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A linear parabolic partial differential equation describing the pathwise filter for a
nondegenerate diffusion is changed, by an exponential substitution, into the dynamic
programming equation of an optimal stochastic control problem. This substitution is applied
to obtain results about the rate of decay as |x|— oo of solutions p(x, 1) to the pathwise filter
equation, and for solutions of the corresponding Zakai equation.

1. INTRODUCTION

We consider an n-dimensional signal process x(t)=(x,(t),...,X,(t)) and a
one-dimensional observation process y(t), obeying the stochastic
differential equations

dx =b[x(t)] dt + o[ x(t)] dw (L.1)
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64 W. H. FLEMING AND S. K. MITTER
dy=h[x(t)]dt + dw. w0)=0, (1.2)
with w, w standard brownian motions of respective dimcnsions n, 1. (The

extensions to vector-valued y(f) need only minor modifications.) The Zakai
equation for the unnormalized conditional density g(x. 1) is

dg=A*qdt+hqdy, t=0. (1.3)

where A is the generator of the signal process x(r). Scc Davis and Marcus

{3] for example. By formally substituting
q(x, ty=cxp [ W(Oh(x)]p(x, 1), (1.4)

one gets instead of the stochastic partial differential equation (1.3) a lincar
partial differential equation of the form

=2
N

with p(x, 0)=p“(x) the density of x{{}). Here

tra(x)p,.= Z ai/(X)Px,-xj-

i,j=1

Explicit formulas for g”, V¥ are given in Section 6. Equation (1.5) is the
basic equation of the pathwise theor of nonlinear filt ermg See Davis [2]

or Mitter [10]. The superscript v in
o
i

ajectory y=y(-). Of course, the solu

We shall impose in (1.1} the nondegeneracy condition that the nxn
matrix o(x) has a bounded inverse ¢ !(x). Other assumptions on b, . h,
p° will be stated later. Certain unbounded functions h are allowed in the
observation equation (1.2). For example, h can be a polynomial in x
=(Xy,...,x,) such that |h(x)|>o0 as |x|-oc. The connection between
filtering and control is made by considering the function S= —logp. This
logarithmic transformation changes (1.5) into a nonlinear partial
differential equation for S(x,1), of the form (2.2) below. We introduce a
certain optimal stochastic control problem for which (2.2) is the dynamic
programming equation.

In Section 3 upper estimates for S(x, 1) :
an easy Verification Theorem and sullab]y chosen compdrlson controls,
Note that an upper estimate for S gives a lower estimate for p= —log$. A

]
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lower estimate for S(x,1) as |[x]—oc is obtained in Section 5 by another
method from a corresponding upper estimate for p(x,t). These results are
applied to the pathwise noalinear filter equation in Section 6.

Related results have been obtained using other methods by Baras,
Blankenship and Hopkins [1] and by Sussmann [12]. A connection
hetween control and nonlinear filtering was also made by Hijab [81, in a
somewhat different context.

2. THE LOGARITHVIIC TRANSFORMATION

Let us consider a linear parabolic partial differential equation of the form
pi=3traX)p+glx, ) p+Vixnp, 120,

0
plx, 0) = p°(x).
When g=g%, V=V" this becomes the pathwise biter equation {1.5). to
which we tetirn in Section & By solution plx.f) to (2.1) we mean a
“classical” solution pe C*, ie. with p,, Pusp P continuous, i, j=1,..., .
If p is a positive solution to ¢2.1), then §= —logp satisfies the nonlinear

parabolic equation

S;=3tra(x)Sy,+H(x,t,S), =0

_—
13
o

~—

S5(x,0)=S%x)= —log p°(x),

H(x,t, S )=g(x, 1) 5, —35.a(x)S,— Vix, 1.

Conversely, if S(x, 1) is a solution to (2.2), then p=exp{—S) is a solution to
(2.1).

This logarithmic transformation is well known. For example, if g=
V=0, then it changes the heat equation into Burgers’ equation (Hopf [9]).

