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Falb  and Wolovich have shown that (1) is  decoupleable if and only if D 
is nonsingular. If D - I  exists,  then  the  control  law (2) with ( F , G ) =  
( -D-’A*,D-’ )whereA*isanmXnmatr ixwhose i throwisg ivenby 
CiA 4 +  for i E m, d l  decouple.  We note  that the  elements of D are  not 
in general continuous functions of the  components of the matrices A ,  B, 
and C; hence, the  determinant of D is  not a  continuous  function of A ,  B, 
and C. 
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some feedback map F, 
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Generic Solvability of Morgan’s Problem 

MICHAEL E. WARREN AND SANJOY K. MITTER 

Abstract-For m-input, m-output, linear time-invariant systems of  the 
form 

a ( t ) = A x ( t ) + B u ( t ) ;  y(r)= C x ( t )  

it is shown that Morgan’s problem, (decoupling into an m-single input- 
single output subsystem) is solvable for almost all real matrix triples 
( A ,  B, C) consistently  dimensioned. 

I. INTRODUCTION 

We consider  linear,  time invariant, multivariable  systems of the form 

i ( t ) = A x ( t ) + B u ( t ) ,  y ( t ) =  C x ( t )  (1) 

where x ( t ) ~  R ” ,  u(t ) ,  and y ( t ) E  R m ,  n >  m, with A ,  B,  and C 
appropriately  dimensioned real  matrices. The problem of decoupling an 
m-input, m-output system (I) into m scalar input-scala: output subsys- 
tems by the use of a feedback control law 

u ( t ) = F x ( t ) + & ( t )  (21 

with u(t )E  R”,  was first considered  by  Morgan [ I ]  who constructed  a 
sufficient  condition for decoupling. In 1967, Falb  and Wolovich [2] 
completely  solved this question  showing that decoupling  was  possible if 
and only if a  certain easily  determined  matrix, dependent  upon the 
parameters of A ,  B, and C,  was nonsingular. For ease of  notation, we 
shall  refer to  this issue as Morgan’s  problem. 

Wonham  and  Morse [3],[4] developed a more  general  theory of de- 
coupling  and  found an equivalent  geometric  condition  for the solution of 
Morgan’s  problem. Fabian  and  Wonham [5] extended  these  geometric 
results to show,  in particular,  that (1)  is  generically  (i.e.,  for  almost all 
parameter sets A ,  B,  and C) decoupleable if dynamic compensation  is 
allowed.  Building upon the  machinery of [5],  we d l  show that Morgan’s 
problem  itself  is  generically  solvable. 

11. PROBLEM FORWJATION 

For any positive  integer k ,  let k denote  the set (1,2;. . , k } .  We 
designate the ith row of C from (1) by C; for i E m. For each C, define 
the nonnegative  integer d, and the row vector D,: 

di=min{jlCiA’B+O, j = O , l  :... n-I} 

di=n-l,  ifC,AjB=Oforallj>O (3) 

Di = CiA dB. 

(For  the  discrete time analog of (i), 4+ 1 represents the minimum  time 
delay  for  the effect of any  input  to be  visible at  output i, and D, 
represents the first nontrivial  pointwise  mapping  from inputs to output 
i.) Then  construct  the m X m matrix D whose ith row  is  given  by Di, i.e., 
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where % denotes  the image of B .  A cs is then seen to  be invariant under 
the  action of A + BF and  also completely  reachable. If  we let Qi 
represent  the  largest cs contained  in  the  common  kernel of 

CI,~..,C,-],Ci+l,...,Cm, 

where ?Xj =Ker C,, then  Morse  and  Wonham [4] have shown that 
Morgan’s  problem has a solution if and only if 

Fabian  and Wonham have used  tools of algebraic  geometry to show that 
for  almost every  time invariant linear  system of a  particular class, 
including those of the form (I) ,  

4, + ”Xi = R” 

which is sufficient to  guarantee  the existence of a feedback compensator 
which will effect  decoupling. A key  element in their  work consists of 
showing that for almost all parameter sets ( A ,  B,C) satisfying  several 
loose  dimensional constraints,  the subspaces 

X i =  n YL,, i E m  

J E m  
J # i  

will be  controllability  subspaces. 
Relying  heavily upon the  work of Fabian  and  Wonham, we will show 

that (5)  is  generically true  for systems of the form (1). That is, if we 
consider real  matrix  triples (A,B,C) as points  in Rn(n+m+m)  , th  en those 
points at which  (5) fails to hold  lie on a proper  algebraic  variety in 
R n ( n + m + m )  and hence constitute  a  set of zero  measure. 

111. MAIN RESULT 

Let N =  n(n + m + m )  and consider the ring of polynomials  in N 
indeterminates over the reals, R [A,;. . ,AN]. An  algebraic variety 
V c R N  is the set of common zeros of a finite number of such 
polynomials. A variety is called  proper if it is  not equal to R”, and 
nontrivial if it is not empty. 

