. wh wi .
3} € C, ; L Yy, b (F; R), necir R {2.4)

Iet alx}) = c{x)5'(x); assume t € t q?
T = = i (2.5)

1! 5 % i | e =

(2.8)

late

this ap-

anpur

le in beok form cf. Liptser-

[1980}. The second approach can be traced b

and the important paper of Zakai [1969]. 1In this

sity equation,

differential eguaticn, and it derives its

on as originally introduced by Kac [1951]

a
inspiration from f

s view is closely connected to the path integral

and Ray [1954]. Mathematically,

on of this

. For an exposit

formulation of ¢ sics due to Feyrman [1965

or a

'

analogy see Mitter [1980, 1981).

cuss
stochastic control is obtained

these eguations

by considering equations tering and via an exponential N
Let ¢ €
transformation giving it a stochastic control interpretation {cf. Fleming-Mitter =

11982]) . (i), | 3(x)

2. ormalation of

To simplify the exposition we shal
Yy is scalar.

Let (f1,F,P) be a complete probabilit

creasing family (M(s), h)ds) ,

7 = {2
y(t) {2.1) - by (2.2),
where w(t) is a ), the state process is an n- -
- e o P 1 = f tr a{x)¢ + bix)-¢_ .
dimensional F _-adapted process and differential equation = k&
rx = e, ,...,?x ¥ = 1 -
::‘ 2) .1 n 1,31=1

(@x(t) = bix(t))ar +
{




equation of

conditioral

Consider the eguat

(pi{t).3) = (6{0)

This is the weak fo

(o(t),9) =

For later use we

form:

(3.7}

iticnal density and is to

terpretation of

“"state" of the

(i) In most inte situtions the operator x -+
(ii) The paths of the y-process are iy nuous of exponent < .
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There is a nc
yit) = hix(t)} + n{t) 1)
4.2)

has been

then this filter does not accept

»rsion of the conditional

construct a
of the filter as measured by the mean-square errcr

observation 'y' is replaced by the mathem

n

8

=
<

This is most ea
suitable transformation (gauge transformation in the language of physicists].

Define gt

gL, x) = exo(hix)ylt)

(x) - y()Eh(x) + =3

(£)h_(x)*a(x)h_(x)
x x

e pathwise non-lirear filtering eguation and should be solved

-3

Equation (4.3) is t

ical observation).

for each observation path y taken to be phy

In this paper we shall prove that under
the pathwise filtering eguations,we can construct a measure which coincides with the

done

(3.5). This will

measure given by the Feymman-Kac formula

using contrecl ideas due

Pleming-Mitter [1982].

te down eguation

We first




1 |
q == |
4.8)
1,2, e
3. ]

a

and there exist constants A X

r {¥2)

- 3 Irt< vEre e

L A 1G] VS ER H
i,j=1 -

There exists VEC (R ),V > 0

v | = 0@ {(5.5)

x

1.1

» = a5 lx! + =

¥T > 0, there exists Cl C, such that ¥ x>0, t € [s,T], 0
< (14)
- R L 1 ! ! (5.6)

-V(t,x) >Cc Ve +C, te T] . [ptexr ], ' (5.€

Consider the stochastic

' Proof (Sketch)

5
(9

12
Let £(t) {(x{s)) | ds) =

s 2

{dx{t) = g(x(t)aw(t)
'I

/7
where 0 = a°° "~ and w is brownian motion.

The solution




.9)
€.C. - 6.1)
+ p)ds
{6.3)
bounded on bounded intervals a

solution cf the

.t] and (o(t},1) is itervals

lel, | . <c, expi-klr)|) k> |y
J(s) ,p{s)) = , L7Yls 3 f‘,j:";. s <t
5{s} ., @i{s)) = cons

with )4
theorem and the estimates of
It remai a = (o o] wis)) = (a(u)
It remains t i s}, ( s} Wis = 2l pufu
s, u € [C,t) this is pro by a limitirg u + t.




- Cont

functicnal in

To introduce

Suppose we have a nonline

x{t) = fix{t).,t)
t), t] =0 (1.10)

Measurements of the state are made according to the model

y(t) = hix{t), t) + €(t) (1.2 The .10) is, 7,
In an error term which is beyond our power to mitigate. (1.11)
no state noise, if c imate the initial state at s oy
Now root of the equation
some starting time t_, then we at once can ¢ re state trajectory.
& - . - ! 3V (x,t) ¢
Suppose first that we take measurements over a fixed interval to <t <T. Also sup- -—1;'-" =0 (1.12}

sts that the startin |

pose that we have some imprecise prior information which s

E
state x(t.) is in the neighborh the value a. A reascnable approach is as | = ° dat
follows: § ~
follows: dx (t) +
at = x(t) = X (t) (1.13)

