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X This gives

5
= ~-1 - — —

Xy = -Ay,la,,%) + By +B),0,]. 50

ititution of (50) into (47) and (49) gives us the 'modified slow' subsystem and

‘ormance indices

Xsm AOxsm -3 BOlulsm + B02u2$m 3 xsm(to) “*10 L)
1m
x t A ' A Qi [
J1sm =0 { [xsmoilxsm.+2xsti2uism‘+2xsm012ujsm.quisti3ujsm
0
' - W :
+uist11uism.+ujstijujsm]dt ; i,j=1,2, i#j. (52)

_s shown in [4] that the reduction process described above leads to a well-posed
iced game. Note that the modified slow subsystem and performance indices are of
same form as in the slow problem considered in Section II. However, the system
:ices and performance coefficients preserve information about the fast low order
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where by m

E) > 0 we mean m(E) belongs to the positive cone :'_‘_(11)' of all non-

negative-definite operators.
operator-valued measure m £

(POM)

a positive

m(S) = 1.

1f m is a POM then =1. In

particular, a re ution of the is E M satisfies

every

m(S) = I and m(E F = §; it is then true that m(+) is pro-

m(ENF) = n(E)m(F), E,F e B.

SSPECT TO OPERATOR-VALUED

In treating quantum estimation problems it is necessary to have a theory of
ntegration with respect to operator-valued measures. We outline th theory now.

st, we consider integration of real-valued functions. Basically we identify
the regular Borel operator-valued wsures m £ M(B,L (i1)) with the bounded linear
s

operators L: \.'D(S) * L_(H), to get a generalization of the Representation

Theorem.

Let S be a locally com Huasdorff space with Borel sets B. Let H be a
Hilbert space. There is an isometric isomorphism me>L between the operator-

valued regular Borel measures m M(B,L (H)) and the bounded linear maps L ¢ L{(? (s),
s b o

L (H)). The correspondence m<>L is given by

L(g) = Sg(s)m(ds), g = C_(S)
5

where the integral is well-defined for g(+) © M(S) (bounded and totally measurable
maps S » R) and is convergent for the supremum norm on M(S). If mée>» 1L, then
m(S) |L| and <L(g)¢ > (ds) for every ¢,y € H. Moreover L is

> = fg(s) m(e)d
pg C (S into | .(H iff m is a positive measure; is sitive ar
I ”(;J’ "Sk |)+) a positive measure; L is positive and
L(l) = 1 iff m is a and L is an algebra homomorphism with L(1) = 1 iff m is
a resolution of the ide iry, in which case L is actually an isometric algebra
homomorphism of C (S) onto a norm-closed subalgebra L (H). 7!

o S

positive (m

Since every real-linear map from a real-linear sub
into another real-linear su 1ce of
"Hermitian" complex~linear
ecasily identify the (self-:

ce of a complex space
complex space corresponds to a unique
plex linear spaces, we could just as
ror-valued regular measures M(8,L (1))

ap on the
!joint) opers

<

with the complex- linear maps L: € (5,C) + L(H) whic!
o

satisfy

L(g) = L(g)*, g e C (5,0).
o

3.1 integration of T (H)-valued functions.

We now consider L(H) as a subs

bounded linear maps from 1(H) into
function ].i t(H) + t(H) by

the "operations'" L(1(H),t(i)), that
Every B ¢ L(i) defines a bounded 1i

5:

Ly(a) = 4B, A€ T(H)

i3

with |B] In particular, A » trAB defines a continuous (complex-) linear

function

in fact every linear functional in T(H)* is of this
form for i

note that A ar then tr(AB) is
not nece rily true that AB is vint unless
to identify the space (_(H) 1

B are self:

real

AB = BA).

