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VARIATIONAL BAYES AND A PROBLEM OF RELIABLE

COMMUNICATION I: FINITE SYSTEMS∗

NIGEL J. NEWTON† AND SANJOY K. MITTER‡

Abstract. This paper is the first in a two-part study of a variational Bayesian method and its

application to a problem of reliable communication. The variational method expresses a Bayesian

posterior distribution as the unique minimizer of a quantity dubbed apparent information. This has

the same nature as the free energy of statistical mechanics. The minimum apparent information

coincides with the full information of the observation.

Reliable communication over an error prone channel can be achieved by the use of random block

coding, as originally proposed by Shannon. The primary Bayesian problem in this context, is that of

estimating the transmitted block from observations of the output of the channel. Scaling limits for

the various information quantities are derived for this problem; these show that the primary problem

undergoes a second-order phase transition, in a very precise sense, at the channel capacity; the code

rate is shown to play the role of absolute temperature.

Shannon’s reliability function is recovered as the scaling limit of the full information of a secondary

Bayesian problem, in which the channel noise and random code are estimated from the observation

of a block decoding error. This secondary problem undergoes a third-order phase transition at a

second critical code rate.

1. Introduction. This paper is the first part in a two-part study investigating
a connection between Bayesian estimation and statistical mechanics in the context
of a problem in telecommunications. This connection can be seen in the formulae
for the posterior distribution of a Bayesian problem and the Gibbs measure for a
finite statistical mechanical system. These have identical structure if the range space
of the estimand, its prior distribution and the (negative) log-likelihood function of
the Bayesian problem are identified with the phase space, the reference measure and
the (temperature-scaled) energy function of the statistical mechanical system. Gibbs
distributions can be defined as minimizers of a so called free energy. In the Bayesian
setting, the posterior distribution is the unique minimizer of a quantity we call the
apparent information.

We consider the classical problem of reliably communicating a sequence of bits
over an error prone channel. This not only provides example applications of the
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variational method, but also avoids too much abstraction. Part I considers the com-
munication of blocks of data of finite size K, and shows that Shannon’s classical results
on reliable communication [20] are connected with secondary Bayesian problems, in
which the sources of errors are estimated on the basis of observation of the error event.
This gives insight into the dominant cause of errors in different regimes. Part I also
finds (large K) scaling laws for the variational quantities in these secondary problems,
as well as for those of the primary Bayesian problem, in which the transmitted data is
estimated at the receiver. Both primary and secondary problems are shown to exhibit
critical behaviour at key code rates.

Part II [15] develops the notion of posterior distributions for a family of commu-
nication problems (parametrized by the code rate) in which the source is an infinite
sequence of bits. In this case, posterior distributions cannot be defined in the conven-
tional Bayesian way (likelihood × prior, suitably normalized) because of measurability
issues. Instead, we define them to be minimizers of a specific apparent information,
in a construction that mirrors the Dobrushin construction of statistical mechanics [3],
[19], [9]. The family of communication problems is shown to undergo a second order
phase transition at the channel capacity, in the sense that there is more than one pos-
terior distribution at this code rate. Posterior distributions for the infinite problems
can be used to investigate the properties of large, finite problems; their properties
both below and above capacity are examined in detail in Part II.

Sections 1.1–1.4 of this introduction review the ingredients that will be used in
this study, and section 1.5 places the study in the context of other results in this
field. Section 2 applies the variational Bayesian method to obtain scaling limits for
various information quantities related to reliable communication such as the reliability
function, and Section 3 evaluates scaling limits for the primary Bayesian problem.
Sections 1.1 and 1.2 review the variational formulae in an abstract setting. Readers
not interested in such generalities could skip these sections on a first reading, and
refer back to them when they are later used in more specific estimation problems.

Convention on Logarithms. The base of logarithms throughout this paper is 2,
unless explicitly stated otherwise; all information quantities are, therefore, measured
in bits. The notation “exp” is frequently used for the inverse log; i.e. exp(x) := 2x.
Furthermore, log 0 := −∞ and 0 log 0 := 0.

1.1. Regular Bayesian Estimation. The essence of Bayesian estimation is
the construction of posterior distributions for estimands from prior and observation
information. In all but the simplest, discrete problems such posterior distributions
are defined only up to sets of observation values of probability zero. This is highly
unsatisfactory from the point of view of applications, where one often wishes to com-
pute a posterior distribution corresponding to a single outcome of the observation.
The standard (usually implicit) solution to this problem is to construct regular ver-
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sions of posterior distributions having some continuity property with respect to the
observation.

Suppose that the estimand, U , and observation, Y , are random variables defined
on a common probability space (Ω,F , P), that take values in metric spaces U and Y,
respectively. Let U and Y be the Borel σ-algebras of subsets of these spaces, let PU ,
PY and PU,Y be the marginal and joint distributions of U and Y , and suppose that

(1) PU,Y � PU ⊗ PY .

Let φY be a σ-finite (reference) measure on Y such that PU,Y � PU ⊗ φY . (PY is an
example of such a measure; however, where one exists, it is common to choose for φY

a uniform measure such as Lebesgue measure on the real line.) Let Q̃ be a version of
the density (Radon-Nikodym derivative) dPU,Y /d(PU ⊗ φY ), and let

(2) Ȳ :=
{

y ∈ Y : 0 <

∫
U

Q̃(u, y)PU (du) < ∞
}

;

then it can easily be shown that Ȳ ∈ Y and PY (Ȳ) = 1. Let

(3) Q(u, y) := Q̃(u, y)1Ȳ(y) + 1Y\Ȳ(y),

and, for any B ∈ U , let

(4) PU |Y (B, y) :=

∫
B

Q(u, y)PU (du)∫
U Q(u, y)PU (du)

;

then PU |Y is a regular conditional distribution for U :
(R1) PU |Y ( · , y) is a probability measure on U for each y;
(R2) PU |Y (B, · ) is Y-measurable for each B;
(R3) for any B ∈ U and any C ∈ Y,

∫
C

PU |Y (B, y)PY (dy) = PU,Y (B × C).
(Q( · , y) can be interpreted as the likelihood function for the observed value Y = y.)

Remark 1.1. By exploiting (1), this construction of a regular conditional dis-
tribution avoids the usual Polish space assumptions on U. (See, for example, [4].)
In fact it does not even rely on the metric nature of (U,U) and (Y,Y), and can be
applied to general measurable spaces. However, even when U and Y are metric spaces,
it is not always clear that a continuous version of y 7→ PU |Y ( · , y) (with respect, for
example, to the weak topology in the range space) can be constructed without further
structure. In many special cases, such as those investigated here, continuity is ob-
tained by construction. See [1] and [2] for a problem of nonlinear filtering, and [23]
for a more abstract result.

1.2. Variational Bayes. In order to make the information quantities we shall
use finite, we strengthen (1), requiring the mutual information between U and Y to
be finite:

(5) I(U ; Y ) :=
∫

U×Y
log
(

dPU,Y

d(PU ⊗ PY )
(u, y)

)
PU,Y (d(u, y)) < ∞.
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Let

Ỹ := Ȳ ∩
{

y ∈ Y :
∫

U
(x log x)(Q̃(u, y))PU (du) < ∞

}
,

where Q̃ and Ȳ are as in section 1.1; then it easily follows from (5) that Ỹ ∈ Y and
PY (Ỹ) = 1. Replacing Ȳ by Ỹ in (3), we obtain a (new) likelihood function Q, for
which

(6)
∫

U
(x log x)(Q(u, y))PU (du) < ∞ for all y ∈ Y.

