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STABILITY AND THE INFINITE-TIME QUADRATIC COST PROBLEM
FOR LINEAR HEREDITARY DIFFERENTIAL SYSTEMS*

M. C. DELFOUR," C. McCALLA:I: AND S. K. MITTER

Abstract. This paper studies the infinite-time quadratic cost control problem for a general class of
linear autonomous hereditary differential systems. It uses an approach which clarifies the system-
theoretic relationship between stabilizability, stability and existence of a solution of an associated
operator equation of Riccati type. For this purpose the stability problem is studied and an operator
equation of the Lyapunov type is derived. In both cases we obtain equations which characterize the
kernels of the Lyapunov and the Riccati equations.

1. Introduction. In a previous paper (cf. Delfour-Mitter [8]) we have studied
the quadratic cost optimal control problem over a finite time interval for a general
class of linear hereditary differential systems. In particular we have characterized
the optimal controller as a linear feedback controller acting on the "state" of the
system. The feedback operator is determined by the solution of an operational
differential equation of Riccati type. The main objective of the present paper is to
study the infinite-time quadratic cost problem for a general class of linear autono-
mous hereditary differential systems. In undertaking this study we insist on an
approach which clarifies the system-theoretic relationship between controllability,
stabilizability, stability and existence of a solution of an associated operator
equation of Riccati type.

For systems described by ordinary differential equations the infinite-time
quadratic cost problem is well-studied (cf. R. W. Brockett [1], R. E. Kalman [13],
J. C. Willems [223, W. M. Wonham [233). This problem has been studied for
certain classes of infinite-dimensional systems. J. L. Lions [15] has studied this
problem for abstract evolution equations of parabolic type and given a complete
solution to the problem. Lukes and Russell [163 have studied this problem for
abstract evolution equations of the type

dx(t)
Ax(t)+ Bu(t),

dt
(1.1)

x(O) xo (A),

where A is an unbounded spectral operator (cf. Dunford and Schwartz [11]) and
B is also an unbounded operator satisfying certain conditions. Lukes and Russell
also allow unbounded operators in the cost function. Using an approach originally
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due to R. E. Kalman [13] they obtain an operational differential equation of
Riccati type to characterize the time-varying feedback gain in th finite time case.
They also show that under an appropriate stabilizability hypot,esis the solution
to the infinite-time quadratic cost problem can be obtained in feedback form,
where the "feedback gain" is characterized by the solution of an operator equation
of quadratic type. The same problem has also been studied by R. Datko [4].
Unfortunately, R. Datko [4] does not characterize the solution as a feedback
controller acting on the "state" of the system.

It is felt that the contributions of the present paper are the following"
(i) We present a complete detailed solution to the infinite-time quadratic

cost problem for a general class of linear hereditary differential systems. Other
than the parabolic case solved by J. L. Lions [15], this appears to be the only other
case (so far) where the problem can be solved in a way which is satisfactory from
the system-theoretic point of view (that is, no ad hoc mathematical assumptions
need to be made).

(ii) The approach we use here is different from that of Lukes and Russell
16] as well as R. Datko [3], [4] and constitutes a synthesis ofthe work of J. L. Lions
[15] and Delfour and Mitter [6], [7], [8].

(iii) The detailed results we obtain exploit the structure of hereditary differ-
ential systems in an essential way.

(iv) It gives rigorous derivations of earlier incomplete results of Ross and
Fltigge-Lotz 19] for a more specialized problem.

The results on the equations for the kernel of the solution of the Lyapunov
equation have been announced in 1972 (cf. Delfour [5]).

2. Notation, terminology and preliminary definitions. Let be the field of all
real numbers and let a > 0 be given.

Let X and Y be real Hilbert spaces with norms I" Ix, I" IY and inner products
(’, ")x and (., )y respectively.

Let 52(-a, 0;X) be the vector space of all m-measurable (m denoting the
complete Lebesgue measure on ) maps [-a, 0] X which are square integrable
and let L2( a, 0; X) denote the natural Hilbert space associated with 52( a, 0; X)
with norm 112, Consider the space 502( a, 0; X) endowed with the seminorm

(2.1) IIf I- [If(0)l / Ilf ]/2.

The quotient space of 52(-a, 0; X) by the linear subspace of all f such that
f t2 0 is denoted by M2(- a, 0; X). M2(- a, 0; X) endowed with the norm

(2.1) and inner product

(2.2) (f, g)t2 (f(0), g(0))x + (f(O), g(0))x dO

is a Hilbert space isometrically isomorphic to X x L2(-a, 0;X) endowed with
the norm

(2.3) ]lhll Ihl + IhX(0)ld0
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and inner product

(2.4) (h, k) (h k)x + (h (0), k (O))x dO.

The isomorphism is denoted by c, where c(h) (h(0), h). For simplicity we shall
often identify h and the pair (h, hi). For the motivation in introducing M2, see
Delfour and Mitter [6].

For all 6 [0, ), we denote by W’2(0, t; X) the vector space of all absolutely
continuous maps [0, t]- X with a distributional derivative Dx in L2(0, t; X).
W’2(0, t; X) endowed with the norm

(2.5) Ilxllw’, (Ix(s)l / IDx(s)I)ds

is a Hilbert space.
We denote by L2oc(0, oe X) the Frchet space of measurable maps [0, oe) X

which are square integrable on every compact subset of [0, ). Wlocl’2(0, oe ;X)
denotes the Fr6chet space of all absolutely continuous maps [0, c)---, X with
derivatives in L2oc(0, o ;X), and Coc(0, o;X) denotes the Fr6chet space of all
continuous maps [0, ) --, X.

Let (X, Y) denote the real Banach space of all continuous linear maps
A "X--, Y endowed with the natural norm Ilmll. The adjoint of A in &(X, Y)
will be denoted by A* (Y, X). When X Y, we write 54’(X) instead of5e(X, X).
A 5(X) will be said to be self-adjoint if A A*. A self-adjoint A will be said to
be positive and written A => 0 if (Ax, x) >= 0 for all x X and positive definite
and written A > 0 if (Ax, x) > 0, x :/: 0. The identity in (X) is denoted by Ix.

For an operator A 5(M2) we can exploit the isomorphism between M2

and X L2 to decompose A into a matrix of operators
A Al

(2.6)
AlO A

where A &(X), A &O(L2(_ a, 0; X), X), A lO (X, L2(- a, 0; X)) and
A 11 5(L2( a, 0;X)) are defined in the obvious way.

Let A "(A) --, X be a closed linear operator with dense domain (A) in X.
The operator A is said to be bounded from below (resp. above) by R if for all
x !(A), (Ax, x) >= llxll z (resp. (Ax, x) <= llxl12).

3. Summary of previous results. Let N => be an integer, let a > 0 and
-a 0n < < 01 < 0o 0 be real numbers, let X R" be the Euclidean real
Hilbert space of finite dimension n and let U be an arbitrary real Hilbert space.

Consider the autonomous hereditary differential system

dx N X(t-_Oi), l-I-OiO0t-d[(t) Aoox(t + Ai
i= khl(t + Oi), t+ Oi <

fo {x(t+O), t+O>_ O) dO(L) + -aAl(O) hl(t -I- 0), + 0 < 0

+ By(t), a.e. in [0, ),

x(0)= h, h=(h,h1) inM2(-a, 0;X),
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where Aoo, Ai (i 1, 2,--., N) are elements of (X), Aoi e L(-a, 0; 2’(X)),
v e Loc(0, oe U) and B e 5 (U, X).

It was shown in Delfour and Mitter [83, [10 that the system (L) can be
equivalently described by an evolution equation in M2(-a,O; X). For this
purpose we define the state at time as an element

(3.1)

in terms of h (h, h l) and the solution x(. h, v) of system (L)"
x(t + O;h,v),

(3.2) )?(t;h,v) x(t;h,v), 2(t;h,v)l(O)
h(t + O)

We define

(t;h,v) (Y(t;h,v),2(t;h,v)l)eM2(-a,O;X)

t+0__>0}.otherwise

(3.3) V {(h(0), h)lh e W’2(-a, 0; X)}

and Xo" V --, X, " V --, L2( a, 0; X) and " V --, M2( a, 0; X) as follows"

(3.4) /oh Aooh(O) + Aih(O) + Ao(O)h(O dO,
i=1

dh
(3.5) (h)(O) -(0),
and

(3.6) [h] Xoh, [h]’ Xlb.

