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In this paper we (i) specialize some of the results of Delfour and Mitter
(J. Differential Equations 12, 1972, 213-235) to a class of representable affine
hereditary differential systems, (ii) introduce the hereditary adjoint system,
and (iii) give an integral representation of solutions.

1. INTRODUCTION

The object of this paper is to specialize the results of Part I (cf. Delfour
and Mitter [6]) to affine hereditary differential systems. In Section 2 we define
the class of representable affine hereditary differential systems which we
shall exclusively study in this paper. In Section 3 we specialize the results of
Theorem 3.3 in Delfour and Mitter [6]. In Section 4 we introduce the here-
ditary adjoint system and in Section 5 we exhibit an integral representation
of solutions. Some of the results in this paper have been announced in Delfour
and Mitter [8]. For earlier results on the theory of affine functional differential
equations in the framework of continuous functions, the reader is referred to
J. K. Hale [11, 12], A. Halanay [10], and H. T" Banks [2] and the biblio-
graphy cited therein. For work on partial differential equations with delay, see
Artola [1]. All proofs will be omitted since they are straightforward.
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A-8730 and a FCAC Grant (Québec).
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Additional Notation

#(X, Y)denotes the Banach space of all continuous linear maps from a real
Banach space X into another Banach space ¥ when endowed with the natural
norm

[Aj = sup |Ax |y, A L(X,Y).
{el =1
When X = Y, #(X, X)is written £(X) and the identity in Z(X) is denoted
by I. The transpose of the linear map 4 in #(X, Y) is denoted by 4* (in
L(Y*, X))

Given an integer 7 > 1 and F a closed or open subset of R" (R, the real
numbers), C(F, X) will denote the Banach space of all bounded continuous
maps F'— X endowed with the usual sup norm || || . C{F; X) is the vector
space of all continuous maps F — X with compact support in F; Z2(F; X)
is the vector space of all m-measurable (m, the Lebesgue measure on R")
maps F—> X which are p-integrable, 1 <{ p < o0, or essentially bounded,
p = c0; the natural Banach space associated with #F(F; X) is denoted by
LP(F; X) and the corresponding L?-norm by || ||, . We shall very often use
for F the sets

Plty, 1) ={(t, )R |1, <s <t <ty (1.1
for tye Rand ¢, €ty , oo} or
Py, T)={(t,5)eR |1, <s <t <L T} 1.2)

for t, <<T < oo. When F is equal to I(a,b) =[a,b] " R for a <bin
[— oo, o], we shall write C(a, b; X), C/(a, b; X), £?a, b; X) or L?(a, b; X).
Let X be a real Banach space, let 2 be an open subset of R, let 1 << p <<
and let 7 > 0 be an integer. We denote by W™ 7(£2; X) the Sobolev space of
all (equivalence classes) of functions f in L?(£2; X) such that

Difel?(@; X), [jl<m, (1.3)

where j is some tuple of integers > 0

j:(jlr""jn)’ l]!:]1++]n:
glil

Ty e Bl
&xll Oxn

D=

and Df is a derivative in the distribution sense. With the norm

’

i/w
s = fow;) , (1.4)

lilgm
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Wm2(Q; X) is a Banach space; it is reflexive when 1 <<p << 00 and X is
reflexive. Let 2(t,, T)? denote the interior of Z(¢,, T). Exceptionally we
shall write Wm-2(P(t, , T); X) instead of Wm2(Z(t,, T)%; X). We shall also

use the notation Wik? (P(t, , t,); X) for the Fréchet space of all (equivalence

classes of) functions f in Lf, (Z(t, , t,); X) such that
DifeLipe (Pty, 1); X)  VI]jl<m
Similarly we shall use the notation Wi3;*(t, , #, ; X) for the Fréchet space of
all fin L{,, (¢, , t; ; X) such that
Dif e L{ye(ty , 5 X)-

Let1 < p << o0, let 0 << b < oo and let E be a finite-dimensional Banach
space. Consider the following seminorm defined on £#(—b, 0; E):

o f) = (1O + 1 fIp)". (1.5)

M?(—b, 0; E) will denote the quotient space of £?(—b, 0: E) by its linear
subspace S = {fe Z£? | o f}) = 0}. It is a Banach space with norm o( f). It
is isomorphic to E X L?(—b, 0; E). We shall also use the notation

Br(—b,0; E) = EN x M¥(—b, 0; E)

for some integer N > 1. For additional details regarding these spaces and
their use in hereditary differential system, see Delfour and Mitter [6].