This gives rise, as in (4), to a (new) regular conditional distribution PU |Y , which will
be used in all that follows. We denote by H : U×Y → (−∞,+∞] the corresponding
(negative) log-likelihood function:

(7) H(u, y) := − log Q(u, y).

Let P(U) be the set of probability measures on U , andM(U) the set of measurable
(−∞,+∞]-valued functions on (U,U). For P̃U ∈ P(U) and H̃ ∈M(U), let

h(P̃U |PU ) :=
∫

U
(x log x)

(
dP̃U

dPU
(u)

)
PU (du) if P̃U � PU

+∞ otherwise,

〈H̃ , P̃U 〉 :=
∫

U
H̃(u)P̃U (du) if the integral exists

(8)
+∞ otherwise,

i(H̃) := − log
∫

U
exp(−H̃(u))PU (du) if the integral is nonzero

−∞ otherwise.

h is the relative entropy (Kullback Leibler divergence) of two measures. In the context
of probability measures, it can be thought of as the information gain of the first
measure over the second. (The information gain h(PU |Y ( · , y) |PU ) is finite by virtue
of (6).) If we interpret exp(−H̃) as a likelihood function for U , associated with
some (unspecified) observation, then H̃(u) is the residual (side) information in that
observation if we already know that U = u, and i(H̃) is the full information in that
observation, i.e. the information in the observation if the only other knowledge we have
of U is its prior PU . (See [14] for a fuller discussion of these information quantities.)

The following proposition characterizes h(PU |Y ( · , y) |PU ) in terms of i(H( · , y))
and vice versa; a simple proof appears (as Proposition 2.1) in [14].

Proposition 1.1. Suppose that (5) is satisfied, and that H and PU |Y are as
defined in (7) and (4) (with Q as defined in this section). Then, for any y ∈ Y:

(i)

(9) i(H( · , y)) = min
P̃U∈P(U)

{
h(P̃U |PU ) + 〈H( · , y) , P̃U 〉

}
;
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(ii)

(10) h(PU |Y ( · , y) |PU ) = max
H̃∈M(U)

{
i(H̃)− 〈H̃ , PU |Y ( · , y)〉

}
;

(iii) PU |Y ( · , y) is the unique minimizer in (9);
(iv) if Ĥ is a maximizer in (10), then there exists a real constant c such that

P(Ĥ(U) = H(U, y) + c) = 1.
The term to be minimized in (9) is called in [14] the apparent information of

the distribution P̃U . It is the sum of the information gain of P̃U over the prior
and the average residual information in the true likelihood function, and is thus the
information apparently possessed by an estimator that proposes P̃U as a posterior
distribution for U . This is greater than or equal to the full information in the actual
observation, with equality if and only if P̃U = PU |Y ( · , y). The two components of
the apparent information show the tension between accommodating the prior and
posterior information.

The term to be maximized in (10) is called in [14] the compatible information
of the function H̃. It is the difference between the full information and the average
(over the true posterior) residual information in the likelihood function exp(−H̃); it
is thus the information in exp(−H̃) compatible with the true posterior. This is less
than or equal to the information gain of the true posterior, with equality if and only
if exp(−H̃) is equivalent to the true likelihood function in the sense of part (iv).

Remark 1.2. The compatible information, like the relative entropy, is an abso-
lute information quantity, in the sense that it does not depend on the choice of any
reference measure. The full, residual and apparent information, on the other hand,
are differential information quantities that depend on φY . It is because of this that
there are multiple maximizers in (10), but only one minimizer in (9).

Remark 1.3. The negative of the relative entropy, −h(P̃U |PU ), can be thought
of as the differential entropy of the probability measure P̃U with respect to the ref-
erence measure PU . With this interpretation, the principle of apparent information
minimization is one of “controlled” entropy maximization, in which the log-likelihood
function H( · , y) is the control. If the probability of the observed value y is non-zero,
PY ({y}) > 0, (as is almost surely the case, for example, if Y is discrete) then the
principle of apparent information minimization coincides with that of entropy maxi-
mization over joint probability measures on U × Y, subject to the constraint Y = y.
In fact, if P̃U,Y is a probability measure satisfying this constraint then, for any B ∈ U
and C ∈ Y,

P̃U,Y (B × C) = P̃U (B)1C(y).

The differential entropy of P̃U,Y with respect to PU,Y is −h(P̃U,Y |PU,Y ). In order for
this to be finite, we must choose P̃U,Y � PU,Y , and this ensures that PY |U ({y}, u) > 0



160 NIGEL J. NEWTON AND SANJOY K. MITTER

for P̃U -almost all u. So

dP̃U,Y

dPU,Y
(u, ỹ) =

dP̃U

dPU
(u)

1{y}(ỹ)
PY |U ({y}, u)

for P̃U,Y−a.a. (u, ỹ),

and

−h(P̃U,Y |PU,Y ) = −h(P̃U |PU )−
∫

log
(

1{y}(ỹ)
PY |U ({y}, u)

)
P̃U,Y (d(u, ỹ))

= −
(
h(P̃U |PU ) + 〈H( · , y) , P̃U 〉

)
,

which is the negative of the apparent information. However, this interpretation is not
valid if PY ({y}) = 0 (as is the case, for example, if Y is the real line and PY has a den-
sity). In this case the differential entropy of P̃U,Y is −∞ for all probability measures
satisfying the constraint Y = y. In this sense, the principle of apparent informa-
tion minimization is a generalization of that of constrained entropy maximization as
championed by Jaynes [10].

We would argue that the variational characterization of the posterior distribu-
tion in (9) is more fundamental than that in (4). Not only does it define the correct
posterior distribution, but it also says something about the consequences of getting
this distribution wrong. The information excess of a putative posterior (its apparent
information minus that of the true posterior) is a non-application-specific measure
of the error in an incorrect posterior, which may occur, for example, in parametric
approximations of posterior distributions. Furthermore, as discussed in [14], the in-
formation deficit in the inverse problem of Proposition 1.1 parts (ii) and (iv) (the
true compatible information minus that of an incorrect log-likelihood function) is a
fundamental measure of the error associated with the use of an incorrect likelihood
function in the Bayes formula. (It can also be adapted to show the effect of an in-
correct prior [14].) Such errors may have their origin in modelling or measurement
errors. This view is supported by the connection between the apparent information
and the free energy of statistical mechanics. The concept of free energy minimization
is more fundamental to statistical mechanics than the particular formula for a Gibbs
measure to which it gives rise.

1.3. Gibbs Measures in Statistical Mechanics. Statistical mechanics is a
discipline that studies large systems exhibiting random behaviour. One of its earliest
appearances was in the theory of heat, [12]. Consider, for example, a sealed cylinder
containing n molecules of a gas. This system is “large” in the sense that it has
6n degrees of freedom corresponding to the three position co-ordinates and three
components of momentum of each of the n molecules, and n is large (eg. 1020). The
dynamical equations of the system can be found from its energy function E : R3n ×
R3n → R+, which defines the energy of the system in the state (q, p), where q is the
3n-vector of position co-ordinates, and p is the 3n-vector of momentum components
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of the molecules. The Hamiltonian dynamical equations are as follows:

q̇i(t) =
∂E

∂pi
(q(t), p(t)) }

for i = 1, 2, . . . , 3n(11)
ṗi(t) = −∂E

∂qi
(q(t), p(t)).

E is typically the sum of two terms: a kinetic term, which is quadratic in p, and a
potential term, which depends only on q, and models the interactive forces between
pairs of molecules, and between individual molecules and the walls of the cylinder.

