Integration with Respect to Operator-Valued Measures
with Applications te Quantum Estimation Theory (*) (**).
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Summary. — This paper is concerned with the development of amn integration theory with respect
to operator-valued measures which is required in the study of certain convexr optimization
problems. These convex optimization problems im their turn are rigorous formulations of
detection theory im a quantum communication context, which generalise classical (Bayesian)
detection theory. The integration theory which is developed in this paper is used in conjunc-
tion with convexr analysis in Banach spaces to give necessary and sufficient conditions of
optimality for this class of convex optimization problems.

1. — Introduction.

The problem of quantum measurement has received a great deal of attention in
recent years, both in the quantum physies literature and in the context of optical
communications. An account of these ideas may be found in DAVIES [1976] and
Horevo [1973]. The development of a theory of quantum estimation requires a
theory of integration with respect to operator-valued measures. Indeed, HorEVO
[1973] in his investigations on the Statistical Decision Theory for Quantum Systems
develops such a theory which, however, is more akin to Riemann Integration. The
objective of this paper is to develop a theory which is analogous to Lebesgue integra-
tion and which is natural in the context of quantum physics problems and show
how this ean be applied to quantum estimation problems. The theory that we
present has little overlap with the theory of integration with respect to vector
measures nor with the integration theory developed by THoMAs [1970].

We now explain how this theory is different from some of the known theories
of integration with respect to operator-valued measures. Let S be a locally compact
Hausdorff space with Borel sets 3. Let X, ¥ be Banach spaces with normed duals
X*, Y* (o8, X) denotes the Banach space of continuous X-valued functions
f: 8 = X which vanish at infinity (for every & >0, there is a compact set K c &8
such that |f(s)|< e for all s € S\K), with the supremum norm |fle= sup If(s)]. It
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is possible to identify every bounded linear map L: Cy(8, X) - Y with a represent-
ing measure m such that

(L.1) Lf = [m(as)s)
8

for every fe (o8, X). Here m is a finitely additive map m: B — L(X, Y**) (%)
with finite semivariation which satisfies:

1) for every z € Y*, m,: B — X* is a regular X*-valued Borel measure, where
m, is defined by

(1.2) mABye = g, m(E)xy, FEHeh relX;

2) the map #z — m, is econtinuous for the w* topologies on z& ¥* and m,e
€ Co(8, X)*,

The latter condition assures that the integral (1) has values in Y even though
the measure has values in L(X, Y**) rather than L(X, Y) (we identify ¥ as a sub-
space of ¥**). Under the above representation of maps L€ L(Cy(S, X), Y), the
maps for which L,: Co(8) — Y: g(+) = L(g(-)x) is weakly compact for every » e X
are precisely the maps whose representing measures have values in L(X, Y), not
just in L(X, Y**¥). In particular, if ¥ is reflexive or if ¥ is weakly complete or more
generally if Y has no subspace isomorphic to €y, then every map in L{C,(S, X), ¥)
is weakly compact and hence every L e L{C,(8, X), Y) has a representing measure
with values in I(X, Y).

We now develop some notation and terminology which will be needed. Let H
be a complex Hilbert space. “The real linear space of compact self-adjoint operators
Joi(H) with the operator norm is a Banach space whose dual is isometrically iso-
morphic to the real Banach space 7,(H) of self-adjoint trace-class operators with
the trace norm, i.e, X,(H)*= 7(H) under the duality

(A, By = tr(AB)<|A||B|, Aet,(H), Bek,H).

Here |$| = sup {|Bo[: p e H, |p|<1} = sup {tr AB: A€ v (H), |A],,<1} and |n|, is
the trace norm ¥ |4,/ << -+ co where A €7 (H) and {A;} are the eigenvalues of 4

K]
repeated according to multiplicity. The dual of 7,(H) with the traece norm is iso-
metrically isomorphie to the space of all linear bounded self-adjoint operators, i.e.
7,(H)* = L (H) under the duality

(A, By = tr (AB), Aen,(H), Bet,(H).

(*) L(X, ¥) denotes the Banach space of bounded linear operators from X to ¥.
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Moreover the orderings are compatible in the following sense. If ,(H),, v,(H),,
and £,(H), denote the closed convex cones of nonnegative definite operators in
3o (H), 7,(H), and £, (H) respectively, then

(Kol ) J* = v (H), and [v,(H),J*= L(H),

where the associated dual spaces are to be understood in the sense defined above.

In the context of quantum mechanical measures with values in L,(H), one can
identify every continuous linear map L: Cy(8) — £,(H) (here X =R, ¥ = £ (H ))
with a representing measure with values in £,(H) rather than in £,(H)**, using
fairly elementary arguments. Since Y = ,(H) is neither reflexive nor devoid of
subspaces isomorphic to C,, one might think at first sight this is incorrect. How-
ever, whereas in the usual approach it is assumed that the real-valued set function
zin{+)z is countably additive for we X and every ze Y*, we require that it be
countably additive only for z € X and 2€ Z = v,(H), where Z = 7,(H) is a predual
of ¥ = C,(H), and hence can represent all linear bounded maps L: Cy(8, X) - ¥
by measures with values in L(X, Y). In other words, by assuming that the measures
m: B — £,(H) are countably additive in the weak™® topology rather than the weak
topology (these are equivalent only when m has bounded variation), it is possible
to represent every bounded linear map L: Co(f) — L,(H) and not just the weakly
compact maps. This approach is generally applicable whenever Y is a dual space,
and in fact yields the usual results by imbedding ¥ in Y**; moreover it clearly
shows the relationships between various boundedness conditions on the representing
measures and the corresponding spaces of linear maps. But first we must define
what is meant by integration with respect to operator-valued measures. We shall
always take the underlying field of scalars to be the reals, although the results
extend immediately to the complex case.

2. — Additive set functions.

Throughout this section we assume that $ is the o-algebra of Borel sets of a
locally compact Hausdorff space 8, and X, Y are Banach spaces. Let m: B —
— (X, Y) be an additive set function, i.e. m(E,U E,) = m(E,) + m(E,) whenever
H,, B, ave disjoint sets in B. The semivariation of m is the map m: $ — K, defined by

m(H) = sup

where the supremum is taken over all finite collections of disjoint sets Hi, ..., B,
belonging to $ N E and a4, ..., », belonging to X,. By $ N E we mean the sub-o-
algebra {E'e $: E'c E} = {E’n E: Be B} and by X, we denote the closed unit .
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ball in X. The variation of m is the map |m|: $ — R, defined by

n
[m|(E) = sup 3 [m(E,)]

i=1
 where again the supremum is taken over all finite collections of disjoint sets in
BN E. The scalar semivariation of m is the map m: B — R, defined by

w

E a;m(E,)

i=1

m(E) = sup

where the supremum is taken over all finite collections of disjoint sets X, ..., B,
belonging to $ N F and a4, ..., a,€ R with |a;/<1. It should be noted that the
notion of semivariation depends on the spaces X and Y; in fact, if m: & - L(X, Y)
is taken to have values in L(R, L(X, Y)), I(X, ¥), (X, Y)**= L(L(X, Y)* R) re-
spectively then

3l

(2.1) = Mz, 1(x, 1)) <M = Mgz, ) <|M| = My rx, vy, 2) -

When necessary, we shall subseript the semivariation accordingly. By fa (3B, W)
we denote the space of all finitely additive maps m: $ — W where W is a veetor
space.

PRrOPOSITION 2.1. — If m efa (B, X*) then 7 = |m|. More generally, if m € fa(%,
*L(X, Y)) then for every ze Y* the finitely additive map zm: B — X* satisfies
m = |am|.

ProovF. — It is sufficient to consider the case Y = R, i.e. m € fa (H, X*). Clearly
m<|m|. Let Ee $ and let ¥, ..., B, be disjoint sets in BN E. Then

2 Im(B,)| = sup > m(B)x; = sup | 2 m(B;) x| <m(E).

wi€X, 2i€Xy

Taking the supremum over all disjoint E,e $ N E yields (m|(B)<m(E). O

We shall need some bagsic facts about variation and semivariation. Let X, Y
be normed spaces. A subset Z of Y* is a norming subset of Y* if sup {ey: z€ Z,
|¢]<1} = |y| for every ye Y.

ProPOSITION 2.2. — Let X, ¥ be normed spaces, m € fa ($, L(X, ¥)). If Z is a
norming subset of Y*, then

m(E) = sup |#m|(H), EcH

2€Z,2|<1

m(E) = sup sup |em()o[(E), FeH.

2€Z,|2]<1 2eX,|2[<1

Moreover |y*m(-)z|(E)< || |y*m|(E) < |z|- [y*|- |m|(E) for every z € X, y*e Y*, He 3.
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PrOOF. — Let {E,, ..., B,} be disjoint sets in BN ¥ and «,, ..., z,€ X;. Then

(2, é:lm(Ei)xi> = é em(By)w

#€Z;

Taking the supremum over {E;} and {#;} yields m(E) = [sm{(X). Similarly,

S am(B,)

=1

n n
= sup sup sup (z, > aim(E{)m> =sup > lem(E)x|
la:|<1 weX, 2€Z, i=1 2€X, i=1
2€Zy

sup
lasl <1

and taking the supremum over finite disjoint collections {E;} c $ N K yields m(E) =

!sup IS}lp [¢m(-)z|(E). It is straightforward to check the final statement of the
®]<1 [2]<1

theorem. O

PROPOSITION 2.3. — Let m € fa (B, L(X, Y)). Then m, M, and |m| are monotone
and finitely subadditive; |m| is finitely additive.

Proor. — It is immediate that #, m, |m| are monotone. Suppose E,, E,e B
and B;N E,= B, and let Fy, ..., F, be a finite collection of disjoint sets in H N
N (B,V B,). Then if |#,]<1,4=1,...,n, we have :

S (m(F.0 By) + m(F, 0 Byl <

i=1 N

< |SmF.n B 3 miF.n By <

() + W(E,) .

Taking the supremum over all disjoint F., ..., F,e B3N (B, U K,) yields m(E,V
U E,)<m(B,) -+ W(H,). Using (2.1) we immediately have W, [m| finitely subad-
ditive. Since |m|is always superadditive by its definition, |m| is finitely additive. .. O

3. — Integration with respect to additive set functions.

