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1 N o t a t i o n  and Bas ic  De f in i t i ons  

This section assumes a knowledge of topological vector spaces and only serves to 
recall some concepts in functional analysis which are relevant for optimization 
theory. The extended real line [-c~, +oc] is denoted by R. Operations in R have 
the usual meaning with the additional convention that  

+ - - 

Let X be a set, f" X ~ R a map from X into [-c~, +oc]. The epigraph of f is 

epif  ~ {(x, r )  e X • R ' r  >_ f (x)}  . 

The effective domain of f is the set 

d o m f  ~- {x e X" f (x)  < +c~} . 

The function f is proper iff f ~ +co and f (x)  > - c ~  for every x C X. The 
indicator function of a set A C X is the map hA" X ~ R defined by 

+co if x ~ A  
hA(X)-- 0 if x ~ A  

Let X be a vector space. A map f" X ~ R is convex iff epif  is a convex 
subset of X x R, or equivalently iff 

f (exl  + (1 - e)x2) <_ ef(x  + 1) + (1 - e)f(x2) 

for every Xl,X2 C X and e C [0, 1]. The convex hull of f is the largest convex 
function which is everywhere less than or equal to f;  it is given by 

cof(x)  - sup{f ' (x)"  f '  is convex X ~ R ,  f '  < f}  

= sup{f ' (x)"  f '  is linear X ~ R ,  f '  < f}  

Equivalently, the epigraph of cof  is given by 

epi(cof) = {(x, r) e X • R" (x, s) e coepif for every s > r} , 

where coepif denotes the convex hull of epif.  
Let X be a topological space. A map f" X ~ R is lower semicontinuous} (t~sc) 

iff epif  is a closed subset of X • R, or equivalently iff {x C X" f (x)  <_ r} is a 
closed subset of X for every r C R. The map f" X ~ R is t~sc at xo iff given any 
r e ( - co ,  f(xo)) there is a neighborhood N of xo such that  r < f (x)  for every 
x C N. the lower semicontinuous hull of f is the largest lower semicontinuous 
functional on X which everywhere minorizes f ,  i.e. 

gscf(x) -- sup{f ' (x)"  f '  is gscX ~ R ,  f '  < f}  - l iminf f ' (x)  
X t  - .~ X 

Equivalently, epi(gscf) - cl(epif) in X • R. 
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A duality (X, X*} is a pair of vector spaces X, X* with a bilinear form ( . ,  �9 } 
on X • X* that  is separating, i.e. (x,y} = 0Vy c X* = >  x = 0 and (x,y) = 
0Vx c X = >  x = 0. Every duality is equivalent to a Hausdorff locally convex 
space X paired with its topological dual space X* under the natural  bilinear 

form (x, y} n - y(x) for x e X, y e X*. We shall also write xy (x, y} = y(x) 
when no confusion arises. 

Let X be a (real) Hausdorff locally convex space (HLCS), which we shall 
always assume to be real. X* denotes the topological dual space of X.  The polar 
of a set A c X and the (pre-)polar of a set B C X* are defined by 1 

A ~ -~ {y c X*" sup(x ,y)  < 1} 
xEA 

~ ~ {x e X*" sup(x,y} <_ 1} . 
yCB 

The conjugate of a functional f" X --, R and the (pre-)conjugate of a functional 
g" X* --. R are defined by 

f*" X* -~ R" y ~ X* sup[@,y} - f(x)] 
xEX 

g * - x  R . x  x  up[(x, y ) -  g(y)] . 
yEY 

If X is a HLCS there are several topologies on X which are important .  By 
7 we denote the original topology on X; by the definition of equicontinuity 
~- is precisely tha t  topology which has a basis of 0-neighborhoods consisting 
of polars of equicontinuous subsets of X*. The weak topology w(X, X*) is the 
weakest topology compatible with the duality (X,X*), i.e. it is the weakest 
topology on X for which the linear functionals x H (x,y),y c X* are con- 
tinuous. Equivalently, w(X,X*) is the locally convex topology on X generated 
by the seminorms x H [(x, y)[ for y C X*; it has a basis of 0-neighborhoods 
given by polars of finite subsets of X*. The Mackey topology m(X,X*) on X 
is the strongest topology on X compatible with the duality (X,X*)2;  it has 
a 0-neighborhood basis consisting of polars of all w(X*,X)-compact convex 3 
subsets of X*. The strong topology s(X,X*) is the strongest locally convex 
topology on X that  still has a basis consisting of w(X,X*)-closed sets; it has 
as 0-neighborhood basis all w(X, X*)-closed convex absorbing subsets of X,  or 
equivalently all polars of w(X*, X)-bounded subsets of X*. We shall often write 
w, m, s for w(X, X*), re(X, X*), s(X, X*), and also w* for w(X*, X).  The strong 
topology need not be compatible with the duality (X, X*}. In general we have 

1 We use the convention sup0 = -c~, inf @ = +cx~. Hence 0 ~ = X*. 
e A topology 70 on the vector space Xis compatible with the duality (X,X*) iff 

(X, To)* = X*, i.e. the space of all continuous linear functionals on X with the 
To-topology may be identified with X*. 

3 The word "convex" here may not be omitted unless X is a barrelled space. In general 
there may be w(X*, X)-compact subsets of X* whose closed convex hulls are not 
compact for the w(X*, X) topology. 
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w(X, X*) c r C re(X, X*) C s(X, X*). For a convex set A, however, it follows 
from the Hahn-Banach  separation theorem that  A is closed iff A is w(X, X*)- 
closed iff A is re(X, X*)-closed. More generally 

w - clA - clA - m - clA D s - clA 
m 

when A is convex. Similarly, if a convex function f" X ~ R is m(X,X*)-gsc 
then it is tsc and even w(X, X*)-lsc. It is also true that  the bounded sets are 
the same for every compatible topology on X. 

