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- PARDOUX E. (1982)
Equations du Filtrage non linéaire, de la Prédiction et du
Lissage. Stochastics, 6, pp.193-231.

On trouvera également des résultats sur la prédiction et le
lissage dans LIPCER-SHYRIAEV (1978).

7 - L'article de base sur la méthode de 1'innovation, qui contient en
particulier la démonstration de la Proposition du §7 est :

- FUJISAKI M., KALLIANPUR G., KUNITA H. (1972)
Stochastic Differential Equations for the non linear Filtering
Problem. Osaka J. Math. 9, pp. 19 - 40.

La méthode de 1'innovation est &galement traitée en détail dans
LIPCER-SHYRIAEV (1978) et KALLIANPUR (1980), qui sont les deux
1ivres récents traitant du filtrage non linéaire. Le premier traite
également d'autres questions de Statistique des processus, notam-
ment 1'estimation de paramétres.

Résumé :

GEOMETRIC THEORY OF NONLINEAR FILTERING

Sanjoy K. MITTER
Department of Electrical Engineering and Computer Science
and

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

On présente une synthése des résultats obtenus en filtrage non

linéaire 3 partir de 1'application & 1'équation de Duncan-Mortensen-Zakai
d'outils algébriques et géométriques (algébres de Lie assocides aux champs
de vecteurs).

Abstract :

The paper presents a survey of the results obtained in nonlinear

filtering by applying algebraic and geometric tools (Lie algebras asso-
ciated to the vector fields) to the Duncan-Mortensen - Zakai equation.

This research has been supported by the Air Force Office of Scientific

Research

under Grant AFQOSR 77-3281D and AFOSR 82-0135. A preliminary

version of this paper was written while the author was a CNR Visiting
Professor (Mathematics Group, GNAFA) at the Istituto Matematico "Ulisse
Cini" Universita di Firenze, Firenze, Italy.
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1. Introduction

Until quite recently, the basic approach to non-linear filtering
theory was via the "innovations method," originally proposed by Kailath
ca.1267 and subsequently rigorously developed by Fujisaki, Kallianpur and
Kunita [1) in their seminal paper of 1972. The difficulty with this
approach is that the innovations process is not, in general, explicitly
computable (excepting in the well-known Kalman-Bucy case). To circumvent
this difficulty, it was independently proposed by Brockett-Clark [2],
Brockett [3], Mitter [4] that the construction of the filter be divided
into two parts: (i) a universal filter which is the evolution equation
describing the unnormalized conditional density, the Duncan-Mortensen-
Zakai (D-M-Z) equation and (ii) a state-output map, which depends on the
statistic to be computed, where the state of the filter is the unnormalized
conditional density. The reason for focusing on the D-M-Z equation is that
it is an infinite-dimensional bi-linear system driven by the incremental
cbservation process, and a much simpler object than the conditional
density egquation (which is a non-linear equation) and can be treated using
geometric ideas. Moreover, it was noticed by this author that this
equation bears striking similarities to the egquations arising in
{Euclidean)-quantum mechanics and it was felt that many of the ideas and
methods used there could be used in this context. The ideas and methods
referred to here are the functional integration view of Feynman (for a
modern exposition see Glimm-Jaffe [5]). In many senses, this viewpoint
has been remarkably successful--although the results obtained so far have
been of 2 negative nature. Nevertheless the recent work has given us a
deeper understanding of the D-M-Z equation which was essential for progress
in non-linear filtering, as well as in stochastic control. The

variational interpretation of non-linear filtering given by Fleming-Mitter

o ——
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{6], Mitter [7] and the work on the partially observable stochastic
control problem by Flemina-Pardoux [8] can be considered to have arisen
from the "state-space" interpretation qiven to the filter.

This is an expository paper and contains no original results. For
rigorous derivation of some of the results presented here, the reader is
referred to the doctoral dissertation of Ocone [2], Hazewinkel-Marcus [10]
and Sussmann [1l1]. The interested reader may also read with profit

Hazewinkel-Willems [(12] and Mitter-Moro [13].

