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1. INTRODUCTION

Many of the basic ideas of non-linear filtering for diffusion
processes were developed in the early and ﬁid sixties by
Stratanovich, Kushner, Wonham and others [ﬂor references, see :,
the paper by Davis and Marcus, this volume). Indeed this line
of development could be considered as an e#tension of linear
filtering as viewed by Kalman and Stratanoﬁich in the sense that
non-linear filtering is considered as a theory of conditional
Markov processes. In the late sixties; thd innovations approach
to non-linear filtering was emphasized by. ﬁa1lath (and Frost in
his Stanford doctoral dissertation). The idea of using the ‘

" innovations in an essential way in the Gaussian case dates back

I to Wold and Kolmogoroff in a discrete-time lsituation and to

? Bode~-Shannon in the continuous situation. | In this approach :
the observation process is first whitened in a causal and causally-
invertible fashion and the form of the filter then becomes trans-
parent. The contribution of Kailath was to see that this approach
extended to a non-Gaussian situation and to conjecture that the
whitening of the observation process in a causal and causally
invertible manner could also be carried out in the non-linear
case. ‘

This conjecture has recently been proved by D. Allinger and the
author' [1] and leads to the most transparent derivation of the
non-linear filtering equations (at least, wﬁen the signal and
noise are independent). |

i It was realized by Fujisaki and Kunita that[something weaker than

i observation-innovations equivalence would suffice to prove the
basic representation results of non-linear ﬁiltering, namely that
all square-integrable martingales adapted tp the observations |
could be represented as a stochastic integr‘l on the innovations,

. the integraidbeing square integrable and adapted to the observa-

tions. The celebrated paper of Fujisaki, Kallianpur and Kunita
(2] brings to a culmination the innovationa‘approach to non-~linear
filtering of diffusion processes. o -

This approach emphasizes the semi—martingal‘ representation of

the filter and is rooted in the intrinsic fprm of the Ito-

differential rule due. to Kunita and Watanabp It has the dis-

| advantage that it uses the innovations prockss which is an.

§ “invariant" but derived object. In most nop-linear situations ,

§ of interest this is not explicitly computabhe. L

f - An alternative approach to the non-linear fﬁltering problem can
P be traced back to the pioneering doctoral dhssertations of
Mortensen [3] and Duncan [4] and the importpmt paper of Zakai [5],
and is striking in its similarities to the path-space approach

to Quantum Mechanics due to Eeynman and its }igorizatiqn using
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Wiener space ideas by Kac and Ray. In this development one works
directly with the observations process and computes an unnormal-
ized conditional density using path space integration. The
computation of the actual estimate requires a further integration.
The recent developments of non-linear filtering have focussed

on this approach. In a previous paper [6] the author has given
a systematic expository account of this point of view and many
of the ideas presented in that paper has been further developed
[see, for example the papers of Davis, and of Marcus and
Hazewinkel in this volume]. It is also this view that led Bene&
[7] to discover finite-dimensional filters for a class of non-
linear filtering problems.

This viewpoint is completely consistent if not identical to the
viewpoint of guantum mechanics as stochastic mechanig¢s and
quantum field theory as @uchidean (stochastic) field: theory.

For a lucid account of these ideas see F. Guerra [8]. To make
the identification, it is necessary to admit open quantum systems,
that is, admit both self interactions and .external interactions.
Indeed, it is correct to think of the observation of a stochastic
process as producing an external interaction. Just as non~trivial
Markov (euclidean) fields are constructed from the free field
using a Multiplicative functional transformation (see for example,
Nelson [9]), similarly non-trivial filtering problems arise out
of a time~dependent multiplicative functional transformation

(see the article of Davis, this volume).. In this framework the
Kalman Filter occupies the same role as the harmonic oscillator
does in quantum mechanics or the free field does. in quantum fleld
theory.

It is therefore hardly surprising that the Heisenberd algebra,

the Oscillator algebra and other Lie algebras and their infinite-
dimensional representations have a central role to play in this
theory. 1Indeed in field theory, the Nelson-Feynman-Kac formula
provides such a representation. The infinite—dimensional repre-
sentations one seeks in filtering theory are however semi-group
representations which are positivity prpeserving (leaves a certain
cone invariant), and these are obtained from the Bayes formula

due to Kallianpur and Striebel:

The final topic in this line of thought is the questi@n of varia~.
tional principles for non~linear filtering and the dmallty between
filtering and control. These ideas date back to Bryson-Frazier
[10] and Mortensen [11] and more recently to Hijab {121 but has
never been satifactorily resolved. We show in this paper that
indeed there exists a variational principle for non-linear fil- .
tering and that the equation for the unnormalized conditional
density (Duncan-Mortensen-Zakai equation) is closely connected

to a ‘- Bellmann- Hamilton-Jacobi equation can be replaced by a
deterministic Hamilton~-Jacobi equation and this is the fundamentadl
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idea behind the duality between filtering and control in the
Gaussian case. These questions Wwere touched upon in the author's
previous paper [loc. cit. ] but receive for the first time a
complete resolution in this bPaper. As a by~product we obtain

' a stochastic variational Principle for the Guerra-Nelson

Stochastic Mechanics (at least in the ground state) and also
stochastic control analogues of Benes' filtering problems.