2. REPRESENTABLE AFFINE HEREDITARY DIFFERENTIAL SYSTEMS

Given p, | << p < o0, a hereditary differential system is said to be affine
when the map f: [, #[ X BP(—b,0; E)— E satisfies the hypotheses
(CAR-1), (LIP) and (BC) of Theorem 3.3 in Delfour and Mitter [6] and the
map 2 f(t, 2) is affine for all te[f,, #,]. When f characterizes an affine
differential system the hypotheses (CAR-1), (LIP) and (BC) of Theorem 3.3
in Delfour and Mitter [6] reduce to

Hyrotueses 2.1. (Affine Hereditary Differential Systems).
There exist two maps g and [

g: [t07t1[_>E’l: [tO,tl[x B:n(__b’ 0; E)_)E (21)
Jor which
f(t) 3) = l(t’ .2’) + g(t): te [to ’ tl[; RE B”(—-b, O; E)! (22)



HEREDITARY DIFFERENTIAL SYSTEMS 21

the map g is in L, (%, , £, : E) and the map 1 has the following properties:
(i) the map x> I(t, 2) : BY(—b, 0; E)-— E is linear for all t € [t;, £,],
(i) the map t — I8, 2) : [§, ] = E & m-measurable for all
z € B?(~b, 0; E),
(iit) and there exists a map neli (t,,t,; R), ¢t +p =1, such
that for almost allt e[t , 4]

[t ) <n(®)]| zllsr» 2 € BY(—b, 0; E). § (2.3)

In this paper we shall only deal with a subfamily of the set of affine here-
ditary differential systems.

DerinrrioNn 2.2 Let 1 <<p << o0, let X be a finite dimensional real
Hilbert space and let £ = X in Hypotheses 2.1. The members of the
Representable class Z are affine hereditary differential systems for which the
map [ satisfies Hypotheses 2.1 and is of the form

Z(t; (zN yerry 21 > K_l(z()() 3 201)))

2z

0
=), Aj{t) 75 1 Agy(t) 2op + [l , A (t, 0) 2,(0) d6, (24)
: J

¥

where

Ay s Ay sy Ax [ty 5 1{— £(X),
and (2.5)
Ay 2 [ty [ X I(—5, 0) - L(X). |

Definition 2.2 is an implicit one and it is more convenient to start with
sufficient conditions for the A4’s rather than Hypotheses 2.1 for the map /.
The following gives a set of sufficient conditions on the A4’s for which the
map [ satisfies Hypotheses 2.1. Assume that Ay, 4 ,..., Ay are strongly
m-measurable and bounded on all intervals of the form [#,, ¢] for all # in
[ty , taf and Ay : [fy, ] X I(—b, 0) > F(X) is strongly m-measurable and
bounded on all sets of the form [#,, #] X K{(¢#) for all ¢ in [f,, #,[, where
{K(®)| t e[ty , t,[} is a family of subsets of I(—5, 0) with the following proper-
ties:

() K@) CK@,y) forallt, <4,

(i) {6cI(—b,0)| An(t, 6) # 0} C K();
(i) K(t) has finite measure for all z.
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3. FuNDAMENTAL THEOREM

In this section we specialize the results of Theorem 3.3 in Delfour and
Mitter [6] under the hypotheses at the end of section 2. In the remainder
of this paper we shall consider representable systems for which the sufficient
conditions given in the previous paragraph are verified and we shall identify an
element /% of M?(—b, 0; X) with the pair (A% A') = (%) in X X L#(—b, 0; X).
We shall also use the more standard Sobolev space W1-? as space of solutions
rather than the space AC?, ~