2. The Filtering Problem Considered, And the Basic Questions.

We consider the signal-cbservation model:

dx f(x )dt + G(x_)dw_ ; x(0) = x
wm " £ . 0Ses1

dy

£ h(xt)dt + dnt . where

X, w and y are nP, Df‘and Df—vnlued processes, and it is assumed
that £, G and h are vector-valued, matrix-valued and vector-valued
functions which are smooth (which mean C®-function). It is further
assumed that the stochastic differential equation (1) has a global
solution in the sense of Ito. It is further assumed that X, and N_ are
independent and Ej;lih(xt)izdt<“. For much of our considerations, the
function h(-) will be a polynomial.

It is well-known that the unnormalized conditional density o (t,x)

(where we have suppressed the y( ) and w-dependence) satisfies the D-M-2Z

equation:

P P

(2) do(t.x) = 2:) —;-z 2) ott.wae + Z h; (x)p(t,x)ody, ,
i=1 i=1

where
n n
(3) z G(x)G (x) z L e (x)d
dx S ax i

i, =1
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and the - denotes the Stratanovich differential. It is imperative that we
consider (2) as a Stratanovich differential equation, since the Ito-
intearal, because it "points to the future,” is not invariant under smooth
diffemorphisms of the x-space, and we want to study equation (2) in an
"invariant manner."

e think of p(t,-) as the "state" of the filter and is, what we have
reforred to before, as the universal part of the filter. If $, say, is a
bounded, continuous functional then the filter typically is required to
compute B(¢(xt)kiky), where j{y = Ofys,oisit}. If we denote by

%Qﬁ(¢(xt)|3i?), then $t is obtained from o (t,x) by integration:

(4) $ = j- ¢(x)0(t,x)dx{[ p(t,x)dx
t E{x IRn

~

$t will be referred to as a "conditional statistic," and no matter what ¢t
we wish to compute, p(t,x) serves as a “"sufficient statistic.”

One of the Questions we want to try to answer in this paper is: when
can $t {corresponding to a given #) be computed via a finite-dimensional
filter? The other remark to be made is: we are interested in computing
the fundamental solution of (2) so that we can evaluate p(t,x)
corresponding to any initial condition.

To proceed further, we need to make a definition. By a EEHEESL
dimensional filter for a conditional statistic st' we mean a stochastic

dynamical system driven by the observations:
(5) dEt = u(Et)dt + B(Et)odyt

defined on a finite-dimensional manifold M, so that EtCH,and G(Et) and

B(Et) are smooth vector fields on M, together with a smooth output map

6) $t = Y(Et), which computes the

conditional statistic. Equation (5) is to be interpreted in the

Stratanovich sense for reasons we have mentioned above. We shall also

.-

|

assume that the stochastic dynamical system (5)-(6) is minimal in the

sense of Sussmann [14].
For the definitions and properties of Lie algebras and Lie Groups

used in the sequel the reader is referred to the Appendix.

3. Lie Algebra of Operators Associated with the Filterina Problem

Consider the Lie algebra generated by the unbounded operators

> 1
2= % -3

2
£ hi(x) and hi(x) s g cave Py
where the operators & and hi(X) (the hi considered as multiplication
operators ¢ (x) + hi(x)é(x)) act on some common dense invariant domain @
(say D = C: ®) or ARY)).

This Lie algebra contains important information and if it is finite-
dimensional then it is a guide that a finite dimensional universal filter
for computing p(t,x) may exist.

Care should be taken in interpreting this statement. Firstly,
referring to the definition of a finite-dimensional filter in (5), there is
a Lie algebra of vector fields associated with it which in general is
infinite-dimensional. Therefore, the fact that the Lie algebra
L7 XE hl' S hp} is infinite-dimensional does not preclude the
filtering problem having a finite-dimensional solution. Secondly, even if
Aalg Rye eee s hp} is finite-dimensional it does not mean that a finite-
dimensional filter exists. The reason for this is that constructing the
filter requires integrating the Lie algebra and it is a well-known fact
from the theory of Unitary representations of Lie Groups that not all Lie
alaebra representations extend to a Group representation (see the Appendix
of this paper). However, it is still a good question to ask as to whether
examples of filtering problems exist where the Lie algebra e, hi' S hp}

is finite-dimensional and also how big is this class. The answer to the
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first part of this question is positive but the answer to the second part
of the question appears to be that this class is small.