These ideas also allow us to study the behaviour of the un-
normalized conditional density in the presence of small process
and observation noise, and it is clear that there is an analogue

of quasi-classical approximations of guantum mechanics in fil-
tering theory.

The most important avenue of generalization of these ideas isin the
context of diffusion processes on manifolds. This generalization

seems to be necessary both for treating new filtering problems
ag well as stochastic mechanics.

2. FORMULATION OF NON-LINEAR FILTERING PROBLEM

The filtering problems we consider are consisﬁent with the
general model considered by Davis and Marcus id this volume, ex-
cepting we specialize the model for the signal.

Let (2,F,P) be a complete probability space equipped with an
increasing family of o-fields. We shall generally be considering
stochastic processes on a fixed time interval [0,T], except in
the section dealing with stochastic mechanics.

We consider the following stochastic differentipl system de~
scribing the model of the signal and obaervatiop processes:

= ‘ | 2.1)
dyt z dt + dnt (Obsexvation) . ‘ (
z, = h(xt) (Signal) f : ,(272)
- . : \ (2.3)
dxt b(xt)dt + dwt |

We make the following assumptions (for simplici?y)
(K.1) Y, and x, are real-valued processes

(H.2) LA Ft) and‘(nt,'Ft) are independentgstandard

Brownian motions

(H.3) E6,? Ih(xt)|2dt <
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(H.4) xt and nt are indepéndent

(H.5) b(xt) = fx(xt), where f# denotes the derivative with

respect to x and equation (2.3) has a unique strong
solution. Further the process x is assumed to have a
density p(t,x). :

Remark: For much of whaﬁ we do in the sequal, it is enough to
assume that (2.3) has a unigque weak solution and the jassumption
b = f can be taken in the sense of distributions.

For simplicity we have assumed that the processes invglved are
scalar~-valued. There is no difficulty in generalizing what follows
to vector-valued processes.

Then from Theorem 6 and Example 4 of Davis and Marcusg, this volume,
the unnormalized conditional density q(t,x,w,y.) (whére the
arguments & and yt will be omitted) satisfies the stochastic
partial differentgal equation:

dq(t,x) = Lfqa(t,x)dt + Loa(t,x)- dyt ' : (2.4)

where

(L£9) (x) -3 i%—— - —?——(uxw( ) -%-hz(x)(t(x)

= La.‘,,.,_uszzm

(L1¢)(x) = h(x)$(x)

and . denotes Stratonovich differential.-

We assume

q(0,x) = q,(x) > 0. (2.6)

Understanding the invariance properties of equation (2 4) and
its explicit solution is the fundamental problem of non-linear
filtering. We however mention that computing an estimate

E[¢( EFY] = ¢ , where EJjT ¢(x ) 23¢ < requires a'further

integratlon

M- il[<1>(x)q(t,x)_ab< : ; (2.7)

and a normalization.
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The remainder of the paper is devoted to an understand:.ng of
equation (2.4).

3. THE FEYNMAN-KAC FORMULA, GIRSANOV FORMULA I*JND GUERRA~NELSON
STOCHASTIC MECHANICS

1

We first try to understand the autonomous (no éxternal inputs)
system:

-g—%‘t”‘) = Lo (t,x) : (3.1)

X .
Ofb(z)dz : ! R
Let Y(x) = e and write p(t,x) = Y(x)0(t,x). Then p

satisfies the equation

A 2 :
: —g-%- = (—;— —83 - v(x))p(t.x), where | (3.2
. 9% N f

Ve =304 2 [b, (x) + b (x)]=

| (3)@) .