Let X be a HLCS and f" X ~ R. The conjugate function f*" X* ~ R is 
convex and w(X*,  X)-t~sc since it is the supremum of the w(X*, X)-continuous 
affine functions y H (x, y ) -  f (x )  over all x e domf .  Similarly, for *g" X ~ R is 
convex and lsc. The conjugate functions f*, *g never take on - o c  values, unless 
they are identically - c ~  or equivalently f -  +oc or g -  +e~. Finally, from the 
Hahn-Banach  separation theorem it follows that  

*(f*) - gsccof (1) 

whenever f has an affine minorant,  or equivalently whenever f* - +ec; otherwise 
/?sccof takes on - o c  values and f* - +oc,* (f*) - - o c .  

The following lemma is very useful. 

L e m m a  1. Let X be a HLCS, and let f" X ~ R. Then co(domf)  - dom(cof) .  
If  f* ~ +co, then clcodomf - cldom*(f*). 

A barrelled space is a HLCS X for which every closed convex absorbing set is a 0- 
neighborhood; equivalently, the w(X*,  X)-bounded sets in X* are conditionally 
w(X*, X)-compact .  It is then clear that  the m(X,  X*) topology is the original 
topology, and the equicontinuous sets in X* are the conditionally w*-compact 
sets. Every Banach space or Frechet space is barrelled, by the Banach-Steinhaus 
theorem. 

We use the following notation. If A D X where X is HLCS, then intA, 
corA, riA, rcorA, clA, spanA, aft A, coA denote the interior of A, the algebraic 
interior of A or core, the relative interior of A, the relative core or algebraic 
interior of A, the closure of A, the span of A, the ajfine hull of A, and the 
convex hull of A. By relative interior of A we mean the interior of A in the 
relative topology of X on aft A; tha t  is x C riA iff there is a 0-neighborhood N 
such that  (x + N) N aft A c A. Similarly, x E rcorA iff x c A and A - x absorbs 
aft A -  x, or equivalently iff x + [0, oc] �9 A D A and x E A. By affine hull of 
A we mean the smallest (not necessarily closed) affine subspace containing A; 
aft A - A + span(A - A) - xo + span(A - x0) where xo is any element of A. 

Let A be a subset of the HLCS X and B a subset of X*. We have already 
defined A ~ fiB. In addition, we make the following useful definitions: 

A + ~ { y C X * "  ( x , y } > 0 V x c A }  

A -  -~ - A  + = {y c X*" (x,y) < 0Vx e A} 

A •  + N A - - { y E X * "  ( x , y } - 0 V x E A }  . 
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Similarly, for B C X* the sets + B , - B , •  are defined in X in the same way. Us- 
ing the Hahn-Banach separation theorem it can be shown that for A c X,~ ~ 
is the smallest closed convex set containing A U {0}; +(A +) = -  (A-)  is the small- 
est closed convex cone containing A; and • • is the smallest closed subspace 
containing A. Thus, if A is nonempty 4 then 

~176 = clco(A t2 {0}) 

+(A +) = eli0, co) �9 coA 

• • = clspanA 

A + •  A) • = claffA . 

2 Some Results  from Convex Analysis  

A detailed study of convex functions, their relative continuity properties, their 
sub-gradients and the relation between relative interiors of convex sets and local 
equicontinuity of polar sets is presented in the doctoral dissertation of S.K. 
Young [1977], written under the direction of the present author. In this section, 
we cite the relevant theorems needed in the sequel. The proofs may be found in 
the above-mentioned reference. 

T h e o r e m  1. Let X be a HLCS, f" X ---, IR convex and M an affine subset of 
X with the induced topology, M D domf.  

Let f ( . )  be bounded above on a subset C of X where riG ~ 0 and affC is 
closed with finite co-dimension in M.  Then, rcorcodomf ~ 0, cof restricted to 
rcorcodomf is continuous and aft domf is closed with finite co-dimension in M.  
Moreover, f* - + ~  of 3xo e X ,  ro > - f ( x o ) ,  such that {y e X*II*(y  ) - 
(x0,y) _< r0} is w ( X * , X ) / M  • locally bounded. 

P r o p o s i t i o n  1. Let f" X ---, R convex be a function on the HLCS X .  The 
following are equivalent: 

(1) y e Of (xo) 
(2) f (x) > f (xo) + (x - xo, y) Vx e X 
(3) xo solves infiX(x) - xy], i.e. f (xo)  - (xo, y) - i n f [ f ( x ) -  (x, y)] 

X 

(~) f*(y)  - (xo, y) - f (xo)  
(5)xo e Of*(y) and f ( x o ) - *  (/*)(x0). 

If  f ( .  ) is convex and f (xo)  e R, then each of the above is equivalent to 

(6) f ' (xo;  x) _ (x, y) Vx e X. 

T h e o r e m  2. Let f" X ~ R convex be a function on the HLCS X ,  with f (xo)  
finite. Then the following are equivalent: 

(1) Of(xo) ~ 
(2) f ' (xo;  ") is bounded below on a O-neighborhood in X ,  i.e. there is a O- 

neighborhood N such that inf f ' (xo ; x) > - ~  
x E N  

4 I f  A - 0, then ~176 =+ (A +) - •  (A • - {0}. 
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(3) 3 0 -  nbhd N, 5 > 0 st inf f ( xo  + tx) - f (xo)  > - o o  
x E N  t 

O < t < 5  

(~{) lim inf f '  (x0 ; x) > --CxD 
x---~0 

(5) liminf f ( xo  + tx) - f (xo)  > - o o  
x - + O +  t 
t --~ O 

(6) 3 y E X* st f (xo + x) - f (xo) >_ (xy) Vx E X .  

