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Summary. - This paper is concerned with the development of an integration theory with respect 
to operator-valued measures which is required in the study o/ certain convex optimization 
problems. These convex optimization problems in their turn are rigorous ]ormulations o] 
detection theory in a quantum communication context, which generalise classical (Bayesian) 
detection theory. The integration theory which is developed in this paper is used in conjunc- 
tion with convex analysis in Banavh spaces to give necessary and su//ieient conditions o/ 
optimality /or this class o/ convex optimization problems. 

l .  - I n t r o d u c t i o n .  

The problem of quan tum measurement  has received a great  deal of a t ten t ion  in 
recent  years,  bo th  in the quan tum physics l i terature  and in the context  of optical 
communicat ions.  An account  of these ideas m a y  be found in DAVIES [1976] and 
HOLEVO [1973]. The development  of a theory  of quan tum estimation requires a 
theory  of integrat ion with respect to operator-valued measures. Indeed,  ttOLEVO 
[1973] in his investigations on the  Statist ical  Decision Theory  for Quantum Systems 
develops such a theory  which, however,  is more akin to Riemann Integrat ion.  The 
object ive of this paper  is to develop a theory  which is analogous to Lebesgue integra- 
t ion and which is na tura l  in the context  of quan tum physics problems and show 
how this can be applied to quan tum est imation problems. The theory  tha t  we 
present  has l i t t le overlap with the theory  of integr2jtion with respect to vector  
measures nor  with the  integrat ion theory  developed by  THOMAS [1970]. 

We now explain how this theory  is different f rom some of the  known theories 

of integrat ion with respect to operator-v~lned mcasures. Le t  S be a locally compact  
l=iausdorff space with Borel  sets ~ .  Le t  X ,  Y be Banach spaces with normed duals 
X*,  ~*.  Co(S, X )  denotes the ]~anach space of continuous X-valued functions 
/:  S - - > X  which vanish at  infinity (for every  e > 0, there  is a compact  set K c S  

such t ha t  I/(s)[ < e for all s ~ S \ K ) ,  with the supremum norm I / l~=  sup I/(s)l. I t  
SES 
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is possible to ident i fy  every  bounded  linear map JL: Co(S, X) -+ 12 with a represent- 
ing measure m such tha t  

(1.1) I~] 
S 

for every  ]eCo(S ,X) .  Here  m is a finitely addit ive map m: B - + L ( X ,  Y**)(~) 
with finite semivariat ion which satisfies: 

1) for every  z e 12", m~: :3 -+ X* is a regular X*-valued gore l  measure, where 
m. is defined by  

(1.2) % ( / ~ ) x  = <z, m ( E ) x > ,  E e :3, x e X ;  

2) the map  z ~ m~ is continuous for the w* topologies on z e I7" and  m~e 
s Q(S, X)*. 

The la t ter  condition assures tha t  the  integral (1) has values in 17 even though 
the measure has values in L(X,  12"*) ra the r  t han  L(X~ 17) (we identify !2 as a sub- 
space of 17"*). Under  the above representat ion of maps 2L~L(Co(S, X),  12), the  
maps for which L~: Co(S) --> Y: g(.) ~ Z(g(.)x) is weakly compact  for every  x e X 
are precisely the maps whose representing measures have values in Z(X~ 12), not  
just  in L(X,  12"*). In  part icular ,  if 12 is reflexive or if 17 is weakly complete or more 
generally if 17 has no subspace isomorphic to Co, then  every map in s X), 17) 
is weakly compact  and hence every  Z e L(C0(S, X),  12) has a representing measure 
with values in L(X,  12). 

We now develop some nota t ion and  terminology which will be needed. Le t  H 
be a complex Hi lber t  space. T h e  real linear space of compact  self-adjoint operators 
3C,(H) with the operator  norm is a Banach  space whose dual is isometrically iso- 
morphic  to the  real Banned space T~(H) of self-adjoint trace-class operators with 
the t race norm,  i.e. J~.(H)*= -~.(H) under  the  dual i ty  

<X,B> =tr(_~B)<lXlt~[BI, ae~.(Z~), Be~;.(/i[). 

Eere  1:31 = sup {IB~I: ~ EH,  l ~ l < l }  = sup {tr XB:  X e  ~ ( H ) ,  IAItr<X} and [nit r is 
the  t race no rm ~ l/~I < @ oo where A e ~ ( H )  and  {~} are She eigenvalues of A 

repeated according to multiplicity.  The dual of ~,(H) with the t race norm is iso- 
metr ical ly  isomorphic to the  space of all linear bounded self-adjoint operators~ i.e. 
~,(H)* = s under  She dual i ty 

<_4, B5 ~ tr (AB) , X ~ ~(H), B ~ s 

(*) .L(X, Y) denotes the Bana& space d bounded linear operators trom X to Y. 
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3'[oreover the orderings are compatible in the following sense. I f  ~ . (H)+ ,  ~,(H)+, 

and g.(H)+ denote the closed convex cones of nonnegative definite operar in 
JS,(H), z~(H), and g~(H) respectively, then  

[~;~(H)+]*= r~(H)+ and [v~(g)+]*= s 

where the  associated dual spaces are to be unders tood in the  sense defined above. 
I n  the context  of quan tum mechanical  measures with values in Z,(H),  one can 

ident i fy  every continuous linear map /5: Co(S) -+ ~(H) (here X = R, Y = s 
with a represent ing measure with values in s ra ther  than  in s using 

fair ly e lementary  arguments.  Since iV = gs(H) is nei ther  reflexive nor  devoid of 
subspaees isomorphic to Co, one might  th ink  at  first sight this is incorrect.  How- 
ever, whereas in the  usual approach it  is assumed tha t  the real-valued set funct ion 
zm(.)x is countably  addit ive for x e X and every z e :g*, we require tha t  it  be 
countably  addit ive only for x e X and z e Z = ~ (H) ,  where Z = v~(H) is a predual 
of Y = g~(H), and hence can represent  all linear bounded maps Z:  Co(S, X) -+ Y 
by  measures with values in .L(X, Y). In  other  words, by  assuming tha t  the measures 
m: B --> g~(H) are countably  addit ive in the weak* topology ra ther  than  the weak 
topology (these are equivalent  only when m has bounded variation),  it  is possible 
to represent  every  bounded linear map L:  Co(fi) --> s and not  just  the weakly 
compact  maps. This approach is generally applicable whenever IZ is a dual space, 
and in fact  yields the usual results by  imbedding I z in ]z**; moreover  it  clearly 
shows the relationships between various boundedness conditions on the representing 
measures and  the  corresponding spaces of linear maps. But  first we must  define 
wha t  is meant  by  integrat ion with respect to operator-valued measures. We shall 
always take  the under lying field of scalars to be the reals, Mthough the results 
ex tend  immedia te ly  to the complex ease. 

2 .  - A d d i t i v e  s e t  f u n c t i o n s .  

Throughout  this section we assume tha t  53 is the a-Mgebra of ]3orel sets of a 
locally compact  Hausdorff  space S, and X,  ~ are ]3anach spaces. Le t  m: 53-+ 
-+ L(X,  Y) be an addit ive set function,  i.e. m(E~ k) E2) = m(E~) ~- re(E2) whenever 
El ,  E2 are disjoint sets in 53. The semivariation of m is the map ~ :  53 -~/7+ defined by  

~ ( E )  = sup ~=lm(E~)x~_ 

where the supremum is taken  over all finite collections of disjoint sets El, ..., E ,  
belonging to 53 (3 E and xl, ..., x~, belonging to X~. By  53 ~ E we mean the sub-a- 

algebra {E 'e  53: E ' c  E} = { E ' n  E :  E e 53} and by  X~ we denote the closed uni t  
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ball in X. The variation of m is the  map [m]: 35 -+/~+ defined b y  

lml(E) = sup ~ Im(E,)l 
'$=1 

where again the  supremum is t aken  over all finite collections of disjoint sets in 
35 r3 E. The scalar semivariation of m is the  map ~ :  35 ~ / ~ +  defined by  

N(E) = sup ~a~m(Ed 
i -  

where the supremum is t aken  over all finite collections of disjoint sets E~, ..., E~ 
belonging to  35(3 E and a~, ..., a, e R  with ]a~]<l. I t  should be noted  t h a t  the 
notion of semivariat ion depends on the spaces X and ~Y; in fact,  if m: 35 -+ L(X,  Y) 
is t aken  to  have values in L(R, L(X,  Y)), L(X,  Y), L(X,  Y )* * =  L(JL(X, Y)*, R) re- 
spectively then  

(2d)  = ~L(R,L(X. Y))<m = mz(x, Y)< ]m[ = mz(~(x, r)*.l~) �9 

When necessary, we shall subscript the semivariat ion accordingly. By  fa (35, W) 
we denote the space of all finitely addit ive maps m: 35 -+ W where W is a vector  
space. 

PI~OPOSI~IO~ 2.1. - I f  m e f a  (35, X*) then  ~ = Im]. More generally~ if m e fa(35, 
"L(X,  I7)) then  for every  z e  l z* the finitely addit ive map zm: 35 ~ X *  satisfies 

z--~ = lzml. 

P~0oF. - I t  is sufficient to consider the case I7 = R, i.e. m e f a  (35, X*). Clearly 
~ < ] m [ .  Le t  E e  35 and let E~, ..., E ,  be disjoint sets in 35n  E. Then 

Im(ED[ = sup ~ m(B,)~,  = snp I ~  ~(E,)z ,I  < ~ ( E ) .  

Taking the  supremum over all disjoint E~e 35 n E yields [m](E)<~(E). [] 

We shall need some basic facts about  var ia t ion  and semivariation. Let  X, Y 
be normed spaces. A subset Z of Y* is a norming subset of X/* if sup {zy: z e Z, 
]z]<l} = IY[ for every  y e Y. 

P~0P0SITIO~ 2.2. -- Le t  X, Y be normed spaces, m e fa  (35, L(X,  Y)). I f  Z is a 
norming subset of Xz*, then  

~<E) : sup Izmi<E> , E ~ 35 

~ ( E )  = sup sup l z m ( . ) x l ( E ) ,  E z  35. 
zsz,lzl<.l zzX, lzI<l 

Moreover [y* m(" )x[(E) < [x[- [y*m[(E) < Ix [. [y*]. [m[(E) for every  x e X, y* e Y*, E e 35. 
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Pi~ooL - Let  {E~, ..., E~} be disjoint sets in 55~ E and x~, ..., x ,  eX~.  Then 

i=i m('E~)x~ < " z~Z~ i i = 1 

Taking the supremum over {E~} and {$~} yields ~(E)----[zmt(~). Similarly, 

. ( .  > 
Sllp i~=l ai!f~(Ei) ~- sup  slip sl ip z, ~ aiq/fb(Ei)z : Sllp fzm(J~i)3i) 1 

tai[~<l ]al]~<l meX~ zszl i = 1  m~X~ i = l  
zeZi 

and taking the supremum over finite disjoint collections {E~} c ~ (~ E yields m(E) = 
---- sup sup [zm(. )x](E). I t  is straightforward to check the final s ta tement  of the 

Ix]<l [zl<l 
theorem. [] 

PlcoeosITzO~X 2.3. - Let  m e f a  (55, L(X,  Y)). Then ~ ,  ~ ,  and [m I are monotone 
and finitely subadditive; lml is finitely additive. 

PI~OOF. -- I~ is immediate tha t  ~ ,  ~ ,  [m I are monotone. Suppose E~, E~e 
and E~rhE~= Or and let F~, . . . , F .  be a finite collection of disjoint sets in ~ ( h  
n (E~U E~). Then if Ix~l<l, i = 1, -..7 ~, we have 

m ( ~ i ) X i  ~ E2))Zi < 

< ~ m(F~n/~)x~ + ]~ m(/~n E~)xl < 

Taking the  supremum over all disjoint /~ ,  . . . , F . e ~ S n  (E1uE2) yields ~(E1U 
t) E~)<~(E1) ~-~2(E2). Using (2.1) we immediately have ~ ,  Ira] finitely subad- 
ditive. Since Ire[ is alwuys superadditive by its definition, ]m I is finitely additive. ~ [] 

3. - In tegrat ion  w i t h  respect  to  addit ive  set  funct ions .  

