate noiseless charreekencoder is not permitted to look into
the infinite futuré before committing to an encoding fo¥,. For the stable case$ < 1, standard block-
coding arguments work, since long blocks separated by anviening block look relatively independent
of each other. The ability to encode blocks in an independeayt also tells us that Shannon’s classical
sense ok-reliability also suffices for transporting the encodedskatross a noisy channel.

The study of unstable cases > 1 is substantially more difficult since they are neither eigaabr
stationary and furthermore their variance grows unboulydeadth time. As a result, Gray was able to
prove only finite horizon results for such nonstationarygesses and the general infinite-horizon unstable
case had remained essentially open since Gray’s 1970 pajpekd he put it:

It should be emphasized that when the source is non-stayiotie above theorem is not as powerful as one
would like. Specifically, it does not show that one can coderayIsequence by breaking it up into smaller blocks
of lengthn and use the same code to encode each block. The theorentily strione-shot” theorem unless the
source is stationary, simply because the blogks- 1)n, kn] do not have the same distribution for uneqiakhen
the source is not stationary.

On the computational side, Hashimoto and Arimoto gave anpemac form for computing theR(d)
function for unstable auto-regressive Gaussian procg$6gsToby Berger gave an explicit coding theorem
for an important sub-case: the marginally unstable Wiemecgss 4 = 1) by introducing an ingenious
parallel stream methodology and noticing that althoughWhener process is nonstationary, it does have
stationary and independent increments [11]. However, &&gource-coding theorem said nothing about
what is required from a noisy channel. In his own words:[12]

It is worth stressing that we have proved only a source codiveprem for the Wiener process, not an

For the discussion of channel requirements, the gengrabment of the difference?[| X; — )?tm is the natural per-letter distortion
measure. In the Gaussian case of Section V, we return to the more rstandan-squared error distortion.

2To allow the laws of large numbers to work, a potentially large but finite erehtbdelay is allowed between when the encoder observes
X: and when the decoder emifs;. However, this delay is must remain bounded fortall



information transmission theorem. If uncorrected chammeirs were to occur, even in extremely rare instances, the
user would eventually lose track of the Wiener process cetepyl. It appears (although it has never been proved)
that, even if anoisyfeedback link were provided, it still would not be possibteachieve a finite [mean squared
error] per letter ag — oc.

In an earlier conference work [13] and the first author’s elitation [14], we gave a variable rate coding
theorem that showed that we could achieve &t€) bound in the infinite-horizon case if we were allowed
the use of variable rate codes. The question of whether ofixed rate codes could be made to work
was left opert.

B. Asymptotic equivalences and direct reductions

Beyond the technical issue of fixed or variable rate lies gpdeeguestion regarding the nature of
“information” in such processes. [15] contains an analgsithe traditional Kalman-Bucy filter in which
certain entropic expressions are identified with the acdatimn and dissipation of information within
a filter. No explicit source or channel coding is involved{ lthe idea of different kinds of information
flows is raised through interpreting certain mutual infotima quantities. In the stabilization problem of
[5], it is hard to see if any qualitatively distinct kinds afformation are present since to an external
observer, the closed-loop process is stable. Similare/vtiriable rate code given earlier in [13], [14] also
did not distinguish between kinds of information since tlaene high QoS requirements were imposed
on all bits. However, it was unclear whether all the b#guiredthe same treatment since we had given
an example in which access to an additional lower religbifénsport can be used to improve end-to-end
performance [16], [14]. The true nature of the informatioithin the unstable process was left open and
while exponentially unstable processes certainly appketoyebe accumulating information, there was no
precise way to make this interpretation and quantify the amh@f accumulation.

In order to understand the nature of information, this pdpglds upon the “asymptotic communication
problem equivalence” perspective introduced at the encbpfThis approach associates communication
problems (e.g. communicating bits reliably at réteor communicating iid Gaussian random variables to
average distortior< D) with the set of channels that are good enough to solve tladilgm (e.g. noisy
channels with capacity’ > R). This parallels the “asymptotic computational problenuieglence”
perspective in computational complexity theory [17] exceyat the critical resource shifts from compu-
tational operations to noisy channel uses. The heart of ppeoach is the use of “reductions” that show
that a system made to solve one communication problem carsé# as a black box to solve another
communication problem. Two problems are asymptoticallyiealent if they can be reduced to each other.

The equivalence perspective is closely related to thettoadil source/channel separation theorems. The
main difference is that traditional separation theorem& @ privileged position to one communication
problem — reliable bit-transport in the Shannon sense — a&draductions in only one direction: from
the source to bits. The “converse” direction is usually pewsing properties of mutual information.
In [18], [19], we give a direct proof of the “converse” for elsical problems by showing the existence
of randomized codes that embed iid data bits into iid soussab®ls at rateR so that the bits can
be recovered with high probability from the distorted restuactions of the source symbols as long as
the average distortion on long blocks stays below the distorate functionD(R). Similar results are
obtained for the conditional distortion-rate function.iJtequivalence approach to separation theorems
considers the privileged position of reliable bit-trangpgo be purely a pedagogical matter.

This paper uses the results from [18], [19] to extend theltesaf [5] from the control context to the
estimation context. We demonstrate that the problem of conicating an unstable Markov process to

3For stationary processes with bounded distortion measures, a va@dbleode can be easily converted into a fixed rate code by buffering
and then declaring an overflow in the rare event of the variable rate @ockeding the desired fixed rate by enough to prevent an on-time
delivery with the target delay. After the overflow, the code can simpltarefrom scratch and any distortion penalty incurred by the induced
transient will be bounded and can be made to have arbitrarily low probabifitghoosing a buffer large enough. For unstable processes,
this strategy does not work since restarting is impossible due to the informatimumulating within the process.



within average distortion/ is asymptotically equivalent to a pair of communication ljemns: classical
reliable bit-transport at a rate R(d) — log, A and anytime-reliable bit-transport at a ratelog, A. This
gives a precise interpretation to the nature of informafiows in such processes.

C. Performance bound in the limit of large delays

To define R(d) for such processes, the infinite horizon problem is viewedhaslimit of a sequence
of finite horizon problems:

Definition 1.1: Given the scalar Markov source given by (1), firete n horizon version of the source
is defined to be the random variablég ' = (Xo, X1,..., X, 1). R R

Definition 1.2: n—distortion: Then—distortion measure ip(X;, X;) = |X; — X|7. It is an additive
distortion measure when applied to blocks.

The standard information-theoretic rate-distortion fime for the finite horizon problem using-
difference distortion is:

1
Ry (d) = inf —I(Xg7h Yy ) 2
(PG HXG ™) X0y BlIXi—Yy[n)<d} 1
In (2), we infimize the average mutual information betwe€rand Y over joint measures where the
marginal for X7 is fixed and the average per-letter distortion is constchtoebe belowd. We can consider
the block X as a single vector-valued random variable The R, (d) defined by (2) is related t&;" (d)

by RX(d) = LR (nd) with the distortion measure oR given by p(X, X) = S | X, — X|".

T n

The infinite horizon case is then defined as a limit;
R (d) = liminf R (d) (3)

The distortion-rate functionDX (R) is also defined in the same manner, except that the mutual-
information is fixed and the distortion is what is infimized.

D. Outline

Section Il considers lossy source coding for unstable Margoocesses with the disturband€;
constrained to have bounded support. A fixed-rate code aearhitrarily close taR(d) is constructed by
encoding process into two simultaneous fixed-rate bit sieed he first stream has a rate arbitrarily close
to log, A and encodes what is needed from the past to understand tive.fltt captures the information
that is accumulating within the unstable process. The adtream captures those aspects of the past that
are not relevant to the future and so captures the purelgrigat aspects of the unstable process in a way
that meets the average distortion constraint. This sectedra can be made to have a rate arbitrarily
close toR(d) — log, A. This historical information is examined more carefully lopking at the process
going backward in time. Th&(d) curve for the unstable process is shown to have a shape thatirsled
by the stable historical part translated log, A to account for the unstable accumulation of information.

Section 1l reviews the delay-sensitive notion of anytinediability and the fact that random codes
exist achieving this sense of reliability over noisy chdareven without any feedback. Fgrdifference-
distortion measures, an anytime reliability nlog, A is then shown to be sufficient to encode the first
bitstream across a noisy channel. The second bitstreamoisnsko only require classical Shannen
reliability. This completes the reduction of the lossyhasttion problem to a two-tiered reliable bit-
transportation problem.

In Section IV, the problem of anytime-reliable bit-trangpis directly reduced to the problem of lossy-
estimation for the accumulation process using the ideasjinrginterpreted as information-embedding.
This shows that the higher QoS requirements for the firsasirare fundamental to these processes. A
second stream of data is embedded into the historical sagroéthe unstable process and is recovered in
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Fig. 2. The source-coding problem of translating the source into two sinedtss bitstreams of fixed ratés and R». End-to-end delay
is permitted but must remain bounded. The goal is toRet: log, A and Ry ~ R(d) — log, A.

the classical Shannanreliable senseExponentially unstable Markov processes are thus the fastrivial
examples of stochastic processes that naturally genevatequalitatively distinct kinds of information.

In Section V, the results are then extended to cover the Gaupsocess case with the usual squared-
error distortion and a numerical example is discussed tgtiiate the ideas. Although the proofs are given
in terms of Gaussian processes and squared error, thesremilially generalize to any driving noise
distribution that has at least an exponentially decayirlg ta

This paper focuses throughout on scalar Markov procestés.pbssible to extend all the arguments
to cover the general ARMA ca%eThe techniques used to cover the ARMA case are discussdtein t
control context in [6] where the state-space formulationsed. A brief discussion of how to apply those
techniques is present here in Section VI.

II. TWO STREAM SOURCE ENCODINGAPPROACHINGR(d)

This section focuses on the source coding problem illustran Fig. 2. The goal is to transport the
unstable source of (1) to the destination using a low ratdemmaintaining the target fidelity level. A
large end-to-end delay is permitted, but it must remain bledneven as time goes to infinity. The main
result of this section is:

Theorem 2.1:Given an unstable/ > 1) scalar Markov process as given by (1) driven by independent
noise{W, };>o with bounded support, it is possible to encode the proceasdage fidelity£[| X; — X;|"]
arbitrarily close tod using two fixed-rate bitstreams assuming that both encaagidacoder have access
to common randomness. By choosing a sufficiently large ereltl delay, the first stream can be made
to have rateR?; arbitrarily close tolog, A while the second can have rafg arbitrarily close toRX (d) —
log, A.