1 2 1.2
5 [fo(x) + ,fx(x)] + -2.§‘h (x)

(since b is assumed to be a gradient vector fieh.d £

2 ;

We remark that the operator H = -—2]? _‘-1__2_ + V(x) i .is a Schrodinger
ax”

operator and equation (3.2) has an important roie to play in

Euce. lidean (Quantum) mechanics. \

Let us make the assumption:

(H6) verl @), positive, and 1im V(x) = o
>0

Th¢orem 3.1: [13, Theorem XIII.47, p.207]

2
The operator H = - = — V considered as an oﬁ:erator on
dx
<DR, dx) has an eigenvalue as the lowest point 'in its spectrum ‘
and the corresponding eigenfunction wo (x) is st:hctly positive. '
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The lowest eigenfunction is referred to as the ground state.
Let us normalize the lowest eigenvalue to be 0 and hence the
corresponding eigenfunctlon w (x) > 0 satisfies

1“‘1’
229 sw o=o0
2 2 o

Then by the Feyman-Kac formula [14, Theorem x.68, p. 327_9] '
wo(x)' = flllo(x Yexp(~ fv(x )ds) au* : @ 3)
w t J s w ™

where W = C(IR_; R) equipped with its family of Borel :sets B
correspcndinq to the topology of uniform convergence von compacts
and u is Wiener measure starting at x. ;

‘Our objective is to construct a stochastic process asf‘sociated

2

with the operator H = - % -—9—5 + V. Let us normalizﬁe 11)0 such
ax i

that fllbo (x) |2dx = 1. Define the probability measurge; dau =
R ) ;
Iw (x) lzdx and consider the space L2 (R;u). Now, the §spaces

L (IR; dx) and L (u) are unitarlly equ:.valent nnder the> unitary
operator U: f =+ w f L (IR; dx) - L (R; W). On L (]R; du) the
operator H is equivalent to H' = UHU -1 (assuming the ;Lowest
2 . !
|

: = 21 4a Lo
eigenvalue = 0) and H'¢ = - 3 dx2 + £ ax’ Where £ = -1n Y.

H' is a contraction semigroup on LZ(JR; au) .

We now construct the stochastic differential equation| defining : ‘
the Markov process corresponding to the operator H' b& exploiting ; o i
the relationship between the Feynman-Kac Formula and the B
Girsanov formula and the generalized Ito-Differentiali rule due ; e
to Krylov and others (for the generalized Ito dlfferehtial rule, ’

see [151). )

Now the function y. € D(H), we get since £ = =fni_., téhat (i) £
is continuous. 9) f in the sense of distributiong belongs
to L2 (:IR dx) and (111) f in the sense of distribuéticgns belongs

to Ll (IR; dx) .

By direct calculation using H' = UHU"l and f = =1ln woi, we get
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£
XX

(NI

1 ' :
+ '2-(fx)2 = V(x) almost all x

Now

(3.5 - f el
.5) exp(-l{v(xs)ds) = exp(g‘g fxx(xs)ddf

Applying the generalized vIto Differential Ruleg
1

£ x(x)ds . |

i

df(xs) = fx(xs)dxs + 3

Hence from (3:5) and (3.6)

= -1 - S
Lt-wb(xo) lp°fxt)e§:p( fV(xs)dS).

x € R (ii) positive and from (3.3) (iii)th

process), L. is a (W, Bt,‘fux) - martingale, wh
field generated by the coorginate functions of

av®

'S
duw

==Lt.

Fe

Now Lt is (i) a well defined raﬁdom variable uﬁ
¥

Therefore from the properties of Wiener Procest

8. K. MITTER

€ R (3.4)

x )ds

t
-1 2

to f_(xs) , We get

(3.6)

t H
—' = - - ) - - —]-"- 2 ‘
exp ( .[ V(xs)ds) exp [f(xt) f(xo). ffx(xébdxs 5 ffx_(xs)ds] |
and hence .
£ 1 2
exp[-of £ xax, -5 [ £ (x)ax]
= exp (-f(xt)‘)exp(f(xb)exp(- {V(xé)ds)
-1, ‘
= wm(xo_) lpn(xt)exp(— fv(xs)ds) .
Define '

(3.7)

- a.s8. for all

=L

5 (as a Markov .
pre . is the sigma
'x after time t:

Hence we may define 'a probability measure on (©,8) by
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Therefore by theGirsanov theorem the process Wer t>0 befined
by -

i
wt =X, - X, + J.fx(xs)ds

is‘a (B, v ) = Brownian motion and therefore the protcess x

t>0, corisidered as a stochastic process on (W, B , vX) is a weak
solution of the stochastic differential equation

dxt = -fx(xt)dt + dwt . ; (3.8)

By construction, this equation has the unique invariaét measure
u. '

From our constructions, we see that

(a) j;(xt)dvx =.,;(xt)Ltdu$ , . for all bounded %
W W ‘ {

‘continuous functions ¢.