We now define integration with respect to additive set functions m: :~ -+ L(X, Y). 
Let  55 G X denote the vector apace of a l l  X-valued measurable simple func- 

tions on S, t ha t  is all functions of the form ](s)= i lz,(s)x~ where {EI~ ..., E.} 
i=l 

is a finite disjoint measurable parti t ion of S, i.e. E i e  3~, Vi, E~rh E~ = 0 for i =/= j, 

and ~J Ei---- S. Then the integral fm(ds)/(s) is defined unambiguously (by finite 
i = 1  S 
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~dditivity) as 

(3.1) m(ds)](s) = ~ m(E,)x,. 
i = 1  

s 

We m~ke 3~ ~) X into u normed space under the uniform norm, defined for bounded 
maps ]: S--> X by  

[ll : sup 11(8)I. 
s e S  " 

Suppose now that  m has finite semivariation, i.e. ~ ( s ) ~  + co. :From the defini- 
tions it is clear that  

fm(as)/(s) 
8 

so that  ] ~.fm(ds)](s) is ~ bounded linear functional on ( ~ ) X ,  ['1~); in fact, 
~(S) ---- sup {tfm(ds)/(s)l: [ f [ ~ < l , / e  ~ Q X }  is the bmmd. Thus, if ~ (S) -~  + c o  it 
is possible to extend the definition of the integral to the completion M(S, X) of 
5 ~ )  v in the ]. I~ norm. M(S, X) is c~lle4 the space of totally ~5-measurable 
X-valued functions on S; every such function is the uniform limit of ~-measurable 
simple functions. For ] e M(S, X) define 

(3.3) fm(ds)/(s) : lim 
$ 8 

where f~ ~ ~B G X is an arbitrgry sequence of simple functions which converge uni- 
formly to ]. The integral is well-defined since if {].} is ~ Cauchy sequence in 55G X 
then {fm(ds)f~(s)} is Cauchy in Y by  (3.2) and hence converges. Moreover if two 

sequences {]~}, {g~} in . ~ Q X  satisfy Ig~--11~-~0 and If~--][~-*O then 

S O  

8 S 

Similarly, it is clear thut (3.2) remains true for every ] e M(S, X). ]~ore generally 
it is straightforward to verify tha~ 

(3.4) re(E) = sup {fm(as)i(s): ]e M(S, X), I?[~<l, supp]c E}. 
8 

PROPOSITION 3.1. -- C0(S, X) c M(S, X). 
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P~ooF. - E v e r y  g(. )~ Co(S) is the  uni form limit  of simple real-valued ]Borel- 

measurable functions,  hence every  funct ion of the form ](s)= ~ g~(s)x~ = ~ giQ x~ 

belongs to M(S, X), for gi~ Co(S) and x ieX.  These functions m~y be identified 
with Co(S)QX, which is dense in Co(S, X) for the supremum norm (el. T~EVES 
[1967], p. ~48). Hence Co(S, X) ---- cl Co(S) Q X c M(S, X). 

To summarize,  if m e f~ (55, L(X, Y)) has finite semivari~tion ~(~)  < + co then  

fm(ds)i( ) is well-defined for ] ~ M(S, X) ~ Co(S, X), and in f~ct i ~fm(ds)f(s) is a 
S g 
bounded linear map  f rom Co(S, X) or M(S, X) into Y. [] 

Now let Z be a ]Banach space and L a bounded linear map  f rom :Y to Z. I f  
m: 55-+L(X, Y) i8 finitely addi t ive and has finite semivariat ion then  Lm:  55-~ 
-->L(X, Z) i8 also finitely addit ive and has finite semivariat ion L m ( S ) <  IL[.~(S). 
For  every  simple funct ion ] e 55 ~) X it  is easy to check t h a t  Lfm(ds)](s)  : fLm(ds)f(s) .  

8 8 

B y  taking limits of un i formly  convergent  simple fnnctions we have proved 

P~OPOSlTIO~7 3.2. - Let m efa (55, L(X, 17)) and ~(S) < + co. Then Lm ~ fa (55, 
L(X, Z) for every bounded linear L: Y-+ Z, with Lm(S)< + co and 

8 8 

Since we will be considering measure representat ions of bounded linear operators 
on Co(S, X),  we shall require some notions of countable addi t iv i ty  and regulari ty.  
Recall  t ha t  a set funct ion m: 55-+ W with values in a locally convex ~ausdor f f  

W is eountably additive iff m ( E ~ )  = m(E.) for every  countable s p a c e  disjoint 
\ 
n:l " ~ t = l  

! 

sequence {Ei} in 55. ]By the Pet t is  Theorem (cf. DUiNFORD-SCIIWA~TZ [1966]) count- 
able addi t iv i ty  is equivalent  to weak countable addi t ivi ty ,  i.e. m: 55 -+ W is count- 
able addi t ive iff it  is countab ly  addit ive for the weak ~o9ology on W, tha t  is iff 
w ' m :  55 - + R  is countab ly  addit ive for every  w*e W*. I f  W is a Banach space, we 
denote  by  ca (55, W) the  space of all conntab ly  addit ive maps m: 55 -+ W; fabv  (55, 
W) and cabv (55, W) denote the spaces of finitely addit ive and countably  addi t ive 
maps m: 55 --~ W which have bounded var ia t ion lmI(S) < + co. 

I f  W is a ]B~nach space, ~ measure m ~ fa (55, W) is regular iff for every  s > 0 
and every  ]Borel set E there  is a compact  set K c ~ and an open set G ~ E such 
tha t  [m(F)] < s whenever  ~ ~ 55 n (G\K). The following theorem shows among 
other  things tha t  regular i ty  actual ly  implies countable addi t iv i ty  when m has 
bounded var ia t ion Iml(S) < + co (this la t ter  condition is crucial). ]By rcabv (55, W) 
we denote the  space of all countab ly  addit ive regular ]Borel measures m: 55-> W 
which have bounded variat ion.  

Le t  X, Z be ~anach  spaces. We shall be mainly  concerned with a special class 
of L(X, Z*)-valued measures which we now define. Le t  3{~(55, L(X,Z*)) be the  
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space of all m e f a  (53, L(X, Z*)) such that <z, m(.)x) ~ r eabv (53) for every x e X, 
z e Z. Note that such measures m e ~L(53, L(X, Z*)) need not be eountably additive 
for the weak operator (equivalently, the strong operator) topology on Z(X, Z*), 
since z**m(.)x need no* belong to ca (53) for every x e X, z**eZ**. 

The following theorem is very important in relating various coun*able additivity 
and regularity conditions. 

THEOI~EN 3.1. - Le* S be a locally compac* Hausdorff space with Borel sets 53. 
Let X, Y be normed spaces, Zx a norming subset of ~*, m era (53, L(X, 2-)). If  
zm(. )x: 53 -+ R is eountably additive for every z e Z~, x e X then ]m](.) is countably 
additive 53-+/~+. If  zm(.)x: 53-+R is regular for every z e Z ~ , x e X ,  and if 
]m](S)< -boo, *hen ]ml(.)ercabv(53, R+). If Iml(S)< -boo, then m(.) is court*- 
ably additive iff Ira[ is and m(.) is regular iff Iml is. 

PI~00F. - Suppose zm(.)xeca(53, R) for every z c Z ~ , x e X .  Le* {At} be a 
disjoin* sequence in 53. Let {B1, ..., B~} be a finite collection of disjoint Borel sub- 

co 

sets of m a t .  Then 
i=l 

o( ) ) 
i = l  j = l  i = l  j = l  mjsX~ \i=l 

Since each z~m(.)x~ is countably additive, we may continue with 

I ~  1 Bj)xj < = ~ SUp a,m(Ai~ X SUp ~ lz,m(Ai('~B,)xj[< 
J = l  x~x1 ,~=1 mj~x l ,~= l  

YjEZ1 ZjtZ1 

< i: i = i i i 
j = l  i = 1  i=1  j = l  / = 1  

Hence, taking the supremum over all disjoint {Bj} c At, we have Iml U At < 
co i=1  " / = 1  " 

< ~_, Im](Ai). Since [m I is always countably superadditive, ]m I is countably additive. 
i = 1  

Now assume zm(.)x is regular for every zeZ1, x e X ,  and Iml(S)< -boo. Ob- 
viously each zm(.)x has bounded variation since [mI(~)< ,-boo, hence zm(.)xr 

ca(53) by (Dv~Fom)-ScHwA~mz [1966], III.5.13) and zm(.)x ~ r cabv (53). We wish 
to show that Iml is regular; we already know ]m I e cabv (53). Let E ~ 53, e > 0. By 
definition of lmi(E) there is a finite disjoint Bore1 partition {El, ..., E~} of E such 

that ImI(E) < ~ Im(Et)I -b el2. Hence there are zl,...,zn~Z~ and x ~ , . . . , x ~ X ,  
i=1  

[xtl<l, such that 

lml( ) < Z i m ( E t ) X i  -b . 
i=1  
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Now each z~m(. )x~ is regular,  so there  arc compact  K~c E~ for which [z~m(E~\K~)x~] 
< e/2n~ i = 1, ..., q~. Flence 

ImI(E'~K) = I~ I ( -E ) -  lml(K)< 

s ~, z im(EiN K i ) x i =  

8 
i=l 

and we have shown tha t  [m[ is inner regular. Since [m[(s)< ~-co, it is straight- 
forward to show tha t  ]m[ is outer  regular. For  if E e ~ ,  e > 0 then there  is a compact  
K c S \ E  for which ]mI(S~E) < ]mI(K) -F s and so for the open set G = S \ K  o E 
we have 

[mI(G~E ) = [mI(S~E ) - - ] m l ( K ) <  s.  

Final ly,  let us prove the last s ta tement  of the theorem. We assume m e fa (5~, 
L(X,  Y))  and [ m [ ( S ) < - F o o .  l~irst suppose m(.)  is countably additive.  Then for 

every  disjoint sequence {A/} in 3~, 

co _ _  ~ 

' " i= l  i= l  
oo ~, 

Y @ m (  m Ai)Xi-- ~ Y * ~ t b ( A i ) x i  ~ 0 
"~i " i=i 

, so cer tainly 

for every  y * e  I z*, xi e X 

and by  what  we just  proved ImJ is countably  additive.  Conversely, if [m[ is count- 
ably  addit ive then  for every  disjoint sequence {As} we have 

 (i_Ul Ai)- =  T&(i=UlAi) < ( i -u  A,) = Iml(,_mlAi - -  i= I  0, 

Similarly, if m is regular then  every  y*m(. )x  is regular and by  what  we proved 
already [m[ is regular.  Conversely, if [m I is regular it  is easy to show tha t  m is 
regular. [] 

THEORE~ 3.2. - Let  S be a locally compact  Hausdorff  space with Borel sets 5~. 
Let  X,  Z be ]3anach spaces. There is an isometric isomorphism L +-+ m between 
the bounded  linear maps L:  Co(S) --~ L(X,  Z*) and the finitely addit ive measures 
m: ~ B ~ L ( X ~ Z * )  for which z m ( . ) x e r e a b v ( 5 ~ )  for every  x ~ X ,  z e Z .  The cor- 

respondence L +-~ m is given by  

(3.6) .Lg =fg(s)m(ds)  , g ~ co(s) 
S 
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where ILl-~ ~(S); moreover,  zL(g)x =fg(s)z~,~(as)x and [ z L ( . ) x ]  = I z ~ ( ' > x l ( ~ )  ~or 
x ~ X ,  z ~ Z .  s 

REmArKS. - The measure m ~f~ (55, L(X, Z*)) need have neither finite semi- 

var ia t ion ~(s) nor bounded var iat ion [m](S). I t  is also clear tha~ L(g)x =fg(s)m(ds)x 
and zL(g)=fg(s)zm(ds), by  PropOsition 3.2. s 

S 

P~oo~. - Suppose L e L(Co(S), Z(X, Z*)) is given. Then for every x e X, z e Z 

~he map g ~zL(g)x  is a bounded linear hmction~l on Co(S), so ~here is ~ unique 

re~l valued regular ~Borel measure m..,:  55-->R such ~ha~ 

(3.7) zL(g)x = f ](s)m.. ,(ds) . 
S 

For  each ]~orel set E e 55, define the m~p re(E): X -+ Z* by  @, m(E)x> = m~ 
I t  is easy ~o see ~hat re(E): X - ~  Z* is linear; moreover i~ is continuous since 

I m ( ~ ) l < ~ ( S )  = sup  [ z n ( . ) x l ( S )  = s u p  Im, , t (S )  = s u p  l z ~ ( ' ) x l  = IJ;].  
Ixl~<l [z ~i [X[~I 