A. Proof strategy

The code for proving Theorem 2.1 is illustrated in Fig. 3.

. Look at time in blocks of sizex and encode the values of endpoinfs;,, 1, X;,) recursively to
very high precision using rate(log, A + ¢;) per pair. Each blockXy,,, Xpni1,. .., Xps1)n—1 WiIll
have encoded checkpoir(té?kn,)v(kn+n,1) at both ends.

« Use the encoded checkpoinﬁévf,m} at the start of the blocks to transform the process in between
(the history) so that it looks like an iid sequence of finiteibon problems)?.

« Use the checkpoint@anM_l} at the end of the blocks to encode the history to fidelitgt a rate
of n(Rz (d) — log, A+ €3+ o(1)) per block.

. “Stationarize” the encoding by choosing a random startifiget so that no times area priori more
vulnerable to distortion.

The source decoding proceeds in the reverse manner and gétsheckpoints and history. The two

are recombined to give a reconstruction of the original seuo the desired fidelity. The above strategy
follows the spirit of Berger's encoding[11]. In Berger'sdmfor the Wiener process, the first stream'’s rate

4ARMA: Autoregressive process driven by the moving average ohiienprocess. The unstable poles give rise to streams requiring higher
QoS while the residual stream can do with less. The total rate will goverforpgnce.
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Fig. 3. A flowchart showing how to do two-stream fixed rate source @pétin Markov sources and how the streams are decoded.

is negligible relative to the second stream. In our casefiteestream’s rate is significant and cannot be
averaged away by using large blocks
The detailed constructions and proof for this theorem arthénext few subsections.

B. Recursively encoding checkpoints

This section reliesupon the assumption of driving noise with bounded supfoit
care about any other property of thé&l;},~, like independence or stationarity. The
also not important for this section.

Proposition 2.1: Given an unstable4 > 1) scalar Markov process as given by (1) driven by noise
{W:}+>0 with bounded support, it is possible to causally and reevalgiencode checkpoints spaced by
n to arbitrarily high fidelity (X, — Xj,| < A, for any A > 0 we choose) with rate?, arbitrarily
close tolog, A by choosingn large enough. Furthermore, if an iid sequence of indepengains of
uniform random variable§O,, ©'},>, for dithering is available to both encoder and decoder, there
(an,l — X1, Xpon — Xk,) can be made an iid sequence of pairs of independent unifontora
variables.

£, but does not

<
distortion meassire

Proof: First, we consider the initial condition af,. It can be quantized to be within an interval of size
A by usinglog,[£2] bits.
With a block length ofn, the successive endpoints are related by:

n—1

Xhriyn = A" X + [A"Y A" Wi ] 4)

=0
The second ternft - -] on the left of (4) can be denotddl, and bounded by:

This assumption is relaxed when we consider the Gaussian case in Section V



n—1
Q Q
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Wil = 14774 3 A~ Wi < 14 |§jA <D ©)

Proceed by induction. Assume that we ha¥g, so that| X}, — X,m| < % for someA chosen small.
This clearly holds fork = 0. Without any further information, we know tha{ ), must lie within an
interval of sizeA"A + A" 7= Q . By usingn R bits® to encode where the true value lies, the uncertainty is

cut by a factor of2", To have the resulting interval of siz& or smaller again, we must have:
L
A-1"
Dividing through byA2-"% A" and taking logarithms gives:
2 )
A(A-1)
Encoding X,._1 given X, requires very little additional rate sind&y,—1 — X,m| < Q+ A and so

log, [£+17 < log,(2+ %) additional bits are good enough to encode both checkpduiiing everything
together in terms of the originak, gives:

log,(1 + +log,(24+ %) 100, [L
R; > max <log2A—|— o G 1) 2( )7 ng(A1>

A > 27 AYA +

n(R, — log, A) > log,(1+

(6)

n n

It is clear from (6) that no matter how smalla we choose, by picking an large enough the rate can
get as close tdog, A as desired. In particular, picking = K (log, %)2 works with largeK and smallA.

To get the uniform nature of the final errdf,, — X, subtractive dithering can be used[20]. This is
accomplished by adding a small iid random variaBlg uniform on [—%,+%], to the X;,, and only
then quantizing Xy,, + ©y) to resolutionA. At the decoderp,, is subtracted from the result to 0&t,,.
Similarly for X;,,_,. This results in the checkpoint error sequend,,_ 1 — Xn_1, Xen — Xin) being
iid uniform pairs over[—£,+2], that are also independent of all thig and initial conditionX,. [

In what follows, we always assume thatis chosen to be of high fidelity relative to the target distort
d (e.g. For squared-error distortion, this means that< d.) as well as small relative to the the initial
condition SOA < €.

C. Transforming and encoding the history

Having dealt with the endpoints, focus attention on theohisal information between them. Here, the
bounded support assumption is not needed for{th¢}, but the iid assumption is important. First, the
encoded checkpoints are used to transform the historiéainmation so that each historical segment looks
iid. Then, it is shown that these segments can be encodecetapgpropriate fidelity and rate when the
decoder has access to the encoded checkpoints as side atiform

1) Forward transformation: The simplest transformation is to effectively restart thegess at every
checkpoint and view time going forward. This can be consadenormallzmg each of the historical
segmentsX """ to (X0, 0 <i<n—1) for k=0,1,2,.

Xii) = Xpngi — A Xy (7)

For eachk, the block X, = { X }o<icn_1 SatisfiesX i1 = AX) + W) By dithered quan-
tization, the initial condition { = 0) of each block is a uniform random varlable of suppartthat is
independent of all other random variables in the system.ifiti@l conditions are iid across the different

®We can choos&?; in such a way as to guarantee us an integ®f



k. Thus, except for the initial condition, the blocks, are identically distributed to the finite horizon
versions of the problem.

Since A < €, eachX;, block starts with a tighter initial condition than the ongl X process did.
Since the distortion measugedepends only on the difference, starting with a smalleiiahitondition
while everything else is the same implies that the proceggimes no more bits per symbol to achieve a
distortion d than did the original process. Thus:

RY(d) < R (d)
for all n andd. So in the limit of smallA and largen
: X < pX
lim R, (d) < Fio(d) (8)

Since quantizing the initial condition to any desired pseamn takes only a finite number of additional
bits, these bits can be amortized awaynas> oco. Thus (8) can be tightened to

iy (@) = R (@ ©

In simple terms, the normalized history behaves like thedihorizon version of the problem when
is large.

2) Conditional encoding:The idea is to encode the normalized history between two kyjweéats
conditioned on the ending checkpoint. The decoder has sidoethe exact values of these checkpoints
through the first bitstream and so from the point of view ofiogdthe historical blocks, the checkpoints
represent side information available at both the encoddrdatoder.

For a givenk, shift the encoded ending checkpoiﬁgk+1)n_1 to

Zl = X(k+1)n—1 — A" Xy, (10)

Z! is clearly available at both the encoder and the decoderesinonly depends on the encoded
checkpoints. Furthermore, it is clear that

Xten1) — Z8 = (Xeynr — A" X)) — (Xprnynor — A" X)) = Xpr o1 — X(epno1
which is a uniform random variable da-£, +2].
To see what rate is required for the second stream, define dhditonal rate-distortion function
217"9(d) for the limit of long historical blocksX?~' conditioned on their quantized endpoint:

q o1 1
RXI1Z%9(d) = lim inf — 1nf —I(Xp~ LYt ze,0)
nee MP(Yy X T 29,0):) Y B[|X-Yilr|<dy T
Proposition 2.2: Given an unstableA > 1) scalar Markov proces$Xt} given by (1) together with
its encoded endpoint? obtained byO-dithered quantization to within a a uniform random varelith
small supportA, the conditional rate distortion functioR " (d) < RX(d) —logy A

Proof: From (8), (3) and (2) we know ifA is small enough and is large enough, that there exists a
random vectoly" " so thatl > p(X;, Vi) = d+e; and I(X§ Yy !) = n(RX (d) + ¢2). Decompose
the relevant mutual information as:

I(XPLyp Y z9,0) = —1(Xp~t 290) + (XL Yot 790) (11)



To upper bound the conditional mutual information, we loweund(X;'; Z¢|©) and upper bound
I(Xy LYt Z9|©). The first term is easily lower bounded by log, A| for A small enough since:
I(Xgh2z0) = H(Ze) - H(Z4X},0)
H(Z10)

> H(Z1©,W5™)

> [log, An_lJ

= [(n—1)log, 4] (12)
since conditioned on the final dith€s, the quantized endpoint is a discrete random variable that i
deterministic function ofX,,_; and conditioning reduces entropy. Bdt conditioned on the driving noise
W2 is just theA-precision quantization ofi"~! times a uniform random variable of width and hence

has discrete entropy log, A" .
The second term of (11) is a little more subtle to bound. Wedrteeestablish

I(Xg™5 Y5, 20) < n(RE(d) + €2) + o(n) (13)
Expand the mutual information as:

Iy 29) = 157 ygm'le) + I(X5 2000, vg ) N
1Ky g '10) + H(Z110, Yy ") — H(Z20, Yy, X5 )

< I(XPLYple)+ H(Z90,Y, 1)
= n(RY(d)+e)+ H(Z'— Qo) (Yn1)]0, Y, 1)
< n(RE(d)+e)+ H(Z'— Qae)(Yn-1)O)

The first inequality comes from dropping a negative teemd dropping the conditioning orj" . Qa.0)

is used to denote the dithered scalar quantizer used toagertbe encoded checkpoints, just appropriately
translated so it can apply to th€ giving Z¢ = Qa,6)(X,—1). As such,Q e can be applied td},_,

so thatZ? — Qa,e)(Ya-1) = SA where S is an integer-valued random variable representing how many
steps up or down thé-quantization ladder are needed to get frahn o)(Y,,—1) to Z9. This tells us:

I(Xg~ Y51, 2°0) < n(RE(d) + e2) + H(S)
To bound the entropy irb, observe thatS| < 1+ W since the quantized points are no more

’Since Z? is discrete once conditioned on the ditf@y H is the regular discrete entropy here.