THEOREM 3.1. Let the sufficient conditions on the A’s be verified. For some
S, by < § <ty , consider the system

ax(t) _ N e S
dar Ago(t) 2(t) + z=21 Ay2) Wt + 8, — s), othermise ;
0
fx(t + 0), t0>=s
—]_ f_b 1401(t5 0) ehl(t + 6 . S), Otherwise d0 —I—f(t),
a.e.in[s, 4], 3.1)

x(s) =B h = (A% BY)  in MP%(—b, 0; X),

where f is in LT, (%, , 4 ; X).

(1) Given the initial datum k in M?(—b, 0; X) at time s, there exists a
unique solution ¢(-; s, b, f) in Wii(s, £, ; X) to Eq. (3.1).

(i) The map

(A fY > (5 5, by [): MP(—D, 0; X) X Live(s, 2, ; X)— Wise(s, 1, ; X)  (3.2)

is linear and continuous and for all T > s there exists a constant ¢(T) > O such
that

16Cs 8 I Plllwge .10 < (T) 1Al + [ fllergs,rn]- (3.3)

loc

(ifi) Given € > 0, there exists 8(T) > O such that

| T—s| <¥T)=max |d(t; s, h, f) — B | -] Dp(*5 8, B, llrts, sy < &
ks (3.4)

where D, indicates the distributional derivative with respect to t.

(iv) The map
(&, ) —(t; s, b, [) Pty , 1) —> X (3.5)

s continuous.
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4. HEREDITARY ADJOINT SYSTEM

In this section we introduce the hereditary adjoint system and the here-
ditary product and characterize solutions of the adjoint system.

DeriniTiON 4.1, Given T >4, and &% in X, the Hereditary adjoint
system defined in [#, , 7] with final datum £° at time T is defined as follows:

g N N — . —_— . —_— - j
PO ¢ apeypy + 3, fort OO0 =T

= 0, otherwise
i K ; .
[ (Al — 6,0 p(E—0), t—0<T)
N J—b 0, otherwise 4 +(?)
=0, a.e.in[t,, T}, 4.1
p(T)=4&°

where g e L?(t, , T; X). |

Remark 1. System (4.1) is similar to system (3.1) up to a change in the
direction of time. As a result we have the equivalent of Theorem 3.1. Notice
also that the maps t > ()%, t+> A(t)* (¢ = 1,..., N) and

(& 0) > A(z, 0)*

are strongly measurable (cf. Hille and Phillips, [13, Theorem 3.5.3, p. 72,
Theorem 2.9.2, p. 36, and a remark, p. 73]) and verify the same hypotheses as
Agy » AZ = 1,..., N) and 4, at the end of section 2.

Remark 2. (i) For all k% in X and T in [t , ;[ there exists a unique solu-
tionJ(+; T, k%, g)in Wh-2(t, , T; X) to Eq. (4.1).
(ii) The map
(R, gy~ T, R g) : X X Loty , Ty, Xy — Whet,, T; X)

is linear and continuous and there exists d(T') > 0 such that

Hb(ss T, B ilwrrgg ey < d(T) R0 [x + 1 g vy r. 0] (4.2
(ili) The map
(T, 6y~ (t; T, R, g) : Pty , 1) > X

is continuous.
The next definition and the next proposition establish in what sense
system (4.1} is “adjoint” to system (3.1).
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DerintrioNn 4.2. Given T > ty, 2 in M?(—b, 0; X) and p in
Wi-r(ty , T; X), the Hereditary product at time ¢ of % and p is a function
defined in the following manner:

H(t; T, h, p)

o

~ o+ [ ( At + o — 8, 0% p(t + o — 6), B¥e) dos

max{~b,a+t—T}
3 L

o2 otherwise

3Ai(t+°‘_‘0i)*p(t+0‘—9i)y att—T<4;<a
0,

A () do. | 4.3)

