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STABILITY AND THE INFINITE-TIME QUADRATIC COST PROBLEM
FOR LINEAR HEREDITARY DIFFERENTIAL SYSTEMS*

M. C. DELFOUR,} C. McCALLA} anp S. K. MITTERY

Abstract. This paper studies the infinite-time quadratic cost control problem for a general class of
linear autonomous hereditary differential systems. It uses an approach which clarifies the system-
theoretic relationship between stabilizability, stability and existence of a solution of an associated
operator equation of Riccati type. For this purpose the stability problem is studied and an operator
equation of the Lyapunov type is derived. In both cases we obtain equations which characterize the
kernels of the Lyapunov and the Riccati equations.

1. Introduction. In a previous paper (cf. Delfour-Mitter [8]) we have studied
the quadratic cost optimal control problem over a finite time interval for a general
class of linear hereditary differential systems. In particular we have characterized
the optimal controller as a linear feedback controller acting on the “‘state’ of the
system. The feedback operator is determined by the solution of an operational
differential equation of Riccati type. The main objective of the present paper is to
study the infinite-time quadratic cost problem for a general class of linear autono-
mous hereditary differential systems. In undertaking this study we insist on an
approach which clarifies the system-theoretic relationship between controllability,
stabilizability, stability and existence of a solution of an associated operator
equation of Riccati type.

For systems described by ordinary differential equations the infinite-time
quadratic cost problem is well-studied (cf. R. W. Brockett [1], R. E. Kalman [13],
J. C. Willems [22], W. M. Wonham [23]). This problem has been studied for
certain classes of infinite-dimensional systems. J. L. Lions [15] has studied this
problem for abstract evolution equations of parabolic type and given a complete
solution to the problem. Lukes and Russell [16] have studied this problem for
abstract evolution equations of the type

dx(t)

el Ax(t) + Bu(t),

(1.1)
xX(0) = xo € D(A),

where A is an unbounded spectral operator (cf. Dunford and Schwartz [11]) and
B is also an unbounded operator satisfying certain conditions. Lukes and Russell
also allow unbounded operators in the cost function. Using an approach originally
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due to R. E. Kalman [13] they obtain an operational differential equation of
Riccati type to characterize the time-varying feedback gain in th finite time case.
They also show that under an appropriate stabilizability hypoiaesis the solution
to the infinite-time quadratic cost problem can be obtained in feedback form,
where the “feedback gain” is characterized by the solution of an operator equation
of quadratic type. The same problem has also been studied by R. Datko [4].
Unfortunately, R. Datko [4] does not characterize the solution as a feedback
controller acting on the “state’ of the system.

It is felt that the contributions of the present paper are the followmg

(i) We present a complete detailed solution to the infinite-time quadratic

cost problem for a general class of linear hereditary differential systems. Other
than the parabolic case solved by J. L. Lions [15], this appears to be the only other
case (so far) where the problem can be solved in a way which is satisfactory from
the system-theoretic point of view (that is, no ad hoc mathematical assumptions
need to be made).

(i) The approach we use here is different from that of Lukes and Russell
[16] as well as R. Datko [3],[4] and constitutes a synthesis of the work of J. L. Lions
[15] and Delfour and Mitter [6], [7], [8].

(iii) The detailed results we obtain exploit the structure of hereditary differ-
ential systems in an essential way.

(iv) It gives rigorous derivations of earlier incomplete results of Ross and
Fliigge-Lotz [19] for a more specialized problem.

The results on the equations for the kernel of the solution of the Lyapunov
equation have been announced in 1972 (cf. Delfour [5]).

2. Notation, terminology and preliminary definitions. Let R be the field of all
real numbers and let a > 0 be given.

Let X and Y be real Hilbert spaces with norms |- |y, | - |y and inner products
(-, -)yand (-, -)y respectively.

Let £%(—a,0; X) be the vector space of all m-measurable (m denoting the
complete Lebesgue measure on R) maps [—a, 0] —» X which are square integrable
and let L%(—a, 0; X) denote the natural Hilbert space associated with £?(—a, 0; X)
with norm | - ||,. Consider the space #?*(—a, 0; X) endowed with the seminorm

21 1f a2 = USOIF + 1713372,

The quotient space of £?(—a,0;X) by the linear subspace of all f such that
|1 sz = O is denoted by M*(—a,0; X). M?*(—a,0; X) endowed with the norm
(2.1) and inner product

0
22 (/> &)u = (£(0), g(0))x + J_ (f(6), g(0))x db

is a Hilbert space isometrically isomorphic to X x L%(—a,0; X) endowed with
the norm

0 1/2
23) Ihj = [|h°|§ + f |h1(9>|§d0]
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and inner product
0
(2.4) (h, k) = (h°, k%) + J (h'(6), k' (0))x d6.

The isomorphism is denoted by x, where x(h) = (h(0), h). For simplicity we shall
often identify h and the pair (h°, h'). For the motivation in introducing M?, see
Delfour and Mitter [6].

For all t € [0, o), we denote by W1-2(0, ¢ ; X) the vector space of all absolutely
continuous maps [0,¢] - X with a distributional derivative Dx in L?(0,t; X).
W20, t; X) endowed with the norm

t 1/2
(2.3) Ixllws2 = UO (Ix(s)x + IDx(s)I%) dS]

is a Hilbert space.

We denote by L2 (0, oo ; X) the Fréchet space of measurable maps [0, c0) —» X
which are square integrable on every compact subset of [0, c0). WLZ2(0, o0 ; X)
denotes the Fréchet space of all absolutely continuous maps [0, c0) - X with
derivatives in L2 (0, o0 ; X), and C, (0, 00 ; X) denotes the Fréchet space of all
continuous maps [0, 0) - X.

Let #(X,Y) denote the real Banach space of all continuous linear maps
A:X — Y endowed with the natural norm |A||. The adjoint of A in Z£(X,Y)
will be denoted by A* € (Y, X). When X = Y, we write £(X) instead of Z(X, X).
A e Z(X) will be said to be self-adjoint if A = A*. A self-adjoint A will be said to
be positive and written A = 0 if (Ax, x) = 0 for all xe X and positive definite
and written A > 0 if (Ax, x) > 0, x # 0. The identity in #(X) is denoted by Iy.

For an operator A € #(M?) we can exploit the isomorphism between M?>
and X x L? to decompose A into a matrix of operators

AOO AOl
(A 10 Al 1)’
where A% e Z(X), A% e P(L*(—a,0;X),X), A'%°e £(X,L*(—a,0;X)) and
Al e #(L*(—a,0; X)) are defined in the obvious way.

Let A:9(4) — X be a closed linear operator with dense domain £(4) in X.

The operator A is said to be bounded from below (resp. above) by a € R if for all
x € D(A), (Ax, x) = a| x| (resp. (4Ax, x) < al x[|?).

(2.6)

3. Summary of previous results. Let N = 1 be an integer, let a > 0 and
—a=0y<--- <8, <8, =0be real numbers, let X = R" be the Euclidean real
Hilbert space of finite dimension n and let U be an arbitrary real Hilbert space.

Consider the autonomous hereditary differential system

ra+@,z+ag%
h'(t +6), t+06,<0
0 xt+60), t+0=0
(L) +f A01(60) d0
-a h'(t+0), t+0<0
+ Bo(t), a.e.in [0, o0),
x(0) = h°, h = (h°h') in M*(—a,0;X),

d N
0= Aoox() + T 4,

i=1
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where Agg, 4; (i = 1,2, .-+, N) are elements of £(X), Ay, € L°(—a,0; L(X)),
ve L (0,00;U)and Be &£ (U, X).

It was shown in Delfour and Mitter [8], [10] that the system (L) can be
equivalently described by an evolution equation in M?(—a,0;X). For this
purpose we define the state at time t as an element

3.1 Xt h,v) = (&(t; h,0)° %(t; h,0))e M*(—a,0; X)
in terms of h = (h°, h') and the solution x( - ; h, v) of system (L):

0;h,v), >
(3-2) ﬂnhw°=ﬂumm,xmhmwm={““* v t+020}

h'(t +0) . otherwise |
We define
(3.3) V = {(W0), hlhe W"*(—a,0; X)}
and 4,:V— X, A,:V—> L*—a,0;X)and 4A:V - M*(—a,0; X) as follows
N 0
(3.4) Aoh = Aooh(®) + T ABO) + [ Aoy(0)h0)do,
i=1 —a
.~ dh
(3.5) MM@=@@,
and
(3.6) [An)° = Ayh, [An)' = A, h.

Let v(t) = 0in [0, o0) in (L). We then have (cf. Delfour and Mitter [8], [10])
the following.
THEOREM 3.1. The map t— X(t; h, 0) given by (3.1) generates a one-parameter
semigroup {®(t)} in L(M?) satisfying the following properties:
(i) for all hin M2, t— ®(t)h:[0, 0) - M? is continuous;
(i) B(O0) = I
(iii) for t = a, ®(t) is compact (i.e., maps bounded sets into relatively compact
sets);
(iv) for all hiin V the map t— ®(t)h:[0, c©) — V is continuous;
(V) the operator A defined by (3.4)~(3.6) is the infinitesimal generator of the
semigroup ®(t).
Now define the operator B e £(U, M*(—a,0; X)) as

(3.7) Bu = (Bu,0).

Consider the controlled evolution equation

dx - ~
=0 = Ax() + Bu(),
()
X(0) = h.
We then have the following theorem.
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THEOREM 3.2.
(i) Forall hinV and v in L2 (0, oo ; U), system (L) has a unique solution in
(3.8) W0, 003 V,M?) = {ze L} (0, o0; V)|Dz € L} (0, o0 ; M?)}

which coincides with the state X( - ; h, v) constructed from h and x(- ; h, v).