15, it is real-linear con-

(H), again under the pairing trAB,

tinuous functionals on

ted in this

11 be especially inter

A e t (H), B [ (H). For our purposes we

wces T_(H) and L_(H), which we shall use to formulate

latter duality between the

dual problem for the quantum est 2tion situation. However, we will also need to
consider L _(H) as a subspace of L(t(H),r(H)) so that we may integrate T_(H)-valued

functions on S with respect to L_(H)-valued operator measures to get an element of

(H).

iwsure, and

Suppose m € M(B,L_(H)) is an operator-valued regular Borel =

§: S » 1t (H) is a simple function with finite range of the form
S5

oint sets in B, that is f £ B& 71 _(#). Then we may

s

where P, € T (H) and E, are dis]
i s

unambiguously (by finite additivity of m) define the integral

S f(s)m(
S

The question, of course, is to what class of functions can we properly extend the

definition of the integral? Now if m has finite total variation |m|(s), then the
r . + - ‘e 1

map T + Sf(s)m(ds) is continuous for the supremum norm £|_ = sup I(s)lu_ on

B® 1t (i), so that by continuity the integral map extends to a continuous linear

map from the closure )!(S.is(ll)) of 8@ uL:(H) with the 1+l norm into 1(H). In

particular, the integral fi"(s;)m((lr,) is well-defined (as the limit of the integrals

S

of uniformly convergent simple functions) for every bounded and continuous function
f: S - t (). Unfortunately, it is not the case that an arbitrary POM m has finite
s 1:

total variation. Since we wish to consider general quantum measurement processes as
represented by POM's (in particular, resolutions of the identity), we can only

assume that m has finite scalar semivariation m(S) < =, Hence we must put stronger
restrictions on the class of functions which we integrate. The answer is summarized

in

Theorem 3.2
Let S be a locally compact Hausdorff space with Borel sets B. Let Hbe a
Hilbert space. There is an isometric isomorphism I,I<-> m<>L, between the bounded
2 1 7 :
Linear maps L,: (31(5) @ _ Tt(H) - "(“J.( ) the operator-valued regular Borel
¢ 1
measures m &£ M(B,L(T(H),T(H))), and the bounded linear maps l.2: (2)(5) » L(T(H),
c

t(H)). The correspondence Ll emés L,) is given by the relations

(1) For notation and facts regarding tensor products we follow Treves [7].




132
1-1 (f) = ff(s)m(ds), f ¢ (I“(S) é L U(H)
e i

l.z(g). = Ll(r.('),) = pSfe(s)u(ds), g ¢ CU(S). p e T(H)

and under this correspondence !',] = m(s) = ]'2 . Moreover the tegral ST (s)m(ds)
L S
is well=d led for every f M(S) O'I t(l) and the nwllfr{ff(:;)m(d:;) is bounded and
&

S

linear from M(S) O t(H) into t(H). m

Corollar
Ifm

M(B,L (1)) then the integral /Sf(s)m(ds) is well-defined for every
5] &

feM(BS)@ 1(H). @
In proving Theorem 3.2 we need the fact

Proposition 3.3

M(S) OI‘ 1(H) is a subspace of M(S,T(H)). m

Remark
The above s

that we may identify the tensor product space M(S) @ 7 (i) with
("

a subspace of the totally me:

surable functions f: S » T _(H) in a well-defined way.
s A
The reason why this is important is that the functions f &€ M(S) Q. t_(H) are those

for which we may legitimately define an integral S f(s)m(ds) for arbitrary operator-

valued measures m € (B, I(H)), since W f(s)m(ds) is a continuous linear map from
s
- S a
M(S) ©_ 1(H) into 1(H). In particular, it is obvious that Cn(S) @ 1(H) may be
identified with a subspace of continuous functions f: § p———)’[(l() in a well-defined
way, just as it is obvious how to define the integral S f(s)m(ds) for finite linear
S

combinations
gj (s);!j £ l'II)(S) X =‘_(H). What is not obvious is that

the completion of Cv(S) @ ¢ (H) in the tensor product norm T may be identified
- - . C s

with a subspace of continuous functions f: S =+ 1 (H).
s

4. A FUBINI THEOREM FOR THE BAYES POS ED COST.

In the quantum estimation problem, a decision strategy corresponds to a
probability operator measure m € M(B,L (H)) with posterior expected cost
5

= [ trip(s) fC(t,s)m(de)]u(dt)
= S S

where for each s, p(s) specifies a state of the quantum system, C(t,s) is a cost
function, and p is a prior probability measure on S. We would like to show that

the order of integration can be interchanged to yield

R = trf £(s)m(ds)
5

f(s) = fc(t,s)p(iudde)

map f: S = 1 _(H) that belongs to the space M(S) Gr (i) of functions inte-

ator-vaiued measures.