Example 1: (Kalman Filtering)

dx, = Ax_dt + bdw A =n x n matrix
(7 t o
b =n x 1 matrix
dy = c'x dt +d c =n x 1 matrix
t t t
Then
n 2 n
-
(8) .7’°=% z ﬁa.\—x'Qi.-zsi—(Ax)i,and
i9=1 %% Y {31
*
[ S S (c'x)? , where
o 2
Q = bb'
Define the Hamiltonian matrix
-a' cc'
E = , and the vector
bb' A
< 2
a = em n
(1)
and the controllability matrix
W= [a:Ex: ....... ‘E 2n-la] and assume that
W is non-singular.
Define z1 = ¢'x and
_ pyi-l
Zi [ad 7] Zl.
Then one can show that
n n
_ i-1 i-1
(0 z, = jEI(E ) x, + ]gl €70, 5= . and

(10)  [2..2.] = (E"la)'(o —1) €y,

We can then conclude that the Lie algebra of the filter

PR
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F=span {4, 2, ... ,2 , 1}, where the 2, ... , Z. are independent

1 zn 1 2n

by hypothesis. Hence, .#has dimension 2n+2, and this algebra is isomorphic

to the oscillator algebra of dimension 2n+2 (see the Appendix).

3.1 Invariance Properties of the Lie Algebra and the Benes Problem.

The filter algebra is invariant under certain transformations,
namely, diffeomorphisms on the x-space and gauge transformations to be
discussed below. These ideas are best discussed on an example.

Consider the filtering problem:

(11) X, = wt

dyt = xtdt + dnt

A basis for the filter algebra Fis
d
Lr —
{2 x . i) 1} ., where
2

F= % 3;2 - % x2 and this is the 4-dimensional oscillator algebra.

It is easy to see that if we perform a smooth change of coordinates x> $ (x)
then the Filter algebra gives rise to an isomorphic Lie algebra, and two
filtering problems with isomorphic Lie algebras should have the same
filter.

Now consider the example first treated by Benes [13],

dxt

f(x_)dt + dw
(12) = ¢
dyt = xtdt C 2 dnt , where

f is the solution of the Riccati equation:

a2

2 i
= = ax + bx + ¢ , and the coefficients a,b,c are so

chosen that the equation has a global solution on all of R. We want to
show that by introducing gauge transformations, we can transform the filter

alagebra of (12) to one which is isomorphic to the 4-dimensional oscillator
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algebra. Hence, the Benes filtering problem is essentially the same as
the Kalman filtering problem considered in example 1.

To see this, first note that for (12}
[Z.x) = :—; - f , where the brackets are computed on (.‘;th).
Now consider the commutative diagram:

d_
dx

Here ¥ is the multiplication operator ¢(x)+ ¥(x)¢(x) and it is assumed

that ¥ is invertible. Then it is easy to see that

¥(x) = expf * f(z)az.
o

Under the transformation ¥, the operatorg’; = %%;f - g; £

1 32

1 2L =, e
transforms to 332 2V(x). where VIx) x e,

It is easy to see that the Filter algebra & is isomorphic to the Lie

algebra with generators

o

Vix) - %xz, =

B

1
2

We now see that if V(x) is a quadratic, then this Lie algebra is
essentially the 4-dimensional oscillator algebra corresponding to the
Kalman Filter in Example 1.

What we have done is to introduce the gauge transportation

p(t,x) > “l’—l(x)o(c,x) , where p (t,x) is the solution of the D-M-2Z

equation and what we have shown is that the Filter algebra is invariant

under this isomorphism.

