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1. Preliminaries

In this chapter we present a general theory of the stability and the
optimal control of a linear autonomous system defined over an infinite time
horizon, where the cost function to be minimized is quadratic. This theory
simultaneously covers important classes of partial differential equations
and differential delay equations.

Necessary and sufficient conditions are given to insure stability, the
Lyapunov equation is derived following R. DATKO [ 2]'§'approach and examples
are given. For the control problem, we introduce the WONHAM'S concept of
stabilizability and use the results of the previous chapters to study the
asymptotic behavior of the feedback operator PT(t). From this, we establish
the existence of a constant feedback law which minimizes the cost function
and show that it is characterized by an algebraic Riccati equation. We
finally characterize the asymptotic behavior of the optimal solutions under
various conditions and use the concept of observability.

Notations and Terminology. Let X and Y be two real Hilbert spaces with norms

and | and inner product ( , )X and ( , )Y. The space of all con-

| Iy "

tinuous linear maps T : X - Y endowed with the natural norm

ITl = sup{ITxl, | Ixly <1}

will be denoted L(X,Y); when endowed with the strong operator topology, it
will be denoted LS(X,Y). When X = Y we shall use the notation L(X) and
LS(X)- The transposed operator of T in L(X) is an element of L(X) which will
be denoted T*. T is self adjoint if T* = T; a self adjoint operator T is
positive, T > 0, (resp. T is positive - definite, T > 0), if for all x in X

(x,Tx) > 0, (resp. for all x # 0, (x,Tx) > 0).



2. System Description,

In this section, we specialize the linear controlled syétem (S) of
Chapter 3 (Cf. section 2, Def. 1) to the autonomous case. Let X (resp. U)
be a real Hilbert space endowed with the inner product ( , ) (resp. ( , )U)
and norm |+| (resp. I-IU).

Definition 2.1. (i) Let G belong to L(U,X) and let the A: [0,=[ -~ L (X)

be a strongly continuous semigroup:
a) A(t+s) = A(t)A(s), t 20, s 20,
b) A(0) = I (identity in L(X)),
c) VYx € X, the map t » A(t)x: [0,®) > X is continuous.
(ii) The state g(t;s,xo,v) of system (S) at time t > s with initial datum

X0 at time s > 0 and control function v in Lioc(s,w;U) is defined as follows:

t
(2.1) E(t;s,xo,v) = A(t-s)xo + j A(t-r)Gv(r)dr.
s

(iii) Given T, 0 < T < «, the state n(t;T,xT) of the adjoint system (S*) at

time t, 0 < t < T, with final datum Xp at time T is defined as follows:

(2.2) ﬂ(t;T,XT) = A(T-t)*xT .0

Proposition 2.2. The quantity

(2.3) o = Inf LoglA(t)]
0= B

is finite or equals -«, and

(2.4) wy = lim lo 'Q(t)‘ .

1ty



For each p > w, there is a constant Mu such that

0

(2.5) IACE) ] < Mue“t, t > 0.

Proof. Cf. DUNFORD-SCHWARTZ [1], Cor. 5, p. 619. O

Definition 2.3. For h > 0 the linear operator F, is defined by the formula

h

(2.6) By o MITREX o o o g

h h
Let D(F) be the set of all x in X for which the limit,.

lim F, x,
b0 D
exists and define the operator F with domain D(F) by the formula

(2.7) Fx = 1lim F
h->0

B X Vx in D(F).

The operator F with domain D(F) is called the infinitesimal generator of
the semigroup A.

Proposition 2.4. (i) the set D(F) is a linear mainifold which is dense in

X and F is a closed linear operator on D(F).

(ii) If x is in D(F), then A(t)x is in D(F), 0 < t < =

(2.8) é%-A(t)x = FA(t)x = A(t)Fx.

(iii) If x is in D(F), then
.t .
[A(t)-A(s) ]x = J A(u) Fxdu,

S

for 0 < s <t < =,



(iv) If t > 0 and g is a Lebesque integrable function continuous at

t, then

(2.9) lim —

t+h _ i
N J g(u)A(uw)xdu = g(t)A(t)x.
h~>0

t

(v) The resolvent of F, p(F), lies in {xeC|Rex > wo}.

(vi) If D(F) is endowed with the inner product and norm
-1
(2.10) ((x,¥)) = (x,y) + (Fx,Fy), lIx 1 = ((x,x)%,

it becomes a Hilbert space and the canonical injectioé i of D(F) in X is
dense and continuous.

Proof. Cf. DUNFORD-SCHWARTZ [1] (Lemma 7, p. 619). O

Notation. In the sequel we shall denote by V the domain D(F) of F endowed
with the Hilbert space topology induced by the inner product (2.10). Using
the notation and definitions of Proposition 2.4, we denote by X' (resp. V')
the topological dual of X (resp. V). We identify the elements of X and X'

and denote by i* : X >~ V' the adjoint map of i:
(v,i*x ) = (iv,x), YWWE V, ¥x € X

where (+,+ ) denotes the duality of V and V'.



3. Formulation of the problem.

Let x be the state of system (S) with initial condition xo at time 0 and
control function v in Lioc(o,w;U). Let Y be a real Hilbert space and let H

belong to £(X,Y). We associate with system (S) the cost function
(3.1) J(v,x)) = f [ix(©) ]2 + (v(e),Mv(®))lat,
0
where N belongs to £(U) and
(3.2) N* =N, 3 ¢ >0 such that ¥V u€ U (u,"Nu)U = clulﬁ.

Our objective is to show that under certain stabilizability hypotheses,
there exists a unique u in Lioc(o,w;U) which minimizes the cost function J(v,xo)
over all control functions v in Lfoc(o,w;U). We shall also show that the

minimizing control u can be synthesized via a constant feedback law
(3.3) u(t) = -N"16*p x(t),

where P is a solution of a certain algebraic Riccati equation which characterizes

the minimum of the cost function.



4. Stability and stabilizability.

In this section we study the behavior at « of the solutions of the uncontrolled
system (S) (that is, v = 0). We introduce four types of stability, we derive the
Lyapunov equation, we introduce the concept of observability and show how theses
concepts are in;erconnected.

Definition 4.1. The uncontrolled system (S) is said to be

(i) weakly stable if for all x in X, A(t)x goes to 0 in X weak,

(ii) strongly stable if for all x in X, A(t)x goes to 0 in X strong,

(1ii) L2—stab1e if for all x in X, the map t ¥ A(t)x belongs to Lz(O,w;X),

(iv) exponentially stable if there exists o« > 0 and M 2 1 such that

v t20, V x€X, |A)x]| =M ™®t.O

When X is finite dimensional the four types of stability are equivalent.
When X is infinite dimensional L2-stability and strong stability are not equivalent
as can be seen from the following example of R. DATKO [2 ].