It would seem that one could fully determine the state of the gas at time t > 0 from
a knowledge of its state at time 0 by solving (11). In practice, however, n is too large
to make this feasible. Even if this were not so, there are still fundamental questions
regarding the accuracy of (11) on very small time and space scales, and its sensitivity
to small perturbations in (q(0), p(0)). The classical approach to such problems is to
switch to a macroscopic description of the system, involving the quantities: absolute
temperature, T , volume, V , and pressure, P . The ideal gas law states that

(12) PV = αT,

where α is a constant depending on the number and mass of the molecules, [17]. The
origin of (12) is physical experimentation, and it is the job of statistical mechanics
to bridge the gap between it and (11). The stochastic dynamics approach considers
the “phase space” process ((q(t), p(t)); t ∈ R) to be random, and to have an evolving
distribution, (Πt, t ∈ R). The central ansatz of this approach is that, when the gas
is in thermodynamic equilibrium, Π minimizes the free energy F : P(B6n) → [0,+∞],
defined as follows:

(13) F (Π̃) :=
1
T
〈E , Π̃〉 − S(Π̃),

where 〈E , Π̃〉 is the internal energy (defined in the same way as 〈H̃ , P̃ 〉 in (8)),
S : P(B6n) → [−∞,∞) is the entropy,

(14) S(Π̃) := −h(Π̃ |λ⊗6n),

and λ⊗m is Lebesgue measure in Rm. The minimum free energy, F (Π), or (equiv-
alently) the partition function, exp(−F (Π)), can be used to derive the macroscopic
laws of the system, such as (12). (See, for example, [8] or [17].)

A straightforward calculation shows that, in this finite setting, the minimizer of
free energy is the following Gibbs distribution:

(15) Π(B) =

∫
B

exp(−E(q, p)/T )λ⊗6n(d(q, p))∫
R6n exp(−E(q, p)/T )λ⊗6n(d(q, p))

for B ∈ B6n.

The connection between Bayesian estimation and statistical mechanics can be
seen in its simplest form in the similarity between (4, 9) and (15, 13). These formulae
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are identical if λ⊗6n is identified with the prior distribution PU , and E/T is identified
with the log-likelihood function H. Although the Bayes and Gibbs formulae, (4)
and (15), completely characterize the posterior and Gibbs distributions, PU |Y and
Π, respectively, their variational counterparts say much more about the nature of
PU |Y and Π. However, the true power of the variational method is that it permits
extension to problems not admitting the simple forms (4) and (15). This aspect will
be investigated in Part II.

1.4. Error Control Coding. The problem we consider is that of reliably com-
municating information across an error prone channel. This domain has been ex-
tensively researched since the seminal paper by Shannon, [20]. We have chosen a
particularly simple problem from this domain to illustrate our ideas. Nevertheless,
these are applicable to much wider class of communication problems. We begin by
introducing some notation.

Definition 1.1.

(i) (Ω,F , P) is a complete probability space on which all random quantities are
defined.

(ii) N is the set of natural numbers.
(iii) For each n ∈ N, Jn := {0, 1, . . . , n}.
(iv) X is the linear space of infinite sequences of bits (xk ∈ {0, 1}; k = 1, 2, . . .)

over the Galois field ({0, 1}, ⊕, · ) and, for each K ∈ N, XK is the linear
space of K-sequences of bits (xk ∈ {0, 1}; k = 1, 2, . . . ,K).

(v) ‖ · ‖ is the Hamming norm on XK :

(16) ‖v‖ = ‖v‖K :=
K∑

k=1

vk.

(vi) For each K ∈ N, TK : X → XK is the truncation map:

(17) TKx := (x1, x2, . . . , xK) .

(vii) The symbol ↔ is the join operator: for x ∈ XK and y ∈ X

(18) x↔y := (x1, x2, . . . , xK , y1, y2, . . .).

(viii) X is the product σ-algebra on X, i.e. the σ-algebra of subsets of X generated
by the finite-dimensional sets {T−1

K ({v}); v ∈ XK ,K ∈ N}. For each K ∈ N,
XK is the σ-algebra of all subsets of XK .

(ix) For any σ-algebra B, P(B) is the set of probability measures on B.
(x) For each θ ∈ [0, 1], Qθ is the Bernoulli measure on X1:

(19) Qθ({0}) = 1− θ and Qθ({1}) = θ.
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The noisy channel coding problem considered here is that of reliably transmitting
a source sequence U ∈ X across a Binary Symmetric Channel (BSC). The latter is
characterized by the random error sequence Ψ : Ω → X, which is an iid sequence of
bits having the Bernoulli distribution Qq for some q ∈ (0, 1/2):

(20) P(Ψn = x) = Qq({x}) for x ∈ {0, 1} and n ∈ N.

The channel inverts the n’th bit transmitted over it if and only if Ψn = 1.
Reliable communication can be achieved by the use of block coding with a ran-

dom code ensemble [7], [20]. In the present context, the latter is a random map
Γ : Ω × X → X, for which the family of random variables (Γ( · , u)n, u ∈ X, n ∈ N) is
independent of Ψ, and iid with common distribution Q1/2. In a (K, N) block coding
scheme, the first K bits of the source sequence U form a source word TKU that is
encoded into an N -bit codeword XK,N as follows:

(21) XK,N (ω) := TNΓ(ω, TKU↔0),

where 0 is the zero element of X. It is this codeword that is transmitted bit-by-bit
across the channel, resulting in the channel output word

(22) YK,N (ω) := XK,N (ω)⊕ TNΨ(ω).

Remark 1.4. The use of random block codes, as pioneered by Shannon [20],
is a simple way of defining a sequence of codes (indexed by K) with some common
defining feature, when finding scaling limits. The randomness of a code is an addi-
tional potential source of communication errors, since two different words v, ṽ ∈ XK

may give rise, by chance, to very close or even identical codewords TNΓ(ω, v↔0) and
TNΓ(ω, ṽ↔0). However, as a result of the strong law of large numbers, random block
codes have good error performance in the limit of large K. This fact is verified in
Theorem 2.1 below.

The receiver knows YK,N and Γ, and must compute an estimate of the source
word TKU . Of course, the Bayesian approach makes the assumption that TKU has
some prior distribution PU,K ∈ P(XK), and computes the appropriate posterior dis-
tribution, ΠK,N : Ω → P(XK), as in (4):

(23) ΠK,N (ω)(B) :=
∑

v∈B qρK,N (ω,v)(1− q)N−ρK,N (ω,v)PU,K({v})∑
v∈XK

qρK,N (ω,v)(1− q)N−ρK,N (ω,v)PU,K({v})
for B ∈ XK .

Here ρK,N : Ω×XK → JN is the Hamming distance between the channel output word
and the codeword corresponding to v:

(24) ρK,N (ω, v) := ‖YK,N (ω)⊕ TNΓ(ω, v↔0)‖ .

In what follows, PU,K will always be the uniform prior Q⊗K
1/2 . The maximum a-

posteriori probability (MAP) estimator of TKU then takes the form

X̂K(ω) := arg max
v∈XK

ΠK,N (ω)({v}) = arg min
v∈XK

ρK,N (ω, v).
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Remark 1.5. In section 3 we shall regard YK,N as being the observation in this
primary Bayesian problem, and Γ as being a random parametrization. As in (4),
ΠK,N depends on the outcome of the observation, YK,N (ω); however, it also depends
on the outcome of the code, Γ(ω, · ). Both of these dependencies appear in (23) through
ω.