. —
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However, for the class of scalar models considered in (12) with
general drifts f, the Benes problem is the only one with a finite-
dimensional Lie algebra (we restrict ourselves to diffusions defined on
the whole real line). For further details on this point the reader
should consult Ocone [9].

There is no difficulty in generalizing these considerations to the

vector case, provided f is a gradient vector field.

3.2 The Weyl Algebras and the Cubic Sensor Problem.

The Weyl algebra wn is the algebra of all polynomial differential
3

operators IR(X,, ... , X, 5—% SRR e

A basis for Hn consists of all monomial expressions

xuaﬁ an 381 X 38"
3;5 = x?l' xn 3;31 &(ngn
where a,8 range over all multiindices a = (&, ... . un),B = (Bl, Bn).

"n can be endowed with a Lie algebra structure in the usual way. The
centre of Hn' that is the ideal #= {Zewn“x,z] =0, vxewn} is the one-
dimensional space IR - 1 and the Lie algebra Hn/JR - 1 is simple.

Consider the cubic sensor filtering problem:

clyt = xtl dt + dnt "

Then the filter algebra & generated by the operators

Z = L a? -lx6 and &, =x3 is the Weyl algebra W_/IR.
: 2 ax* "2 % 1 9 1

A proof of this can be constructed by performing calculations similar to

that in Avez-Heslot [16].

3.3 Example with Pro-finite-dimensional Lie Algebra (cf. Hazewinkel-

Marcus [(10]).
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Consider the filterindg problem:

w2
& = xtdt

dyt = xtdt + dv:

>

In [17] it was shown that all conditional moments of ’t can be

computed using recursive filters. For this problem .¥ is generated by

_x23_¢l32_.1_2_71d = i 7 i 3 7
3% 232 "3 %X =Zand x = ,'Z’l. A basis for.# is given by Zand
LN I L L
xﬁ,m—i.aii,l—o,l, o
i
Defining 71. to be the ideal generated by x IFL - i =.051.2; s

it can be shown . is a pro-finite-dimensional filtered Lie algebra,
solvable and .7/.71 is finite-dimensionall and can be realized in terms of
finite-dimensional filters corresponding to conditional statistics.

Remark 1.

Other examples of finite-dimensional filters can be constructed by
combining the attributes of the Benes example considered in Section 3.1

and the example of section 3.3. Thus, in example 3.3 the process x_ may

t
be replaced by
cbc‘t = f(xt)dt + c!wt
s af 2 2
where f satisfies — + £~ = ax” + bx + ¢, and a,b,c are chosen so that

dx

this equation has a global solution. Then it is shown in [18] that all
conditional moments of it can be computed using finite-dimensional

recursive filters.
Remark 2

The Lie-algebraic and representation approach to the filtsring

problem is really concerned with the “"classification™ guestion for
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filters. The actual construction of the filter can apparently be achieved

using probabilistic techniques.

4. Existence and Nonexistence of Finite-dimensional Filters and the

Homomorphism Ansatz of Brockett.

In Section 2 we have given the definition of a finite-dimensional
filter. We would consider (S5) and (6) as the description of a control
system with inputs yt and output St. Furthermore, as we have said we may
assume that (5) - (6) is minimal in the sense of Sussmann. We thus have
two ways of computing $t --one via (2) - {4) (D-M-Z equation) and the
other via (S) - (8). The ansatz of Brockett says: Suppose there exists a
finite-dimensional filter and consider the Lie algebra of vector fields
generated by G(Et) and 8(5‘:) and call this Lie algebra L{(I). Then there
must exist a non-trivial homomorphism between the Filter algebra J and
L) such that Z+q and h, + 8, where 8, is the i"" row of 8.

Conversely, suppose that the Lie algebra F cannot be generated as the
Lie algebra of vector-fields with smooth coefficients on some finite-

dimensional manifold, then there exists no such homomorphism and hence no

conditional statistic can be computed using a finite-dimensional filter.