Example. Let X = 22 the Hilbert space of all infinite sequences x = (xl,...,xn,...)

such that

2
) ox < e,
n=1 n

Consider the semigroup of operators in £(22)

_ -t -t/2 -t/n
A(t)x = (e X;, € x2,...,e xn,...).

It can be shown that

i) Vx€ %, A)x~0 as t->w

i) Yvt, |a@)| =1, w =00,

% ° X 2
(iii) Fx = -(x T =5 vein )y DIEY &%

3 * e ry

1 In
n

1,
(iv) spectrum (F) = {-

1,2,...} U {0}.



A more general problem could also be formulated. Given a Hilbert

space Y with norm [- Y and a transformation H in £(X,Y), what can we say
about the stability of the map t » HA(t)x or t » A(t)x. The first result is
a characterization of Lz—stability. It uses the following lemma

Lemma 4.2. Let {Un} be an increasing sequence of self adjoint elements of
L(X). If sup{[Un|:n > »} < =, there exists a self adjoint element U of £(X)
such that Un ~ U in the strong operator topology.

Proof. Cf. KANTOROVICH-AKILOV p. 189, RIESZ-SZ-NAGY p. 261.0

Proposition 4.3. The following statements are equivalent:.

(i) for all x in X

(4.1) I HA(t)x|2at < =
0
(ii) for all x and y in X
t
(4.2) lim f (HA(t) x, HA(t)y)Ydt

1t

exists and the operator B defined by

@

(4.3) (Bx,y) = j (HA(t)x, HA(t)y),dt
0

is a positive self adjoint element of £ (X);

(iii) there exists a positive self adjoint element D of £(X) such that
(4.4) F*Di + i*DF + i*H*Hi = 0 in £L(V,V').
Proof. (i) = (ii) We define B(t) in £(X) as follows:
t
(4.5) (B(t)x,y) = J (HA(s) x, HA(S))’)Yds, t > 0.
0

By definition B(t) belongs to £(X), B(t)* = B(t) = 0 and B(tz)—B(tl) > 0 for all

ty-t, 2 0. By hypothesis for all x in X.



lim (B(t)x,x)

tox

exists. But by symmetry
2(B(t)x,y) = (B(t)x,x) + (B(t)y,y) - (B(t)(x-y),x-y)
and for all x and y in X

lim (B(t)x,y)

1t
exists. By the principle of uniform boundedness
sup |B(t)| < =.
t>0
Let Bn = B(n). Then by Lemma 4.2 there exists a positive self-adjoint

element B of £(X) such that for all x in X

lim B x Bx.
n

n—rxee

But for all x

(x,Bx) = 1lim (x,an) lim (x,B(t)x).

n—e 1w

By symmetry and positivity (4.3) is true.

(ii) = (iii). Pick x and y in D(F). Then by (4.5) for all x in D(F)

OVY———rt O——~rt

(4.6) (B(t)Fx,x) + (B(t)x,Fx) [(HA(s)Fx,HA(s)x)Y+(HA(s)x,HA(s)Fx)Y]ds

lHA(s)x|§ ds

i

2 2
|HA(t)x|Y - IHle'

As a result for all x in D(F)



1im |HA(t)x|§ 2 IHxli + 1im[(B(t)Fx,x) + (B(t)X,Fx)]

T Tt

luxli + (BFx,x) + (Bx,Fx).
However we know that for all x in X
2

J |HA(t)x|Y dt < «

0
and necessarily

. 2
1im IHA(t)xIY = 0.

1t

Since the 1limit exists, it is necessarily equal to its lim and we obtain

V x € D(F) , 1lim |HA(t)x|Y = 0.
1t
If we now rewrite (4.6) with x and y in D(F) we obtain, by going to the limit,

equation (4.4) with D = B.

(iii) = (i) For all x and y in D(F), A(t)x and A{t)y belong to D(F) and

(FA(t)x,DA(t)y) + (DA(t)x,FA(t)y) + (HA(t)x, HA(t)y)y = 0

(4.7) S5 (A®)X,DA(R)Y) + (HA(D)x, HA(t)Y) = O.

v
o

For all x in D(F) and all t

(4.8)

|HA(s)x|i ds = (x,Dx) - (A(t)X,DA(t)X)

OoONVY———rt

A

(x,Dx)

By density of D(F) in x inequation (4.8) is true for all x in X. This concludes

the proof of the proposition.[
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Corollary 4.4. Assume system (4.4) has a positive self-adjoint solution D. Then,

D = B, for all x in X the map t » (A(t)x,DA(t)x) is a monotonically decreasing

function of t and for all x and y in X

(4.9) lim (A(t)x,DA(t)y) = (x,Dy) - (x,By).

Tt
Proof. All this is clear from identity (4.8).0

Corollary 4.5. Under the hypotheses of Proposition 4.3 any of the statements

implies that
(4.10) V x € D(F),lim HA(t)x = 0, and, ¥V x é.x,lim BA(t)x = 0.
to te
Proof. Cf. Proof of Proposition 4.3 and RIESZ-SZ-NAGY p. 261.0
We now specialize the previous results to the case X = Y and M = IX'
Theorem 4.6. The following statements are equivalent:
(i) The uncontrolled system (S) is L2-stab1e;

(ii) For all x and y in X
t
(4.11) lim J (A(t)x,A(t)y)dt
o
0
exists and the operator B defined by

(4.12) (Bx,y) = | (A(t)x,A(t)y)dt

— O—38

is a positive self-adjoint element of L (X

.
b

(iii) There exists a positive self-adjoint element D of L(X) such that

(4.13) F*Di + i*DF + i*i = 0;
(iv) wo = Inf 1o lt\(t) < 0;
T t>0

(v) There exist p < 0 and M 2 1 such that for all x in X

(4.14) [A(t)x] < M exp(ut) |x].



==

Proof. (i) < (ii) = (4iii) is true by Proposition 4.3.

(v) = (i) is clear. (i) = (iv) By R. DATKO [2, Lemma 3] for all x in X

lim A(t)x = 0

1t
and by the Principle of Uniform Boundedness there exists a constant C 2 1
such that

v t20 [A(t)] =<C.

We also know that there exists a constant C1 > 0 such that"

¥ %€ %, f IA(t)x[zdt < cllxlz.
) _
Pick p, 0 < p < C'l, and define
tx(p) = sup{t: ¥V s € [0,t], [A(s)x] 2 p|x]}.

The quantity tx(p) is finite since A(t)x goes to zero as t goes to infinity.