(i1) Themap (h,v)— A(h,u) = (- ;h,v):V x L} (0, 00;U) = W, (0, 00 ; V, M?)
is linear and continuous when V is endowed with the W'-*-topology ; it can be lifted
to a unique continuous linear map A :M? x L2 (0, o0 ; U) = C,,.(0, o0 ; M?).

Consider the control system (L) and fix the final time T e (0, o) and the
initial time ¢ in [0, T'). With a pair (h, v) we associate the cost function

(3.9) Y, h) = jT [(x(s; h, v), Qx(s; h,v)) + (v(s), Nuv(s))] ds,

where Q € #(X) self-adjoint, Q = 0, N € #(U) self-adjoint, (u, Nu) = clu|?,¢ > 0.
Consider the optimal control problem of minimizing (3.9) in the interval
[t, T]. For each h, it can be shown that there exists a unique u in L(t, T; U) which
minimizes (3.9) over all v in L*(t, T; U). We can then show that there exists a
unique operator I1(t) e £ (M?) which is self-adjoint and positive such that

(3.10) (h, TL{(t)h)p2 = min {J'Hv, h)jv e L*(t, T; U)}.
Moreover the optimal control is given by

(3.11) u(s) = — N~ 'B*T1(s)X(s; h),

where X( - ; h) is the solution of

% = [A - BN"'B*II(s9))y(s) ae in[t,T],

wt) = h.

The operator IT;(s) can be shown to satisfy an operator differential equation
of Riccati type which (when interpreted appropriately) has a unique solution in
[0, T] (cf. Delfour and Mitter [8]).

In the sequel we shall abbreviate M?(—a, 0; X) by M.

(3.12)

4. Formulation of the infinite-time problem. We now associate with the
control system (L) (or equivalently L) the quadratic cost J, which is equal to the
quadratic cost (3.9) where T = oo and t = 0. Our objective is to study the problem :

4.1 Minimize J (v, h) over all ve L} (0, co; U).

Our main result may be summarized as follows: Under certain stabiliz-
ability hypotheses for each h € M?(—a, 0; X), there exists a unique u € L2, (0, oo, U)
which minimizes J (v, h) over all ve L2 (0, oo; U). Moreover, the minimizing
control u can be expressed in ““feedback form” in terms of an operator I1 for which
an operator Riccati equation can be obtained. Under further hypotheses on Q,
the resulting closed-loop control is also stable.

The theory is thus as complete as the theory for the corresponding ordinary
differential equation case.



LINEAR HEREDITARY DIFFERENTIAL SYSTEMS 53

5. Solution of the infinite-time problem. The solution to the infinite-time
problem proceeds in three parts:

(i) We first have to make sure that the problem is well-posed in the sense
that there exists a constant ¢ > 0 and for each h a control v, such that the corre-
sponding cost J (v, h)is bounded by c||h||%.. This naturally leads to a study of the
stability and stabilizability of linear hereditary systems.

(ii) We then study the behavior of J%(v, h) and the feedback operator I1(t)
as T — oo. We show in particular that IT(t) converges to an operator I1.

(iti) Finally we characterize IT and study the stability of the resulting closed-
loop system.

5.1. Stability. In this section we shall denote by x(s; /) the solution x(s; 4, 0)
of (L).
DEFINITION 5.1. The uncontrolled system (L) is said to be L*-stable if

t
(5.1) lim | (x(s;h), x(s; h)yds < 0 Vhe M?.
0

t— o0
By virtue of the choice of M? as the space of initial conditions it is easy to
show that (5.1) is equivalent to

t
(5.2) lim | (%(s;h), %(s; h)y2ds < 0 Vhe M>.
t— o0 0

DEFINITION 5.2. An operator R € £ (M?) is said to be positive definite on X if
(5.3) (h°, R%°h%y >0 V h° # 0,
where R%° € #(X) is defined by
R%°K° = [R(Kh°,0)]° Vh°eX.

Using the techniques of R. Datko [2] we can state the following equivalent
conditions for L>-stability.

THEOREM 5.3. Let R = 0in £ (M?) and Q > 0 in #(X) be given. The following
statements are equivalent :

(i) (L) is L*-stable.

(ii) For all hin M?,

t
(5.4) lim | [(RX(s;h), X(s; h)pe + (Qx(s; h), x(s; h))x] ds < oo.
t— o Jo
(iii) There exists a self-adjoint operator B = 0 in £ (M?) such that
(5.5) (Ah, Bk) + (h, BAk) + (h,Tk) =0 V h,V keV,
where
(5.6) (Th) = (1°,0).

(iv) There exists a self-adjoint operator B = 0 such that

(5.7) (Ah, Bk) + (h, BAk) + (h,Rk) + (h,Q0k) =0 V h,V keV,
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where
Oh = (Qh°,0).
(v) There exist @ > 0 and M = 1 such that
(5.8) I%(t; Wllrz < M exp(—@0)|hlly V2 0.
(vi) There exist v > 0 and M > 1 such that
(59 Ix(¢;h)lx < Mexp(—wt)|hly: Vit20.

(vii) There exists o < O such that the spectrum o(A) of A lies entirely in
{AeC|Re A £ a}, where Cis the field of all complex numbers, 6(A) = {1 € C|det A()
= 0} and det A(2) is the determinant of the matrix

N 0
(5.10) A(Q) =1 — Y A;exp(A0) — J Aq1(0) exp (16) d6.
i=1 —a

Proof. The equivalence of conditions (i) through (vi) can be easily proved by
using the results and techniques of R. Datko [2] and the remark following
Definition 5.1. As for condition (vii) it is a straightforward application of the results
of J. K. Hale [12] with the space M%(—a, 0; X) in place of the space C(—a,0; X). O

Remark. (i) Equation (5.5) can be rewritten as an equation in Z(V, V*)
(V*, the topological dual of V):

(5.11) A*B+ BA+1=0.

This is the generalization of Lyapunov’s equation in the finite-dimensional case.
This condition is much sharper than R. Datko’s condition (see [2])
(5.12) 2(BAx,x) = —|x|* V xeV,

but obviously equivalent.
(i) Notice also that a straightforward application of R. Datko’s results
(see [3]) would have yielded the Lyapunov equation

(5.13) A*B+ BA+1=0,
where I is the identity in #(M?), or equivalently
(5.14) A*B+BA+Q=0

for some positive self-adjoint Q in £(M?) which is bounded below by some positive
nonzero constant. Conditions (iii) and (iv) are different and make use of the special
structure of hereditary systems (cf. remark following Definition 5.1). It is this
subtle difference that will enable us to solve the infinite-time quadratic cost problem.

In Proposition 5.4 and Theorem 5.5 we further characterize the solutions of
equations (5.5) and (5.7).

PROPOSITION 5.4. Let the hypotheses of Theorem 5.3 be true. If equation (5.5)
resp. (5.7)) has a positive self-adjoint solution B in ¥ (M?), it is unique and for all
h and k in M2,

0

(5.15) (Bh, k)py2 = f (x(s; h), x(s; k))x ds

0
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(5.16) (resp.(Bh, k)2 = f ([R + Q%(s; h), %(s; k) g2 ds)
0

and B is positive definite on X.

Proof. We prove the proposition only for equation (5.5).

(i) Let B, and B, be two solutions of (5.5) and let D = B, — B,. Then for
allhand kin V,

(Ah, Dk)y + (Dh, Ak)y = 0.
Thusforallt 2 0and hand kin V,
(5.17) (X(t; h), DX(t; k))pp2 = (h, Dk)ypye.

Since the system is L2-stable, the left-hand side of (5.17) is 0.
(if) Similarly from equation (5.5) we obtain for all t = 0, h and k in V,

(A%(t; h), BX(t; k)) + (BX(t; h), AX(t; k)) + (x(t: h), x(t; k)) = 0.
This yields

(h, Bk) = ft (x(s; h), x(s; k) ds + (X(t; h), BX(t; k))
0

and since the system is L?-stable, X(t;h) — 0 and we obtain (5.15) as t goes to
infinity.
(iif) Finally for all h® # 0in X,

(B°°h%, h%)x = f Ix(s: (h%, O))[5 ds > 0
0

since the map s+ x(s; (h°, 0)) is continuous and x(0; (h°, 0)) = h°. O

For linear hereditary differential systems we can exploit the particular
structure of the system to further characterize the solution of Lyapunov’s equation
(5.5).

THEOREM 5.5. Let B = 0 in #(M?) be the solution of (5.5) in condition (iii) of
Theorem 5.3. It is completely characterized by its matrix of operators

5.18) [300 301] B e #(X), B°'eZ(L*—a,0;X),X),
. B'® B! B%e #(X,L¥—a,0;X)), B''eZ(L*—a,0;X)).

BO% is characterized by the equation

B°A4,, + A%,B°° + B'°(0) + B°(0)* + I = 0,
(5.19)
BOO — (BOO)* g 0.

B'® is characterized in the following way:

(5.20) (B°h%) () = B'%(a)h°,
where the map
(5.21) o B‘°(oc):[—a,0]'—->:Z’(X)

is piecewise absolutely continuous with jumps at o = 0; of height A¥B°°,i =1, ---
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N — 1. Moreover the map (5.21) is itself characterized by the differential equation

dBlO N-1
(0= B Aoy + A\(@)*B% + Y AFB*°S(a — 0
i=1

(5.22) + B'Ya,0), ae. in[—a,0],
B1%(—a) = A%BO°,

where 6(a. — 0,) is the o-function at o = 0,.
B°! is obtained from B'°:

0
(5.23) B°th! = f B1%0)*h'(x) do.