(]

'xO] dencte the complete solution to (1.1) with initial condition

(1.3
! 32V'x )
) (x,8) (1.14)
|

2 2 2
(1.4) 3x x = x{t

1 Substituting (1.9) into (1.13), the modal trajectery filter is explicitly

Then, given

Therefore where
Therefore,
W, (1.6) We now seek a differential eguation for o ‘z'it) - A standard computation
ix 33 .
0 shows that this equation is

We now use Hamilton-Jacobi theory. To do this, we

time T in {1.5) with current time t, a
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=-X1E) and %31 following ions

o 's 4,5 asr -d.  We 2

) z fu =i 2. 13
v =

g EYNF ., VEISNS . (2.4)
m

r a linear parapbclic partial dif- S
R BV, (2.7)

= 11(?(“1,(],1' +

The control is feedback,

£ >
’ (2.8)
(2.1)
—_—
By solution p(x,t n a " solution p € C’", i.e. with
E—‘x ":xx’?t 1,...,0.

If p is a positive solution te (2.1), then X = -log p satisfies the nonlinear

parabolic eguation

S{x,0) =S (x) = -log p (x) ,

{2.10)

1
Hix,t, =gfx,t) -5 -<58
x,tsx} gi{x,t >

Conversely, if S{x,t) is a solution to (2.2}, then p = exp(-S} is a solution to (2.1). e 2 inimizing J the above assumptions, we

a
1is logarithmic transformation is well known. For example, if However, we recall

it changes the heat equation into Burger's eguation.

lowing result, which

isfies a polynomial growth condition of degree r, and write

exists M such that
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.1)
oF x . 1 uit)
of o icop 1 uft),
x.) 3 ) USRI |
i : (3.2

1

ial data
Vix,t) .

P . one could re existence cof positive
| solutions to (2
nomial growth condition c

Let 0 <a < 1.

following holds.

ing upper esti- imply

follo

{4.1)

i=1,..., n.

{2.2)

{x) is assumed

, M_ such t?n_t;

identity (4.2)
= = = - 1 n 2
For fixed t, g(-, t}, V(-, t) are of classC on R, and g, g vV, V

i=1,...,n, are of class Cl for some a2 € (0,1]. Moreover

(4.8) below hclds. (If g € % with u <

trarily small.) We assume that
this is confirmed

lower estimate for

a x| -a < wix, ) <aq + [x|™

for some positive a_, a A and that

1 2"
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transformation

The existence

parabolic

to (2.1) with these properties
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6. W, W n va this Fi1
1 > rathwise filtering equations
are:
tech- &

nigues of this section we get existence of q = 8 Syvaet &
equation (4.5). Moreover defining {

Y v g =

s¥ = -log g

N B bt

truction of

A filter can now be u

working wi

A ($) = f $x)plt,x)dx, $ € C.D ’ (6.5)
t n
R s, = £>0
t L=y
using Theorem 6.1 of Chapter 1, cne can show that A= i' is given by e Kallianpar- 1 . 0 2 (8.1)
+ S${x,0) =5 ({x) = -log p (x), here
Striebel Formula, (3.5) of Chapter 1.
thes results are important. that usir i+ s - .8 - {x)s -
these results are important ha sing H ,x,sx] = d~x/\x (8.2)
can compute the unnormalized c ional measure of the R N

Y
filtering problem given by the Kallianpar-Striebel g the i and g are given by eguation (4.7} of Chapter 1.

If we now make the assumpt invertib

1is

bounds one can see that the normalized conditicnal measure can be computed). This {

tained by solving S_ = 0, then by

does give the strongest possible robustness result. Furthermore, the upper and
lower bounds (6.1) - {6.3) gives us the means of evaluating appro

and also bounds on estimation errors. We conjecture that these ©
In this way one gets an approximate filter

rper results on lower bounds for non-linear filtering {cf. Galdos

extended Xalman Filter, see eguation 15} of this Chapter. E(S_ ) is the analog

. £ Fish £ o Sty 3 reduir = s : 233 -
7. Remarks on the Previous Results X of the Fisker Information Matrix and the reguirement that it is invertible corresponds

ndition on the nonlinear system.

co

is interesting

The existence and uniqueness results for the filtering equations do not cover .
in examples where the Extended Kalman filter is known not to work

the following situation:

g problem:

Consider the non-linear filteri

with the observation equation 3 g0 %
characteristics (stochastic)




ynman was

“hrodinger

where I is a measure,

of paths ix(s)|x(0) =

under conside

PO

as perturbations about the classical in the field '-Jt‘é:v .