Let v(t) 0 in [0, oe) in (L). We then have (cf. Delfour and Mitter [8], [10])
the following.

THEOREM 3.1. The map t-- 2(t; h, 0) given by (3.1) generates a one-parameter
semigroup {(t)} in _q(m2) satisfying the following properties"

(i) for all h in m2, -* t(t)h" [0, oo) m2 is continuous;
(ii) q)(0)- It;

(iii) for >= a, (t) is compact (i.e., maps bounded sets into relatively compact
sets);

(iv) for all h in V the map t-- (t)h" [0, ) - V is continuous;
(v) the operator . defined by (3.4)-(3.6) is the infinitesimal generator of the

semigroup (t).
Now define the operator/ e ’(U, M2(- a, 0; X)) as

(3.7) Bu (Bu, 0).

Consider the controlled evolution equation

d2
-(t) AYe(t)+ Bu(t),

(L)
(0) h.

We then have the following theorem.
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THEOREM 3.2.
(i) For all h in V and v in Lloc(0, oo U),. system () has a unique solution in

(3.8) Wo(0, V, M2) {z e LZo(0, ; V)IDz e Lo(O, ;M2)}
which coincides with the state ( h, v) constructed from h and x( h, v).

(ii) The map(h, v)- A(h, u) 9(- ;h, v)" V x L2o(0, U) Wo(0, oo V, M2)
is linear and continuous when V is endowed with the Wa’2-topology it can be lifted
to a unique continuous linear map "M2 x Lo(O, o U) -, Clo(0, ;M2).

Consider the control system (L) and fix the final time T e(0, ) and the
initial time in [0, T). With a pair (h, v) we associate the cost function

(3.9) Jr(v, h) [(x(s h, v), Qx(s h, v)) + (v(s), gv(s))] ds,

where Q e (X) self-adjoint, Q __> 0, N e (U) self-adjoint, (u, Nu) >= clul 2, c > O.
Consider the optimal control problem of minimizing (3.9) in the interval

It, T]. For each h, it can be shown that there exists a unique u in LZ(t, T; U) which
minimizes (3.9) over all v in LZ(t, T; U). We can then show that there exists a
unique operator Fir(t) (m2) which is self-adjoint and positive such that

(3.10) (h, 1-Ir(t)h)t min {Jr(v, h)lv LZ(t, T; U)}.

Moreover the optimal control is given by

(3.11) u(s) N -1,1-I T(S)(S h),

where 9(. ;h) is the solution of

dy(s) [- BN-B*Iqr(s)]y(s) a.e. in It,
ds

(3.12)
y(t) h.

The operator Fir(s can be shown to satisfy an operator differential equation
of Riccati type which (when interpreted appropriately) has a unique solution in
[0, T] (cf. Delfour and Mitter [8]).

In the sequel we shall abbreviate M2(--a, 0;X) by ME.

4. Formulation of the infinite-time problem. We now associate with the
control system (L) (or equivalently ) the quadratic cost Joo which is equal to the
quadratic cost (3.9) where T and 0. Our objective is to study the problem"

(4.1) Minimize Jo(v, h) over all v e Lo(0, U).

Our main result may be summarized as follows" Under certain stabiliz-
ability hypotheses for each h e M2( a, 0; X), there exists a unique u e Llo(0, oe, U)
which minimizes J(v,h) over all v e L12o(0, oe; U). Moreover, the minimizing
control u can be expressed in "feedback form" in terms of an operator H for which
an operator Riccati equation can be obtained. Under further hypotheses on Q,
the resulting closed-loop control is also stable.

The theory is thus as complete as the theory for the corresponding ordinary
differential equation case.
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5. Solution of the infinite-time problem. The solution to the infinite-time
problem proceeds in three parts"

(i) We first have to make sure that the problem is well-posed in the sense
that there exists a constant c > 0 and for each h a control vh such that the corre-
sponding cost Joo(Vh, h) is bounded by cllhll 2_, This naturally leads to a study of the
stability and stabilizability of linear hereditary systems.

(ii) We then study the behavior of J(v, h) and the feedback operator Fir(t
as T oo. We show in particular that Fir(t converges to an operator Fi.

(iii) Finally we characterize Fi and study the stability of the resulting closed-
loop system.

5.1. Stability. In this section we shall denote by x(s;h) the solution x(s; h, O)
of(L).

DEFINITION 5.1. Th uncontrolled system (L) is said to be L-stbl if

(5.1) lim (x(s; h), x(s h))x ds <

By virtue of the choice of Me as the space of initial conditions it is easy to
show that (5.1) is equivalent to

(5.2) lim (2(s; h), )?(s; h))t2 ds < oo Vh e M2.
t--*

DEFINITION 5.2. An operator R e 5(Me) is said to be positive definite on X if

(5.3) (h, Rh)x > 0 V h =/= O,

where R e 5(X) is defined by

Rh [R(h, 0)] Vh e X.

Using the techniques of R. Datko [2] we can state the following equivalent
conditions for L2-stability.

THEOREM 5.3. Let R >= 0 in 2,F(Me) and Q > 0 in q(X) be given. The following
statements are equivalent"

(i) (L) is L2-stable.
(ii) For all h in Me,

(5.4) lim [(R7(s h),
t’-

(iii) There exists a self-adjoint operator B >= 0 in 5(M2) such that

(5.5) (A-h, Bk) + (h, BA-k) + (h, lk) 0 V h, V k e V,

where

(5.6) (]h) (h, 0).

(iv) There exists a self-adjoint operator B >__ 0 such that

(A-h,Bk) + (h,B,k) + (h,Rk) + (h, Ok) O V h,V ke V,
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where

Oh (Qh, 0).

(v) There exist > 0 and 1C/I >= such that

(5.8) [12(t;h)llM2 =< r exp(-6)t)llhllt2 V >= 0.

(5.9)

(vi) There exist co > 0 and M > such that

Ix(t; h)lx <= M exp(-cot)llhllt2 V > O.

(vii) There exists t < 0 such that the spectrum a() of .Z. lies entirely in
{2 e CI Re 2 __< e}, where C is thefield of all complex numbers, a() {2 e CI det A(2)

0} and det A(2) is the determinant of the matrix

A(2) 2I A exp (20i) Ao 1(0) exp (20) dO.
i=1

Proof. The equivalence of conditions (i) through (vi) can be easily proved by
using the results and techniques of R. Datko [2] and the remark following
Definition 5.1. As for condition (vii) it is a straightforward application ofthe results
of J. K. Hale 12] with the space M2( a, 0; X) in place ofthe space C(- a, 0; X). [3

Remark. (i) Equation (5.5) can be rewritten as an equation in (V, V*)
(V*, the topological dual of V)"

(5.11) /*B + B + 0.

This is the generalization of Lyapunov’s equation in the finite-dimensional case.
This condition is much sharper than R. Datko’s condition (see [2])

(5.12) 2(BA-x, x) -Ixl 2 V x e V,

but obviously equivalent.
(ii) Notice also that a straightforward application of R. Datko’s results

(see [3]) would have yielded the Lyapunov equation

(5.13) *B + B + I 0,

where I is the identity in C(M2), or equivalently

(5.14) A*B + BA + Q 0

for some positive self-adjoint Q in ’(M2) which is bounded below by some positive
nonzero constant. Conditions (iii) and (iv) are different and make use of the special
structure of hereditary systems (cf. remark following Definition 5.1). It is this
subtle difference that will enable us to solve the infinite-time quadratic cost problem.

In Proposition 5.4 and Theorem 5.5 we further characterize the solutions of
equations (5.5) and (5.7).

PROPOSITION 5.4. Let the hypotheses of Theorem 5.3 be true. If equation (5.5)
resp. (5.7)) has a positive self-adjoiht solution B in (M2), it is unique and for all
h and k in M2,

(Bh, k)ra2 (x(s; h), x(s k))x ds
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(5.16) (resp.(Bh, k) (JR + ](s;h),(s;k))ds)

and B is positive definite on X.
Proof. We prove the proposition only for equation (5.5).
(i) Let B and B be two solutions of (5.5) and let D B B. Then for

all h and k in K
(A-h, Dk)t_ + (Dh, Xk)t_ O.