(b) ~ the process X, has a transition density q(t,y,O,x)
given by
-.l t .
Calt,yi0,x) =Yg (YYIE [exp(—‘{V(xs)ds)[‘xt = y]
H (3.9

x p(t,y;0,x) .

where E _ [-]|.] denotes conditional expection with

respem‘;'J to the measure u conditioned on {xt = y}
and p(t,y;0,x) is the’ transition density of | "the
Wiener process. It follows from the work of Carmona’
[16] that q is a continuous functionof x and y.

We can summarize what we have done in:

Theorem 3.2: Under hypothesis (H6), there exists a unxque
family of probablllty measures (v Ix € 1IR) on the canonlcal
probability space (W,B) such that™ .

(i) (MMB,Bt,xt,vx) is a strong Markov process;

(ii) the martingale problem corresponding to (3.8)
has a unique solution;

(iii) the Markov process X, has a unique invariant maasure
u; i
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(iv) the process x_ is symmetric (i.e., the| reverse

Markov . process is itself).
3.1 The case where V(x) is quadratic

In (2.2) and (2.3) let us assume

h(x) = x | (3.10)
bx +'b2 = Q(x), where Q(x) is a positiv+ (3.11)

quadratic function |

‘JM‘LX In this case V(x) = a pgsitive quadratlc function. To simplify

matters, let us assume that V(x) = x2. This cdse corresponds
to the (euc.lidean) Harmonic osc!llator. The ground state wo(x)

2
can be explicitly computed to be. (m) -1/4 exp ( 55—) and
1 & a : 2| '
H' = = — —— 4+ X — and is a contraction on L
2 dx2 Tdax .

|

ﬁIR exp(-xzidx).

1
We note that the corresponding Markov ‘Process is the Ornstein-

%

|

1

Uhlenbeck process

dx = —x dat + dw (3.12)

The ideas presented in this example have played ‘an essential
role in the original discovery by Benes of explicit finite-
dimensional filters for a classof non-=linear problems.

s«alf-adjoigt operator which generates a hypercontractive semi~
group on L°(R; du)- [14, Theorem X.56, p.260]

‘Furthermore the Ornstein-Uhlenbeck operator 1s+an example of a

3:2 Discussion {‘

Our previous development is at the heart of N»@*‘son's stochastic
2

a
mechanics. Let us first note that the operato+ H= - %——2- + V(x)
ax

corresponds to the generator of a multiplicati re  functional of the
Wiener process. What we have shown in Section 3 is that this
operator is unit.arily equivalent to a self-adjgint Markov semi-
toup on a suitable L JEJ ) space and we have explicitly con-
structed that Markov process. This Markov pro ‘ess is symmetric
in the sense that the reversed Markov process is itself.  This
follows from the fact that the operator unitarily equivalent to
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H on LZAIR;u) is self-adjoint (} is the unique invariant measure
of the MarKov process). It is in this sense that thé reversi-
bility of guantum mechanics is preserved in stochastic mechanics.
Moreover the expectation values of all quantum mechamlcal ob~
servables in the ground state that can be computed u$ing the _
quantum mechanical formalism can also be computed in| terms of the
measure on the path space of the corresponding stochastlc process.
Finally, the field operators can be constructed from the
stochastic formalism. We emphasize that what we have really done
is shown the relationship between the Feynman-Kac formula and the
Girsanov formula.

3.3 An Associated Stochastic Control Problem

Our main. objective in this section is to give a vari@tlonal
interpretation of Nelson's stochastic mechanics. The (key to this
is the remark that equation (3.4) is a stationary Bellman
equation ariding out of a stochastic control problem{

We first consider the non-stationary situation. 1In equation
(3.3) let us make the transformation

plt,x) = exp(-S(t,x)) : (3.13)

Then S(t,x) satisfies the Bellman eqguation:

2
9s _18% _1 s _ )
'-'a_t? bl 2 axz 2 % + V(x); s(olx) So(x) (3.14)
= -{n po(x)
3.5

It is also worth observing tha % satisfies the "Navier-Stokes-
like" equation:

2 (88)=.1_.ﬁ(.a§.)_; as _a.(as L
2 2 2

Tt \9x 3 Ix 9x ox \9x ox
X
, , (3.15)
. ap
ds 1 [¢]
ECR N M

We now make the assumptlon that the potential V in addition to
satisfying the prevlous hypotheses is convex and of:class c
(the case of most interest is where V 1s an even positive.
polynomial),
The development that follows is essentially due to Fleming (17]
and Karatzas [18] and we explicitly follow Karatzas.

1
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Consider the stochastic ‘control problem:

dxt = utdt + dwt

s<t<T
X =X

s 0.