Remark. When p = 2, we can use a simpler definition. Given T" > ¢, , £
and % in M?(—b,0; X), the Hereditary product at time ¢ of % and & can be
defined as follows:

<k, By

= (B9, h9) - f_ob ( Ayt + o — 0, 0)% B0 — o), h()) dx

max{-~b,a+t—T}

0 (At +oa— )k O, —a)at+t—T<0 <o)

+ J‘_b (El 30, otherwise > F{)) dev.
4.4)

ProposiTioN 4.3. Fix ty < s << T. Let x and p belong to W'-?(s, T; X) and

h to M¥(—b, 0; X). Assume that x(s) = h°. Then

H(t; T, &(t), p) — #(s; T, k, p)

¢ dx(r N x(r + 6;), r4+8;,>s
= [0 F2— aun) s =3 a i
0 x(r + 6), 1'—1—02.91
- ."_b Au(r, 9) W\ (r |- 0 —5), otherwise | 6) ar

¢ dp(r) N A —0)plr —6), r— 8, < T
+ L ( T Aolr)* p(r) + ZZ:'I %0, otherwise %

otherwise

b

[ e = OB =0 0 < Tt o) a 45)
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where %(t) = (&), Z(£)Y) is defined from x and its initial datum F at time s by

), otherwise {’

CoROLLARY. Let x and p be the solutions in Wt2(s, T'; X) of systems (3.1) and
(4.1) with f =0 and g = O, respectively. Then

H(t; T, %(t), p) = constant, s < ¢ <L T}

where the constant solely depends on b, k® and T. '}

TarorREM 4.4. Fix B and K in X. For each (8, s) in Z(t, , 1,) define

x(t, sy = (25 s, (A%, 0), 0), p(s, £) = ¥(s; £, &, 0). {4.6)
Then
(p(s, 1), B%) = (RO, x(1, 5)). 4.7

5. INTEGRAL REPRESENTATION OF SOLUTIONS

In this section we introduce the operator ®%(, s) and show that given an
initial datum % (resp. &%) and a function f (resp. g} the solution $(z; 5, %, f) of
(3.1) (resp. $(t; T, R, g) of system (4.1)) can be expressed in terms of D9, 4, f
(resp. kY, g) and the operators 4y and A; (@ = 1,..., N).

Given (2, 5) in (¢, , t,) the continuous linear map A% ¢(Z; s, (A%, 0}, 0)
defines an element @Yz, 5) of £(X) in an obvious manner:

YL, 5) B0 = $(t; 5, (R, 0), 0). (5.1)

ProrosrtioN 5.1. Forall B in X

(1) (z, ) Dz, 5) AP is continuous,
(i1) &> DL, ) b0 is the solution in WP (s, 1, 3 X) of

(DU + 0, )B°, 1+ 0; =5y

.ﬁ. 0 0 0 0 ~
7 P I = Anlt) P I+ 3 A0} otherais |

0 Pt L 8, 5), t 405 .
+ f_b Agy(t, 0) g 0  ore | 0 @i s, 1,

s, 5) = I, (5.2)

(1it) (¢, 5) > DD, s) B° is m-measurable and bounded on every compact
subsets of P(1, , 1,),
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(iv) s> D%z, s)* A is the solution in W-2(t, , t; X) of

E?s‘ B2, s)* KO - Agg(s)* Dt 5)* A°

4 N o(Afs — 0 Dk, s — 0% K0, s — 0, <t
= 30, otheruwise
O (Ap(s — 6, 0)* Dz, s — OF K, s—0<1)
+ j_b %0, otherwise 49 =0
ae. in iy, t], (5.3)

(v) (¢, 8)> DD, 5)* h° and (¢, s)+> D D¢, 5) h° are m-measurable
and bounded on every compact subsets of P(t, , ).