As a result
tx(o) &
tx(p)'p2|x[2 < J [A(t)xlzdt < J |A(t)x|2dt < cflxl2
0 0

and necessarily

- Cl 2
tx(p) < (;—J = T,

Thus for all t > 1 and all x
A x| < [ace-t () [[A(e (0))x] = Colx] = p'|x| = |A()] sp', 0 <p' <1,
By definition of W

vV t20, [AMt)|ze”,



YD

and necessarily

wot
V t20,1>p"2 |A(t)] 2e = w, < 0.

(iv) = (v). By contradiction. Assume that w, = 0. Then
0

. log IQ(t)J c logM |

NOIE 0, < 2% y
= u, = Inf log [ACY)] . 1y I 1°§ P { = u < 0.0
>0 £>0

Remark. (i) Theorem 4.6 establishes the equivalence between L2-stability and
exponential stability. It is originally due to R. DATKO [2].
(ii) A. PAZY also proved that given p, 1 < p < =, exponential stability is

<

equivalent to Lp-stability:

Y x€ X, [ IA(e)x|P dt < =,
0
Proposition 4.3 characterizes the ”Lz—stability" cf the map t ¥ HA(t)x and

Theorem 4.6 the Lz—stability of the map t » A(t)x. But is it possible under
appropriate hypotheses on H and A to conclude to some form of stability for A
from the ”Lz—stability” of the map t » HA(t)x.

Proposition 4.7. Assume that for all x in X

©

(4.15) [ IHA(t)xli dt < =,
0
If there exists constants o > 0 and B such that for all x in X
2 2 2
(4.16) |HA(t)x[Y dt 2 o | |A(t)x]|“ dt - B|x]|“,
0 0

then A is Lz-stable.

Proof. Under the above hypothesis



8=

-] =]

2 1 2 B 2
! [ACt)x|"dt < E’[ IHA(t)ledt + o IxIT.
0 0
< a'l(c+8)|x|2.
If c+R<0, then for all x and all t A(t)x is identically zero and A is trivially

12_stable. If c+8>0, A is L2-stable by definition. O

Corollary 4.8. Under hypothesis (4.15) A will be Lz-stable if there exists a

constant c¢>0 such that

(4.17) Y x €X IHxIY 2eixl.. O

Remark. The strange looking condition (4.16) finds its application in the
Stability Theory of hereditary differential systems.
Condition (4.16) is very strong and it is desirable to find weaker conditions.

To do this we notice that we can conclude from Corollary 4.5 that

(4.18) VY x € X, 1lim BA(t)x = 0.

o

If there exists some constant b>0 such that
2
(4.19) Y x € X (Bx,x) 2 blx]
(by symmetry of B, it is also invertible), then it is clear that A is strongly
stable. We would also reach the same conclusion if

(4.20) Y {xn} in X such that {an} + 0 in X, then {xn} + 0 in X.

But the above condition is equivalent to the invertibility since B is self adjoint
(cf. J. DUGUNGJI, p. 186 Definition 5.4, 5.5, p. 218 Theorem 6.2, 6.3 and p. 302

Theorem 5.2). We shall see that the invertibility of the operator B is too strong
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a condition for infinite dimensional systems. To fix this, it will be neces-
sary to use the concepts of stabilizability, detectability and observability,
first introduced by W.M. WONHAM [1].

Definition 4.9.

(1) The pair (F,H) is observable if the map
(4.21) x > HAC*)x: X + Lioc(o,w;Y)

is injective; (ii) the pair (F,H) is strongly observable if there exists a

constant ¢ > 0 such that

(4.22) ¥ x€ %, J |HA(t)x!$dt > c|x|2;
0

(iii) the pair (F,H) is uniformly strongly observable if there exists a time

T > 0 and a constant cT > 0 such that

(4.23) vV x € X, [HA(t)x|3dt SEMPIE

oY

The above three concepts are equivalent in the finite dimensional

case; in the infinite dimensional case the following ordering is obvious

uniform strong strong
observability = observability = observability.

Proposition 4.10. The operator B is invertible if and only if the uncontrolled

system (S) is Lz—stable with respect to H (that is,

(4.24) 9% [ HAe)x| 2ty
0



L.

and the pair (F,H) is strongly observable. In this situation {A(t)} is strongly
stable.
Proof. By definition. [

Unfortunately the results of Proposition 4.10 put soﬁe very restric-
tive conditions on the semigroup {A(t)} as can be seen from the following results
of A. PAZY [1].

Proposition 4.11. (i) If the uncontrolled system (S) is L2-stab1e with respect

to H and if the pair (F,H) is strongly observable, then there exist a time

T > 0 and a constant ¢ > 0 such that
(4.25) ¥V x€X, JAT)x]| = clxl:

(ii) If condition (4.25) is verified for some T>0, there exists a constant m>0

such that
T

(4.26) ¥ x, f IxCE)x1%dt = mix|?,
0

Moreover for each T>0 there exists c'>0
(4.27) Yt € [0;T]); ¥ % [ACR)x| = ¢t|xls

Proof. (i) For any t > 0
[+ <] "[' (-]
2 2 2

J |HA(t)ledt = IHA(t)xIYdt + J |HA(t)x|Ydt
0 T

T
J lHA(t)xlidt + (BA(T)X,A(T)X).

5 .

(Bx, x) !
0

By the Uniform Boundedness Principle,
3:d. > 0, Vt€ [0,1], IHA(t)xlY < dlx].
For 0 <t =1
clxl? <« a®1x1% + 1Bl 1A(0)xI?

and there exists 1 < rO = min{l,c/2d2} such that V x [A(T)x] 2 %-lxl.
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(ii) For all t in [0,T] and all x

clx] < [AM(T)x] < [A(T-t) [ IA(t)x] < sup [A(s)[IA(t)x]
[0,T]

and there exists k>0 such that
vte [0,T], Vx, |A(t)x] =k|x]|.

Pick t in [T,2T]

Vte [T,2T], Vx€X, !A@)x| = [A(MA(t-T)x!

clA(e-Tx] = czlxl.

v

As a result for all T>OD there exists c'>0 such- that
v te€ [0,T], Y x€X, [|A@)x] 2 clxl

and inequality (4.28) follows immediately. [I

The conditions of Proposition 4.10 are very strong as can be seen from
Proposition 4.11. They say that for each t A(t) has a continuous left inverse.
Very few semigroupsenjoy such a property (which is independent of H). This means
that, in general we cannot expect that B be invertible. We introduce the

following definition for completeness.