—a

B! is characterized in the following way:

0
(5249 (BUH)@ = [ B () dp.
where the map
(5.25) (a, By— B (o, B):[—a, 0] x [—a,0] > L(X)

is piecewise absolutely continuous in each variable with jumps of height AF¥B°(g)*
ato=0;,i=1---,N—1(resp. B'%mA;at p=0;,j=1,---, N — 1). More-
over B'Y(«, P) is the solution of

0 0
[& + a‘ﬂ]Bﬂ(a,ﬂ) = A01(0)*B(B)* + B0 40,()

(5.26) + IA?‘B“’(B)*é(fx —0)

i=1

N-1
+ Y BY)A B - 0)
j=1
with boundary conditions

(5.27) B'Y(—a, p) = A:B'°()*, B''(x, —a) = B'°(x)Ay,

and symmetry property B''(a, B) = B''(B, )*.
The solution of the above differential system is

B0 — f —a)dy, a2 ﬁ}

Bll , —
.5 {A,’{}B‘O(ﬂ —a—a)¥ a<p

N
+

i

IIM|

1{A§“B‘°(ﬂ—o¢+0,~)*, —agﬁ—a+9,.,9,.<a}

110 , otherwise

(B —f+0)4;, —a<a—p+0,0,<p
(cont.)

N

(5.28) +

!

110 , otherwise

J
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BB — B+ HA0(8), —asa—p+E
+ f dé
-a|0 , otherwise

| Ag(0)*B°(B —a + 0)*, —a<P—a+0
o i
-a|0 , otherwise
Proof. See Appendix A.

5.2. Stabilizability. In the control theory of linear ordinary differential
equations there is an important result which says that if the system is completely
controllable then it is stabilizable, i.e., there exists a constant feedback matrix K
such that the resulting closed-loop system matrix can be made to have its eigen-
values strictly in the left half-plane. For hereditary systems we first need a definition
of stabilizability.

DEFINITION 5.6. The controlled system (L) (or (L)) is said to be stabilizable
if there exists some operator G in Z(V, U) of the form

M 0
(5.29) Gh = Gyoh(0) + > Gh(t) + J Gy 1(0)h(0) dO
i=1 —-a
(for some integer M = 1, some real numbers —a =1, <+ <71, <719=0,
some Gog, G; i=1,---, M) in L(X,U) and G,,:[—a,0] - Z(X, U) strongly
measurable and bounded) such that the resulting closed-loop system
%(t) = [A + BG)x(t), a.e. in [0, o0),
X0)=h, hin¥,

(5.30)

is L2-stable.
It is extremely important to notice that for operators of the form (5.29) the map

hi— %o+ 1 h):M? > Cy, (0, 00 ; M?)

is continuous, where for each h in V, %4( - ; h) denotes the solution of (5.30). This
is not true of all operators in Z(V, U). This definition opens the way to the investi-
gation of stabilizability by feedback of a delayed signal (cf. V. M. Popov [18]).

Using the spectral properties of 4 (cf. J. K. Hale [12]) an analogue of the
ordinary differential equation result cited above could be obtained for a linear
hereditary differential system. For a study of this question see Y. S. Osipov [17]
and H. F. Vandevenne [20], [21].

The importance of the concept of stabilizability and a theorem relating
controllability and stabilizability is that it provides us with a verifiable condition
for asserting that there exists a constant ¢ > 0 and for each h at least one control
v such that J (v, h) < c||h]. Thus the infinite-time problem is well-posed.

5.3. Asymptotic behavior of I1(¢) as T — oo. We know that for the quadratic
cost problem over [0, T] the optimal control u*(s) is given by

u¥(s) = — N 1B*I(s)%(s;: h), se[0,T],
and the optimal cost by
JAu*, h) = (h, T1{(0)h) 2.
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We now show the following.
THEOREM 5.7. Assume that (L) is stabilizable. Then:
(i) For all hin M2, lim, . y_, ,, TI(t)h = TTh,t = 0.
(ii) For all h in M?,

(5.31) (TTh, h)ppe = f ([0 + TIRIT]X(s), %(s)) ds,
0
where R = BN~ !B*,
(5.32) Rh = (Rh°,0),
and X is the solution of
dy .
E;(t) = (A — RIDy(t), a.e. in[0, c0),
(5.33)
y0) = h,

with initial datum h.
(iii) For all h in M?,

(5.34) (TTh, k) = J o(— N~ 1B*TI%, h).

Proof. (i) Consider the optimal control problem on the interval s, T]. By
virtue of the stabilizability hypothesis there exists a feedback operator G of the
type described in Definition 5.6 such that the operator 4 + BG is L2-stable.
Let @, be the semigroup generated by this operator. For all T > s > 0,

(4(s)h, h)p2 = inf {J3(v, W)lv € L*(s, T, U)}

lIA

f ' (OBt — s)h, Dt — s)h) + (NGDg(t — s)h, GDg(t — s)h)] dt

IIA

T
L [(@®c(0)h, Bo(t)h) + (NGB(t)h, GG(1)h)] dt

lIA

T T
1ol f 2012 dt + [N f IG2(0)]y dt.
0 0

where z is the solution of
#(t) = (A, + BG)x(t), a.e.in [0, ),
%0) = h,

and Z is the state constructed from h and z. But

T 1/2 T 1/2
U le(t)lzdt] < Gooll U Iz(t)lzdt]
0 0

M 0 T 172
+ 2 1G] [J |h(6)|* d6 + f |z(1)|* dt]
i=1 w 0

0 T 1/2
+||GOI||®a”2[f (O dO + f Iz(t)lzdt] ,
—a 0
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where z is the solution of (5.30). Finally since (5.30) is L2-stable there exists a
constant ¢ > 0 (independent of h, T and s) such that .

(Mg, W)z < el V.V T s2 0.

It is now easy to show the following:

(@) Mr(s) = My(s), T, = T, = s, where = denotes the natural partial
ordering of positive operators, and

(b) there exists ¢ > 0 such that [[T1(s)]| g2 < cforall T = s.

Then by a well-known theorem on positive operators (cf. Kantorovich and
Akilov [14, p. 189]), for all h in M2, TI(s)h converges to I1(s)h, for some positive
self-adjoint operator Il(s) in £(M?).

Nowfor0< T, —s;, =T, —s,,5; 25, =0,

(h, Iz (s1)h) = (h, r,(s2)h)
and hence Iy (s;) = Iy, (s,). In particular, for all s, <s, and hin M 2

M(s,)h = lim Ty (s)h = lim Ty (s = T(s,)h
T~ T~

and

lim [ (s)h =TIh Vs =0.

T— o

(i) We now consider the control problem in the interval [0, c0). Let Z denote
the solution of (5.30) corresponding to the stabilizing feedback control law G,
let X be the solution of (5.33) in [0, c0) and let X be the solution of

ds
%4(0) = h.

(s) = (4 — RIIp(s)%4(s), ae.in[0, T],
(5.35)

We first show that for all t; > 0,

(5.36) lim X (¢) > X(t) uniformly in [0,¢,].

t1<T-o
Fix t; > 0 and consider T, T > t,. Let

y(t) = x4(t) — x(t) in[0,¢,].
Then

dy ~ _
-dytl(t) = Aj(e) + RITK() — T(0%,(0)], ace. in[0,1,],

y1(0) = 0,
where

yT(S+9)9 S+0;0’

0 , otherwise .

Yr(s)(0) = {
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As a result there exists ¢(t,) > O such that forall0 < ¢t < ¢,

(Ol = elty) fo ITIX(s) — T(s)X7(s)| ds

< C(tl)J (T — TAs)X(s)| + [TL(s)jr(s)I] ds
0
and we can find c'(t;) > O such that
171l co.imz = C’(tl)J l I(TT — T (s))X(s)| ds.
0

But XeL'(0,t,; M?). Then fi(s)= [I(s)%(s) and f(s) = [1%(s) belong to
LY(0,t,; M?). Both f; and f are bounded by the L'-function c|%(s)| and for almost
allt,

fr(t) = N (%) - f(t) = OX(z) as T— 0.

By the Lebesgue dominated convergence theorem, fp — f in LY(0,t,; M?).
This shows that j; — 0 and proves (5.36). This also shows that X,(t) is uniformly
bounded in [0, ¢,] by a constant independent of T.

We know that for all T > O (cf. Delfour and Mitter [8])

T
(5.37) (IT(O)h, h) = L ([0 + My()RTy(s)]Xx(s), X1(s)) ds.

The left-hand side of (5.37) converges to (I1h, h) as T goes to infinity. We now
show that the right-hand side of (5.37) converges to

r ([0 + TIRIIX(s), X(s)) ds.
0

For this purpose we define

([0 + MHORM(D]%1(1), X1(1)), 0=t =T,
gr(t) = .
0 , otherwise ,
g(t) = ([0 + TIRTIX(), X(1)).
From previous considerations it is now clear that
gr(t) = g(t) pointwise in [0, 0)as T — oo.
By Fatou’s lemma,

J o(t)di < lim [ g (f)dt = lim (T (O)h, h) = (TTh, h),
T-o Jo T—

0
and for all T > 0,

J‘Tg(t) dt = JY(—N~'B*%, h) 2 (TI1(0)h, h).

0
(iii) Finally (5.34) has been established at the end of (ii). [
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5.4. Solution to the infinite-time problem.

THEOREM 5.8. Assume that (L) is stabilizable. Then for each h in M?, there

exists a control function u* in L} (0, oo ; U) such that

(5.38) J (U, h) = inf {J (v, h)ve L2 (0, o0 ; U)} = (h, TTh).
Moreover,
(5.39) u*(t) = — N~ 'B*TIX(s),

where X is the solution of

%(s) = (4 — RIDX(s), a.e.in[0, ),
%(0) = h.

Proof. The control function u* defined by (5.38) is clearly an element of
L2(0, 0 ; U). Consider any v e L2 (0, co ; U). Then for all T > 0,

T
(h,T1(0)h) = min )J‘%(v, h)éj ((@x(s:v), x(s;0)) + (Nu(s), v(s))] ds,
0

velL2(0,T;U

where x( - ;v) is the solution of (L) corresponding to h and v. Therefore,

(h.TIh) < fw [(Qx(s: 0). x(5: 1) + (Nu(s). ols)] ds.
0

and the result follows from Theorem 5.7 (iii). [

5.5. Characterization of I1 and stability of the closed-loop system.

THEOREM 5.9. Let Q > 0. Then:

(i) (L) is stabilizable if and only if there exists a positive self-adjoint operator
IT in £(M?) which is a solution to the operator equation of Ricatti type

(5.40)  (Ah,TIk) + (h,T1Ak) — (h,TIRTIK) + (h,0k)=0 ¥ h.kin V.