We now define integration with respect to additive set functions m: $ — L(X, ¥).
Let $ @ X denote the vector space of all X—valued measurable simple fune-
tions on §, that is all functions of the form f(s) zl yo, where {H, ..., B,}
is a ﬁmte disjoint measurable partition of 8, i.e. H,e 35 V@, ENE,=0 for i+#7j,
and U B,= 8. Then the integral f m(ds)f(s) is defined unambiguously (by finite

i=1 3



6 SanJoy K. MITTER - STEPHEN K. YoUNaG: Integration with, efc.

additivity) as
(3.1) f m(ds)f(s) = é (), |

N

We make $ ® X into a normed space under the uniform norm, defined for bounded
maps f: 8§ X by ‘

[flo= sup [f(s)] -
se§

Suppose now that # has finite semivariation, i.e. #(s) < --oco. From the defini-
tions it is clear that

(3.2) | et <m®)- i,

80 that fi—»fm(ds)f(s) is a bounded linear functional on (B® X, |'|»); in fact,
i S) = sup {‘fm(&s)f(s)[: flo<l, fe B® X} is the bound. Thus, if m(8) < J-cc it
is possible t0 extend the definition of the integral to the completion M(S, X} of
BV in the ||, norm. M(8, X) is called the space of totally B-measurable
X-valued functions on §; every such function is the uniform limit of $B-measurable
simple functions. For fe M(S, X) define '

(3.3) f m(ds)f(s) = lim | m(ds)fa(s)

where f,e $® X is an arbitrary sequence of simple functions which converge uni-

formly to f. The integral is well-defined sinee if {f,} is a Cauchy sequence in B X

then { f m(ds)in(s)} is Cauchy in Y by (8.2) and hence converges. Moreover if two
5

sequences {f»}, {gn} in BR X satisfy |g,— flo—0 and |fu— flo— 0 then

| @) tats)— [m@)g.06)| <) o= galo=>0
80

lim |m(ds)f.(s) = lim | m(ds)g.(s) .

Similarly, it is clear that (3.2) remains true for every fe M(S, X). More generally
it iy straightforward to verify that

(3.4) #i(E) = sup { [m(@s)1(6): 1 & (S, X), |flw<1, supp € E} .

ProprosITION 3.1. — (48, X) c M(S, X).
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Proor. — Every ¢(+) € 0,(8) is the uniform limit of simple real- va,lued Borel-
measurable funections, hence every function of the form f(s) Z g:s)e, = z 9:® x;

belongs to M(8, X), for g,€ Cy(S) and x,€ X. These functlons may be 1dent1ﬁed
with C(S)® X, which is dense in Cy(8, X) for the supremum norm (cf. TREVES
[1967], p. 448). Hence C4(S, X) = cl Co(8) ® X c M(8, X).

To summarize, if m € fa ($, L(X, Y¥)) has finite semivariation 7(8) < + oo then
[m(as) f(s) is well-defined for fe& (S, X) > Co(8, X), and in fact f - [m(ds)f(s) is a
8 By

bounded linear map from Cy(8, X) or M(S, X) into ¥. =

Now let Z be a Banach space and L a bounded linear map from Y to Z. If
m: $H — L(X, Y) is finitely additive and has finite semivariation then Im: B —
— L(X, Z) is also finitely additive and has finite semivariation W < |L|-m(8
For every simple function f € B & X it is easy to check that L f m(ds)f f Lm(ds)f(s )

By taking limits of uniformly convergent simple functions we have proved

PROPOSITION 3.2. — Let m € fa (B, L(X, Y)) and 7(8) < 4 co. Then Lm € fa (B,
I(X, Z) for every bounded linear L: ¥ — Z, with Zm(8)<< -+ co and

(3.5) Lfmds memds i(s) .

Since we will be considering measure representations of bounded linear operators
on Cy(8, X}, we shall require some notions of countable additivity and regularity.
Recall that a set function m: $ — W with values in a locally convex Hausdorff

space W is countably addiiive iff m( UE ) 2 m(H,) for every countable dlS}Olnt
n=1

sequence {,} in $. By the Pettis Theorem (ef DUBFORD-SCHWARTZ [1966]) count-
able additivity is equivalent to weak countable additivity, i.e. m: & — W is count-
able additive iff it is countably additive for the weak topology on W, that is iff
wm: $ — R is countably additive for every w*e W*. If W is a Banach space, we
denote by ca (B, W) the space of all countably additive maps m: $H — W; fabv (B,
W) and cabv (B, W) denote the spaces of finitely additive and eountably additive
maps m: B — W which have bounded variation |[m|(8)<< 4 co.

If W is a Banach space, a measure m € fa (B, W) is regular iff for every ¢ >0
and every Borel set E there is a compact set K c F and an open set G 2 F such
that |[m(F)| < ¢ whenever Fe BN (NK). The following theorem shows among
other things that regularity actually implies countable additivity when m has
bounded variation |m|(S)< -- oo (this latter condition is crueial). By rcabv (5, W)
we denote the space of all countably additive regular Borel measures m: B — W
which have bounded variation.

Let X, Z be Banach gpaces. We shall be mainly concerned with a speeial class
of L(X, Z*)-valued measures which we now define, Let 0($, L(X, Z*)) be the
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space of all m e fa (B, L(X, Z*)) such that {z, m(-)z) er cabv (B) for every x € X,
z € Z. Note that such measures m € M(B, L(X, Z*)) need not be countably additive
for the weak operator (equivalently, the strong operator) topology on IL(X, Z*),
since z¥*m(-)x need not belong to ca (B) for every x e X, z¥¥*e Z**,

The following theorem is very important in relating various countable additivity
and regularity conditions.

THEOREM 3.1. — Let S be a locally compact Hausdorff space with Borel sets 3.
Let X, Y be normed spaces, Z, a norming subset of Y* mefa (B, L(X, Y)). If
am(-)z: B — R is countably additive for every z € Z,, » € X then |m|(-) is countably
additive % — E,_. If zm(:)o: B — R is regular for every zeZ,, X, and if
Im|(8) < -+ oo, then |m|(-) ercabv (B, R,). If |m|(8) < 4 oo, then m(-) is count-
ably additive iff |m| is and m(-) is regular iff {m] is.

Proor. — Suppose zm(-)z € ca (B, B) for every z2€Z,,v€X. Let {4} be a
disjoint sequence in $. Let {B,, ..., B,} be a finite collection of disjoint Borel sub-

sets of U A,;. Then

=1

z” Im(B;)| = Zn m( A f\B,-) = Y sup ]z,-m([j A,N B,-)w,-l .
i=1 i=1 i=1 i=1 aeX, i=1
4€Z,

Since each z,m(-)x; is countably additive, we may continue with

n | oo . oo
= > sup |> a;m(A,NB)a; < 3 sup X |[m(d;N Bya|<
i=1 2;€6X, |i=1 i=1 a;eXy i=1
2€2, %567

mA0B) =3 3 40 B)l< 3 mlid).

<

j 1

M=
™Ms
N
D
sy

(2

Hence, taking the supremum over all disjoint {B;} clJ 4,, we have lml( UAi)<
=] i=1 i=1

< > Im|(4,). Since |m|is always countably superadditive, |m| is countably additive.
i=1

Now assume 2m(-)x is regular for every zeZ,, x € X, and |m|(8) < 4-co. Ob-

viously each #m(-)z has bounded variation since W(S)<{ -+ oo, hence zm(-)ov €

€ ca(B) by (DUNFORD-SCHWARTZ [1966], IT1.5.13) and 2m(-)» €7 cabv (B). We wish

to show that |m| is regular; we already know |m|e cabv ($B). Let Ec B, ¢ > 0. By

definition of |m|(E) there is a finite disjoint Borel partition {#,, ..., E,} of E such
that |m[(E) < |m(HE,)| -- /2. Hence there are z,,...,2,€ 7%, and ,,...,2,€ X,
i=1

|| <1, such that

m|(H) < izim(Ei)mi—l— g2 .

i=1
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Now each z,m(-)x; is regular, so there are compact K,c E, for which |z, m(E\K,),|
< ¢/2n, ¢ =1,...,n. Hence

im|(ENK) = |m|(B) — |m|(K) <

n 7
<Y em(B)z + g— 2m(B;N K)o, =
i=1 =1

= z zzm(Ez\Kz)xz+§ <
i=1
< &,

and we have shown that |m| is inner regular. Since [m|(s) < + oo, it is straight-
forward to show that |m|is outer regular. For if B € $, ¢ > 0 then there is a compact
K c S\E for which |m|{(S\F)< |m|(K) -+ ¢ and so for the open set G = S\K2> F
we have

m(@\B) = Im|(S\E) — |m|(K) < ¢ .
Finally, let us prove the last statement of the theorem. We assume m € fa (B,

L(X, Y)) and |m|(8)< 4 co. First suppose m(-) is countably additive. Then for
every disjoint sequence {4} in 3,

-0, so certainly

‘m(igAi) ——é:lm(Ai)

y*m( UAi)a:i— y*m(d) )z, —~0 for every y*e Y* x,e X
=1 i=1

and by what we just proved |m| is countably additive. Conversely, if [m| is count-
ably additive then for every disjoint sequence {4,} we have

(g 4= 2 mia

= (G < ) = ()= § it o

i=1

Similarly, if m is regular then every y*m(-)x is regular and by what we proved
already |m| is regular. Conversely, if |m| is regular it is easy to show that m is
regular. 0O

THEOREM 3.2. — Let S be a locally compact Hausdorff space with Borel sets 3.
Let X,Z be Banach spaces. There is an isometric isomorphism L <> m between
the bounded linear maps L: 0y(S) — L(X, Z*) and the finitely additive measures
m: B — L(X, Z*) for which zm(-)x €r cabv ($) for every ze X,zeZ. The cor-
respondence L «» m is given by

(3.6) Lg = [g(sym(ds),  ge C(s)
8
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where |L| = m(8); moreover, 2L(g)x :fg(s)zm(ds}x and [2L(-)z| = |em(-)|(8) for
reX,zeZ. S

REMARKS. — The measure m € fa (B, L(X Z*)) need have neither finite semi-
variation m(s) nor bounded variation |[m{(S). It is also clear that L(g)x = f g(sym(ds)x
and zL(g fg zm(ds), by Proposition 3

3

Proor. — Suppose L e L{C,(8), L(X, Z*)) is given. Then for every e X,2€Z
the map g — 2L(g)# is a bounded linear functional on Cy(8), so there is a unique
real valued regular Borel measure m,,: $ — R such that

(3.7 w—ff My 1(dS) .

Tor each Borel set B € B, define the map m(E): X — Z* by (z, m(E)») = m,(E).
It is easy to see that m(H): X — Z* is linear; moreover it is eontmuoub since

Im(B)|<m(8) = li111<p1 fem(+)@|(8) = [Qup [m.s(8) = [stl [RL(*)x| = |L].
lsl<1 M S EB

Thus m(E) e L(X, Z*) for E€ $ and mefa (B, L(X, Z*)) has finite scalar semi-
variation m(8) = |L|. Since m = mL(R 1(x, zv) I8 finite, the integral in (3.6) is well-
defined for g € 0(8) c M(8, R) and is a continuous linear map ¢ u—»fm (ds)g(s). Now
(8.7) and Proposition 3.2 imply that

2L(g)z = [am(ds)ag(s) = <z, [mds)g(s) o)
8 S

for every v e X, z € Z. Thus (8.6) follows.

Conversely suppose m € fa (B, L(X, Z*)) satisfies am(-)wer cabv (%) for every
veX,z€Z. First we must show that m has finite scalar semivariation mi8) < -+ oo.
Now- sup lem(B) x| < |om( - Yo|(S) < - oo for every # € X, z€ Z. Hence sucecessive ap-
phcatlons of the uniform boundedness theorem yields sup |m(B)x| << 4 co for every
ze X and su£ |m(E)| < 4+ oo, i.e. m is bounded. But then by Propoesition 2.2.