We consider sequences of such block coding problems indexed by K, with N =
[R−1K] for some code rate R ∈ (0,∞). (We assume, throughout, that K > R so that
N ≥ 1.) The classical result of Shannon [20] states that reliable communication can
be achieved at all code rates less than a well defined channel capacity C, but not at
rates exceeding C. By “reliable communication” we mean that the error probability
of the MAP estimator can be made arbitrarily small by the use of sufficiently large
values of K (for a fixed value of R). It is shown in [20] that the channel capacity C

is the value of the mutual information between the input and output bits of the error
prone channel, maximized over the distribution of the input bits. In the case of the
binary symmetric channel, the maximizing distribution is Q1/2, and C = 1 − b(q),
where b : [0, 1] → [0, 1] is the binary entropy function

(25) b(θ) = −θ log θ − (1− θ) log(1− θ).

(See, for example, [7].)

Even though reliable communication, in this sense, is not possible at code rates
exceeding C, useful communication may still be possible. For example, it may be
acceptable, in a particular application, for decoding errors to occur, provided that the
size of the errors is not too great. (The latter may be defined by some distortion metric
on the source space, XK .) The decoding strategy would then be to pick the word from
the source space that minimized the posterior mean distortion. The minimum average
distortion would typically be smaller than that arising from pure guesswork, even if
the code rate were greater than C, and this is the reason for including such code
rates in this study. The use of a code rate in excess of 1 would be appropriate if we
were prepared to accept a larger average distortion than that arising from the raw
use of the channel. (Such code rates would have obvious advantages in the effective
transmission rate they achieved over the channel.) The posterior distributions for the
infinite systems considered in Part II are useful in the study of such issues.

1.5. Discussion. Although random block codes have good error performance
in the limit of large K, they require very computationally demanding decoders. In
fact, even the specification of the code requires tables of a size that is exponentially
large in K. Much of the research on coding for noisy channels carried out since
1948 has been on the development of codes that admit far simpler decoders, and a
major role in this quest has been played by linear codes, for which the non-random
equivalent of TNΓ(ω, TKU↔0) of section 1.4 is a linear map from XK to XN . Until
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1993 the practice of error control coding was dominated by (linear) convolutional codes
exploiting finite-state machines in the encoders, and dynamic programming in the
decoders, [22]. Because of the resulting linear correlation structure in the codewords,
such codes cannot be used at rates very close to capacity. However, in the last 15
years, the important classes of turbo codes and low density parity check (LDPC) codes
have dominated the research literature because they admit simple iterative decoders,
and yet are capable of achieving reliable communication at rates close to capacity
[18].

In 1989, Sourlas [21] developed a statistical mechanical interpretation of a type of
LDPC error control code. Since then there has been much research effort to bring the
solution techniques for the so-called “spin glasses” of statistical mechanics to bear on
coding theory, [5], [6], [11], [13], [16], [18]. Many of these references concern LDPC
codes, which correspond to spin glasses with “dilute” connectivity—the crucial prop-
erty leading to low complexity decoding. In this methodology, the spin glass system
actually corresponds to the MAP bit decoder of the error control problem, i.e. the de-
coder that maximizes the posterior marginal distributions of the individual bits. The
MAP word decoder is recovered in [21] by the introduction of a new positive “hyper
parameter”, β, which has the effect of altering the dependency between the individual
bits in the posterior distribution. When β = 1 no change is made to this dependency,
and so the spin glass system corresponds to the MAP bit decoder; however, in the
limit of large β, the spin glass system corresponds to the MAP word decoder. The
interpretation of β as an “inverse temperature” parameter leads to the terminology
“high temperature” decoding for any decoder with a small value of β. “Raising the
temperature of the decoder” above that of the MAP word decoder (absolute zero)
reduces long range dependencies in the associated posterior word distribution, and so
helps to reduce decoder complexity (at the cost of accuracy). In the context of the
channel coding problem of section 1.4, the spin glass system corresponds to the MAP
bit decoder based on an erroneous model that assumes a value

q̃ :=
qβ

qβ + (1− q)β
,

for the channel error probability.
The results of the present paper and Part II [15] concern the true word posterior

only, and so are somewhat different from those in [5], [11], [13], [16] and [21]. They do
not involve the hyper parameter β, but show rather that the code rate R plays the role
of temperature in the statistical mechanical interpretation of MAP word decoding.

2. Reliable Communication. The region of reliable communication for the
channel coding problem of section 1.4 is the range of code rates, R, for which the error
probability of the MAP word decoder vanishes with increasing K. Within this region,
decoding errors are rare events and can be characterized by their large deviation
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rate function, which is known as the reliability function in the coding literature. The
reliability function of the binary symmetric channel with random coding is well known
(see, for example, [7]); however, we show here that it arises naturally in the variational
Bayes formulae for secondary estimation problems in which the observation is the
decoding error event, or its complement. For example, because the decoding error
event is rare in the region of reliable communication, its observation bears significant
information on the channel error sequence, Ψ, and/or the random code, Γ. The
reliability function specifies the full information in this observation as a function of
the code rate R. By computing the information gains that this observation provides
on Ψ and Γ, we can identify the dominant source of errors.

We consider a sequence of (K, N) block codes, indexed by K (> R), with N =
[R−1K] for some fixed code rate R ∈ (0,∞). For each K, we define the MAP word
decoding error event as follows:

(26) EK := {ω ∈ Ω : µK(ω) ≤ νK(ω)},

where

µK(ω) := min
v∈AK

ρK,N (ω, v),

AK := XK \ {TKU},(27)

νK(ω) := ρK,N (ω, TKU).

Remark 2.1. EK is the event that the channel output word is at least as close
(in Hamming distance) to the codeword corresponding to some v ∈ AK as it is to the
transmitted codeword. If more than one v ∈ XK minimizes this distance then there is
more than one MAP estimate of TKU , and it is not clear what the receiver’s strategy
should be. Our definition of EK is “pessimistic” in the sense that it contains the error
events for all MAP strategies that produce a single estimate. To use a strict inequality
in (26) would be “optimistic”, since EK would then be the error event for a receiver
that always chose TKU when it was one of a set of MAP estimates. However, with
one exception (mentioned at the very end of this section), the results that follow are
not sensitive to such distinctions, and remain true if the inequality in (26) is made
strict.

Straightforward arguments show that the family {(YK,N ⊕ TNΓ( · , v↔0))n, v ∈
AK , 1 ≤ n ≤ N} is independent of Ψ, and iid with common distribution Q1/2. In
particular, νK and µK are independent.

Definition 2.1.

(i) Let f : Df → R and g : Dg → R for some intervals of the real line, Df and
Dg. We say that (f, g) is a Fenchel-Legendre pair if f is convex, g is concave,

(28) g(t) = inf
θ∈Df

{f(θ) + θt} for all t ∈ Dg
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and

(29) f(θ) = sup
t∈Dg

{g(t)− θt} for all θ ∈ Df .

(ii) For any code rate R ∈ (0,∞),

(30) θGV(R) := b−1((1−R)+),

where b−1 is the inverse of the binary entropy function of (25), when the latter
is restricted to the sub-domain [0, 1/2], and, for any α ∈ R, α+ := max{0, α}.