(i) If a positive self-adjoint solution of (5.40) exists, it is unique and equal to
the TI of Theorem 5.7. The operator A — RI1 is L2-stable, the operator
G* = — N~ 'B*TI defines a stable feedback law and 11 is positive definite on X.

Proof. (i) Assume that system (L) is stabilizable. Then equation (5.31) of
Theorem 5.7(ii) is true for all h in M2. Since Q > 0 and ITRII = 0 we can use
Theorem 5.3(i) and (ii) to conclude that the operator 4 — RIT is L2-stable. Since

Q. T and Q + TIRII are positive and self-adjoint, equation (5.31) implies that for
all h and k in M?,

o)

(TTh, k) = f ([0 + TIRITIR(s). %,(s)) ds.

0

where X, (resp. X,) is the solution of equation (5.33) with initial datum h (resp. k).
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Let ®(s) be the strongly continuous semigroup generated by 4 — RIT, that is,
X(s) = ®(s)h. For all hand k in V,

(TI(A — RID)h, k) = f ? (0 + NIRIN®(s)(A — RIT)h, B(s)k) ds,
0

(ITh, (A — RIk) = f ? (0 + IR ®(s)h, B(s)(A — RII)k) ds,
0

e )

(TI(A — RID)h, k) + (TTh, (4 — RIk) = f ;E((Q + TIRII)X (), %,(s)) ds

0
= —((@ + MRk, k),
since A — RIT is L2-stable and X(s) — 0 as s — oo. Finally,
0 =TII(A — RII) + (4 — RID*II + NIRTI + §
=TIA4 + A*1 — TIRTI + @.

Conversely assume that there exists a solution IT to the operator Riccati
equation (5.40) which is self-adjoint and positive. Equation (5.40) can be rewritten as

(A — RII*IT + I(A — RIT) + MRIT + § = 0.

By Theorem 5.3(iv), this means that the system defined by the operator 4 — RII
is L?-stable. It is now a simple matter to check that the stabilizing feedback law
is G* = — N~ !'B*I1°

(ii) If a positive self-adjoint solution of (5.40) exists, we have shown that
system (L) is stabilizable, that IT is a solution of (5.40), that the operator 4 — RII
is L2-stable and that G* is a stable feedback law. By Proposition 5.4 we can also say
that IT is positive definite on X. It remains to prove uniqueness. Assume that
there exist two solutions IT, = 0 and IT, = 0 to the Riccati equation (5.40).
Let P = I1, — II,. Then necessarily

(Ah, Pk) + (Ph, Ak) + (h, T1,RT1,k) — (h, T1,RT1,k) = 0
or

(A — RI,)h, Pk) + (h, P(A — RII,)k) = 0.

Hence
L@ PO, = (4~ RIL)D(s)h, PB ()0

+ (®,(s)h, P(A — RI1,)®,(s)k) = 0,

where @, (resp. @,) is the semigroup generated by 4 — RII, (resp. A — RIT,).
Then

(h, Pk) = (®,(s)h, PD,(s)k) > 0 ass — oo,

since @, and ®, are L2-stable. Finally P = 0 and equation (5.40) has a unique
solution which is necessarily equal to the IT of Theorem 5.7.
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Remark. Note that the hypothesis Q > 0 implies that the pair (4, Q'/?) is

observable since the map h®+— Q/2®°(-)h° is injective (cf. Delfour and Mitter
8, Def. 3.11 and Prop. 3.13]).

6. Detailed characterization of I1. One can exploit the structure of the space
M? and the fact that IT is a matrix of operators to give a detailed characterization
of I1. This is done in the following theorem.

THEOREM 6.1. Let IT = 0 in £ (M?) be the solution of (5.40). Then
(6.1) (h, TIk) = f (®(t)h, [0 + TIRID(1)k) dt.
0

It is completely characterized by its matrix of operators
6.2) |:H00 Hmjl, o€ £(X), Ty, € L(L¥—a,0;X),X),

n, I, M,e#X,L*(—a,0;X)), I,,eL(L*—a,o0;X)).
Iy, is characterized by the equation

MyoAgo + A5olloo + T10(0) + IM;4(0)* + Q — IoRIT,, = O,

(6.3)
1§, = I1yo = 0.
I1,, is characterized in the following way:
(6.4) (T1;0h°%) (o) = TTyo(a)h°,
where the map
(6.5) o o) :[—a, 0] = L(X)

is piecewise absolutely continuous with jumps at o = 0; of height A}Ily,,
i=1,---, N — 1. Moreover the map (6.5) is characterized by the differential
equation

dl-[ N-1
—d&l—o(a) = T o(2)[Ago — RIgo] + 121 Ao 00(x — 6;) + Ag1(2)* T,

(6.6) + I1,,(x,0), ae.in[—a,0],
IMo(—a) = AfI .,

where 6(a. — 0,) is the delta function at o = 6;.
Iy, is obtained from I1,,:

0
(6.7) I,,h' = f I, o()*h' () dor.
I1,, is characterized in the following way :

0
63) M@ = [ . ') dp.
where the map

(6.9) (e, B)— Iy4(a, B):[—a,0] x [—a,0] » Z(X)
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is piecewise absolutely continuous in each variable with jumps of height A¥I1,(B)*
atow=0,i=1---,N—1(resp. I1,o(m)4;at B=0;,j=1,---, N — 1). More-
over I1, {(a, P) is the solution of

0 0
l:a + éﬁjlnll(a’ﬁ) = Ao ()*I1o(B)* + T1;0(0)A40,(B)

N—-1 N—-1

(6.10) + Zl AT o(B)*0(a — 0) + ). Tio()A4,;0(8—0;)
i= j=1

— IT;o()RIT o(B)*
with boundary conditions
(6.11) y,(—a,p) = AL o(B)*, Tl (o, —a) = IT;o()Ay,

and symmetry property

T, («, B) = T (B. )*.
The solution of the above differential system is
Hyglx — B —a)dy, a2 f
AR (B — o — a)*, a < B
N—I{A:‘nm(ﬂ —a+ 0, —asf-o+0,0< a}
+ 2

I (x, B) = {

i=1 (0 , otherwise

. Nil{HIO(a—ﬁ+ 0)4;, —asa—-p+0,0,<p }

ji=1 |0 , otherwise

+r {Am(f)*nm(f—“'i‘ﬂ)*, ﬁécx—ﬁ—a}dé

(6.12) 0 , otherwise

+fﬂ {nmw—ﬁwmm(m, ezﬁ—a—a}de

0 , otherwise

B
f Mol —  + ORI (0 dO, o2 B

f_ T o(ERM o — a + EF dE, o <

Proof. See Appendix B.

Appendix A.

Proof of Theorem 5.5. The reader can find the definitions of ®°, ®! and ®
in Delfour and Mitter [7], [8] and [10]. We first rewrite equation (5.15) in terms
of &:

(A.1) (h,TIk) = f (D(1)h, [0 + TIRITID(e)k) dt .

0
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We shall also use the identity
(A.2) [D()h]° = DO(t)h® + D)kl

We first study B°° and the kernels B'°(«x) and B!!(«, ) of the operators B'°
and B!, Since we know where the discontinuities can occur we derive differential
equations for B!'°(«x) and B''(a, B). Finally we solve the equation for B'!(a, B)
and give an explicit expression of B !(a, B) in terms of B°(-).

(i) Let h = (h°, 0) and k = (k°, 0) in (A.1). Then

(A3) B = f ) DO(1)*d°(r) dt.
0
Let h = (0, h'), k = (k°, 0) in (A.1). Then
(A.4) (h!, B'°k®) = foo (@(t)h', DO(£)KC) dt.

0

But (cf. Delfour and Mitter [7] and [8])

0
(A.5) OYh! = f ®(t, h'(c) da,
] ©
(A.6) (h', B1°k%) = f (hl(oc),f DUt 0)*DO(H)KO) dt dot,
—a 0
and
(A.7) B%() = on OU(t, 0)*®O(t) dt.
[

We now substitute for ®!(t, «) the expression (cf. Delfour and Mitter [7] and [8])

% Ot —a+0)4;, t=a—6,=20
i=1| 0 , otherwise

(A.8) )
+ J @Ot — o + 0)A,(0) dO.
max{—a,a—t}

Identity (A.7) can now be rewritten in the form

NojAF Ot — V@O _
B'%q) = Z :L_Oid)(t o+ 0)*®°(t)dt, 0, <«

i=1

0 .
(A.9) » Gi>a

+ f dtf 9 Ay, (0@t — o + 0)*DO(7).
0 max{—a,a—t}
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Finally we change the order of integration of the last term in (A.9) to obtain

v f Ot — a + 0)*0(¢)dt, 6, < o
B%) = Y AF {du-o,
i=1

0 , 0;,>a
(A.10) ] }
+ f d0 A,,(0)* J dt @Ot — o + O)*D(p).
—a a—0

By inspection it is readily seen that B'°(«) has jumpsat o = 6;,i = 1,---, N — 1,
of respective heights 4}B°°. Moreover

(A.11) B'(—q) = A%B°°.
Let h = (0, h') and k = (0, k') in (A.1). Then
(A.12) (h!, B1'k!) = f (@ (t)h", D (Dk?) dt.
0

In view of (A.5),
© 0 0

(A.13)  (h!,B'kY) = f U @'(t, a)h' (o) doc,f @(t, pkL(B) dﬁ) dt
0 —a —-a

and

(A.14) B'Y(a, B) = f O'(t, a)*®(z, B) dt.
0

We again use (A.8) to express B'!(a, p) in terms of ®°:

Bll(a_ﬂ) = fm[ S {A:"d)o(t —at 01’)*: t2za— 6; 20

0

)

i=1

} +J Ag (0)*@%(t — o + O)* de].
0 , otherwise max(—a.a~1)

Ot — A, - 4
[i {(b (t—B+6)4;, t2p-6,20 } + f Ot — B + E)Ag,(%) dé] dt
ji=1

0 , otherwise max{~a,f—1)
fw{A;"Cbo(t — o+ 0)*0% — B+ 0)A;, t2a—6,20,t2p-6;2 O}dt

0 s otherwise

Nopo (AR — o+ 0)%, tZa—0;20)
+ 2 J dr{ * i }f Dt — B+ OApi(8) dE

0 , otherwise max{~a,p -1}

f dr {fm(_“_q d0 A0, (6)* % — o + 0@t — B+ 0)A4;, t2f—0,20

, otherwise

0 a B
A1+ j ar f dof dE Ag (00Ot — o + Ot — B + OA,,(0)
0 max{ —a.a—t} max{—a.p—1t}

|

(cont.)
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o0
dt AYQ(t — o + 0)* 0% — B+ 0)4;, a—6,2f— 0,20
dt AYQ(t — o + 0)*0%t — f + 0)4;, B—0,20—0,20

, otherwise

8
K f AT = 3+ 070 = o+ OMor(O). 2= 0,20
max{—a,f—
, otherwise

{r drf d0 Ay, (0Ot — o + )@t — B+ 0)A;, f— 0,2 0}
max{—a,a—1t}
0

, otherwise

+ f dt J dej d¢ Ao, (0)*®°(t — a + 0Dt — B + &)Agy(£)
max{—a,x—1} max{—a,f—1t}

f dt APt — a + 0V — f+ 0)A, f—0,—a+ 0, S0
a—6;

f dt , B—6;—a+6,>0 , a0
B~8;
110 . B<9

0 Loa< 0

-

© B
. {fo dt L.x(-a.p-,—mi, dE APt + o« — 0, — B+ OAgi(e). o« — 0,2 0}

= o , otherwise

+

i

u[\/]z

{ f dt f d0 Ao, (O ®°(t + B — 0, — o + O O°()A;, B — 0,2 0}
max{—-a,a~t—f+6;)
1

0 , otherwise

a e B
+ J. do dtf dé AOI(())*(DO(t — o+ 0)*(1)0“ — B+ HAgy(®)
~a a=8 max{—a,B—1}
=0+0+0+®.
Given o, term @ has jumps at f = 0,,j = 1,---, N — 1, of height
v [T de Aot — o+ )20, az 0,
(A.16) Y L—e.. dt AFO(t — o + 0)* ()4, o = 0,

=t 0 , a<6 .
Given B, term @ has jumps at o = 0;,i = 1, ---, N — 1, of height

j dt AXO(1)*D°(t — B+ 0)A,. B2 6,
B—0;

(A.17) % ,
=t {0 , B<0;
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Given B, term @ has jumps at o« = 6,,i = 1, ---, N — 1, of height

B [°e)
(A.18) J_ dé p_édt AFOO()*@°(t — B + E)Ag,(E).

Given «, term @ has jumps at f = 6;,j = 1,---, N — 1, of height
(A.19) J do f dt Ag (0@t — o + OV @°()A,.
—a a—6
Given a, term @ has no jumps. Given S, term @ has no jumps. Term @ has
no jumps. Finally, given o the map f+— B''(«, §) has jumps at f = 6,,j =1, ---,
N — 1, of height B'%(x)A; and given § the map o— B''(a, f) has jumps at o = 6,
i=1,---, N — 1, of height A*B'°(B)*. Moreover,

N f AFDO()* 0Ot — B+ 0)A4;, B2,

B''Y(=a,p)= ) {Js-o,
i=1 | o , B<0;
© B
+ J dt j A& AZDO(2)*@°(t — B + &)Agy(&)
0 max{—a,f—t}
and
(A.20) B'Y(—a, p) = A}B'()*.

We now express B!!(«, f)in terms of B'°(-). To do this we consider separately
each of the four terms in (A.15).

g oz 0;
N
v (2900 otherwise ., Bz
©= Z o o < 6,
=to . B <
0 L B—0 — <
v B—0,—a+0,<0 ey
N f dt AFQ%(t — o + 0)*@°(t — B+ 0)A;, B—0,—a+6,>0
900 L a2 0
N
’ "Z*{J—l 0 s B<9;
R a <6
N f dt AF Ot — o + B — 0, + 0)*®°()4;, —a+B—6,+6=<0
N Z a=p+0;-06; a;()i ’ /}g (-)j
- 'Zl U , otherwise
j=
0 , B<6;
N f dt A¥O°()*°(t — f+ o — 0, +0), —B+a—0,+0,20
N Z B—x+06;—0; ﬁz_ol . ag(),.
+ ¥ =0 , otherwise
i=1 10 o < 0
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" J dt AFOO(* DOt + o — 0, — B+ HAgy(), B—a+0,2¢
v f 4z P8-arome %20,
@=13% /- dt s B—a+6, <&
"o ° , a<0,

p—a+0; ©
_ 3 ar {f_ dz L_ y _gdt(b"(t)*tb"(t ta— 0=+ A, —asP-a+ 0,020

0 , otherwise

Iﬂ d¢ fw dt OOty %t + o — 0, — B+ EAgy(&), —aSP—a+ 6,020,
0

N B—at0;

* B
+.'Z|A' j d¢ , —a>B—a+0,a20;

0 , otherwise

B—a+t6; ©
= i AF {f_a défa—aw.--gdt QU DUt — B+ — 0, + OA(E), —asSP—a+0,a2 9.}

0 , otherwise

—B+E-0;
, otherwise

B N * * O(r _ _ A 0, — . .
+J 3 {AiJ; At — o+ f— &+ 0°0%0), 2B a+0,,a§9,} )
me =g

Notice that we can drop « = 6; in the last term since
pz¢ and (2B —a+0,=>a20,.

By symmetry

a—p+0; ©
® - i {f d0A0|(0)*f dt %t — o + B — 0, + 0)*D)A;, —a§a—ﬁ+0j,[i;(),}
P -a a=p+0;~0
o , otherwise
8 v ([T ar e — p+a—0)4, 0=a—f+6,
+ j do Ay, (0)* Y L—na—o, ! e
—a =110 , otherwise
Finally,

dé )=

-a —-a

. r dt Ao (6%t — & + 0Dt — B+ Agy(), a— 02— ¢
@ = j dGJ ;9 }

dt Ao (0¥ @°(t — o + OOt — B+ E)Agy(8). -0 < B —¢
B-¢

= a—p+&—0
0 , otherwise

a—p+<& el
Jﬂ dﬁ{J do dt A (0)*@°(t — o + B — & + 0)*D°()A0,(8), a— B+ E2 —a}

(cont.)
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©

B—at6
+ f do {f_ d"L_ vomst dt Ao, (O @Ot — B+ a — 0+ DA0)(C), p-a+02 —a‘
o 0 , otherwise
(i) We now derive equations (5.19), (5.22) and (5.26). Our starting point is
the Lyapunov equation

(A.21) 0 = (Ah, Bk) + (Bh, Ak) + (Th,k) Y h.kinV
or

0

N 0
(Aooh(O) + Y AhO) + f Ag1()h(ex) dot, B°°k(0) +f
i=1 ~a

BO1(0)k(0) d0)

+ Jfa (Z—Z(a),Blo(a)k(O) + f:B“(O!,G)k(H) d0) da

(A.22) , N
+ (B°°h(0) + f BOY(oh(e) dot, Agok(0) + Y Ak(6)
—a i=1
0
+ f Ao, (0)k(6) d(-))
0 0 dk
+ J_a (B”’(e)h(O) + f_a B'\(6, a)h(e) da,@(ﬂ)) df + (h(0), k(0))= 0.
Let

h(6) = h"(l +n9), “f<g<o,
a n

0, , otherwise,

where n is chosen in such a way that n > af7'. Then
h,(0) - h° and h,— 0in L*(—a,0;X).

Let k; be chosen in W'?(—a, 0; X) in such a way that

supp k; = (6;,0;—,) U (6,,0].
Let h = h, and k = k; in (A.22):

0o

0 0i -1
0= (Aooho + L Ay (0)h,(0)d6, B®k(0) + {J; + J; }BOI(O)k,-(G) d@)

+f (fi}ﬂ(w,B"l(a)kim) n { [+ °}B*I(a,e>ki(e> do) do

0 o 0: 0,

(A.23) o . 0
+ (Booh0 + f BOY(a)h, (@) do, Agok(0) + {f + f }AOI(G)ki(O) df))

01 0; ol

0i-1 0 0 dk.
10(9)n° L e} 0.
+{L +L,}(B o+ | B (9,ac)h,,(oz)doc,d9(0)) do + (h°, k(0)).
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Since a+— Iy,(a), a+— I1;,(e, 8) and 0+ T1,,(a, 6) are absolutely continuous
in (6;,0;_,) and (0, 0) we can now integrate by parts.
Equation (A.23) now reduces to

0 0i - 0
0= (Aooho + [ Ag,(0)h(0) 46, BOOK(0) + U + f }B‘“(e)k,.(e) do)
01

0; 0y

9i-1 0
+ (h,,(O), B'°(0)k(0) + {J + J }B“(O, 0)ki(0) dG)

0; 0y

0 ;-1 (4]
- f (h..(oz),Blo(oc)k.-(O)+{ f + f }B“(oz,@)k,-(@)d())

01 0; 0

(A.24) . o o
+(B°°h°+ J B°1(a)h,,(a)da,Aook,.(0)+H + f }AOI(G)k,.(O)dB)

01 0; 01

0 " 3 0i-1 0 dBOl o
+(Blo(0)h0+ LB (O,a)h,,(oc)doc,ki(O)) { L.- +L}( 25 O

0dI,,

*), a0

0, (o) da, ki(O)) do + (h°, k(0)).