I f  X is a normed space, then each of the above is equivalent to: 

( 7 ) 3 M  > 0 st f (xo + x ) -  f (xo) >_ -Mlx l  Vx E X 
( 8 ) 3 M  > 0 ,e > 0 st whenever Ixl _< e ,  f ( xo  + x) - f ( xo)  > - M i x  I 

(9) lim inf f (xo + x) - f (xo) > - o o  
Ixl- 0 Ixl 

Def in i t i on  1. The recession function f ~  of a function f"  X ~ IR is defined to be 

sup (x ,y ) .  
yEdomf* 

m 

P r o p o s i t i o n  2. Let f"  X ~ IR be a convex t~sc proper function on the HLCS  
X .  Then foo(x) is given by each of the following: 

(1) min{r E R: (x, r) E (ep i f )~  } 
(2) sup sup[f(a + tx) - f (a)]/t 

aEdomf t>0 

(3)suPt>o[f(a + tx) - f (a ) ] / t  for any fixed a E domf  
(~{) sup [f (a + x) - f(a)] 

aEdomf 
(5) sup (x,y). 

yEdomf* 

In (1), the m in imum is always attained (whenever it is not -t-oo), since (ep i f )~  
is a closed set. 

D 

T h e o r e m  3. Let X be HLCS, f"  X ~ R convex. Assume riepif r 0. Then f ( . ) 
is continuous relative to aft domf  on rcordomf,  and the following are equivalent 
for a point xo E X"  

(1) f (. ) is relatively continuous at x0 E domf  
(2) x0 E rcordomf 
(3) domf  - xo absorbs xo - domf  
(~)Vx E domf,  3e > 0 st (1 + e)x0 - ~ x  E domf  
(5) [ d o m f -  x0]- C [ d o m / -  x0] • - {y E X * ' y  - constant on dom/  
(6) [domf - x0]- is a subspace 
(7) {y E X*" ( f * ) ~ ( y )  - xoy <_ O} is a subspace 
(8)xo E dom/  and {y E X*" f*(y)  - xoy < r } ~  for some r >_ - f ( x o )  
(9)Of(xo)  ~ 0 and (Of (xo ) )~  is a subspace 
(10) Of(xo) is nonempty and w ( X * , a f f  d o m f  - xo)-compact. 
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3 Duality Approach to Optimization 

3.1 I n t r o d u c t i o n  

The idea of duality theory for solving optimization problems is to transform the 
original problem into a "dual" problem which is easier to solve and which has the 
same value as the original problem. Constructing the dual solution corresponds 
to solving a "maximum principle" for the problem. This dual approach is espe- 
cially useful for solving problems with difficult implicit constraints and costs (e.g. 
state constraints in optimal control problems), for which the constraints on the 
dual problem are much simpler (only explicit "control" constraints). Moreover 
the dual solutions have a valuable sensitivity interpretation: the dual solution 
set is precisely the subgradient of the change in minimum cost as a function of 
perturbations in the "implicit" constraints and costs. 

Previous results for establishing the validity of the duality formalism, at least 
in the infinite-dimensional case, generally require the existence of a feasible in- 
terior point ("Kuhn-Tucker" point) for the implicit constraint set. This require- 
ment is restrictive and difficult to verify. Rockafellar [5, Theorem 11] has relaxed 
this to require only continuity of the optimal value function. In this chapter we 
investigate the duality approach in detail and develop weaker conditions which 
require that  the optimal value of the minimization problem varies continuously 
with respect to perturbations in the implicit constraints only along feasible direc- 
tions (that is, we require relative continuity of the optimal value function); this 
is sufficient to imply existence for the dual problem and no duality gap. More- 
over we pose the conditions in terms of certain local compactness requirements 
on the dual feasibility set, based on results characterizing the duality between 
relative continuity points and local compactness. 

To indicate the scope of our results let us consider the Lagrangian formulation 
of nonlinear programming problems with generalized constraints. Let U, X be 
normed spaces and consider the problem 

Po = inf { f  (u): u e C,g(u) <_ 0} 

where C is a convex subset of U, f :  C ~ R is convex, and g: C ~ X is convex 
in the sense that  

g(tul + (1 - t)u2) _~ tg(ul) + (1 - t)g(u2) , Ul,U2 e C ,  t e [0, 1] . 

We are assuming that  X has been given the partial ordering induced by a 
nonempty closed convex cone Q of "positive vectors"; we write X l > x2 to 
mean Xl - x2 E Q. The dual problem corresponding to Po is well-known to be 

D o - s u p  inf[f(u)+(g(u)y)] ; 
yCQ+ uCC 

this follows from (6) below by taking L - 0, x0 = 0, and 

F(u ,x )  - ~ f (u) if u e C, g(u) <_ x 
+ ~  otherwise. ( 

(2) 
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We also remark that  it is possible to write 

P0 - inf sup(u, y) Do - sup inf(u, y) 
u y y u 

where we have defined the Lagrangian function by 

+ec i f u c C  
g(u, y) - f ( u ) -  (g(u), y} if u c C, y c Q -  

- e c  if u c C ,  y c Q -  . 

In analyzing the problem P0, we imbed it in the family of perturbed problems 

P(x) = inf { f (u): u C C,g(u) <_ x} . 

It then follows that  the dual problem is precisely the second conjugate of P0 
evaluated at 0: Do =* (P*)(0). Moreover if there is no duality gap (P0 = Do) 
then the dual solution set is the subgradient OP(O) of P ( .  ) at 0. The following 
theorem summarizes the duality results for this problem. 

T h e o r e m  4. Assume Po is finite. The following are equivalent: 

(1) Po = Do and Do has solutions 
(2) OP(O) r 0 
(3) 3[1 c Q+ st Po = i n f ~ e c [ f ( u ) +  (g(u), ~)/] 
(~) 3e > 0, M > 0 st f (u) >_ Po - Mlxl whenever u e C, Ixl < ~, g(u) < x. 

If  (1) is true then ~t is a solution for Po iff ~t c C, g(u) < O, and there is a 
?) c Q+ satisfying 

f (u) + (g(u), ~)) >_/(~)Vu e C ,  

in which case complementary slackness holds, i.e. (g(g), ~)} = 0, and ~ solves Do. 

