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Although considerable progress has been made in various aspects 
of control theory, there still appears to be no adequate theory for the 
control of large-scale linear time-invariant multivariable systems. If 
the engineering specifications required of the controlled system can 
be effectively summarized in a quadratic performance measure, then 
linear optimM control theory, in principle, provides a linear feed- 
back controller which would perform the required task. Even under 
these circumstances the computational problems may be insurmount- 
able. In an effort to circumvent these difficulties Rosenbrock sug- 
gested the use of modal control as a design aid. Modal control may be 
defined as control which changes the modes (i.e., the eigenvalues 
of the system matrix) to achieve the desired control objectives. This 
paper presents a complete and rigorous theory of modal control as 
well as recursive algorithms which permit modal control to be real- 
ized. 

LIST OF COMMON SYMBOLS 

A, A, J ,  £ System Matrix in various representations 
C, C Actuating Matrix in various representations 
F, G Feedback Matrix in various representations 
c~ i th Column of C 
~ i th Eigenvalue of A 
det[. ] Determinant of [. ] 
[-]* Complex conjugate of [. ] 
[. jr Transpose of [.] 
(a, b} arb 

1. INTI:~ODUCTION 

Although considerable progress has been made in various aspects of 
control theory, there still appears to be no adequate theory for the con- 
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trol of large-scale linear time-invariant multi-variable systems. If the 
engineering specifications required of the controlled system can be 
effectively summarised in a quadratic performance measure, then linear 
optimal control theory, in principle, provides a linear feedback control- 
ler which would perform the required task. Even under these circum- 
stances the computational problem associated with the solution of the 
Riccati equation to determine the feedback controller may be unsur- 
mountable. For a realistic control problem, rarely can the engineering 
specifications be summarised in a single quadratic performance cri- 
terion, and even though the possibility exists of changing the weighting 
matrices in the quadratic form to improve the system responses, no 
systematic way of changing these matrices are known to date for multi- 
input systems. For single-input systems some qualitative results in this 
direction were obtained by Kalman (1964). 

In an effort to circumvent these difficulties and in particular to ob- 
tain some insight into the dynamic behaviour of the system, Rosenbrock 
(1962) suggested the use of modal control as a design aid. Modal con- 
trol may be defined as control which changes the modes (that is, the 
eigenvalues of the system matrix) to achieve the desired control objec- 
tives. IL is our belief that Rosenbroek's suggestion has not found wide 
application primarily because no theory of modal control was available. 
In this paper a complete and rigorous theory of modal control as well 
as reeursive algorithms which permit modM control to be realized are 
presented. Some theoretical work in this direction has been done inde- 
pendently by Wonham (1967), and Anderson and Luenberger (1967). 

This paper may be divided into nine sections. In Section 2 we present 
the mathematical description of the system. 

In Secgon 3 some new results on state controllability which are useful 
in the sequel are obtained. Section 4 discusses some canonicM forms for 
linear systems. In Section 5 we introduce the new concept of mode con- 
trollability and discuss its relationship to state controllability. 

In Section 6 we present a spectral technique for modM control and 
in Section 7 algorithms for the realization of modal controllers are pre- 
sented. Sections 8 and 9 are devoted to the discussion of modal control 
when the complete state vector is not accessible for measurement. 

Notation. Capital letters such as A, B denote matrices. Lower case 
letters x, y . . .  z denote vectors, t denotes time. For functions of time 
x(t) ,  often the argument will be omitted. 2 denotes dx/dt.  (u, v) = urv. 
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2. SYSTEM DESCRIPTION 

We shall study the time-invariant linear dynamical system represented 
by 

dx (t) = Ax(t) + Cm(t) 
dt (~) 

y(t) = Hx(t) 

where t is the time, x(t) is an n-vector, the state of the system; re(t) 
is an r-vector, the input or control; y(t) is an e-vector, the output  of the 
system; A is a constantn X n matrix, the system matrix; C = [C1 Ca • .- 
C~] is a constant n X r matrix, the actuating matrix; and H is a constant 
e X n matrix, the measurement matrix. All quantities in the above 
equations are real. For given t, the set of all x(t) is thus a real n-dimen- 
sional Euclidean space X, called the state space of the system and the 
set of all y(t) is a real e-dimensional Euclidean space Y, called the out- 
put space of the system. 

The function t -+ re(t) is assumed to be defined for all t E ( -  ~ ,  
-~ oo ), is bounded in every bounded sub-interval of ( -  oo + ~ ) and 
considered to be a certain measurable function of t. 

I t  is well known tha t  given a control function m( .  ), to every initial 
state c and initial time to there corresponds a flow 

¢ ~ ( t ;  c, to) = ¢ ( t )  

defined for all t E ( - oo, -t- 0o ) which satisfies the identi ty 

~ ( t 0  ; c, to) = c. 

In the existing theory of linear control, the concept of controllability 
due to Kalman (1961) plays a very fundamental  role. In the theory of 
modal control to be developed in this paper, the new concept of modal 
controllability plays an equally important role. The notion of control- 
lability due to Kalman we shall refer to as state controllability (to 
distinguish from modal controllability). In the following section certain 
known results on state controllability which are to be used later are 
summarised. In order to relate the concepts of state and modal con- 
trollability, we need some new results on state controllability. These 
are also included in the following section. 

3. STATE CONTROLLABILITY 

D~FINITIO~ 3.1 (Kalman). A state x(0) is said to be controllable if 
there exists control re(t) defined over a compact interval [0, T] such 
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tha t  On(T; x(0)) = 0. If every state x(0) is controllable the system is 
said to be completely state controllable. 