10

than £ from the originals. The)-th moment ofS can be bounded:

‘Xn—l - Yn—1| n
ey

‘anl _ Yn71| n
E[(2 max <1, T)) ]

B max (177,(%)”)]

’anl - Ynflln]
A"
m
= 2"+ BEHXn_l —Y,1]"]

EflSI < El

IN

< E[274 2"

n—1

21 ~
< 214 EE[; | X; — Yi|"]
on
< 214 n(d+6)
Notice that for large enough and/or small enough\, only the O(n) term matters. For simplicity, we

assume that is large enough oA is small enough so tha#[|S|7] < 2”*%“2—23)
Applying the Markov inequality gives us:
2’7+1n(d + 63)
AN
Since an integef can be encoded into bits using a self-punctuated Tadimg less thams + 2log,(|S])
bits to encodes # 0, the entropy ofS must be bounded as follows:

H(S) < 3+ 2E[logy(|S])]
_ 3+2/ Plog,(|S]) > 1)dl

P(|S| > s) < min(1, s (14)

= 3+2/ P(|S| > 2"l
0
[e'e] 77+l

< 3+2/ min(1, 2t €)ooy g
0 A

2 277+1n(d + 63) > —nu

2 1 2

The 2 log, n term is certainlyo(n). The only other term that might raise concerrds, é, but that is
o(n) since (6) tells us that we are already required to chooseuch larger than that to have, close to
log, A in the first stream.

With (13) established, we can apply it along with (12) to (§h)ing us:

I(XP 1Yy 129,0) < n(RX(d) —log, A+ €) + o(n) (15)
Taking n to oo and dividing through by establishes the desired result. O

8First encode the sign of using a single bit, then give the binary expansion ®f with each digit followed by & if it is not the last
digit, and al if it is the last digit.
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This conditional-rate-distortion function in Propositi@.2 has a corresponding coding theorem:
Proposition 2.3:Given an unstableA > 1) scalar Markov proces$X;} given by (1) together with
its n-spaced pairs of encoded checkpoifif§} obtained by dithered quantization to within iid uniform
random variables with small suppof, for every ¢, > 0, there exists anV/ large enough so that a
conditional source-code exists that maps a lengtisuperblock of the historical informatiofiXy }o<i<ns

into a superblock of T} } o<« Satisfying:

_Z ZE kj)v Tep)l < d+e

By choosingn large enough, the rate of the superblock code can be madesesa$ desired t&2 (d) —
log, A if the decoder is also assumed to have access to the encodekpomts.Xjy,,.

Proof: The idea is to encod@/ of the X, blocks together and use conditioning on the information in
the M encoded checkpoints at the end of each. Rhevector andZ} pair have a joint distribution, but
are iid across: by the independence properties of the subtractive dithdrthelV; ;. Furthermore, the
X are bounded and as a result, the all zero reconstructioritseisua bounded distortion on th&
vector. Even without the bounded support assumption, Emed.2 reveals that there is a reconstruction
based on theZ! alone that has bounded average distortion where the bouesl! miat even depend on
Since the side informatio} is available at both encoder and decoder, Proposition Zfenclassical
conditional rate distortion coding theorems[21] tell uattthere exists a block-length/ (n) so that codes
exist which satisfy the properties required as werlgjet large. 0J

D. Putting history together with checkpoints

All that remains is showing how the decoder can combine tloestneams to get the desired rate/distortion
performance.

The rate side is immediately obvious since therebog@A from Proposition 2.1 and?X (d) — log, A
from Proposition 2.3. The sum is as closeftg (d) as desired. On the distortion side, the decoder runs
(7) in reverse to get reconstructions. Supposel’l’@@; are the encoded transformed source symbols from
the code in Proposition 2.3. The)&i;m+Z =T + A 'Xien @and SO0X s — anﬂ = X(,m) Tik,)- Since
the differences are the same, so is the average distortman other property that we had for the vector
guantization problem with known side information.

E. “Stationarizing” the code

The underlying process is non-stationary so there is no Hopmake the encoding truly stationary.
However, as it stands, only the average distortion acrosls ethe M/n length superblocks is close tb
in expectation giving the resulting code a “cyclostatigrigrerformance. Nothing guarantees that source
symbols at every time will have the same level of expectedifyddo fix this, a standard trick can be
applied by making the encoding have two phases:

« A first phase that lasts for a randoii time-steps.T” is a random integer chosen uniformly from
0,1,... Mn—1 based on common randomness available to the encoder andedebarring the first
phase, all source symbols are encoded to fidelityecursively.

« A second phase that applies the two-part code describedbl¢rgtarts at timel” + 1.

The extra rate required in the first phase is negligible orraye since it is a one-time cost. It just
translates into an extra delay as this first phase messagm limain through the raté; > log, A data
stream while the second phase of the first bitstream can bmdeddn a causal fashion with only a delay
of n. The rest of the end-to-end delay is determined by the tetadth M/n of the superblock chosen
inside Proposition 2.3.
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Because the first phase is guaranteed to be high fidelity aradher time positions are randomly and
uniformly assigned positions within the superblock of siZethe expected distortiof' || X; — X;|"] < d+¢,
for everyi. The code actually does better than that since the probabiliexcess average distortion over
a long block is also guaranteed to go to z&ro.

This proves Theorem 2.1.

F. Time-reversal and the essential phase transition

With Theorem 2.1 proved, it is useful to make some obsematid-irst, the distortion performance
of the code is entirely based on the conditional rate-distorcurve for the historical segments. The
checkpoints merely contributelag, A term in the rate. Moreover, since the above code can apptbach
RZX (d) bound as closely as desired, this means that Propositiom@s2 in fact hold with equality:

RX79(d) = RX(d) —log, A (16)

The nature of historical information in the unstable Markmecess described by (1) can be explored
more fully by transforming the historical blocks going ltlgabackward in time. The informational
distinction between the process going forward and the puristorical information parallels the concepts
of information production and dissipation explored in tloaext of the Kalman Filter [15]. One interesting
consequence of this is a qualitative difference betweendneausal (1?) and the causaDsed i) defined
in [22] for the unstable process. Whilesed 12) goes to infinity as the rate approachs= log, A from
the right, D(R) instead approaches a finite limit!

1) Backwards processCall X~ the “backwards in time process” related to the original psscdefined
in (2).

X, =AX, - AW, (17)

where the{1W/,”} are iid with the same distribution g$7;} and the process is initialized to eith&f = 0
or its steady-state distribution. Time runs in the negatiivection. Sincd A~!| < 1, this is a stable Markov
process and falls under the classical theorems of [9].

2) Bounding the forward processhe historical blocks, conditioned on their endpoints, essentially
stable in nature since they can be looked at going backwaits dllows a simplification in the code
depicted in Fig. 3: the encoding of the historical informatican be done unconditionally and on a
block-by-block basis.

Theorem 2.2:The rate-distortion function for the unstable Markov preeés bounded above byg, A
plus the the required rate to encode a backwards-in-timgioreX — of the process starting with a known
endpoint.

RX(d) <logy A+ RY (d) (18)

or expressed in terms of distortion-rate functions for- log, A:
DZ(R) < D (R —logy A)

This further implies that the process undergoes a phassitian from infinite to bounded distortions
at the ratelog, A.
Proof: Since (16) is known, all that needs to be shown is that

RLZ"9(d) < R (d) (19)
When looked at going backwards in tifiethe untransformed-th historical block satisfies the equation
Xinti = A Xppirr — A" Wigss (20)

9This property is inherited from the repeated use of independent coralitiate-distortion codes in the second stream.
*Time is not being reversed for the entire process, just over a fixed Wamk with known endpoints. Consequently, the technical
complications that can occur when reversing time in the infinite horizon dasst come up here.
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for every 0 < i < n with endpointsX;, and X(.), known to each be W|th|r§ of Xy, ankaH)
respectively. This is identical to (17) except that the kndwmal condition is large rather than small. This
can be easily remedied by a reversible transformation irsthle of (7) except starting with the dithered
endpointX (k-+1)n- DeflneX,“ by:

X( ki) = Xknti — Aif"X (k+1)n (21)
When viewed going backwards, '[hIS has an “initial” Condltlﬂthn Xikr1)n — X(,m being a
uniform random variable ori—%,+%] that is independent of all théV by the properties of dithered
guantization. This evolves backwards according to
Xy = A7 Xpin — A7, (22)
and ends at
X(k,o) = an—A_nX(k+1)n

= (Xgn — Xpn) — A2}

where Z! is from (10) and is calculated from the two quantized boupdaonditions.—A"Z] is a
value within A of —Z?:1 A~IW,;-1). Whenn is large, theX vectors behave close to the steady-
state behavior ofX ~. By the properties of dithered quantizatioﬁi(kyo) is thus known to be somewhere
uniformly distributed or{—A*”Z,j—%, —A*”Z,‘jjt%]. The mapping fronX to X is invertible conditioned
on the side information provided by the quantized endpoints

The second stream can be encoded to distodiane by simply ignoring the boundary conditions for
X and takingn large enough. Thus:

RY17%(d) < RX ™ (d)

At rates less thatog, A, the distortion for the origina process is necessarilyinfinite. The reverse
processX ~ is much better behaved since it is boundeg | < % and hence has finite difference
distortion for allp > 0 even at zero rate. Thus, thBX (R) must transition from infinite to bounded
distortions atRk = log, A. O

Notice that there are no explicitly infinite distortions imetoriginal setup of the problem. Consequently,
the appearance of infinite distortions is interesting ashis abrupt transition from infinite to finite
distortions at the critical rate dbg, A. Theorem 2.2 tells us that the unstable> 1 Markov processes
are nonclassical only as they evolve into the future. Theohaal information is no worse than a stable
Markov processes that fleshes out the unstable skeletoregirtitess.