Ee. ’
n
w(8) = sup |em(*)@|(S) =sup sup 3 |em(H)z|=

[2]<1
|2]<1

<1

= sup sup XTem(B)w— X" zm(E)w =
lzllili B disi

=gup supem(UTE)z— am(U” B)a<
fz]| <1 Ei disi
l7] <1
< sup 2 sup gm(E)z| = 2 sup |m(H)| < + oo,
Eeh '

[m <1 Ee$H
jz]s1
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where 2" and U™ (27 and U™) are taken over those ¢ for which zm(H,)z> 0 (am(E,)z<
< 0). Thus 7m(s) is finite 5o (3.6) defines a bounded linear map L: 0(8) —~L(X, Z*). O

We now investigate a more restrictive class of bounded linear maps. For
L e L{0y(8), L{X, Z*)) define the (not necessarily finite) norm

w

| L] = sup | X L(g.)w
i=1
where the supremum is over all finite collections g1, ..., g,€ Co(8) and @y, ..., x,& X,

sueh that the g, have disjoint support.

THEOREM 3.3. — Let S be a locally compact Hausdorff space with Borel sets B.
Let X, Z be Banach spaces. There i3 an isemetric isomorphism ;<> m <> L, bet-
ween the linear maps IL;: Cy(8) - L(X, Z*%) with |L;| < -4 co; the measures m €
efa (B, L(X, Z*)) with finite semivariation m(8)< 4 co for which zm(-)z €7 cabv (B)
for every z€ Z, x € X; and the bounded linear maps L,: Co(8, X) — Z*, The cor-
respondence L, «>m <> I, is given by '

(3.8) Lg=[md)gls),  ge0uls)
8
(3.9) Lj =[m@)fs),  fe0uS,X)
S
(3.10) Lyg(-)z) = (Ing)z, ge0y8), veX.

Moreover under this correspondence || L,| = m(8) = |L,|; and 2L, € Cy(8, X)* is given
by zL,f :fzm(ds)f(s) where zm € reabv ($B, X¥) for every ze Z.
5

Proor, — From Theorem 3.2 we already have an isomorphism I; <> m; we must
show that |L,| = m(S) under this correspondence. We first show that || <@(8).
Suppose gy, ..., g€ Oy(s) have disjoint support with |g;le<1; @4, ..., 2,€ X With |z;|<
<1; and ¢2€ Z with [#|/<1. Then

am(ds)w,* g.(s) <

(& 3 Llg)a) =

I

>,

< [em(+)a;|(supp g:) <

Tivs

.

M=

[¢m|(supp g:)

I

<
i=1
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where the last stcp follows from Proposition 2.2. Since |zm| is subadditive by
Proposition 2.3, we have

n n
<zy 2 Ll(yz-)wf> < Izmi( U supp gi) < |zm|(8)
i=1 i=1
Taking the supremum over [¢|<1, we have, again by Proposition 2.2.

3 L)

x| < sup lem|(8) = m(S) .

|zl <1

Since this is true for all such collections {g,} and {z;}, |L| <#i(S). We now show
8)<|L|. Let ¢ >0 be arbitrary, and suppose X, ..., B, $ are disjoint, |2|<1,
le,|<1, ¢ =1,...,n By regula,rity of zm(-)x,, there is a compact K,c H, such that

lem ()| (B < —}— lem( e (K,), i=1,...,n.
Sinece the K, are disjoint, there are disjoint open sets &, K;. By Urysohn’s Lemma

there are continuous functions g, with compact support such that 1,,<9,<1g,.
Then

%zm(Ei)wi=

i=1

Ry z f () em(ds) s <

g,m+2f1 — 1, )(8)em(ds) @,

r4§nw:hw=

gzw—l—ZIzm (BNIK) <Zzllgtw+e<
1=1
< ZL(gi)wii +e<
i=1 '
< L[ +«.

Taking the supremum over |2|<1, finite disjoint collections {¥,}, |r,|<1 we get
8)<|L| + . Since & >0 was arbitrary m(8)<]L| and so m(8) = || L|.

It remains to show how the maps L,e L(C,(8, X), Z*) are related to L, and m.
Now given L, or equivalently m, it is immediate from the definition of the integral
(3.3) that (3.9) defines an L,e L{Cy(8, X), Z*) with |L,| = m(8) < -+ co. Conversely,
suppose L,e L(Cy(8, X), Z*) is given. Then (3.10) defines a bounded linear map
Ly: Oo(8) — L(X, Z*), with |L;|<|L,|; moreover it is easy to see that ||L,|<|L.|.
Of course, I, uniquely determines a measure mEdK;(\‘B L(X, Z*)) with m(8) =

= | L] < |L,| such that (3.8) holds. Now suppose 7(-) Z Ja € Co(8) ® X5 then

fmis) 1) _z w—ng(g( 2.) = Ly(f) .

[
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Hence (3.10) holds for f(-) e Cy(8) ® X, and since Co(8)® X is dense in C,(S, X)
we have

L= _sup |Lfl= swp |[m(ds)f(s))<

€0, (S)® el (S)®X
o<1 [flo<1

< sup | [m(a@s)(s)| = m(s)
feM(8,X) !

1w

Thus #(S) = |L,|.
Finally, it is immediate from Proposition 3.2 that zL,f = fzm(ds)f(s) for fe
N
e Cy(8, X),zeZ. We show that zmercabv (B, X*) for zeZ. Since |gm|(8)<
< [¢|-m(S) by Proposition 2.2, zm has bounded variation. Since for each x e X,

#m(-)x € rcabv ($B) we may apply Theorem (with ¥ = R) to get |#m| € reabv (B)
and zm € rcabv (B, X*), 0O

The following interesting corollary is immediate from |.L,] = |L,| in Theorem 3.3.

COROLLARY. — Let L,: Cy(S, X) — Y be linear and bounded, where X, Y are
Banach spaces and 8 is a locally compact Hausdorff space, Then

n
{L,| = sup Lz( Zgw()wz) ’
i=1
where the supremum is over all finite collections {gi, ..., g.} C Co(S) and all {x,, ...,

wy @,y € X such that {supp g} are disjoint and |g,je<1, |z|<1.

Proor. — Take Z = Y* and imbed ¥ in Z*= Y**. Then L,e L(Cy(8, X), Z*)
and the result follows from |I,| = |L,| in Theorem 3.3. O

We now consider a subspace of linear operators L,e L(C,(8, X), ¥) with even
stronger continuity properties, namely those which correspond to bounded linear
funectionals on C4(8, X @ Z); equivalently, we shall see that these maps correspond
to representing measures m € (B, L(X, Z*)) which have finite total variation
|m|(8) < -+ oo, so that m ercabv (B, L(X, Z*)). For L,e L{(y(8, X), ¥) we define
the (not necessarily finite) norm

NEll = sup 3 |Lu(f)|

{fi} i=

where the supremum is over all finite collections {f,,...,f,} of functions in
Co(8, X) having disjoint support and |[f;lo<1. In applying the definition to
L, e L(Cy(8), L(X, Z*)) = L(Cy(S, R), Y) with ¥ = L(X, Z*) we get

NEll = sup 3 11,(00)

{&:} i=
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where the supremum is over all finite collections {g,, ..., g.} of functions in Cy(S)
having disjoint support and |g,le<1.

Before proceeding, we should make a few remarks about tensor product spaces.
By X® Z we denote a tensor produet space of X and Z, which is the vector space

L]
of all finite linear combinations z a,2;® z; where a,e R, »,€ X, z,€ Z (of course,
i=1
a;, %, #; aTe not uniquely determined). There is a natural duality between X ® Z
and L{X, Z*) given by

% n
< S a2, 2, L> = 2 a;{2;, La;) .
i=1 i=1

Moreover the norm of L € L(X, Z*) as a linear functional on X ® Z is precisely its
usual operator norm |L| == Slllp {#z, Loy when X ® Z is made info a normed space
z{<1

FIES]

X @nZ under the tensor product norm sz defined by
n n
(%) = inf{z EAR AR Za:l@zz} , weX®Z.
=1 i=1

It is easy to see that m(x®2) = |x|-|2| for 2 e X,2€Z (the canonical injection
XQZ —~XQ®Z is continuous) and in fact x is the strongest norm on X @ Z with
this property. By X&«Z we denote the eompletion of X ®xZ for the » norm.
Every L e L(X, Z*) extends to a unique bounded linear functional on X @,,Z with

the same norm. X &« Z may be identified more concretely as infinite sums > a,4,® 2,

oo i=1
where #,—0 in X, 2;—0 in Z, and 3 |a,)<oo (ScHAEFFER [1971], II1.6.4) and
i=1

we identify (X ®.2)* with L(X, Z*¥) by
< z a7, 245 L> = z ;{25 Lavs) .
i=1 i=1

The following theorem provides an integral representation of Cy(S, X @,,Z)*.

THEOREM 3.4. — Let § be a Hausdorff locally compact space with Borel sets 3.
Let X, Z be Banach spaces. There is an isometric isomorphism L; <> m <> Ly« Ly
between the linear maps L;: Cy(8) — L(X, Z*) with [|L,|] < --co; the finitely ad-
ditive measures m: $ — L(X, Z*) with finite variation |m|(S)< --oco for which
zm (- )z €r cabv (B) for every z€ Z, x € X; the linear maps L,: 0y(S, X) — Z* with
e/l << 4- co; and the bounded linear functionals Ly: Og(8, X @n Z) — R. The cor-
respondence I <> m <> Ly« Ly iy given by

(B11) Ly =[mdgs),  ge0ys)
8
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(812) L= f m@)f(s),  fe0uS,X)
(3.13) Lyu —-f<u m(ds)>, we Oo(S, X BnZ)
(3.14) {7, (ng)m> = <%, Lz(g(")x» == La(g(')a'"@z) , 9€C(8), veX, zeZ.

Under this correspondence [| L[| = |m|(s) = || L.]l = |Ls|, and m ereabv (B, L(X, Z*)).

ProoOF, — From Theorem 3.3 we already have an isomorphism L, <> m <> L,;
we must show that the norms are carried over under this correspondence. As in
Theorem 3.2, we assume that L,<> m <> L, with | L] = 7i(s) = |L,| < + oco.

We first show [[ L]l < || L.l]. Now if {g1, ..., g.} C Co(8;) have disjoint support and
|| <1, then g,(-)x;€ Oy(8, X) have disjoint support with |g.(-)@,]e0<1, s0

'21 lLl(gi)wi[ = leLz(gi(')mi)|<l”L2I” .

Taking the supremum over |z;|<1 yields

ﬁ <|ILll, andhence [ILJ <L .

©.