Notice that

0 0 1/2 0 1/2
[ toiomonaos | [* woorao]”| | ha0F a0 |

and
'}1_{1010 hlr2-a,0.) = O
imply that
0

J |401(0)h,(0)|d0 - 0 asn— co.

Similarly given any f in L*(—a,0; X),
0
| [ wo.s0 de‘ < Ul /122

and

0
lim f (h,(0), (0))d0 -0 asn— 0.
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As a result equation (A.24) yields
0 -1 0

0= (Aooho, B°%k(0) + { f + J }B‘”(B)k,-(()) dB)
0; 0y

0

1 0i-1
+ (ho, B'%(0)k,(0) +{ j + f }B“(O, 0)k(0) d9)
01

0;

(A.25) o o
+ (B°°h°, Agoki(0) + {J + J }AOI(H)k,.(B) d0)
0; 01
P 0 dBOl
+(B'O(0)h°, k;(0)) — {j + j }( 10 (O)h°, ki(O)) do + (h°, k(0)).
0:
To obtain equation (5.19) we use
0(1 +m9), “L<o<o
k{0) = k,(0) = a m )
otherwise

0 )
where m is chosen in such a way that m > a7 !. When we take the limit of equa-
tion (A.25) as m goes to infinity we obtain

([B®Aq + BO(0)* + A%,B® + B1°(0) + I1h°, k%) = 0
for all h° and k° in X.
To obtain equation (5.22) in the open interval (0;, 0; _ ;) we choose k; such that

supp k; < (6;, 0, 1).

0i-1
0= J ([301(0)*,400 + B0, 0)* + Aq,(0)*B — ( =

0i
By density of the set of absolutely continuous maps with support in (6;, 6;-,) in

Then equation (A.25) yields
01 *
dB (0)) :lho, k,~(0)) dé.

L%(0;,0;_,; X) and the properties
(A.26) BI°(9) = B°()*,  B'\(x,0)* = B'Y(6, ),

the above equation yields for all h® in X

BIO
|:——dd0 (0) + B'(0)Ago + Ag,(0)*B°° + B“(G,O)]ho =0

almost everywhere in (0;, 0;_ ;).
To obtain (5.26) in the region
{(Ot, B)E [—a, 0] X [_a, 0:”0( € (0,', 0,'_ 1), 9 € (01, 91_ 1)}

we choose
h=hi, Supphi C(gi’ei—l)7
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and substitute in (A.22) which reduces to the following expression:

0i-1 0j-1
0= ( J Ay (o)) da, f BO1(0)k(0) dO)
0;

0;

0i— 1 dh, 05 -1 "
+ J;i (E(cx), fo,» B'(a, 0)k(9) dO ) do
(A.27)

0~ 0~ 1
+ ( f BOY(w)hy(or) dor, f Ao1(0)k0) d(:))

0; 0;

0;-1
7
0;

The two terms with a derivative can be integrated by parts:

f " B0, @) da,‘fl—';f(e)) do.

0;

0i -1 dh. 91
J (—'((x), B''(, 0)k(0) d@) do
do 0;

0i

01 051

= —j (hi(oc), f iB1 Yo, 0)k(0) d@) do
0: o, Oo

and

0j-1 [ rOi-1 dk .
B'Y(0, a)h(o) d ,—’0)d0
[ B nean o

0;

0j-1 pBi—y Fii "
=_J f (%B (O,a)hi(a)da,kj(()))d().

0;

Finally equation (A.27) takes the form

0; 0; oo

0i -1 05 -1 *
f dfxf d0( [BOI(G)*Aon(Ot) - (aB“(Oﬂ,@)) + Ao1(0)*B%(e)

11

OB
— W(O’ a)] hi(a), k{(6)].

By using relations (A.26) and the density argument we obtain

0B B!
2 @0+ 7,

for almost all («, 0) in (6;, 0;_ ;) x (0;,0,-,).
(iii) We now solve equation (5.26) with boundary conditions (5.27). We let
n = a — B and consider two cases. First let a = # = 0; then

(o, 0) = Ag1(2)*B'°(0)* + B'*(2)A1(0)

—a=pf=20=>np—a=sa=s0.
If we change the variable  to n = o — f§, equation (5.26) becomes

B0 1) = Agu (@B — 1)* + B gyl — 1)

N-1 N-1
+ Z A¥B'%(a — n)*o(o — 0,) + Z Blo(oc)Aj(S(a —-n—10).
i=1 i=1

1= J
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This last equation can be integrated from#n — a to a:

B',a — ) = B''(n — a, —a)

# ] A B - mede x| B0~ e

n—a
A¥BY0;, — n)*, n—a<6;< a}
+ Z { , otherwise

B°(n + 0)A;, n—a=<n+0 <a}
+ Z { , otherwise

Finally for o > B,
B — B+ 0)4;, 0;<p
B11 ’ _ BlO _ _ j° J
(@, p) (0 — B —a)Ay + le { 0 , otherwise

N z A*B‘O(ﬂ o+ 0), —asp—-oa+06,0,<ua
, otherwise

0 , otherwise

+f“ {Am(é)*B“’(B —at Ot fza-f- “}dg

B
+f B1%u — B + 0)40,(0)doO,

B'(a, f) = B'%c — B — a)Ay
N Z {B‘Oa—ﬁ+0)AJ., 9j<ﬂ,—a§a—ﬁ+0j}

0 , otherwise
i {A*B‘O(B a4+ 0), —a<p—oa+0,0 < a}

0 , otherwise

0 , otherwise

+r {Am(é)*B‘O(B —at O fza—f- “}dg

+Jﬁ {B‘O(a — B+ 0)A4y,(0), 0= —oa— a}de'

0 , otherwise

Notice that in the above expression for B'!(a, B) all terms but the first are sym-
metrical. Hence for o <  we shall obtain the same expression with the exception

of the first term which will be equal to
A¥BY(B — a — a)*.
But
a<13rlr;1_’aB‘°(oz — B — a)Ay = B'%(—a)Ay = ALB°°Ay

and

lim A$B'YB — « — a)* = A{B'(—a)* = ALB*°A,

BZa,pa



LINEAR HEREDITARY DIFFERENTIAL SYSTEMS 75

imply that this first term is continuous at («,®), —a < a < Oy_,. This makes it
possible to write the first term as follows:

B'%a — B — a)Ay, o= B,
A%BY°(B — o — a)*, o< B.
This yields identity (5.28).

Appendix B.

Proof of Theorem 6.1. The reader can find the definitions of ®°, ®' and ® in
Delfour and Mitter [7], [8], [10].

We first study Iy, and the kernels IT,(x) and IT,,(e, 8) of the operators
IT,, and I1,,. Since we know where the discontinuities can occur we derive
differential equations for IT; () and I, ,(x, ). Finally we solve the equation for
IT, (e, B) and give an explicit expression for IT,, (o, f) in terms of IT,4(-). We shall
use the following results (cf. Delfour and Mitter [7], [8], [10]):

B.1) [D(t)h]° = ®O(t)h® + D (t)h’,

s 0 Ot + )i, >
SR = T, @O(e)° + J HOI(a){O (E+ oh®s 0402 O}da
—a , otherwise

(B.2)

0 Dt hl, ¢ >0
+1'I(~,0(I)1(t)h1 + J 1'101(0(){ (t + ) to=z }

h'(t + @) , otherwise

(i) Let h = (h° 0) and k = (k° 0) in (6.1). Then

(TTooh?, k) = f w{(ch%)h", OO(kO)
0
0
(B.3) + (R [n00d>°(t)h° + f Mo, ()®°(t + a)h® da] :
—min(t,a)

0
Moo®@k” + [ Mg (B0t + pe dﬁ)} .
—min(t,a)

Notice that

0 0 ] 0
f dt f do = J do f dt
0 — min(a,t) —a —a

and

J dt, a =p

© 0 0 0 0
f dt f dp J do = f dﬁf do
0 —min(a,t) —min(a,t) —a —a

J dt, o>p
-8
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Hence

Moo = f (¥ + TooRTLeo0%(r) ds

0 L
+ b [ @t prma,prRIL0t)

0 ©
(B.4) +f docf dt ®°(t)*T1,oRI1,, ()@t + o)

[ | a0 + BT, (BYRIT (0% + o), < B

+J_OadaJlOadB' iy

l fwﬁ de (¢ + )Mo, (B*RITe, )0t + o), > .