Thus re(E) ~ L(X, Z*) 
variat ion ~(S)  = ILl. 
defined for g ~ C0(S) c 

(3,7) and Propesi~ion 

for E e 5 5  o.nd m efa(55, L(X,Z*)) has finite scalar semi- 

Since ~ = ~Z(R,L(X.Z*)) is finite, the integral in (3.6) is well- 

M(S, R) and is a continuous linear map g ~fm(ds)g(s). 57ow 

3.2 imply ~hat s 

.L(g)x <., 
S B 

for every x ~ X,  z ~ ZI Thus (3.6) follows. 
Conversely suppose m ~ fa (55, L(X, Z*)) satisfies zm(.)x ~ r cabv (~5) for every 

x e X, z ~ Z. First  we mu~t show tha t  m has finite scalar scmiwr ia t ion  ~(S)  < -~ ~ .  
I~ow sup ]zm(E)x[ < ]zm(. )x[(S) < -~ c~ for every x r X, z e Z. l=[ence successive ap- 

E e ~  
plica~ions of the uniform boundedness theorem yields sup ]m(E)x I < -t- co for every 

x e X and sup Ira(E)] < ~-c~, i.e. m is bounded.  :But then by  Proposit ion 2.2. 
~e3~ 

~(s )  = sup Izm(')xl(S) = sup  s u p  ~, Izm(~)xl = 
Iml~<l 
[zt<x 

= SUp 
z~<l  
z~< l  

= SUp 
Ix ~<i 

~<1 E~ disJoin~ i=1 
~ < 1  

sup X+zm(E~) x -- X-zm(E,i) x = 
~ dis] 

S]J-p zm(  V-~ E i )  x - -  zm(  U -  ~#i) x 

sup 2 sup [zm(E)x I = 2 sup [m(E)] < -j- oo 
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where Z+ and U§ (X- and U-) are t aken  over those i for which zm(Edx> 0 ( zm(Edx< 
< 0). Thus ~(o) is finite so (3.6)defines a bounded 1incur map L:  C0(S)->_5(X, Z*). [] 

We 'now investigate a more  restr ict ive class of bounded linear maps. For  
L ~ L(Uo(S), L(X,  Z*)) define the (not necessarily finite) norm 

i=1 

where the supremum is over all finite collections g~, ..., g~e Co(S) and x~, ..., x~ e X~ 
such tha t  the  g~ have disjoint support .  

TXEOUS.~ 3.3. - Le t  S be a locally compact  ~ausdor f f  space with Bete l  sets 5~. 
Let  X~ Z be Bangch spaces, There is an isometric isomorphism L~+-~ s~e-~ L2 bet- 
ween the linear maps L~: Co(S) --> L(X,  Z*) with llL~ll < + co; the measures m e 

fa (:B, L(X,  Z*)) with finite semivariat ien re(S) < ~ co for which zm(.)x Er e~bv (5~) 
for every  z s Z ,  x s X ;  and t he  bounded linear mgps L~: Co(S, X) -+Z*. The cor- 
respondence Z~ e-~ m +-~ L~ is given by  

(3.8) L~g , g e r  

S 

(3.9) ----fm(as)/(s), ] e Co(S, X) 
g 

(3.!0) L z(g(.)x) = (L~g)x, geCo(S),  x e X .  

5$oreover under  this correspondence []L~I] = ~ ( S )  : ]L~1; and zL~ E Co(S, X)* is given 

by  zL~/=fzm(ds)](s) where zm ~ rcabv ( ~  X*) for every  z e Z. 
8 

P~OOF. - F rom Theorem 3.2 we already have un isomorphism L1 ~-~ m; we must  
show tha t  IILII[ ~--~(S) under  this correspondence. We first show tha t  I[L~I[ <re(S) .  
Suppose g~, ...~ g~s Co(s) hgve disjoint support  wiCh tgdr x~, ...~ x,~sX with ]xil< 
< 1 ;  and z e Z  with [zI<l. Then 

S 

< ~ Izm(')xil(snppgd< 

< ~ Izmr(snpp rid 
'/=1 
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where the last stcp follows from Proposition 2.2. Since ]zm] is subadditive by  
Proposition 2.3, we have 

i = l  " i = l  

Taking the supremum over l z l<! ,  we have, again by  Proposition 2.2. 

L,(g~) < sup Izml(S) = ~(S) . 

Since this is t rue for all such collections (g~} and (x~}, IIL]I <re(S). We now show 
~(S)<llLI]. Let  e > O be arbitrary,  and suppose E~, ..., E ,e  ~ are disjoint, [z]<l~ 
Ix~]<l, i = 1, ..., n. By regularity of zm(.)x~, there is a compact K~cE~ such tha t  

Izm(" )xil(Ei) < n + Izm(')x~l(KJ' i : 1, ..., n .  

Since the K~ are disjoint, there are disjoint open sets G~0 K~. By Urysohn's  Lemma 
there are continuous func t i ons  g~ with compact support such 
Then 

zm(E~)x~= ~. zL(g~)x,+i ~ 
i = l  i = l  -- 

< 

< 

< 

tha t  1~ < g~< l a .  

q~ 

Taking the supremum over ]z]<l ,  finite disjoint collections {E,}, Ix,l<1 we get 
~(S)  < JILl[ ~- e. Since e > 0 was arbi t rary  ~ ( S ) <  l]Z]I and so ~(S)  = []L]I. 

I t  remains to show how the maps Z~e L(C0(S, X), Z*) are related to Z1 and m. 
Now given L1 or equivalently m, it is immediate from the definition of the integral 
(3.3) tha t  (3.9) defines an L~e L(Co(S, X), Z*) with [Z~] --  ~(2)  < -~ oo. Conversely, 
suppose L~GL(Co(S, X), Z*) is given. Then (3.10) defines a bounded linear map 
LI: Co(S)->Z(X,Z*), with IL~I<[L21; moreover it is easy to see tha t  ]ILIt]<IL~I. 
Of course, L~ uniquely determines a measure m e Jt{~(~,Z(X, Z*)) with ~ ( S ) - ~  

= I[Llll ~< [L~[ such tha t  (3.8) holds. :Now suppose ](.) -~ ~ g~(.)x,e Co(S) G X; then 
l = l  

i = l  i = l  
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Hence  (3.10) holds for i t ( . ) e C o ( S ) Q X ,  and  since Co(S)~X is dense in Co(S,X) 
we have  

Thus r e ( S ) :  1L~I. 

[ ~ l =  sup IL~/I= sup ~(d~) / (~)  < 
feV0(S)| f~ffo(Z)| r 

< sup ~m(ds)/(s) ~- re(S). 
feM(,.~,X) ,I 

I f l~<l 

Yinally, i t  is immedia te  f rom Proposi t ion 3.2 t ha t  zL~] =fzm(ds)/(s)for ] e  
S 

Co(S,X) ,zeZ.  We show t h a t  zmercabv(33, X*) for z e Z .  Since Izml(S )< 
< [z[.~(S) b y  Proposi t ion 2.2, zm has bounded  variat ion.  Since for each x e X,  

zm(.)x ~ r c a b v  (33) we m a y  app ly  Theorem (with I ~ = R) to get [zm I ~ reabv (33) 
and zm e r eabv  (33, X*). [] 

The following interest ing corollary is immedia te  f rom I]Lll] = IL2] in Theorem 3.3. 

COnOLLARY. -- Le t  L2 : Co(S, X) -+ Y be l inear and  bounded,  where X, Y are 

Banach  spaces and  S is a locally compac t  t tausdorf f  space. Then 

IL I --  sup 5 g , (  

where the  s up rem um  is over  all finite collections {gl, ..., g.}c Co(S) and all {x~, ..., 
..., x.} e X such t h a t  {suppg~} are disjoint and  Igdr Ix~l<l .  

PROOF. -- Take  Z = Y* and  imbed  Y in Z * =  Y**. Then L2r Z(Co(S, X), Z*) 
and  the  result  follows f rom IIL1]I : fL~] in Theorem 3.3. [] 

We now consider a subspace of l inear operators  L2r L(Co(S~ X), Y) with even 

s t ronger  cont inui ty  propert ies ,  name ly  those which correspond to bounded  l inear 
functionals  on Co(S, X(~:~Z); equivalent ly ,  we shall see t ha t  these maps  correspond 

to represent ing measures  m eA~(33, L(X, Z*)) which have  finite to ta l  var ia t ion  

]m](S) < + oo, so t h a t  m e r cabv  (.93, L(X, Z*)). For  L~e L(Co(S, X), :Y) we define 
the  (not necessari ly finite) no rm 

lilY, Ill = sup ~ IL~(/,)I 
{fi} i=1 

where the  s u p r e m u m  is over  all finite collections {fl~ . . . , /~} of f u n c t i o n s  in 
Co(S,X) having  disjoint  suppor t  and  ]/~[oo<:l. I n  app ly ing  the  definition to 

Ll e L( Co(S), L(X, Z*) ) --~ L( Co($, -~), :V) with Y =  L(X, Z*) we get 

I][L, III = sup 2: l~l(g,)l 
{o~) i=1 
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where the supremum is over all finite collections {gl, ..., g~} of functions in Co(S) 
having disjoint support and ]g~t~<l. 

Before proceeding, we should make a few remarks about tensor product spaces. 
By X<~ Z we denote a tensor product space of X and Z, which is the vector space 

of all finite linear combinations i a ~ x ~  z~ where a ~ / ~ ,  x~e X, z~e Z (of course, 
i = l  

a~, x~, z~ are not uniquely determined). There is a natural duality between X ~ Z  
and /5(X, Z*) given by 

{ z = Z 
i=I 4=I 

Moreover the norm of/3 e L(X, Z*) as a linear functional on X ~ ) Z  is precisely its 
usual operator norm [LI ----sup <z, Zx> when X ~ Z  is made into a normed space 

z E 1  

X Q ,  Z under the tensor product norm ~ defined by 

i= i=1 

It is easy to see that ~(x(~z )= Ixl.[zl for x e x ,  z e Z  (the canonical injection 
X Q Z  -->X(~Z is continuous) and in fact ~ is the strongest norm on X(DZ with 
this property. ~ y  X ~ Z  we denote the completion of X(D:~Z for the g norm. 
Every L e/5(X, Z*) extends to a unique bounded linear functional on X ~ Z  with 

o o  

the same norm. X ~ Z may be identified more concretely as infinite sums ~ a~x~ Q z~ 
~=1 

where x~ --> 0 in X, z~ -~ 0 in Z, and Ia~[ ~ cx) (Sc~_~E~rE~ [1971], III.6.4) and 

we identify (X@~Z)* with .5(X~ Z*) byo 

i= ~=1 

The following theorem provides an integral representation of Co(S, X ~,Z)*.  

T ~ E o ~  3.4. - Let S be a lqausdorff locally compact space with Borel sets ~.  
Let X, Z be Banach spaces. There is an isometric isomorphism/51 ~-+ m ~-~ L2 ~-+/58 
between the linear maps /51: Co(S) -->/5(X, Z*) with []lLl[I] < -500; the finitely ad- 
ditive measures m: ~ -+ Z(X, Z*) with finite variation Im[(S) < ~- co for which 
zm(.)x ~r eabv (~) for every z e Z, x e X; the linear maps /52: Co(S, X) --->Z* with 
I]IL~]II < ~ oo; and the bounded linear functionals La: Co(S, X ~ Z) -+ I& The cor- 
respondence /~1 ~-~ m r +-~/58 is given by 

(3.11) I~g ----fm(ds)g(s) , g ~ Co(S) 
8 
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(3.12) 

(3.13) 

(3.14) 

L~i =fm(~)l(s), l ~ Co(E, X) 
S 

L~u=f(u(s) ,  m(~s)), uc  Co(E, X ~ Z )  
S 

<z, (~lg)x~ = <~, ~2(g(.)~)> = L~(g(.)~ | ~ ) ,  g~Oo(S), x ~ X ,  z E Z .  

Under  this c o r r e s p o n d e n c e  I[IL~lll = Iml(s)  = IIIL~]II = ]L~[, a n d  m ~ rcabv (~, L(X, Z*)). 

PROOF. -- F r o m  Theorem 3.3 we already have an isomorphism Ll+-~ m +-~ Z, ;  
we must  show tha t  the norms are carried over under  this correspondence. As in 
Theorem 3.2, we assume tha t  L~+-+ m+-+L~ with ]]Z~][ = ~ ( s ) - - - - t L 2 ] < - F o o .  