Next we show || Lyl| < |m|(s). Letb fi, ..., f.€ Ox(S, X) have digjoint support and
1y eny 2€ Z With |2;]<1. Then

‘=i1 Zsz(fz) = ign:l fzzm(ds)f,(s) < ié |Z¢m|(Sllpp f’)
S

where the last inequality follows from (3.4) applied to 2;m e fa (%, X*). By Proposi-
tions 2.2 and 2.3 we now have

M=

z:Ly(f)) < )

k2

Ve

mi(supp ) = ml( U supp 1) <[mi(8)

%

Taking the supremum over |zz|<1 ylelds Z [Lyfi| < |m|(8), and over {f;} yields
(1 Zell < |m)(8

Now we show [m|(8) < || Lu]]l. Let ¢ > 0 be arbitrary, and suppose B, ..., B, B
are disjoint and |x;(<1, |2 <1, ¢ =1, ..., n. By regularity of z,m(-)xz;, there is a
compact H,c E,; such that

l;m(-) e |(H,) <~ —I—[zm e (K, 1=1,..,n.

2 — Annali di Matematica



16 S8angoy K. Mitrer - STEPHEN K. YOUNG: Integration with, eic.

Sinee the K, are disjoint, there are disjoint open sets G;> K,;. Urysohn’s Lemma
then quarantees the existence of continuous functions g; with ecompaet support wuch
that 1, <g,<1,. We have

En:zim(Ei) z CALIES ZJ 8)z;m(ds)x,

i=1 i=

<zle m—{—Zf e 8)z,m(ds)x;

< z 2ila(go)w: 4 Z [zam(+)@; | (ENK,) <
i=1 i1

< ;:1 [ngil +e<|| Ll + &

Taking the supremum over |z;|<1 and |¢;|<1 yields > |m(E,)|<||L|| + ¢, and the

supremum over all disjoint {E,, ..., H,} yields |m|(8)<[|Li]| + . Since ¢ was arbi-
trary, [m|(S)<||L.fl. We also notethat if |m|(S)< +co, then m ercabv (B, L(X, Z*))
by Theorem 3.1.

It remains to show how the maps Lye Cy(8, X @ Z)* are related to L, m, and
L,. Suppose L;e 0y(8, X ®nZ)* is given. Define L;: C(8) - L(X, Z*) by

&y Ly(g)w) = Ls(g(')m® Z) y 9€0,8),2eX, zeZ.

If G1y +-es 9n€ Co(8) have disjoint support with [g,|<1, and if |z,|<1, [2:/<1 then
12,Q 2,

<l and so

2. Ly(g:) e, = L(ZgI &, ®Z)<|L3[

i=1

fnge

1

Hence > |Lig:|<|L;| and ||L|<|Ls|. Conversely, let m correspond to ILi;
i=1

since |m|(8) = | LI <|Ls|< +oo we know that m ercabv (B, (X, Z%)) =
=reabv (B, (X @z Z)*). Let us define W= X®xZ. By Theorem 3.2 there is
an isometric isomorphism between maps Lye Co(S, W)* = L(Cy(8, W), R) and measures
mereabv (B, L(W, R)) = reabv (B, W¥*) = reabv ($, L(X, Z*)); under this correspon-
dence Lyu = f Cu(s), m(ds)> and |Ls| = |m|(s). Thus (3.13) holds and the theorem

is proved. E!

Thus, to summarize, we have shown that there is a continuous canonical injection
0o(8, X®ﬂz)* - L(Oo(‘s’ X), Z*) e L(Co(s)s LX, Z*))§

each of these spaces corresponds to opefator-valued measures m € A(B, L(X, Z*%))
which have finite variation |m|(s), finite semivariation 7(s), and finite scalar semi-
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variation m(s), respectively. By posing the theory in terms of measures with values
in an L(X, Z*) space rather than an L(X, Y) space, we have developed a natural
and complete representation of linear operators on C,(8, X) spaces. Moreover in
the cagse that Y is a dual space (without necessarily being reflexive), it is possible
to represent all bounded linear operators L e L(Cy(S, X), Y) by operator-valued
measures m € (B, L(X, ¥)) with values in L(X, Y) rather than in IL(X, ¥**);
this is important for the quantum applications we have in mind, where we would
like to represent L(Cy(8), L,(H)) operators by L,(H)-valued operator measures rather
than L (H)**-valued measures. We now give two examples to show how the usual
representation theorems follow as eorollaries by considering Y as a subspace of Y*¥,

CoROLLARY (DUNFORD-SCHWARTZ [1967], II1.19.5). ~ Let § be a locally eompact
Hausdorff space and X, Y Banach spaces. There is an isometric isomorphism bet-
ween bounded linear maps L: Co(8, X) — Y and finitely additive maps m: $ —
- L(X, Y*¥) with finite semivariation m(s) << + oo for which

1) y*m(-) € rcabv (B, X*) for every y*e Y*;

2) y*— y*m is continuous for the weak* topologies on Y*, rcabv (B, X¥) ~
~ Cy(8, X)*. This correspondence L« m is given by Lf =fm(ds)f(s) for fe (8, »),
and “|L| = m(8).

Proor., — Set Z = ¥* and consider Y as a norm-closed subspace of Z* An
element y** of Y** belongs to Y iff the linear functional y* - y**(y*) is continuous
for the w* topology on Y*. Hence the maps L e L(0y(8, X), ¥**) which correspond
to maps L e L{Cy(8, X), Y) are precisely the maps for which z ~— (z, Lf> are con-
tinuous in the w*-topology on Z = Y* for every f e Cy(8, X), or equivalently those
maps L for which # — L*z is continuous for the w* topologies on Z = ¥* and
Co(8, X)*. The results then follow directly from Theorem 3.3, where we note that
when L <> m,

Gy L#a) = <o Iy =[amids)f(s) . OO

S

COROLLARY (DOBRAKOV [1971], 2.2). ~ A bounded linear map L: Cy(8, X) - ¥
can be uniquely represented as

Lf = [m(@)f(s),  fe (8, X)
N

where m efa (B, L(X, Y)) has finite semivariation 7i(s) < -+ oo and satisfies y*m(-)z e
er cabv (B) for every we X, y*e€ Y, if and only if for every € X the bounded
linear operator L,: Co(S) — Y: g(-) — L(g(-)x) is weakly compact. In that case
|L| = m(s) and L*y* ig given by (L*y*)f :fy*m(ds)f(s) where y*m € rcabv (B, X¥)
for every y*e Y*, 5
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REMARK. — Suppose Y = Z* is a dual space. Then by Theorem 3.2 every
L e L(Cy(8, X), Y) has a representing measure m € (B, L(X, ¥)). What this Corol-
lary says is that the representing measure m actually satisfies y*m(-)x € recabv (B)
for every y*e Y* (and not just for every y* belonging to the canonical image of Z
in Z** = Y*), if and only if L, is weakly compact 0y(8) — Y for every z e X; i.e.
in this case we have (in our notation) m € G (B, L(X, XY**)) where Y is injected
into its bidual Y**,

Proor. — Again, let Z = Y* and define J: ¥ — Y** to be the canonical injec-
tion of Y into Y**=Z* The bounded linear operator L,: 0y(8) — Y is weakly
compact iff LX*: Oy(8)** — Y** has image L, Co(X)** which is a subset of JY
(DUNFORD-SCHWARTZ [1966], VI.4.2). First, suppose L, is weakly compact, so that
LY: 0y(8)¥* — JY for every «. Now the map A — A(H) is an element of (,(§)**
(where we have identified A € reabv (%)= 0o(8)*) for E e B, and

LY (A - AB)) = (2 > {2, m(B)x)) € T**

where m € M(B, L(X, Z*)) is the representing measure of JL: Co(8, X) — Y**, Since
L, is weakly compact, 2z — {2, m(E)x)> must actually belong to JY c Y**, that is
2> (2, m{B)x) is w* continuous and m(E)x € JY. Hence m has values in L(X,JY)
rather than just L(X, Y*¥).

Conversely if m € M(B, L(X, JY)( represents an operator L € L{Cy(8, X), Y) by

TLf = [m(@)f(s),

then the map L:: Y* — Co(S)* 27 cabv (B): 2 > (g, m(+)z)> is continuous for the
weak topology on Z = ¥* and the weak * topology on Co(8)*= 7 cabv (B) since
m(B)x € JY for every E € $, » € X. Hence by (DUNFORD-SCHWARTZ [1966], VI.4.7),
L, is weakly compact. 0O

4. — Integration of real-valued functions with respect to operator-valued measures.

In quantum mechanical measurement theory, it is nearly always the case that
physical quantities have values in a locally compact Hausdorff space S, e.g. &
subset of E*, The integration theory may be extended to more general measurable
spaces; but since for duality purposes we wish to interpret operator-valued meas-
ures on S as continuous linear maps, we ghall always assume that the parameter
space S is a locally compact space with the induced ¢-algebra of Borel sets, and that
the operator-valued measure is regular. In particular, if S is second countable then S
is countable at infinity (the one-point compactification 8 U {co} has a countable
neighborhood basis at co) and every complex Borel measure on § is regular; also S
is a complete separable metric space, 8o that the Baire sets and Borel gets coincide.
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Let H be a complex Hilbert space. A (self-adjoint) operator-valued regular Borel
measure on 8 is a map m: B — L (H) such that {(m(:)p|y> is a regular Borel meas-
ure on S for every ¢, y € H. In particular, since for a vector-valued measure count-
able additivity is equivalent to weak countable additivity [DS, IV.10.1], m(+)
is a (norm-) countably additive H-valued measure for every ¢ € H; hence whenever
{E,} is a countable collection of disjoint subsets in $B then

n=1

n=

where the sum is convergent in the strong operator topology. We denote by
Mo(B, L(H)) the real linear space of all operator-valued regular Borel measures on S.
We define scalar semivariation of m e M(%B, £,(H)) to be the norm

(4.1) m(8) = [Km(-)plo>|(s)

where |(m(-)p|p>| denotes the total variation measure of the real-valued Borel
measure B — (m(E)p|p>. The scalar semivariation is always finite, as proved in
Theorem 3.2 by the uniform boundedness theorem (see previous sections for alter-
native definitions of m(s); note that when m(-) is self-adjoint valued the identity
m(s) = sup sup |[{m(:)plyd|(s) reduces to (4.1)).
[pl<1 Jyl<t

A positive operator-valued regular Borel measure is a measure m € AL(B, £,(H))

which satisfies

m(E)>0, VEec3H,

where by m(E)>0 we mean m(E) belongs to the positive cone L (H), of all non-
negative-definite operators. A probability operator measure (POM) is a positive
operator-valued measure m € (B, L,(H )) which satisfies

m(8) = 1.

If m is a POM then every {m(-)p|p> is a probability measure on S and m(S) = 1.
In particular, a resolution of the identity is an m € M(B, £,(H)) which satisfies m(S) =
= I and m(E)m(F) = 0 whenever ¥ N F = @; it is then true that m(-) is projec-
tion-valued and satisfies

mENF)=mEmF), E,FecP (*.