We consider 0t <t,, with ¢, fixed but arbitrary. Let Q=R"x[0,¢,].
We say that a function ¢ with domain Q is of class . if ¢ is continuous
and, for every compact KeR" ¢(-,t) satisfies a uniform Lipschitz
condition on K for 0<r<t,. We say that ¢ satisfies a polynomial growth
condition of degree r, and write ¢ €2, if there exists M such that

[px, | S M1 +|x]), all (x,n)eq.

Throughout this section and Section 3 the following assumptions are
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made. Somewhat different assumptions are made in Sections 4 and S as
needed. We assume:

o, o ' are bounded, Lipschitz functions on R". (2.3)

For some m>1

ge¥ NP, Ve P, 2.4)

For some [>0
S%eC?*n 2, (2.5)

For some M|,
Vix,)=M,, S°%x)=-M,. (2.6)

We introduce the following stochastic control problem, for which (2.2) is

the dynamic programming cquation. The process &(f) being controlled is n-
dimensional and satisfies

df=u(l(r), 1) dr+o[&()]dw, O0<t<1, (2.7)
E0)=x.
The control is feedback, R"-valued:
u(t)y=u(&(z), 1), (2.8)
Thus, the control u is just the drift coefficient in (2.7). We admit any u of
class ¥ n#2,. Note that ue 2, implies at most linear growth of |u(x, t)[ as

‘xl—»oo. For every admissible u, Eq. (2.7) has a pathwise unique solution ¢
such that E|[¢|[F < co for every r>0. Here || [ is the supnorm on [0, ¢].

Let
Lix, t,u)=Hu—g(x, 1)) a "(x)u—glx, t)— V(x, 1). (2.9)

For (x, t)e Q and u admissible, let

J(x,t,u)=E, {j L[&(t),t— 1, u(t)] dTt+ So[i(t)]}. (2.10)
0
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The polynomial growth conditions in (2.4), (2.5) imply finiteness of J. The
stochastic control problem is to find u®? minimizing J(x, t,u). Under the
above assumptions. we cannot claim that an admissible u®  exists
minimizing J(x,t,u). However, we recall from Fleming Rishel [7],
Thm. VI 4.1, the following result, which is a rather easy consequence

of the 1té differential rule.

Verification Theorem

Let S be a solution to (2.2) of class C*' 0 2,, with S(x, 0)=5%x). Then

a) S(x, )< J(x,t;u) for all admissible u.
b) If u?=g—aS, is admissible, then S(x, t)=J(x, : u°P).
In Section 3 we use (a) to get upper estimates for S(x, 1), by choosing
judiciously comparison controls. For u’ to be admissible, in the sense we
|

have defined admissibility, |S,| can grow at most linearly with |x|: hence
at mos adratically. By enlarging the class of admissibie

. By
fuster arowth as Ivl »~ one could
: !

S(x, 1) can grow at most quadratica:y
controis 10 clude oitain 8 Wi |
generalize (b). However, we shall not do so here, since only part (a) will be
used in Section 3 to get an estimate for S.

In Section 4 we consider the ecxistence of a solution S with the
polynomial growth condition required in the Verification Theorem.

As in Fleming [6] we call a control problem with dynamics (2.7) a
problem of stochastic calculus of variations. The control u(&(7),7) is a kind
of “average” time-derivative of (1), replacing the nonexistent derivative
&(t) which would appear in the corresponding calculus of variations

problem with ¢ =0.

Other control problems

There are other stochastic control problems for which (2.2) is also the
dynamic programming equation. One choice, which is appealing
conceptually, is to require instead of (2.7) that &(z) satisfy

dé=1{g[&(x), ] +ul(r), 1]} de+a[&(r)]dw (2.11)
with &0)=x. We then take
Lix, t,u)=3u'a” "(x)u = V(x,1). (2.12)

The feedback control u changes the drift in (2.11) from g to g+u. When
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a=identity, Lzéjulz— V(x, ) corresponds to an action integral in classical
mechanics with time-dependent potential V(x, 1).

3. UPPER ESTIMATES FOR S(x.t)

In this section we obtain the following upper estimates for the growth of
S(x, 1) as |x|]— o0 in terms of the constants m= 1, [=0 in (2.4), (2.5).