Thus for all _>_ 0 and h and k in V,

(5.17) (:(t h),D(t; k))t (h,Dk)t.

Since the system is L2-stable, the left-hand side of (5.17) is 0.
(ii) Similarly from equation (5.5) we obtain for all >= 0, h and k in V,

(A(t; h), B(t k)) + (B(t; h), (t; k)) + (x(t; h), x(t k)) O.

This yields

(h, Bk) (x(s; h), x(s k)) ds + ((t; h), B(t k))

and since the system is L-stable, (t;h) 0 and we obtain (5.15) as goes to
infinity.

(iii) Finally for all h 4:0 in X,

(Bh, h)x Ix(s; (h, 0))1 ds > 0

since the map s x(s;(h, 0)) is continuous and x(0" (h, 0)) h. [3
For linear hereditary differential systems we can exploit the particular

structure of the system to further characterize the solution of Lyapunov’s equation
(5.5).

THEOREM 5.5. Let B >= 0 in &t’(M2) be the solution of (5.5) in condition (iii) of
Theorem 5.3. It is completely characterized by its matrix of operators

[BOO B:] BL’(X), B’L’(L2(-a, 0;X), X),
(5.18)

I_B1 o B’ B’e’(X,L2(-a,O;X)), B’e’(L2(-a,O;X)).

BOO is characterized by the equation

BAoo + AoB + B(0)+ B(0)* + I 0,
(5.19)

BOO (BOO)* >= 0.

B is characterized in the following way"

(5.20) (Blh)(a) nlo()hO,
where the map

(5.21) a-- B’(a)’[-a, 0i So(X)
is piecewise absolutely continuous with jumps at a Oi of height A.*, B, 1,
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N 1. Moreover the map (5.21) is itself characterized by the differential equation

dBO N-1

da
(a) Bl()A + Al(a)*B + A’*’B((a- Oi)

i=1

(5.22) + Bl(z, 0), a.e. in [-a, 0],

B 10( a) AB,
where 6( Oi) is the -function at Oi.

B is obtained from B lO

(5.23) Bh B()*h() d.

B is characterized in the following way"

(5.24) (B"h’)() B’(a,fl)h()d,

where the map

(5.25) (,fl)Bll(o,fl)’[-a,0J I-a,0] -- (X)
is piecewise absolutely continuous in each variable with jumps of height A.*,Ba(fl)*
at Oi, 1,..., N- (resp. BI(z)A./at fl Oj, j 1,..., N 1). More-
over B l(z, fl) is the solution of

I C3 -IB11 I()*B B!+ (a, fl) Ao o(fl), + o(a)Ao,(fl

N-1

(5.26) +
i=1

with boundary conditions

N-1

+ B’()Aj5(fl 0)
j=l

(5.27) B’l(-a, fl) ABl(fl)*, Bll(0,--a)- BI(a)AN,

and symmetry property B :(, fl) B :(fl, e)*.
The solution of the above differential system is

BI(a a)A,
Bll(’ fl)--

(ABI(fl- a)*,

1 A SlO(fl O -- 0i)*,
+

i=1 0

-a __< fl - + Og, Og < ,
otherwise

(5.28) NI BlO((- + Oj)Aj,
+

j--1 ( 0

-a < - + 0,0 <

otherwise (cont.)
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Proof. See Appendix A.

5.2. Stabilizability. In the control theory of linear ordinary differential
equations there is an important result which says that if the system is completely
controllable then it is stabilizable, i.e., there exists a constant feedback matrix K
such that the resulting closed-loop system matrix can be made to have its eigen-
values strictly in the left half-plane. For hereditary systems we first need a definition
of stabilizability.

DEFINITION 5.6. The controlled system (L) (or ()) is said to be stabilizable
if there exists some operator G in 5(V, U) of the form

(5.29) Gh Gooh(O + Gih(T,i) + Go x(O)h(O dO
i=1

(for some integer M >= 1, some real numbers -a zM < < Zl < r0 "--0,
some Go0, Gi (i 1, ..., M) in ’(X, U) and Go "I-a, 0]---, 5(X, U) strongly
measurable and bounded) such that the resulting closed-loop system

)(t) [ +/G](t), a.e. in [0,
(5.30)

97(0) h, h in V,

is L2-stable.
It is extremely important to notice that for operators of the form (5.29) the map

h :?a(. h)"M2 Clot(0 (z) M2)
is continuous, where for each h in V, )?a(. ;h) denotes the solution of (5.30). This
is not true of all operators in q(V, U). This definition opens the way to the investi-
gation of stabilizability by feedback of a delayed signal (cf. . M. Popov [18]).

Using the spectral properties of (cf. J. K. Hale [12]) an analogue of the
ordinary differential equation result cited above could be obtained for a linear
hereditary differential system. For a study of this question see Y. S. Osipov [17]
and H. F. Vandevenne [20], [21].

The importance of the concept of stabilizability and a theorem relating
controllability and stabilizability is that it provides us with a verifiable condition
for asserting that there exists a constant c > 0 and for each h at least one control
v such that Joo(v, h) <= cllhll =. Thus the infinite-time problem is well-posed.

5.3. Asymptotic behavior of 1-It(t) as T oe. We know that for the quadratic
cost problem over [0, T] the optimal control u*(s) is given by

u*(s) N- B*rIr(s)(s h), s e [0, r],

and the optimal cost by

JOT(U*, h) (h, Ilr(O)h)M.
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We now show the following.
THEOREM 5.7. Assume that () is stabilizable. Then"

(i) For all h in Mz, limt<T-.oo HT(t)h Hh, __> 0.
(ii) For all h in ME,

(5.31) (Hh, h)M2 ([( + FI/H]2(s), )(s)) ds,

where R BN- 1B,,

(5.32) /h (Rh, 0),

and is the solution of
dy
dt

(t) (- _H)y(t), a.e. in [0,

y(O) h,

with initial datum h.
(iii) For all h in Me,

(5.34) (nh, h)M2 Jo(- N- 1/*FI, h).

Proof. (i) Consider the optimal control problem on the interval Is, T]. By
virtue of the stabilizability hypothesis there exists a feedback operator G of the
type described in Definition 5.6 such that the operator +/G is L2-stable.
Let q)G be the semigroup generated by this operator. For all T > s _>_ 0,

(Hr(s)h, h)M2 inf {Jr(v, h)lv e g2(s, T, g)}

__< [(0G(t s)h, P(t s)h) + (NG(.t- s)h, GP(t s)h)] at

=< [(O@(t)h, @(t)h) + (NG@(t)h, G@(t)h)] dt

where z is the solution of

(0 (50 + BG)2(0, a.. in [0, ),

(0) h,

and is the state constructed from h and z. But

IG(t)l 2 dt N IIGooll Iz(t)l 2 dt

+ I[Gil Ih(O)l 2 dO + Iz(t)l z at
i=1

+ Go a/2 Ih(O)[ 2 dO + Iz(t)l 2 dt

(5.33)
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where z is the solution of (5.30). Finally since (5.30) is L2-stable there exists a
constant c > 0 (independent of h, T and s) such that.

(Hr(s)h,h)M2 < cllhll= V h,V T>= s >= 0.

It is now easy to show the following"
(a) 1-IT2(S) _>-- 1-IT,(s), T2 => T1 => s, where __> denotes the natural partial

ordering of positive operators, and
(b) there exists c > 0 such that IIl-Ir(s)lleM) _-< c for all T >= s.
Then by a well-known theorem on positive operators (cf. Kantorovich and

Akilov [14, p. 189]), for all h in M2, I-IT(s)h converges to II(s)h, for some positive
self-adjoint operator I-I(s)in (m2).

Now for 0 < T1 sl T2 Sz, Sl >-_ s2 >= O,

(h, rI,(s)h) (h, ITr(sa)h)
and hence FIr,(sl) 1-Ir(S2). In particular, for all sl < s2 and h in M2,

and

FI(sl)h-- lim FIT,(sl)h-- lim HT,+_,(s2)h H(s2)h
T, To

lim Hr(s)h Hh V s >- O.