TuroreM 5.2. (i) For all h in M?(—b,0; X) and f in L{,; (s, ¢, ; X)

¢(t; s, b, f) = P, )A° + f:’ DUz, 5, )h(e) do - ft e, r) f(rydr, (5.4)
where

DU, s +ou— A (s +a—8), a+s5s—1t <O, <a
0, otherwise

DY, 5, o) = i 3

i=1

+ f : Bt s + o — 0) Agy(s + o — 6,6) 8. (5.5)

max{-b,at+s—t}

(i) For all B in X and g in L?(t,, T; X)
T
Sty T, kO, g) = DNT, 0)* K° + f DO(r, £)* g(r) dr. (5.6)
£

Cororrary. (i) For all b in MP(—b, 0; X) the map
(&, Yo Dyd(t; 8, B, ) (5.7)
isin LY (P(ty, 1,); X).
(i) For all hin D = {(k(0), k)| k € Wi-»(—b, 0; X)}
(¢, )~ Dt; s, kb, f) (5.8)

C e
isin LT,

S bt f) = — 90 9) [40e) HO) + T, ) H6)

Pty , 1); X) and

+ ° Auls, ) H(6) db + @) — f * g, s, a)%(m) d?. )
- - 5.9
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Remark 1. It will be convenient to introduce the operator @(f,s) in

L(M?(—b, 0; X), X) defined as

&(t, s)h = DOz, RO - [ " B, 5, o) H(e) do (5.10)
Yop

6. FinalL Remarks

In part III of this paper we shall present a theory for hereditary differential

systems in “state” form systematically using Sobolev spaces. This theory is
very similar to the theory of linear evolution equations as developed by

I

L. Lions (cf. Lions [15]). We shall also present a state adjoint theory. This

adjoint theory is useful in optimal control problems.

Note added in proof. By choosing b = 4+« in (3.1) it can easily be shown that

affine Volterra integro-differential equations can be put in the form of equation (3.1).

10.

11.

REFERENCES

. M. ArroLa, Sur les perturbations des équations d’évolution. Applications & des
1Y qi Pp.

problémes de retard, Annales E.N.S. 2 (1969), 137-253.

. H. T. Bangs, The representation of solutions of linear functional differential

equations, [. Differential Equation 5 (1969), 399-410.

. A. Bierecki, Une remarque sur la méthode de Banach—Cacciopoli~Tikhonov dans

la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci. 4 (1956),
261-264.

. C. CorpuNEANU, Sur certaines équations fonctionnelles de Volterra, Funkcial.

Ekuvac. 9 (1966), 119-127.

. M. C. DeLrour, Function spaces with a projective structure, j. Math. Anal,

Applic. 42 (1973), 554-568.

. M. C. DeLrour anp S. K. MiTTER, Hereditary differential systems with constant

delays. 1. General case, J. Differential Equations 12 (1972), 213-235.

. M. C. Derrour anp S. K. MrrteR, Controllability, observability and optimal

feedback control of affine hereditary differential systems, SIAM . Control 10
(1972), 298-328.

. M. C. DeLrour aND S. K. MITTER, Systémes d’équations différentielles héréditaires

i retards fixes. Une classe de systémes affines et le probléme du systéme adjoint,
C. R. Acad. Sci. Paris 272 (1971), 1109-1112.

. N. Dunrorp anDp J. T. ScawarTtz, Linear operators. I, Interscience, New York,

1967.

A. Hacanay, Differential equations; stability, oscillations, time lags, Academic
Press, New York, 1966.

J. K. Haig, Linear functional-differential equations with constant coefficients,
I. Differential Equations 2 (1963), 291-319.



28 DELFOUR AND MITTER

12. J. K. HaLE, Functional differential equations, Springer-Verlag, New York, 1971.

13. E. HiLLe anp R. S. Puirvips, Functional analysis and semi-groups, American
Mathematical Society, Providence, R.1., 1957.

14. J. L. Lions, Problémes aux limites dans les équations aux dérivées partielles,
Séminaire de Mathématiques Supérieures, été 1962, Les presses de 1’Université
de Montréal, Montréal, Canada, 1967.

15. J. L. Lions, Equations différentielles opérationelles et problémes aux limites,
Springer Verlag, Heidelberg-Berlin, 1961.