S. K. MITTER

(3.16)

As before, let W = C(0,T) equipped with itsBor “‘1 O-algebra
and let Bt denote the 0-algebra generated by the coordinate

functions. Consider also the o-field D of sub ‘pts of [0,T) x W
with the property that each t-section belongs t Bt and each

x-section is Lebesgue measurable.
An admissible control function
uz ((0,7] x W, D) » (m,B(m))
ig a 'xﬁeasurable map such that E(x,t) =u and

differential equation

_t,x

dx, = ux,t)dt + daw
t m—— t

i

the stochastic

(3.17)

has a unique weak solution (xt, wtlo £t < T) oh some probability

space (Q,FT,P:,Ft) for any x € R, with (wt, Ft)

and ,
T
B, fl’J(x t) |Pat < w
X 4 »
0

sup Eulxtlp <o -,
0<t<T

Let U denote this class of controls.

Consider the problem of minimizing

T — .
- uf, 1.2 ‘ u,l
J(x,t;u) = Exf( 7 Ut V(xs))ds + Ex(sio"‘w)_
oA .

0Lt<T

‘a Wiener process

(T¢ be consistent with equation (3.14) we ahouicﬁ reverse time;

SO is as defined in (3.14)).
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_Inf J(x,t,u)
ueuv

S(x,t) =

- Then S satisfies the Bellman eqdation

€

2%s

2

ax

98

-—a—-—-a

as

+ min 3% + % u2

i
2 velr

S(x,T) = So(x)

It is shown by Karatzas [loc. cit.] that the optimal

¥l

(x*

u*(x)= - t’

t)

is admissible and the corresponding stochastic diffe
equation (3.17) has a unique strong solution.

Consider now the infinite-time problem with the cost
o ) u
J(x;u) = 1lim Ex

[,% u2 + V(x:)]dt
>0

t

3|

. The minimization is now carried out over all admissi
laws which are Markovian and which given rise to an
process.
such that FU(®) < © yhere

% y
Flx) & fexp{zof u(z)dz}dy, and
w .

S @30+ v lart ) <

) + V(x), (x,t) € Rx [0,T]

This class is characterized by control laws u

491

(3.18)

control law

rential

-function:

(3.19)

ble control

ergodic_x
e T 9(xt)’
(3.20)
(3.21)

Again it is shown by Karatzas that an optimal controi law u*
exists such that the limit in (3.19) is independent of the

starting point x.
98

Pl

ox

u*(xt)'m - (x:), where S

2%

2

ox

1

2

1
) =0

.

Moreover, the optimal control is élven by

(3.22)

is’'the solution of the stationary Hamilton-Jacobi eqﬁation

38\ 2
(5;) + V(x)

(3.23)
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It is interesting to note that from our previo 8 considerations,
(see equation (3 ’) and the definition of f) we know the optimal
control explicitly, '
* _1 awo
u (x) = (wo(x)) 5% ! (3.24)

where wo is the non-degenerate ground state of | the operator

2 .

- %-—93 + V(x).
dx

In the case V(x) = l-xz, we get u*(x) = -x, a yell known result
in &tochastic contrdl theory.

. . |-

Our final -observation isthat to this class of fiinite-time

stochastic control problems we can rigorously apply Bismut's

duality theory of stochastic control [19]. Ac ording to this

theory, there exists an adapted right continuous process p_ and

T .
and an adapted measurable process Moo B S ﬂidt:< © guch that
0
dx, = u*dt + dw
¢ ¢ € (3.25)
x0=.=x
3V »
dpt i v (xt)dt + Trtdwt
a8 (3.26)
Prp -—Jl~(xT)
u* = arg min (—-u2-+u P) ‘ (3.27)
uelr -

Equations (3.25) « (3.27) are the "stochastic" Bi-characteristics
of the Bellman equation. ’

What we have shown in this section is that certain multiplicative
functionals of Brownian motion (and indeed more general Markov
processes) have assoclated stochastic canonicall equations of
motion, and in this sense stochastic mechanics is exactly like
classical mechanics.
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4. A NON~- LINEAR STOCHASTIC CONTROL PROBLEM WITH AN EXPLICIT

SOLUTION

We now consider a class of stochastic control problehs which are

the analogues of non-linear filtering problems first

considered

by Benes which have an explicit solution. This solution is ob-
tained by exploiting the ideas of Section 3. A prototype example

of this class is:

dx, = f(xt)dt‘+ u dt +-_‘dwt

where f satisfies the Riccati equation

af 2 _ 2
ax + f .

The cost function is
u 1 2 1 2
J(t,x;u) = Ex (2 xT) i (2 \:ls + T 2 s)ds

We shall place ourselves under the hypotheses of the
. section for the control laws.

