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n this paper we give a guided tour through the development of g
nonlinear filtering of diffusion processes. The important topic of | LuL-ng - o(ysfs < t). Then the filtering problem consists of
filtering of point processes is not discussed in this paper. computing
There are two cssentially different approaches to the nonlincar : A
filtering problem. The first is based on the important idea of in- ty) = Epr
novations processes, originally intrcduced by Bode and Shannon (and
Kolmogoroff) in the context of Wiener Filtering problems and later de- where ¢, say is a bounded, continuous function (indeed any function such
veloped by Kailath and his students in the late sixties for nonlinear that the conditional expectation makes sense).

filtering problems. This approach reaches its culmination in the

seminal paper of FUJISAKI-KALLIANPUR-KUNITA ([1972). A detailed ac- | 3. The Innovations Method

count of this approach is now available in book form cf. LIPSTER-
SHIRYAYEV [1977] and KALLIANPUR [1980]. The second apprecach can be
traced back to the doctoral dissertation of MORTENSEN [1966], DUNCAN

fundamental paper of Fujisaki-Kallianpur-Kunita procceds as
follows:

. y - Define the innovations process:
[1967] and the important paper of ZAKAT [1969]. 1In this approach QoLONS: Provess:
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attention is focused on the unnormalized conditional density equation, | (3.1) Ve = vy _-f- nsds - where
which is a bilinear stochastic partial differential equation, and it o
derives its inspiration from function space integration as originally | ( ~ )
: x : ; ; | 3.2) h E(h _(# .
introduced by KAC [1951] and RAY [1954]. Mathematically, this view 1s ! s ( s! S}

closely connected to the path integral formulation of Quantum Physics Phehi Tt can be Shown, thak
due to FEYNMAN [1965 ]. For an exposition of this analogy see MITTER

. ) : 2 | (i) v, is &, Y-wiener
(1980, 1981). A detailed@ account of the second viewpoint can be found t £

i wres gi nita, P nd Mitter in the CIME lectur . s _—

in the lectures given by Kunita, Pardoux and Mitter in the CIME lecture (ii) o Jvy - v ju> ¢ is independent of-fty.
W= in = 3 3 i 3 ~on 1 i i . s

Notes on Nonlinear Filtering and Stochastic Control [1982] and in Tn general it is not true that:

HAZEWINKEL-WILLEMS [1981]. v

© (Cirelson counter-cxample).

(Innovations Property) .E,Y =
If is assumed that ht and n  are independent then innovaticns

ic Problem Formulation
LACER % ALV T property holds (cf. ALLINGER-MITTER [1981]).

To simplify the exposition we consider the situation where all However even without the innovations property holding, it can be
processes are scalar-valued. proved:
Let (0, #, P) be a complete probability space and let j}, te(0, T] Every Square—inteqrablo.ily—martingalc m, can be represented as:

be an increasing family of sub

fields of #. Let g, be an.ﬂt—adapted )
(3.3) m, = m, t f ¢ .4dv , where

srocess, considercd to be the signal process and consider the observa- sT s

’ g I

tion process y, given by 0 bg is jointly measurable, adapted to
t E

(S A
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To proceed further, let us assume that £, 1s a continuous semimartingal

t .
2 wher is a sguare integrable
(3.4) &, =&y +/ fsds + v, , where v, is a squarc g
0
.ft-martinga]u. Then

y (2% (1) y
M. =EL = Ea - f _ds is a F.° - martingale and from
(3.5) t t > 0 o s

the previous result

(3.6) o, T;/- $qdvq , where by can be identified as
by s ¢

, where D_ is a | -predictable
s s

(3.7) ¢_=% _h_-g_h_+ D
s S S

process and D_ds = ﬂv,nxt , where < ,

> denotes the quadratic
0 =

variation.
In case ht and n, are independent there is an essential simpli-
fication using the innovations property.