[I. QUALITY OF SERVICE REQUIREMENTS FOR COMMUNICATING UNSTABLEPROCESSES
SUFFICIENCY

In a very real sense, the first stream in Theorem 2.1 represantnitial description of the process to
some fidelity, while the second represents a refinement ofléiseription [23]. Theorem 2.1 points to the
fact that asymptotically such processes are successiBhable for the particular choice @t; ~ log, A.
These two descriptions turn out to be qualitatively difféarevhen it comes to transporting them across a
noisy channel.

In Section I11-A, the sense of anytime reliability is reviedand related to classical results on sequential
coding for noisy channels. Then in Section IlI-B, anytimiat@e communication is shown to be sufficient
for protecting the encoding of the checkpoint process. I§ina Section 1lI-C, it is shown that it is
sufficient to transport the historical information usingditional Shannom-reliability.

"This will be established rigorously in Theorem 4.2 where finite distortion irsptiee ability to carryx~ log, A bits through the
communication medium.
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Fig. 4. The timeline in a raté delay7 code. Both the encoder and decoder must be causal; snd B, are functions only of quantities
to the left of them on the timeline. If noiseless feedback is available Xthean also have an explicit functional dependence oncthie!
that lie to the left on the timeline.

A. Anytime reliability

It should be clear that the encoding given for the checkppiotess in Section 1I-B is very sensitive
to bit errors since it is decoded recursively in a way thatl wibpagate errors. To specify the quality
of service requirement, we need to look more closely at theesi at which individual bits and their
reconstructions occur relative to the channel uses. {ilitesd in Fig. 4)

Definition 3.1: A discrete time channe$ a probabilistic system with an input. At every time stejit
takes an input;, € A and produces an outpudt € C with probability*? p(Cy|al, c™*) where the notation
at is shorthand for the sequenae as, . . ., a;. In general, the current channel output is allowed to depend
on all inputs so far as well as on past outputs.

The channel ismemorylessf conditioned ona,, C; is independent of any other random variable in
the system that occurs at timeor earlier and all that needs to be specifiedi6C;|a;). The channel
memoryless and stationary jif (C;|a;) = p(Ct|a;) for all timest.

Definition 3.2: A rate R channel-encode€ without feedbacks a sequence of mags,;}. The range
of each map is the sed. The¢-th map takes as input the available data lﬂﬂs%.

Randomized encodeadso have access to a continuous uniftfrandom variable denoting the common
randomness available in the system.

Definition 3.3: A delay ¢ rate R channel-decodeis a sequence of mafd®;}. The range of each map
is just an estimate; for thei-th bit taken from{0, 1}. Thei-th map takes as input the available channel

outputsCl%W which means that it can seetime units beyond the time when the desired bit first had
a chance to impact the channel inputs.

Randomized decodeedso have access to the continuous uniform random varial@daeting common
randomness.

The maximum rate achievable for a given sense of reliablenconication is called the associated
capacity. Shannon’s classicareliability requires that for a suitably large end-to-edélay** ¢ that the
probability of error on each bit is below a specifiedThe Shannon classical capacityspgnnoncan

2This is a probability mass function in the case of discrete alphabebsit is more generally an appropriate probability measure over
the output alphabet.

Continuous uniform random variables are just used because theyrgaesent an infinite sequence of shared random bits.

“Traditionally, the community has used block-length for a block code asuthéaimental quantity rather than delay. It is easy to see that
doing encoding and decoding in blocks of stz&orresponds to a delay of betweenn and2n on the individual bits being communicated.
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also be calculated in the case of stationary memorylessnetguby solving an optimization problem:
Cshannor= sup 1(4; C)
P(A)

where the maximization is over the input probability disttion and/(A;C') represents the mutual
information through the channel [8]. Feedback does not gdarsnannon This is referred to as a single
letter characterization of channel capacity for memorylesannels. Similar formulas exist using limits
for channels with memory. There is another sense of reitglahd its associated capacity, calledzero-
error capacitywhich requires the probability of error to be exactly zerahwsufficiently largen. It does
not have a simple single-letter characterization [24] withfeedback, though it can be easily computed
if feedback is available.

Rather than considering the system as a bit pipe that endligidual bit estimates one at a time,
suppose that the decoder produces estimatés) that are a function of time. In a traditional fixed-
delay communications system with a delay¢ofime units, B;(t) is frozen beyond the timéﬁ + ¢ when
the decoder is forced to commit to a particular valtdawever, there is no reason to impose such a
fixed-delay constraint in principle.

Consider maximum-likelihood decoding[25] or sequentietalding [26], [27] as applied to an infinite
tree code like the one illustrated in Fig. 5. The estimagg) describe the current estimate for the most
likely path through the tree based on the channel outputsived so far. Because of the possibility of
“backing up,” in principle the estimate foB; could change at any point in time. The theory of both
ML and sequential decoding tells us that generically, trabability of bit error on bit; approaches zero
exponentially with increasing delay. The best-path imetigtion and the exponential convergence tell us
that it is most convenient to look at errors on the entire gréf.

Definition 3.4: A rate R anytime communication systeover a noisy channel is an encodérand
decoderD pair such that:

« Data bit B; enters the encoder at timjg

« The encoder produces a channel input at integer times basedl mformation that it has seen so

far.

« The decoder produces updated channel estim%;éts for all « < Rt based on all channel outputs

observed till timet

A rate R communication system achievaaytime reliability« if there exists a constamt’ such that:
P(Bi(t) # Bj) < K27°"#) (23)

holds for everyi. The probability is taken over the channel noise, the data/j and all of the common
randomness available in the system. If (23) holds for everssible realization of the data bif3, then
we say that the system achiewasiform anytime reliabilitya.

Communication systems that achieaaytime reliability are calledanytime codesand similarly for
uniform anytime codes

“Anytime” can be considered a synonym for delay-univetgalsince decoding delay plays the role
for sequential codes that block-length does for block cpdsking for anytime reliability is analogous to
looking at rateless block code constructions where the eatieeves an exponentially decreasing probabil-
ity of error regardless of when we truncate it. The key ddfere is that by changing the block-length, the
rate of the code changes along with the end-to-end delay madmrobability. Changing decoding delay
alone impacts end-to-end bit error probability while halglithe rate constant. The difference between
uniform anytime reliability and simple anytime reliabylits not that significant since it is always possible
to convert an anytime code into a uniform anytime code by tiditeon of common randomness used to
turn the input bitstream into iid fair coin tosses by XORiitngiin with a one-time-pad.

Although it is easy to see that anytime reliability impliésit the probability of error on every bit must
eventually go to zero, we do not demand that we know in advaraetly when it is going to get to zero.
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12 345%6 78
Time

Fig. 5. A channel encoder viewed as a tree. At every integer time, gatthof the tree has a channel input symbol. The path taken down
the tree is determined by the data bits to be sent. Infinite trees have no intrirggt delay and bit/path estimates can get better as time
goes on.

This makes anytime reliability less demanding than Shaisnoero-error reliability [24]. The advantage
is that anytime reliability is available for many channeds (Theorem 3.5 shows) that have no zero-error
capacity.

In traditional analysis, random ensembles of infinite tredas were viewed as idealizations used to
study the asymptotic behavior of finite sequential encodingemes such as convolutional codes. We
can instead view the traditional analysis as telling us taadom infinite tree codes achieve anytime
reliability. In particular, we know from the analysis of [R426] that at rateR bits per channel use, we
can achieve anytime reliability. equal to the block random coding error exponent. Pinskegsiraent
in [28] as generalized in [7] tells us also that we can not dyp laetter, at least in the high-rate regime
for symmetric channels. We summarize this interpretatiothe following theorem:

Theorem 3.5:Random anytime codes exist for all DMCs For a stationary discmemoryless channel
(DMC) with capacityC, random sequential codes exist without feedback at alsr&tec C' that have
anytime reliabilityo = E,.(R) where E,(R) is the random coding error exponent as calculated in Base

Proof: Interpret the random ensemble of infinite tree codes as desaugle with both encoder and decoder
having access to the common-randomness used to generagmttree code-tree. Populate the tree with
iid channel inputs drawn from the distribution that ach®evé (R) for block codes. Theorem 7 in [25]
tells us that the code achieves anytime reliability= F,.(R) since the analysis uses the same infinite
ensemble for ali and delays.

_Alternatively, this can be seen from first principles for Meabding by observing that any false path
Bi can be divided into a true prefig!"' and a false suffix3;. The iid nature of the channel inputs on
the code tree tells us that the true code-suffix correspgntdirthe received channel outputs from tirﬁe

to ¢t is independent of any false code-suffix. Since there<ag®(‘~#) such false code-suffixes (ignoring
integer effects) at deptjy Gallager’s random block-coding analysis applies sinté egquires is pairwise



17

independence between true and false codewords.
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The exponent for the probability of error is dominated by shertest codeword length in the union bound,
which corresponds to — +. O

Since all that is required is pairwise independence, thebsysnon the tree can be generated using a
time-varying random convolutional code with a growing doasit length equal to the number of data
bits available at the encoder [8]. Thus the common randosregguired is not exponential i) though
it is still quadratic since the channel input at timeequiresO(t) fair coin tosses to calculate from the
data bits. However, the random nature of the code ensuréshéalistribution of the data bit® does
not matter and so we have showed uniform anytime reliabiity infinite common-randomness. In [14],
further arguments are given showing that deterministidiamg/ codes exist at the same reliabilities without
having to assume infinite common randomness, although #reseot uniform anytime codes since they
depend on the data bits being fair coin tosses. Schulmasidtseon good distance properties for tree
codes can be interpreted as showing that low rate deterticinisiform anytime codes exist, although not
with reliabilities specified by the random coding exponé&nt[29].

The important thing to understand about anytime religbikt that it is not considered to be a proxy
used to study encoder/decoder compléXitgs traditional reliability function$ often are [8]. Instead,
the anytime reliability parameter indexes a sense of reliable transmission for a bitstreamhiciwthe
probability of bit error tends to zero exponentially as tigees on. In the next section, this sense of
reliability is shown to be helpful in communicating the ckpaint process.