If s(t,x) = Inf. J(t,x;u), then the Bellman equation
‘ u
p ;
| 2
‘§§_ 1l 37s 98 _ 138\ 1.2
3¢ T 2 %2 M (ax g%
x
' 1l 2

LS(TfX) =3 X

Let us introduce the transformation

s(t,x) = -1n p(t,x)

Then p satisfies the equation

' 2

9 1 9% 9p 1.2
Yae=2 2 TP Tz*P
s‘ X
;o('r.x) = exp (- -5—).

LN

(4.1)

previous

for 8 is

(4.3)

(4.4)

Now we remove the drift term in the above equation by introducing

the Gauge transformation

p(t,x) = w(X)a(tlx)l .Where
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Ve C (IR)invertible is to be chosen.
that p satisfies:

(v

p(r,x) =y to(r,x)

A direct!

A

ap 1._2'\
2.

3p .,

i’}
o + £

ax

3p . (1 -1 92 -1
3¢ )5%".(5“’ ;‘g“"

Now choose Y to satisfy

TR

Theén p satisfies

2

d _13% 2 (Bf ) :
=== - + £ -+ x
3t T2, 27 2 \3x CLJ‘
1 9% 2+
- ox

Thils backward equation has a unique solution giv
Feynman~-Kac formula:

. T ’
B(t,x) = gtx[p(x.r)exp(-— tf szds)] , where

E
ogﬁxt - X.

The integrationin (4.7) can be carried out by

by the author in [6] (see section 3.2).
we lget an explicit solution for S.

By tra

Thei developments in this section show ﬁhat the f

tidn to (4.2) can be written down in terms of
that arises in the gain’ computation in optimal
filtering (not to be confused with the Riccati

5. LIE ALGEBRAIC CONSIDERATIONS

The fundamental Hamilgonia
1l .2
t3

3 X a.ctmg on L (R;

Hamiltonian H = - -3

a

3

n in the previous conj

S. K. MITTER

computation shows

W1 2\
ox £ 2 X )P
(4.5)
(4.6)
en by the
(4.7)

denotes expectatlon with respect to Wiener measure conditiched

uging Gaussian
intlegrals or by using the method of bicharactera

stics introduced
sforming back

undamental solu- ‘
Riccati equation 1
ontrol and Kalman ﬁ
quation (4.2)).

iderations is the
x) or the
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2 |
unitarily equivalent operator H = - 4 + X = aéﬁinq on
‘ 2 ax? dx ")

Lz(IR:dg) whers g is Gauss measure. This Hamiltonian corresponds
to the Harmonic Oscillator. Underlying the Harmonic oscillator
is the solvable Lie algebra with basis {r,p,q,i} the oscillator
algebra whose commutation relatioéns are

Ir, pl =g
fp, q] =i (5.1)

blfr, ql =p .

A representation of this Lie Algebra by a Lie Algebra of un-
bounded operators is obtained by the correspondence

. 1482 1 .2
r Ly Tavgx
ax
q -+ Ll = X
d
P 92 = ax

i+ L, =1

Let T denote this representation. Let G denote the connected
Lie group whose Lie algebra is the oscillator algebrda. We are
interested in a representation T of G by bounded operators on
L (R; g), such that 7(g), g € G is a C

"'"'f-tm(x)

o—seml-gronp and ﬂ(etr)

is a positivity preserving ‘contraction semi-group.
-tL ' v

The semi-~group e 0 can be constructed via the Feynman-Kac

formula. The interest of the Lie algebraic viewpoinq;is that

a finite dimensional sufficient statistic can be obtaaned for

evaluating

(e ttopo)(i), by considering the basis

2
{f 7 %-xz, azgn I} for the oscillator algebra and writing

in analagy with the Wei~Norman theory (as first suggested by
Brockett) 2

d 2 g ()
-tL g, (t)—= g, (t)x" ©3 dx g, (t)
¢ %)) =le' ‘dx2e? e Tplw
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and obtaining differential equations for g,, ¢,
Indeed g, is t and required to be nonnegative.
algebra this has been rigorously proved in the
s¢rtation of D. Ocone [20].

Consider now the Lie algebra of operators with

2 . .
-yt V(x) and x , with V an even positive
dx :

not gquadratic). The work of Avez and Heslot [
fied shows that the‘corresponding Lie algebra
sional and simple. Hence it is unlikely that t
examples of multiplicative functions of Brownia
seéemigroups can be constructed usinqa finite d4i
statistic.