For example, one would have the representation

© 2 o E( ydv_a !
Fo= 2 E(E + e — BBV Y dv_ GQv, cese
(3:8) B¢, ™ &p ¢ IO 3s E(Epvgldyg JOJO 35,35, t's; s, S1 S,y

To proceed further let us assume that EL is a Markov diffusion

process satisfying the Ito equation

(3.9) g, = f((t) dat + q(gt) dB and

(3.10) hg hgg)

Let us also assume that By and n are independent (assumed ‘
throughout the rest of the paper). Then using the Ito differential

rule for ¢ ¢ Ci , one gets

# i ti i i s spe y =Y
(1) always denotes conditional expectation with respect to 4

L]

(3.11) $(c,)

£t

where L is the generator of the diffusion process.

4. The Innovations Method Continued: Kushner-Stratonovich Igiuutjun.[])
Let St(dy,w) denote the conditional distribution of £y given.?t =

Let ¢ ¢ Cé and denote by

P41 Tee) = /«:»(y) 1, (dy,o)

Then Ht satisfies the Nonlinear Stochastic Partial Differential

Equation (Kushner-Stratonovich Equation)

t
(4.2) Mo (9) = Ty(4) +j0' n_(L$)ds

t
+.£ [.’Is(d-hs) = !Is(dz)?!s(hs)] (dys - ”s“’s)ds)-

i We think of the filter as a dynamical system and we think of equation
| (4.2) as the input-output eguation of the filter, the input being

f the observations Vg and the output the conditional distribution Ht.

{

| 5. Zakai Equation

I Let Py be a continuous stochastic process with values in the set
‘ of finite positive measures on R. Denote by

|

’ (5.1) pp () = fﬁ(y) Py (dy)

Consider the equation

t t

(5.2) Pp($) = pg(b) +I pe (L)ds +f pg (h d)dy
0 0

(weak form of Zakai equation)

Now it can be proved:

(1) The development here follows Kunita [1982].
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is a solution

If py is a solution of (5.2) then I (d ;'t(]

of equation (4.2).
Morever we have the Feynman-Kac formula:

For later use (and throughout the rest of the paper) we shail

Zakai equati in Strator ich form:
consider the Weak form of the Zakal eguation in Stratonovich Lox

¢ : L wg]las [0 o, hereay
(5.4) p (¢) = 0o (®) *f pg | (L 7 hM)¢ S & s

v 0

1f the solution pt(dy) has a smooth density rt(y) it satisfies

the Zakai eguation:

hE) p (y) at + hop (y)edyy

N[

(5.5) dat = (L* -

where * denotes formal adjoint.
p, (y) has the interpretation of an unnormalized density and is to
g -

be thought of as the "state" of the filter.
To compute conditional statistics, we need the state-output

J[é(x)xL(X:y)dx
R

y = X et o,
fpt(x;Y)dx
R

. . . o iy L M - : "
The fundamental problem of nonlinear filtering 1s the "invariant

equation

(5.6) A

study of equation (5.5). The analytic difficulty of this problem

stems from the following: ,
(i) In.most interesting situations the operator x+r—— h(x)is
unbounded. 3 D
(ii) The paths of the y-process are only Holder continuous

of exponent < 3

6. Pathwise Nonlinear Filtering

(19807,

The ideas of this section are due to CLARK [1978]), DAVIS
and MITTER [1980].
There is as yet no theory of nonlinear filtering where the
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observations are:

6.1 N
(6.1) Yy h(:’,t) + ';L i

where n . is physical wide-band noise and hence smooth. Define vy - %
t

and n, = N_ where - denotes dif{ferentiation. Then (6.1) can be written

(6.2) dYt = h[;t) dat + dNt , or
t

(6.3) Y f h(E)) ds + Ny
0

ation (6.3) is a mathematical model of the rhysical observation
(6.1) where the wide band noise Ny has been approximated as "white
N, and hence N, is a Wiener process.

~

Now, if we wish to compute

. ‘- Y . o 3
El $(E.) |# = Functional of Y a.s. Wiener measure
t t

then this filter does not accept the physical observation y. The idea
is to construct a suitable version of the conditional expectation so
that the performance of the filter as measured by the mean-square
error remains close to when the physical observation 'y' is replaced
by the mathematical model of the cbservation.