(ii) We now consider the control problem in the interval [0, oe). Let denote
the solution of (5.30) corresponding to the stabilizing feedback control law G,
let 2 be the solution of (5.33) in [0, ) and let 2T be the solution of

ds
(s)= (d- n.(s)):(s),

,(o) h.

a.e. in [0, T],

We first show that for all > 0,

(5.36) lim 2T(t ---} 2(t)
t, T

Fix > 0 and consider T, T > l. Let

uniformly in [0, 1].

yT(t) xT(t)- x(t) in [0,

Then

where

dt
--(t) Aw(t + /[H(t)- HT(t)YCT(t)],

r(O) 0,

a.e. in [0,

J y(s + O), s + O_> O,
:(s)(O)

0 otherwise.
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As a result there exists C(tl) > 0 such that for all 0 __<

IT(t)[ < c(tl) In(s)- rI(s)(s)l ds

=< c(t,) {l(rI rIT(S))(s)l + InT(S)fT(S)I3 aS

and we can find c’(tl) > 0 such that

1l)Trl]co,,,;u2)-<_ c’(tl) I(FI liT(S))Y(s)l ds.

But ff LI(0, tl M2). Then fT(S) FIT(s)ff(s) and f(s) lift(s) belong to
LI(0, ;m2). BothfT andfare bounded by the Ll-function cl(s)] and for almost
all t,

fT(t) FIT(t)(t) f(t)= rib(t) as T

By the Lebesgue dominated convergence theorem, fT f in L1(0, MZ).
This shows that )7T 0 and proves (5.36). This also shows that YT(t) is uniformly
bounded in [0, 1] by a constant independent of T.

We know that for all T > 0 (cf. Delfour and Mitter [8])

(5.37) (rr(0)h, h) ([ + n(sn(s](s,(ss.

The left-hand side of (5.37) converges to (h, h) as T goes to infinity. We now
show that the right-hand side of (5.37) converges to

For this purpose we define

([ + Hr(t)Hr(t)]r(t), r(t)), 0 T,
gr(t)=

0 otherwise,

From previous considerations it is now clear that

gr(t) -- g(t) pointwise in [0, ) as T

By Fatou’s lemma,

g(t) dt lim gr(t) dt lim (Hr(O)h, h) (Hh, h),
T T

and for all T > 0,

dt J( X- *, (HT(O)h, h).h)

Off) Finally (5.34) has been established at the end of (ii).
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5.4. Solution to the infinite-time problem.
THZOREM 5.8. Assume that () is stabilizable. Then for each h in Me, there

exists a control function u* in Loc(0, c U) such that

(5.38) Joo(u*, h) inf {Joo(v, h)lv e Lloc(0, c U)} (h, Flh).

Moreover,

(5.39)

where Yc is the solution of

U*(t) N-1/*l-I:(s),

ds
(S) ( l-I)2(s), a.e. in [0, o),

2(0) h.

Proof. The control function u* defined by (5.38) is clearly an element of
Lo(0, oe U). Consider any v e Lo(0, oe U). Then for all r > 0,

(h, 1-I r(0)h) min
eL2(O, T; U)

J(v, h) <= [(Qx(s v), x(s v)) + (Nv(s), v(s))] ds,

where x(. v) is the solution of (L) corresponding to h and v. Therefore,

(h, I-Ih) =< [(Qx(s v), x(s v)) + (Nv(s), V(s))] ds,

and the result follows from Theorem 5.7 (iii). U

5.5. Characterization of I-I and stability of the closed-loop system.
THEOREM 5.9. Let Q > O. Then"
(i) () is stabilizable if and only if there exists a positive self-adjoint operator

FI in (Ma) which is a solution to the operator equation of Ricatti type

(5.40) (A-h, nk) + (h, HA-k) (h, rInk) + (h, Ok) 0 V h, k in V.

(ii) If a positive self-adjoint solution of (5.40) exists, it is unique and equal to
the 1-I of Theorem 5.7. The operator -.YI is LZ-stable, the operator
G* -N- 1/*1-I defines a stable feedback law and I-I is positive definite on X.

Proof. (i) Assume that system () is stabilizable. Then equation (5.31) of
Theorem 5.7(ii) is true for all h in M2. Since Q > 0 and 1-I/l-I _>_ 0 we can use
Theorem 5.3(i) and (ii) to conclude that the operator -/II is LZ-stable. Since
Q, I-I and Q + I-I/I-I are positive and self-adjoint, equation (5.31) implies that for
all h and k in m2,

(nh, k) ([0 + ds,

where ffh (resp.)k) is the solution of equation (5.33) with initial datum h (resp. k).
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Let t(s) be the strongly continuous semigroup generated by/ /H, that is,
Yc(s) (s)h. For all h and k in V,

(n(X-/n)h, k)= ((0 + rl/n)(s)(X-/n)h, (s)k)ds,

(h, (-n (( + (sh,(s(- s,

-(( + nn)h, k),

since - H is L2-stable and 2(s) 0 as s . Finally,

n + X*n nn + .
Conversely assume that there exists a solution H to the operator Riccati

equation (5.40) which is self-adjoint and positive. Equation (5.40) can be rewritten as

By Theorem 5.3(iv), this means that the system defined by the operator A RH
is L-stable. It is now a simple matter to check that the stabilizing feedback law
is G* N- B*H.

(ii) If a positive self-adjoint solution of (5.40) exists, we have shown that
system (E) is stabilizable, that H is a solution of (5.40), that the operator H
is L2-stable and that G* is a stable feedback law. By Proposition 5.4 we can also say
that H is positive definite on X. It remains to prove uniqueness. Assume that
there exist two solutions H 0 and H2 0 to the Riccati equation (5.40).
Let P H H2. Then necessarily

or

Hence

((, Yl.)h, Pk) + (h, P(, Fl 1)k) O.

d
ds(2(s)h, P,(s)k) (( -/l-12)2(s)h, P,(s)k)

+ (2(s)h, P(A RH,),(s)k) O,

where 2 (resp. ) is the semigroup generated by/-/Fle (resp. -/Fll).
Then

(h, Pk) (e(s)h, Pd(s)k) 0 as s - ,since e and are Le-stable. Finally P 0 and equation (5.40) has a unique
solution which is necessarily equal to the H of Theorem 5.7.
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Remark. Note that the hypothesis Q > 0 implies that the pair (A", Q1/2) is
observable since the map h-- Q1/2o(. )ho is injective (cf. Delfour and Mitter
[8, Def. 3.11 and Prop. 3.13]).

6. Detailed characterization of H. One can exploit the structure of the space
M and the fact that FI is a matrix of operators to give a detailed characterization
of H. This is done in the following theorem.

THEOREM 6.1. Let H >__ 0 in Ca(M2) be the solution of (5.40). Then

(6.1) (h, Flk) ((t)h, [0 + nrI]q,(t)k) dt.

It is completely characterized by its matrix of operators

(6.2) [FI FI:l, Hc’(X)’ 1-Ilq;’(L2(-a’O;X)’X)’
FIlo FI1 1-IloeC’(X,L2(-a,O;X)), FIll (L2(-a,O;X)).

Hoo is characterized by the equation

HooAoo + AoHoo + HLO(0) + Hlo(0)* + Q HooRHoo 0,
(6.3)

1-Io Hoo > 0.

H o is characterized in thefollowing way"

(6.4) (H loh)() l-I lO()h,
where the map

(6.5) a no(a)" [- a, 0] &a(X)

is piecewise absolutely continuous with jumps at a O of height A*IIoo,
i= 1,..., N- 1. Moreover the map (6.5) is characterized by the differential
equation

N-1dHlo (a)= n,o(a)[Aoo Rnoo] + Y A’nooa(a- o,)+ Aol(a)*Hoo
/=1

(6.6) + I-I 11(Z, 0), a.e. in [-- a, 0],

1-Ilo(--a) A]Hoo,

where 5( 0) is the deltafunction at 0.
Hol is obtained from H o"

(6.7) FIolhi FI lO(a)*h l(x) da.