(iii) The functions fν : [0, 1] → [0,∞), fµ : [0, 1] × (0,∞) → (−∞, 1), gν : R →
(−∞, 1) and gµ : R× (0,∞) → (−∞, 1) are as follows:

fν(θ) := h(Qθ |Qq) = θ log
(

θ

q

)
+ (1− θ) log

(
1− θ

1− q

)
fµ(θ, R) := h(Qθ |Q1/2)−R = 1− b(θ)−R

(31)
gν(t) := − log(1− q + q2−t)

gµ(t, R) := 1− log(1 + 2−t)−R.

Remark 2.2. If R ≤ 1 then θGV(R) is the unique θ ∈ [0, 1/2] for which
h(Qθ |Q1/2) = R. When K is large, NθGV(R) approximates the Hamming distance
between codewords of a deterministic code for which the Gilbert-Varshamov bound is
2K . (See, for example, [7].) The channel capacity, C, is the unique value of R for
which θGV(R) = q.

The following lemma summarizes some large deviation estimates for the sequences
(νK ; K ∈ N) and (µK ; K ∈ N) of (27). It is a standard result; however, an outline
proof is included in the Appendix for the sake of completeness. In this Lemma, and
all subsequent results, N = [R−1K].

Lemma 2.1.

(i) The pair (fν , gν) is a Fenchel-Legendre pair.
(ii) For any R ∈ (0,∞), the pair (fµ( · , R), gµ( · , R)) is a Fenchel-Legendre pair.
(iii) For any R ∈ (0,∞) and any θ ∈ [0, 1],

lim
K

N−1 log P(νK ≤ Nθ) = −fν(θ)1[0,q](θ),

lim
K

N−1 log P(νK ≥ Nθ) = −fν(θ)1[q,1](θ),(32)

lim
K

N−1 log P(µK ≤ Nθ) = −fµ(θ, R)1[0,θGV(R))(θ).

(iv) For any R ∈ (0,∞) and any θ ∈ [0, 1/2),

(33) lim
K

N−1 log(− log P(µK > Nθ)) = −fµ(θ, R).

(v) If R = 1 then P(µK > 0) → e−1.
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Consider the Bayesian problems of estimating νK and µK (jointly or separately)
from the observation that the decoding error event EK has occurred. The prior and
posterior distributions in these problems will be denoted PK

ν,µ, PK
ν , PK

µ , PK
ν,µ|E , PK

ν|E
and PK

µ|E . The log-likelihood functions are as follows:

HK
ν,µ|E(n, m) := − log P(EK | νK = n, µK = m)

= 0 if n ≥ m

+∞ otherwise,(34)

HK
ν|E(n) := − log PK

µ (Jn),

HK
µ|E(m) := − log PK

ν (JN \ Jm−1),

where we have used the fact that PK
ν,µ = PK

ν ⊗PK
µ as discussed after Remark 2.1, and

Jn is as in Definition 1.1. The full information of EK (in the sense of section 1.2) in
all three problems has the common value

(35) i(HK
ν,µ|E) = i(HK

ν|E) = i(HK
µ|E) = − log P(EK).

Consider also the Bayesian problems of estimating νK and µK from the observa-
tion that the error event EK has not occurred. The posterior distributions in these
problems will be denoted PK

ν,µ|Ē , PK
ν|Ē and PK

µ|Ē . (We define ĒK := Ω \ EK .) The
log-likelihood functions are as follows:

HK
ν,µ|Ē(n, m) := − log P(ĒK | νK = n, µK = m)

= 0 if n < m

+∞ otherwise,(36)

HK
ν|Ē(n) := − log PK

µ (JN \ Jn),

HK
µ|Ē(m) := − log PK

ν (Jm−1).

Once again, the full information of ĒK in all three problems has a common value:

(37) i(HK
ν,µ|Ē) = i(HK

ν|Ē) = i(HK
µ|Ē) = − log P(ĒK).

The variational Bayes formulae of section 1.2 express the information gains on
(ν, µ), ν and µ arising from the observation of EK or ĒK in terms of the full informa-
tion quantities of (35) and (37) and the mean values of the log-likelihood functions of
(34) and (36).

Of course, in the context of a sequence of coding problems, indexed by K, all
these information quantities depend on K. The following theorem shows that this
dependency is asymptotically a linear increase in all cases, and evaluates scaling limits.
Its proof, which makes repeated use of Proposition 1.1, is given in the appendix.
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Theorem 2.1.

(i) For any R ∈ (0,∞), the full information of the observation sequence (EK ,

K ∈ N) admits the following scaling limit:

lim
K

N−1i(HK
ν,µ|E) = IE(R)

(38)
:=
(
fν(θ∗(R)) + fµ(θ∗(R), R)

)
1(0,C](R),

where

(39) θ∗(R) := min
{ √

q√
(1− q) +

√
q
, θGV(R)

}
.

(ii) For any R ∈ (0, 1], the full information of the observation sequence (ĒK , K ∈
N) admits the following scaling limit:

lim
K

N−1i(HK
ν,µ|Ē) = IĒ(R)

(40)
:= fν(θGV(R))1[C,1](R),

(iii) For any R ∈ (0,∞), the information gains on (νK , µK), νK and µK , arising
from the observation of EK admit the following scaling limits:

lim
K

N−1h(PK
ν,µ|E |P

K
ν,µ) = IE(R),

lim
K

N−1h(PK
ν|E |P

K
ν ) = Hν |E(R) := fν(θ∗(R))1(0,C](R),(41)

lim
K

N−1h(PK
µ|E |P

K
µ ) = Hµ |E(R) := fµ(θ∗(R), R)1(0,C](R),

where θ∗(R) is as defined in (39).
(iv) For any R ∈ (0, 1], the information gains on (νK , µK), νK and µK , arising

from the observation of ĒK admit the following scaling limits:

lim
K

N−1h(PK
ν,µ|Ē |P

K
ν,µ) = lim

K
N−1h(PK

ν|Ē |P
K
ν )

= IĒ(R)(42)

lim
K

N−1h(PK
µ|Ē |P

K
µ ) = 0.

Remark 2.3. IE and IĒ are the large deviation rate functions for the events
EK and ĒK , respectively. For large K,

(43) P(EK) ≈ exp(−IE(R)N) and P (ĒK) ≈ exp(−IĒ(R)N).

The scaling limits are plotted against R in Figures 1 and 2 for the channel error
probability q = 0.05. As well as showing the significance of the channel capacity C

(= 0.7136), Figure 1 also shows a secondary critical code rate

(44) R∗ := 1− b

( √
q√

(1− q) +
√

q

)
= 0.3057.
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Fig. 2. Scaling Limit for the Observation Sequence (ĒK): IĒ . (q = 0.05)

This is the value at which the minimum in (39) switches from the first to the second
term. This switch causes discontinuities in the first derivatives of Hν |E and Hµ |E ,
and in the second derivative of IE at R = R∗. Since the latter corresponds to the
scaling limit of the free energy of a statistical mechanical system (in the analogy of
section 1.3), these secondary Bayesian estimation problems can be said to exhibit a
third-order phase transition at this code rate.

For code rates less than C, EK carries asymptotically significant information on
the sequence (νK , µK), but ĒK does not; this is because ĒK is not a rare event in
this range of code rates, and so its observation does not add significantly to the prior
information in PK

ν,µ. For code rates greater than C this distinction is reversed—the
error event EK then has a high probability of occurrence and its complement ĒK
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is rare, and so bears significant information on (νK , µK). The second critical code
rate, R∗, is that above which neither EK nor ĒK carries asymptotically significant
information on µK . This shows that, for code rates greater than R∗, the randomness
of the code does not make a significant contribution to whether or not decoding errors
occur. For rates in this range, large deviations of νK are the dominant source of rare
decoding errors when R < C, and rare decoding successes when R > C. For rates
less than R∗, large deviations of both νK and µK occur in typical error events.