We first show I]{LIIll < ]]]L21H. Now if {gl, ..., gn} c Co(S1) have disjoint support  and 
lx~]<l, then  gJ.)x~e Co(E, X) have disjoint support  with [gJ')x~]oo<l, so 

:~ I~l(g~)~l = ~ I ~ (g , ( . )~ ) l< l l l -& l l l  �9 
i = 1  i = l  

Taking the supremum over ]x~] < 1  yields 

:~ ILl(g~)l< IIIL~Iil, and hence IIl~llll < IIIL~III �9 
i = 1  

Next  we show IIIL~lil < lml(s). Let  11, . . . ,/~e Co(S, X) have disjoin* support  and 
zl, ..., z .EZ  with [z t ]<l .  Then 

z , .5~( i , )  --= , m ( d s l i , ( s )  < Z Iz, ml(supp l,)  
i=1 i i=1 

S 

where the  last inequal i ty  follows f rom (3.4) applied to z~m efa (5~, X*). By  Proposi- 
tions 2.2 and  2.3 we now have  

z ,~ ( t , )  < I~l(supp i,) = 1~1 U snpp l~ < l~'~l(S). 
i = 1  i = i  "{,=1 

Tuking the  supremum over ]z , ]<l  yields i[L~l,[<lml(S), and  over  {/,} yields 
HL~IIE < [~](s). ~=1 

Now we show [m](S)< [llL1Z]]. Le t  e > 0 be a rb i t ra ry ,  and suppose El ,  ..., E~e  5~ 
are disjoint and  lx~[<l,  Iz~[<l, i----1, ..., n. B y  regular i ty  of z~m(.)x~, there  is a 
compact  K~c E~ such tha t  

[ z ,m( . )x , l (E~)  < ~- 2u [ z ~ m ( . ) x , ] ( K ~ ) ,  i -~ 1, . . . ,  n .  

2 - A n n a l i  d i  M a t e m a t i c a  
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Since the K, are disjoint, there ure disjoint open sets G,o K,. Urysohn's Lemma 
then quurantees the existence of continuous functions g~ with compact support wnch 
that lx ,<g~<l~ .  We have 

" i  if( 
4=1 i=l 4=1 

< z~L~(g~)x~ + (1,-- l~,)(s)z~m(ds)x~< 
4=1 

4=1 '~=I 

< ~. [L~g, I -~ e<[llL1]]] + e.  
4=1 

Taking the supremum over ]x~]<l and lz~l <1  yields ~ [m(E~)] < I[IL~II[ + s, and the 
i=1  

suprcmum over all disjoint {E~, ..., E,} yields ]m[(S)< HIL~][[ ~- e. Since e was arbi- 
trary, ]ml(S ) < [][LI[][. We also note tha t  if ]m[(S)< + c o ,  then m e r c a b v  (:B, Z(X, Z*)) 
by Theorem 3.1. 

I t  remains to show how the maps L3e Co(S, X| are related to Z~, m, and 
Z~. Suppose Z3e Co(S,X| is given. Define L~: Co(m)-~Z(X,Z*) by 

<z, LJg)x) = I3(g(')x| ge Co(m), x e X ,  z e Z .  

If  g~, ..., g ,e  Co(S) have disjoint support with [g,]~<l, and if ]x~]<l, [z,[<l then 

~=lg~(.)x~@z~ oo<1 and so 
4-  

i=1  i ~ l  

Hence ~ ]Llg,]<[L31 and IIIJ~I]H<IL31, Conversely, let m correspond to L1; 
4=1 

since Im[ (S ) - - l i lA] l l< ] /~ l<§  we know that  mercabv (~ ,Z (X ,Z*) )=  
=rcabv(5$ ,  (X@~Z)*). Let us define W =  X@~Z. :By Theorem 3.2 there is 
an isometric isomorphism between maps Lae Co(m, W)*---- L(Co(S, W), R) and measures 
m e rcabv (~, iS(W,/~)) = rcabv (~B, W*) = rcabv (~B, L(X, Z*)); under this correspon- 
dence Lau-=-j<u(s), m(ds)> and ]La[ = [m](s). Thus (3.]3) holds and the theorem 

is proved. [] 

Thus, to summarize, we have shown that there is a continuous canonical injection 

Co(S, x |   (Co(S, x), z*) -+ L(Co(S), L(X, Z*)); 

each of these spaces corresponds to operator-valued measures m e~(:B, L(X, Z*)) 
which have finite variation ]ml(s), finite semivariation ~(s), and finite scalar semi- 
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var ia t ion re(s), respectively. By  posing the theory  in te rms of measures with values 
in an L(X,  Z*) space ra the r  than  an L(X,  [g) space, we have developed a natural  
and complete representat ion of linear operators on Co(S, X) spaces. ~Ioreover in 
the case tha t  32 is a dual  space (without necessarily being reflexive), it is possible 
to represent  all bounded linear operators L eL(Co(S, X), 12) by  operator-valued 
measures m e J l @ g , L ( X ,  I7)) with va!ues in Z(X,  :g) ra ther  t han  in L(X,  Iz**); 

this is impor tan t  for the  quan tum applications we have in mind, where we would 
like to represent  L(Co(S), L~(H)) operators by  L~(H)-valued operator  measures ra ther  
than  L~(H)**-valued measures. We now give two examples r show how the usual 
representat ion theorems follow as corollaries by  considering 17 as a subspace of [g**. 

CO~OLLA~Y (DV~Fo~D-Sc~wA~z [1967], III .19.5) .  - Le t  S be a locally compact  
i tausdorf f  space and X, 12 Banach  spaces. There is an isometric isomorphism bet- 
ween bounded linear maps L:  Co(S, X) --> Y and finitely addit ive maps m: ~g -> 
-~ L(X,  :g**) with finite semivariat ion N ( s ) <  + oo for which 

1) y 'm( . )  e r e a b v  (~g, X*) for every  y * e  12'; 

2) y* ~ y*m is continuous for the  weak* topologies on 37*, reabv (~g, X*) ~= 
~_ Co(S, X)*. This correspondence Le->m is given by  L] =fm(c~s)](s) f o r / e  Co(S, x), 
and IL I = re(S). 

P~ooF.  - Set Z = Y* and consider Y as a norm-closed subspace of Z*. An 
element y** of 12"* belongs to 12 iff the linear functional  y* ~ y**(y*) is continuous 
for the  w* topology on Y*. Kenee the  maps L e L(Co(S, X),  Y**) which correspond 
to maps L eL(Co(S,  X),  12) are precisely the maps for which z ~ <z, L]> are con- 
t inuous in the w*-topology on Z = 12" for every  ] e Co(S, X), or equivalently those 
maps 35 for which z ~ L*z is continuous for the w* topologies on Z = 3(* and 
Co(S, X)*. The results then  follow directly f rom Theorem 3.3, where we note  tha t  
when L ~ m, 

<],/~*z> = <z, L?> =~zm(ds)/(s). [] 

S 

COtr (DOBRAKOV [1971], 2.2). -- A bounded linear map L:  Co(S, X) --~ Y 
can be uniquely  represented as 

Li =fro(as)/(8),  / e Co(S, x )  
S 

where m e f a  (33, L(X,  !Z)) has finite semivariat ion ~ ( s ) <  + c~ and satisfies y 'm( .  )x e 
~ r  eabv (5~) for every  x e X ,  y*e 12, if and only if for every  x e X  the  bounded 
linear operator  L~: Co(S) --> 12: g(-) ~ L ( g ( . ) x )  is weakly compact.  In  tha t  case 

ill = m(8) and L 'y*  is given by  (Z*y*)] =fy*m(as)/(s) where y*m e rcabv (~ ,  X*) 
for every  y * e  12". s 
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~EYIAI%K. - -  Suppose 17 ~ Z* is a dual  space. Then  b y  Theorem 3.2 every  
-5 e L(Co(S, X) ,  17) has a represent ing me~sure m e ~ ( 5 5 ,  -5(X, 17)). Wh~t  this Corol- 
l a ry  says is t ha t  the  representing measure m actual ly  satisfies y*m( . )x  e rcabv (55) 
for every y*e  17" (and not  just  for every  y* belonging to the canonical image of Z 
in Z * * =  ]z*), if ~nd only if /)~ is weakly compact  Co(S) -+ 17 for every  x e X;  i.e. 
in this ease we have (in our notat ion) m e ~(~ (55, -5(X, If**)) where 17 is injected 
into its bidaal  17"*. 

1)~ooF. - Again, let  Z = 17" and define J :  17 -+ 17"* to be the canonical injec- 
t ion of 17 into 17"* = Z*. The bounded  linear operator  -5~: Co(S) -+ 17 is weakly 
compact  iff -5**: Co(S)**-+ 17"* has image -5**Co(X)** which is a subset of J17 
(Du~r0~D-ScKwA~TZ [1966], VI.4.2).  First ,  suppose -5~ is weakly compact ,  so tha t  
_5, : Co(S)**--> J17 for every  x. l%w the map ~ ~ 2(E) is an element of Co(S)** 
(where we have identified ~ e r e , b y  (55) ~ C0(8)*) for E e 55, and 

-5**( A = , (z e 17.* 

where m ~ ~(55,  L (X ,  Z*)) is the  representing measure of JL:  Co(S, X) -+ 17"*. Since 
L~ is weakly compact,  z ~ (z, m(E)x)  must  actual ly belong to J17 c 17"*, t ha t  is 
z ~ (z, m(E)x}  is w* continuous and m(E)x  e J17. t t enee  m has values in L(X,  J17) 
ra the r  t han  just  L(X,  17"*). 

Conversely if m e ~{~(55, L(X,  J17)( represents an operator  L e L(C0(S, X),  17) b y  

]-5I = f m ( d s ) m ) ,  

t hen  the  map -5*: 17"-.  Co(S)*~---r cabv (55): z w, (z, m(.)x> is continuous for the  
weak topology on Z ~ 17" and  the  weak * topology on Co(S)*~ r cabv (55) since 
m(E)x  ~ J17 for every  E e 55, x ~ X. Eence  b y  (Dv~0~D-ScHw• [1966], u  
-5~ is weakly compact .  [] 

4. - Integration of real-valued functions with respect to operator.valued measures. 

In  quan tum mechanical  measurement  theory ,  it is near ly  always the case tha t  
physical  quantit ies have values in a locally compact  i tausdorff  space S, e.g. a 
subset of/~% The integrat ion theory  m ay  be extended to more general measurable 
spaces; bu t  since for dual i ty  purposes we wish to in terpre t  operator-valued meas- 
ures on S as continuous linear maps, we shall always assume tha t  the parameter  
space S is a locally compact  space with the  induced a-algebra of Borel  sets, and tha t  
the  operator-valued measure is regular. In  part icular ,  if 8 is second countable then  S 
is countable at  infinity (the one-point compactification S W {oo} has a countable 
neighborhood basis a t  co) and every  complex Borel  measure on S is regular;  also 8 
is a complete separable metr ic  space, so tha t  the Baire sets and ]~orel sets coincide. 
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Le t  H be a complex l:Iilbert space. A (self-adjoint) operator-valueg regular Betel  

measure on S is a map  m: 55 -> ~,(H) such tha t  <m(.)9[~o ) is a regular Borel  meas- 
ure on S for every  g, ~o e H.  In  part icular ,  since for a vector-valued measure count- 
able addi t iv i ty  is equivalent  to  weak countable  addi t iv i ty  [DS, IV.10.1], m ( . ) g  

is a (norm-) countably  addit ive H-valued  measure for every  g e H ;  hence whenever  
{E~} is a countable  collection of disjoint subsets in 55 then  

r  r  

where the  sum is canvergent  in the  strong operator  topology.  We denote  by  
3~,(55, B~(H)) the real l inear space of all operator-valued regular Borel  measures on S. 
We define scalar semivariativn of m e 4G(55~ ~ (H ) )  to be the  norm 

(4.1) ~ ( S )  = sup [<m(.)glg} [(s) 
1~1<1 

where ]<m(.)g[g>] denotes the  to ta l  var ia t ion  measure of the real-valued Borel  
measure E ~ <m(E)g]g>. The scalar semivariat ion is always finite, as proved in 
Theorem 3.2 by  the uniform boundedness theorem (see previous sections for alter- 
nat ive definitions of ~(s ) ;  note  tha t  when m(. ) is self-adjoint valued the ident i ty  

~(s)  = sup sup [<m(.)gl~0}l(s ) reduces to (4.1)). 