Definition 4.12. The uncontrolled system (S) is said to be degenerate if there

exists T>0 and g, 0 # q € X, such that

(4.28) Yx€X, (q,A(T)x) =0. O

We shall say that the uncontrolled system (S) is non-degenerate or complete

if (S) is not degenerate. This situation will occur if and only if for all t=20
the image of A(t) is dense in X. Notice that if the uncontrolled system (S) is

complete and if condition (4.25) is verified the semi-group {A(t)} can be readily



extended to a group. This considerably limits the class of semigroup which are
simultaneously Lz—stable, observable and non-degenerate.

Remark 1. It will later be seen that the semi-group associated with a linear
hereditary differential system HDS can never be a group. According to Proposition
4.11, the map t » HA(t) can never be simultaneously Lz—stable, strongly observable

and non-degenerate. However we know linear HDS which are L2—stab1e and non-degenerate.
Thus the concept of strong observability seems to be "too strong' for linear HDS,

but we do not really know how 'pertinent" the concept of observability is.

Remark 2. When X is finite dimensional, the semi-group {A(t)} is necessarily a

group (cf. R. BELLMAN, p. 167), Lz-stability coincides with strong and weak

stability and observability and strong observability are characterized by the rank
condition
Rank [M* ,M*F* ...  M* (F*)d'l] = d

where d is the dimension of X (cf. R.E. KALMAN [1], [2]).

Since the invertibility of the operator B is generally too strong
a condition for infinite dimensional systems we have to go to the concepts

of stabilizability and detectability as introduced by W.M. WONHAM [1].

Definition 4.13. Let Y be a Hilbert space and let H belong to £(X,Y).

(i) The pair (F,G) is said to be stabilizable with respect to H if

JveE L2(O,w;U), J IHx(t;xo,v)lidt < o,
0

(4.29) v Xg»
where x(-;xo,v) is the state of system (S) with initial condition X at time O
and control function v in Lioc(o,w;U).

(ii) The pair (F,G) is said to be stabilizable if
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]

(4.30) Vxp 3VE 120,30, J !x(t;xo,v)!zdt < =,
0

(iii) The pair (F,G) is said to be stabilizable by feedback with respect to H

if there exists an operator K in £(X,U) such that

©

2
(4.31) v xq5 I IHx(t,xo)IYdt < o,
0

where x(t;xo) is the solution of the closed loop system

x(t)
(4.32)
x(0)

(F+GKi)x(t)

XO.

(iv) The pair (F,G) is said to be stabilizable by feedback if there exists

an operator K in £(X,U) such that

(4.33) ¥ s f [x(t;xo)lzdt <,
0

where x(t;xo) is the solution of (4.32).

(iv) The pair (F,H) is said to be detectable if the pair (F*,H*) is
stabilizable by feedback. O

Remark. In section 5 (Corollary 5.5) we will show that stabilizability and
stabilizability by feedback of the pair (F,G) are equivalent concepts.

Proposition 4.14. (J. ZABCZYK [1]). If the uncontrolled system (S) is

L?-stable with respect to H (that is,

=]

(4.34) v x, J HACE) x| 3dt < = ),
0
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and if the pair (F,H) is detectable, then F is Lz-stable and equation (4.4)

has a unique positive solution.

Proof. (i) Let x(t) = A(t)x, where {A(t)} denotes the semigroup generated

by F. By hypothesis there exists S in £(Y,X) such that the semigroup generated
by f* + i*H*S* be Lz—stable. Hence the semigroup {®(t)} generated by F + SHi

is also Lz—stable. We can now rewrite the equation
(4.35) x(t) = Fx(t)

in the form
(4.736) x(t) = (F+SHi)x(t) - SHix(t)

or equivalently

£
(4.37) x(t) = ¢(t)x - J d(t-s)SHx(s)ds.
0

Finally

% 3 ® 3 ©  t 3

2 2 2

(4.38) J [x(t)|“dt| < j lo(t)x|“at| + J J ®(t-s)SHx(s)ds| dt

0 0 0'0

But there exist a > 0 and M = 1 such that (cf. Theorem 4.6)

-at l

(4.39) V x, |[#(t)x]| < Me x|

and the second term on the right hand side of inequality (4.38) can be

majored by
o[ ¢t _ 2
(4.40) J j Me ™ (E"S) |5 | |Hx(s) | ds | dt.
o [0
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If we introduce the following functions defined on R

M[S|e™ ™, s =0 IHx(s)ly, s 20

(4.41) f(s) = , g(s) =
0 , otherwise 0 , otherwise

we know that f belongs to Ll(O,w;DR) and g belongs to LZ(O,w;IR). Thus we

can apply a result of DUNFORD-SCHWARTZ [2, Lemma 1(c)]:

|£+g|, < [£]; lgl,,
where f*g is the convolution of f and g which is defined by the equation

(fxg) () = j f(t-s)g(s)ds.
IR

Here we clearly obtain
t
(£xg) (t) = J Mlsle'“(t's)lﬁx(s)les. 0
0

It is a natural question to ask in what way Proposition 4.16. is
related to Proposition 4.10 or in other words what is the connection between
detectability of the pair (F,H) and observability of the pair (F,H). We

give the following partial result.

Proposition 4.15. If the pair (F,H) is uniformly strongly observable by H,

then the pair (F*,H*) is stabilizable (hence the pair (F,H) is detectable
by Corollary 5.5 in section 5).

Proof. Uniform strong observability by H means that the map

-
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T
(4.42) Mx = J A(t) *H*HA(t)x dt
0

is invertible for some T>0. As a result for any x we can choose a control

y(s) = - HA(T-S)M%IA(T)*X
2 2
in L(0,T;Y) and
T
x(T) = A(T)*x + J A(T-s)*H*y(s)ds = 0.
0

After time T we set the control y equal to 0. Hence by definition the pair
(F*,H*) is stabilizable. O
Of course we would like to relate strong observability of the pair

(F*,H*) and stabilizability of the pair (F*,H*). We have the following picture

(F,H) observable

(]
(F,H) strongly observable

f

(F,H) detectable <« (F,H) uniformly strongly observable

We now get back to Theorem 4.6 and the Lz—stability of the semigroup
{A(t)}. We investigate the connection between L2~stability and the position
of the spectrum of the operator F in the complex plane.

Proposition 4.16. (M. DELFOUR [2]) Let

sup[Re A:X € o(F)], o(F) =9
(4.43) Y(F) = X

- 3 o‘(F) = ¢
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(i) In general Z(F) < g -

(ii) A sufficient condition for Z(F) = g is that
(4.44) Co(A(1)) C {exp A:x € o(F)} V {0},

where Co(A(1)) is the continuous spectrum of A(1).