Theorem 3.1 Let S be a solution of (2.2) of cluss C*-' 2, with S(x,0)
=S8"x). Then there exist positive M ,, M, such that:

i) For(x,)eQ, S(x,t)SM,(1 +’x!") with p=max(m+ 1,1),
i)  Let O<to<t;,, m>1. For(x,1)eR"x [ty t,], S(x, 1)< M,(1 +x[m),

The constant M, depends on t;, and M, depends on both ¢, and ¢,. In
the hypotheses of this theorem, S(x.,f) is assumed to have polynomial
growth as |x|—>oc with some degree r. The theorem states that r can be
replaced by p, or indeed by m+1 provided 1=1,>0. Purely formal
arguments suggest that m+ 1 1s best possible, and this is confirmed by the

lower estimate for S(x, t) made in Section 5.

Proof of Theorem 3.1 We first consider m>1. By (2.3)(2.6) and (2.9),
L(x, t,u) < B,(1+ |x|*™ +]u|?)

(3.1
S°x)< B, (1 +|x])

for some B;. Given xe R" we choose the following open loop control u(7),
0=<t=<t. Let u(t)=1#(t), where the components 5,(t), satisfy the differential
equation

;= —(sgn xl.)‘;yi,”‘ i=1,...,n, (3.2)

with n(0)=x. From (2.7)

)=n@+l0),  0=t=q,
() =i‘ o[ E(6)] dw(0).

Since ¢ is bounded, E

{||f <o for each r. By explicitly integrating (3.2) we
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find, since m> 1, that

1

1
2m m+1<
frtormaes et 2

ix'm+ l,

|5(T ]2"'dt<27m[ﬂ'1(f ‘7de+E ]2"‘dr:'<M3(l +ix[m

for some M ;.
: 2__ 2 __ . 2m
Since uy =4 =n;",

(J: [u(7)|? d‘c§mi 1

N

Since (1) <|x].

1o

El&)| < E(x| + G S wll+]x])
for some x. From (2.10), (3.1) we get
Jix, L w) M (1+|x]°), p=max(m+1,I)

for some M,. By part (a) of the Verification Theorem, S(x, t)<J(x,t, u),
which implies (i) when m> 1.

For t>t,>0, fr,(t)[ is bounded by a constant not depending on x=p(0).
Since &(ij=#(t)+ (1), and EJ{(1)|" is bounded, this bounds E,.S°[&(t)] by a
constant not depending on x. The estimates above and part (a) of the
Verification Theorem then give (ii).

It remains to prove (i) when m=1. Consider the “trivial” control
u(t)=0. When m=1, g grows at most linearly and V' at most quadratically
as |x|—o0. Moreover, E||¢||? <K(1+|x|?) for some K. Using again (a) of
the Verification Theorem, we get again (i) with p =max(2,[). [When m=1,
this is a known result, obtained without using stochastic control
arguments. ]

4. AN EXISTENCE THEOREM

In this section we give a stochastic control proof of a theorem asserting
that the dynamic programming equation (2.2) with the initial data S° has
a solution S. The argument is essentially taken from Fleming [4, p. 222
and top p. 223]. Since (2.2) is equivalent to the linear equation (2.1), with
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positive initial data p° one could get existence of S from other results
which give existence of positive solutions to (2.1), see Sheu [11]. However,
the stochastic control proof gives a polynomial growth condition on S
used in the Verification Theorem (Section 2).

Let 0<x<1. We say that a function ¢ with domain Q is of class C,if
the following holds. For any compact I' = Q. there exists M such that (x. 1),
(X, )el mply

BN 1) = ple ] S MIJE — 1 + v — |7 (4.1)
We say that ¢ is of class C2-! if ¢, P qﬁn, ¢, are of class C,, i,j=1,.