For code rates greater than 1 the scaling limits associated with the observation E

all take the value 0; however, the scaling limits associated with Ē become dependent
on the arbitrary choice that E contains any ω for which νK(ω) = µK(ω). (See Remark
2.1.)

3. The Primary Bayesian Problem. The primary Bayesian problem is that of
estimating the source word TKU from the channel output YK,N (ω) of (22). Assuming
a uniform prior (PU,K = Q⊗K

1/2 ), the log-likelihood function, HK,N : Ω × X → [0,∞),
the full information iK,N : Ω → [0,∞), and the information gain hK,N : Ω → [0,∞)
are as follows:

HK,N (ω, v) := −ρK,N (ω, v) log q − (N − ρK,N (ω, v)) log(1− q)(45)

iK,N (ω) := − log
∑

v∈XK

qρK,N (ω,v)(1− q)N−ρk,N (ω,v)2−K(46)

hK,N (ω) := h(ΠK,N (ω) |Q⊗K
1/2 ),(47)

where ρK,N is as defined in (24) and ΠK,N is as defined in (23).

The following theorem shows that iK,N and hK,N scale linearly with (large) K,
and finds scaling limits. It is proved in the appendix.

Theorem 3.1.

(i) For almost all ω, the full information in the observation sequence (YK,N , K ∈
N) admits the following scaling limit:

lim
K

K−1iK,N (ω) = I(R) := 1 + R−1b(q) if R ≤ C
(48)

R−1 if R ≥ C.

(ii) For almost all ω, the information gain for the sequence of primary problems
admits the following scaling limit:

lim
K

K−1hK,N (ω) = H(R) := 1 if R ≤ C
(49)

R−1C if R ≥ C.

The limits I(R) and H(R) are plotted against R in Figure 3 for the fixed channel
error probability q = 0.05. In the region of reliable communication (R < C)H(R) = 1,
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Fig. 3. Scaling Limit Profiles for the Primary Problem: top line I(R), bottom line H(R).

(q = 0.05)

indicating that the scaling limit of the information gain at the receiver matches the
entropy rate of the source. For code rates above capacity this is no longer true.

This behaviour has the following statistical mechanical interpretation. For each
ω ∈ Ω and K ∈ N, let ΣK,ω be an abstract statistical mechanical system with
phase space XK , energy function EK,ω : XK → R+, and entropy function SK :
P(XK) → [−∞, 0] defined as follows:

EK,ω(v) := RHK,N (ω, v)
(50)

SK(Π̃) := −h(Π̃ |Q⊗K
1/2 ).

The full information of the primary Bayesian problem, iK,N (ω), is equal to the mini-
mum free energy of ΣK,ω; in fact it follows from (9) that

iK,N (ω) = h(ΠK,N |Q⊗K
1/2 ) + 〈HK,N (ω, · ) , ΠK,N (ω)〉

= min
Π̃∈P(XK)

{R−1〈EK,ω , Π̃〉 − SK(Π̃)}.

In the limit of large K, this becomes

(51) I(R) = R−1 ≺ E , Π � −S(Π),

where ≺ E , Π � and S(Π) are the scaling limits for the sequences of internal energy
and entropy, respectively, of the statistical mechanical systems (ΣK,ω, K ∈ N):

lim
K

K−1〈EK,ω , ΠK,N (ω)〉 = ≺ E , Π � = b(q) for a.a. ω

lim
K

K−1SK(ΠK,N (ω)) = S(Π) = −H(R) for a.a. ω.

Crucially, ≺ E , Π � does not depend on R, which shows that R plays the role of
absolute temperature in ΣK,ω for large K. (Cf. (13).)
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When K is large, the normalized minimum free energy of ΣK,ω is approximately
I(R), which has a discontinuous derivative at R = C. In this sense, ΣK,ω exhibits
a second order phase transition at the temperature R = C. This separates the two
distinct phases of reliable communication at low temperatures, and failure of commu-
nication at high temperatures. The phase transition is a large K limiting property
of the sequence of systems (ΣK,ω, K ∈ N). In Part II [15] it is shown also to be a
property of an infinite system that represents an extension of the Bayesian paradigm.
The distinct phases below and above the critical temperature are examined there in
detail.

The scaling limits I(R) and H(R) are measured in bits per source bit. If iK,N and
hK,N were normalized by N instead of K then the resulting scaling limits would be
measured in bits per channel bit. Graphs of RI(R) and RH(R) against R are shown
in Figure 4. This shows how failure of communication at code rates exceeding C is
a result of saturation in the entropy rate of the observation sequence (YK,N , K ∈ N);
the latter has a maximum value of 1 bit per channel bit, which is not enough to carry
the rates of entropy of both the source and the channel error sequences when R > C.
(The rate of entropy of the channel error sequence is b(q) bits per channel bit at all
values of R.)

Theorem 3.1(ii) shows that the observation continues to supply information on
U , even when the code rate exceeds the channel capacity. The posterior distribution,
ΠK,N , is thus far from being uniform, and it is natural to ask whether it contains
more information on individual bits than the (uniform) prior. This is answered in
the negative in the following proposition, which is proved in the appendix. The
information gain at rates above capacity thus concerns only dependencies between
the bits of U . This is unfortunate, since in many applications the individual bits have
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value in their own right. We return to this issue in Part II.
Proposition 3.1. For any R > C, any k ∈ N and almost all ω,

(52) lim
K

ΠK,N (ω)({v ∈ XK : vk = Uk}) = 1/2.

Appendix A. Proofs.

We first prove a simple lemma on combinatorics and information. We require a
slightly stronger version of this (uniformity over JN ) than that normally appearing
in the literature.

Lemma A.1. For JN as in Definition 1.1,

(53) lim
N

max
n∈JN

∣∣∣∣∣N−1 log

(
N

n

)
− b(n/N)

∣∣∣∣∣ → 0,

where b is the binary entropy function of (25).
Proof. The term in the max is clearly zero if n = 0 or N . Suppose, then, that
n ∈ JN \ {0, N}. Stirling’s formula shows that

loge(n!) = (n + 1/2) loge(n)− n + 1/2 loge(2π) + αn,

where 0 < αn < 1/n, and so

loge

(
N

n

)
= −n loge(n/N)− (N − n) loge((N − n)/N) + 1/2 loge(N/n(N − n))

+(αN − αn − αN−n − 1/2 loge(2π)).

Changing the base of logarithms, it follows that

max
n∈JN

∣∣∣∣∣N−1 log

(
N

n

)
− b(n/N)

∣∣∣∣∣ ≤ 1
2N loge 2

max
n∈JN\{0,N}

∣∣∣∣ loge

(
N

n(N − n)

)
+2(αN − αn − αN−n − loge(2π))

∣∣∣∣,
and (53) follows.

A.1. Proof of Lemma 2.1. Parts (i) and (ii) are easily verified, and the first two
equations in (32) follow from an application of Cramér’s theorem to the iid Bernoulli
sequence (Ψn, n = 1, 2, . . . , N), the sum of which has moment generating function

ΦN (t) := E exp

(
t

N∑
n=1

Ψn

)
= (1− q + q2t)N = exp(−Ngν(−t)).