Proof. Given T in £(X), the spectral radius theorem says that

lim |T“|1/n = p(T) = sup{|r]|:x € o(T)}.

N>

If we apply this theorem to A(1)
log p(A(1)) = sup{|r]:x € a(A(2))}.
But by the spectral mapping theorem (cf. HILLE-PHILLIPS [1] p. 247 Thm. 16.7.1),

(4.45) {e}:2 € o(F)} C a(A(L))

and necessarily

(4.46) sup{|eA|:k € g(F)} < sup{|&|:& € a(A(1))}.
But

|e>\| - eRe A
and

sup{Re A:)A € o(F)} = log sup{eRe Aix € g(F)} < log p(A(1)) = Wy
(ii) In general (cf. HILLE-PHILLIPS [1])
Po(A(1)) Y Ra(A(1)) C {eA:A € Po(F)} V {0}

and under hypothesis (4.44)
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(4.47) {0} U {et:x € o(F)} D o(A(L)).
In general equation (4.46) can be rewritten as
(4.48) sup{O,{leAI:A € o(F)}} < sup{|&|:£ € o(A(1))}.

In view of (4.47), we also have inequality (4.48) in the opposite direction.

Hence under hypothesis (4.44) Z(F) = Wy« O

Corollary 4.17. (i) The spectrum o(F) of F lies entirely in {A» € C|Re ) < mo}.
(ii) If, in addition F is a bounded operator or Co(A(1)) C {exp A:A € o(F)} VU {0},
the 'spectrum condition" [there exists w<0 such that 2Z(F) < w] is necessary and
sufficient for the Lz-stability of system (S). O

In general it is not possible to infer the Lz-stability of the semi-
group from the position of the spectrum of its infinitesimal generator. A
counterexample can be found in HILLE-PHILLIPS [1, p. 665]. An even more
striking result has been obtained by J. ZABCZYK [2].

Proposition 4.18. (J. ZABCZYK [2]). Given any two real numbers w < wg there

exists a C, semigroup {A(t)} on a Hilbert space X such that Z(F) = w and

wat
IAt)] =e? . O

It would be useful to completely characterize semigroups for which

Z(F) = w Other conditions on the resolvent can be found in M. SLEMROD [4].

0°
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5. Infinite time quadratic cost control problem.

If we consider the problem of section 3 in the time interval [0,T] we
can exhibit an operator PT(t) as in Chapter 3. In this section we shall
show that under a certain stabilizability hypothesis the operator PT(t)
""converges' to a constant operator P. This operator will be used to con-
struct the optimal solution to the infinite time control problem. It will
also be shown that P is the solution of a certain algebraic Riccati equa-
tion and that the properties of P are connected with the behaviour at

infinity of the semigroup associated with the closed-loop system.

5.1. Asymptotic behaviour of PT(t).

We first recall some results we obtained for the optimal control problem
in the finite time interval [s,t] for some s in [0,T[ . Here the state of

system (S) is

t
(5.1) Es(t) = A(t-s)h + j A(t-r)Gv(r)dr, s st < T,
s

for h in X and v in Lz(s,T;U) and the cost function is

t
5:2) J;(v,xo) = JS[IHaS(t)li + V() ,Nv (1)) ]dt.

It was shown in the previous chapter that there exists a unique weakly continuous

operator PT(t) defined in [0,T] such that
T
(PT(t)h»K) = Jt[(H*HAT(r-t)h’AT(r—t)H)
(5::3)
+ (pT(r-t)AT(r-t)h,RpT(r-t)AT(r-t)53]dr,
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for all t in [0,T], all h and R in X (here R = GN'IG*) and

R a -
. AT(t)k = A(t)k - fOA(t-r)RPT(r)AT(r)kdr,

for all t in [0,T] and all k in X. It can be shown that

Inf J,Sr(v,h) = (h,Pp(s)h)
2
vEL" (s,T;U)

and that there is a unique element u in Lz(s,T;U) which minimizes JT(v,h)

over all v in Lz(s,T;U). Moreover, the control function u can be synthe-

sized via the time varying feedback law —N"IG*PT:

1

u(t) = -N~ G*PT(t)ES(t).

It is not difficult but fundamental to notice that for ali s in [0,t[
and all h in X.

Inf J;(v,h) = Inf Jg_s(w,h).
veLz(s,T;U) weLZ(O,T-s;U)
As a result, PT (tl) = PTZ(tZ) for all T1 > tl > 0 and T2 > t2 > 0 such

1
that 'I'1 = tl = T2 - t2.

Proposition 5.1. Assume that the pair (F,G) is stabilizable with respect

to H, then (i)

1) there exists a constant ¢ > 0 such that

(5.4) IPT(t)I <cforallT2t=20

2) there exists a unique positive self-adjoint element P of L(X)
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such that for all t = 0 and all x in X

(5.5) lim pT(t)k = Px.
t<To>=

(ii) For all x and y in X
(5.6) C(Pxy) = jw([ﬂ*ﬂ + PR]AL (£)x, 4, (£)y) dt,
0

where Ap is the strongly continuous semigroup generated by the infinitesimal
generator F-RPi,
Proof. (i) By hypothesis, for all h there exists v in L2(0,w;U) such that

J(v,h) < ., In particular for all T and h
0 0
(Pp(0)h,h) = Jo(u,h) < Jp(v,h) < J(v,h) <,

where u is the optimal control in [0,T]. But since the system is time-

invariant
- 7S Lol o e o
(Pr(s)h,h) = J3(u,h) = Jp__(&,h) = (P,__(0)h,h),
where u (resp. u) is the optimal control in [s,T] (resp. [0,T-s]), and for

all h and all 0 < s < T

(PT(s)h,h) < =,

By symmetry and positivity we even have for all h and k in X and all
0<s<T

](PT(s)h,k)I < o,

By the Uniform Boundedness Principle for each h there exists c(h) > 0
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such that for all 0 < s < T

IPT(s)hI < ¢(h).

Again by the same Principle there exists ¢ > 0 such that for all 0 <s < T

(5.7) . P(s) | < c.

Since system (S) is autonomous and the cost function (5.2) is defined in
terms of constant matrices, we obtain for all pairs (sl,Tl) and (SZ’TZ)
such that

29 s1 20, s2 20

iy 2
.8 Oy (sphn) = Ing {JTl(vl,h) v €L csl,Tl;U)}

IA

52 2
Inf JTz(vz,h)[v2 € L%(s,,T,;U)

IA

(PTz(sz)h,h).