The Brockett ansatz suggests a possible strategy for obtaining
finite-dimensional filters for computing certain conaitional statistics.
Suppose, we are in the situation of Example 3.3, that is, the Lie algebra.#
is pro-finite dimensional. Since J/Ji is finite-dimensional it has a
faithful finite-dimensional representation (by Ado's theorem} and hence can
be realized with linear vector fields on a finite-dimensional manifold
which may give rise to a bilinear filter computing some conditional
statistic. However, what statistic this filter computes is in general
difficult to determine, and one has to resort to indirect and probabilistic

*echniques for this determination. One should also remark again that .#or
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any of its quotients) need not be finite-dimensional for a finite- ' (1s) g% = Fl(g(t),é(t))Llp . RS Fd(q(t).;;(t))bdp

dimensional filter to exist. b2
for some non-linear functions Fi of g(t) = (ql(t), Sai qd(t)) and g(t).

4.1 Kalman Filter Revisited

For (15) to define a solution of (13), we need

It is instructive to view the Kalman filter in the light of the above

P, (g(c),c';(t)) =1
discussion and solve explicitly the corresponding D-ii-Z equation. We shall F (q(t) é(t)) = u(t)
. 2 '
consider the special case where the Filter Lie algebra is generated by E. (g(t).t.;(t)) =0 for j>2.
]

2
{-;- g—xz - %xz ¢ :—x s X ; I}. For a rigorous justification of the

For the Kalman-filter problem considered, one gets (formally)
calculations which follow see Ocone [9].

g, (t) =1
The basic idea is to do the following formal calculation which needs 1

yit) = g (t)coshg, (t) + éJ(t)sinnql(c)
to be justified. 2

0 = g, (t)sinhg, (£) + g, (t)coshg, (t)
Suppose that we want to solve the evolution equation 2

0= c}4(t) - f;3(t)qz(t)

d
(13) c_i% = Llp + u(t)Lzs , where ‘51“” =0,i=1,2, ... 4.
L, and L, are in general unbounded linear operators and u(t) is a given One can explicitly solve the above set of equations to obtain
t
continuous function. Let us assume that the Lie algebra of operators gz‘t) = L cosh(s)dy(s)
ini {
A{Ll, Lz} has a finite set of generators ‘Ll' Lz, cee o Ld}. We try a q3(t) = _j; sinh(s)dy(s)
. t .
e g (e) = fot(sinhs)(coshs)ds - j; 35 (s)sinh(s)dy(s)
(14) (t) = ex ( (t)L )e (a {(t)L ) ... ex ( (t)L )D(o) L.
° o\ /%@ 2 2 P\9% d where we have now used stochastic integrals.
where p(o) is the initial condition. For ideas similar to this in the Substituting the above in (14) and using
-]
context of ordinary stochastic differential equations, see Kunita [19]. (ed‘%) (s} = f G(x,y.t,)¢(y)dy , t 2 0, where
-

Differentiatina the above, we get

= 2 .
G(x,y,t) = (2Wsinht) &exp[-%- {coth) (x2+y ) + xy/s:.nhc]

2. 5, e (5, 002 Jrene (5, 008, a1z,
3t ql(t)Llp + gz(t)exp gl(t)x.1 Lzexp gz(t)L2 ... exp gd(t:)I.d p (o) one gets
. i 9 1 -1 2)
+ qd(t)exp(qlft)nl) Ldexp(ad(t)Ld)o(o). o(x,t) =f_mk(z,t)exp(-3p (£) [x-m(t) ] jo,(z)dz,
Now, we use the Campbell-Baker-Hausdorff formula: for 1< i, j € 4, where  p{t) = tanht
d 1.3 inh
’ : z sinhs

exp(t:i.j)x..1 = Z Sn (t)Lmexp(tL).) repeatedly to obtain : WLE): = cosht k& ,([ cosht dyis)

m=1 :
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(and k(z,t) is a function which can be computed), which is the
familiar Kalman-filter solution.

The essential point in proving the above results rigorously is to note
2

that —%—g;z + Exz generates a positivity-preserving Hypercontractive
: 142 - 12 d
semigroup and that the operators "3 a2 + Ex ' X, a5 have a common dense

set of analytic vectors.

