STOCHASTI

Direct Methods

ent that x

Yraron

R .
ms of Linear Equat

increment proc

[12] Bunch, J.R., and L. Kau
Solving Symmetric Linea

n, Some Stable Method
8

of this paper.

rt

s theory of homegeneous

,6] to the

and C.A. Serbin, A Time-Stepp X
f Te alar,

of Mathematics, Univ. o

odate also the vector

innovation representation, are howeve

opriate to consider

ations we could have done In the extension of this work we see

7 [7,8] and

a motivation for this work.

2. PROBLEM FORMULATION

Let {y(t);t eR} be a non-Gaussian stationary stochastic process which is mean

square continuous, purely nondeterministic, and ccntered, and let V be the sipgma

artment of Mathemati
research was supported pa

partially

University of Kentuc







Then for

mmetric tensor p

products are dense in HI‘

- n
to L,(R') and hence to H

ic bilinear map (v 1 o7 )

™

For n=2 w

illustrate

TN

1

PR

0 F

Jur.

0

PRO

OF

Proposi

OF THEOREM 1

| -
cm is | on the f
- -- Lrnere T i ”‘. ]

we can identify H_,

(14), and the
@

irable

. Hence

PITIIE | N

¢

be denotec

variabl




180
Moreover, if X :=V___ Y X, it is not hard to =a(X )=
=<0t
Zl.‘n'. An a over the future.

r contained in X. Then, since

minimal. Then there is arnother

space of X,.

A
Clearly XcX :=¢

minimality of X. But this is the case, for there is a £e X, such that £1X,.

Gquently, by and x are independent, while both a

of X. Hence Xl must be minimal, and L\'.‘ :KI. is not of the form

{15b), i.e. Xn:I . Then since X_‘ is minimal

n

Hence X is a proper
subfield of X contradicting minimality of X. Therefore X=X. Finally X is Markovian
only if il is Markovian. The last statement of the thecorem follows from Lem=ma 3.

5.  THE STATE SPACE COMPONENT OF THE FIRST CHAOS

Thus it remains to determine the minimal Markovian {H;,H;)-spli::ing subspaces _Xl,
This is gimost the problem solved in {1-3]. To explainm I
be defined in the following manner. If ;v'l:'O} =0, set
arbitrary. (Remember that H; n HI 2f#.) Next define the . Then
z(t) € Hy for all t. Moreover,
i {z) c H. { )
J Ll{_, = ril {16a)
ooy oenwt —_—
| Hy(2) < H] (16b)

where H,_(:) and Z-{I(z) are the closed linear hulls of the random variables {z(t);t <0}
and {z(t);t >0} respectively. Since y is purely nondeterministic and mean-square con-

tinuous, so is z. Therefore z has a spectral demsity ¢(iw). A scalar sclution W of

the equation

will be called a (full-rank) s Now, if y¥ is Gaussian as assumed

in [1,2 z =y and we have equality in each of relations (16). Then there is a proce-
224, ) J

dure in [1,2] to deteraine Xl from a certain pair (W,W) of spectral factors. However,

in the non-Gaussian case, z=zYy, and we cannot assume that relations (i6) hold with

equality, not even when z =Yy Hence therc is a

tch" between the proces

the geometry in H,, and consequently the procedure of [1,2] will
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he basic results of [1,2] depend i

no crucial way on the spectral

The following result found in

{u(t);teR} ¢

ments {u(7)-

where da is

THEOREM 2.

K
y

onLy
X = H (du) & Hl (du} (19)
for some

(20a)
z{; c l!;(duj (20b)
H) < H](dd) (20c)
u;(d&) = nl’ v H;(du) (20d)
H;(du) = 1;1‘ v Hl_(dﬁ) . (20e)

r and u (whic ss i 1v i i
The processes u and u (which are essentially unique) are called respectively the

o~

foruard and the ba

(Condition (20a) is egquivalent to
- + .- - 2
H1 (du} and thdu) intersecting perpendicularly. Moreover, (20d) is an observability
and (20e) a constructibility condition [i,2].)