Proof. This follows directly from Theorem 6 with F defined by (2). I 

We remark here that  criterion (4) is necessary and sufficient for the duality result 
(1) to hold, and it is crucial in determining how strong a norm to use on the 
perturbation space X (equivalently, how large a dual space X* is required in 
formulating a well-posed dual problem). 

The most familiar assumption which is made to insure that  the duality results 
of Theorem 4 hold is the existence of a Kuhn-Tucker point: 

V - ~ c C s t  - g ( g )  E E Q  

This is a very strong requirement, and again is often critical in determining 
what topology to use on the perturbation space X. More generally, we need only 
require that  P ( .  ) is continuous as 0. Rockafellar has presented the following 
result [5]: if U is the normed dual of a Banach space V, if X is a Banach space, 
if g is lower semicontinuous in the sense that  

epig ~- { (u,x)" g(u) < x} 
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is closed in U • X (e.g. if g is continuous), then the duality results of Theorem 4 
hold whenever 

0 c core[g(C)+ Q].  

In fact, it then follows that P ( .  ) is continuous at 0. The following theorem 
relaxes this result to relative continuity and also provides a dual characterization 
in terms of local compactness requirements which are generally easier to verify. 

T h e o r e m  5. Assume Po is finite. The following are equivalent: 

(1) aff[g(C)+ Q] is closed; and 0 E rcor[g(C)+ Q], or equivalently Vu c C, Vx < 
g(u)3~ > 0 and Ul C C st g(ul) + ex < 0. 

(2)Q + Ng(C) + is a subspace M; and there is an ~ > O, and xl c X ,  and rl E R 
such that {y e Q+" inflvl<~supuec[f(u ) + g ( u ) y -  uv] > rl} is nonempty 
and w(X*, X)/M-locally bounded. 

If either of the above holds, then P( .  ) is relatively continuous at 0 and hence 
Theorem 4 holds. Moreover the dual solutions have the sensitivity interpretation 

P '  (0; x) - max{ (x, y)" y solves D0} 

where the maximum is attained and Pt(0; .  ) denotes the directional derivative 
of the optimal value function P ( - )  evaluated at 0. 

Proof. This follows directly from Theorem 9. m 

3.2 P r o b l e m  F o r m u l a t i o n  

In this section we summarize the duality formulation of optimization problems. 
Let U be a HLCS of controls; X a HLCS of states; u H Lu + Xo an affine 
map representing the system equations, where x0 E X, and L" U ~ X is linear 
and continuous; F" U • X ~ R a cost function. We consider the minimization 
problem 

P0 - inf F(u, Lu + x0) , (3) 
uEU 

for which feasibility constraints are represented by the requirement that (u, Lu + 
x0) E domF. Of course, there are many ways of formulating a given optimization 
problem in the form (3) by choosing different spaces U, X and maps L, F; in 
general the idea is to put explicitly, easily characterized costs and constraints 
into the "control" costs on U and to put difficult implicit constraints and costs 
into the "state" part of the cost where a Lagrange multiplier representation 
can be very useful in transforming implicit constraints to explicit constraints. 
The dual variables, or multipliers will be in X*, and the dual problem is an 
optimization in X*. 

In order to formulate the dual problem we consider a family of perturbed 
problems 

P(x) = inf F(u, Lu + x) (4) 
uEU 



170 S.K. Mitter 

m m 

where x c X. Note tha t  if F" U • X ~ R is convex then P" X ~ R is convex; 
however F t~sc does not imply tha t  P is lsc. Of course Po - P(xo) .  We calculate 
the conjugate function of P 

P * ( y )  - s u p [ ( x , y )  - P ( x ) ]  - s u p [ ( x , y }  - F(u ,  Lu  + x ) ]  - F * ( - L * y , y )  . ( 5 )  
X U X ~  

The dual problem of Po - P(xo)  is given by the second conjugate of P evaluated 
at x0, i.e. 

Do - *  (P*)(xo) - sup [(xo, y} - F* ( - L *  y, y)] (6) 
yEX* 

The feasibility set for the dual problem is just  domP* - {y C X* 
domF* }. We immediately have 

�9 ( - L * y , y )  C 

Po - P(xo)  >_ Do =* (P*)(xo) �9 (7) 

Moreover, since the primal problem P0 is an infimum, and the dual problem Do 
is a supremum, and P0 _> Do, we see tha t  if g c U, ~) c X* satisfy 

F(~t,L~t + xo) - <xo, ~)} - F * ( - L * ~ , ~ )  (s) 

then P0 - Do - F (g ,  L~t + x0) and (assuming P0 c R) ~ is optimal for P,  ~) 
is optimal for D. Thus, the existence of a ~) C X* satisfying (8) is a sufficient 
condition for optimali ty of a control ~ E U; we shall be interested in condition 
under which (8) is also necessary. It is also clear tha t  any "dual control" y E X* 
provides a lower bound for the original problem: P0 >_ (xo, y) - F* ( - L ' y ,  y) for 
every y c X*. 

The duality approach to optimization problems Po is essentially to vary the 
constraints slightly as in the per turbed problem P ( x )  and see how the minimum 
cost varies accordingly. In the case tha t  F is convex, Po - Do or no "duality 
gap" means tha t  the per turbed minimum costs function P ( .  ) is gsc at x0. The 
stronger requirement tha t  the change in minimum cost does not drop off too 
sharply with respect to per turbat ions  in the constraints, i.e. tha t  the directional 
derivative PP(xo; �9 ) is bounded below on a neighborhood of x0, corresponds to 
the si tuation tha t  P0 - Do and the dual problem Do has solutions, so tha t  (8) 
becomes a necessary and sufficient condition for opt imali ty  of a control ~. It turns 
out tha t  the solution of Do when P0 - Do are precisely the element of OP(xo),  
so tha t  the dual solutions have a sensitivity interpretat ion as the subgradients 
of the change in minimum cost with respect to the change in constraints. 