Finally, since the Lie algebra corresponding to the Kalman filter is
solvable (14) is a qglobal representation for the solution.

We remark that the Benes problem considered in Section 3.1 can be
integrated in exactly the same fashion.

Note also that this method computes the fundamental solution of the
D-M-Z equation and hence these ideas can be applied to solve Kalman

filtering problems with non-Gaussian initial conditions.

4.2 Non-Existence of Finite-Dimensional Filters

In an earlier part of this section we have suggested a strategy for
obtaining finite-dimensional filters when the Lie algebra of the filter
has a "good" ideal-structure using the Brockett Homomorphism Ansatz. We
have also r;marked how the same ansatz may lead to negative results.

Now, in section 3.2 we have shown that for the cubic-sensor problem
the Lie algebra of the filter is isomorphic to the wl/nt. In [10},
Hazewinkel and Marcus have shown that Wl/nlcannot be realized as the Lie
algebra of vector fields with smooth coefficients on a finite-dimensional
smooth manifold. On the other hand, Sussmann [11] has shown that if there
is a finite-dimensional filter for a conditional statistic, then there
2X1Sts a non-zerc homomorphism of Lie algebras according to the Brockett
prescription. Some further work combining these two ideas shows that no
conditional statistic for the cubic-sensor problem can be computed using

finite-dimensional filters.

5 T

We conjecture that essentially similar results can be proved for the

following class of filtering problems:

dxt f(xt)dt + dwt

dy

t xtdt + dyt

Suppose that f satisfies:

5= + £ = V(x), where V(x) is an even-positive polynomial. Then
the Lie algebra for this filtering problem is an algebra which is isomorphic
to the Weyl algebra Hl/n!, and hence all the above results of this section

will hold.

4.3 Some Recent Positive Results

There have been some recent positive results using the Lie-algebra
formalism. One such result is concerned with the asymptotic expansion in €

of the unnormalized conditional-density for the filtering problem

= +
dxt axtdt dwt

(x, + ex 1ae + @y, k21

2
=
[}

Y = 0; oo(x) Gaussian ,
where € is some small positive answer.

For this class of problems it has been shown [20], [21] that the
various terms in the formal asymptotic expansion of ps(t.x) can be
computed by finite-dimensional filters using the ideas developed in this
section.

We close this section with a remark on the identification problem for
linear stochastic dynamical systems. These problems can be viewed as
#on-linear filtering problems and lead to Lie algebras which are known as
“urrent-algebras" in mathematical ohysics. The integration of these Lie

1labras in a rigorous manner has recently been done in the work of
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Hazewinkel-Krishnaprasad-Marcus [22].

S. Non-linear Filtering and Hamilton-Jacobi-Bellman Theory.

An entirely different geometric approach to non-linear filtering
arises by giving the D-M-Z equation a stochastic control interpretation via
an exponential transformation. This was done in joint work with Wendell
Fleming [6 ]. The exponential transformation p(t,x) = exp(-S(t,x)) leads to
Hamilton-Jacobi-Bellman equation for S{t,x). It has been shown in [7]
that one is interested in maximum a-posteriori probability filters or
maximum-likelihood filters then these filters can be constructed using S
{or equivalently) p. The assumption that S is a Morse-function (with
parameters) leads to an interesting geometric theory for non-linear

filtering. This will be developed elsewhere.

10.

11.
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APPENDIX

On Lie Algebras, Lie Groups and Representations

For most of this paper, the C®-manifold we will be interested in is
. 3 -

(which is covered by a sinale coordinate system).

We shall say that a vector space @ over R is a real Lie algebra, if in
addition to its vector space structure it possesses a product & x &~ 2
(X,¥}) +[X,Y] which has the following properties:

{i) it is bilinear over IR
(i1) 1t is skew commutative : [X,¥] + (Y,X] =0
X,Y,2e2

(iii) it satisfies the Jacobi identity:

[X,[Y,2]] = (Y,(2,X]] + [2,(X,¥]] =0

Exam H = 1
xample Hn(m) algebra of n x n matrices over IR.