BThe question of the complexity of anytime codes is a fair one to ask. Fuendtaity, the complexity required to achieve the true anytime
property without feedback is infinite since both the encoder and decundst at the minimum remember all the received symbols so far.
Practically, it might be useful to use convolutional codes with very longstraint lengths so that the asymptotic probability of error is
practically, if not actually, zero. Sequential decoding of such codeshah give the anytime property for moderate delay values. The loss of
rate relative to capacity suffered by practical sequential decodingtibkedy to be an issue in these contexts. After all, in such applications,
the required anytime reliability itself will force us to back significantly awaynfreapacity. With feedback, [7] gives constructions that do
not have infinite complexity while still achieving anytime reliability.

18For convolutional codes, it is more popular classically to look at the expiowith respect to the constraint length rather than delay.
This is because the constraint length is the natural proxy for encoaeplegity. Decoder complexity is classically studied by looking at
the computational requirements for sequential decoding which doedepeind on the constraint length — only on how far we are from
capacity [27], [26].



18

B. Sufficiency for the checkpoint process

The effect of any bit error in the checkpoint encoding of &ettl-B will be to throw us into a wrong
bin of size A. This bin can be at most”A < A”% away from the true bin. The error will then grow
by a factorA™ as we move from checkpoint to checkpoint.

If we are interested in the—difference distortion, then the error is growing by a factdrA™ per
checkpoint, or a factor of\” per unit of time. As long as the probability of error on the aldits goes
down faster than that, the expected error will be small. Harmllels Theorem 4.1 in [5] and results in:

Theorem 3.6:An anytime reliabilityn log, A is sufficient for the checkpoint stream:

Suppose that a communication system provides us with umifamytime reliabilitya > nlog, A for
the checkpoint stream at rafe,. Then given sufficient end-to-end delay it is possible to reconstruct
the checkpoints to arbitrarily high fidelity in the-distortion sense.

Proof: Let X}, (¢) be the best estimate of the checkpaliy, at time 2 + ¢. By the anytime reliability
property, grouping the message bits into groups:&f at a time, and the nature of exponentials, it is
easy to see that there exists a constahtso that:

k
E[|X},(6) = X" < K’Q—O‘WW)AﬂwH
=0

k
_ K//2—a¢ Z 2—jn(a+77 logy A)
=0

< K'g—ad Z 9—in(atnlog, A)
=0
_ K///2—a¢

where K" is a constant that depends on the anytime code, Ratesupport(2, and unstabled. Thus by
choosingg large enough2—2¢ will become small enough so thaf”’2=¢ is as small as we like and the
checkpoints will be reconstructed to arbitrarily high fitiel O

Theorem 3.6 applies even in the case tHat 1 and hence answers the question posed by Berger in
[12] regarding the ability to estimate an unstable process a noisy channel without perfect feedback.
Theorem 3.5 tells us that it is in principle possible to gegteme reliability without any feedback at all.
Thus we can track unstable processes without feedback, thromly noisy feedback.

C. QoS for the history process

It is easy to see that the history information for the two atnecode does not propagate errors from
superblock to superblock and so does not require any sp@adl beyond what one would need for an
iid or stationary-ergodic process.

Theorem 3.7:Shannore-error reliability is good enough for the history process:

Given a communication system that can transport blocks ¢d daliably meeting any block-error
probability e given a long enough block-length, then that communicatistesn can be used to reliably
transport the second (historical) information stream gateel by the fixed-rate source code of Theorem 2.1
in that the expected end-to-end distortion can be maderarbjtclose to the distortion achieved by the
code over a noiseless channel.

Proof: Since the impact of a bit error is felt only within the supedX, no propagation of errors needs
to be considered. The time-reversal argument of Sectidgntlls us that we have a maximum possible

This idea of tracking an unstable process using an anytime code is us&0]jn31] used over a noisy feedback link to study the
reliability functions for communication using ARQ schemes and expecti&y.dehe sequence number of the block is considered to be an
unstable process that needs to be tracked at the encoder.
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distortion on the historical component since the distudgasupport() is bounded. Thus the standard
achievability argument [8] foD(R) tells us that as long as the probability of block error can teen
arbitrarily small with increasing block-length, then theéda&ional expected distortion induced by bit errors
will also be arbitrarily small. O

The curious fact here is that the QoS requirements of thensestveam of data only need to hold on a
superblock-by-superblock basis. To achieve a small enlseaverage distortion, there is no need to have
a secondary bitstream available with error probabilityt tipets arbitrarily small with increased delay. The
secondary channel could be nonergodic and go into otftdgethe entire semi-infinite length of time as
long as that outage event occurs sufficiently rarely so thataverage on each superblock is kept small.

D. The reduction of lossy compression to two-tiered bit$gzort

Theorems 3.6 and 3.7 together with the source code of The@éntombine to establish that the
problem ofd-lossy source coding over a noisy channel asymptoticatlyces to the problem of commu-
nicating bits at rate?(d) over a noisy channel, wherein a substream of bits of raleg, A is given an
anytime reliability of at least)log, A. This reduction is in the sense of Section VII of [5]: any chahn
that is good enough to solve the second pair-of-problem®@s ggnough to solve the first problem.

V. QUALITY OF SERVICE REQUIREMENTS FOR COMMUNICATING UNSTABLEPROCESSESNECESSITY

The classical converse to the rate-distortion theorenmadireassures us that we require communication
resources capable of carrying at least r&tel) giving us a requirement for at least traditional Shannon
e-reliability. However, the goal is to show that such unstaptocesses require communication resources
capable of supporting two-tiered service: a core of tagg A with anytime-reliability of at least log, A,
and the rest with Shannon reliable transport. To do this $eiction proceeds in stages and follows the
asymptotic equivalence approach of [5].

In Section IV-A, a pair of communication problems (the endpdransport problem and conditional
history transport problem) are introduced. Each one reslt@ehe original problem of communicating an
unstable process. In Section IV-B, it is shown that the amgtreliable bit-transport problem reduces to
the first problem (endpoint transport) in the pair. Finafgction IV-C finishes the necessity argument by
showing how traditional Shannon-reliable bit-transp@tluces to the second problem and that the two
of them can be put together. This reduces a pair of data-conwaion problems — anytime-reliable
bit transport and Shannon-reliable bit-transport — to thginal problem of communicating an unstable
process to the desired fidelity.

The entire picture is illustrated in Fig. 6. Two data streamed to be embedded — a priority stream
that requires anytime reliability and a remaining streamvibich Shannon-reliability is good enough. The
priority stream is used to generate the endpoints while likehistory part is filled in with the appropriate
conditional distribution. This simulated process is than through the joint source-channel encodér
to generate channel inputs. The channel outputs are givémet@int source-channel decodPr which
produces, after some delay a fidelity d reconstruction of the simulated unstable process. By hapki
at the reconstructions corresponding to the endpoints, i@eable to recover the priority data bits in
an anytime reliable fashion. With these in hand, the remgirstream can also be extracted from the
historical reconstructions.

A. Endpoints and history
This section parallels Section II, except from the otheection. Two analog problems are considered:

18For example a wireless channel subject to flat fading with the random ffadd for all time. This channel has no Shannon capacity,
but if it is good enough often enough it can be used to achieve goodtexpdistortion.
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Fig. 6. Turning a joint-source-channel code into a two-stream code usfarmation embedding. The good joint-source-channel code is
like an attacker that will not impose too much distortion. Our goal is to creaeuace that carries our messages with two priorities. The
priority data gets anytime reliability while the remaining data merely gets a lowapibty of error. The priority data is used to generate
the endpoints of blocks of the unstabie These endpoints are used to index into the random codebook for tteéniegidata. The output

of the random codebook is aki — realization that interpolates between the endpoints. It is combined with tipoietsl to get a simulation
for the unstableX process. The decoder recovers the priority bits from the reconstrectépoints, and uses them to regenerate the original
block endpoints. These are then used to decode the remaining data.

a) The endpoint problem: Transportation of the procegsY;, } where each sample arrives every
time steps and the samples are related to each other thrdyighith 1V, being iid and having the same
distribution asA™' "7 " A=W,

This process must be transported so th§tX,,, —)?,m|’7] < K for some constank’. This is essentially
a decimated version of the original problem.

b) The conditional history problem:Given n, this is the problem of transporting an iid sequence

of n-vectors X, = (Xg1s- s Xy,,_1) conditioned on iidZ; that are known perfectly at the transmitter

and receiver. The joint distribution of —, Z are given by:

n—1
7 = ZA*tWt
t=0
X, = —A'W,,
X, = A'X, - AW,
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where the{1V;} are iid. Expanding the recursion, we ha¥g = — """ S 'W,.,. The vectorsX"
are made available to the transmitter everyime units along with thelr corresponding side- mformatlo
Zi. The goal is to transport these to the receiver so that", ! E[p(XkZ,XkZ)] < d for all k.

It is clear that the{Z;} in this second “condltlonal hlstory” problem are essehtiglist scaled-
down (by a factor of A~("=Y) versions of the{IV,} from the first “endpoints” problem. The for-
ward X, = (Xg1,...,Xkn-1) can also be recovered using a simple translation’?gf by the vector
(Zy, AZy,, ..., A""1Z,) since:

t—1
X, = ZAt—i—lm

n—1 n—1
_ ZAtfiflm - ZAtfz?lWi
n—1-—t
— At 125:14 zvv' 2{: A~ 1L®;+z
= A" 1Z+X;

It is obvious how to put these two problems together to costan unstableX; stream with a sample
becoming available to the transmitter at every time unie #@ndpoints problem provides the skeleton
and the conditional history interpolates in between. Touoedthe endpoints problem to the original
unstable source transport problem, just use randomnekg &tansmitter to sample from the interpolating
distribution and fill in the history.

To reduce the conditional history problem to the originaktaible source transport problem, just use
the iid Z; to simulate the endpoints problem and use the interpolatirtgstory to fill out { X, }. Because
the distortion measure is a difference distortion meastve,perfectly known endpoint process lets us
translate everything so that the the same average disiagiattained.

B. Necessity of Anytime Reliability

We follow the spirit of information embedding[32] excepatiwe have no a-priori covertext. Instead we
use a simulated unstable process that uses common randoamgata bits assumed to be from iid coin
tosse¥’ to generate the endpoint process. This section also plartile necessity story in [5], except that
in this estimation context we have the additional compiizadf having a specified distribution fdil; },
not just a bound on the allowed;|.