(See, for example, [4].) Similarly, for v ∈ AK and θ ∈ [0, 1/2],

lim
K

N−1 log P(ρK,N ( · , v) ≤ Nθ) = −h(Qθ |Q1/2).
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If θ ∈ [0, 1/2) then, for any v ∈ AK ,

2−K log P(µK > Nθ) = (1− 2−K) log P(ρK,N ( · , v) > Nθ)

= (1− 2−K) log(1− P(ρK,N ( · , v) ≤ Nθ))(54)

= − log e P (ρK,N ( · , v) ≤ Nθ)(1 + εK),

where lim supK N−1 log |εK | < 0 and the last step is based on the second-order Taylor
expansion of loge(1− x) about the point x = 0. So

(55) −R + lim
K

N−1 log(− log P(µK > Nθ)) = −h(Qθ |Q1/2),

and this proves (33). It also proves the third equation in (32) for the case θ > θGV.
If θ < θGV then it follows from (55) that

−R + lim
K

N−1 log P(µK ≤ Nθ) = −h(Qθ |Q1/2),

and this proves the third equation in (32) for the case θ < θGV. The case θ = θGV

follows from this since P(µK ≤ NθGV) ≥ P(µK ≤ N(θGV − ε)) for any ε > 0.
It follows from (54) that

log P(µK > 0) = log(1/e)2K−N (1 + εK),

and, in the special case that K = N , this proves part (v).

A.2. Proof of Theorem 2.1. According to Proposition 1.1(iii), the minimizer
of apparent information in the Bayesian problem for (νK , µK) given EK is the poste-
rior distribution, PK

ν,µ|E , and so

(56) < HK
ν,µ|E , PK

ν,µ|E >= 0 and h(PK
ν,µ|E |P

K
ν,µ) = i(HK

ν,µ|E)

It follows from the independence of νK and µK , the chain rule of relative entropy (see,
for example, [4]) and Jensen’s inequality that

h(PK
ν|E |P

K
ν ) + h(PK

µ|E |P
K
µ ) ≤ h(PK

ν,µ|E |P
K
ν,µ).

Together with the non-negativity of relative entropy and (56), this shows that

(57) 0 ≤ h(PK
ν|E |P

K
ν ) + h(PK

µ|E |P
K
µ ) ≤ h(PK

ν,µ|E |P
K
ν,µ) = i(HK

ν,µ|E).

Similarly

(58) 0 ≤ h(PK
ν|Ē |P

K
ν ) ≤ h(PK

ν|Ē |P
K
ν )+h(PK

µ|Ē |P
K
µ ) ≤ h(PK

ν,µ|Ē |P
K
ν,µ) = i(HK

ν,µ|Ē),

The remainder of the proof finds upper bounds on i(HK
ν,µ|E) and i(HK

ν,µ|Ē), and tighter
lower bounds on h(PK

ν|E |P
K
ν ), h(PK

µ|E |P
K
µ ) and h(PK

ν|Ē |P
K
ν ).
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Upper bounds. For each θ ∈ [0, 1], let HK,θ, H̄K,θ : J2
N → [0,∞] be as follows

HK,θ(n, m) := 0 if n ≥ Nθ and m ≤ Nθ

+∞ otherwise

H̄K,θ(n, m) := 0 if n ≤ Nθ and m > Nθ

+∞ otherwise.

Since HK
ν,µ|E(n, m) ≤ HK,θ(n, m) for all n, m ∈ JN ,

(59) i(HK
ν,µ|E) ≤ i(HK,θ) = − log P(νK ≥ Nθ)− log P(µK ≤ Nθ).

Together with the second and third equations in (32), this provides the upper bound

(60) lim sup
K

N−1i(HK
ν,µ|E) ≤ min

θ∈[0,1]
{fν(θ)1[q,1](θ) + fµ(θ, R)1[0,θGV)(θ)}.

That θ∗(R) minimizes the right-hand side here for all R ∈ (0,∞) is easily verified.
Part (iii) and (38), for the case R ≥ C (where the right-hand side of (60) is zero),
follow directly from (57) and (60).

Similarly, for any R ∈ (0, 1],

(61) lim sup
K

N−1i(HK
ν,µ|Ē) ≤ fν(θGV)1(C,1](R),

where we have used Lemma 2.1(v) in the case R = 1. Part (iv) and (40), for the case
R ≤ C, follow directly from (58) and (61).

Lower bounds. For each t ∈ R, let HK,t : JN → R be as follows:

HK,t(n) := tn.

Consider the Bayesian problem of estimating νK given the observation that EK has
occurred. The full information of HK,t in this context is

(62) iν(HK,t) = − log E exp(−tνK) = − log(1− q + q2−t)N = Ngν(t).

For any θ ∈ [0, 1] and any ε > 0, let

(63) JN (θ, ε) := {n ∈ JN : |n/N − θ| < ε} and J̄N (θ, ε) := JN \ JN (θ, ε).

Now PK
ν|E({n}) = P(EK)−1 P (νK = n) P (µK ≤ n) and

N−1 min{P(νK ≤ n), P(νK ≥ n)} ≤ P(νK = n) ≤ min{P(νK ≤ n), P(νK ≥ n)},

and so it follows from Lemma 2.1(iii) that, for any θ ∈ [0, 1],

lim
K

N−1 log
(
PK

ν|E({[Nθ]}) P (EK)
)

= −fν(θ)− fµ(θ, R)1[0,θGV)(θ).
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Suppose that R ∈ (0, C], then θ∗(R) is the unique maximizer of the right-hand side
here and, since the latter is strictly convex,

(64) lim
K

N−1 log

(
PK

ν|E(J̄N (θ∗, ε))

PK
ν|E(JN (θ∗, ε))

)
< 0 for any ε > 0.

Let P̂K,ε be the following approximation to PK
ν|E :

P̂K,ε({n}) := PK
ν|E({n})/PK

ν|E(JN (θ∗, ε)) if n ∈ JN (θ∗, ε)

0 otherwise;

then

t(θ∗ − ε) ≤ lim inf
K

N−1〈HK,t , P̂K,ε〉 ≤ lim sup
K

N−1〈HK,t , P̂K,ε〉 ≤ t(θ∗ + ε),

and, because of (64),

lim
K

N−1
(
〈HK,t , PK

ν|E〉 − 〈HK,t , P̂K,ε〉
)

= 0.

Since these expressions are true for all ε > 0,

(65) lim
K

N−1〈HK,t , PK
ν|E〉 = tθ∗ for all R ∈ (0, C].

A similar argument shows that

(66) lim
K

N−1〈HK,t , PK
µ|E〉 = tθ∗ for all R ∈ (0, C].

It follows from (10), (62) and (65) that

lim inf
K

N−1h(PK
ν|E |P

K
ν ) ≥ sup

t
lim
K

N−1
(
iν(HK,t)− 〈HK,t , PK

ν|E〉
)

= sup
t

(gν(t)− tθ∗)(67)

= fν(θ∗) for all R ∈ (0, C].

Consider next the Bayesian problem of estimating µK given the observation that
EK has occurred. The full information of HK,t in this context is

iµ(HK,t) = − log E exp(−tµK).

Now

E exp(−tµK) ≤
∑

n∈JN

2−tn P (µK ≤ n)

=
∑

n∈JN

2−tn P (∪v∈AK
{ω ∈ Ω : ρK,N (ω, v) ≤ n})

<
∑

n∈JN

2K−tn P (ρK,N (ω, v) ≤ n) for any v ∈ AK

= 2K−N (1 + 2−t)N ,
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and so

(68) lim inf
K

N−1iµ(HK,t) ≥ 1−R− log(1 + 2−t) = gµ(t, R).