1-I1 is characterized in thefallowing way"

(6.8)

where the map

(1-I lh1)() l-I l(X, fl)h l(fl) dfl,

(6.9)
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is piecewise absolutely continuous in each variable with jumps of height A.*, Hlo(fl)*
at 0i, i= 1,..., N (resp. YIlo(t)Aj at fl Oj, j 1,..., N 1). More-
over 1-I11(, fl) is the solution of

(6.10)

with boundary conditions

(6.11)

I-I,,(o,) Ao,(OO*I-Ilo()* + n,o()Ao,()

N-1 N-1

+ AH,o(fl)*6(a Oi)+ H,o()Aj6(fl-Oj)
i=1 j=l

n,o()Rn,o(fl)*

n,,(-a, fl) AH,o(fl)*, 1-I 1( a) 1-I o(a)Au,

and symmetry property

I-Ii1(o, fl) H,l(fl,
The solution of the above differential system is

(6.12)

Proof. See Appendix B.

Appendix A.

otherwise

-a <= fl + 0,0 < fl
otherwise

> fl ad
otherwise

0>- fl--a}d0
otherwise

H,o(a fl + O)RYI,o(O)* dO, >= fl

Proof of Theorem 5.5. The reader can find the definitions of o, (I)1 and
in Delfour and Mitter [7], [8 and [10]. We first rewrite equation (5.15) in terms
of"

(A.1) (h, rIk) ()(t)h, [Q + rIHfl)(t)k)dt.
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We shall also use the identity

(A.2) [(t)h] (t)h + (t)h.
We first study BOO and the kernels Bl(a) and B 11(Z, ) of the operators B1

and B1. Since we know where the discontinuities can occur we derive differential
equations for Bl(a) and B(a, fl). Finally we solve the equation for B 11(a, fl)
and give an explicit expression of B11(a, fl) in terms of B1(. ).

(i) Let h (h, 0) and k (k, 0) in (A.1). Then

(A.3) BOO O(t)*O(t) dt.

Let h (0, h), k (k, 0) in (A.1). Then

(A.4) (h Bk) (O(t)h O(t)k) dt.

But (cf. Delfour and Mitter [7] and [8])

(A.5) (t)h I)(t, a)hl(a) dx,

(A.6) fo(h 1, Blk) (h(a), O(t, a)*O(t)k)dt da,

and

(A.7) Bl(a) I)l(t, a)*cI)(t) dt.

We now substitute for l(t, ) the expression (cfi Delfour and Mitter [7] and [8])

(A.8)
il 0 otherwise

o(t- + O)Ao(O)dO.

Identity (A.7) can now be rewritten in the form
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Finally we change the order of integration of the last term in (A.9) to obtain

(A. 10)

N

i=1

(t + Oi)*(t) dt, Oi <=
--Oi

0 Oi>X

+ dO Ao(O)* dt (t + O)*(t).
--t9

By inspection it is readily seen that B1(00 has jumps at Oi, 1, ..., N 1,
of respective heights A{B. Moreover

(A.11) Bl(-a) AB.
Let h (0, h 1) and k (0, k 1) in (A.1). Then

(A.12) (h’,Bl’k ’) (O’(t)h’, 01(t)k’)dt.

In view of (A.5),

(A. 13) (h’, B"k’) ’(t, a)hl(a) da, d’(t, fl)kl(fl) dfl dt

and

(A.14) B11(, [) ’(t, a)*’(t, fl) dt.

We again use (A.8) to express B(, fl) in terms of o.
B(,) +

= 0 otherwise xt-.-,
Aol(O)*dP(t o + 0)* dO1,

otherwise
q)(t fl + )Ao()d] dt

i=lj=l

t>a-Oi>O,t> fl-Oi>O} dt
otherwise

(A.15)

foo {.*,o(t-a+oi)*, t>_-o>o}f+ dt (t- + )Ao,()d
otherwise axe- a.a- t

+ dt
axl tl

j=l

|
dO Ao(O)*dP(t a + O)*dP(t + Oi)Ai, >= Oi >- O t

otherwise

+ dt
axl

dO d Aol(O)*(t ot + O)*dP(t + )Ao()
ax{ a,/ t}

(cont.)
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i=

dt A.*, (t + Oi)*.(t + Oi)Ai, Oi >= Oi >=0

dt A.*, dP(t + Oi)*dP(t fl + Oi)Ai, fl 0 > Oi >= O

otherwise

dt d.A(t- + Oi)*dP(t- + )Aol(), - 0=>0
+ 0i ax{ a,# t}

= 0 otherwise

dt dO Ao(O)**(t + O)**(t + Oj)Aj, fl Oj > 0
ax{ t}

otherwise

+ dt
ax{-a,a-tl

dO d Aol(O)*(t + O)*(t + )Ao(
ax{ a,0 t}

+ dt
ax{-a,O-t-a+Oi)

i=1

d A.*, *(t)*dP(t + O + )Ao,(.), -Oi>=Ol
otherwise J

Ij=l

dO Aol(O)*(t + fl Oj- o + O)*(t)Aj, fl- Oj >= 0

otherwise

+ dO dt d Ao(O)*(t- + 0)*(t-/3 + )Ao,(
ax{ a,/ t}

=(R)+(R)+(R)+(R).

Given , term has jumps at//= Oi,j 1, ..., N 1, of height

N

(A.16)
i=1

dt A.*, (t + Oi)*(t)Ai, >. Oi}Oi

o<Oi

Given/, term 0) has jumps at 0, 1, ..., N 1, of height

N

(A.17)
j=l

dt A.*,(t)*(t + Oj)Aj, >- Oj

0 Oj

<Oj
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Given fl, term @ has jumps at e Oi, 1, ..., N 1, of height

(A. 18) d dt A.*, (b(t)*(D(t + )Ao 1().

Given , term @ has jumps at fl 0, j 1,..., N 1, of height

(A.19) dO dt Ao(O)*(t- + O)*(t)A.

Given e, term @ has no jumps. Given , term @ has no jumps. Term @ has
no jumps. Finally, given e the mapBB(e, B) has jumps at B O,j 1,
N 1, of height B(e)A and given B the mape B(e, B) has jumps at e 0,

1,..., N 1, of height AB()*. Moreover,

(-a,

and

(A.20) B11(-a, fl) AcBl(fl)*.

We now express B11(0, ) in terms ofB o(. ). To do this we consider separately
each of the four terms in (A.15).

dt A.*, O(t + Oi)*(D(t fl + Oj)Aj, fl 0 + Oi <= 0
-o, >-_ Oi

0--’_ 10 o<Oi
Ojj=l

dt Aap(t o + fl 0 + O’)*eP(t)Aj’, otherwise-CZz>--Oi+fl O + O, <= O|l,
fl <

>= O}
dt A.*, (t)*(1)(t fl + Oi + 0), -fl + 0i+ 0 < 0.. >= Oj

+- S’ =1 0 otherwise
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d +o,-

= dt
i=1

dt A.*, O(t)*O(t + o 0 1- )aol(),, -- Oi <

o + 0

li,, o >:

< Oi

dtO(t)*O(t+ - Oi-fl+ )Ao1(), -a <-fl-+ 0i,>= OiA’ -+o,-
i= L0-a otherwise

dt O(t)*O(t + Oi fl+ )Aol(), -a =< fl- + 0i,>- O,

-a> -+ Oi,>= Oi

otherwise

-A’
i=l

d dtO(t)*(t- fl + - Oi + )Aol(), -a <= [3 + 0i, >= Oi
-=+Oi-,

otherwise

+ d ’ -a+-o,
dt YP(t ot + fl- + Oi)*O(t), > fl + Oi. > Oi

Ao()"
i=

otherwise

Notice that we can drop => 0 in the last term since

fl> and O "" Oi:: O

By symmetry

dOAo(O)* dtO(t- +fl- 0+ O)*O(t)A, -a <=- fl+ O,fl>__ O
-fl+0j-0= otherwise

+ dO Ao(O)* +o-o
j=l

dt O(t)*O(/- [3+ - O)Aj, 0>= or- fl + Oi
otherwise

Finally,

(R) d0
dt Ao(O)*(t + O)*O(t fl + )Ao(),

dt Ao(O)*O(t- + O)*dO(t- fl + _)Ao(.),

dO dt Ao(O)*dO(t- + fl- + O)*O(t)Ao(.), - fl + >= -a
d -+-o

otherwise
(cont.)
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+ dO dO
-a+o-

dtAol(O)*tl)(t)*tl)(t- fl+a- O+ )Ao(), fl- + 0>__ -a

otherwise

(ii) We now derive equations (5.19), (5.22) and (5.26). Our starting point is
the Lyapunov equation

(A.21) O= (Xh, Bk) + (Bh,k) + (Y-h,k) V h, k in V

or

Aooh(O + Aih(Oi) + Ao,(a)h(a) da, Bk(O) + B’(O)k(O) dO
i=1

+ (), B()k(O) + B (, O)k(O) dO d

(A.22)

+ Bh(O) + B’()h(a) do, Aook(O) + A,k(Oi)
i=l

Let

+ Ao,(O)k(O) dO

+ BX(O)h(O) + B"(O, a)h(a)d,-(O) dO + (h(O), k(O))= O.

f
h.(O) h

0,

l+n --<0<0,

otherwise,

where n is chosen in such a way that n > aO- 1. Then

h,(0) h and h, 0 in L2( -a, 0;X).