nst ope
B,1) be a
tion f: 8 * X is mesz

X a Banach space. A fun-
simple measurable

finite nonnegative
1S

asure sj
a sequence if } of
n

rable iff there is

functions converging pointwise to f, i.e. f“(:;) » f(s) for every s ¢ S. A useful
criterion for measurability is the following: f is measurable iff it is separably-

= S oD o 3 s 2 ¢ . a
valued and for every subset V of X, f (V) £ B. 1In particular, every f € (,)(S,X)
C

compact Hauadorff space with Borel sets B. A
it is measurable and J |[f(s)|-u(ds) <+,

S
in which case the integral S f(s)u(ds) is well-defined as Bochner's integral; we

S is a locally

hle

function f:

denote by l.L(S,B,;,;)\') the space of all integrable functions f: § + X, a normed

space under the i_l norm lll = f |[(_.-,) p(ds). The uniform norm i' W on functions
S

= sup|f(s)|; M(S,X) denotes the Banach space of all

SES
uniform limits of simple X-valued functions, with norm |-

f: S -+ X is defined by |

, i.e. M(S5,X) is the

closure of the simple X-valued functions with the uniform norm. We abbreviate

M(S,R) to M(S).

ition 4.1
et S be a locally compact Hausdorff space with Borel sets 8, a probability
ert space. Suppose p: S * .H.(M) belengs to M(S,T_(H)),

measure on S, and H a Hi

and C: 8 x S§ + R is a real-valued map satisfying

t + C(t,+) ¢ l.l(.‘w‘,li‘. ;M(S)).

Then for every s £ 8, £(s) is well-defined as an element of I‘_(H) by the Bochner
s
integral

f(s) =/ C(t,s)p(t)p(de);
S

moreover f € M(S) @ r_(H) and for every operator-valued measure m € M(B,L_(H)),
we have

S f(s)m(ds) = Sq (t)[_r(.'(t,s)m(ds)]..(dt)

S S S
Morecver if t - C(t,-) in fact belongs to I.l(S,E,

'O(S)) then f ¢ (ID(S) Q ns(li).n

5. THE QUANTUM E ATION PROBLEM AND ITS DUAL.

We are now prepared to formulate the quantum dztection problem in a duality
swork and calculate the associated dual problem. Let S be a locally compact
rff space with Borel sets B. Let H be a Hilbert sp: ated with the
3 al variables of the system under consideration. For each p ter value
s £ S let p(s) be a state or density operator for the quantum system, i.e. every
o(s) is a nonnegative-definite selfadjoint trace~class operator on H with trace l;

asso
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we assume p £ M(S,7 (H)). We assume that there is a cost function C: § X § =+ R,
s
where C(s,t) specifies the relative cost of an estimate t when the true parameter

value is s. If the operator-valued measure m € M(B,L (H)) corr

o3 to a given

measurement and decision strategy, then ti

posterior expected cost is
R = trfp(t)[SC(t,s)m(ds) ]y,

m
S
where | is a prior probability measure on ($,8). By Proposition 4.1

this is well-defined whencver the map t = C(t,*) belongs to !.I(S.G,..;."‘;(S)), in

which case we may interchange the order of integr:

Lon Lo get

(5:1) E{m = tr ft(s)mlds)
S

where f M(S) O‘l 'H_(li) is defined by

/‘(ds) 5

The quantum estimation problem is to minimize (5.1) over all operator-valued
measures m £ M(B,L (li)) which arec POM's i.e. the constraints are tl
S

£(s) = f P()C(t,s
S

for every E ¢ B and m(S) = I.

We formulate the estimation problem in a duality framework. We take pertur-

bations on the x.-qn_n.-:]iry constraint m(S) = 1. Define the convex function
F: M(B,L_(H)) = R by
F(m) = '.‘,_O(m) + trS f(s)m(ds), m¢ .‘-I(S,Lq(ii)),
g E:

= denotes the indicator function for the positive operator-valued measures,

C(x) =6, (x), xel (H)
\ s

oJ
i.e. G(x) is 0 if x = 0 and G(x) =+00 if x # 0. Then the quantum detection prob-
lem may be written

P_. = inf{F(m) + G(I-Lm): m & M(8,L (H))!}
< S
where L: M(B, l.‘_(!l)) »+ L _(H) is the continuous linear operator

L(m) = m(S).