Let h = (0, h'), k = (k° 0) in (6.1). Then

Myt = J DO(1)* QD (1)h! dr
0

© 0
+f [(I)O(t)*ﬂz‘;o + f DOt + 0)*I1,,(0)* d@]
—min(t,a)

0

° Ot + a)h’, t+a=0
~R[H00d)1(t)h1 * f l_[()l(m){ill((t + :)) otheor(v;se}dail dt

_ f " 00+ 1)k dt
(B.5) 0

[°e) 0
+ f [@"(t)*ngo + f OO + 0TI, (0)* de]
—min(t,a)

0

-R[noocbl(t)h1 + J ’ Ty, ()@t + a)h' da] dt

min(t,a)

o 0
+f [(Do(t)*l'lz’)‘o + f Ot + 0)*I1,,(0)* do]
—min(t,a)

0

—min(t,a)
-Rf Iy (h'(t + o) dadt.
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In view of (B.3) and (B.4) and the fact that

0
DUt + ah! = j D¢ + a, OINE) dé,
Mo,(&) = j: d ®OE*[Q + TlooRTIool® (. &)
0 e}
+J d@f dt @Ot + 0)*TT,,(6)* R, @1z, &)
—a -0

0 ©
+ f docj dt ®O()*TTE Ry, ()@ (¢ + o, &)
(B.6)

J dt Dt + 0)*T1,,(0)*RT1 ()t + o, &), o« <0

0 0
+f dozf ol
.

dt @°(t + 0)*Ty,(0)*RT1y, ()@t + o, &), o> 6

& ]
+J da[d)"(é — o)*IIg, + J UL — o + 0)*To,(0)* d0:|RH01(°()’
—a a=¢

where the last term is obtained from the last term in (B.5) after changes in the order
of integration and changes of variable:

) —min(a,t) 0 —a 0 0
f dtf doc=f docf dt=f dozf dé withé=t+ a,
0 —a —a 0 —a a
0 0 0 0 & 0 0 & 0
f docf déj =j déf docf d9=f dff docf do,
—a a —min(a,& —a) —a —a —min(a,é—a) —a —a a—¢&

since0=¢é—a=<a+¢é¢=Za
We can now use the identity (cf. Delfour and Mitter [7], [8])

Yof@0k — &+ 0)4, tZ«f—ﬂZO}
(Dl , — i i = i =
(t:¢) Z:l {0 , otherwise

(B.7) :
+ Ot — & + 0)[A40,(6) — RI1,(0)] 0
max{—a,&—1t}
to eliminate @' of the expression (B.6) for I1y,(¢). The term ®(t, &) will always

be integrated with respect to t and the only discontinuities that can occur are at
¢ = 0; where ®(t, ¢) has a jump of height ®°(t)4;,i = 1,---, N — 1. This will



78 M. C. DELFOUR, C. McCALLA AND S. K. MITTER

produce a jump in I1,,(¢) of height

j dt ®(1)*[Q + TooRTT4oJ0°(1)A;
0
0 o
+f a9 f dt OOt + 0)*T1,,(0)* R, @°(1)A;
—a -0

0 ©
+ J do J dt ®°(t)*TT#, R, ()D°(t + o)A,

(B.8)
j dt ®°(t + 0)*To,(0)*RIy, ()@t + )4;, a <0
j docj de:{" ¢
f dt @Ot + 0)*T,(0)*RIy, ()@t + w)A;, o >0
= Ilpo4;
at the points ¢ = 0;,i=1,---, N — 1. Moreover as £ - —a,

DAy, t=0
lim (Dl(t,€)={0 Ay, 120,
{~>—a

, otherwise,
and if we let
(B.9) oy (—a) = él_%lzla I151(8)
we obtain in a similar way
(B.10) Iy (—a) = Mgedy.

Let h = (0, h') and k = (0, k') in (6.1). Then

(I, b k) = f: QO ()", D (k) dt

@ 0 ®(t + a)h!
+ L dt (R[l‘[ood)‘(t)hl+j_al'lm(oc){hl(t+a)

(B.11)

0
Moo®! (k" + f_anm(ﬁ){kl(t Ny

Ot + Pk,

, t4+a=0 } :l
. eda ],
, otherwise

t+/3;0 }dﬁ).

, otherwise

The right-hand side of (B.11) can be rewritten in the following form:

j " (10 + TooR oo ()R, @ (k") dr
0

® 0 Ot + w)h!, t+a=0
’ = I, ®(t)k?
+ f dt J e (RnOl(a) {hl(t +a) , otherwise}’ 00® (0 )

f dtf dp (Rnoo(l)l(’f)h1 H01(B){k1

(t+ Pk, t+p=0
(t+ p) , otherwise (cont.)
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© 0 0 (I)l hl, _>_= 0
+f0 dtf_adafmad/)’(RHm(a){ (€ +eh’, t+u }

hi(t + «) , otherwise

it + Pk, t+ =0
H°1(ﬂ){h1(t + B) , otherwise
and
(T, ,h', k1)
= [ dH[Q + MooRTIoo10" 01", @0k
0
+J°° dt JO do(RTTy ()@ (¢ + o)h!, 5o @' ()k")
0 —min(a,t)
0 0
H[Ca ] dpRI @R, T (B + B
0 —min(a,?)
0 0 0
+f dtj. docf dB(RTT, ()@ (t + o)h', Iy, (B)®'(t + B)kY)
0 —min(a,t) —min(a,t)
(B.12)

o0 —min(a,?)
+ f dt j do(RT, ()h (¢ + o), Too®' (k")

© —min(a,t) 1]
+J dt J_ do f_ " )dﬁ(RHOI(oc)h‘(t + o), Iy (RPNt + Bk')

© 0 —min(a,t)
+J dtf dozf dB(RT1y ()@ (t + a)h?, Iy, (BkL(t + B))

4] — min(a,t) —a

0 —min(a,t) —min(a,t)
+ J dt da f dB(RTLy )R X(t + o), Mo, (BKX(t + B).

0 —a

We number @, @, ---, ® the last five terms in the right-hand side of (B.12).
Since

o0 —min(a,t) 0 —a 0 0 (4] &
J dtj da=f docj dt=j docf dé=f déj do
0 —a —a 0 —a a —a —a

with the change of variable t to & =t + a,

0 &
(B.13) @ = J_ dé f_ do(RTTy (a)h*(£), Toe® (€ — )k?).
Similarly,
0 0
(B.14) @ = f_ do f_ dB(RI1, @1 (0 — B)h!, Iy, (BK(0)).
Also,

© —min(a,t) 0 a =t 0 0 —a 0
J dtf dozf dﬂ=fdtj docf dﬁ=f docf dtf dp
0 —a —min(a,t) 0 -a —t -a 0 -t
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and the change of variable t to ¢ = ¢t + « yields

0 0 0
©= | anf de|  dbRI N, MM 1+ P
(B.15) . )
=[] | aprnoen @ Moperie — o

Similarly,
(B.16) @ = f def dﬂ doc(Rl'[OI(oc)(D‘(O — B + a)h', Iy, (B)Kk'(0)).

Finally,

<) —min(a,t) —min(a,t) 0 0 a—&
f dtf docf dﬂ*—-f docf dffj ag
0 —a —a —a a —-a

with the change of the variable t to ¢ = t + « and

0 0 a—&
©= [ dn | " apRIIG, @k Toyp'(E — 5 + ).

We change the variable fto 0 = ¢ — a + B,
0] 0 (0]
O= @ de|  aRMGEHE. o6~ ¢+ KO,
—a a é—a—a

and change the order of integration. But
0 0 0 0 4 o
j daj dé do = f dfj do do
—a a {~a—a —a -a J{—a—a
<40

¢
0 0 J_adot, ¢
= J déf do : ,
e J du, &> 0
&—0—a

and by changing once more the variable o to o — ¢ we finally obtain

(B.17)

® = fdéf do

By analogy with equations (B.3) and (B.4) and with the help of equations (B.13)

j do(RTTg, (o + Oh'(E). Tyl + OK'(O), & <0
e

0
f da(RTLy(e + OR'(E), Mgyl + OK'(O), &> 0
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to (B.17), identity (B.12) yields
I1,,(£,0)

= [T 00,9710 + MooRMoe)0tt, 0)dr
0
0 ©
+J daf dr Yt + o, E)*Ty1()*RITHo P2, 0)
0] 0
e[ ap | arore o mRI B0+ p.0)

[ af [* ar0tcs o om0 R B0 + 5,00 5 < 5
+ o w
e e f dt Xt + o, & TLoy (0)*RTTo (AIOX(t + . 0). x>
(B.18) B

4 9

[ T R0 — . 0) + [ dBO0 = B TlgoRTI, ()
& 0

+ f da f 4 T, (2)*RTT, (IO — o + B, 6)
—a a—¢&

0 0
+ j dp [ da®0 — B+ o &Iy (0)*RTTg, (B)

-a p—0

0
[l RO + 0, €50
+ et

J'O doTly (@ + EFRTIg,(x + 0), &< 0

—a—0

In the light of identity (B.7), ®!(t, ¢) has discontinuities of height ®°(¢)4; at & = 0;,
i=1,---,N—1,and

(B.19) lim ®'(t, &) = @O1)Ay.

&~ -a
Fix 0 and consider the map &+ I1,,(&, 0). Since everywhere ®'(¢, &) is integrated
with respect to t, discontinuities can only occur at ¢ =6, i=1,---, N — 1.
At & = 0;, T1,,(&, 0) has a jump of height
rIlAé’g)

- JOO AFOO()*[Q + TooRITy0)D' (¢, 0) dt
0

0 ©
+j dfxf dt A¥O(t + a)*T1,,(0)*RIT,,®'(¢, 0)

(cont.)