(%) Proor. — First, m(-) is projection valued since by finite additivity
m(B) = m(B)ym(8) = m(E)[m(E) + m(S\E)] = m(B): + m(E)m(S\E),
and the last term is 0 since B (§\F) = 6. Moreover we have by finite additivity
m(E)m(F) = [m(E N F) + m(EF)]-[m(E N F) + m(F\E)] =
= m(EN F)2 4+ m(En F)m{F\E) + mEF)mE N F) - m(E\F)m(F\F),

where the last three terms are 0 since they have pairwise disjoint sets,
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We now consider integration of real-valued functions with respeet to operator-
valued measures. Basically, we identify the regular Borel operator-valued meas-
ures m € M(B, L,(H)) with the bounded linear operators L: Cy(8S) — L,(H), using
the integration theory of Section 3 to get a generalization of the Riesz Representa-
tion Theorem.

THEOREM 4.1. — Let 8 be a locally compact Hausdorff space with Borel sets 3.
Let H be a Hilbert space. There is an isometric isomorphism m <> L between the
operator-valued regular Borel measures m € A(B, £,(H)) and the bounded linear
maps L € L(Cy(8), £L,(H)). The correspondence m <> Lis given by

(4.2) L(g) —fg m(ds), g & Col8)

where the integral is well-defined for g9(*) e M(S) (bounded and‘to’nally measurable

maps g: 8 — R) and is convergent for the supremum norm on M(S). If m«s L,

then m(8) = |L| and <{I{g)p|y) =fg(s)<m(-)<p{zp>(ds) for every ¢, w € H. Moreover L
§

is positive {maps Cy(8), into £ (H),) iff m is a positive measure; L is positive and
L) =1 iff m is a POM; and L is an algebra homomorphism with L(1) = I iff m
is a resolution of the identity, in which case L is actually an isometric algebra
homomorphism of C,(8) onto a norm-closed subalgebra of £(H).

Proor. — The correspondence L <» m is immediate from Theorem 3.2. If m is a
positive measure, then (m(E)¢p|p) >0 for every Ee B and ¢ € H, so {L{g)plg) =
=—_fg(s)<m(-)<p|¢p>(ds)>0 whenever ¢>0, ¢ € H and L is positive. Conversely, if L

8

is positive then {m(-)p|p) is a positive real-valued measure for every ¢ € H, so
m(-+) is positive. Similarly, L is positive and L(1) = I iff m is a POM. It only
remains to verify the final statement of the theorem.

Suppose m(-) is a resolution of the identity. If g.(s ZaalE ) and g,(s8) =
= Z b;1,(s) are simple functions, where {&, ..., F,} and {Fl, ..., F,} are each finite

d1s301nt subcollections of %, then

[aymias): [aiomias) = 3

j=1k

a;bym(E;)ym(Fy) =

i
Ve
frae Tigs

a;bpym(E, N Fy) =
k

= f :(6)ga(5) m(ds) .

Hence ¢ f g(s)m{ds) is an algebra homomorphism from the algebra of simple func-
tions on 8 into £,(H). Moreover we show that the homomorphism is isometric on
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simple functions. Clearly

|Jots) mids) <T©)gla= lgle

n
Conversgely, for g = Z @;1, We may choose ¢, to be in the range of the projection
i=1 ‘

m(H;), with |p;] =1, to get

[ot0rm@)|> max fg)mias)-pip> —
ﬁﬁaxqzl“A(m(Ei)%l‘PD =
= max la,| = |gl..

Thus g t—»fg(s)m(ds) is isometric on simple functions. Since simple functions are
uniformly dense in M(S), it follows by taking limits of simple functions that
[3:(5)m(ds) [ga(s)m(ds) = [gs(s)gu(s)m(ds) and |[ga(s)m(ds)| = |s]e for every g, goe
M(8). Of course, the same is then true for g, g,€ 0o(S) c M(S). Since Cy(8) is
complete, it follows that L is an isometric isomorphism of Cy(8) onto a closed sub-
algebra of £ (H).
Now assume that L is an algebra homomorphism and L(1) = I. Clearly m(8) =
= L(1) = I. Since L(g?) = L(g)*>0 for every g € Co(S), L and hence m are positive.
Let

Mlz{geM(S):J.g m(ds) fh m{ds) —fg m(ds) for every he Co(8 )}

Then M, contains Cy(S). Now if gne M(8) is a uniformly bounded sequence which
conver ges pointwise to g, then f g.(8)m(ds) converges in the weak operator topology
to f go(8)m(ds) by the dominated eonvergence theorem applied to each of the regular
Borel measures {m(-)ply), ¢, p € H (the integrals actually converge for the norm
topology on £,(H) whenever |g,— golo—0). Hence M, is closed under pointwise
convergence of uniformly bounded sequences, and so equals all of M(S) by regu-
larity. Similarly, let

M,= {heM(S): fg( m(ds) fh m(ds) fg m(ds) for every geM(S)}

Then M, contains Cy(8) and must therefore equal all of M(8). It is now immediate
that whenever E, F' are disjoint sets in 3 then

m(F) f] am- fl dm_ﬁmm —0.

Thus m is a resolution of the identity. O
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REMARK. — Since every real-linear map from a real-linear subspace of a complex
space into another real-linear subspace of a complex space corresponds to a unique
« Hermitian » complex-linear map on the complex linear spaces, we could just as
easily identify the (self-adjoint) operator-valued regular measures AG(%, £,(H)) with
the eomplex-linear maps L: Cy(S, C) — C(H) which satisfy

Lig) = L@*, ge0y8,C).

5. — Integration of 7 (H)-valued functions.

We now consider £(H) as a subspace of the « operations» L{z(H), 7(H)), that
is, bounded linear maps from v(H) into ¢(H). This is possible because if 4 € 7(H)
and BeC(H) then AB and BA belong to 7(H) and

|AB|,<|4]:|B]
(6.1) |BA|, < |4].|B|
tr (AB) = tr (B4) .

Then evéry B ef(H) defines a bounded linear function L,: ©(H) — 7(H) by

LB(A) = AB, Ae T(H)

with [B| = |L,|. In particular, A > tr AB defines a continuous (complex-) linear
functional on A € 7(H), and in faet every linear functional in 7(H)* is of this form
for some B e L(H). We note that if 4 and B are selfadjoint then tr AB is real
(although it is not necessarily true that AB is self-adjoint unless AB = BA). Thus,
it is possible to identify the space 7,(H)* of real-linear continuous functionals on
7(H) with €,(H), again under the pairing (4, B> = tr AB, A et (H), BeL(H).
For our purposes we shall be especially interested in this latter duality between
the spaces 7,(H) and £, (H), which we ghall use later to formulate a dual preblem
for the quantum estimation situation. Flowever, we will also need to consider £.(H)
as a subspace of L(v(H), v(H)) so that we may integrate 7,(H)-valued functions
on S with respect to £,(H)-valued operator measures to get an element of 7(H).

Suppose m € M(B, £,(H)) is an operator-valued regular Borel measure, and
f: 8 = 7,(H) is a simple function with finite range of the form

(s) =

i

1g(s)e;

(2

where p,€ 7,(H) and H; are disjoint sets in B, that is fe B R v.(H). Then we may



Sangoy K. MITTER - STEPHEN K. YOUNG: Integration with, ele. 23

unambiguously (by finite additivity of m) define the integral

ff ds=§:

The question, of course, is to what class of functions can we properly extend the
deﬁnition of the integral? Now ¢f m has finite total variation |m/|(s), then the map
f— f f(s)m(ds) is continuous for the supremum norm |f|,= sup IH(s)|, on BR 7 (H),

50 that by continuity the integral map extends to a continuous linear map from
the closure M(S, 7,(H )) of B v (H) with the |-|, norm into z(H). In particular,
the integral f f(s)ym(ds) is well-defined (as the limit of the integrals of uniformly

convergent snnple functions) for every bounded and continuous funection f: S — 7,(H).
Unfortunately, it is not the case that an arbitrary POM m has finite total variation.,
Since we wish to consider general quantum measurement processes as represented
by POM’s m (in particular, resolutions of the identity), we can only assume that m
has finite scalar semivariation m(8) << -+ co. Hence we must put stronger restric-
tions on the clags of functions which we integrate.

We may consider every m € A(B, L,(H)) as an element of .M)(\‘B, L{=(H), r(H)))
in the obvious way: for He B, p € v(H) we putb

m(B) () = om(E) .

Moreover, the scalar semivariation of m as an element of M(B, £,(H)) is the same
as the sealar semivariation of m as an element of J(;(ﬂ&, L(z(H), ©(H ))), since the
norm of B € £,(H) is the same as the norm of B as the map ¢ — ¢B in £(v(H), 7(H)).
By the representation Theorem 3.2 we may uniquely identify m e M(B, L(H))C
C A6(B, L(7(H), 7(H))) with a linear operator L e £{Cy(8), £,(H)) c £(Cu(8), L(z(H),
T(H))). Now it is well-known that for Banach spaces X, Y, Z we may identify
(TrEVES [1967], T11.43.12)

(X BT, 2)=p(X, Y; 2)= (X, LT, Z))

where X ®» Y denotes the completion of the tensor product space X ® Y for the
projective tensor product norm

fo=int{ 3ol -f: = S2@3), 1eX@T;
i=1 i=1

p(X, Y; Z) denotes the space of continuous bilinear forms B: X® ¥ —Z with
norm

[Blsx,v; = sup sup |B(x, y)|;

lef<1 vl
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and L(X, £(Y, Z)) of course denotes the space of continuous linear maps L,: X —
- (X, Z) with norm

| Lal(x, v, ) = [S}Lpl |Lowle(y, 2) -

The identification L;<> B <> L, is given by
Li{z®yYy) = Blx, y) = L(@)y .
In our case we take X = M(S8), Y = Z = 7(H) to identify
(5.2) £(M(8) B v(H), v(H)) 2 £(M(8), L(v(H), w(H))) .

Since the map ¢ ng(s)m(ds) is continuous from M(S) into £,(H)c £(z(H), ©(H))
for every m € M(B, £,(H)), we see that we may identify m with a continuous linear
map fr—»ff dm for fe M(S) ’@M(H). Clearly if fe M(S)® t(H), that is if

for g,e M(8) and g,e 7(H), then

[tsmias) = X o, fa(s1mias).
5 i=1

Moreover the map f f f(s)m(ds) is continuous and linear for the |-|s-norm on
5

M(8)® t(H), so we may extend the definition of the integral to elements of the
completion M(8) R« t(H) by setting

f fm(ds) = lim f f.(s) m(ds)

where f,e M(S8)® ©(H) and f,—>f in the ||s-norm. In the section which follows
we prove that the completions M(8)Xx7t(H) and Co(8) Xz v(H) may be identified
with subspaces of M(S, 7(H)) and C,(8, T(H)) respectively, i.e. we can treat ele-
ments f of M(S)@nT(H ) a8 totally measurable functions f: § — t{H). We shall
show that under suitable conditions the maps f: 8 — 7(H) we are interested in for

quantum estimation problems do belong to C4(8) &= 7,(H), and hence are integrable
against arbitrary operator-valued measures m € A(B, 7,(H)).