We consider a family of perturbed problems defined by

P(x) = inf{F(mn) + G(x~Lm): m M(h',l,g([i))'. X Ig(“).

Thus we are taking perturbations in the equality constraint, i.e. the problem P(x)

requires that every feasible m be nonnegative and satisfy m(S) = x; of course,
1’0 = P(I). Since F and C are convex, P(*) is convex L (H) -+ R.
s
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In order to comstruct the dual pr corresponding to the fami
turbed problems P(x), we must calculate the conjugate functions of F
shall work in the norm topology of the constraint space L

We

the dual

(1),

problem is posed in L_(H)*. Clearly G* = 0. The adjoint of the operator L is
s

given

(H)*: y -+ (m~> ym(S)).

have the following len

for every positive operator-vaiued measure m & W

i(i\’,l':,(]i)+\. Then V:v‘,l : 0 and

f(s) for every s £ S, where y =y + y is the unique decomposition of y

1c ac S

into Y [ 'SLH) and VS;; £ .(H) %

y

Proposit ion 5.2

The perturbation function P(*) is continucus at I, and hence AP(1) # @, Im
particular, P_ = D and the dual problem D has optimal solutions. Moreover ev
[+] o Q

solution y £ L _(H)* of the dual problem E)“ has 0 singular part, i.e. ng = 0 and

olutions, we could define a family

belongs to the canonical image of T_(H) in ¢ (H)?

In order to show that the problem l‘ﬂ 0
of dual perturbed problems D{(v) for v ¢ \'ID(S) O' S_(ll) and show that D(*) is con=

tinuous.

Or we could take the alternative method of showing that the set of
feagible POM's m is weak* compact and the cost function is weak®*=1sc when
M(B,L (H)) = L(C (S),L (H)) is identified as the normed dual of the space

o

¢ (8) © 1t (H) under the pairing
o (1

f,m> = tr fi(s)m(ds).

Note that both methods require that f belong to the predual ‘_'0(%) O. '.:;(li);; it

suffices to assume that t + C(t,*) belongs to l,l(S.B,..;Cn(S)).

Proposition 3 ‘ e
The set of POM's is compact for the weak* w{“-'(B,!q(il)). ('olh) ® 1.

> (S)) then P has optimal solutions
(8] o

topology. If £+ C(t,*) Ll(S,G,..

obtained so far, as

The following theorem summarizes the results we > ,
a necessary and sufficient characterization of the optimal

well as providi
solution.

3

MAIN TIHEOREM.

space with Borel sets

(8)),
o

§ a locally compact Hausdorff

Let H be a Hilbert sp B
S + R a map sat ng t + C(t,*) Il(h‘,b,.

B. Let p e M(5,7_(H)), C:

and | a probability measure on (S,B). Then for every m & M(B,

L (W),
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tr f p(0) [ f c(t,sIm(ds)]ulde) = tr/ f(s)m(ds)

S S

() is defined by

where f ¢ CO(S) @ 1

f(s) = fo(t)C(L,s)u(ds).

S

Define the optimization problems

P = infitr y f(s)m(ds) : m M(B,L (H)), m(S) = I,m(E) > 0 for every E B}
o 4 £
3 ]
2)) = supitry: y et (H), y £(s) for every s £ S}
C 5 _—
Then P = D , and both P and D have optimal soiutions. Moreover the following
[¢] [ [A) o
statements are equivalent for me M(B,L (H)), assuming m(S) = I and m(E) > 0 for
s -
every E £ B:
1) m solves P
o

w

2) Sf(s)m(ds) < f(t) for every t
S
3) S m(ds)f(s) 3 f(t) for every t £ S.
S
Under any of the above conditions it follows that y = f f(s)m(ds) = f m(ds)f(s)
S S
is selfadjoint and is the unique solution of D , with
o

P =D = tr(y).
o (8]
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