A positive operator-valued regular Borel  measure is a measure m ~ 4(,(55, s 
which satisfies 

re(E) > 0 , VE e 55 

where by  r e ( E ) > 0  we mean re(E) belongs to the  positive cone  ~(H)+ of all non- 
negative-definite operators.  A probability operator measure (POM) is a positive 
operator-valued measure m e ~ ( 5 5 ,  ~ (H) )  which satisfies 

re(S) : I .  

I f  m is a P O ~  then  every  <m(.)glg ) is a probabi l i ty  measure on S and ~ (S )  = 1. 
I n  particular~ a resolution o] the identity is an m e vR~(55, E,(H)) which satisfies re(S) 

= I and  m(E)m(F)  : 0 whenever  E A / ~  = 0; it  is then  t rue  tha t  m(-) is projee- 
t ion-vMued and satisfies 

m ( E  n ~ )  = m ( E ) m ( F )  , E,  P ~ 55 (2). 

(2) PROOF. - First, m(') is projection valued since by finite additivity 

re(E) = m(E)m(S) = m(E)[m(E) + m(S~E)]  = re(E) 2 + m(E)m(S~E)  , 

and the last term is 0 since E n ( S ~ E )  = 0. Moreover we have by finite addltivity 

m(E)m(2 ~) = [m(E n 2") + m(E\zv)]. [m(E n ~) + m(/~\E)]  = 
= m(E n ~)2 + qn(E n ~)m( iF~E)  + m ( E ~ E ) m ( E  n E) 4- m ( E ~ I ~ ) m ( F ~ E ) ,  

where the last three terms are 0 since they have pairwise disioint sets~ 
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We now consider integrat ion of real-valued functions with respect to operator-  
valued measures. Basically, we identify the  regular Borel  operator-valued meas- 
ures m e ~ ( ~ ,  ~ (H) )  with the  bounded linear operators L:  Co(S) --> ~(H), using 
the  integrat ion theory  of Section 3 to get a generalization of the l%iesz l~epresenta- 

t ion Theorem. 

Tn~o~E~ 4.1. - Le t  S be a locally compact  i tausdorf f  space with Borel  sets ~ .  
Le t  H be a Hi lber t  space. There is an isometric isomorphism m +-~ L between the 
operator-valued regular Bete l  measures m e ~ ( : 5 ,  s and the  bounded linear 
maps JL e L(Co(S), ~(H)). The correspondence m +-+L is given by  

( 4 . 2 )  , g Co(S) 
S 

where the integral is well-defined for g(. )~ M(S) (bounded and tota l ly  measurable 
maps g: S ->R)  and is convergent  for the supremum norm on M(S). I f  m+-+L, 
then  ~ (S )  ~- ILl and (L(g)~lyJ } =fg(s)<m(.)~IW}(ds ) for every  F, ~p e H.  Moreover L 

B 

is positive (maps Co(S)+ into ~ (H)+) iff m is a positive measure;  L is positive and 
L(1) ---- I iff m is a POM; and L is an algebra homomorphism with L(1) ---- I iff m 
is a resolution of the  identi ty,  in which ease L is actual ly an isometric algebra 
homomorphism of Co(S) onto a norm-closed subalgebra of ~ (H) .  

PROOF. - The correspondence L +-+ m is immediate  f rom Theorem 3.2. I f  m is a 
positive measure, then  (m(E)~l~}>~0 for every  E e ~B and F e l l ,  so (L(g)~Iq0 } 
---fg(s)(m(.)~I~}(as)>o whenever g>~O, ~ e H and L is positive. Conversely, if L 

S 
is positive then  (m( . )~[~  } is a positive real-valued measure for every  ~ e H, so 
m(.)  is positive. Similarly, L is positive and L(1) - - - - I  iff m is a POM. I t  only 
remains to ver i fy  the final s ta tement  of the theorem. 

Suppose m(. ) is a resolution of the identi ty.  I f  gl(s) ---- ~ ajl~j(s) and g2(s) = 
j = l  

b,l~,(s) are simple functions, where {El, ..., ]~n} and {F1, ..., F~} are each finite 
5=1 

disjoint subcollections of :B, then  

fg~(s)m(ds), fg2(s)m(ds) = ~ ~ ajbkm(E,)m(Fk) = 
5=1 k=I 

i ~ ~_, ajbkm(E1 ~ Fk) = 
5~1 Ir 

----- fgl(s)g (s)m(a8) . 

t t ence  g ~fg(s)m(ds) is an algebra homomorphism from the algebra of simple func- 
tions on S into s ~[oreover we show tha t  the homomorphism is isometric on 
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simple functions. Clearly 

fg(s) m(ds) <m(s)Igl  = lgl . 

Conversely, for g ---- ~ %1~j we may choose Fj to be in the range of the projection 
~=1 

m(Ej), with [~;] = 1, to get 

= max [a~] <~"b(.Ei)(~l[(~. ) = 
i= l , . . . , n  

= m a ~  l~, l  = I g L .  
~=l,...,n 

Thus g ~fg(s)m(ds) is isometric on simple functions. Since simple functions are 
uniformly dense in M(S), it follows by taking limits of simple functions that  
fg~(s)m(ds).fg2(s)m(ds) =fg~(s)g2(s)m(ds) and ]fg~(s)m(ds)l = [g~]~ for every g~, g~e 
e M(S). Of course, the same is then true for g~, g~e Co(S)c M(S). Since Co(S) is 
complete, it follows that  L is an isometric isomorphism of Co(S) onto a closed sub- 
algebra of s 

Now assume Chat Z is an algebra homomorphism and L(1) ---- I .  Clearly re(S) = 
= L(:I) = I. Since Z(g ~) = Z(g)*>0 for every g e Co(S), Z and hence m are positive. 
Let 

MI= {gE M(S): fg(s)m(ds).fh(s)m(ds)=fg(s)h(s)m(ds)for every h e  C0(S)}. 

Then M1 contains Co(S). :~Tow if g .e  M(S) is a uniformly bounded sequence which 
converges pointwise to go then fg.(s)m(ds) converges in the weak operator topology 
to fgo(s)m(ds) by the dominated convergence theorem applied to each of the regular 
Borel measm'es (m(.)~]~}, ~, F e H  (the integrals actually converge for the norm 
topology on s whenever Ig~--go]~-~0). Hence M1 is closed under pointwise 
convergence of uniformly bounded sequences, and so equals all of M(S) by regu- 
larity. Similarly, let 

M2= {he M(S): fg(s)m(ds).fh(s)m(as)=fg(s)h(s)m(ds)for every g e  M(S)}. 

Then M2 contains Co(S) and must therefore equal all of M(S). I t  is now immediate 
that  whenever E, F are disjoint sets in ~ then 

m(E)m(~) = f ] ~dm. f l~dm = f ]~n~(s)m(ds) = o . 

Thus m is a resolution of the identity. [] 
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I~E2CIA]~K. - -  Since every real-linear map from a real-linear subspace of a complex 
space into another real-linear subspace of a complex space corresponds to a unique 
(~ ]~ermitian ~ complex-linear map on the complex linear spaces, we could just as 
easily identify the (self-adjoint) operator-valued regular measures ~ ( ~ ,  ~(H)) with 
the complex-linear maps L: Co(S, C) ~ s which satisfy 

L(g) = L(g)*, g e  r c ) .  

5. - Integration of  ~ (H)-va lued  functions. 

We now consider s as a subspaee of the <~ operations ~> s T(H)), that  
is, bounded linear maps from T(H) into ~(H). This is possible because if A e ~(H) 
and B e s then A B  and B A  belong to ~(H) and 

(5.1) 

I-A.Bltr < IALIBI 

IBAIt~< IXLIBI 

t r  (AB) = tr  (BA) . 

Then every B e s defines a bounded linear function L~: x(H) -> w(H) by 

L , ( X )  : A B  , A e 7:(H) 

with IBI = 12~[. In particular, A ~ t r  A B  defines a continuous (complex-) linear 
functional on A e ~(H), and in fact every linear functional in  ~(H)* is of this form 
for some B e g(H). We note that  if A and B are selfadjoint then tr A B  is real 
(although it is not necessarily true that  A B  is self-adjoint unless A B  = B A ) .  Thus, 
it is possible to identify the space ~(H)* of real-linear continuous functionMs on 
~8(//) with gs(H), again under the pairing <A, B> -~ tr A B ,  A e Ts(H), B e ~(H). 
For our  purposes we shall b e  especially interested in this latter duality between 
the spaces ~(H) and g~(H), which we shall use later to formulate a dual problem 
for the quantum estimation situation, l=[owever, we will also need to consider g~(H) 
as a subspace of g(~(H), ~(H)) so that  we may integrate ~(H)-valned functions 
on S with respect to s operator measures to get an element of T(H). 

Suppose m e dt~(~, ~,(H)) is an operator-valued regular Betel measure, and 
/: S --> ~,(H) is a simple function with finite range of the form 

1(8) = ~: 1~,(8)e; 

where ~ e  ~,(H) and E~ are disjoint sets in .~, that  is / e ~ )  ~8(H). Then we may 
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unambiguously (by finite additivity of m) define the integral 

f/( s)m(&) = ~ m(.E~)q~. 

The question, of course, is to what class of functions can we properly extend the 
definition of the integral? Now i / m  has finite total variation ]m[(s), then the map 
] ~ff(s)m(ds) is eontinnons for the supremnm norm I11oo= sup I](s)[t~ on ~ G  T,(H), 

s 

so that  by continuity the integral map extends to a continuous linear map from 
the closure M(S, ~,(H)) of :5@~,(H) with the I" ]oo norm into ~(H). In particular, 
the integTal f/(s)m(as) is well-defined (as the limit of the integrals of uniformly 

s 
convergent simple functions) for every bounded and continuous function ]: S --> T,(H). 
Unfortunately, it is not the case that  an arbitrary POS~ m has finite total variation. 
Since we wish to consider general quantum measurement processes as represented 
by PO~'s  m (in particular, resolutions of the identity), we can only assume that  m 
has finite scalar semivariation ~ ( S ) <  + c~o. i~ence we must put stronger restric- 
tions on the class of functions which we integrate. 

We may consider every m e ~(~(~, ~(H)) as an element of ~ ( ~ ,  E(r(H), ~(H))) 
in the obvious way: for E ~ ~3, @ ~ ~(H) we put 

re(E)(@)-: @re(E). 

Moreover, the scalar semivariation of m as an element of ~ ( ~ ,  Es(H)) is the same 
a,s the scalar semivariation of m as an element of d~g(53, E(~(H), z(H))), since the 
norm of B e s is the same as the norm of B as the map @ ~ @B in E(T(H), ~(H)). 
By the representation Theorem 3.2 we may uniquely identify m e ~ ( : g ,  s 
c ~(~(:~, E(~(H), ~(H))) with a linear operator L e E(Co(S), Es(H)) c E(Co(S), E(T(H), 
~(H))). ~qow it is well-known that  for Banach spaces X, Y, Z we may identify 
(TREvES [1967], III.43.12) 

~(x ~= y, z)~_/3(x, ~; z) ~ c(x, ~(~, z) ) 

where X ~)= Y denotes the completion of the tensor product space X Q X for the 
projective tensor product norm 

[]l== inf xj[.[yj[: ] = x ,@y,  , 
i= l  

l e x |  

fl(X, Y;Z) denotes the space of continuous bilinear forms B: X(~ :Y-->Z with 
norm 

[B]t~(x.r;z)= sup sup ]B(x, y)]; 
I,I-<< 1 lv l< l  
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and ~(X, ~(Y, Z)) of course denotes the space of continuous l inear maps L~: X -> 
-> ~(X, Z) with norm 

[L:l(x,c(r ,z>)  = s u p  IL:Xlmr, z ) .  

The identification L~ ~+ B ~-~/~ is given by  

L~(x~y) -~ B(x, y) ~- L~(x)y . 

I n  our case we take X = M(S), 17-- Z = ~(H) to identify 

(5.2) 

Since the  map g ~fg(s)m(ds) is continuous f rom M(S) into ~,(H) c s ~(H)) 
for every  m e Jt(,(~, ~ (H) ) ,  we see tha t  we may  ident i fy  m with a continuous linear 
map ] ~f] dm for I e M(S) ~ ~(H). Clearly if ] e M(S) Q ~(H), tha t  is if 

](s) = i g~(s)ej 
J = l  

for gje M(S) and ~e ~(H), then  

~b 

g j = l  - -  

Moreover the  map ] ~f](s)m(ds) is continuous and linear for the  I . I . -norm on 

M(S)(D'~(H), so we may  extend the  definition of the integral  to elements of the 
completion M(S)~:~T(H) by  setting 

where ]he M(S)(~ z(H) and f~-+ ] in the  I" I - ' n~  In  the  section which follows 
we prove tha t  the completions M(S)~z(H)  and Co(S)~T(H) m ay  be identified 
with subsp~ces of M(S, z(H)) and Co(S, z(H)) respectively,  i.e. we can t r ea t  ele- 
ments  ] of M(S)~:~.~(H) as ~otally measurable functions ]: S --> T(H). We shall 
show tha t  under  suitable conditions the maps ]: S -~ T(H) we are interested in for 
quan tum est imation problems do belong to Co(S)~'~(H), ~nd hence are integrable 
against  a rb i t ra ry  operator-valued measures m e Ji(~(~, T~(H)). 