The Gaussian space of any Wiener process u in Hy coincides with Hl [8], and conse-

quently any neH, can be written

n = E f(-t)du(t) (21a)
=
where f ¢ IIL'R), or equivalently,
*a o
n =J fiw)du(iw) (21b)

where w+ £(iw) is the Fourier transform [9]. [We shall refer alsc to the functi

o
as the Fourier-transform, although it properly should be called the (double-sided

3

Laplace-transform.] Relations

L,{), where I is the

Let T :H, +L,() be the map Tl,'; =

1
can be seen that TL' is unitary. Le he adjoint, i.e.
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Then (42)

in the followin

In partular,

Note that a backward r

crty is

rhe

ar

_{du) for each ne\N.

regular, other constructions invelving rigged

m

To rate our po us consider >st possible nonlinear problem.
Let the )cess y have the innovation repre

(45a)

and the

Rag
( - -
)= + ! 5)d%{a)du(z) . (45b)
;s J
Assume function which is not identically zerc. Then
Gl :=F,g, has the same properties, and y, =0 Moreover ¥y has a rational spectral
171 5 E =

of inner functions such that

For each such solution form
s
X, = | H(K)Q*dv . (46)

-

-spaces obtained in this way are

Theorem 3 states that the x]
= i+
1

Markovian [Hl,H )-splitting subspaces. In particular, Q, =1 yields Kl*

- . Lo SRES & D : = . y
Ql =1 yields X =E ‘Hl. Since T is rational, it can be shown that K must be rational,

is finite-dimensional [17]. In fact, all X, ve the same dimen-

By using the procedure described in Section 7 of [18] we can determine

an nxp-matrix A, and an nxl-matrix B, from K and a Ixn-matrix C, GQ so that

1 1

(47)

where

we obtain

where a_, and b.
ik i

n(n+1}x%n(n+1)

appropriately, this can be written

Integrating this bilinear equation we ge

ge

a vector-valued function. Moreover

et (T
33‘t] = ! | w,(t-T,t-o)du( s
o

where w, is obtained from g, via formula (30). Now, there are real

o
numbers {ck;k=1.2,...,%n{n&lj} such that

K:(T,C) =

1
K

and these numbers can be determined by known methods. Let C, be the %n(n#l1)-dimensional

TOW vector with components Cp- Then
Yo(t) = C,x,(t) . (51)
Sine = -
Since y =y, +y,,
dx, =
1
{ dx, =

. gs oo . Xl -
i1s a realization of y, for x = r;‘f is a Markov process. Note that even
X2 )

X2

zero we would need to include x, is

1

for x, by itseif is not Markov.
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{in the coordinate-system

It is shown in [1-3] that,

) :il[ﬁj. Therefore, in

the pr

Consequently the conditional expectation of x(t)
v

the si¢ of (52), and we have shown that this filter is in-

variant over the class (52) of minimal realizations. A similar result can be obtained

for backward realizations in terms of v.

8.  CONCLUDING REMARKS

The purpose of this paper is to investigate the structural aspects of the nonlinear
stochastic realization problem and to clarify basis concepts. This is a first step
toward a nonlinear realization theory. Hence we have not concerned ourselves with
algorithmic aspects of the problem, and our analysis is based on the availability of
an innovation representation, the actual determination of which is 2 nontrivial problem
in itself (see [20]).

The question of state space construction needs to be further studied. It could
be argued that condition (4) is too restrictive since there could well be
{enENH;,enEXH;j—splitting subspaces which are not of the form (4), having a n

angle with some (or even all) Hn.

vidual ¥ but only need their sum y, it is possible that we are missing state spaces

zero

Hence, if we can do without realizations of indi-

of smaller size.
Our interest in the nonlinear realization problem emanates from its potential
value as a conceptual framework for certain classes of nonlinear filtering problems.

This will be the topic of a future study.
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