This is most easily done by eliminating the stochastic integral in
(5.5) by a suitable transformation (gauge transformation in the
language of physicists).

Define qf(x:y) by
(6.4) Py (X:y) = exp (yth(xb g, (x:y)

Then . satisfies the parabolic partial differential equation

2
¢ 3 1 3 WY . 3g
(6.5) 5% = 5 alx) ;;g + b¥(x,t) ﬁ% + VY (x,t)q
hete Aln) & G2 BY = = £ 4 v g5 dh da
where a(x) g (x), bf = £+ vy t @ ax aw
Woo 1,2 el 2 En 2 ae o ooah 1%
20 R ¥R Ty Ry a Yelax T 72

noise"
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Equation 6.5) the vathwise filter equation, 1S now needed to be
pauat 1 \b.D),
SO4LV e € obse icn car 2 aken t be a
a
solved for each Yo he observation (wh be take to

physical observation).

i sult - the Zakal Fguation.
7 Existence and Unigueness Results for the Zaka 1 on

i 3 o inear,existence and
In case the observation W is bounded or linear,exist
for the Zakai equation has been given by PARDOUX
; Existence, unigueness

uniqueness results
[1982] by studying eguation (5.5) directly. - e
and estimate of tail distributions for eqguation (5.5) Tnc l; Qave -
unbounded observations (in the scalar case all'polynomlTaT 1umeqtq >
given by FLEMING-MITTER [1982], using stochastic ?ontff..a22 : nts
This approach studies equation (6.5) by trans{ormiﬁg it':ﬁs,vz1ume)
Bellman-Hamilton-Jacobi equation (cf. pai:r orhz:z:iN:h;:xthe ;easure

i n -ial transformation and then st g tha
:Z;:z:zZtZ:D2;Z;t; coincides with the measure giv?n by forTula (5.3).
*nr other literature on this problem see the bibllograp&ynl?lgazl .
FLEMING-MITTER (1982). See also PARDOUX [1981] énd vIT?f o
an interpretation of the exponential transformation in the nte

of nonlinea filtering. For related varic onal consider ations see
ear fil ng e ati a
3 1} ]

MITTER [1980], BISMUT [1981], HIJAB [1980].

8 Ceometrical Theory of Nonlinear Filtering.

How can one answe the guestion when tw filterin PIO;)lQl‘.lS have
~WO g
€

nci 1t1 ? Ho T one ae 12Ty i LarKa quat Y
1 solu ons W can on decide whether the 2 ikal e 1on
identica

z : g e v
admits a finite-dimensicnal statistic? . on (55
The starting point of this analysis is the Zakai euga .

i - : s:
in Stratonovich form. Consider the two operator

1 2
Mb = L* - 5 h
Yl = h

where WO Oper L are cons ere 1 ma a erer a operators
h the twoe P ators 1 d as for 1 iff 1
5 d £ f £ at s

. > = ne L [z 2ne ed Y
: g r of perator e ra
on R Denote bv & the Lie algebra (o) rat S g e ted b

” oy . 5 :
and ¥ nder S naa racket operation. This Lie algebra
/ 1 u the standard b

& a 2 i1n -¢ (x) and (ii)
18 V., ian nde (i) smoo h change o CcOo0 inea v
invariant under t f rm(‘ ‘ILeS.xl‘ ‘X ’

r formations ¢ ——¢p where ¢ 18 a C -function which is
gauge transformat €

if ti "invariance group" of the Zakai equation
invertible. Indeed, if the "lnva

7 e
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is suitably defined then the above constitutes

the largest invariance group of the Lie algebra.#. The insight here is

that two filtering problems with isomophic Lie algebras ar

e likely

to have the same filters. we say likely, since for a proof,

analytic
considerations such as the existence of a common dense set of

analytic
vectors must come into play.

For a rigerous analysis in specific
situations see CCONE [1980].

By a finite dimensional filter for the conditional statistic

@(xt) we mean a stochastic dynamical system.