Before stat ing the above remarks in a precise way, we define the Hamil tonian 
and Lagrangian functions associated with the problem P0. We denote by Fu( .  ) 
the functional F ( u , . ) "  x ~ F ( u , x ) "  X ~ R, for u E U. The Hamil tonian 
function H" U x X* ~ R is defined by 

H ( u , y )  - sup[(x,y} - F(u , x ) ]  - F~(y)  . (9) 
xEX 
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P r o p o s i t i o n  3. The Hamil tonian H satisfies: 

(1) (*H,)(x)  - *  (F ; ) ( x )  
(2) (*H,)* (y) - H ,  (y) - F;  (y) 
(3) F*(v,  y) - sup~[(u, v) + H(u ,  y)] - ( - H ( - ,  y))*(v).  

Moreover H(u ,  . ) is convex and w* - g s c  X*  ~ R; H ( . ,  y) is concave U --, R 
if F is convex; if  F(u ,  �9 ) is convex, proper, and gsc then H ( . ,  y) is concave for  
every y iff  F is convex. 

Proof. The equalities are straightforward calculations. H(u ,  �9 ) is convex and tsc 
since (*Hu)* - Hu. It is straightforward to show that  - H ( . ,  y) is convex if F ( .  ) 
is convex. On the other hand if (*F~)* - F~ and H ( . ,  y) is concave for every 
y C X* ,  then 

F ( u , x )  - *  (F: ) (x )  - *  H~(x)  - sup[xy - g ( u ,  y)] 
Y 

is the supremum of the convex functionals (u, x) H (x, y) - H(u ,  y) and hence 
F is convex, m 

The Lagrangian function ~" U x X* to R is defined by 

t~(u, y) - inf[F(u,  Lu  + xo + x) - (x, y)] - (Lu + xo, y) - F~ (y) 

= ( L u + x o ,  y ) - H ( u , y )  . (10) 

P r o p o s i t i o n  4. The Lagrangian ~ satisfies 

(1) inf~ g(u, y) - (x0, y) - F* ( - L *  y, y) 
(2) Do - *  (P*)(xo) - SUpy inf~ g(u, y) 
(3)*( -g~)(x)  - *  ( F : ) ( L u  + xo + x) 
(~) Po - P(xo)  - inf~ SUpy g(u, y) if  F~ - *  (F~) for  every u e U. 

Moreover ~(u, . ) is convex and w*-t~sc X* ~ R for  every u e U; 5(. ) is convex 
U x X*  --~ R if F is convex; if  Fu - *  (F*) for  every u C U then ~ is convex iff 
F is convex. 

Proof. The first equality (1) is direct calculation; (2) then follows from (1) and 
(4). Equali ty (3) is immediate from (10); (4) then follows from (3) assuming 
tha t  *(F~) - F~. The final remarks follow from Proposit ion 3 and the fact that  
~(u, y) - (Lu + x0, y) - H(u ,  y). m 

Thus from Proposit ion 4 we see tha t  the duality theory based on conjugate 
functions includes the Lagrangian formulation of duality for inf-sup problems. 
For, given a Lagrangian function t~" U x X* --~ R, we can define F" U x X --, R 
by F ( u , x ) - *  ( - t ~ ) ( x )  - s u p y [ ( x ,  y ) +  g(u, x)], so tha t  

P0 - inf sup ~(u, y) - inf F(u ,  O) 
u y u 

Do - sup inf g(u, y) - sup - F *  (0, y) , 
y u y 

which fits into the conjugate duality framework. 
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For the following we assume as before that U , X  are HLCS's; L" U ~ X 
is linear and continuous; xo C X; F" U • X ~ R. We define the family of 
optimization problems P(x)  - infu F(u,  L u + x ) ,  Po - P(xo), Do - SUpy[(X, Y/ -  
F* ( -L*  y, y)] - *  (P*)(xo). We shall be especially interested in the case that F ( .  ) 
is convex, and hence P( .  ) is convex. 

P r o p o s i t i o n  5. (no dua l i ty  gap) .  It is always true that 

Po - P(xo) >_ infsupt~(u, y) _> Do - i n f s u p g ( u ,  y ) = *  (P*)(x0) �9 (11) 
u y u y 

If  P ( .  ) is convex and Do is feasible, then the following are equivalent: 

( 1 )  P o  - Do 

(2) P ( .  ) is t~sc at xo, i.e. lim inf P(x)  >_ P(xo) 
X----~ Xo 

(3) sup inf F(u, x) >_ Po 
F f i n i t e  C X *  u ~ v 

xE Lu~xo-+-OF 

These imply, and are equivalent to, if Fu - *  (F u) for every u C U, 

(~) ~ has a saddle value, i.e. inf sup g(u, y) - sup inf g(u, y) . 
u y y u 

Proof. The proof is immediate since Po - P(xo) and Do - *  (P*)(x0). Statement 
(4) follows from Proposition 4 and Eq. (11). I 

T h e o r e m  6. (no dua l i ty  gap  and  dua l  solut ions) .  Assume Po is finite. The 
following are equivalent: 

(1) Po - Do and Do has solutions 
(2)OP(xo) ~ 0 
(3) 3~ c YstPo - (xo, ~)} - F*(-L*~), ~)) 
(~) 3~) c YstPo - infu g(u, ~)). 

I f  P ( .  ) is convex, then each of the above is equivalent to 

p ~  . (5) 30 - neighborhood Nst infxey (xo, x) > --c~ 
(6) lim infx-+o P '  (x0; x) > - c~  

(7) lim inf P(xo + tx) - Po 
x--+O+t--+O t 

- sup inf inf inf F(u,  L u +  xo + tx) - Po > - ~  . 
N = 0 - n b h d  t~O xE N uEU t 

If  P ( .  ) is convex and X is a normed space, then the above are equivalent to: 

(8) 3e > 0, M > 0 st g(u ,  Lu + xo + x) - Po >_ - M i x i V u  c U, Ix] <_ ~. 
(9)3e > 0, M > 0 st Vu E U, Ix I _ e, 6 > 03u' c V st F(u, Lu + xo + x ) -  

F ( u ' , n u '  + xo) >_ -MIxl- ~. 