THEOREM 5.1. — Let S be a locally compact Hausdorff space with Borel sets 3.
Let H be a Hilbert space. Thereis an isometricisomorphism L;«>m <« L, between the
bounded linear maps L, : Co(8) Qut(H) — v(H ), the operator-valued regular Borel mea-
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sures m E.JK;(.‘B, L(z(H), T(H) )), and the bounded linear maps L,: Co(S) —£(z(H), T(H)).
The correspondence L, <> m <> L, is given by the relations

ff m(ds),  feCulS) Bar(H)

Lifgle = L —efg mds), geColS), ¢ € v(H)

and under this correspondence |L,| = (s} = |L,|. Moreover the integral f f(s)

is well-defined for every fe M(S On 7(H) and the map f f f(sym(ds) is bounded
and linear from M (S )®n1( ) into z(H).

PRrOOF. — From Theorem 6.1 of section 6 (see next section), we may identify
M(8) @,,T(H), and hence Cy(S) @nt(H), as a subspace of the totally measurable
(that is, uniform limits of simple functions) functions f: § — 7(H). The results then
follow from Theorem 3.2 and the isometrie isomorphism

£(Co(8) R v(H), 7(H)) 22 £(Co(S), L((H), 7(H)))

a8 in (5.2). We note that by a ﬁ(r(H ), ©(H))-valued regular Borel measure we mean a
map m: B — £(v(H), v(H)) for which tr Cm(-)p is a complex regular Borel meas-
ure for every p € 7(H), C € X(H), where in the application of Theorem 3.2 we have
taken X = ¢(H), Z = X(H), Z*= v(H). In particular this is satisfied for every
me M(B, C(H)). O

COROLLARY 5.1. — If m € (B, £,(H)) then the integral f f(s)ym(ds) is well-defined
for every fe M(S) ®n z(H).

REMARK. — It should be emphasized that the |- |[z-norm is strictly stronger than
the supremum norm |f|e== sup |f(s)l,,. Hence, if f,, f € M(8) R~ v(H) satisfy fals) —
— f(s) unlformly, it is not necessarily true that |f,— fl»— 0 or that f fo(8)m(ds) —

-»ff

COROLLARY B5.2. — M(8)&~7(H) is a subspace of M(8, 7(H)).

6. — A result in tensor product spaces.

The purpose of this section is to show that we may identify the tensor product
space M(8) ®n 7,(H) with a subspace of the totally measurable functions f: 8 —
—> 7,(H) in a well-defined way. The reason why this is important is that the func-
tions fe M( )6.717 (H) are those for which we may legitimately define an integral
f f(s)m(ds) for arbitrary operator-valued measures m € M( B, L,(H)), since f — f f(s)ym(ds)
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is a continuous linear map from M(S)@nr(H) into 7(H). In particular, it is ob-
vious that C,(8)® t,(H) may be identified with a subspace of continnous functions
f: 8 — 7, (H) in a well-defined way, just as it is obvious how to define the integral

{f(s)m(ds) for finite linear combinations f(s) zg, 8)p;€ Co(S)® 7,(H). What is
8
not obvious is that the completion of Cy(S)® -cs(H ) in the tensor product norm =

may be identified with a subspace of continuous functions f: § — 7,(H).
Before proceeding, we review some bagic facts about tensor product spaces.
Let X, Z be normed spaces. By X® Z we denote a tensor product space of X and

Z, which is the vector space of all linear finite combinations z a,2;X) #; where
§e=1
a,e R, v;e X, 2,6 Z (of course, a,, 2;, 2; are not uniquely determined). There is a

natural duality between X & Z and £(X, Z*) given by
< 2 6,2, 25, L> = ¥ a;{2;, La;) .
i=1 j=1

Moreover the norm of I e £(X, Z*) as a linear functional on X ® Z is precisely its

usual operator norm |L| = [s1[1p l51'110 {2, Lwy when X® Z is made into a normed
z|<1 [zi<1

space X X»Z under the fensor product norm |-\ defined by
n n
o=t {3 o el f = S0@2), feX@2z.
j=1 i=1

It is easy to see that |[z®=z|_ = [»|-|2| for xe X, 2e€Z (the canonical injection
XXZ —-X®Z is continuous with norm 1) and in fact |- |~ is the strongest norm on
X & Z with this property. By X &QnZ we denote the completion of X ®~Z for the
|*|]=-norm. Every Le (X, Z*) extends to a unique bounded linear functional on
X R Z with the same norm as its operator norm, so that we identify (X QnZ)*
~ (X, Z*). The space X QaZ may be identified more eoncretely as all infinite
sums Zam ®#; where z,—>0 in X, 2,—~0 in Z, and z[a | < 4+ oo (SCHAEFFER
=

i=1

[1971], I11.6.4), and the pairing between X®=Z and 51(3( Z*) by
< z a;2; X 2, L> =3 a;{%;, Lx;) .
i=1 i=1

A second important topology on X & Z is the e-topology, with norm

n

f a;{;y 22, % .

Y a,#:,® %) = max max
i= s ler<1 |el<1|i=1
It is easy to see that ||, is & cross-norm, i.e. [® 2|, = |z|-|2|, and that |-|.<|-|,,

i,e, the n-topology is finer than the e-topology. We denote by X®,Z the tensor
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product space X ® Z with the g-norm, and by X @EZ the completion of X ® Z in
the ¢-norm. Now the canonical injection of X O Z into X ®EZ ig continuous (with
norm 1 and dense image); this induces a canonical continuous map X @nZ —-X ®5Z-
It is not known, in general, whether this map is one-to-one. In the case that X, Z
are Hilbert spaces we may identify X @,,Z with the nuclear or trace-class maps
(X% Z) and X@EZ with the compact operators Jo(X*, Z), and it is well known
that the eanonical map X Q«Z — X &), Z is one-to-one (cf. TREVES [1967], II1.38.4).
We are interested in the case that X = 0y(8) and Z = 7,(H); we may then identify
0o(8) Qe 1o(H) with Co( S, ©,(H)) (since the |-]e is precisely the [-], norm when
0o(8) ® 7,(H) is identified with a subspace of Co(8, 7,(H)), and Co(8) ® v,(H) is dense
in Cy(8, 7,(H))) and we would like to be able to consider 0y(8)@a7,(H) as a sub-
space of Cy(S, 7,(H)). Similarly we want to consider M (S) Qnt(H) as a subspace
of M(8, T(H)).

THEOREM 6.1. — Let X be a Banach space and H a Hilbert space. Then the
canonical mapping of X @n 7(H) into X @e 7(H) is one-to-one,

ProoF. — It suffices to show that the adjoint of the mapping in question has
weak * dense image in (X Qqv(H))*~ £(X, £(H)), where we have identified v(H)*
with £(H). Note that the adjoint is one-to-one, since the image of the canonical
mapping is clearly dense. What we must show is that the imbedding of (X Re T(H))*,
the so-called integral mappings X — £(H)~~ 7(H)*, into £(X, £(H)) has weak * dense
image. Of course, the set of linear continuous maps L,: X — L£(H) with finite
dimensional image belongs to the integral mappings (X @ET(H ))¥; we shall actually
show that these finite-rank operators are weak* dense in L(X, £(H)). We therefore
need to prove that for every fe (X ®av(H)), Le (X, L(H)), ¢ >0 there is an I,
in £(X, £(H)) with finite rank such that |(f, L — L,»| < &. Now f has the representation

(6.1) = § a;0560 25
i=1

with ¥ |a,) < 4 oo, @;—>0 in X, and #,—0 in 7(H) (SCHAEFFER [1971], TIL6.4),
and =%

(6.2) Ly L— Loy = 3 a,<;, (L— Lo)a;) .

i=1
The lemma which follows proves the following fact: to every compact subset K
of X and every 0-neighborhood V of £(H), there is a continuous linear map Ly: X —
— C(H) with finite rank such that (L — L,)(X) c V. Using the representation (6.1),

we take K = {w,}72, U {0}and V={y:, ¥,,...}° ¢/ 2, |a;]. Wethenhave |(f, L —L|[<e

iJi=1

as desired. O i=1

The lemma required for the above proof, which we give below, basically amounts
to showing that Z* = L(H) satisfies the approwimation property, that is for every
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Banach space X the finite rank operators are dense in £(X, Z*) for the topology
of uniform convergence on compact subsets of X. It is not known whether every
locally convex space satisfies the approximation property; this question (as in the
present situation) is closely related to when the canonical mapping X @nZ N €/
is one-to-one.

LEMMA 6.1. — Tet X be a Banach space, H. a Hilbert space. For every
Let(X, £(H)), every compact subset K of X, and every 0-neighborhood V in £(H)
there is a continuous linear map L,: X — £L(H) with finite rank such that

(L—L)E)c V.

PROOF. — Let P, be projections in H with P,}I, where I is the identity operator
on H (e.g. take any complete orthonormal basis {g;, j€J} for H; let N be the
family of all finite subsets of J, directed by set inclusion; and for n e N define P, to
be the projection operator P,(p) = > {p|p;>p; for gveH). Suppose Le (X, L(H)).

ien
Then P,Lef(X,C(H)) has finite rank and converges pointwise to I, since
(P,L)(z) = P,(Lx) - Lo. Moreover {P,L}is uniformly bounded, since |P,L|< |P,|-
-|L| = |L|. Thus, by the Banach-Steinhaus Theorem or by the Arzela-Ascoli The-
orem the convergence P,L — L is uniform on compact sets. This means that for
every 0-neighborhood V in £(H) and every compact subset K of X, it is true that
for n sufficiently large

(LHP,L)(E)c V. o

CoROLLARY 6.2, — Let S be a locally compact Hausdorff space, H a Hilbert
space. The canonical mapping Co(8) R 7(H) — Co(8, (H)) is one-to-one, and the
canonical mapping M (S) R« v(H) — M(8, o(H )) is one-to-one.

Proo¥, — This follows from the previous theorem and the fact that CyS) @.sZ
may be identified with Cy(S, Z) with the supremum norm, for Z a Banach space.
Similarly M(8)ReZ = M(S, Z) with the supremum norm. [

REMARK. ~ In Theorem 3.4, we explicitly identified (Cy(S)&at(H))* = £(Cy(8),
L(H)) and (Cy(8) Qe (H))* = Cy(S, 7(H))* with the measures m € AL(B, £(H)) hav-
ing finite semivariation and finite total variation, respectively.

7. — Quantum estimation theory.

7.1. Introduction.

The integration theory developed in the previous sections is needed in studying
the problem of Quantum Estimation Theory. We now develop estimation theory
for quantum systems. ‘
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In the classical formulation of Bayesian estimation theory it is desired to estimate
the unknown value of a random parameter s € § based on observation of a random
variable whose probability distribution depends on the value s. The procedure for
determining an estimated parameter value s, as a function of the experimental ob-
servation, represents a decision strategy; the problem is to find the optimal decision
strategy.

In the quantum formulation of the estimation problem, each parameter se S
corresponds to a state o(s) of the quantum system. The aim is to estimate the
value of s by performing a measurement on the quantum system. However, the
gquantum situation precludes exhaustive measurements of the system. This contrasts
with the classical situation, where it is possible in principle to measure all relevant
variables determining the state of the system and to specify meaningful probability
density functions for the resulting values. For the quantum estimation problem
it is necessary to specify not only the best procedure for processing experimental
data, but also what o measure in the first place. Hence the quantum decision
problem is to determine an optimal measurement procedure, or, in mathematical
terms, to determine the optimal probability operator measure corresponding to a
measurement procedure.