(8.1) dit = a(p)de + H($t)°dyt
where o and

A are smooth vector

fields on some finite-dimensional
smooth manifold, and a

state-output equation

(8.2) ¢(xt) = y(¢t), with ¥ a smooth real-valued function.
The idea of studying the Lie algebra is indep
BROCKETT {1981] (cf. the bibliography of earlier Brockett papers
cited there) and MITTER [1980] (cf. the bibliography of earlier
paper of Mitter cited there) and the ide
algebra #

endently due to

a of implementing the Lie
as a Lie Algebra of vector fields is due to Brockett.
The first examples of finite-dimensional filte
ing problems were constructed by BENES [1981)
methods.
[1982].

rs for nonlinear filter-

using functional integral
For a generalisation of Benes results see OCONE~BARAS~MARCUS

In most situations the Lie algebra F is infinite dimensional

(cf. IGUSA [1981]1) and in many situations simple. If the Lie algebra
F is infinite dimensional it does not necessarily mean that a finite-
dimensional filter does not exist. For a precise result in this

direction see HAZEWINKEL-MARCUS [1982], SUSSMANN [1981].
9. Final Remarks.

There are other topics of interest and the theory représented by
the second point of view is far from complete.

(i) Asymptotic Expansions: see BLANKENSHTP~LIU-MARCUS [1982].

Much work remains to be done here.
(ii) TLower Bounds on Nonlinear Filtering: see article of
BOBROVSKY~ZAKAI in HAZEWINKEL-MARCUS [1981], (and the
bibliography cited there). The stochastic control interpre-




(iii)
(iv)

(v)
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tation of FLEMING-MITTER [1982] should be important here.
see DUNCAN [1977] for a beginning.

see KUNITA [1982].

Filtering on Manifolds:

Smoothness of densities:
; TR \
For a partial solution to the vector "cubic-sensor" problem,

see DELFOUR-MITTER [1982].
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1. Introducti . S a = HES C 14 e e n pr = e
on As a mathe iatical formula C1on of Bellmar ‘lncipl
pPrl ple,

we fine onli D8 P S ohe L oI stToch tie
1ea semigy D
defin an ne grou using e value unctior ochasti

optimal 2 e genera i se rour S 2
I control. 2, lo, 7] in gen tor of this semigro D 1S the

Bellman operatc '}
1 erator. UrpOSE thi L
p t he purpose of this note is to consider the unique

ness of semigro i 1lerat
semigroup with generator of Bellman operator, appealing to r
at 1 O re-

— _— ; i :
sults of integral solution (Benilan solution)[1] of Cauchy problem
! ¢ problem.

First we recall our nonlinear semig zroup. Let [ be a compact

convex subset calle c cgion. B > 0, denoctes an
o1 R 3 1 d a ontrol re or (t), t 2 G

n-dimensional Brownian motion on a probability space (@, r, p) A
k] s 2 r\‘y

r-valuec o essi
alued ot(E) progressible measurable process is called

an admissible

Ucm,

equation

control. 0[ denotes the totality of admissible controls For

Werecons ,
e consider the following controlled stochastic differential
(& S50 )

dx(t) = alx(t), U(t))dB(t) + yCx(t), u(t))de

X(0) = zCe R™).

we assume that »n x n  symnm i i
. e _ el s .
symmetric non-negative definite matrix alx, u)

7 Cow ol i
and n-vector vy(z, u) satisfy the following conditions (Al) and (A2)
(A1) |h(z, w)| for any =z, u
(A2) |hCz, w) - By, »)| < K|z - | + pClu - v|)

where b and K are constants and ¢ continuous or 0 ) with
' s

D(O) = J. Then there ex1ist unique so cion X(t - s %
=X181s a uwr
1 AT (t) Xx( 3 Xy, Ur),

called the res £ i
é the response for U. The value function is defined as follows

+ &
o[ exer, ucoyras
f(X(s), U(s))ds

5(t, z, ¢) = sup Exj
Ve 0 °