In the simple case of guadratic U(x)

v}
[

substitution neatly accounts for the

g hese

w £

dx(t) = £{x(t))dt # db{t)

I

v:R"

sity make

pur-

lianpur

x{s), Hx(s)>as]|F}, x(t) = x}

»g(x,t). (2.5)

ents expectatiocn with the transformed m

of the density gix,t) of x(t) next lemma.

<h
th

m

x(t) - x_ is a Brownian motion under P,

"

1 ' 112
=% fl,:‘(xﬁ:sl-] [ ds]

, ax(s)> -5 f]lextsn ] (2.6)
2 5
gi{x,t) exists and
. -n/2 "~ 2t)|x-x,l 15 = 5}
gix,t) = [27t] e ! E 1 =:x3

for rewriting (2.5)

Gaussian integral.




(=1
w
|

in which

If vit): = x_(t) we can reexre

(we assume the particle h

efined below, under which z(-)

two-dimensional first-ord

. The first step is to represent the conditional expectation term of the ex-

| pression for p(x,t) in theorem (2.2) in terms of yet another measure. This involves

another Girsanov measure transformation. Since

ly =

3 z{s) = x(s) - Xy~ P
ay o
Ule,x) = <Hx, £ - Rix) 0 .
e < 3 i 2 ¢ ¢ < s 2
x{s) - x. is Brownian and independent of y(-) under 91, and j v (s)ds < *® a.s.,
(
(so that (2.8) equal : . 0
(so-that: (2.8) equals z(s) is Brownian under P_,

t
f <vis), vis)>ds
0

.
fU(S.X[Sl)ds?
g

a I

N

t
= exp f<v(s), dx{s)> -

The correspcending classical moticn is then Further, z(-) and y(-) are independent urder P,
v (¢t} vis
X tH vie) ar, t r £
= 1 i ’ e
s T dy 1. = = expl- f <v(s), dz(s)> * 3 f<‘.'ts) , v(s)}>ds]
vit) -H IE T3 .R:xc(t)) ae, g 2 5
r':‘Pw
which, in Ito form, is In evaluating FD- it is useful to observe that
s, |
x (t) vit) 0 N t
o - vl lc)> T S i) >
" ; At (2.9) = <v(s), z(s) 0 »,I <z(s), dv(s)
vit) =VRi{x (t)) "G
2 c t -
= <v(s), z(s)>| . - <z{s), Ax (s) + b/2>ds
v K
We now state the main result. 0

(2.12)

Theorem 2.3. Suppose that

entiation rule. Now rewrite

f

T
R{x) = xAx + b'x + ¢




culatior

ce the integratic

- =
F’ -mezsurable r:

and y(-) de

ng that
= x-m(t) (2.21)

= 0 is a positive definite

lution v(t) We then

The remainder of = z(t) =0,
(ii) =z lculation to
show that
= normali-
e
Theorem ion to solving the two- - = <x-m{t), P

oundary value

covariance




i A 3 \
e ft,x) = L* - glt,xidt + T.x) - oaryin 1
where L is 1t or

the article of

, 1f in addition

+{X,Y] which has




11’~p<_n

!.f:tée be a Lie algebra o N oft‘—'c denote by

2 linear subspace K of & is

spanned by [X,¥], XeM and Yc

K1 C K, an gca_l if 1#.X] C K.

' are Lie algebras over RRand 7: %+ 2! ear map, 7 is called

it preserves brackets:

nx)y, m(y)] = 7({Ix,¥]) X,y .

In that case 7(¥) is a subalgebra of ' and ker 7 is an ideal in &. Conversely,
let # be a Lie algebra over R and K an ideal of . Let %" = 4/K be the guotient

vector space and W:%-%" the canonical linear map.

For X' = 7(X) and Y' = w{Y}, let

This m

morphism of ¥ into ¥ ' with X as

4'by X.

187

multiplication

adX : Y > [X,Y (Y

of 7' and X* ad X is a representation of % in

representation.

G be a topological group and

Lie group if the mapping [x,y}*

unigue way

A Lie algebra # over R is said to be

morphism of &, ¥ X2 Let the dimension ' be m. Then there are ideals .¥

of % such that (i) dim 71 = m-j, 0<j<a.

over

= lg,g]. @9 is

g be a Lie algebra cof finite

a sub-algebra of g called the derived ductively by
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2 Algek

exists a

anéd N7, = {o}

1isider the unbounded operators

] ; .
L=L -<= 1) n:(xj and h‘rxl, Srmeicoa Py

fini

Tet g be a finite dimensional Lie

n

F(R)).