We now formulate the quantum estimation problem. Let H be a separable
complex Hilbert space corresponding to the physiecal variables of the system under
consideration. Let § be a parameter space, with measurable sets $. Each se S
specifies a state o(s) of the quantum system, i.e. every p(s) is a nonnegative-definite
selfadjoint trace-class operator on H with trace 1. A general decision strategy is
determined by a measurement process m(-), where m: $ — L (H) is a positive oper-
ator-valued measure (POM) on the measurable space (8, 3), m(H)e £,(H), is a
positive selfadjoint bounded linear operator on H for every Fe B, m(8) = I, and
m(-) is ecountably additive for the weak operator topology on £ (H). The measure-
ment process yields an estimate of the unknown parameter; for a given value s of
the parameter and a given measurable set # € $B, the probability that the estimated
value § lies in ¥ is given by

(1.1) Pr {§e B|s} = tr [o(s)m(B)].

Finally, we assume that there is a cost function ¢(s, §) which specifies the relative
cost of an estimate § when the true value of the parameter is s.

For a specified decision procedure corresponding to the POM m(-), the risk
function is the conditional expected cost given the parameter value s, i.e,

(7.2) Ro(s) = tr [@(s)fc(s, t)m(dt)] .
8

If now g is a probability measure on (8, $) which specifies a prior distribution for



30 Sanjyovy K. MrttER - STEPHEN K. YoUNG: Integration with, etc.

the parameter value s, the Bayes cost is the posterior expected eost

(7.3) Rn= f Ron(s)p(ds) .
S B

The quantum estimation problem is to find a POM m(-) for which the Bayes expected
cost B, 18 minimum.
A formal interchange of the order of integration yields

(7.4) R, = tr f #(s)m(ds)
I

where f(s) = f o(t, 8)p(f)u(dt). Thus, formally at least, the problem is to minimize
S

the linear functional (7.4) over all POM’s m(-) on (8, $). We shall apply duality
theory for optimization problems to prove existence of a solution and to determine
necessary and sufficient conditions for a decision strategy to be optimal, much as
in the detection problem with a finite number of hypotheses (a special case of the
estimation problem where § is a finite set). Of course we must first rigorously define
what is meant by an integral of the form (7.4); note that both the integrand and
the measure are operator-valued, We must then show the equivalence of (7.3) and
(7.4); this entails proving a Fubini-type theorem for operator-valued measures.
Finally, we must identify an appropriate dual space for POM’s consistent with the
linear functional (7.4) so that a dual problem can be formulated.

Before proceeding, we summarize the results in an informal way to be made
precise later. Essentially, we shall see that there is always an optimal solution, and
that necessary and sufficient conditions for a POM m to be opfimal are

ff(s)m(ds)( f(t) for every teS§.
8 .

It then turns out that ff(s)m(ds) belongs to T (H) (that is, selfadjoint) and the
&

minimum Bayes posterior expected cost is

R, = tr f Fs)m(ds) .
S

1.2. A Fubini theorem for the Bayes posterior expecied cost.

In the guantum estimation problem, a decision strategy corresponds to a proba-
bility operator measure m € A(B, L,(H)) with posterior expected cost

R, = f tr [g(s) f o, s)m(dt)] ()
S 8
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where for each s, o(s) specifies a state of the quantum system, C(¢, s) is a cost func-
tion, and u is a prior probability measure on S. We would like to show that the
order of integration can be interchanged to yield

R, = tr ff(s)m(ds)
8

where

fe) =[ott, syawuan

8

is a map f: 8 — v,(H) that belongs to the space M(S) Qx T(H) of functions integrable
against operator-valued measures.

Let (8, B, u) be a finite nonnegative measure space, X a Banach space. A fune-
tion f: 8 — X is measurable iff there is a sequence {f,} of simple measurable func-
tions converging pointwise to f, i.e. f,(s) — f(s) for every se 8. A useful criterion
for measurability is the following [DUNFORD-SCHWARTZ (1966), I11.6.9]: { is meas-
urable if it is separably-valued and for every open subset V of X, f4(V)e $B. In
particular, every fe Cy(8, X) is measurable, when § is a locally compaet Hausdorft
space with Borel sets $. A function f: 8 — X is integrable iff it is measurable and
f [f(s)]- pu(ds) << 4 oo, in which case the integral f f(s8)u(ds) is well-defined as Boch-
K 5

ner’s integral; we denote by L,(8, 3, u; X) the space of all integrable funections
f: 8 — X, a normed space under the I, norm |7‘|1=f{f(s)]u(ds). The uniform norm
8

|-]= on funetions f: § — X is defined by |flo= sup If(s)]; M(S, X) denotes the Ba-
s€ )
nach space of all uniform limits of simple X-valued functions, with norm ||y, i.e.
M (8, X) is the closure of the simple X-valued functions with the uniform norm.
We abbreviate M(S, R) to M(S).
ProOPOSITION 7.1. — Let S be a locally compact Hausdorff space with Borel sets

B, p a probability measure on 8, and H a Hilbert space. Suppose g: 8 — 7,(H)
belongs to M(S, 7,(H)), and C: SX8 — R is a real-valued map satisfying

t > 0(t,0) € Ln(8, B, u; M(8)).

Then for every sed, f(s) is well-defined as an element of 7,(H) by the Bochner
integral

(7.5) fs) =[0tt, 9)o(tyu(ar;
8

moreover fe M(S) ®ﬂ 7,(H) and for every operator-valued measure m € AC(B, L,(H)),

3 ~ dnnali di Malematica
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we have

(1.6) [16ym(as) =] Q(t)[ [ott, ymas)|war) .

8 S 8

Moreover if t > C(¢,-) in fact belongs to Li(8, B, u; Co(S)) then fe OO(S)@:: 7,(H).

PROOF. — Since ¢ +» C({,-) € Ly(8, B, u; M(8)), for each n there is a simple fune-
tion Cne L8, B, u; M(S)) such that

@) [10t) = 0t eptan < .
) |

Each simple function €, is of the form

ka
Oulty 8) = 3 gm(s)1 _(2)
k=1 »

where E, i, ..., B, are disjoint subsets of $ and g, ..., gn:, belong to M(8) (in
the case that ¢~ O(t,-), Li(8, B, u; Co(8)) we take gu, ..., gnr, in Cy(8)). Since
o€ M(8, v(H)), for each n there is a simple measurable function g,: 8 — 7,(H)
such that

1
(7.8) sup lo® — ex(t)] <.
We may assume, by replacing each set E,, with a disjoint subpartition corresponding
to the finite number of values taken on by ¢,., that each g, is in fact of the form

kn
oalt) = 2, Onxlg (1) .
k=1
Define f,: 8§ — 7.(H) by
fals) = [Oulty 8)eultipiat) =

S
kn

= Z gnk(s)gnk,u(Enk) .

k=1

Of course, each f, belongs to M(S)® 7.,(H). We shall show that {f,} is a Cauchy

sequence for the || norm on M(8)® 7,(H), and that f.(s) — f(s) for every seS§;

since the |- |»-limit of the sequence f, is a unique function by Theorem 6.1, we see

that f is the |-|s-limit of {f,} and hence f belongs to the completion I (S) R Ts(H).
We calculate an upper bound for |fu,:— fa|,. Now

knrs kn .

frsa(8) — fa(8) = z z {gn+1,;'(3)[9n+1,j— Qn,k] + [gn+1,,-(3) —-gn,k(S)] Qn,k},u(En-}-l,jn En,k)

i=1k=1
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and hence

(7.9) lfﬂ+1“‘fnl:r<
kniy Fkn

<X > {lg"+1,f[°°' 0ns1,~— Qu,ply F [9nsa,i— G oo l@’ﬂkltr}lu(E"+1,i NE,;).

i=1 k=1

Suppose E, .. ,;N B, 7 P, i.e. there exists a &€ B,y ;N H,p. Then from (7.8) we
have

1 1 1
9ntl + ;,}Tz< nontL "

’Qn+1,i"‘ On, kltr\ lQnH,a"” Q ltr -+ [Qn B (to)]tr< W

Thus, the first half of the summation in (7.6) is bounded above by

1 knta kn

w55 2, 2 st s Ho) = o f [Cnalt lw,u(dt)

ESiervert 72«2""1 ” 0n+1”1\

37( + 1¢])

where by |C], we mean the norm of ¢ — C(t,-) as a element of L,(S, B, u; M (8)),
and the last inequality follows from (7.7). Similarly the second half of the summa-
tion is bounded above by

kn+y kn
”9’@ + 1) : 21 kzl lgn+1,f—‘ g’n,k!oo"u(En-{-l,:in B, =
i<y =

— (ol 1)+ Capa— Gl (lglet 1)+~

nIn—1

where again the last inequality follows since |0,— C|;<< 1/n2® by (7.7). Let @ be a
constant larger than 1 -+ [C, and 1 + [¢]w; adding the last two inequalities from
{7.9) we have

‘fn—i—l fﬂ\n 2"_ 4
Hence for every m > n>1 it follows that
mo1 1& a 3a
Vm"‘ fnln< 5211 ]ji:(—l f ]n< z nz"_ %521,,2"‘2 - Tnl" .

Thus {f,} is a Cauchy sequence for the |-|» norm on M(8)® 7,(H), and hence has a
limit fye M(8)®ax7,(H). Since it certainly follows that f,— f, pointwise (in fact in
the uniform norm since [-[o<|'|x), and since it is straightforward to show that
fa(s) = f(s) for every s €8, f,=f. Moreover in the case that i > C(,-) € L(8, B,
#; Co(8)), we have f,€ Co(8) ® 7,(H) and hence f = | [z-lim f, belongs to Co(8) ®a 7,(H).
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It only remains to show that (7.6) holds. Essentially this follows from the ap-
proximations we have already made with simple functions. Now clearly

110)  [rsmids) = 3, g, )f w(5)m{ds) = f@n U sym(@s)|utan,

80 that (7.6) is satisfied for the simple a,pploximations We have already shown
that f, > f in M(8)Qnv,(H), so that |[f.(s)m ds —[f(s)m(ds) | < |fa— fln-T(8) — 0
and the LHS of (7.10) converges to ff . We need only show that the RHS
of (7.10) converges to the RHS of (7.6). But applymg the triangle inequality to
(7.10) yields

”gn(t)”Gn(t, 8)m(ds] () f@ U (ds)][u(dt)! <

<|ontt) 1040t )= 00, m(as), (@) + [I(eat) — e0)- [0t o)m(as)heptat) <
<leule 104067 — Ot @) + loa— elm-fic* (1) T(8) ldt) <
<(lelet- 1) -m(8)-[[Co— Cls + lga— el m(8)[ ]2 <
<(lel. + 1)-7(8)-

1 1
n2n + nan

m(8)-|Cll.— 0

where the last inequality follows from (7.7) and (7.8) and again |C[,= f 1O, )] copu(d?)
denotes the norm of C as an element of L.(S, B, u; M(S)). O

7.8. The quantum estimation problem and its dual.

We are now prepared to precisely formulate the quantum estimation problem
in the framework of duality theory of optimization and calculate the associated
dual problem. Let 8 be a locally compact Hausdorff space with Borel sets $. Let H
be a Hilbert space associated with the physical variables of the system under eon-
sideration. For each parameter value s € S let o(s) be a state or density operator
for the quantum system, i.e. every g(s) is a nonnegative-definite selfadjoint trace-
class operator on H with trace 1; we assume g € M (8, v(H )). We assume that there
is a cost function C: § X8 — R, where C(s, t) specifies the relative cost of an esti-
mate ¢ when the true parameter value is s. If the operator-valued measure m e
€ M(B, £,(H)) corresponds to a given measurement and decision strategy, then the
posterior expecetd cost is

R, — tr g(t)[ f o, s)m(ds)]y(dt) ,

8 .8

where u is a prior probability measure on (8, $). By Proposition 7.1 this is well-
defined whenever the map ¢ — CO(t,-) belongs to L,(8, B, u; M(8)), in which case
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we may interchange the order of integration to get

(7.11) R, = tr f F(s)m(ds)
8

where fe M(S ®nr( ) is defined by

—-J.Q O(t, 8)p(ds) .