Let k be chosen in W1’2(-a, 0;X) in such a way that

supp k (0i, 0i_ 1) I.J (01,0].
Let h h, and k ki in (A.22)"

0 Aooh + Aol(O)h,,(O)dO,Bk(O) + + Bl(O)k(O)dO

+ (), B l(a)ki(O) q-- - B l(a, O)ki(O) dO da

(A.23)

+ Bh + B l(a)hn(a) da, Aook(O) + + Aol(O)k(O) dO

+ + B(O)h 4c- B 11(0, a)h,(a) da, (0) dO + (h, k(0)).
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Since - l-Iol(), - 1-I 1(, 0) and 0- Fl (, 0) are absolutely continuous
in (0, 0_ 1) and (0, 0) we can now integrate by parts.

Equation (A.23) now reduces to

0 Aooh + Aol(O)h,,(O)dO, Bki(O) + + Bl(O)ki(O)dO

+ ,(0),B’(0)ki(0) + + Bl1(0, O)k,(O) dO

(A.24)

h,,(x), B l(x)ki(O) + + B 11(, O)k(O) dO

Bh + Bl()h,,() d, Aooki(O + + Aol(O)ki(O dO

+ lO(0)hO + B 11(0, a)h,(a) da, k,(O) ;oi} (O)h

f dF111 (0, a)h,,(a) da ki(O)+ dO
dO + (h, ki(0)).

Notice that

IAol(O)h,,(O)l dO <= IAo,(0)l 2 dO Ih,,(0)l 2 dO

and

lim Ih,,IL2t-a,o;x)= 0

imply that

IAo l(O)h.(O)l 0dO

Similarly given any f in L2( a, 0;X),

as n--, .
0

(h,,(O), f(O)) dO

and

lim (h.(O), f(O)) dO 0 asn .
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As a result equation (A.24) yields

0 Aooh, Bki(O + + Bl(O)ki(O) dO

+ h, Bl(0)k(0) + + B11(0, O)k(O) dO

(A.2)

+ Bh, Aook(O + + Aol(O)k(O dO

+((Oh, (0 + ,,, (Oh, (0
To obtain equation (5.19) we use

k l+m
k(O) kin(O)=

0

dO + (h, k(0)).

ma =<0=<0/,otherwise

where m is chosen in such a way that m > aO-[ 1. When we take the limit of equa-
tion (A.25) as m goes to infinity we obtain

([BOOAoo + B (0)* + A$oB + B1(0)+ I]h,k) 0

for all h and k in X.
To obtain equation (5.22) in the open interval (0i, 0i_ 1) we choose k such that

supp k = (Oi, 0i_ 1)"

Then equation (A.25) yields

0- Bl(O)*Aoo --I- Bl1(0, 0)* d- Aol(O)*B- dO
(0) h, k,(O) dO.

By density of the set of absolutely continuous maps with support in (0, 0_ 1) in
L2(0, 0_ ;X) and the properties

(A.26) B 1(0) B 1(0)*, Bl1((2, 0)* B 11(0, (2),

the above equation yields for all h in X

dO
(0)+ Bl(O)Aoo + Aol(O)*B + Bl1(0,0) h- 0,

almost everywhere in (Oi, Oi- 1).
To obtain (5.26) in the region

{((X,0) G[--a,0 X [--a,O]l(x(Oi, Oi_i),O(Oj, Oj_i)}

we choose

k= kj,

supp h (Oi, 0i_ 1)’

supp kj (Oj, Oj_ )
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and substitute in (A.22) which reduces to the following expression"

(A.27)

The two terms with a derivative can be integrated by parts"

00, B ll(, O)kj(O) dO d

fj-hi(or) LB11(, O)kj(O) dO

and

B’ I(O, oOhi(a do, -(O) dO

Bl1(0, )hi( do, kj(O)

Finally equation (A.27) takes the form

Bll
(0, ) h,(), U0)

By using relations (A.26) and the density argument we obtain

B 11

(, 0) +
0

do

dO.

4- Aol(O)*BI(oO

(B 11

(0 (’ O)- AOl(Ot)*BI(O)* nt- BI(ot)Ao(O)

for almost all (, 0) in (Oi, 0i_ 1) X (Oj, Oj_ 1)"
(iii) We now solve equation (5.26) with boundary conditions (5.27). We let

r/- e fl and consider two cases. First let a _>_ r/>_ 0; then

-a__</3 __<0r/-a__<__<0.

If we change the variable/3 to r/= e fl, equation (5.26) becomes
d
B 11(o, o y/) AOl(OO*B1( r/)* q- B I(oOAo,( r/)

N-1 N-1

+ Y AiBI ,I*,( Oil + BIA/I ,
i=1 j=l
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This last equation can be integrated from r/- a to "
B11((, 7]) B11(7 a, a)

+ Aol()*B’( r/)* d +

+
= 0 otherwise

+ 0 otherwisej=l

Finally for a fl,

B(,) B(e a)A +
= 0

+
= 0 otherwise

f {Ao()*B(fl-+)*, -fl-a}d+
0 otherwise

+ o( + o)o(o) o,

B(e,) B(e- - a)A

j=l

i=1

+
0 otherwise

+
0 otherwise

Bl()Ao,( rl) d

o<
otherwiseJ

0 </,-a =< -/ + 0
otherwise

otherwise

Notice that in the above expression for B l(a, fi) all terms but the first are sym-
metrical. Hence for =< fl we shall obtain the same expression with the exception
of the first term which will be equal to

AB (fl X a)*.

But

and

lim BI(a fl a)A BI(-a)A ABA

lim AvBl(fl- a)* ABl(-a)* ABA
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imply that this first term is continuous at (, ), -a __< < 0_ . This makes it
possible to write the first term as follows"

B(e a)Au, >= ,
ABi( a)*, e < .

This yields identity (5.28).

Appendix B.
Proof of Theorem 6.1. The reader can find the definitions of o, O1 and t in

Delfour and Mitter [7], [83, [10].
We first study Hoo and the kernels Hlo(e) and Fill(e, fl) of the operators

1-11o and H ll. Since we know where the discontinuities can occur we derive
differential equations for FI O(e) and H ll(e, fl). Finally we solve the equation for
H l(e, fl) and give an explicit expression for H (e, fl) in terms of H o(’). We shall
use the following results (cf. Delfour and Mitter [73, [8], [10]):

(B.1) [{(t)h] dp(t)h + Ol(t)h 1,

(B.2)

(B.3)

O(t+ e)h, + e__>0}[I-It(t)h] 1-I(t)h + 1-Il(e)10 otherwise
de

ff ,(ol(t + e)h’, +eO+Hl(t)hl + IIxte)hl(t + e) otherwiseJ
de.