In this section the following assumptlons are made. The matrix a(»c) is
assumed constant. By a change of variables in R" we may take

a=identity (4.2)
For fixed 1. ¢l~.1) Vi-.1) are of class €' on R", and g, g, I’ i,
;
i=1 n, are of class €, for sume (0, 17, Morcovei
lgx, 0] <7, +72/x] mz1 (4.3)

with 3, small enough that (4.8) below holds. (If ge#, with u<m, then
we can take y, arbitrarily small.) We assume that

ay|xX[P"—a, < = Vix, () S AL+ [x[m) (4.4)
for some positive a,, a,, A and that
8 €L, VD, (4.5)

We assume that S°e C3 1 2, for some /=0, and

lim S%x)=+ (4.6)

[x] » >
IS0 <C,5° 4 C, (4.7)
for some positive C,. C,.

Example  Suppose that V(x.1)= —kV,(x)+ V,(x, ) with V,(x) a positive,
homogeneous polynomial of degree 2m, k>0, and Vi(x,t) a polynomial in
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x of degrec <2m—1 with cocfficients Holder continuous functions of 1.
Suppose that g(x,t) 1s a polynomial of degree <m—1 in x, with
coefficients Holder continuous in (. and S%xj is a polynomial of degree |
satisfying (4.6). Then all of the above assumptions hold.

From (2.9), (4.2), L=3u—g|>— V. If 7, in (4.3) is small enough, then

Billul? +|x|P™) — B, < Lix, L) < BO +Jul* +x]*™)

=

for suitable posttive 5;, 5,, B. Moreover,
Lo=—glu—g)-V,

LSl +

Vi

2.2+ 3gl? +

>

where ggx} denotes the operator norm of g, regarded as a lincar
transformation on R” From {4.3), {4.5), (4.8}

IL]<C,L+C,

EN
2

for some positive C,, C, (which we may take the same as in (4.7).)

THeOrREM 4.1 Let r=max(2m,l). Then Eq. (2.2) with initial data S(x,0)
=S%x) has a unique solution S(x,1) of class C>* ~2,, such that S(x, t)—
as |x|— oo uniformly for 0<t<1,.

Proof We follow Fleming [4, Section 5]. For k=1,2,..., let us impose
|l

the constraint i“!;—" on the feedback controls admitted as drifts in (2.7).
Let

Si(x, 1) =min J(x, 1; u). (4.10)
fuj <
Then S, is a C*! solution to the corresponding dynamic programming
equation

(Sk)t - %A’Sk + Hk(-X’ t’ (Sk)x),
@.11)
Hk(x9 t’ (Sk)x) = min [L(X, [’ Ll) + (Sh)xu]'
Ju| <k

The initial data are again S,(x,0)=S%x). The minimum in (4.10) is
attained by an admissible ug?. See Fleming and Rishel [7, p. 172].
Now S, >S,2...; and S, is bounded below since L and S° arc bounded
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below by (4.6), (4.9). Let S=lim,_ _ S,. Let us show that (Sy), is bounded
independent of k uniformly for (x,t) in any compact set. Once this is
established standard arguments in the theory of parabolic partial

differential equations imply that SeC2! and S satisfies (2.2). For (S,),
there is the probabilistic representation

(S(x,1)=E, {(j) L[S0, t =7 o)) dr + Sg[ik(f)]}’ (4.12)

where &, is the solution to (2.7) with u=wP’, £(0)=x, and

u1) =wP(E(), 7).
This can be proved exactly as in Fleming [4, Lemma 3]. Another proof,

based on differentiating (4.10) with respect to x;, i=1,..

.,h, 1S given in
Fleming [5. Lemma 5.3]. From (4.7), (4.9), (4.12)

(; R
I(S.).4x. [)!SCAF‘.‘.)"I,F\:.(TX r—r, 11,(’7)15&_;_50[5‘((1)};\ i (72(: P
! H i 6 Al AN/ = ]
or since u® is optimal
[(S0x, )| < C, Si(x, 1)+ Cyt +1). (4.13)
Since S,(x.1) is bounded uniformly on compact sets, (4.12) gives the
required bound for ](Sk)x] uniformly on compact sets.