As a result for all s 2 0 the family {PT(s)IT > s} of positive self-adjoint

elements of £(X) has the following properties:
1) PTZ(S) > PTl(s), T2 > T1 2 s3

2) there exists ¢ > 0 such that IPT(s)I <c for all T=2s. In view
of Lemma 4.2, there exists a positive self-adjoint linear operator P(s) in
L(X) such that PT(s) + P(s) in the strong topology as T » «. Moreover, for

all pairs (sl,Tl) and (52,T2) such that

(5.9) 0<T,-s, =T

1751 = T8, 58 20,5,20,

2 2
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we necessarily obtain in view of (5.8)

P.. (55) = Ps (85)s
Ty 1 T, 2

For arbitrary h in X, s, > 0, s, 2 0 and Tl,T2 as in (5.9)

1 2
(5.10) - P(s;)h = lim P (s,)h = 1lim P, _ (s,)h
1 quw T1 1 T1+w T1 sl+s2 2

lim P_ (s,)h = P(s,)h.
T T2 2 2

2

L

Let P = P(0). We have shown that for all t =2 0 and h in X.

(5.11) P(t)h = lim P (t)h = lim P.(0)h = Ph,

t<T T

(ii) Fixt; >0 and yeL!(0,t,5X). Let T > t; and

(5.12) £.(t) = Po(t)y(t), £(t) = Py(t) in [0,t,].

In view of (5.7) fT and f belong to Ll(O,tl;X). Moreover, for all T > t1

fT and f are bounded almost everywhere by the Ll—function

cy(t)

and by virtue of (5.11) for almost all t in [O,tl]

£.(t) = PL()y(t) > £(t) = Py(t)

as T » », By Lebesque dominated convergence theorem f,, -~ f in Ll(O,tl;X).

T
Let Xp be defined by the equation

_ t
(5.13) x.(t) = A(t)h - J A(t-S)RP...(s)x..(s)ds
T \ 0 'S Xy
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t
(5.14) x(t) = AP(t)h = A(t)h - J A(t-S)RPAP(s)hds
0

and yT(t) = xT(t) - x(t) in [O,tl]. Then

t
- [ A(t-s)R[PT(s)xT(s) - PAP(s)h]ds

yp(t) 5

T
- JOA(t-s)RPT(s)(xT(S) - AP(s)h)ds

t
- J A(t-s)R[P(s)-P1A, (s)hds
0

t t
PRGIIERNCH jolyT(s):ds - ¢y(t)) IOI[PT(s)-P]Ap(s)hlds.

This implies that there exists c(tl) > 0 such that

t
1
(5.15) I|YTIIC(0 t.5X) S c(t,) JO | [P (s)-P]A, (s)hlds.
L] 1’

In view of our previous results, the right hand side of (48) goes to zero
as T » ». Hence

(5.16) xT(t) + x(t) uniformly in [O,tl].

Moreover, this also implies that xT(t) is uniformly bounded in [O,tl] by a
constant independent of T.

Consider identify (5.3) with t = 0.
(5.17) T
(PT(O)h,E) - Jo[(H*HXT(S),iT(s)) + (PT(s)xT(s),RPT(s)iT(s))]ds,



where §% is the solution of (5.13) with h in place of h. We know that
the left hand side of (5.17) converges to P as T goes to infinity. We

shall prove that the right hand side of (5.17) converges to

: J:[(H*HAp(s)h,AP(s)H) + (pAP(s)h,RPAP(s)E)]ds

as T goes to infinity. For this purpose, we define

(H*Hx (1) ,xp(8)) + (Pr(£)xp (), RPL()X(8)), O < ¢ < T

gr(t)

0 , T<t<ew

g(t) = (H*HA,(t)h,A,(t)h) + (PA,(£)h,RPA,(t)h), 0 < t < =

In view of (5.11) and (5.16):

gT(t) -+ g(t) pointwise in [0,«) as T = «,

By Fatou's lemma

IA

(5.18) fag(t)dt = j“ 1im gT(t)dt lim inf Jng(t)dt
0 0 To= 0

IA

lim(HT(O)h,h) = (Ith,h).

But if we consider the constant feedback law

1

vp(t) = -N""G*Px(t),

where x is as defined in equation (5.14), we have for all T > 0

T
(5.19) (Lp(0)h,h) < JO[(H*HX(t),X(t)) + (Nvp (1) ,vp (1)) ldt
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and necessarily

T
(5.20) (Th,h) < lim J g(t)dt = ng(t)dt.
Tseo /0 0

As a result equality holds in inequality (5.18). By symmetry and positivity

‘this yields (5.6). DO

5.2. Solution to the Control Problem.

We now look at the problem of section 3. We want to minimize the cost

function

(5.21) J(vysXy) = Jw[IHx(t)li + (v(t),Nv(t))]dt
0 A

over all control functions v in Lioc(o,w;U) under the hypothesis that
System (S) is stabilizable with respect to H.

Theorem 5.2. Assume that the pair (F,G) is stabilizable with respect to H.

Then for each Xy in X there exists a control function u in Lio (0,«;U) such

c
that
2
(5.22) Inf {J(v,xo)lveLloc(O,w,U)} = J(u,X,)
and
(5.23) u(t) = -N6*PA ()X,
where P and Ap are as defined in Proposition 5,1(ii).
Proof. It is clear that the control function u defined by (5.23) is an
2 i . o o2 . )
element of Lloc(o’ ;U). Pick any v in Lloc(o’ ;U). Then for all v in
2
Lloc(o,w,U) and for all T > 0

(xo,PT(O)xo) min {JT(v,xo)[veLz(O,T;U)}

IA

T
Jo[(H*HY(S),Y(S)) + (Nv(s),v(s))]ds,
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where y corresponds to the control function v.

By going to the limit
(2y0P%;) J“[(H*Hy(s),y(s)) + (Nv(s),v(5))1ds.
0

But if u is defined by (5.23)

]

(Nu(s) ,u(s)) (N[-N'IB*PAp(s)xo],[-N'IB*pAP(s)xO])

(BN

B*PAp(s)xo,PAP(s)xo)

(RPAP(S)XO,pAP(S)XO)

and in view of equation (5.6)
(xpsPxg) = J:[(H*HAP(t)xO,AP(t)xO) + (Nu(t),u(t)) ]dt.