If we denote by [X,Y] = XY - YX, where XY is the usual matrix product,
then this commutator defines a

Lie algebra structure on M _(IR).
n

Example: Let 2IM) denote the C'-vector fields on a CT-manifold M. 2°(M
is a vector space over R and a C*(M) module. (Recall, a vector field X on
M is a mapping: M - : i

‘I‘p(H). P +x where peM and TP(H) is the tangent space
to the point p at M). We can give a Lie algebra structure to QM) by
defining:

£ = - =
gp (XY v:()pf xp(vf) - Yp(xf) , £€C™(p)

{the C™- functions in a neighborhood of p), and
[X,¥] = XY - ¥X.
Both of these examples will be useful to us later on.
Let Zbe a Lie algeb {
gebra over R and let Xps e xn} be a basis of %

{as a vector space). There are uniquely determined constants

Crsp € ® (1Sr,s.p<n) such that

s

(x_,x_1 = 2 c__.X
r'"s 1<p<n rsp P
The crsp are called the structure constants of @ relative to the basis
[xl, SR xn}. From the definition of a Lie algebra:
i + =0 (1¢r,s,pSn
(i) crsp csrp ( P<n)
ii + < <n).
(i1) 1<zp:<ntcrspcptu cstpcpru + ctrpcpsu) =0 (1ir,s,t,usn)

Let £ be a Lie algebra over R. Given two linear subspaces M,N of <z

we denote by [M,N] the linear space spanned by [X,Y], XeM and YEN A linear

subspace K of Z is called a sub-algebra if (K,KJCK, an ideal if [ZKICK.

If ¥ and @' are Lie algebras over IR and T:@+F : X»T(X), a linear

map, 7 is called a homomorphism if it preserves brackets:
(mx), 701 = n(x,¥H (XYL

In that case T(¥) is a subalgebra of #* and ker T is an ideal in Z

Conversely, let & be a Lie algebra over R and K an ideal of #. Let

@' = @/X be the quotient vector space and 2P’ the canonical linear map.
For X' = m(X) and Y' = mw(Y), let
(x',¥'] = T([X.Y]).

This mapping is well-defined and makes &' a Lie algebra over Rand T is

then a homomorphism of & into ¥ with K as the kernel. Z' = Z/K is called

the guotient of Zby K.

Let @/ be any algebra over E, whose multiplication is bilinear but not

necessarily associative. An endonorphism D of %(considered as a vector

space) is called a derivation if

D{ab) = (Da) b + a (Db) a, beR

1f Dl and D_. are derivations so 1S [DI'DZ‘ = D].D2 - [)ZD1

2

The set of all derivations on @(assumed finite dimensional) is a subalgebra

of gl44, the Lie algebra of all endomorphisms of /.

For us the notion of a representation of a Lie algebra is very
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important.

Let #be a Lie algebra over R and V a vector space over R, not
necessarily finite dimensiocnal. By a representation of Z in V we mean
a map.

T X+ w(X) 2 > gl(y) (all endomorphisms of I/), such that

(1) w is linear
(11) 7([X,¥Y]) =r(X)T(¥)-T(Y)}T(X).
For any XeZ# let adX denote the endomorphism of &
adXx : Y+(X,Y] (Ye@).
adX is a derivation of % and X- adX is a representation of £ in %,

called the adjoint representation.

Let G be a topological oroup and at the same time a differentiable
manifold. G is a Lie group if the mapping (x,y)+ xy : GxG + G and the
mapping x*x-l : G*G are both C*-mappings.

Given a Lie group G there is an essentially unique way to define its
Lie algebra.

Conversely, every finite-dimensional Lie algebra is the Lie

algebra of some simply connected Lie group.

In filtering theory some special Lie algebras seem to arise. We give
the basic definitions for three such Lie algebras.

A Lie algebra Zover R is said to be nilpotent if adX is a nilpotent

endomorphism of &, ¥XeZ. Let the dimension of Z be m. Then there are

ideals 7] of Z such that (i) dim 'fj =mj , 05j<m.