0 ©
(B.20) +J_ dp Jlﬂdt AFOO(t)* 1o R, (B)D(t + B, 60)
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f docf dp

0 0
+j dp [ du AF®%0 — B + 2)*TIg,(2)*RTL,,()

-a p—0

J dt AX¥®°(t + o)*T1,,(o)*RI1, (B)P(t + B.6), a =B

j dt AFDt + a)* Ty, (@)* R4, (Dt + B.0), a> B

0
+ [ dB 4300 — B TIgoRTIg,(B) = A7TLoy(0) = A7TT,o(0)"

By symmetry for each & the map 6— I1,,(&, 0) has jump discontinuities of height
IM,p(8)4;at 6 = 0;,j=1,---, N — 1. As for the boundary conditions we fix
and evaluate

51_1}{1 I114(&,0) =I1;,(—a,0)

using (B.19). This yields

(B.21) I1y,(—a, 0) = AJI,,(0) = ARIL,0(0)%,
and by symmetry
(B.22) ,,(, —a) = [T} (—a, &) = U ( An-

(ii) Now that we know where the jumps are we can derive equations (6.3),
(6.6) and (6.10). Our starting point is the Riccati equation

(B.23) 0 = (Ah, TIk) + (T1k, Ak) — (RITh, T1k) + (Oh, k),

or in expanded form

i= -

N 0 0
Aooh(0) + Y, Ah(6)) + f Ag (@)h(e) dot, TTook(0) + J Iy, (0)k(0) de)
0 0
+ J (%(a),l’l,o(a)k(()) +f Hn(a,ﬂ)k(e)dﬂ) do

0 N 0
+(H00h(0)+ f [y ()h(e) dot, Agok(0) + z Ak(0,) + f A01(0)k(0)d0)
B24) , "
+j_a (IIIO(@)h(O) + f_an“(e,a)h(a) da,@(())) do

0 0
— (Hooh(O) + j Iy, (a)h() dot, R[Hook(O) + J_ 1y, (0)k(0) dﬂ])

+(Qh(0), k(0)).
Let
h°(1 + ng), 4 <0<0
h,(0) = a

n

(B.25)

0 , otherwise
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where n is chosen in such a way that n > a0 '. Then
h,(0) > h® and h,— 0in L*(—a,0;X).
Let k; be chosen in W'?(—gq, 0; X) in such a way that
supp k; < (6;,6;,_,) U (0,,0].
Let h = h, and k = k; in (B.24):

0 0i-1 0
(Aooh" + f A01(0)h,(6) dO, TTooki(0) + { f + f }nm(o)k,-(e)de)

0; 0,

0 dh 0i -1 0
+f (da"(a)»nol(a)ki(o) + {f + J }l’[ll(a,())ki(e) de) do

0, 0; 01

0 6i- 4]
+(Hooh°+ f Mo y(o)hy(@) dot, Agoki0) + { f + f }Am(e)kiw)de)
1 0; 6,

(B.26)

0i-1 0o 0 dk'
+ {Li + Ll}(nlo(e)ho + N I1,,(0, h,(«) do, d—ﬂ(a)) ao — (HOOhO

0

0i -1 0
+ | y()h, (o) da, R[Hooki(O) + {J + J }Hm(e)k,.(e) d9:|)

6y 0; 0,
+(Qh°, k(0)) = 0.
Since o Iy (a), a— IT;,(x, 0) and 0+ I1,,(a, 6) are absolutely continuous in

(6;,0;_,) and (0,, 0) we can now integrate by parts.
Equation (B.26) now reduces to

0 0 -1 0
(Aooh°+ j Ao (O (60) dO. TLooki(0) + { f N f }nm(e)ki(e)de)

0, 0; 01

i -1 0
+ (hO, I1,,(0)k(0) + { f + f }Hl 10, 0)ki(0) d0)

0 0y

0 0i-1 0
- f (h.,(a),nm(@k.-(ow U + j }nn(a,o)kiw)de)

0 0; 0,

0 0i-1 [0)
+ (nooh" + [ Mg y(@h0) dot, Agok0) + { [7+] }Ao,<0)k.~(0) de)
91 0; 01

(B.27)
0
+ (HIO(O)ho + | ,4(0, 0)h,(e) dox, k.~(0))

0

Oi-t o (dIl,, ooIl,,
—{L,« + Ll}( 10 (O)h° + 5 W(G,a)h,,(a),k,.(e)) do — (Hooho

(cont.)
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0 6i-1 (o]
+ [ gy (0hy(o) da, R[nooki(ow{ f + j }HOI(e)ki(e)de])

04 i [
+(Qh°, ki0))=
Notice that

0 0 1/2 0 1/2
| aomonao = | [ iaoiorao] | [ mior o

lim |hn|L2(—a,o;X) =0
n— oo

and

imply that
0
f |Ag1(0)h,(0)]d0 - 0 asn— o0.
Similarly given an f in L?(—a, 0; X),

0
[ 0 rora0| s s

and

0

lim (h(0), f(0)dO -0 asn— o0.

-
n— oo —a

As a result equation (B.27) yields

0i -1 0
(Aoohﬂ Mooki0) + { f + f }nm(e)kw) de)

i 01

0i -1 0
( I1,6(0)k(0) + {L.- + L,}nl 10, 0)ky(0) d9)
0i -y 0
+ (H h°, Aoki(0) + U + J }AO,(O)k,.(G) dG)
(B.28) 0 0,
0i -
+ ( 10(0)R°, k(O) {f + J‘ }(dnm(@)ho k(9)) do
0;
0i- 4 0
— (l‘looho,R[ﬂooki(O) + {J + J }HO,(G)ki(()) d9:|)
0; 0y
0

+(Qh°, k(0)) =

To obtain equation (6.3) we use

I=a
lIA
S
IIA
[

k° (1 + mg) -
kl(o) = k,,,(@) = a

0 , otherwise
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where m is chosen in such a way that m > a0; . When we take the limit of equa-
tion (B.28) as m goes to infinity we obtain
(B:29) ([TMoodoo + M ;o(0)* + AFollgo + 10(0) — MyoRIIge + QIR k%) = 0

for all h° and k° in X.
To obtain equation (6.6) in the open interval (6;, 0;_ ;) we choose k; such that

supp k; < (0, 0, ).
The equation (B.28) yields

0;

do

By density of the set of absolutely continuous maps with support in (6;, 6;_,) in
L*(0;,0;_; X) and the properties

(B.30) IT;4(0) = Mg, (0)*, TIyy(x, 0)* =I1,,(0,0),

the above equation yields for h° in X,

0 -1
0= f ([Hm(e)*Aoo - T1,,(0, 6)% + Agy(6)*TTo

(0))>l< - l'I(,l(B)*RHOO:lh", kj(O)) do.

drl
——2(0) + IT1,0(0)[Ago — RTLy0] + Agy(0)*TIo0 + I1,,(6,0) |h° = 0,
do

a.e. in (0;,0,_,).
To obtain (6.10) in the region

{(,0)€[—a,0] x [—a,0]|lae(0;,0,-,),0€(0;,0;,_,)},
we choose
h=h;, supph;, =(6;,0,_,),
k =k;, suppk; < (0;,0;-,)
and substitute in (B.24) which reduces to the following expression :

0i-1 01
( f Agy(@hie) da. f Mo, (O)k(0) de)
6

0;

0i-4 dhi 0j-1
+J (:i;(oc), L,- IT, (o, O)k(0) dO) do

0;

0i - 1 0j-1
(B.31) + ( I, ()hy(e) dat, f A1 (0)k(0) d9)
0;

0;

0; 0;

0,-1 01 dk.
+ f ( Hll(B,oc)hi(a)da,Eg’(B)) do

0 - 0j-1
- (f Iy, ()hye) do, R f I, (0)k(0) d9) .

0: 0;
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The two terms with a derivative can be integrated by parts:

f"_’ (fiﬁ(a) ”nu(a 0)k (e)de) da

0;
_ _r : ( (), fe o i e)k,(e)de)

i

and

Jej" ( " N, (0. wha) dos, —J(e)) d6
0:

0
_foj_ljei—x (61'111(6 a)h,(d)do"kl(e))
0; i

Finally equation (B.31) takes the form

0i -1 051
j do f de([nm(e)*Amm (‘3““( 9)) + Ay(0)*TIo, ()

0i 0,

6II“

0,0 — H01(9)*RH01(0<)] (%), k(9))

By using relations (B.30) and the density argument we obtain
oIl o1l
g (0:@) + —2(0,0) = T16(0)401(2) + Ao1(0)*TT10()* — T;0(O)RTL, o(o)*
do

for almost all («, ) in (6;, 6, ,) x (0;,6;_1).
(iii) We now solve equation (6.10) with boundary conditions (6.11). We let
n = o — f and consider two cases. First let a = n = 0; then

—aspf=0=>np—a=s=a=0.

If we change the variable  to n = o — B, equation (6.10) becomes

d
a;nu(o‘,a =) = Aoy(@)*TL;o(x — m)* + T o(0) A1 — 1) — T o()RIL (2t — 1)

N-1 N—-1
+ ) AFI o(e — ¥l — ) + Y. Tjo(@)A;0(x — 1 — 0)).

i=1 j=1

This last equation can be integrated from n — a to «:

Mor =) = T = a0 =) + [ Agu(@TTiolé = n)* dg

+ j M,o(&) [0 — 1) — R o(¢ — m)¥] de

AfTLo(0; — n)*, n—asb;, <o
+ z { , otherwise

o+ 0)4;, n—a=n+0;<a
* Z { , otherwise ’
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Finally for o = §,

N-1
I, (o, B) = Molx — B— a)Ay + ‘Zl
=
NV(AMT B —a+ 0)*, —as=Pf—a+0,0,<a

* i; 0 , otherwise

{Hlo(a — B+ 0)4;, 0;<B }

0 , otherwise

+ A (@MLyoE — o+ P)* d
a—f—a
B
+ j Mo — B + 0)[Agy(6) — RT1,o(0)*] dO

and

I («, f) = yolx — B — a)Ay
+Ni‘{l'[10(a —p+0)A;, —asa—f+0,0,< ,8}
j=1

0 , otherwise

N AT (B —a+ 0)*, —a<B—a+0,0,<a
+ X
= (0 , otherwise

+f°‘ {Am(é)*nm(f —a+p)f, {za—-p- a}d&

0 , otherwise

0 , otherwise

o {nmw—m DAoi(0). 02— ‘“}do

[ i 5+ ORI 0 a0, o2 5
[ m@rmGg—a+ orde. a<p

Notice that in the above expression for B'!(a, ) all terms but the first are sym-

metrical. Hence for « < f we shall obtain the same expression with the exception
of the first term which will be equal to

AR o(B — o« — a)*.
But
GSI;I}?_W ol — B — a)Ay = I o(—a)Ady = AXLooAx

and

lim AR, o — o — a)* = AXIL o(—a)* = A1y 0Ay

BZa,p~a

imply that this first term is continuous at (¢, ®), —a < a < Oy_,. This makes it
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possible to write the first term as follows:
Myole — B — a)Ay, o= B,
A¥ o — o — @)%, o< p.
This yields identity (6.12).
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