Indeed, it is not difficult to show that the o

one can allow in the operators Lo and Ll so th
2

. a 34, X, X

remains finite dimensional are (ox
nations; the only variable coefficient first o
f¢rent1a1 operator that we can allow must sati
ds

2 .
dﬁ + a” = quadratic).

6. NON-LINEAR FILTERING

i

It is a pleagzant fact that the ideas expressed

theory.
theory corresponds to the (euchidean) quantum

addition to self-interactions).

6.1 Pathwise Non-Linear Filtering

To give a variational interpreation of the nons
i$ necessary to consider the pathwise solution
filtering problem originally initiated by Clark
of Davis this volume). For our purpose we coul

this approach, the stochastic integral in equat
by a time-~dependent Gauge transformation.

Define

q(t,x) = exp(-h(x)ye)a(t,x)

Then a(t,x) satisfies

s¢ctions generalize in a very natural way to noni-linear filtering
The main observation to make in that non~linear filtering

when we allow time-dependent random external i teractions (in

tion(2.4) is removed

. 8.K. MITTER

3¢ g and g,. 3
‘For the oscillator'
doctoral dis-

/generator

‘polynomial (but

1] suitably modi-

is infinite~dimen-

there .are other
motion whose
ensional sufficient

ly perturbations

it the Lie algebra

their linear combl—

'der linear dif-

fy the condition

in the previous

echanical situations

linear problem it

to non-linear
(c.£f. the paper

4 think , that in

(6.1)
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g (t,x) .1 _
{52 = expl-nooy) g - 3 121 exp by, $e,0

~

q(0,x) = 9, (x) = q,(x) >0

\

We consider equatlon (6.2) for a fixed y

(6.2)

€ ¢(0,T;R) and indeed '

if necesisary we could approximate y(.) b§ ;moother fdnctions.

It is ccnvenient to write equatlon (6.2) in two other‘equivalent
forms »
ag(t,x) _ ., _ 1 2/~ ~ 2 .
(L - 5 Lpalt,x) + v Lyalt,x) - y L.q(t,x) (6.3)
where
=£*_12 gh 4 (1 dh._ dh
L =35 1'L]’axdx+(2 2 b,'é&')
dax
2
. - o (@)
L3 = [Lll L2] = (dx)
o = o ‘= >
q(0,x) qO(X) qo(x) 0.
and
dq =3—93§ - Ble,x 29 - e, mE e,
ot 2 2 X Fx S A
ox (6.4)
q(0,x) =q.(x) >0,
where
~ dh
b(t,x) = b(x) - Yeax
. (6.5)
b, 1.2
Vit,x) = Dy 2nim .
ﬁ i
Equation (6.3) exhibits the role of the commutators of Lo -3 L1
and L., and equation (6.4) shows that basically we are dealing
n 3.

with 3 situation not unlike that considered in Sectiol
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6.2 Transformation into a Stochastic Control

Problem

As in Section (3.3), introduce the transformation

2Ut,x) = exp(~5(t,x))

(6.6)

Then S(t,x) satisfiesthe Hamilton-Jacobi-Bellman equation

2

3s _1 3% 3s 1 (as) 2 .
T2, 2 "~ P ax'z(ax) *y

S(0,x) = So(x) = =ln qo(x)

"Hquatlon (6.7) corresponds to the stochastic o
riroblem

dxt = utdt + dW£

A
=]

X =X
s 0

with cost function

v

where

J(s,xo;z) = B[

“Lt,x,u) = %{u.+ S(t,x)]2 + V(t,x)

and the minimization is to be carrled out over
Markov feedback controls

u, = u(t,xt).

sEtisfying the conditions in section 3.3. To

should reverse time, as remarked in Section 3./

If h is a polynomial and if the drift b satisf

L(t.xt,ut)dt + so(xT)

(t,x)
(6.7)

ptimal control

(6.8) -

the class of

be consistent we

les some mild

conditions, then using the work of Fleming [23], it is possible

tp show that equation (6.7) has a solution wit
riegularity.
a solution in the strong (classical) sense. T
of (6.4) we can invoke a maximum principle ar
on equation (6.4) (cf. [23] for maximum princi

with unbounded coefficients), It is worthwhile 1

that transforming the Bellman equation into an
effuation and analyzing it may also be a useful

In this way we can prove that egqua

appropriate

tion (6.4) has
prove unigueness
ent directly
les for equations
ing the remark
equivalent Zakai
tool for stochastic

S.K. MITTER '
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| control problems. The details of these ideas will be;presented
i - in a joint paper with Wendell Fleming. L