THEORE~ 5.1. -- Le t  S be a locally compact  Hausdorff  space with Borel  sets ~ .  
Le t  H be ~ I-Iilbert space. Thereis  an isometric isomorphism ZI+-+me-~L~ between the 
bouudedl inear  maps LI: Co(S) ~ T ( / / )  -> ~(H), the operator-valued regular Bore1 men- 
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sures ~ +~ (~, ~(~(~), ~(~))), and the bounded linear maps Z~: Co(S) -~ C(~(H), ~(~)). 
The correspondence %~ +-+ m +-+ Z~ is given b y  the  relat ions 

L~(/) =fl(s)n(ds), /e  Co(~)@=~(~) 

L~(g)e = L , (g ( . )o )  = efg(s)m(gs) ,  g + co(s),  o e ~(H) 

and under  this correspondence IL~I ~- ~(s )  --~ [L~]. Moreover  the  integral  f](s)m(ds) 
s 

is well-defined for every  ]e M(S)~:~(H) and the m a p  ] ~--+~/(s)m(ds) is bounded  
and  linear f rom M(S)~:~(H) into ~(H). s 

P~ooF.  - F r o m  Theorem 6.1 of section 6 (see nex t  section), we m a y  ident i fy  

M(S) ~:~(H), and hence Co(S)(~w(H), as a subspace of the to ta l ly  measurable  

( tha t  is, un i fo rm l imits  of simple functions) functions ]: S -+ ~(H). The results then  
follow f rom Theorem 3.2 and  the  isometr ic  i somorphism 

as in (5.2). We note  t h a t  by  a ~(~(H), w(H))-valned regular  Borel  measure  we mean  a 
m a p  m: ~ -+ s v(H)) for which t r  Cm(.)~ is ~ complex regular  Borel  meas-  

ure for every  ~ e ~(H), C ~ J~(tt), where in the  appl icat ion of Theorem 3.2 we have  
t aken  X ~ 7:(H), Z-~ J~(H), Z*--T(H). I n  par t icular  this is satisfied for every  

CO~OT,~A~Y 5.1. - I f  m E Jt(~(ff 4 s then  the  integral  f](s)m(ds) is well-defined 
for every  ] e M(S) ~ ~(H). s 

I%E~A~K. -- I t  should be emphasized t h a t  the I" I ~ 'norm is s t r ic t ly  s tronger  t han  

the  s up rem um  norm I]1~--~ sup I](s)l~r. Kence,  if ].~ ] e M(S)Q~T(H) satisfy ]~(s) --> 
-+](s)  uni formly,  i t  is not necessarily t rue  t ha t  I ] ~ ] t ~ - + 0  or t ha t  fL(s)m(ds)-~ 

s 
COItOLLAI~u 5.2. -- M(S)~:~w(H) is a subspace of M(S, v(H)). 

6. - A result  in  tensor  product  spaces .  

The purpose  of this section is to show t h a t  we m a y  ident i fy the  tensor p roduc t  
space M(S)~:~%(H) with a subspaee of the to ta l ly  measurable  functions ]: S - ~  
-+ %(H) in a well-defined way.  The reason why  this is impor t an t  is t ha t  the  func- 
t ions ] ~ M(S)~:~%(H) are those for which we m a y  legi t imately define an integral  

ff(s)m(ds) for a rb i t r a ry  operator-vMued measures  m e ,~(55, ~ (H) ) ,  since ] ~f](s)m(ds) 
S S 
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A 

is a continuous linear map from M(S)G=T(tt) into T(H). in  particular, it is ob- 
vious that  Co(S)| TJH) may be identified with a subspace of continuous functions 
1: S -+ TJH) in a well-defined way, just as it is obvious how to define the integral 

.[](s)m(ds) for finite linear combinations ](s) -= ~ gj(s)gje Co(S)| ~JH). What is 
5 j=1 

not obvious is that  the comple~ion of Co(S)@ TJH) in the tensor product norm 7~ 
may be identified with a subsp~ce Of continuous hmctions 1: S -~ TJH). 

:Before proceeding, we review some basic facts about tensor product spaces. 
Let X, Z be normed spaces. :By X(~ Z we denote a tensor product space of X and 

Z, which is the vector space of all linear finite combinations ~ a~x~@z~ where 
~=1 

a~eR, x~eX, z~eZ (of course, a~, x~, z~ are no~ uniquely determined). There is a 
natural duality between X |  Z and s Z*) given by 

Moreover the norm of Z e s Z*) as a linear functional on X |  Z is precisely its 
usual operator norm ILl = sup sup <z, Lx) when X @ Z  is made into a normed 

[~[<I Ioo,[< I 
space X@=Z under the ~ensor prodq~ct norm [. I~ defined by 

[Jl==inf Ix l'lz l: i - -  x | , i e x |  

I t  is easy to see that  Ix@z]----[x].Iz [ for x e X ,  z e Z  (the canonical injection 
X •  --->XOZ is continuous with norm 1) and in fact [. ]~ is the strongest norm on 
X | Z with this property. By X @~ Z we denote the completion of X ~)~ Z for the 
[. ]~-norm. Every L e g(X, Z*) extends to a unique bounded linear functional on 
X~)~Z with the same norm as its operator norm, so that  we identify (X(~=Z)*_~ 
~ s Z*). The space X ~ Z  may be identified more concretely as all infinite 

s u m s  ~ a~xj@zj where xj-+ 0 in X, zj--> 0 in Z, and ~ [aj] < + pc (SeItA]~I~I~ 
i = l  i = l  

[1971], 111.6.4), and the pairing between X ( ~ Z  and ~(X, Z*) by 

J i=1 

A second important topology on X@ Z is the e-topology, with norm 

I t  is easy to see that  l'It is a cross-norm, i.e. Ix@z]= ]x[.]z[, and that  I']~<t']~, 
i,e, the z-topology is finer than the e-topology. We denote by X @ Z  the tens0~ 
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product  space XQ Z with the e-norm, and by X@Z the completion of X Q Z  i~ 
the e-norm. Now the canonical injection of X@,Z into X ~ Z  is continuous (with 
norm 1 and dense image); this induces a canonical continuous map X @ Z  ---> X ~ Z .  
I t  is not  known, in general, whether this map is one-to-one. In  the ease tha t  X, Z 
are t t i lber t  spaces we may  ident ify X ~ Z  with the nuclear or trace-class maps 
~(X*, Z) and X @ Z  with the compact operators ~(X*, Z), and it is well known 
that the canonical map X 6 , Z  X6oZ is one-to-one (cf. [1967], m.3S .4) .  
We are interested in the case tha t  X -~ Co(S) and Z = ~ (H) ;  we m a y  then identify 
Co(S)@,~(H) with Co(N, ~ ( / / ) )  (since the I'l~ is precisely the ['loo norm when 
Co(S) @ T,(H) is identified with a subspace of C0(S, r~(H)), and Co(S) @ ~(H)  is dense 
in r ~(~/)))  and we would like to be able to consider r  as a sub- 
space of Co(N, ~.(H)). Similarly we want  to consider M(S)(~(H) as a subspace 
of M(S, 

TH~,ORE~r 6.1. -- Let  X be a ]3anach space and H a Yiilbert space. Then the 
canonical mapping of X~:~(H) into X@~(H) is one-to-one. 

P~ooF. - I t  suffices to show tha t  the adjoint of the mapping in question has 
weak * dense image in (X~z~(H))*~ s s where we have identified T(H)* 
with g(H). Note tha t  the adjoint  is one-to-one, since the image of the canonical 
mapping is clearly dense. Wha t  we must  show is tha t  the imbedding of (X ( ~  T(H))*, 
the so-called integral mappings X -+ g ( H ) ~  T(H)*, into g(X, g(H)) has weak * dense 
image. Of course, the set of linear continuous maps Lo: X--> ~(H) with finite 

X ^ dimensional image belongs to the integral mappings ( @~ w(H))*; we shall actually 
show tha t  these finite-rank operators are weak* dense in s g(H)). We therefore 
need to prove tha t  for every / e  (X@nT(H)), Z e g(X, s e > 0 there is an  Lo 
in g(X, ~(H)) with finite rank such tha t  ](], Z --  Lo) ] < e. Now ] has the representation 

(6.1) ] = ~ ajx~@ z~ 
J = l  

with ~ lar @c~, x j - + 0  in X, and z~-->0 in ~(H) (Sc~AEFrE~ [i971], I I I .6A) ,  
and J=1 

(6.2) (1, L - -  Lo) = ~ aj(z~,  (L - -  Lo)xj )  . 
5=1 

The lemma which follows proves the following fact:  to every compact subset K 
of X and  every 0-neighborhood V of g(H), there is a continuous linear map J5o: X -+ 
-+ g(H) with finite rank  such tha t  (E --  Lo)(K) c V. Using the representation (6.1), 

we take K : {x~}~ 1 ~) {0} and V = {y~, y~,...}~ ~ / ~  [aj 1. We then have l<], L --  Lo ) [<  s 
as desired. [] ~=1 

The lemma required for the above proof, which we give below, basically amounts  
to showing t h a t  Z * =  g(H) satisfies the approximation property, t ha t  is for every 
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Banach space X the finite rauk operators are dense in ~(X, Z*) for the topology 
of uniform convergence on compact subsets of X. I t  is not known whether every 
locally convex space satisfies the approximation property; this question (as in the 
present situation) is closely related to when the canonical mapping X ( ~  Z -~ X (~  Z 

is one-to-one. 

L ~ A  6.1. - Let X be a Banach space, H a Hilbert space. For every 
L ~ ~(X, ~_(H)), every compact subset ts of X, and every 0-neighborhood V in s 
there is u continuous linear map Lo: X - +  s with finite rank such that  

(L -- Lo)(K) c V . 

PROO~. - Let P~ be projections in H with P,~I, where I is the identity operator 
on H (e.g. take any complete orthonormal basis {%., j e J} ~or H; let iV be the 
family of all finite subsets of J~ directed by set inclusion; and for n e N define P .  to 
be the projection operator P ~ ( ? ) ~  ~ (~IF~'}% for ~ e l l ) .  Suppose L e ~(X, ~(H)). 

Then P . L e s  ~(H)) has finite rank and converges pointwise to L, since 
(P~L)(x) ~- P.(Lx) --~ Lx. Moreover {P,~L} is uniformly bounded, since [P,~L I <~ IP.[ �9 
�9 ILl ~ ]L I. Thus, by the ]3anach-Steinhaus Theorem or by the Arzel~-Ascoli The- 
orem the convergence F~L ~ L is uniform on compact sets. This means that  for 
every 0-neighborhood V in s and every compact subset K of X, it is true that  
for n sufficiently large 

(L I t  P .L)  (K) c V. [] 

COrOLLArY 6.2. -- Let S be a locally compact ]-~ausdorff space, H a Hilbert 
space. The canonical mapping Co(S)(~:~'~(tt)~ Co(S, T(H)) is one-to-one, and the 
canonical mapping M ( S ) ( ~ ( H ) ~  M(S, ~(H)) is one-to-one. 

~ o o ~ .  - This follows from the previous theorem and the fact that  Co(S)~Z  
may be identified with Co(S, Z) with the supremum norm, for Z a Banach space. 
Similarly M(S)~sZ---- M(S, Z) with the supremum norm. [] 

I%E~A~K.- In Theorem 3.4, we explicitly identified (Co(S)~T(H))*-~ ~(Co(S), 
~(H)) and (Co(S)~(H))*~-  Co(S, ~(H))* with the measures m e ~ ( S t ,  ~(H)) hav- 
ing finite semivariatidn and finite total variation, respectively. 

7. - Quantum est imation theory. 