Hence For 11 % in X.and a1l v dn 12, (0,es0)
0 loc

J(u,xo) < J(v,xo). O

5.3. Riccati Equation for P.

In this section we derive a Riccati equation for the feedback operator
P and present conditions under which it has a unique positive self-adjoint
solution in £(X).
Theorem 5.3. Assume that the pair (F,G) is stabilizable with respect to H,

(1) P is a solution of the equation
(5.24) i*PF + F*Pi + i*[H*H-PRP]i = 0 in L(V,V')

and any other positive self-adjoint solution P in £(X) is such that P 2 P,
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Moreover, the evolution operator AP for the closed loop system
dx :
(5.25) I (t) = (F-RP)x(t), x(0) = x

has the property

(5.26) : Vx € X, PAL(t)X > 0 as t > =

(ii) If there exists a positive self-adjoint solution P of equation (5.24)

with the property

(5.27) Yx €V, Aﬁ(t)x >0 as t »w,

then equation (5.24) has a unique positive self-adjoint solution which is
necessarily equal to P.

(iii) Let P be a positive self-adjoint solution of equation (5.24). If

there exists a constant ¢ > 0 such that

(5.28) Vx € X, (Px,x) 2 clxl2 .

then condition (5.27) is verified and necessarily P = P.

Proof. (i) By proposition 5.1. (ii) We know that for all x in X

jm([H*H+PRP]AP(t)x,Ap(t)x)dt < o,
0

In view of equation (5.6) ané Proposition 4.3 (iii), P is a positive self-
adjoint solution in £(X) of the equation
(5.29) ([F-RPi]x,Piy) + (Pix,[F-RPi]y) + ([H*H+PRP]ix,iy) = 0

for all x and y in D(F-RPi) = D(F). Finally the above equation can be
rewritten in the form of equation (5.24). Let P be another positive self-

adjoint solution of (5.24) in £(X) and denote by A the strongly continuous
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semigroup generated by F-RPi. Then

) t
(A()x,PA(t)y) - (x,Py) = - J ([H*H+PRP]A(s)x,A(s)y)ds
0

and for all t =2 0

(5.30) (xgﬁk)

t .
J ([H*H+PRP]A(s) x,A(s)x)ds + (A(t)x,PA(t)x)
0

v

t
J ([H*H+PRP]A(s)x,A(s)x)ds.
0

If we go to the limit

(x,Px) 2 Jw([H*H+5RF]K(5)X,KIs)x)ds.
0

The right hand side of the above equation in equal to the cost function

J(v,x), where v is the feedback control function

1

v(t) = -N""G*PA(t)x.

But by virtue of Theorem 5.2 and Proposition 5.1 (ii) for all x in X

(x,Px) = J(v,x) 2 Inf {J(v,x)|vaL10c(0,w;U)} = (x,Px).

We rewrite (5.30) with P and A, in place of P and A. In view of identity
(5.6), for all x in X, (Ap(t)x,PAP(t)x) decreases monotonically to zero

as t goes to infinity.

(ii) Let T be an arbitrary positive self-adjoint solution of (5.24). Let
AH and A be the strongly continuous semigroups generated by F-RIi and

F-RPi, respectively. Then for all x and y in V

(Fx, (P-my) + ((P-Mx,Fy) - (RPx,Py) + (RIx,Iy) = 0.
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The above equation can be rewritten as follows:
(5.31) ((F-RM) x, (P-My)) + ((P-Mx, (F-RP)y) = 0.

Let h and k belong to D(F), x = A (t)h and y = A(t)k in (5.31).then

d o= e o
55 (A (0, F-ME(E)K) = ((F-RM) A (E)h, (P-MA(D)K)

o+

((F-H)An(t)h,(F-R‘F)T\‘(t)k) =0
and

(5.32) (Ag(t)h, (P-MA(t)k) = (h,(P-Mk).

By hypothesis for all k,A(t)k goes to zero as t goes to infinity and
necessarily = P. As a result the positive self-adjoint solution is
unique and equal to P.

(iii) From part (i) (Ap(t)x,PAP(t)x) goes to zero as t goes to . But
for all t > 0.

(PAP(t)x,Ap(t)x) > cIAP(t)xl2

and (5.27) is verified with P in place of P. O

Remark. Notice that we only require the hypothesis of stabilizability of
the pair (F,G) with respect to H to conclude to the existence of a solution
to the operator Riccati equafion. This generalizes the result of W.M. WONHAM [1],
where the detectability of the pair (F,H) and the stabilizability of the pair
(F,G) were required.

In the previous theorem we have shown that if the pair (F,G) is
stabilizable with respect to H, then the Riccati equation (5.24) has a
positive self-adjoint solution P in £(X) and the strongly continuous semi-

group {Ap(t)} generated by F-RPi has the property

(5.34) Y xX€EV, PAp(t)x +0as t » o,
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We now prove the converse of the above result.

Theorem 5.4. If there exists a positive self-adjoint solution P to the
Riccati equation (5.24) and if the strongly continuous semigroup {Ap(t)}
generated by F-RPi has the property (5.34) then the pair (F,G) is

'stabilizable by feedback with respect to H via the feedback law

1

(5.35) v(t) = - N "G*Px(t).

Conversely if the pair (F,G) is stabilizable with respect to H, there
exists a positive self-adjoint solution P to the Riccati equation (5.24)

and the semigroup generated by F-RPi has the property (5.34).

Proof. (i) It is easy to show that for all t > 0 and x in V that
g% (p (£)x,PA, (1)) + ([H*HPRPIA, (£, A5 (£)X) = O

and using property (5.34)

(x,Px) = Jm([H*H+PRP]Ap(t)x,Ap(t)x)dt.
0

By density the above identity is true for all x in X. It corresponds to
the control function

u(t) = -NTTG*PA, (D)x

and this means that we have stabilizability with respect to H.

(ii) The converse is true by Theorem 5.3. O

Corollary 5.5. The pair (F,G) is stabilizable with respect to H if and

only if it is stabilizable by feedback with respect to H. O
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6. Stability of the closed loop system.

In the previous section we have seen that when System (S) is stabilizable
with respect to H, there exists a positive self adjoint operator P in L(X)

such that
(6.1) Y x€V, PAp(t)x -0 as t~—> o

(cf. Theorem 5.3). In this section we study the stability of the semigroup

A_ and attempt to find conditions on A, G and H under which we can conclude

to some type of stability for the semigroup Ap (cf. Definition 4.1). We have

seen a simpler version of this problem in section 4 (cf. Propositiors 4.10 and 4.16)

and shown that it is related to the concept of observability (cf. Definition 4.9).
In section 6.1 we give a strong condition for the Lz-stability of the

semigroup AP; in section 6.2 we show that under the hypothesis of detectability

of the pair (F,H) we can conclude to the L2-stability of the semigroup AP.

6.1. Sufficient condition for L2—stability of AE'

The following result is a straightforward consequence of Proposition 4.7.

Proposition 6.1. Assume that the pair (F,G) is stabilizable with respect to H.