(i) Let h (h, 0) and k (k, 0) in (6.1). Then

(Hooh, k) (Q(t)h, O(t)k)

+(R[1-Iood(t)h+;min,..,l-Iol(e)(t+e)hde1
FlooO(t)k + 1-Iol(fl)O(t + fl)k dfl dt.

min(t,a)

Notice that

and

min(a,t)

de de dt

o o o o tit,

fo dt f d f de= f_ d f_ de
mn(a t) mn(a t)



76 M. C. DELFOUR, C. McCALLA AND S. K. MITTER

Hence

Hoo o(t)*[Q + HooRHoo]O(t) dt

(B.4)

+ dfl dt (t + fl)*l-Iol(fl)*R[Ioo(t)

+ da dt O(t)*HooRHol(a)t(t + )

+ d d
+ fl)*HOl(fl)*RHol(a)(t +

dt(t + fl)*HOl(fl)*RHol()(t + ),

Let h (0, hi), k (k, 0) in (6.1). Then

1-IOl hi t(t)*Ql(t)h dt

-- f) [((t)*l-Io -[- fmin(t,a) O0(t -[- 0)* 1-I01(0)* dO1
[ f (I)l(t -F OOhl’e 1-Ioo(I)l(t)h q- 1-[l(O(hl(t -t- ) otherwise

(B.5)
(t)*Ql(t)hl dt

+ (t)*Ho +
min(t,a)

(I)(t + 0)’1-1o1(0)* dOJ
R 1-Ioo(I)l(t)h d- l-I01(O0(I)l(t + a)h da dt

min(t ,a)

-[-" fmin(t,a) (I)(t + O)*YIol(O)* doJ
R f-min(t,a) [-Iol()hl(t -q- o0 da dt.
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In view of (B.3) and (B.4) and the fact that

(D(t -+- oOh (I)l(t + , )h()d,

rIol( dt o(t)*[2 + nooRnooqO’(t, g)

+ dO dtO(t + O)*Hol(O)*RFlooOl(t, )

(B.6)

+ de dtO(t)*l-lSoRFlo()l(t + , )

dO+ dz
dt O(t + O)*l-Iol(O)*Rnol(a)x(t + , ), <= 0

dt O(t + O)*I-Iol(O)*RI-Iol(oO(l(t -F o, ), o > 0

+ d O( )*1-I8o + O0( (X -- 0)*l-Iol(0)* dOlRl-lol(oO,
where the last term is obtained from the last term in (B.5) after changes in the order
of integration and changes of variable"

f f--min(a,t) fO f f fdt d d dt d d with

d d
mln(a a)

d d
min(a, a)

dO d d dO,

since 0__< __< a + =< a.
We can now use the identity (cf. Delfour and Mitter [7],/8])

(B.7)

N {Oo(t_ + Oi)Ai,
’(t,O=, o t>----Oi>=O}otherwise

(t- -4- O)[Aol(O RI-Iol(O)] dO

to eliminate 0I)1 of the expression (B.6) for rI01(). The term tI)l(t, ) will always
be integrated with respect to and the only discontinuities that can occur are at

Oi where O l(t, ) has a jump of height O(t)Ai, 1,..., N 1. This will
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produce a jump in I-Io 1( of height

odt

I)(t)*[Q + HooRl-Ioo](t)Ai

+ dO dt(t + O)*l-lo(O)*RIIoo(t)A
0

+ de dt (t)*I-loRI-lo(e)(t + o)Ai
(B.8)

"’f-aO daf_ dO .clfdtO(t+O)*l-l’(O)*RIIi()(p(t+)A’’
|| dt *(t + O)*Hol(O)*RIIo,()(P(t + a)A,,

HooA
at the points 0, 1, ..., N 1. Moreover as --, -a,

(I)O(t)AN, > 0
lim (I)l(t, )--. 0 otherwise,

and if we let

(B.9) Ho(-a lim Ho(

we obtain in a similar way

(B.10) HOl(-a 1-IooAs.

Let h (0, h) and k (0, k) in (6.1). Then

(H 11 hi k 1) (QX(t)h (t)k) dt

fO [ f: J(l(t+’hl’ t+O
at-O0

+ dt R Hoo(t)h + 1-lOl(00h( otherwisetd0
II(t)k + II() (k(t + B) otherwise

The right-hand side of (B.11) can be rewritten in the following form"

) ([Q + HooRHooJOl(t)h 1, (I)(t)k 1) dt

foeff ,f(I)l(t nt-,h 1, t-- ( O+ dt do RHol(o)J.hl( + oO otherwise J’ 1-Il(t)kl

+ dt d Rl-loo,(t)h IIo(B)
,(t + B), + B >_- O
k l(t + fl) otherwise J (cont.)
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+ dt d .dfl RFlot)lh(t + ) otherwise

rIo + B)

(B.12)

otherwise

dt([Q + IlooRl-Ioo]Ol(t)h , Ox(t)k’)

f
min(a,t)

+ dt d(RHo(e)h(t + e), HooOl(t)k)

f: _t min(a,t)

+ dt dfl(YIoo(t)h, 1-Io(fl)k(t + fl))

fO f-min(a’t’ f
0

+ dt de dfl(RHo,(e)h’(t -F e), I-[ol(fl)(Dl(t + fl)k 1)
mm(a t)

+ dt de dfl(R[Iol(e)Ol(t + e)hl, I]ol(fl)kX(t + fl))
min(a,t) a

fO_I-min(a’t)_I -min(a’t)

+ dt de dfl(Rl-Iol(e)hl(t + e),l-Iol(fl)kl(t + fl)).

We number (!), ,..., (R) the last five terms in the right-hand side of (B.12).
Since

dt de de dt de d d de

with the change of variable to + e,

(B.13)

Similarly,

(B.14)

(!) de de(Rl-Io,(e)hl(O, 1-IooOl( e)kl).

dO dfl(RIIooOl(O fl)h’, rlo,(fl)kl(O)).

Also,

fo -mita"’ fdt de dfl dt
min(a,t)

de dfl de dt dfl
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and the change of variable to + e yields

(B.15)

() de d - dfl(RFlo,(e)h’(O, Flo,(fl)O’( e + fl)k’)

d de dfl(RrIo,(e)h’(O, Flo,(fl)O’(- e + fl)k’).

Similarly,

(B.16) @= dO dfl
-0

de(RFIo,(e)’(O fl + e)h’, Flo ,(fl)k’(O)).

Finally,

fOX
min(a,t)

dt de dfl de d dfl

with the change of the variable to + e and

@ de d dfl(RFlo,(e)h’(), rIo,(fl)k’( e + fl)).

We change the variable fl to 0 e + fl,

() de d dO(RHo,(e)h’(),Hol(e- + O)k’(O)),

and change the order of integration. But

f_’ f_de d dO d de dO

de, =<0

and by changing once more the variable e to e we finally obtain

(B.17) foo o de(R1-lol(e + )h(),HOl(e + O)kl(O)), <-- 0

da(Rrlo,(a / )h’(), I-lo,(e / O)kl(O)), > 0

By analogy with equations (B.3) and (B.4) and with the help of equations (B.13)
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to (B. 17), identity (B. 12) yields

rI11(, 0)

Ol(t, )*Q + nooRnooO’(t, o) dt

/ d dt (t / o, )*lqo(O)*Rl-Ioo(t, O)

(B.18)

+ dfl dt (I)’(t, )*HooRHo,(fl)(P’(t + fl, O)

+fOOdaf_ dfl lfadt(I)l(t-F’)*l-IOl()*R[IOl(fl)l(t-k-fl’O)’O<=fl
If dt (I) l(t + 0, )*rIOl(O):/riol()(I)l(t + , 0), > /

fo+ da Ho,(a)*RHoo01( a, 0) + dfl ’(0 fl, )*HooRHol(fl)

+ d dfl I-Iol()*Rl-Iol(fl)(I)l( O q- fl, 0)

fo fo+ dfl da(b(O- fl + , )*Hol(a)*RHol(fl
13-0

0

d I-Iol( -I- )*Rl-lol( + 0), 0

da Flo(a + )*RI-Iol( -+- 0), < 0

In the light of identity (B.7), l(t, ) has discontinuities of height (t)Ai at 0i,
i= 1,...,N- 1, and

(B.19) lim (I)l(t, ) (I)(t)AN.--Fix 0 and consider the map - 1-I 11( 0). Since everywhere (I)l(t, ) is integrated
with respect to t, discontinuities can only occur at Oi, i= 1,..., N- 1.
At Oi, H l1(, O) has a jump of height