7.1. Introduction. 

The integration theory developed in the previous sections is needed in studying 
the problem of Quantum Estimation Theory. We now develop estimation theory 
for quantum systems. 
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In  the classical formulation of Bayesian estimation theory it is desired to estimate 
the unknown value of a random parameter s e S based on observation of a random 
variable whose probability distribution depends on the value s. The procedure for 
determining an estimated parameter value s, as a function of the experimental ob- 
servation, represents a decision strategy; the problem is to find the optimal decision 
strategy. 

In the quantum formulation of the estimation problem, each parameter s e S 

corresponds to a state Q(s) of the quantum system. The aim is to estimate the 
value of s by performing a measurement on the quantum system. However, the 
quantum situation precludes exhaustive measurements of the system. This contrasts 
with the classical situation, where it is possible in principle to measure all relevant 
variables determining the state of the system and to specify meaningful probability 
density functions for the resulting values. For the quantum estimation problem 
it is necessary to specify not only the best procedure for processing experimental 
data, bus also what to measure in the first place. Hence the quantum decision 
problem is to determine an optimal measurement procedure, or, in mathematical 
terms, to determine the optimal probability operator measure corresponding to a 
measurement procedure. 

We now formulate the quantum estimation problem. Let H be a separable 
complex Hilbert space corresponding ~o the physical' variables of the system under 
consideration. Let S be a parameter space, with measurable sets 33. Each s e S 
specifies a state @(s) of the quantum system, i.e. every @(s) is a nonnega%ive-definite 
selfadjoint trace-class operator on H with trace 1. A general decision strategy is 
determined by a measurement process m(.), where m: :~ -+ s is ~ positive oper- 
ator-valued measure (1~O~) on the measurable space (S, 33), re(E)~ ~(H)+ is a 
positive selfadjoin% bounded linear operator on H for every E e 33, m(S) = I, and 
m(. ) is countably additive for the weak operator topology on ~(H).  The measure- 
ment process yields an estimate of the unknown parameter; for a given value s of 
the parameter and a given measurable set E e 33, the probability that  the estimated 
value ~ lies in E is given by 

(7.1) P r  {~e Els} = t r  [ o ( s ) ~ ( m ]  �9 

Finally, we assume that  there is a cost function e(s, ~) which specifies the relative 
cost of an estimate ~ when the true value of the parameter is s. 

For a specified decision procedure corresponding to the POMm(.) ,  the risk 
function is the conditional expected cost given the parameter value s, i.e. 

(7.2) Rm(s) = tr [e(s) fc(s, t)m(dt) ] . 
S 

If  now # is a probability measure on (S, .~) which specifies a prior distribution for 
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the parameter value s, the Bayes cost is the posterior expected cost 

(7.3) R~ =fRm(s)#(ds) . 
S 

Zhe quantum estimation problem is to lind a P03~ m(.) for which the Bayes expected 
cost R~ is minimum. 

A formal interchange of the order of integration yields 

(7.4) = tr f f(s)m(ds) 

where f(s)=re(t, s)~(t)#(dt). Thus, formally at least, the problem is to minimize 
S 

the linear functional (7.4) over all POI~Ys m(.) on (S, ~). We shall apply duality 
theory for optimization problems to prove existence of a solution and to determine 
necessary and sufficient conditions for a decision strategy to be optimal, much as 
in the detection problem with a finite number of hypotheses (a special ease of the 
estimation problem where S is a finite set). Of course we must first rigorously define 
what is meant by an integral of the form (7.4); note that  both the integrand and 
the measure are 0perator-valued. We must then show the equivalence of (7.3) and 
(7.4); this entails proving a Fubini-type theorem for operator-valued measures. 
Finally, we must identify un appropriate dual space for POMPs consistent with the 
linear functional (7.4) so that  a dual problem can be formulated. 

Before proceeding, we summarize the results in an informal way to be made 
precise later. Essentially, we shall see that  there is always an optimal solution, and 
that  necessary and sufficient conditions for a POi~ m to be optimal are 

f]( s)m(ds)<f(t) for every t e S .  

It then turns out that  ff(s)m(ds) belongs to ~(H) (that is, selfadjoint) and the 

minimum Bayes posterior expected cost is 

1~,~ = t r  f f ( s ) m ( d s )  . 
S 

7.2. A ~ b i n i  theorem for the Bayes posterior expected cost. 

In the quantum estimation problem, a decision strategy corresponds to a proba- 
bility operator measure m e Jt(~(~5, ~s(H)) with posterior expected cost 

= ftr [e(s) fmt, s)m(dt)]#(dt) 
B 
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where for each s, ~(s) specifies a s tate  of the quan tum system, C(t, s) is a cost func- 
tion~ and  # is a prior  probabi l i ty  measure on S. We would like to show tha t  the  
order  of integrat ion can be interchanged to yield 

/ ~  = t r  (/(s)m(ds) 
S 

where 

](s) = f c(t, s)e(t)#(dt) 
S 

is a map  ]: 8 -+ ~ ( H )  tha t  belongs to t h e  space M(8) ~ ~(H) of functions integrable 
against  operator-valued measures. 

Le t  (8, 55, #) be a finite nonnegat ive  measure spac% X a Banach  space. A func- 
t ion ]: S -+ X is measurable iff there  is a sequence {]~} of simple measurable func- 
tions converging pointwise to ], i.e. ]~(s) -+ ](s) for every  s e 8. A useful cri terion 
for measurabi l i ty  is the following [Dv~FOlCD-SCHWA~TZ (]966), 111.6.9]: ] is meas- 
urable if it  is separably-valued and for every  open subset V of X, /-I(V) ~ 55. In  
part icular ,  every  ] eCo(8, X) is measurable,  when 8 is a locally compact  t tausdorff  
space with Borel  sets 55. A funct ion ]: 8 - +  X is integrable iff it is measurable and 
f[](s)].#(ds) < q-c<), in which case the  integral  f](s)#(ds)is well-defined as Boch- 
S 

her 's  integral;  we denote by  ~(8 ,  55, tt; X) the  space of all integrable functions 

]: 8 - + X ,  a normed  space under  the L~ norm I?ll=f[/(s)I#(gs). The uniform norm 
S 

[.]oo on functions ]: S -+ X is defined by  [/[oo= sup [/(s)]; M(8, X) denotes the ]3u- 
ses 

nach space of all uni form limits of simple X-valued functions,  with norm [. ]~, i.e. 

2]/(8, X) is the  closure of the simple X-valued funct ions  with the  uni form norm. 
We abbreviate  M(8, R) to M(8). 

Pt~OPOSITIOiN 7.1. -- Le t  8 be a locally compact  i tausdorff  space with Borel  sets 
55, # a probabi l i ty  measure on S, and H a i i i lbe r t  space. Suppose ~ : 8 -+ ~s(H) 
belongs to M(S, ~s(H)), and C: 8•  is a real-valued map satisfying 

t ~ r e s 55, ~; M ( 8 ) ) .  

Then for every  s e S, ](s) is well-defined as an element of z.(H) by  the  Bochner  
integral  

(7.5) ](s) = f C(t, s)g(t)#(dt) ; 
S 

moreover  ] e M(S)~:~ T~(H) and for every  operator-valued measure m E d6(55, ft,(H)), 

3 - A n n a l t  d i  M a t e m a f i e a  
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we have 

(7.6) f f(s)~(as) =fe(t ) [  f o(t, ~)~(ds)]~(at). 
S 8 .8 

Moreover if t~-~. C(t,.) in fact belongs to _L~(S, ~ , # ;  Co(S)) then  ]e Co(S)(~"~.(H). 

PROOF. - Since t ~ C(t~.) E LI(S, ~ #; M(S))~ for each n there is a simple func- 
t ion C~eZ~(S, ~B,/t; M(S)) such tha t  

(7 .7 )  f Ic ( t , . ) -  C~(t, . )L#(dt)< fl-~- �9 n,~n 

Each simple function C. is of the form 

C,(t, s) = ~ g,~(s)l ,~(t) 

where E..1, ..., E.~. are disjoint subsets of ~B and g~,  ..., g~,. belong to M(S) (ia 
the case tha t  t ~C(t,.),_L~(S, r Co(S)) we take g~l, ...,g**. in Co(S)). Since 

~M(S, T~(H)), for each n there is a simple measurable function r S -*T , (H)  

such that 

1 
(7.s) sup IQ(t) - ~,,(t) l < n~- u �9 

$ 

We may  assume, by replacing each set E ~  with a disjoint subparti t ion corresponding 
to the finite number of values taken on by Q~, tha t  each Q. is in fact of the form 

kn 

k = l  

Define ].:  S -+ T,(H) by  

L(s) = f o.(t, s)~.(t)~(at) = 
S 

k .  

Of course, each 1. belongs to M(S)Q ~(H). We shall show tha t  {]~} is ~ Cauchy 
sequence for the [. I~ norm on M(S)(D ~.(H), and tha t  l~(s) --> ](s) for every s e S; 
since the I" I --limit of the sequence 1. is a unique function by Theorem 6.1, we see 
tha t  ] is the I" I~ "limit of (]~} and hence ] belongs to the completion M ( S ) ~  v,(H). 

We calculate an upper bound for I1~+1--l~l~" l~ow 

l , ,+l(s) - l,,(s) = ~:  -:X {g, ,+~, , (8)[~, ,+~,~- ~,~,~] + [g,,+,,,(s) - g,~,~(8)] ~,~,~}~(~, ,+~,~n .~,,,~) 
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and hence 

(7.9) I / . + , -  1.1~, < 
k=+x kn 

< 2 2 {Ig.+,,,[=" [e.+,,,-- e.,~lt~ + lg.+,,,-- g.,~l~" le,,~/tr},U(E.+,.~, n / ; . , ~ ) .  

Suppose E.+~.r E,.~:y= 0, i.e. there exists a toeE,+~.j(3 E.,~. Then from (7.8) we 
have 

l e . + , . -  e.,~It~< Ie.+~,s- r + le.,,0-- e(to)ltr< - -  
1 1 1 

(n + ~)2~+~ + ~ <  n2o+~" 

Thus, the first half  of the summation in (7.6) is bounded above by 

k. i f  n2n-1 ~= k=~ 

s 1 C 1 
-- n2o_111 ~+A< ~ (1 + 11 cl],) 

where by IIcl/~ we mean the norm of t ~ C(t,.) as a element of L~(S, 31,#; M(B)), 
and the last inequali ty follows from (7.7). Similarly the second half of the summa- 
tion is bounded above by 

~ kn 
rg.§ g.,~l~.s(~o+~,~(~ ~ ,~)  = 

= (1~[~+ 1)'lle~+, - coil,< ( I d a +  1). n~--'  

where again the last inequali ty follows since ]IC.-- C]I~< 1/n2 ~ by (7.7). Le t  a be a 
constant  larger than  1 + IIctl~ and I ~- Lolo~; adding the last two inequMities from 
(7.9) we have 

Hence for every m > n > l  it  follows tha t  

m--1 

Thus {],} is a Cauchy sequence for the 1. I= norm on M(S) ~ %(H), and hence has a 
limit fo~ M(S) G~ %(H). Since it certainly follows tha t  ] ,  ~ ]o pointwise (in fact  in 
the uniform norm since [. I~< [" [~), and since it is straightforward to show tha t  
f,(s) ~ ](s) for every s e S, ]o= ]. Moreover in the ease tha t  t ~ C(t,.) e Ll(S, 3t, 
/x~ C0(S)), we have ] .~ Co(g) | %(H) and hence ] = ]. ]~-lim ]. belongs to Co(S) | %(H). 
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I t  only remains to show that  (7.6) holds. Essentially this follows from the ap- 
proximations we have already made with simple functions. ~7ow clearly 

(7.10) ff~(s)m(ds) = ~= e.~(F,.~) fg.~(s)m(ds) = f  e~(t) [f  r s)m(ds)]#(dt) , 
s 

so that  (7.6) is satisfied for the simple approximations. We have already shown 
t h a t  f~ --> t i n  M(S)~, ~.(H), so t h a t  ]fJ.(s)m(ds) --f/(s)m(ds)[~,< I t .- ll~.~(s) -~ o 
and the L ~ S  of (7.10) converges to jf(s)m(ds). We need only show that  the RtIS 
of (7.10) converges to the I~ttS of (7.6). ]3ut applying the triangle inequality to 
(7.10) yields 

f@n(t) [fcn(t, s)m(ds)] t t (d t ) -  fe(t)[f mr, s)m(ds)] (dt) ,r< 
< f mm,  sl - eIt, s) ]mI sl  p(dtl + f -  (tl )" f e(t, s)mId )l r (dtl< 