For the “trivial” control 0, we have by (4.8) and S°ec 2,

J(x,1,0)< B, (1 +E,

[, r=max(2m,])
for suitable B,. When u(t)=0, c=1, we have &1)=x+w(x). For suitable M
we have

S D=Jx L0 SM(T+|x]),  k=1,2,....
Hence S(x, 1) satisfies the same incquality. Since S is bounded below, this

implies Se 2,

Let us show that S(x,1)— o0 as |x|— o0, uniformly for 0=<t<t,. Since
Silx, 1) =J(x, t; ugP), (4.8) implies

Sy(x. 02 BLE, f [ + [E0P™ de — Bt + ESOLE(0)].
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Given />0 there exists R, such that |x|> R, implies S%(x)=>/, by (4.6). Let
R, >R, and consider the events

A, ={Hék_x|lt§Rz‘ Rl}'
,42={|]vk[i,§%{Rz—R.)}, vk(r)—guk(ﬁ)dﬁ

As={[w[,ZHR,—R))}
with || ||, the sup norm on [0, r]. Since
ET)—x = (1) +w(T), 0=t

Aj<=A,u A;. For R,- R, large enough, P(4;)<i and hence P(4))
+ P(A4,)=3. From Cauchy-Schwarz

t

HR,— R PlA) S th, | ju(8)] do.
0

Let |x|=R,. On Ay, |&,(1)| 2 R, and hence S°[&,(1)] = 4. For |x|2R,
06,0201 Ry~ RUPPUAL) +APA D~ (Bt + )

with B, a lower bound for S°%x) on R" Since the right side does not
depend on k, S satisfies the same inequality. This implies that S(x, f)— 0
as |x| - oo, uniformly for 0<r<r,.

To obtain uniqueness, p=exp(—S) is a C>'! solution of (2.1), with
p(x,1)—0 as ]x[—»oo uniformly for 0=t =<t,. Since V(x, t) is bounded above,
the maximum principle for linear parabolic equations implies that p(x, ) is
unique among solutions to (2.1) with these properties, and with initial data
p(x,0)=p°(x)=exp[—S°%x)]. Hence, S is also unique, proving Theorem
4.1.

It would be interesting to remove the restriction that ¢ =constant made
in this section.

5. A LOWER ESTIMATE FOR S(x, t)

To complement the upper estimates in Theorem 3.1, let us give conditions
under which S(x,1)—+ o0 as |x| > o0 at least as fast as |x|"*!, m=1. This
is done by establishing a corresponding exponential rate of decay to O for
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plx, t). In this section we make the following assumptions. We take o C?
with

o,6" ', g, bounded. O, € P Lj=1,...,n, (5.1)
for some r>0. For each t, g(-.1)e C. Moreover,
ge'//u» u<m, gxie‘//r- gx,.\'je‘j)r- (52)

and g, g, ¢ ., dre continuous on . For each 1, V(-.t)e C2. Moreover, V
satisfies (4.4),

[/.'\',ve‘\yrs V;c‘xie'yra (53)

and V.V, . VM are continuous on Q. We assume that p®c C? and that
there exist poqmve f. M such that

exXp LA™ I 0+ [pd e+ p ] < M. (5.4)
TurOREM 5.1 Let p(x.1) be a C*' solution to (2.1) such that p(x, t)—>0 as

x| uni/é)rmly Jor O<t=t,. Then there exists >0 such that
] .
cxp{)i YU ptx ) s bounded on Q.

Proof Let

YOO =(1+[x])"2, alx. 1) =exp [SW(x)]p(x. 1),
Then 7 is a solution to

=4tran, +g-n + Vn, (5.5)
g:g‘—o‘awx
V=V—og Y +30%ay, . —Strap,,).

By Sheu [11, Theorem 1], Eq. (5.5) with initial data 7°=exp (3y)p° has
for small enough ¢ >0 the probabilistic solution

f(x, t)=E, {nO[X(I)] expj [0 'gdw—3lo 'gl*dc+ l_/d’f]}, (5.6)
0

where X(t) satisfies

=0g[X(1)]dw, 7120, (5.7
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with X(0)=x. In the integrands ¢ 'g and V are evaluated at (X(r).7). The
proof in Sheu [11] that 7 satisfies (5.5) is done by approximating g. V by
functions g,. V,, for which the corresponding 7, tend to 7 boundedly and
pointwise. By standard estimates for partial derivatives to solutions of
linear parabolic partial diffcrential equations, 7 is C2-! and satisfies (5.5).