It follows from (10), (66) and (68) that

lim inf
K

N−1h(PK
µ|E |P

K
µ ) ≥ sup

t
lim inf

K
N−1

(
iµ(HK,t)− 〈HK,t , PK

µ|E〉
)

≥ sup
t

(gµ(t, R)− tθ∗)(69)

= fµ(θ∗, R) for all R ∈ (0, C].

Combining the lower bounds (67) and (69) with the upper bound (60) and (57) proves
part (iii) and (38) for the case R < C.

Similar arguments to those used to prove (67) provide the following lower bound

(70) lim inf
K

N−1h(PK
ν|Ē |P

K
ν ) ≥ fν(θGV, q)1[C,1](R),

and this, together with (61) and (58) proves part (iv) and (40) for the case R ∈ (C, 1].

A.3. Proof of Theorem 3.1. We identify dominant terms in the sum in (46)
when it is expressed in the following form:

iK,N (ω) = − log

(
αK(ω) +

∑
n∈JN

βK(ω, n)

)
.

Here,

αK(ω) := qρK,N (ω,TKU)(1− q)N−ρK,N (ω,TKU) 2−K ,

βK(ω, n) := MK(ω, n)qn(1− q)N−n 2−K ,(71)

MK(ω, n) := card{v ∈ AK : ρK,N (ω, v) = n},

and AK is as defined in (27).
The limiting behaviour of αK is given by the strong law of large numbers:

(72) lim
K

N−1 log αK = −b(q)−R a.s.

In order to find the limiting behaviour of
∑

βK , we first find an upper bound. To make
this bound uniform in n we set up a sequence that “scans” the values n = 0, 1, . . . , N

between each incrementation of K; for any l ∈ N, let

Kl := max

K ∈ N :
K−1∑

k=1+[R]

([R−1k] + 1) < l

 ,

Nl := [R−1Kl],

nl := l − 1−
Kl−1∑

k=1+[R]

([R−1k] + 1),

γl(ω) := βKl
(ω, nl),
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where a sum with a void index set is, by definition, zero. Now

EMK( · , n) =
∑

v∈AK

P(ρK,N ( · , v) = n)

(73)

= (2K − 1)

(
N

n

)
2−N ,

and so, according to Lemma A.1,

lim
l

(
N−1

l log Eγl + 1 + h(Qθl
|Qq)

)
= 0,

where θl := nl/Nl. So, for any ε > 0,

∞∑
l=1

Eγl exp
(
Nl(1 + h(Qθl

|Qq)− ε)
)

< ∞.

It thus follows from the moment form of the first Borel-Cantelli lemma that

γl exp
(
Nl(1 + h(Qθl

|Qq)− ε)
)
→ 0 a.s. ,

and so

lim sup
l

(
N−1

l log γl + h(Qθl
|Qq)

)
< ε− 1 a.s.

Since this is true for all ε > 0

lim sup
l

(
N−1

l log γl + h(Qθl
|Qq)

)
≤ −1 a.s. ,

and so

(74) lim sup
K

max
n∈JN

{
N−1 log βK( · , n) + h(Qn/N |Qq)

}
≤ −1 a.s. ,

and, since the relative entropy term here is non-negative,

(75) lim sup
K

N−1 log max
n∈JN

βK( · , n) ≤ −1 a.s.

It follows from the continuity and strict convexity of fν that, for any ε > 0, there
exists a δ = δε > 0 such that

inf
K

inf
n∈J̄N (q,ε)

h(Qn/N |Qq) > h(Qq+δ |Qq),

where J̄N is as defined in (63). It thus follows from (74) that

(76) lim sup
K

max
n∈J̄N (q,ε)

N−1 log βK( · , n) < −1− h(Qq+δ |Qq) a.s.
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Next we refine (75) when n is restricted to the set ΘN,ε := JN (1/2, 1/2− θGV− ε),
where 0 < ε < 1/2− θGV. If v, ṽ ∈ AK and v 6= ṽ then ρK,N ( · , v) and ρK,N ( · , ṽ) are
iid, and so

EMK( · , n)2 =
∑

v,ṽ∈AK

P
(
ρK,N ( · , v) = ρK,N ( · , ṽ) = n

)
≤ EMK( · , n) + (EMK( · , n))2,

and

var{βK( · , n)/ E βK( · , n)} ≤

(
(2K − 1)

(
N

n

))−1

2N .

Lemma A.1 thus shows that

lim sup
l

N−1
l log

(
1ΘNl,ε

(nl)var{γl/ E γl}
)
≤ 1−R− b(θGV + ε) < 0,

and so
∞∑

l=1

1ΘNl,ε
(nl)var{γl/ E γl} < ∞,

and, according to the moment form of the first Borel-Cantelli lemma,

(77) max
n∈ΘN,ε

(βK( · , n)/ E βK( · , n)− 1)2 → 0 a.s.

This, together with Lemma A.1 and (73), shows that, for any θ ∈ (θGV, 1− θGV),

(78) lim
K

N−1 log βK( · , [Nθ]) = −1− h(Qθ |Qq) a.s.

Now αK + ΣnβK( · , n) admits the following bounds:

αK1(0,C](R) + βK( · , [Nq])1(C,∞)(R) ≤ αK +
∑

n∈JN

βK( · , n)

≤ (N + 2)max
{

αK , max
n∈JN

βK( · , n)
}

,

and so, from (72), (75), (76), (78), and the continuity of b,

(79) lim
K

N−1iK,N = (R + b(q))1(0,C](R) + 1(C,∞)(R) a.s. ,

which proves (48).
For any ε > 0, let

DK,ε(ω) :=
{
v ∈ XK : q − ε < N−1ρK,N (ω, v) < q + ε

}
;

then

ΠK,N ( · )(DK,ε) =
αK1(q−ε,q+ε)(N−1νK) +

∑
n∈JN (q,ε) βK( · , n)

αK +
∑

n∈JN
βK( · , n)

,
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and it follows from the strong law of large numbers, (72), (75), (76) and (78) that

lim
K

ΠK,N ( · )(DK,ε) = 1 a.s.

Since this is true for all ε > 0,

lim
K

N−1〈HK,N , ΠK,N 〉 = b(q) a.s.,

and (49) follows from parts (ii) and (iv) of Proposition 1.1.

A.4. Proof of Proposition 3.1. For any K ≥ k, let BK,k := {v ∈ XK : vk =
Uk}; then

ΠK,N (ω)(BK,k) =
αK(ω) +

∑
n∈JN

β̃K(ω, n)
αK(ω) +

∑
n∈JN

βK(ω, n)
,

where αK and βK are as defined in (71), and

β̃K(ω, n) = card{v ∈ AK ∩BK,k : ρK,N (ω, v) = n}qn(1− q)N−n2−K .

Now

Eβ̃K( · , n) =
∑

v∈AK∩BK,k

P(ρK,N ( · , v) = n)qn(1− q)N−n2−K

= (2K − 1)−1(2K−1 − 1) E βK( · , n),

and arguments identical to those used above show that (77) and (78) remain valid if β̃

is substituted for β. It follows from these limits and (72) that, for any 0 < ε < q−θGV,

lim
K

ΠK,N (ω)(BK,k) = lim
K

∑
n∈JN (q,ε) β̃K(ω, n)∑
n∈JN (q,ε) βK(ω, n)

= lim
K

∑
n∈JN (q,ε) Eβ̃K( · , n)∑
n∈JN (q,ε) EβK( · , n)

= 1/2,

and this completes the proof.
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