The result is proved in stages. First, we assume that thatgderisil’ is a continuous uniform random
variable plus something independent. After that, this aggion is relaxed to a Riemann-integrable density
fw.

1) Uniform driving noise:

Theorem 4.1:Anytime reliability is necessary for the endpoint stream:

If a joint source-channel encoder/decoder pair existsHferandpoint process given by (4) that achieves:

E[| X — Xen|"] < d (24)

for every positionk, then for every raté? < log, A, there exists an anytime code with common randomness
for the channel that achieves anytime reliabilityof= n log, A.

We further make the technical assumption that the origimal jsource-channel code is able to meet (24)
for the process of (4) when driven by an iid noise distribntid” = G + Us whereG, Us are independent
random variables witl/s being a uniform random variable on the inter\PaIg, +2] for somes > 0.

19If the data bits are not fair coin tosses to begin with, XOR them with a one-tirdeupmg common randomness before embedding
them.
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Proof: Pick the initial conditionX, using common randomness so it can be ignored in what follows.
Since only the endpoints are going to matter for this theoneick somen large enough so thatR is
an integet® with some target? < log, A.

At the encoder, the goal is to simulate the endpoint procgssirbulating

n—1

We = A AT,

n—1
= AT Wi+ AT AW,
=0
n—1 _
— An_lU&k + An_l(Gk + Z A_ZW]W')

1=0

= UAnflts,k + An_l(Gk + Z A_iWk,i)

The A" 1(Gr+3 0, LA~ ‘W) term is simulated entirely using common randomness andrisehknown
to both the transmitter and receiver. Thig.15, term is a uniform random variable da- 4" 4" 4]
and is simulated using a combination of common randomnedgata bits. For the sake of exposition,
assume that“— is a power of two. Then we can writ€.-15; = 45 Ao e L(3)S),. where theS,
are iid random variables taking on valugd each with probablllty2

The idea is to embed the iildR message bits into positiorfs= 1,2, ...,nR while letting the rest —
a uniform random varlabléf’ank representing the semi-infinite sequence of W8S r+1, Sknri2s---)

— be chosen using common randomness. The result is:

5 n—1 '
W, = A" oM+ AT hnr kG Y AT W) (25)
=0

where M, is then R bits of the message as represente@tyequally likely points in the intervgl-1, +1]
spaced apart bg!~"# and the rest of the terms are chosen using common randorkness at both
the transmitter and receiver side. .

Since the simulated endpoints process is a linear functicheo{1V,}, it suffices to just consider the
{X},,} process representing the response to the discrete mesgaféesalone. This has a zero initial
condition and evolves like:

X(k+1 = A"X},, + BM, (26)

where = A”‘lg. Expanding this recursion out as a sum:

Xy = (A") %ZA "N (27)
=0

which looks like a generalized binary expansion in bageand therefore implies that th&’ process
takes values on a growing Cantor set (illustrated in Fig. 7nf@r= 1)

The key property is that there are gaps in the Cantor set:

Property 4.1: If the rate R < log, A + 2220=4") and the message-streams and M first differ at
posmon] (message\l; # M), then at timek > 4, the encoded(! and X/ corresponding to thé/F~
and MF~! respectively differ by at least:

2Here, we ignore the irrationak case to avoid notational difficulties. [14] and [5] show how the argunsantextend naturally to the
irrational case.
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Fig. 7. The priority data bits are used to refine a point on a Cantor set. Jtueahtree structure of the Cantor set construction allows us to
encode bits sequentially. The Cantor set also has finite gaps betweelngl gmresponding to bit sequences that first differ in a particular
bit position. These gaps allow us to reliably extract bit values from noisgofations of the Cantor set point regardless of which point it is.

for some constanf’ > 0 that does not depend on the values of the data bjtsy ;.

This is true since:

> AEDB(My — My — | > AT (M, — M;)|)

i=j+1

al

> AFIB(My - M| =247 AT
=0

. A"
> A’n(k‘fj) 217nR _9
, 1
An(k—j)2 2—nR .
B - )

Which is positive as long a5 > - ornR < log, A" — 1. We can thus us& = 23(2 - ) =
%(zn(logz A—R) _ Aﬁil)
In coding theory terms, Property 4.1 can be interpreted amfamte Euclidean free-distance for the

code with the added information that the distance increagpsnentially as4™*~7). An error can only
happen if the received “codeword” is more than half the mimmdistance away.

At the decoder, the common randomness means that the aetinmator X;,, — X}, IS the error in
estimatingX,,,. By applying Markov’s inequality to the error using (24), iemediately get a bound on
the probability of an error on the prefik/; for i < k:

M ‘ S K |
P(M{(kn) # M) < P(|Xp, — Xl > ?An(kfn)

~ K .
= P(|X;m — X/m| > EAN(]C_Z))

~ K .
= P(Rin — X" > ()41
< d(5) Ay

— K9 (nlogy A)n(k—i)

But n(k — i) is the delay that is experienced at the message?esat so the desired anytime reliability
is obtained. To approaclk = log, A as closely as desired, can be increased as needed umitil<

2) General driving noise:Theorem 4.1 can have the technical smoothness conditiolkened to
simply requiring a Riemann-integrable density for the whit driving process.
Theorem 4.2:Anytime reliability is necessary for the endpoint stream:

2Lif bits have to be buffered-up to form messages, then the delay at tHevbltincludes another constant This only increases the
constantK’ further but does not change the exponent with large delays.
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If the W have a Riemann-integrable densjty and a joint source-channel encoder/decoder pair exists
for the endpoint process given by (4) that achieves:

for every positionk, then for every raté? < log, A, there exists an anytime code with common randomness
for the channel that achieves any anytime reliabitityc 7 log, A.

Furthermore, the receiver can actually learn the endpaintgss with zero distortion with a probability
tending tol as the delay increases beyond the delay induced by the codleef@ndpoint process.

Proof: Since the density is Riemann-integrabfg; can be expressed as a non-negative piecewise constant
function f],, that only changes at integer multiples @plus a non-negative functioyff;, representing the
“error” in Riemann-integration from below. By choosidgsmall enough, the total mass jff, can be
made as small as we want since the Riemann sums must converge.

Chooses such that the total mass iffj, is v < A=2™. W can be simulated in the following way:

1) Flip an independent biased coin with probability of heads
2) If heads, independently draw the valuel®f from the density% W
3) If tails, independently draw the value &F from the piecewise constant densigy- f;,. This can
be done by using a discrete random variaB@ig@lus an independent uniform random variablg
When simulatinglW,, in the endpoint process, use common randomness for stepsl P, awhile
following the procedure from the proof of Theorem 4.1 fors® We can interpret a “heads” in step 1 as
an “erasure” with probabilityy since no message can be encoded in that time period. Sincritbeme
of these coin tosses come from common randomness, thequositithese erasures are known to both
the transmitter and the receiver. In this way, it behaves Bkpacket erasure channel with a very low
probability of erasure. This problem is studied in Sectidno¥/[7], and the delay-optimal coding strategy
relative to the erasure channel is to place incoming padketsa FIFO queue awaiting a non-erased
opportunity for transmission. The following coarse lemnuangnarizes the results we need from [7] and
corresponds to equation (31), Corollary 6.1, and Fig. 13 in [7
Lemma 4.1:Low-rate generalized erasure channels: Suppose packets deterministically at a rate
of R per unit time and enter a FIFO queue drained at constantirate
. If each packet has a size distribution that is bounded belgecmetri¢l —) (i.e. P(Size> s) < *
for all non-negative integers), then the random delay experienced by any individual packet in the
queue satisfieg’(Delay > s) < K272¢ for all non-negatives and some constant” that does not
depend ons. Furthermore, ifR < 14# for somer > 0, thena > —log, v — ".
. Ifthe rateR = < and each packet has a size distribution that is bounde®t§ize > n(1—¢)+s) <
~* for all non-negative integers, then the excesd$ delay ¢ experienced by any individual packet
has the same tail distribution as that f&f = i and packets with geometfic— ) size.

In this problem, suppose the message bits are arriving rdetestically at bit-rateR < log, A per unit
time to the transmitter. Pick > 0 small enough so thak’ = (1 + 3r)R < log, A. Group message bits
into packets of sizewR’. These packets arrive deterministically at rchg; < ﬁ packets pem time
units. Thus, Lemma 4.1 applies and the delay(ianits) experienced by a packet in the queue has an
exponential tail with an exponent of least

—logyy —7" = —logy A7 — A72m
= n2nlog, A — A~

A72nnr

pern time steps o7 log, A—~=—— per unit time step. When is large, this exponent is much faster than
the delay exponent aflog, A obtained in the proof of Theorem 4.1. Thus the dominant delgonent
remainsn log, A as desired.

22Beyond the minimum(1 — €) required even when the queue is empty when it arrives.
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Finally, the simulated endpoint process depends only omoamrandomness and the message packets.
Since the common randomness is known perfectly at the recbivassumption and the message packets
are known with a probability that tends towith delay, the endpoint process is also known with zero
distortion with a probability tending td as the delay increases and the receiver. O

The significance of Theorem 4.2 is that exponentially urlst@bocesses fundamentally contain a rate
log, A bits of information per time that is nonclassical in natuféis information requires anytime
reliability for transport by a communication system wheme sense of reliability depends not just on the
process, but also on the stringency of the fidelity criteriéor example, requiring a finite fourth moment
of error n = 4 results in twice the required reliability as compared touiegg only a finite second
momentn = 2. Interestingly, only the finiteness of the error moment erattfor the exponent, not the
actual distortion targeted.

C. Embedding classical bits

Our goal is to show that any channel or communication systeed uo transport unstable Markov
process to average distortiehmust support a classically-reliable data stream of ratB(d) — log, A in
addition to the essential rate log, A stream with anytime reliability in the previous section.

Classical rate-distortion points out that the mutual infation across the communication system must
be at least?(d) on average and so from that perspective, the room is therthéonew stream. However,
as [33] points out, having enough mutual information is nobwgh to guarantee a reliable-transport
capacity since the virtual channel facing the residual dasam in Fig. 6 is not stationary and ergodic.
Consequently, a low-enough expected distortion is not eémoug

To remedy this, an additional condition must be placed onjaireé source/channel code for unstable
processes. We require that the probability of excess aeedigtortion over any long enough segment
tends to zero.