Then p—exp(—8y)7 is a C2! solution to (2.1), with initial data p°, and
with p(x,7) tending to 0 as |x|-3 uniformly for 0<1<:,. By the
maximum principle, 5=p which implies that exp [5ixf'" “p is bounded on
Q. This proves Theorem 5.1.

Since S= —logp, we get by taking logarithms:
CoroLLARY  For some positive J, 0,
SCx, 1) = x| 1 =6, (5.8)

6. CONNECTION WITH THE PATHWISE FILTER
EQUATION

The generator A of the signal process in (1.1) satisfies for ¢ e C?
Ap =1t a(x), .+ b(x) P
The pathwise filter equation (1.5) for p=p’ is

po=(Ay*p+ V*p,
where
Ay¢ = A¢ - y([)a(x)hx(x.) : d)x

P20, )= 3 B0~ HOARG) + 10 ) 6.1)

Hence, in (1.5) we should take

L 0a;;

g}‘: ~[)+y(t)ahx+ Y Y= Z - N j: l....,f’l. (62)
iﬂﬁxj

VT divib— ah) o Cay (6.3)

Y=PY—div(b— y(t)ah, 2,5, 0x oy, "

To satisfy the various assumptions about g=g*, V=V" made above,
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suitable conditions on o, b, and h must be imposed. To obtain the local
Holder conditions needed in Section 4 we assume that y(-) is Hélder
continuous on [0,r]. This is no real restriction, since almost all
observation trajectories y(-) are Hoélder continuous.

To avoid unduly complicating the exposition let us consider only the
following special case. We take o =identity, an assumption already made
for the existence theorem in Scction 4. We assume that be C? with b, b,
bounded, and all second, third order partial derivatives of b of.class 2, for
some 7. Let /1 be a polynomial of degrec m and S° a polynomial of degree
I, ssuch that h=h,+h,, S°=S0+S% where h, S arc homogeneous
polynomials of degrees m, |,

lim |hy(x)|=cc. lim $V=+ o, (6.4)

x| = x x| x

h, is of degree <m and S9 of degree </

Then all of the hypotheses in Sections 2-4 hold. In (6.2), g° has
polynomial growth of degree m— 1 as [x|—or. while in (6.3) V7 is the sum
of the degree 2m polvnomial —1h%(x) and terms with polynomial growth
of degree < 2m.

Let §”= —logp’. From Theorem 3.1 we get the upper bounds

i) S"(x,t)§M,(l+[xl”), 0=t=t,, p=max(m+1.]).
i) SCG) M1+ X", 0<to<t<t,, m>1,

where M,, M, depend on y. For p®=exp(—S°) to satisfy (5.4) we need
[2m+1. The corollary to Theorem 5.1 then gives the lower bound

Vi £\ Sl.im+1
S, 1) O|X|

[\
lIN
lIA

—dq, 0<i<1,. (6.6)
From (6.5) (ii) and (6.6) we see that S*(x, 1) increases to + oc like ‘x""“,
at least for m>1 and t bounded away from 0, and for 0=1=1t,, in casc
I=m+1.

Finally, g=exp (y(¢t)h)p is a solution to the Zakai equation. For any
¢ €C, (ie, ¢ continuous and bounded on R") let

A@)= | $(q(x,1)dx,

Alp)=E {¢[X(t)] eXp(I: (h[x(x)] dy —3h[ x(x)]* dx)

%z(V)}

where E denotes expectation with respect to the probability measure P
obtained by eliminating the drift term in (1.2) by a Girsanov
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transformation. The measure A, 1s the unnormalized -conditional
distribution of x(r). Then A, is also a (weak) solution of the Zakai
equation, with EA(1)=1. By a result of Sheu [11, Theorem 4], A, =A,.
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