The quantum estimation problem is to minimize (7.11) over all operator-valued
measures m € A6(B, £,(H)) which are POM’s, i.e. the constraints are that m(#)>0
for every e B and m(S) = I.

We shall now assume that the reader is famlhar with the duality theory of
optimization in infinite-dimensional spaces as for example developed in [ROCKA-
FELLAR (1973)]. To form the dual problem we take perturbations on the equality
constraint m(S) = I. Define the convex function F: M(B, £,(H)) = R by

F(m) = d_4(m) + trff(s)m(ds) y  meM(B, L(H)),
s
where 0., denotes the indicator function for the positive operator-valued measureé,
ie. d_y(m) is 0 if m(PB)c L(H), and - oo otherwise. Define the convex func-

tion G: L (H) — R by

G(z) = d(2), wel(H)

ie. Gz) is 0 if =0 and G(&) = + o0 if ¥5%£0. Then the quantum detection
problem may be written

P, = inf {F(m) + G(I — Lm): m € Mo(B, L,(H))}

where L: M(B, L,(H)) — L,(H) is the continuous linear operator

We consider a family of perturbed problems defined by
" P(x) = inf {F(m) + G(o — Lm): m e M(B, L(H))}, wet(H).
Thus we are taking perturbstions in the equality constraint, i.e. the problem P(z)

requires that every feasible m be nonnegative and satisfy m(S) = x; of course,
Py= P(I). Since F and G are convex, P(-) is convex L(H) — R,
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In order to construet the dual problem corresponding to the family of perturbed
problems P(x), we must calculate the conjugate functions of ¥ and G denoted as F*
and G*. We shall work in the norm topology of the constraint space £,(H), so that
the dual problem is posed in £,(H)*. Clearly G*=0. The adjoint of the operator L
is given by

L LF: L (H)* > M(B, L(H))*: gy o (mo—yom(8)) .
To caleulate F*(L*y), we have the following lemma.

LEMMA 7.2, — Suppose y € £,(H)* and fe M(8)Qn,(H) satisty

(1.12) y-m(8) <tr f f(s)m(ds)
8

for every positive operator-valued measure m € A(B, L,(H),). Then y,<0 and
Y, <f(s) for every se S, where y =y, + ¥,, is the unique decomposition of y into
Y, € T,(H) and y € X (H)*.

ProOF. — Fix any s, 8. Let x# be an arbitrary element of £(H),, and define
the positive operator-valued measure m e M(B, L(H),) by

7 x it s,el, Ted
mE) =10 it s¢n € P

Then y-m(8) = y(@) = tr (¥,,7) + ¥,(®),; and trff(s)m(ds) == tr f(s,)2. Thus, by (7.12)
B [Y,— F(80)]12 4 ¥ (®) < 0; since x € £,(H), was arbitrary, it follows that y,,<f(s,)
(ie. f(sg) — Yao€ 7,(H)y) and y,<0 (ie. — g e[S (H), TN XK MH)L). O

With the aid of this lemma it is now easy to verify that ’

F*(L*y) = 0 if  yae<f(s) se 8, and y,<0
V= -+ oo otherwise
= der(Yac) + S<olWic) -

It now follows that P*(y) = F*(L*y) -+ G*(y) is 0 if y,<0 and y,,<f(s) for every
s€l, and P*(y) = + oo otherwise. The dual problem D,= *(P*)(I) = Sup ly(I) —
— P*(y)] is thus given by ' '

'D0= *(P*)(I) - Sup {tryac+ ysg(I): y € £5(H>*’ ?/sg<07 ya,c<f(8)’ VS € S} M
We show that P(-) is norm continuous at I , and hence there is no duality gap

(Py= D,) and D, has solutions. Moreover we shall show that the optimal solutions
for D, will always have 0 singular part, i.e., will be in 7,(H).
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ProrosiTION 7.3 — The perturbation function P(-) is continuous at I, and hence
oP(I)+ @, where 0P denotes the subgradient of P. In particular, P,= D, and the
dual problem D, has optimal solutions. Moreover every solution y & L,(H)* of the
dual problem D, has 0 singular part, i.e. §,= 0 and § = §,, belongs to the can-
onical image of 7,(H) in 7 ,(H)**,

ProoF. — We show that P(-) is bounded above on a unit ball centered at I. Sup-
pose wef(H) and |r|<1. Then it is easily seen that I -4 2x>0. Let s, be
an arbitrary element of S and define the positive operator-valued measure

\m € Mo(B, L(H),) by
I+a if s,el,

m(E):{O it s,¢ 8 Ee®.

Then m is feasible for P(z) and has cost
tr| f(s)m(ds) = tr f(s0) (L + 2) <2[f(5) e -

Thus P(I 4 #)<2]f(s,)],, Whenever |z|<1, so P(-) is bounded above on a neigh-
borhood of I and so by convexity is continuous at I, and hence from standard
results in convex analysis, it follows that 0P(w,) = 0, hence P,= D, and D, has
solutions. Suppose now that §eL,(H)* is an optimal solution for Dy. If §,%0,
then since #,,<0 and I eint £, (H) it follows that tr (4,,) + F.(I) < tr (7,,). Hence
the value of the dual objective function is strictly improved by setting #,= 0,
while the constraints remain satisfied, so that if ¢ is optimal it must be true that
ge=0. O

In order to show that the problem P, has solutions, we could define a family
of dual perturbed problems D(v) for v € Co(8) Da 7,(H) and show that D(-) is con-
tinuous. Or we could take the alternative method of 'showing that the set of feas-
ible POM’s m is weak* compact and the cost function is weak*-1s¢c when AG( 3B, L,(H))
== £(0u(8), L(H )) is identified as the normed dual of the space Cy(S) @:: 1,(H)
under the pairing

f, my = tr f 1(s)m(ds) .

Note that both methods require that f belong to the predual Cy(S) @:z 7(H) of
M(B, 7,(H)) by Proposition 7.1 it suffices to assume that ¢ — O(f,") belongs to
L1(S, B, 221 Oo(s))-

PROPOSITION 7.4. — The set of POM’s is compact for the weak* = w(aﬂ:(ﬂﬁ, L,(H)),
Co(8) @=,(H)) topology. If ¢ O(t,-) € Ly(8, B, u; Oo(S)) then P, has optimal
solutions 7.
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~ PROOF. — Since (B, L,(H)) is the normed dual of Oy(8) Qa7 (H) it suffices to
show the set of POM’s is bounded; in fact, we show that #(S) = 1 for every POM m.
If 9 e H and |p| = 1, then {gm(-)|g> is a regular Borel probability measure on §
whenever m is a POM, so that the total variation of {gm(-)|p) is precisely 1. Hence

m(8) = suﬁl{) [<gm(-)lp>|(8 = sup Kem(+)|p>|(8

l¢l<1 i le 1

Thus. the set of POM’s is a weak*-closed subset of the unit ball in (B, £,(H)),
hence weak*-compact. If now ¢~ C(t,-) belongs to Ly(8, B, u; Cy(8)) then fe
€ Cy(8 )@n {(H) by Proposition 7.1, so m H‘ﬁl‘ff ds) is a weak*-continuous lin-
ear function and hence attains 1ts infimum on the set of POM’s. Thus P, has
golutions. O s

The following theorem summarizes the results we have obtained so far, as well
as providing a necessary and sufficient characterization of the optimal solution.

THEOREM 7.5. — Let H be a Hilbert space, § a locally compact Hausdorff space
with Borel sets B. Let p € M(8, v (H)), (: X8 — R a map satisfying ¢ — O(t,-) €
€ L(8, B, u; Cy(8)), and p a probability measure on (8, $). Then for every m e
€ M(B, L,(H)),

tr @(t)[ f e, s)m(ds)] ldt) = tr f f(s)m(ds)
8 8

8

where fe Co(8) @n T(H) is defined by

5) = [o0(t, 9)u(ds)
8

Define the optimization problems

Py= mf{tr f(s)m medK,(SS L(H)), m(8) = I, m(E)>0 for every He 35}
8

Dy=sup {try: y e 7,(H), y<f(s) for every se §}.

Then P,= D,, and both P, and D, have optimal solutions. Moreover the following
statements are equlvalent for m e M(B, L (H)), assuming m(S) = I and m(E)>0
for every He $: ‘ '

1) m solves P,;
2) f]‘(s)m(ds)<f(t) for every teS;

3) J'm ds)f(s) <f(t) for every e S.
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Under any of the above conditions it follows that y = f f(s)m{ds) = f m{ds)f(s)
is selfadjoint and is the umnique solution of .D,, with s s

Py=D,=try.

ProoF. — We need only verify the equivalence of 1)-3); the rest follows from
Propositions 7.3 and 7.4. Suppose 2 solves P,. Then there is a y e 7, (H) which
solves D, so that y<f(?) for every ¢ and

trff m(ds) =try.

Equivalently 0 = trff mids) —try = trf y)m(ds). Since f(s) — ¥ >0 for ev-
ery se S and m>0 1t follows that 0 ——f(f( 8) — ff m(ds) —y and hence
8

2) holds. This last equality also shows that y is unique.
Conversely, suppose 2) holds. Then y = f f(s)m(ds) is feasible for D,, and more-

over tr f f(8)m(ds) == tr y. Since P,>D,, it follows that m solves P, and y solves D,
so that 1) holds.
Thus 1) <> 2) is proved. The proof of 1) <= 2 is identical, assuming that

tr[{(s)m(ds) = tx [m(@s)fls) for every fe Cu(8)®, w(H) -

But the latter is frue since tr AB = tr BA for every 4 e, (H), BeL,(H) and
hence it is true for every fe Co(S)® =(H). O
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