Moreover, if (1) is true then fl solves Do iff ~ C OP(xo), and ~ is a solution for 
Po iff there is a fl satisfying any of the conditions (1')-(3') below. The following 
statements are equivalent: 
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(1')~ solves Po, ~) solves Do, and Po - Do 
(2')F(~t, L~ + xo) - {xo, ~) - F* ( - L *  f/, fl) 
(3')(-L*~), ~)) e OF(~t,L~t + xo). 

These imply, and are equivalent to, if  F(u,  . ) is proper convex tsc X ---, R for 
every u c U, the following equivalent statements: 

(4')0 e 0~( . ,  ~))(~) and 0 e 0(-t~(~t, �9 ))(~), i.e. (~, ~)) is a saddlepoint of ~, that 
y) < < e u, y e x*) .  

(5')L~t + xo e OH(~t, . )(~)) and L*f] e 0 ( - H ( . ,  ~)))(~), i.e. ~) solves inf[H(~, y) - 
Y 

{L~ + xo, y}] and ~t solves inf[H(u, ~)) + {u, L*~)}]. 
U 

Proof. (1) = >  (2). Let ~) be a solution of Do - *  (P*)(xo). Then Po - (xo, ~)}- 
P*(~)). Hence P*(~)) - (x0,~)} - P(xo) and from Proposit ion 1, (4) = >  (1) 
we have y C OP(xo). 
(2) - >  (3). Immediate  by definition of Do. 
(3) - >  (4) = >  (1). Immediate  from (11). 

If P ( .  ) is convex and P(xo) e R, then (1) and (4)-(9) are all equivalent 
by Theorem 2. The equivalence of (1 ')-(5 ')  follows from the definitions and 
Proposit ion 5. I 

R e m a r k .  In the case that X is a normed space, condition (8) of Theorem 6 
provides a necessary and suJficient characterization for when dual solutions ex- 
ists (with no duality gap) that shows explicitly how their existence depends on 
what topology is used for the space of perturbations. In general the idea is to take 
a norm as weak as possible while still satisfying condition (8), so that the dual 
problem is formulated in as nice a space as possible. For example, in optimal 
control problems it is well known that when there are no state constraints, per- 
turbations can be taken in e.g. an L2 norm to get dual solutions y (and costate 
- L ' y )  in L2, whereas the presence of state constraints requires perturbations in 
a uniform norm, with dual solutions only existing in a space of measures. 

It is often useful to consider perturbations on the dual problem; the duality 
results for optimization can then be applied to the dual family of perturbed prob- 
lems. Now the dual problem Do is 

- D o  - inf  [ F * ( - L * y ,  y) - (xo,  y} �9 
yEX* 

In analogy with (~) we define perturbations on the dual problem by 

D ( v )  - inf  [F* (v - L ' y ,  y) - {xo, y}] v e U* 
yCX* 

(12) 

Thus D( .  ) is a convex map U* ~ R, a n d - D o  - D(O). It is straightforward to 
calculate 

(*D)(u) - sup[(u, v} - D(v)] - *  (F*)(u, Lu + xo) . 
V 

Thus the "dual of the dual" is 

-*(D*)(O) - inf.(F*)(u Lu + xo) 
uEU 

(13) 
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In particular, if F - *  (F*) then the "dual of the dual" is again the primal, i.e. 
dom*D is the feasibility set for Po and-*(D*)(0)  - Po. More generally, we have 

P o -  P ( x o ) > - * ( D * ) ( 0 )  2 D o - - D ( 0 ) - *  (P*)(0) . (14) 

3.3 D u a l i t y  T h e o r e m s  for O p t i m i z a t i o n  P r o b l e m s  

Throughout this section it is assumed that  U, X are HLCS's; L" U ~ X is linear 
and continuous; x0 C X and F" U x X  ~ R. Again, P(x)  - inf F(u, L u + x o + x ) ,  

U 

Po - P ( x o ) ,  

D0 - *  (P*)(x0) - sup [(x0, y) - F* ( - L *  y, y)] . 
yCX* 

We shall be interested in conditions under which OP(xo) ~ 0; for then there is no 
duality gap and there are solutions for Do. These conditions will be conditions 
which insure the P ( .  ) is relatively continuous at x0 with respect to aft domP,  
that  is P T aft domP is continuous at x0 for the induced topology on aft domP. 
We then have 

OP(xo) 7/= 0 

P o -  Do 

the solution set for Do is precisely OP(xo) (15) 

P ' ( z o ; z ) -  max (z,y) . 
yCOP(xo) 

This last result provides a very important  sensitivity interpretation for the dual 
solutions, in terms of the rate of change in minimum cost with respect to perturba- 
tions in the "state" constraints and costs. Moreover if (15) holds, then Theorem 6, 
(1')-(5'),  gives necessary and sufficient conditions for ~ e U to solve P0. 

T h e o r e m  7. Assume P( .  ) is convex (e.g. F is convex). I f  P ( .  ) is bounded above 
on a subset C of X ,  where xo c riC and aft C is closed with finite codimension 
in an aflfine subspace M containing aft domP,  then (15) holds. 

Proof. From Theorem 1, (lb) = >  (2b), we know that  P ( .  ) is relatively contin- 
uous at x0. m 

C o r o l l a r y  1. ( K u h n - T u c k e r  po in t ) .  Assume P( .  ) is convex (e.g. F is con- 
vex). I f  there exists a ~ C U such that F(g,  . ) is bounded above on a subset C 
of X ,  where Lg + xo C ri C and aft C is closed with finite codimensions in an 
affine subspace M containing aft dom P, then (15) holds. In particular, if there 
is a ~ c U such that F(E, �9 ) is bounded above on a neighborhood of Lg  + xo, 
then (15) holds. 