Theorem 4.3:Suppose there exists a family of black-box systems (viewedomt source/channel
codes(&#, D*)) for the unstable process given by (1) so that each membeéreofamily satisfies all of
the assumptions of Theorem 4.2 including (24) and the falmilglexed by window size:) also satisfies

for all 7:
T+n—1

> Xi—Xi">d)=0 (29)

=T

lim sup P(

n—oo s> N

Then by appropriately embedding data into a simulaéd} process, in addition to carrying a rate
R, < log, A priority stream with anytime reliability, the communiocai system can also be made to carry
a second stream of data at any réte< RX(d) — log, A so that the probability of bit error is as low as
desired.

Proof: The overall construction is described in Fig.is chosen small enough andis chosen to be
large enough so that th, stream can be successfully embedded in the endpoint prbgelseorem 4.2,
as well as being large enough so that < Rff'X”(d + €) the conditional rate-distortion function for the
history given the endpoint.

By choosing an appropriate additional delay, Theorem 4s2ras us that the receiver will know all the
past simulated endpoints correctly with an arbitrarily $mpeobability of error. As described in Section IV-
A, this means we now have a family of systems (indexeaddyhat solve the conditional history problem
with the further guarantee that:

T+m—1 n—1

1 1 <
. 1 SN Xy — Xl > d) =0 30
im sup P(m g - | (ki) (krn)| > d) (30)

T k20 k=1 i=1

It tells us that by pickingn large enough, the probability of having excess distortian be made as
small as desired.
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The {Z)} are interpreted as the “coverstory” that must be respectednwembedding data into the
{X, } process. Theorem 3 from [18] (full proofs in [19]) appliesdatells us that a lengthn’ > m
random code withX,” drawn independently of each other, but conditional on tHeZji, can be used to

embed information at any rateR, < anf*'Z(de €) = anf'X”(dJr €) per vector symbol with arbitrarily
low probability of error. O

The “weak law of large numbers™-like condition (29), or sdhieg like it, is required for the theorem
to hold since there are joint source-channel codes for wimatual information can not be turned into the
reliable transport of bits at arbitrarily low probabilisef error. Consider the following example. Suppose
we had two different joint source-channel codes availabte2 of which had a target distortion df and
the other of which had a target distortion @f = 10d;. The actual joint code, which is presumed to have
access to common randomness, could decide with proba%’gyto use the second code rather than the
first. In such a case, the ensemble average mutual informéiclose toR(d;) — log, A bits, but with
non-vanishing probabilitym% we might not be able sustain such a rate over the virtual aflann

We conjecture that for DMCs, if any joint source-channel cexlists that hits the target distortion, then
one should also exist that meets (29) and it should be pessitdimultaneously transport two streams of

data reliably with sufficient anytime reliability on the firstream and enough residual rate on the second.

V. UNSTABLE GAUSSIAN MARKOV PROCESSES WITH SQUAREERROR DISTORTION

The main challenge in the Gaussian case is that the disttel@dmes not have bounded support. Before
extending the theorems to cover the Gaussian case, it isegtileg to plot the rate-distortion functions
themselves.

A. Comparison to the sequential distortion-rate function

In the case of Gauss-Markov processes with squared-erstordon, Hashimoto and Arimoto in [10]
give us an explicit way of calculatingi(d). Tatikonda in [22], [34] gives an explicit way of doing a
similar calculation when we force the reconstructi§pto be causal and depend only &) observations
for j <t.

Assuming unit variance for the driving noid&, Hashimoto’'s formula is parametric in terms of the
water-filling parameter. and for the Gauss-Markov case considered here simplifies to:

T[T 1
e I [ ———— .
1 s 1 1
R(/{) 0gy + o /ﬂ- max [O, 5 0go Ii(l — QACOS(UJ) + AQ) w ( )

The corresponding stable case of the backwards processweatgafilling solution that is identical, except
without thelog, A term in the R(x). In the Gaussian case, (18) holds with equality.
Under the same assumptions, Tatikonda’s formula for the @agh causal reconstructions becomes:

1
)

Fig. 8 shows the distortion-rate frontier for the forwardegess and backwards process in the Gaussian
case. It is easy to see that the forwards and backwards greceges are translations of each other. In
addition, the sequential rate-distortion curve for thenard process is qualitatively distinct in behavior.
Dsed ) goes to infinity asi | log, A while D(R) stays finite. There still remains a bit of a mystery
regarding the true nature of this gap. The plot suggeststttaites some time for the randomness entering
the unstable process through to sort itself into the two categories of fundamental acclathon and
transient history. In particular, it is open whether a saninformation-embedding theorem can be given
that gives an operational meaning to the gap betwegp(d) and R(d).

1
Rsedd) = 5 logy(A? + (33)
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Fig. 8. The distortion-rate curves for an unstable Gauss-MarkovepmwithA = 2 and its stable backwards-version. The stable and
unstableD(R) curves are related by a simple translation lbhit per symbol.

B. Source-coding for Gaussian Processes

The counterpart to Theorem 2.1 is:

Corollary 5.1: Given an unstable4 > 1) scalar Markov process as given by (1) driven by independent
Gaussian nois¢W;},~o with zero mean and variane€, it is possible to encode the process to average
fidelity arbitrarily close tod using two fixed-rate bitstreams. By choosing a sufficiergiggé end-to-end
delay, the first stream can be made to have fatarbitrarily close tolog, A while the second can have
rate R, arbitrarily close toRX (d) — log, A.

Proof: The strategy is essentially as before. One simplificatiaimas we can make full use of the results
of Section II-F since in the Gaussian case, the direct coatjoumis in the previous section reveal that
RX (d) = RX(d) — log, A. There is no rate loss in encoding the historical segments @tock-by-
block basis rather than using superblocks and conditioneb@ngs. The main issue is dealing with the
unbounded support when encoding the checkpoints.

(a) Look at time in blocks of size and encode the values of checkpoiig, recursively to very high
precision using a prefix-free variable-length code witteratlog, A+ ¢;) + Lj, bits per value, where
the L, are iid random variables with nice properties.

(b) Smooth out the variable-length code by running it thtowgFIFO queue drained at constant rate
R, =logy, A + €1 + ¢,. Make sure that the delay exponent in the queue is high enough

(c) Use the exact value for the ending checkpoii. 1y, to transform the segment immediately before
it so that it looks exactly like a stable backwards Gaussiacgss of lengthn with initial condition
0. Encode each block of the backwards history process to gedrdelity d using a fixed-rate rate-
distortion code for the backwards process that operateatat¥’ (d) + e.

(d) At the decoder, waip time units and attempt to decode the checkpoints to highitiyd#i the FIFO
gueue is running too far behind, then extrapolate a recocistn based on the last checkpoint we
were able to fully decode.

(e) Decode the history process to average-fidelitand combine it with the checkpoints to get the
reconstruction.
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Offset | Codeword
0 100
+1 1110
-1 1100
+2 11110
-2 11010
+3 111110
-3 110110
+4 1111110
-4 1101110

Fig. 9. Unary encoding of integer offsets to deal with the unboundegatipThe first bit denotes start while the nest two bits reflect
the sign. The length of the rest reflects the magnitude of the offset withoateemination. The encoding is prefix-free and hence uniquely
decodable. The length of the encoding of intedeis bounded by3 + | S|

a) Encoding the checkpointg4) remains valid, but the termi, = A" 13" A" Wy, 1 IS not
bounded since th&/; are iid Gaussians. Th@/, are instead Gaussian with variance:

n—1
52 = A2(n71) ZA72Z'O_2
1=0

< A2(n—1)0_2 Z A%
=0
2

o
A2 —1

Its standard deviatiow is therefore A" T Pick I = 23" and essentially pretend that this random

variable T, has bounded support & during the encoding process. By comparing (5) to the abdee, t
effective Q2 is simply lo24=L = 235, /A=l Define() = a: /41 so that the effectivé) = 237Q).

_ A2n

VAT AvT - |
Encode the checkpoint increments recursively as beforg, add an additional variable length code to

encode the value qf% + 3| while treating the remainder using the fixed-rate code asrbeflhe variable
length code is a unary encoding that counts how mlangway from the center th&/, actually is. (Fig. 9
illustrates the unary code.) Lét; be the length of thé&-th unary codeword, then this is bounded above
by:

P(Ly > 3+j) = P(W|>jl5)
Let N be a standard Gaussian random variable and rewrite this as:
P(Ly > 3+ j) = P(IN] > j25™) (34)

and sol; is very likely indeed to be small and certainly has a finite estption.
The fixed-rate part of the checkpoint encoding has a rateishidte same as that given by (6), except
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that 2 is now mildly a function ofn. Plugging in23 " for Q in (6) gives:

logy (1 4+ E5) +1logy (2 + ) log, [
R,y > max|log, A+ : S : = ) 2[5
n n
€1, ~ €1, ~
log, (1 + 2225 +1og, (2 + 2279 100, [L
— max [ log, A + 2 A(A-1) 2 A ’ g2(AW
n n
_fp Q 1—p Q
2 logy(2737 + zriy) +1082(277 3" + X)) log, [
e 10g2A+§€1+ 2 A(A-T) 2 A) [ A ]
n n

Essentially, the required rat®; ; for the fixed-rate part has only increased by a small consgant
Holding A fixed and assuming is large enough, we can see that

Rl,f = IOgQ A —+ € (35)

is sufficient.

b) Smoothing out the flowThe code so far is variable-rate and to turn this into a fixae-R, =
log, A + €, + ¢, bitstream, it is smoothed by going through a FIFO queuet,Ferscode the offset using
the variable-length code and then recursively encode ttrement as was done in the finite support case.
All such codes will begin with @ and thus we can use zeros to pad the end of a codeword whenever
the FIFO is empty. After all the average input rate to the FiB@maller than the output rate and hence
it will be empty infinitely often.

c) Getting history and encoding itSection Il-F explains why such a transformation is possiiyie
subtracting off a scaled version of the endpoint. The rasudt stable Gaussian process and so [9] reveals
that it can be encoded arbitrarily close to its rate-digarbound X" (d) if n is large enough. For the
unstable Gaussian Markov proce#&. (d) = RX (d) — log, A as we saw earlier.

d) Decoding the checkpointsAt the decoder, we can wait long enough so that the checkpeent
are interested in is very likely to have made it through thE®-lgueue by now. The ideas here are similar
to [7], [35] in that we are using a FIFO queue to smooth out #Hte wariation and are interested in its
large deviations performance. Therenis, slack that has to accommodatg bits. Because: can be made
large, the error exponent with delay here is as large as we ivam be.