1-I11(, 0

;o A(P(t)*[Q + HooRHoo-]d)l(t, O) dt

+ d dt A.*,(t + z)*Flo (z)*RFloo(t, O)

(cont.)
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o o dt A’O(t + )*FIo()*RHo(fl)O(t + fl, 0), e __< fl
+f_ d=f_ dfl

dt A’O(t + a)*Hot(a)*RHo(fl)Ol(t + fl, 0), a > fl

+ dfl d AO(O- fl +

By symmetry for each the map 0 (, 0) has jump discontinuities of height
o()A at 0 0, j 1, ..., N 1. As for the boundary conditions we fix 0
and evaluate

lim n(, 0) n(-a, 0)

using (B. 19). This yields

(.a n(-a, 0 }no(0

and by symmetry

(B.221 H, ,(, a) H,,(- a, )* Ho

(ii) Now that we know where the jumps are we can derive equations (6.3),
(6.6) and (6.10). Our starting point is the Riccati equation

(B.23) 0 (A, nk) + (nk, A))- (nh, nk) + (Oh, k),

or in expanded form

ooh(0 + 2 h(03 + o(h(, noo(0t + no(0(00
i=1

o dh
o()k(0) + H,,( O)k(O) dO da+ (),

+ ooh(0) + o()h() d, oo(0) + (0) + o(0)(0) dO
i=1

(B.24)

Let

(B.25)

+ I-I, o(0)h(0) + I-I, ,(0, )h(a) de, 0(0) dO

FIooh(0 + Hol(e)h(e de, R Hook(0 + Ho(O)k(O) dO

+ (Qh(O), k(0)).

(!) a

h0 +n <=0<0
h,(O) n

otherwise
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where n is chosen in such a way that n > aO- 1. Then

h,(0) --, h and h, --, 0 in L2( -a, 0;X).

Let ki be chosen in W1’1(-a, 0;X) in such a way that

supp k c (Oi, 0i_ 1) I,.J (01,0].

Let h h, and k ki in (B.24):

Aooh + Ao l(O)h,,(O) dO, Hook(0 + + 17o l(O)k(O) dO

+ Ch-L- (a), Flo l(a)k,(O) + + H, l(a, O)k(O) dO da

+ Hooh + Ho l(Z)h.() d, Aooki(O + + Ao l(O)ki(O) dO

(B.26)

{;-’ ;}( ; ho+ + FI lo(O)h + F111(0, )h,,(a) da, --d(O) dO 1-Ioo

+ (Qh, k(0)) 0.

Since Ho(), H(, 0) and 0 H(, 0) are absolutely continuous in
(0, 0_ ) and (0, 0) we can now integrate by parts.

Equation (B.26) now reduces to

Aooh + Ao (O)h,(O) dO, Hooki(O + + Ho (O)ki(O) dO

+ h, no(0(0 + + n ,(0, 0(0 0

h,(). H o()k(O + + H(.O}k(O)dO

+ Hooh + Ho ()h,() d, Aooki(O + + Ao (O)ki(O) dO

(B.27)

+ o(O)h + (0, )h() d,

[dH(O)h+ (0 )h,() ki(O) dO Hooh(cont.
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+ Hol()h.() d, R Hooki(0 + + Hol(0)ki(0) dO
01

+(Qh, k,(O))= O.

Notice that

IAo,(0)h.(0)l dO
_

IAo 1(0)12 dO Ih.(0)l 2 dO

and

lim Ih.lL(-.,o;x) 0

imply that

f lAo l(O)h.(O)[ dO 0

Similarly given an f in L2(- a, 0; X),

f] (h,(O), f(O)) dO

and

as n- .

lim (h,(0), f(O)) dO 0

As a result equation (B.27) yields

asn.

(B.28)

-+-
o,_,

-k- l-I o l(O)ki(O) dO)

dO

To obtain equation (6.3) we use

ko
k,(o) k,,,(O)=

0

l+m 0=<0
m

otherwise
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where m is chosen in such a way that m > aO- 1. When we take the limit of equa-
tion (B.28) as m goes to infinity we obtain

(B.29) ([HooAoo + Hlo(0)* + AoFloo + Hlo(0)- HooRHoo + Q]h, k) 0

for all h and k in X.
To obtain equation (6.6) in the open interval (0, 0_ 1) we choose k such that

supp ki (0, Oi- 1).

The equation (B.28) yields

0- 1-Iol(0)*Aoo -- 1-Ii1(0, 0)* -- Aol(0)*l-Ioo

dO
(O) Hol(O)*RHoo h, k;(O) dO.

By density of the set of absolutely continuous maps with support in (0, 0_ 1) in
L:(0i, Oi-1; X) and the properties

(B.30) 1-I1o(0 1-Iol(0)* 1-Ix l((X 0)* 1-Ill(0 g),

the above equation yields for h in X,

all-I 1(0)+ o(0)[Ao RFloo] + aol(0)*l-Ioo + 1-Ii1(0 0)]h 0
dO o

a.e. in (Oi, Oi- 1).
To obtain (6.10) in the region

{(0, O) . [-- a, 0] x [-- a, 0110 e (Oi, 0i_ 1), 0 e (Oj, Oj_ 1)},
we choose

h hi, supp h c (Oi, 0i_ 1),

k= kj, suppkjc(0j,0j_l)

and substitute in (B.24) which reduces to the following expression:

(B.31)
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The two terms with a derivative can be integrated by parts"

), F111(, O)k.i(O) dO d

h(l, -d
and

1-111(0, )hi(oO da, 0 dO

0

Finally equation (B.31) takes the form

dO.

crIll(o, 0) + Aol(O)*FIol(zd dO YII(O)*AI()-
63g

On11d (0 ) nOl(0)*RHo()hi(), ki(O)

By using relations (B.30) and the density argument we obtain

11(0 ) + (0 )= 0(0)01() 01(0)*10()* 10(0)10()*

for almost all (e, 0) in (Oi, 0i_ 1) X (Oj, Oj_ 1)"
(iii) We now solve equation (6.10) with boundary conditions (6.11). We let

r/= e fl and consider two cases. First let a => r/>_ 0; then

-a_<_/=< 0r/-a<__<__0.

If we change the variable fl to r/= fl, equation (6.10) becomes

--Fill(a, a- r/)= Aol(a)*Illo(a- q)* + 1-Ilo(a)Aol(a- r/)- 1-Ilo(OORI-Ilo(-

N-1 N-1

+ A?n,o( rt)*( 0,) + 2 H xo(a)A5(a r/- 0).
i=l j=l

This last cquation can bc integrated from a to "
n a(e, e q) n a(q a, a) + Ao()*Ho( q)* d

+ Ho()[Ao,(- U)- Rn,o(- q)*] d

= 0 otherwise

= 0 otherwise



LINEAR HEREDITARY DIFFERENTIAL SYSTEMS" 87

Finally for > fl,

1 {1-Ilo(Z- fl + Oj)Aj, Oj< fl
II,,(a, fl) 1-I,o(a fl a)Au +

r=l 0 otherwise

’{A’ii,o(fl-+ 0,)*, -a__<fl-+
+
i= 0 otherwise

+ Ao,()*ii,o( a + fl)* d
--fl--a

+ no(- + o)[o(O)- Rno(O)*]O

and

Ill,(z, fl) I1 lO(( fl a)AN

++
j=l 0

-Jr- 1{ A’l-l O fl 0 -1- O *

i=1 0

+
0

f n O(- B + O)Rn o(0)* aO,

lO()n lO(B + )*

-a=<e-fl+ Or,Or<
otherwise

--a fl -1- Oi, 0 <
otherwise

>=- fl-a}dotherwise

O>__fl--a}otherwise
dO

Notice that in the above expression for B 11((, fl) all terms but the first are sym-
metrical. Hence for =< fl we shall obtain the same expression with the exception
of the first term which will be equal to

Ail-ilo(fl a)*.

But

lim 1-Ilo( fl a)AN 1-Ilo(-a)AN ANI-IooAN*

and

lim A}Illo(fl a)* A}l-Ilo(-a)* ANIlooAN*

imply that this first term is continuous at (z, ), -a =< e < 0N-1" This makes it
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possible to write the first term as follows"

II10(e- /- a)Au,

A}I-I10(/ a)*,

This yields identity (6.12).
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