Proof. Clearly 
P(x)  - inf F(u,  Lu + x) < F(~, L~ + x) , 

U 

so Theorem 1 applies, m 



Convex Optimization in Infinite Dimensional Spaces 175 

The Kuhn-Tucker  condition of Corollary 1 is the most widely used assumption 
for duality [4]. The difficulty in applying the more general Theorem 7 is that,  in 
cases where P ( .  ) is not actually continuous but only relatively continuous, it is 
usually difficult to determine aft dom P. Of course, 

domP - U [ d o m F ( u , . )  - Lu] ,  
u C U  

but this may not be easy to calculate. We shall use Theorem 1 to provide dual 
compactness conditions which insure that  P ( - )  is relatively continuous at x0. 

Let K be a convex balanced w(U, U*)-compact subset of U; equivalently, we 
could take K =0 N where N is a convex balanced re(U*, U)-0-neighborhood in 
U*. Define the function g" X* --~ R by 

g(y) - inf F * ( v -  L*y,y)  . (16) 
v C K  o 

Note that  g is a kind of "smoothing" of P* (y) = F* ( -L*  y, y) which is everywhere 
majorized by P*. The reason why we need such a g is that  P ( .  ) is not necessarily 
gsc, which property is important  for applying compactness conditions on the 
levels sets of P*; however *g is automatically fsc and *g dominates P, while at 
the same time *g approximates P. 

L e m m a  2. Define g(.  ) as in (16). Then 

(*g)(x) <_ inf[F(u, Lu + x] + sup E K ~ v}l . 
U V 

I f  F - *  (F*), then P(x)  <_ (*g)(x) for every x e domP.  Moreover 

dom*g D U 
uEspanK 

[domF(u, .) - Lu] . 

Proof. By definition of "9, we have 

(*g)(x) - sup sup [{x, y} - F* (v - L 'y ,  y)] . 
Y v C K  ~ 

Now for every u C U and y C Y,  F* (v - L ' y ,  y) >_ (u, v -  L 'y}  + (Lu + x, y} - 
F(u,  Lu + x) - (u, v} + (x, y} - F(u,  Lu + x) by definition of F*. Hence for every 
u E U ,  

(*g)(x) <_ sup [F(u, Lu + x) - (u, v>] - F(u,  Lu + x) + sup <u, v) 
v E K  ~ v E - K  ~ 

= F(u,  Lu + x) + sup <u, v> 
v E K  o 

where the last equality follows since K ~ is balanced. Thus we have proved the 
first inequality of the lemma. 
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Now suppose F - *  (F*) and x E domP.  Since K ~ is a m(U*,U)-O- 
neighborhood, we have 

(*g)(x) - sup sup[(x, y) - F* (v - L ' y ,  y)] 
v E K  ~ Y 

> l imsupsup[(x ,  y) - F * ( v -  n*y,y)] 
v---*O y 

= lim inf inf[F* (v - L* y, y) - (x, y)] , 
v---*0 y 

where the l iminf is taken in the m(U*, U)-topology. Define 
v---*0 

h(v) - inf[F* (v - L ' y ,  y) - (x, y)] , 
Y 

so that  

Now 

(*g)(x) > - l i m i n f  h(v) . 
v----~O 

(*h)(u) - supsup[(u,  v } -  F*(v - L* y, y) + (x, y}] 
v y 

= *(F*)(u, Lu  + x) - F(u,  Lu  + x) . 

Hence P(x)  < +oo means tha t  inf F(u,  Lu + x) < +oo, i.e. *h ~ +oo, so that  
U 

we can replace the lim inf by the second conjugate: 

(*g)(x) > - l iminf h(v) - -(*h)*(0) = inf F(u,  Lu + x) - P(x )  . 
v---*O u 

The last s ta tement  in the lemma follows from the first inequality in the lemma. 
For 

x E  

and 

U 
u E s p a n K  

[ d o m F ( u , . )  - Lu] iff 3u E [0, oo) �9 K st F(u,  Lu + x) < +oo , 

i f f ~ u s t  sup (u,v) < + o o  
vE  K o 

F(u,  Lu + x) < +oo (since K =0 (K0)) 

iff 3u st F(u,  Lu  + x) + sup (u, v) < +oo 
v E K  o 

and this implies tha t  x E dom*9. Hence dom*9 C U [ d o m F ( u , - ) - L u ] .  
u E s p a n K  

Note tha t  d o m P  is given by U [domF(u , .  ) - Lu]. I 
u E U  

T h e o r e m  8. Assume F - *  (F*), Po < +oo, and there is a w(U, U*)-compact 

convex subset K of U such that s p a n k  C U d o m F ( . ,  x). Suppose 
x E X  

(1 ){y  E X*" ( F * ) ~ ( - n * y , y ) -  (xo,y) < 0} is a subspace M ;  
(2)3m(U*,U)-O-neighborhood N in U*, an Xl E X ,  an rl E R such that 

{y E X*" inf F* (v - L ' y ,  y) - (x, y) < ri} is nonempty and locally •  
v E N  

equicontinuous for the w(X*, X)-topology. 
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Then aft domP is closed, P ( .  ) T aft domP is continuous at xo for the induced 
topology on aft domP,  and (15) holds. 

Proof. We may assume that  K is balanced and contains N O by replacing K with 
co ba l (K U N ~ =o (K o N - K  ~ N N N - N ) .  Define g(.  ) as in (16). We first show 
that  d o m P -  dom*9. Now 

domP - N [domF(u , .  ) -  L u ] -  U 
uCU uEspanK 

[domF(u , .  ) - L u ]  C dom*g 

by Lemma 2. But also by Lemma 2 we have P(x) <_ (*g)(x) for every x e X 
(since domP c dom*g), so domP D dom*g and hence d o m P -  dom*g. 