. N SOMS . O - d < ir i + ¢ { y@P=cC
Lie group. Ilet il be a compl Hilbert i cn some commen dense invariant 2 (say @ C.

rmation and if it is

This Lie algebra contains important i

commen dense invariant demain 9. Lot then it is a guide that a finite dimensional universal filter for

b

It is not being said t

Similarly, we are

no finite-dimensi

operators on H. Tet

Therefore, the first question that are there examples of non-linear

filtering problems with finite dimen filter algebras? The second question is:

How large is this class? The answer to the i yes —, but the

answer to the second question appears to be small.

and others. Given a representation T of

when does X there exist a group

representation (strongly

E such that

= exp(tw(X)) ¥ X

T {exp

i dx, = Axtdt + bd-.-t A =1 x n matrix

i b = n x 1 matrix
in the sense that (3.1)

y continucus

dy, = c'xtdt + d"t c =n x 1 matrix

Then

is the exponential

g into the Lie gro:

n
| o 1 T a = ) n
G. i 0732 - “-'i_.l Yir and
i = i i,i=1
Let X X, be a basis for g. A method for constructing locally 1s to de-

2 (3.

N




é
-

ta b

largest

ideas are best discussed on an exars e .

to the Lie

is essentially the 4-

Filter in Example 1.




202 203

L =L.. A is L
3 ng 4.t the i cencrated by
an Le wn F 15 a pro-finite-d i filtered

previded £ is a

in the usual

assume that

Consider the clbic sensor filtering pr«

1977]. We thus have two ways of

computing

filter and con-

x =W é tz of Bro

Then the filter algebra _generated by the operators {cf. Mitter [81],

be generated as the Lie

some fin

azewinkel [82)

£ Ansatz

Pilter in the light of

Zaki equation. We write the solution as:

- x_ 4t + dv
x it

q (t))o 1(x) (4.1.1)

r-Ocone [1980] it was

In Marcus-Mi

can be computed using recursive filters.




("
s
CRERE-N"™]

= where

en rigorously

Finally,

the Zakai

. equation and, hence, in a certain sense the Kalman Filtering problem has a

4.2 Non-existence

that wWeyl algebra W

Hazewinkel and

with smooth coef




207

o
(=]
&

PO

19
1. V.E. Benes with 20.
Nonlinear
?1. R.S. Lipster and A.N. 19771, Statistics of
2. J.M. Springer-Verlag, New
Vel.
22. Mitter,
I A. * Discrete
Pr .R. J
Force
23. S.K. Mitter [1980], On
4. Filtering and Quantum Phy
pp- 163-2
24. S.K. Mitter [1982], on Pathwise Nonlinear
- Proceedings of the Sant gherita Conference on
to y Spri r-Verlag.
25. “RIBs imum Likelih Nonlinear Filtering,"
6. M.H.A. Davis Ari in Jourral of Optimiza Theory and 1i 2, pp. 386-3%4
nlinear Filterin
26. R.E. Mortensen, [13966], Doctoral Dissertation, Departm cf Electrical
7. M.C. Delfour and Engineering, University of California, Berkeley, CA.
8. T.E. Duncan [196 27. R.E. Mortensen [1978], Nonstatistical Nonlinear Filtering, Proceedings 1978
Stanford Universi IEEE Decision and Control Conference, San Diego, California.
9. R.P. Feynman and A.R. Hibbs [1965], Quantum Mechanics and 28. E. Nelson, Analytic Vectors, Annals of Math., 70, 1959, 572-615.

McGraw Hill, New York.

a of Second Order Differential Operators, Trans.

10. W. Fleming arnd S.K. Mitter, Optimal Stcchastic Control Am. Math.
on Non-Degenerate Diffusions, to appear in Stochastics.
30. S. sheu, Socluticn of Certain Parabolic Equaticn
11. W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control, and its Application to Nonlinear Filtering, to

inger-Verlag, 1975.
31. B. Simon [1979], Functiona

New York.

, G. 1lianpur, H.
Filtering, Osaka J.

32. H. Sussmann [1981]
Hazewinkel, L c

33. H. Sussman: Existence and Unigueness of Minimal Realizations of Non-Linear
14. Galdos, J.I., A Lower Bound cn Filtering Error with Application to Phase Systems, Math. Systems Th., 10, 1977, 263-284.

Demodulation, IEEE Transactions on Information Theory, July 1979, Vol. IT-24,
No. 4.

15. M. Hazewinkel and S. Marcus {19821, On Lie Algebras and Finite
Filtering, to appear in Stochastics. Sanjoy K. Mitter

Department of Electrical Engineering and Computer Science

16. M. =
¢ and
o Laboratery for Information and Decision Systems
17 o) Massachusetts Institute of Technology
’ ;é Cawmbridge, MA 02139
iB. M.
and