A property II is a  function  on RW to a two element set, (true, false} 
for example. If V is a proper  variety of R”’, we say II is  generic  relative 
to V if II is true everywhere on R” except  for a subset of V. II is 
deemed generic if such a V exists. Since a proper  variety is closed  in  the 
usual  topology, it follows that if II is  generic  relative to V, for  every 
x E V c  (the  complement of V )  II is true on some  neighborhood of x .  As 
a proper variety V cannot  contain  any  open set  in R“ (if this  were so, 
the defining  polynomials  would all be  identically  zero). I t  follows that if 
II is  false  for some x Et‘, then  there  exist points  arbitrarily close  to x 
such that II is true at these  points. 

The key  lemma of our development will be applicable to a more 
general  class of linear  systems than only m input-rn output systems. 
Indeed  consider  a matrix  triple ( A ,  B, C) representing a system of the 
form  (1)  with Anxn ,   BnXn,  and C q x n .  We  assume an arbitrary 
partition of C into k submatrim. 
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c=[C;;..,c;]’ 
with each Ci qi x n. Again, we let 9Li = Ker C, with si defined as in (4) 
for  all iE k .  

Lemma: Given  a  linear system of the  form described above, if 

n > m >  2 qi (6) 

then (5 )  is generically true. 
Pro08 We shall make  use of the results on the generic dimensions 

of subspaces from 151 without specific reference. Further identities which 
hold everywhere except possibly on a subset of a  proper algebraic variety 
will be indicated  by  a postscripted ( g ) .  

We note  that  any r X s matrix (2 generically has rank t = min(r ,s) .  For 
otherwise all z X t minors of Q must vanish identically, in which case the 
elements of Q constitute  a zero for a set of polynomials defined on R r X s .  
Thus,  letting Ci denote  the  image of the map Ci, we have dim = qi( g )  
and dim  (Ker Ci) = n - qi ( g )  i E k .  Then  from (6) 

i E k  

where 

and by complementation 

dim%,=n-min(n,q: )=n-q ,*(g) ,  i E k .  

We will first demonstrate  that  under the hypothesis of the lemma 

2 % nXi=B ( g ) .  
i E k  

Since 46 n X i )  c 9, we need  only prove  that (6) implies 

Using the geometric identity 

dim(S  n$)=dim(S)+dim($)-dim(S +$) 

to  expand the left side of (8) results in 

=dim(% “%,)+dim( % nXi) 
i E k - 1  

But 

d i m ( ( 9 n X X ) n (  i E k - 1  % n % i ) ) = d i m ( X , n (  i E k - 1  %nXi))  

=dim%,+dim( i E k - 1  2 a n % , ) - d i m ( X k + (  i E k - 1  2 anxi)) 

which  yields 

=dm(% nS,)-dirn%, 

Now 

dim(% n%,)=dimB  +dimX,-dim(B +X,) 

= m + ( n - & ) - m i n ( n , m + n - q z ) ( g )  

= m - & ( g )  
as m > q/: by (6). Since 

dim(%  +X,)=min(n,dim% +dim%,)(g) 

= m i n ( n , m + n - q $ ) = n ( g )  

it follows from (10) that 

where (1 1) becomes 

dim(%,+( i E k - 1  2 % “ X i ) )  

Combining (3, (IO), and (12) together with (9) gives 

Fabian  and  Wonham have  demonstrated  that  under  condition (6), the 
subspaces X,, i E m are generically controllability subspaces themselves. 
Thus, 

% i = % i ( g )  

and (8) implies ( 5 )  proving the lemma. 
Theorem: Morgan’s problem is generically solvable. 

Pro08 For this problem m = k, qi = 1 for all i E k and  the hypothesis 
of the  lemma is satisfied. Hence, ( 5 )  follows for almost all parameter sets 
( A ,  B,  C ) .  

IV. DISCUSSION 

It has been shown that  the decoupling problem originally considered 
by Morgan  and solved  by Falb  and Wolovich is generically solvable. 
The  development  made use of the geometric problem  formulation of 
Wonham and Morse and  the results on generic dimension by Fabian 
and  Wonham. 

We note  that if the elements of D were polynomial  functions of the 
components of the matrices A ,  B ,  and C, then by elementary methods 
we could  deduce  the desired theorem directly from  the result of Falb q d  
Wolovich. However the dependence of the rows of D on the discrete 
valued functions 4. precludes this approach. 
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On The  Decomposition of State  Space 

P. E. DRENICK 

Absrract-The response of a @ear control system is often viewed as a 
superposition of independent, modal responses. For complex systems, 
traditional techniques for resolving modal responses may  be either kappli- 
cable, quite expensive, or nnmeridy unstable. 
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