This also implies that  cldom*(P*) = cldom*g, since cldom*(P*) = cldomP by 
Lemma 1 (note P* ~ +c~ since P* has a nonempty level set by hypothesis 2). 
Hence by Definition 1 of recession functions we have (P* )~  = g~  - ((*g)*)~. 
A straightforward calculation using Proposition 2, and the fact that  P*(y) = 
F*( -L*y ,  y) yields 

g~(y)  - (P*)~y  - ( F * ) ~ ( - L *  y, y) . 

Now M -  {y C X*" g ~ ( y ) - ( x o ,  y) _<} - [ d o m g - x 0 ] -  is a subspace, hence M -  
[domg-  x0] • and x0 + •  is a closed affine set containing domg. But hypothesis 
(2) then implies that  riepi*g r 0 and aft domg is closed with finite codimension 
in x0 +•  by Theorem 1. Moreover, by Theorem 3, *g(. ) is actually relatively 
continuous at x0. NowZM = x  ( [domg-  xc] • - cl aft dom*g-  x0; since aft dom*g 
is a closed subset of x0+ • - cl aft dom*g, we must have aft dom*g - cl aft dom*g. 
Finally, since domP - dom*g and P <* g, P ( .  ) is bounded above on a relative 
neighborhood of x0 and hence is relatively continuous at x0. I 

We shall be interested in two very useful special cases. One is when U is the 
dual of a normed space V, and we put the w* = w(U, V) topology as the original 
topology on U; for then U* ~ V and the entire space U is the span of a w(U, V)- 
compact convex set (namely the unit ball in U). Hence, if U = V* where V is a 
normed space, and if F ( - )  is convex and w(U • X, Y • Z * ) - g s c ,  then conditions 
(1) and (2) of Theorem 6 are automatically sufficient for (1) to hold. 

The other case is when X is a barrelled space, so that  interior conditions 
reduce to core conditions for closed sets (equivalently, compactness conditions 
reduce to boundedness conditions in X*). For simplicity, we consider only Frechet 
spaces for which it is immediate that  all closed subspaces are barrelled. 

T h e o r e m  9. Assume F =* (F*); Po < +c~; X is a Frechet space or Banach 
space; and there is a w(U, U*-compact convex set K in U such that s p a n k  D 

U domF(-,x). Th n foUo  ng are  q  val nt: 
xCX 

(1)aff domP is closed; and xo C rcordomP, or equivalently F(uo, Luo+xo+x)  < 
+cx~ = >  3e > 0 and Ul C U st F ( u l , L u l  + xo - ex) < +c~. 
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(2) {y e X*" ( F * ) ~ ( - L * y , y ) -  (xo,y} < O} is a subspace M;  and there exists 
a re(U*, U)-O-neighborhood N in U*, an Xl c X ,  an rl E R such that {y c 
X*" inf F* ( v -  L 'y ,  y ) -  (x0, y} < rl } is nonempty and w(X* X) /M- local ly  

v E N  
bounded. 

I f  either of the above holds, then P( .  ) T aft domP is continuous at xo for the 
induced metric topology on aft domP and (1) holds. 

Proof. We first note that  since s p a n k  D U d o m F ( - ,  x) we have as in Theo- 
x E X  

rem 8 that  d o m P -  dom*g and g~(y )  - (P*)~(y )  - ( F * ) ~ ( - L * y ,  y). 

(1) - >  (2). We show that  g(. ) is relatively continuous at x0, and then (2) will 
follow. Now domP - dom*g, so x0 E rcordomP. Let W - aft d o m P -  x0 be 
the closed subspace parallel to domP, and define h" W ~ R" w ---~* g(xo+w).  
Since *g is gsc on X, h is t~sc on the barrelled space W. But 0 E coredomh (in 
W), hence h is actually continuous at 0 (since W is barrelled), or equivalently 
*g is relatively continuous at x0. Applying Theorem 3 we now see that  M is 
the subspace W• the remainder of (2) then follows from Theorem 1, since 
g(y) - inf F* (v - L 'y ,  y) _> (*g)* (y). 

y E N  

(2) - >  (1). Note that • is a Frechet space in the induced topology, so 
w(X*,  X ) / M - l o c a l  boundedness is equivalent to w(X*, X) /M- loca l  compact- 
ness. But now we may simply apply Theorem 8 to get P ( .  ) relatively con- 
tinuous at x0 and aft domP closed; of course, (1) follows. I 

C o r o l l a r y  2. Assume Po < +oc; U - V* where V is a normed space; X is a 
grechet space or Banach space; F ( .  ) is convex and w(V  x X,  V x X*)  - t~sc. 
Then the following are equivalent: 

(1) xo e cordomP - cor Uuev[domF(u ,  �9 ) - Lu] 
(2){y  E X*" ( F * ) ~ ( - L * y , y ) -  (xo,y} <_ O } -  {0}; and there is an e < O, an 

x l E X ,  and r l E R such that 

{y  E X* " inf F* (v - L* y, y) - (xo, y} < rl } 

is nonempty and w(X*,X)- locaUy bounded. 
(3) There is an ~ > O, an ro C R such that 

{y  C X*" inf F * ( v -  L * y , y ) -  (xo,y}  <ro} 
Ivl_<c 

is nonempty and w(X*,  X)-bounded. 

I f  any of the above holds, then P( .  ) is continuous at xo and (1) holds. 

Proof. Immediate. I 

We can also apply these theorems to perturbations on the dual problem to get 
existence of solutions to the original problem P0 and no duality gap P0 - Do. 
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C o r o l l a r y  3. Assume Po > - o c ;  U = V* where V is a Frechet space or Banach 
space; X is a normed space; F(  . ) is convex and w(U x X ,  V x X * ) - g s c .  Suppose 
{u c U: F ~ ( u ,  L u + x o )  < 0} is a subspace M ,  and there is an e > O, an Xl C X ,  

an r l c R such that 

{ u c U :  inf F(u ,  Lu  + xo + x) < rl } 
Ixl<~ 

is nonempty  and w(U, U*)/M-local ly  compact. Then Po = Do and Po has solu- 

tions. 

Proof. Apply Theorem 9 to the dual problem (12). m 
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