More precisely, a packet of siz€¢; +log, A)+ L;, bits arrives every: time units where thd,; are iid.
This is drained at raté?; = ¢, + ¢; + log, A. An alternative view is therefore that a point packet asgive

. . . . « B . . 61+10g2A Lk
deterministically every: time units and it has a random service tiffjegiven byn ctertlon, AT e toag A”

Define(1 —¢,) = =252 Then the random service tin#. = (1 —¢,)n+ —_%:—— when measured
in time units or7? = (1 — e;)an + L when measured in bit-units.

This can be analyzed using large-deviations techniquey applying standard results in queuing. The
important thing is a bound on the length. which is provided by (34). Since the tail probability of a

standard normal dies at least as fast as some exporénitias clear that
P(Ly23+j) = P(N|>j23")
< exp(—(/237)j)

Since an exponential eventually dominates all constanéskmow that for anys > 0, there exists a
sufficiently largen so that: ’
P(Ly—2>7j) <279 (36)

ZThis is done to illustrate that while this proof is written for the Gaussian casearthements here readily generalize to any driving
distribution W that has at least an exponential tail probability. To accommoHdateith power-law tail distributions would require the use
of logarithmic encodings as described in [36], [37]. This does nokvior our case because the unary nature to the encoding is important
when we consider transporting such bitstreams across a noisy channel.
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Thus, the delay (in bits) experienced by a block in the quellieb@have no worse than that of point
messages arriving everyli; bits where each requires at leask, (1 — ¢;) +2 = nR;(1 — ) bits plus
an iid geometri¢l — p) number of bits withp = 275,

Once again, Lemma 4.1 applies to this queuing problem anddbend part of that lemma tells us that
the delay performance is exactly the same as that of a systtmpuint messages arriving every, bits
requiring only an iid geometric number of bits. Singggn is small, the first part of Lemma 4.1 applies. If

3

1, then the bit-delay exponéfto, is at least
ap > —log,27F — 270"

EN
q

— [—9BCE-D

we pickr =

which is at least3 — 1 whenne, > 3. Converting between bit-delay and time-delay is just a faofo
log, A and so the time-delay exponent is at Ieg)%g?—A. But 3 can be made as large as we want by
choosingn large enough.

e) Getting the final reconstructionThe history process can be added to the recovered checkpoint
This differs from the original process by only the error irethistory plus the impact of the error in the
checkpoint. The checkpoint reconstruction-error’s intpdies exponentially since the history process
is stable. So the target distortion is achieved if the cheukphas completely arrived by time the
reconstruction is attempted. By choosing a large enought@eehd delayp, the probability of this can
be made as high as we like.

However, the goal of our source-code is not just to meet tigetalistortion levell with high probability,
it is also to hit the target in expectation. Thus, we must labtire impact of not having the checkpoint
available in time. When this happens, the un-interpretaidéotty information is ignored and the most
recent checkpoint is simply extrapolated forward to therenitrtime. The expected squared errors grow
as A?Y where is the delay in time-units. The arguments here exactly fEriose of Theorem 3.6,
where the FIFO queue is acting like an anytime code. Sinceeley-exponent of the queue is as large as
we want, it can be made larger thaiog, A. Thus, the expected distortion coming from such “overflow”
situations is as small as desired. This completes the proGooollary 5.1. O

C. Channel sufficiency for transporting Gaussian Processes

With a noisy channel, the story in the Gaussian case is eagninchanged since the historical
information is as classical as ever. The only issue is withdheckpoint stream. An error in a hit steps
ago can do more than propagate through the usual pathwaguld @lso damage the bits corresponding
to the variable-length offset. But because of the unary éimgg® and the23™ expansion in the effective
(2, an uncorrected bit-stream err@r time-steps ago can only impact the current reconstructiprar
O(@Z)2%"Aw) change in its value. The key is to understand that the delag much larger than the
block-lengthn and so the polynomial term in front is insignificant relatieethe exponential in) and
so the story is unchanged. Thus we have:

Corollary 5.2: Anytime reliability plus classical reliability is sufficig to transport Gaussian processes:
Suppose that a communication system provides us with thigyaoi carry two data streams. One at rate
Ry > log, A with uniform anytime reliabilityar > 21log, A, and another at rat&, > RX (d) — log, A
with classical Shannon reliability whergZ (d) is the rate-distortion function for an unstable Gaussian
Markov process with unstable gajd| > 1. Then it is possible to successfully transport the twoestre
code of Corollary 5.1 using this communication system by ipigksufficient end-to-end delay. The
mean squared error of the resulting system will be as closteds desired.

%The bit-delay exponent, bounds the probability that immediately before the block in question enteeedjibue, that there were
already @ bits awaiting transmission. Precisel(Q > ¢) < K2~ where K is some constant that does not dependgoifime-delay
and hit-delay are in one-to-one correspondence since the queueQsafidFis drained at a constant rate.

25 logarithmic sized encoding would be more sensitive to errors.
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D. Necessity for Gaussian Processes

The Gaussian disturband& already has a Riemann-integrable density and so Theorenalde&dy
applies.

VI. EXTENSIONS TO THE VECTOR CASE

With the scalar case explored, it is natural to consider Wizadpens for general finite-dimensiotfal
linear models wherel is a matrix andX is a vector. Though the details are left to the reader, they $$0
sketched here. No fundamentally new phenomena arise indti®vcase, except that different anytime
reliabilities can be required on different streams arisiram the same source as is seen in the control
context in [5].

The source-coding results here naturally extend to thg foitilserved vector case with generic driving
noise distributions. Instead of two data streams, therenés special stream for each unstable eigenvalue
of A and a singe final stream capturing the residual informatm@oss all dimensions. All the sufficiency
results also generalize in a straightforward manner — eétieaunstable streams requires a corresponding
anytime reliability depending on the distortion functisnj and the magnitude of the eigenvalue. The
multiple priority-stream necessity results also followngedcally?’” This is a straightforward application
of a system diagonalizatihargument followed by an eigenvalue by eigenvalue analyi$is. necessity
result for the residual rate follows the same proof as hesetan inverse-conditional rate-distortion with
the endpoints in all dimensions used as side-information. B

The case of partially observed vector Markov processes avtiex observation§’, X are linear in the
system state requires one more trick. We need to invoke therahbility’® of the system state through the
observations. Instead of a single checkpoint pair, use anoppate numbéf of consecutive values for
the observation and encode them together to high fidélifpr the sufficiency story. This can be done by
transforming coordinates linearly so that the system igalal, though driven by correlated noise, from
checkpoint-block to the next checkpoint-block. Each upistaigenvalue will contribute its owtog, A;
term to the first stream rate and will require the appropraatgtime reliability. The overhead continues to
be sublinear im and the residual information continues to be classical tuneaby the same arguments
given here. The partially observed necessity story is esdlgnunchanged on the information embedding
side, except that every long block should be followed by ailhick of the appropriate length during
which no data is embedded and only common-randomness istaiggherate the driving noise. This will
allow the decoder to easily use the observability to getynaicess to the unstable state itself.

In [6], these techniques are applied in the context of cémtther than estimation. The interested
reader is referred there for the details. Some simplificetito the general story might be possible in the
case of SISO autoregressive processes, but we have notrexphem in detail.

VII. CONCLUSIONS

We have characterized the nature of information in an utestistarkov process. On the source coding
side, this was done by giving an appropriate fixed-rate gpdiheorem 2.1. This theorem’s code con-
struction naturally produces two streams — one that capttire essential unstable nature of the process

2|n the Gaussian case, these will correspond to cases with rational {speetral densities.

2The required condition is that the the driving noise distributibhshould not have support isolated to an invariant subspacé. of
that were to happen, there would be modes of the process that aneexeited.

2The case of non-diagonal Jordan blocks is only a challenge for thessiég part regarding anytime reliability. It is covered in [6] in
the control context. The same argument holds here with a Riemanndhtegoint-density assumption on the driving noise.

2The linear observation should not be restricted to a single invariant aobsf it were, we could drop the other subspaces from the
model as irrelevant to the observed process under consideration.

3*The appropriate number is twice the number of observations requiredeball of the unstable subspaces show up in the observation.
This number is bounded above by twice the dimensionality of the vector giate.sThe factor of two is to allow each block to have its
own beginning and end.

Again, the dimensionality of the underlying state space suffices.
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and requires a rate of at leakig, A, and another that captures the essentially classical enatuthe
information left over. The quantitative distortion is dorated by the encoding of the second stream,
while the first stream serves to ensure its finiteness as times gn. The essentially stable nature of the
second stream’s information was then shown by Theorem 2i2hwielates the forward)(R) curve to
the “backwards” one corresponding to a stable process.

At the intersection of source and channel coding, we reviet® notion of anytime reliability and
Theorem 3.5 showed that it is nonzero for DMCs at rates belgwaaty. Theorems 3.6 and 4.2 then
showed that the first stream requires a high-enough anyttreility for transport over a communication
system rather than merely enough rate. In contrast, TheoBihand 4.3 showed that the second stream
requires only sufficient rate. Together, all these resudtaldish the relevant separation principle for such
unstable processes.

This work brings the exponentially unstable processes yiimto the fold of information theory. More
fundamentally, it shows that reliability functions are @omatter purely internal to channel coding. In the
case of unstable processes, the demand for appropriadbilig)i arises at the source-channel interface.
Thus unstable processes have the potential to be usefullsnetide taking an information-theoretic look
at QoS issues in communication systems. The success ofedactions and equivalences” paradigm of
[5], [19] here suggests that this approach might also beulgefunderstanding other situations in which
classical approaches to separation theorems break down.
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