The relation between the pathwise equations of non~linear filter- '
i ing and stochastic control introduced in this section explains
Lo in the clearest possible way the “duality" that exists between
| filtering and control. Previous difficulties in defining a
; likelihood functional because of the non-differentiability of
4 Wiener paths are completely avoided using the pathwise equation
(6.2) for fixed y € C(0,T;R). ;

6.3 Various Examples
Example 1 (Kalman Filtering)

X =W
t t (6.10)

dy, = x,dt +dn_

Here w_ &dnd n, are standaxd Brownian motiohs which are independent,
Then from (6.§)

E . g(t,x) = --yt

é Vit,x) = —%-yz + %-xz, and hehce from (6.9)

. 9 ‘

| | 1 12,1 2_1 2. 1.2

f ”(///f/ Ltk m) =5 lu-y ] -3y + 3% =Fu +3% - uy,

and we have a stochastic control problem with a quadratic cost
criterion. The theory of this is essentially the same as the
theory of deterministic linear optimal control with a quadratic
cost criterion. |

Example 2 (Bilinear Filtering)

i dx = x_ dw ,
? L (6.11)

dyt = xtdt *,dnt'
with the same hypothesis as in Example 1.

For this problem the pathwise equation of non~-linear filteripg.is:

. 2. ~ S
2 3¢ _1 .23 3q,1.2 1 2 .
A megx ;;% Flaxegy gy -z x o+l (6.12)

; and the corresponding Bellman equation is:
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2 ' 2

3 1 .29 3¢ 1 293°s/ 1 2 1 2

S8 .2 4428, (2x-y, ) == - = —S R - =y -1

it 2 8x2 t’ 9x 2 ‘axz 2 2 ¢
(6.13)

and the stochastic control problem is:
dxt = xi':(ut + dwt) . (6.14)
) 1 o2 ,1 21 2
Litx ,u) =5 (u +2x -y )" +5x 75y -1

These calculations also show that although the perfectly observa-
ble LQGt;tochastic control problem with state‘dependent noise has
a linear solution, this problem does not have ja corresponding

”dua " filterlng problem.

Hemarks

We may apply the Davis-Varaiya theory or the Bismut theory to
btain necessary conditions of optimality for problem (6.8) -

6.9) in the form of a maximum principle. Thijs would give rise to!
tochastic bi-characteristics for equation (6,7) and ih general
hese are necessary to compute the solution o ;(6 7) or equivalent%
y (6.4). It appears that only for Kalman filtering or Benes
)roblems is it possible to reduce these to th? characteristics

yf an ordinary Hamilton-Jacobi equation param‘trlzed by dy. .

his was done in the author's earlier paper cijted in the intro-
uction. The reason for this is the fact that the theorqgy of
deterministic LQ-control and perfectly observ ‘1e LQG-control

is essentially the same. :

O O, =3 Nt a2t - N

6.4 Remarks on Approximations and Perturbati; Theory
The relationship between non-linear filtering jand stochastic
cdontrol appears to clarify various approximation schemes currently
used and provides guidelines for their systematic analysis. For
¢xample, if in (6.7) b is approximated by a l‘mear function in x
dnd V is approximated by a quadratic function in x, locally in t,
then we have a Kalman filtering problem for &g small time interval
(0,71, say. Having obtained S(t,x), t € [0,T] |the above approxi-
. mation and iteration procedure can be continued. Thus the ex-
ttended Kalman Filtering algorithm is the analcgue of Newton's
nethod. :

Furthermore, the study of filtering p:oblems of the form
dxt -'b(xt)dt + Ve dwt

= h(x, )dt + V€ - dan
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can be reduced to the study of the corresponding stochastic
control problems with small parameter € and the asymptotic
behaviour of S(t,x;€) as a function of € can be studied using
methods developed by Fleming. |

6.5 Lie Algebraic Considerations

It is clear from the previous development that the Lfe~algebraic

# approach to the study of non-linear filtering problems is entirely
analogous to our congiderations in section 5 for the autonomous
system. The reason for this is that the noise enters the

~ Zakai equation in a "finite-dimensional" way and only has the

function of parametrizing the manifold in which the Zakai
equation is evolving. Therefore the Lie algebrda of the Kalman
filter is the oscillator algebra and the class of examples
considered by Benes give rise to Lie algebras which are gauge
equivalent to the oscillator algebra.

7. FINAL REMARKS

We have shown in this paper that a close relationship exists
between non-linear filtering theory and stochastic Hamilton-
Jacobi theory. This work requires generalization in the direction
of the study of filtering and control problems on Riemannian
nifolds. A beginning in this direction has already been made
VE; Duncan ((2’}, [28). The most intriguing. possibility however
is to discover the analogues of completely integrable Hamiltonian
systems in non-filtering and stochastic control.
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