< l e~ L" f lG.(t," ) - r )1~. ~(,~)~(dt) § 1o~- 0l~" fie(t,. )leo ~(~)~(dt) < 

<(lel~+ ~)'~(~)" ~ n2-u + ~(~)-llcll~-~ o 

where the last inequality follows from (7.7) and (7.8) and again IIr =flr 
denotes the norm of C as an element of L~(S, ~ ,  #; M(S)). [] s 

7.3. The quantum estimation problem and its dual. 

We are now prepared to precisely formulate the quantum estimation problem 
in the framework of duality theory of optimization and calculate the associated 
dual problem. Let S be a locally compact tIausdorff space with ]3orel sets :B. Let H 
be a t~ilbert space associated with the physical variables of the system under con- 
sideration. For each parameter value s e S let @(s) be a state or density operator 
for the quantum system, i.e. every @(s) is a nonnegative-definite selfadjoint trace- 
class operator on H with trace ! ; we assume @ e M(S, "~8(H)). We assume that  there 
is a cost function C: S • S -+ R, where C(s, t) specifies the relative cost of an esti- 
mate t when the true parameter value is s. If  the operator-valued measure m 
e ~(33, s corresponds to a given measurement and decision strategy, then the 
posterior expecetd cost is 

Rm = tr f e(t) [ f e(t, s)m(ds) ]#( dt) , 
8 S 

where /t is a prior probability measure on (S, 33). By Proposition 7.1 this is well- 
defined whenever the map t ~ C(t,.) belongs to El(S, 33,#; M(S)), in which case 
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we may interchange the order of integration to get 

(7.11) R~ = tr~](s)m(ds) 
Z 

where ] e M(S) ~ ~8(H) is defined by 

m )  = f e(t) v(t, s) (as) . 
S 

The quantum estimation problem is to minimize (7.11) over all operator-valued 
measures m e Jt(~(~, s which are POM's, i.e. the constraints are that m(•)>0 
for every E e :~ and re(S) -~ I. 

We shall now assume that the reader is familiar with the duality theory of 
optimization in infinite-dimensional spaces as for example developed in [ROCKA- 
~ELLA~ (1973)]. TO form the dual problem we take perturbations on the equality 
constraint re (S )=  I. Define the convex function F :  Ji(~(tS, ~8(H))->/~ by  

S 

where ~>~0 denotes the indicator function for the positive operator-valued measures, 
i.e. ~>~0(m) is 0 if m(.~)c ~(H)+ and -[-co otherwise. Define the convex func- 
tion G: ~s(H) -+/~ by 

G(x) = ~m~(x) , x e ~ ( H )  

i.e. G(x) is 0 if x - ~ 0  and G ( x ) ~  Jroo if x ~ 0 .  Then the quantum detection 
problem may be written 

P ,  ---- inf {/~(m) 4- G(I --  Lm): m e zt(,( ~,  s 

where L: Ji{~(5~, g,(H)) -~ s is the continuous linear operator 

L ( m )  = re(S)  . . . .  

We consider a family of perturbed problems defined by 

P(x) = inf {F(m) -F G(x- -Lm):  m e ~ ( ~ ,  ~AH))}, x e s 

Thus we are taking perturbations in the equality constraint, i.e. the problem/)(x)  
requires that  every feasible m be nonnegative and satisfy r e ( S ) ~  x; of cours% 
/)o = P(I) .  Since F and G are convex, 2 ( . )  is convex g{(H) -> R, 
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In  order to construct the du~ ! problem corresponding to the family of perturbed 
problems P(x), we must  calculate the conjngute functions of P and G denoted as F* 
and G*. We shull work in the norm topology of the constraint space s so tha t  
the dual problem is posed in s Clearly G* ~ 0. The adjoint of the operator Z 
is given by 

L , :  s  y y . m ( S ) ) .  

To calculate F*(L*y), we have the following lemma. 

I J E ~ A  7.2. - Suppose y e s and ] e M(S)(~:~%(H) satisfy 

(7.12) y. re(S) ~ tr~/(s) m(ds) 
s 

for every positive operator-valued measure m eJi(~(:~, s Then y ~ < 0  and 
y~</ ( s )  for every s e S, where y ~-- Y a ~  Y~g is the unique decomposition of y into 
yao~ %(H) and y e J~,(H) • 

P~ooF. - Fix  any  s0e S. Let  x be an arbi t rary  element of s and define 
the positive operutor-valued measure m e J}(~(~, s by  

x i f  soeE, 
r e ( E ) =  0 if So~E E ~ .  

Then y.m(S) ~- y(x) -~ t r  (y~ox) ~ y~g(x), and tr]/(s)m(ds) : t r  ](so)x. Thus, by  (7.12) 
t r  [y~--](so)]x ~-y~g(x)<0; since x e s was arbi trary,  it  follows tha t  y~o<](So) 
(i.e: ](%) --  y~r ~8(H)+) and y~g~<0 (i.e: - -  y ~ e  [s § n JS~(H)~). [] 

With  the aid of this lemma it is now easy to verify tha t  

0 if yac</(s) seS~ and y.g<0 

F*(L*y) ~ -~ c~ otherwise 

= + �9 

I t  now follows tha t  P*(y) ~ F*(L*y) + G*(y) is 0 if ysg<0 and y~o</(s) for every 
s e S~ and /~*(y) = + ~ otherwise. The dual problem Do = *(P*)(I) -- sup [ y ( I ) -  
- -P*(y)]  is thus given by 

D o =  *(P*)(I) ---- sup (tr yap ~- ysg(I): y e s y~<O, ya~</(s), Vs e S}.  

We show tha t  P( . )  is norm continuous at  I, and hence there is no duali ty gap 
(Po---- Do) and Do has solutions. Moreover we shall show tha t  the optimal solutions 
for Do will always have 0 singular part ,  i.e., will be in %(H). 
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P~OPOSITm~ 7.3 -- The perturbat ion funct ion P( . )  is continuous ~t I, and hence 
~P(I) ~= O, where ~P denotes the subgradient of P.  In  particular~ -Po = D o  and the 
dual problem Do has optimal solutions. Moreover every solution y e s of the 
dual  problem Do has 0 singular part ,  i.e. #,~ = 0 and ~ = #~ belongs to the can- 
onical image of v,(H) in v~(H)**. 

PR00F. -- We show tha t  P(-  ) is bounded above on a uni t  b~ll centered at  I .  Sup- 
pose xes  and  [x l< l .  Then it  is easily seen that I@x>O. Let  So be 
an arb i t ra ry  element of S and define the positive operator-valued measure 

~.m e A~(~, C~(H)+) by 

{ I - b ~  if soeE, 
re(E)= 0 if s0r  E e l .  

Then m is feasible for P(x) and has cost 

trft(s)m(ds) = tr  l(so)(I + x) <2  If(so)It,. 

Thus P(I +x)<21](So)l~ r whenever ]x]<l ,  so P ( . )  is bounded above on a neigh- 
borhood of I and so by convexity is continuous at  I, and hence from standard 
results in convex analysis~ it follows tha t  3P(xo)V= O, hence Po = Do and Do has 
solutions. Suppose now tha t  ~ e s is an optimal solution for Do. I f  ~)s~r 0, 
then  since #s~<0 and I e int  s it  follows tha t  t r  (#ao) -~ ~sg(I) < tr  (?/ao). Kence 
the value of the dual objective function is strictly improved by setting #sg----0, 
while the constraints remain satisfied~ so tha t  if ~ is optimal it must  be t rue tha t  
#~g = 0.  [ ]  

In  order to show tha t  the problem -Po has solutions, we could define a family 
of dual perturbed problems D(v) for v e Co(S)@= T~(H) and show tha t  D(. ) is con- 
tinuous. Or we could take the al ternative method of showing tha~ the Set of feas- 
ible POM's m is weak,  compact and the  cost function is weak*-lse when  J(~(~, s 
_~s163 is identified as the normed dual of the space Co(S)@=v,(H) 
under the pairing 

</, 

^ H :Note t ha t  both methods require t ha t  / belong to the predual Co(S)@~( ) of 
J(~(~,z,(H)) by  Proposition 7.1 it suffices to assume tha t  t ~-~ C($,') belongs to 

P~0POSITIO~ 7.4. -- The set of POM's is compact for the weak* ----- w(At(r s 
Co(S)~=z~(H)) topology. If  r ~ C(t,.)eLx(S, ~,#; Co(S)) then P0 has optimal 
solutions ~ 
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P ~ o o F . -  Since Ji{~(~, s is the normed dual of Co(S)~)=%(H) it suffices to 
show the set of P O ~ ' s  is bounded;  in fact,  we show tha t  W(S) = 1 for every  POM m. 
I f  ~ e H  and [?]----1, then  @m(.)[~0 > is a regular Borel  probabi l i ty  measure on S 
whenever  m is a POM, so tha t  the  to ta l  var ia t ion of @m(.  )]?> is precisely 1. t t ence  

= sup sup 1 .  
~oEH ep~H 
I~I< 1 �9 i~1=1 

T h u s  the  set of POM's is a weak*-elosed subset of the  uni t  ball in Jt~(~, s 
hence weak*-compact.  I f  now t ~ C ( t , . )  belongs to LI(S, ~ ,# ;  Co(S)) then  ] e  
e Co(S) ~ ,%(H)  by  Proposi t ion 7.1, so m ~ trf](s)m(ds) is a weak*-continuous lin- 
ear funct ion and hence at ta ins  ~ts infimum on t h e  se t  of POlK's. Thus Po has 
solutions. [] : = 

The following theorem summarizes the  results we have obtained so far, as well 
as providing a necessary and sufficient character izat ion of the optimaI solution. 

T m ~ o R ~  7.5. - Le t  H be a t t i lbe r t  space, S a locally compact  t Iausdorff  space 
with Borel  sets 4 .  Le t  @ e M(S, %(H))~ C: S •  -+It a map satisfying t ~ C(t,.) e 
e ~1(S, r tt; CO(S))~ and # a probabi l i ty  measure on (S, 4 ) .  Then for every  m e 

~' 8 S 

where ] e Co(S) ~:~ %(H) is defined by  

= [e(t) o(t ,  /(s) 
S 

Define the  optimization problems 

Po = inf ( t r f  /(s)m(ds): mE ~{o(~B, ~.(H) ), re(S) = I, m(E)>O for every  E e ~B} 
8 

] 

Do---- sup ( t r y :  y e %(H), y<f(s) for every  s e S} .  

Then P o -  Do, and both  Po and Do have opt imal  solutions. Moreover the  following 
s ta tements  are equivalent  for m eJi(~(.~, s assuming re(S)- - - I  and m(E)~>0 
for every  E e :~: 

1) m solves iPo; 

2) f](s)m(ds)<~](t) for every  t e S; 
S 

3) fm(gs)/(s)<~J(t) for every  t e S. 
S 
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Under  a n y  of the  above  conditions it  follows t h a t  y = f/(s)m(ds) ~-fm(ds)/(s) 
is selfadjoint and  is the  unique solution of Do, with s s 

P o =  D o =  t r  y .  

PR0oF. - We need only ver i fy  the  equivalence of 1)-3); the  rest  follows f rom 

Proposi t ions 7.3 and  7.4. Suppose x solves P0. Then there  is a y e v~(H) which 

solves Do so t h a t  y<](t) for every  t and  

trf/(s)m(ds) = tr y 
S 

Equiva len t ly  0 ~- t r f ] (s )m(ds) -  t r y  ---- trf(/(s)- y)m(ds). Since t ( s ) -  y>~O for ev- 
S S 

cry s e S and  m > 0  it  follows t h a t  0 = f ( ] ( s ) -  y)m(ds) ~--f](s)m(ds)--y and  hence 
S S 

2) holds. This last  equal i ty  also shows tha t  y is unique. 

Conversely,  suppose 2) holds. Then y ~ f/(s)m(ds) is feasible for Do, and  more- 

over  trf/(s)m(ds) --= t r y .  Since Po>~Do, it follows t h a t  m solves Po and  y solves Do, 
so t h a t  1) holds. 

Thus  1) <=~ 2) is proved.  The  proof  of 1) r 2 is identical,  assuming t h a t  

t r  /(s)m(ds) = t r  m(ds)/(s) for every  / e Co(S) ~ v~(H) . 

But  the  la t ter  is t rue  since tr AB  = tr BA for every  A E ~(H), B e ~s(H) and 
hence it  is t rue  for every  ] e Co(S)Q v~(H). [] 
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