(1) 7 =£’2-¢12 ce.- 4 =0 and (iii) [.Q’,Jj]g.fiﬂ, 0535%m-1.

Let g be a Lie algebra of finite-dimension over R and write @g =

93 is a subalaebra of g called the derived algebra. Define @%g (p0)

inductively by
D°g = g

2% - 2P ey 21y

{g,9].
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We then get a sequence @%2 @1q2 ... of subalgebras of g. g is said to
it2% = 0 £ 1.

be solvable if@%g = 0 for some g2
Examples

i 1
{i) Let n>0 and let (pl, cee r BPoedys - qn,z) be a basis for a rea
vector space Y. Define a Lie algebra structure on ¥ by (pi,qi) =
[g.,p.] = Z, the other brackets being zero. This nilpotent Lie algebra

i'P; '

~¥is the so-called Heisenberg alqebra.
(ii} The real Lie algebra with basis (h,pl. oo @ pn'ql' s qn,Z)
satisfying the bracket relations

= = .q.] = Z, the other brackets being
thop;1 =q; . [heq) =p, . [p;q;]

i
zero is a solvable Lie algebra, the so-called oscillator algesbra. Its

derived algebra is the Heisenberg algebra oF.

A Lie algebra is called simple is it has no nontrivial ideals. An
infinite dimensional Lie algebra & is called pro-finite dimensional and
. a .
filtered if there exists a sequence of ideals J&:JJS se such.lV.ﬁi is

finite-dimensional for all i and (\J{ = {o}.

Infinite-Dimensional Representations

Let g be a finite dimensional Lie algebra and G its associated

simply connected Lie group. Let Y4 be a complex Hilbert space (generally
infinite-dimensional). We are interested in representations of g by
means of linear operators on H with a common dense invariant domain D.
Let 7 denote this representation.

Similarly, we are also interested in representations of G as
bounded linear operators on H. Let T be such a representation. That is,
T : G * L(H) satisfies

Tlg,9,) = Tlgy) Tlg,) . 9. 9, €G.

The following problem of Group representation has been considered

57 Nelson and others. Given a representation T of g on H when does
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there exist a group representation (strongly continuous) T of G on H such
that

r(exp (tx)) = exp (tﬂ(x)) YxeG
Here exp (tn(x)) is the strongly continuous group generated by T(X) in

the sense that

:—; exp(tﬂ(x))"‘} = T(X)d YéeD

and exp (tX) is the exponential mapping, mapping the Lie algebra g into
the Lie group G.
Let Xl, sveta xd be a basis for g. A method for constructing T

locally is to define
r(exp(tlxl) e exp(tdsd)) = exp(tlﬂ(xl)) ... BXD (tdﬁ(xdﬂ

A sufficient condition for this to work is that the operator
identity

0

n
(3.1) exp(tA.)A, = Z L [aan.1™A.exp(ta,)
3L e, T j

holds for Aj = n(xj) e 1<3, j<a.

It is a well known fact, that many Lie algebra representations do
not extend to Group representations. An example is the representation
of the Heisenberg algebra consisting of three basis elements by the
operators {-ix, g; , =i} on Lz(ﬂg) with domain C; GR+) which does not
extend to a unitary representation (since essential self-adjointness
fails).

Although in filtering theory we are not interested in unitary group
representation, nevertheless these ideas will serve as a guide for

integrating the Lie algebras arising in filtering theory.

FILTRAGE NON LINEAIRE
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Résumé

On présente dans cet exposé le filtrage optimal polynomial réalisable
par fonctionnelles polynomiales 3 noyaux séparables. On démontre le lien
avec les processus a moments séparables. On montre que les systémes bilinéai-
res possédent un filtre polynomial réalisable pour tout degré k fixe.
On traite ici le cas quadratique pur.

Abstract

We introduce optimal polynomial filtering by means of realisable func-
tionals, with separable kernels. We exhibit the explicit link with proces-
ses which have separable moments. We show that bilinear systems possess a
realizable polynomial filter for any fixed degree k. We deal here thoroughly
with the pure quadratic case.
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