If there exist o > 0 and 8 such that

(6.2) Vv x€X, J |HAp(t)x|$ dt = o j |Ap(t)x|2dt - 8|x1?,
0 0

then equation (5.24) has a unique positive self adjoint solution in £ (X)
which is equal to P and the semigroup Ap is Lz-stable.

Proof. Cf. Proposition 4.7 and Theorem 5.3.0
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Corollary 6.2. If there exists a constant c¢ > 0 such that

(6.3) V x €X, [Hx], 2 clx|,

then .\ is L%ssrable, O

6.2. Sufficient condition for Lz-stability of Ap in terms of the
detectability of the pair (F,H).

Theorem 6.3. (J. ZABCZYK [1]). Assume that the pair tF,G) is stabilizable
with respect to H. If the pair (F,H) is detectable, then équation (5.24)
has a unique positive self-adjoint solution in £(X) which is precisely

P and the semigroup Ap is Lz-stable.

Proof. Let x(t) = Ap(t)x. By hypothesis there exists S in £(Y,X) such
that the semigroup generated by F* + i*H*S* be Lz—stable. Hence the
adjoint semigroup, that is the semigroup {¢(t)} generated by F + SHi is

2 : ’ . 5
L™ -stable. We can now rewrite the differential equation

(6.4) x(t) = (F-RPi)x(t)
in the form

(6.5) x(t)

(F+SHi)x(t) - (SH+RP)ix(t)

or equivalently
t

(6.6) x(t) d(t)x - J ®(t-s) (SH+RP)x(s)ds.
0

Finally
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=] =]

(6.7) J |x(t)!2dt < J |¢(t)x|2dt + J
0 [0 0

[T
[SIE

2
J ®(t-s) (SH+RP)x(s)ds| dt
0

But {¢(t)} is Lz—stable and there exist a > 0 and M = 1 (cf. Theorem 4.6)

such that

(6.8) v x, |e(t)x| < Me %%|x|

and the second term on the right hand side of inequality (6.7) can be
majored by
o |t % 12

(6.9) J J Me’“(t's)[lsllﬂx(s)lY - lGN-1||G*Px(s)|U]ds dt.
0o (0

As in the proof of Proposition 4.16 we introduce the following two func-

tions defined on R

M(|s]+|on"e™®, s =0
£(s) = ,
0 , oOtherwise
) IHx(s)]Y+ G*Px(s) v S >0
g(s) =
0 , oOtherwise

and apply the result of DUNFORD-SCHWARTZ [2, Lemma 1(c)] since f and g
belong to Ll(O,w;Hi) and LZ(O,m;BZ), respectively. O
Remark. The above theorem further generalize the result of W.M. WONHAM [1]
who required observability of the pair (F,H) for uniqueness of solution
to the operator Riccati equation.

In order to further characterize the operator P we give condi-

tions under which P is invertible.



-40-

Theorem 6.4. Assume that the pair (F,G) is stabilizable with respect to H.
(i) If the pair (F,H) is uniformly strongly observable, then P is invertible
and AP is Lz-stable. (ii) If P is invertible, then the pair (F,H) is
strongly observable.

Proof. We use the fact that a positive self-adjoint operator P in £(X)

is invertible if and only if

3c¢>0, VYVXEX, (Px,x) = c|x|2.

(i) The proof is by contradiction. Assume that condition (6.4) is not
verified. There exists a sequence {xi} in X, Ixi| =1,1i=1,2,..., such that

(Pxi,xi) - 0 as i goes to ». But for all x
2
= |
(Px,x) l [,HAp(t)xlY + (PRPAp(t)x, Ap(t)x)]dt,

where R = GN 1G*. This means that the maps

- -1
t e Hl\p(t)xi and t*» ui(t) = -N G*PAP(t)xi

which belong to Lz(O,w;X) converge to 0 in Lz(O,w;X) as 1 goes to infinity.

Pick any T > 0, then there exists ¢ > 0 such that
lui(t)l < c in [0,T]

and

t
-J A(t-s)GN‘lc*Pnp(s)xids

0
t

J A(t-s)G ui(s)ds.
0

"

Ap(t)xi - A(t)xi



4=

It is readily seen that for all t in [0,T]

T T
0 @ -ax | s [ Ittt [ o o1’
0 0
< Cp Tu Il2

for some constant Cr > 0. This means that for all T > 0

}im [Ap(t)xi - A(t)xi] = 0 uniformly in [0,T].

17

As a result

IA

1im THA(*)x. ! . 1im THA_(*)x.H
i i200,1;v) i T 1200, 1;Y)

+

lim TH[A()x. - A_(*)x. ]I
g i e T 200 )
=0
and for all T > 0
lim Mm Mx | =0 ;
i T X L200,Ti0)
2
where Tr is the projection of Lioc(o,w;Y) onto L°(0,T;Y). This means that

the map M cannot have a continuous left inverse and contradicts the uniform
strong observability by H (cf. Definition 4.9(iii)). The Lz-stability of

Ap follows from Proposition 4.15 and Theorem 6.3.
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(ii) For all x in X

c|x|2 < (Px,x) = J(u,x) < J(0,x) = J |HA(t)x|§ dt.D
0
Remark. Proposition 6.4 is not '"optimal'. It only shows that
(USO) = P 2 ¢ = (S0O)

and does not give a necessary and sufficient condition which would characterize
the invertibility of the operator P. Something between (SO) and (USO) should

completely characterize this property.
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7. Relationships between controllability and stabilizability.

Assume for a moment that X = IRn, U= nzm, Y = RY and that the

operators F and G are matrices of dimensions nxn and nxm, respectively.
This is the so-called finite dimensional case, where the concept of
controllabiiity is defined and characterized as follows:

Definition 7.1. The pair (F,G) is said to be controllable if

71 Vg €w, FT=0, Jve 12(0,T;U) such that x(T;xy,V) = 0,

where x(t;xo,v) is the solution of the differential equation

x(t) = Fx(t) + Gv(t), t =0

(7.2)

x(0) O

Xq-
Theorem 7.2. The following conditions are equivalent:

(i) (F,G) controllable;

(ii) Given any spectrum o of a real nxn matrix, there exists an mxn matrix
K such that the spectrum, o(F+GK), of F+GK is exactly o;

(11i) Rank[G,FG,...,F" 3G] = n. O

This theorem now says that when the pair (F,G) is controllable.
it is necessarily stabilizable by feedback. The converse is obviously
not true.

When X, U and Y are infinite dimensional spaces. Definition 7.1
can be retained, but conditions (ii) and (iii) are difficult to generalize.
However the following straightforward result remains true.

Theorem 7.3. The pair (F,G) is stabilizable if the pair (F,G) is

controllable. a
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