PaoPosissio~ 3.1. (2)  is completely state controllable if and only if 
there exists no representation of (2)  having 2~ = Xx~ as one of its compo- 
nent state equations. 

P~ooF. (Necessity). The proof is obvious. 

(Sufficiency). We shall prove tile eontrapositive, that  is, if (2) is 
not completely state controllable then a representation of (£)  exists 
which has as one of its component state equations 

a~t ----- kx t .  

From Kalman's Canonical Structure Theorem (£) admits a repre- 
sentation 

= -4-  m 

(e~) ~ 0 A2~/ 

and X admits a direct sum decomposition X = X~ ® X~, where X~ 
is the controllable and X,, the uncontrollable subspace of X. Let n~ 
be the dimension of X~.  Since (2) is not completely state controllable, 
~{~ is an n~ X n~ matrix with n~ >= 1. 

Consider the nonsingular linear transformation given by x = T2, 
where 

o) 
T = T2~ " 

Here Tli is a nonsingular matrix of appropriate order and T22 is selected 
such tha t  T-~21X22T~2 = J[fi-22], the Jordan canonical form of d2~. 

The new system representation is now given by 
! 

( ~ )  2 = A 'x  + Cm,  where 

By inspecting the above representation it is clear that  it has at least 
one component state equation of the form 2~ = Xx~. 

Remark. X is actually an eigenvalue of A. 
I t  is convenient to write the generic control term re(t) as re(t) = 

n(t) --? ms(x, t) where ms(x, t) is an explicitly defined feedback law. 
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DEFINITIOn 3.2. Let re(t) = n(t) + ms(x, t), where the feedback 
law ms(x, t) has the form re~x, t) = Fx(t), where F is an r X n con- 
stant  matrix, ms(x, t) = Fx(t) is then defined to be a constant linear 
feedback law. 

PaOPOSITm~ 3.2. The dimension of the controllable subspace Xo re- 
mains invariant with respect to the application of constant linear feedback 
control to ( £ ). 

Proof. The proof follows easily using Kalman's Canonical Structure 
Theorem. 

COaOLLA~Y 3.3. I f  system (£) characterized by the pair (A, C) is 
completely state controllable and F is any r X n matrix, then the system 
characterized by (A + CF, C) is completely state controllable. 

For the next proposition it is convenient to consider the Jordan canon- 
ical form of £ )  given by 

(£ j )  ~ = Jz + Peru 

where 

/1 Jt & 
J = [  

"X~ 1 

Xi 

X~ 

However to prove the next proposition it is convenient to number the 
rows of p r  to correspond to the blocks of J in the following manner: 

I Pl r 

[p J) 

Each block J i  is of dimension n~ (i = 1, 2, . - .  ~) and ~ = 1  n~ = n. 
Usually p r  is simply partitioned by  rows of the form 
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pT 

T 
P L,1 

. , .  

T 
p~pny 

We then have, 

PROPOSmO~ 3.4. (£~) is completely state controllable i f  and only i f  all 
rows of Pr  corresponding to the last row of Jordan blocks containing the 
same-valued eigen~alue are linearly independent. 

Proof. (Necessity). I t  will be shown that  the existence of a set of 
dependent rows in pr ,  corresponding to the last row of Jordan blocks 
containing the same-valued eigenvalue, implies that  the system is not 
completely state controllable. For notational simplicity only, assume 
that  Xl = k~ (i = 1, 2, . . •  , /~ <_ v) and that  the dependent rows in 
question correspond to Jordan blocks containing Xl. Then there exists a 
nontrivial set of scalars, ~ (i = 1, 2, . . .  , /c), such that  

i= l  

Perform a nonsingular transformation of state x = Nz  such that  one 
of the new state variables, say x t ,  is defined by the relation 

k 

X~ ~ E ~iZi • 
~ 1  

This new state variable satisfies the equation ~ = ~x~. As a conse- 
quence of Proposition 3.1 it follows tha t  the system is not completely 
state controllable. 
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(Sufficiency). I t  is sufficient to show that  a system which is not com- 
pletely state controllable must h~ve a set of p~.,~ corresponding to the 
same mode which are linearly dependent. Assume tha t  the system is 
not completely state controllable. From Proposition 3.1 it follows that  a 
representation of the system exists having 2~ = ),xe ~s one of its com- 
ponent state equations, where }, is an eigenwlue of the system. For 
simplicity of notation let ~ -- ~ ,  where the firs~ k Jordan blocks are 
the only blocks containing the eigenvalue ~ .  Then x~ must be a non- 
trivial linear combination of the states corresponding to the first k 
Jordan blocks, i.e., 

n t  ~ 

z~ = E ~,,~a,~(t) + . . .  + E ~,~z~,~. 
i = l  i ~ l  

The state equation for x~ is 
nl--1 nk--1 

¢=I i = l  

4- L ~ I  1,~Pl,~4- " ' "  + ~ , i  P~,~ m. 

This implies that  

Hence 

~l , i  ~- 0 ,  

~k,¢ = 0, 

i = 1 , 2 , . - . , n l -  1, 

i = 1, 2 , . . .  , n e -  1. 

8 

Some obvious corollaries of Proposition 3.4 are listed below. 

COROLLARY 3.5. I f  r = 1, that is in the single-input case, a necessary 
condition for the system ( a3j) to be completely state controllable is that no 
two Jordan blocks contain the same eigenvalue. 

COrOLLArY 3.6. The minimum number of inputs for complete state con- 
trollability of (a3~) is equal to the largest number of Jordan blocks con- 
taining the same eigenvalue. 

Remark. The geometric multiplicity of an eigenv~lue ~ is denoted 
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by gs~, where gx~- = nullity of [A -- XiI] = number of Jordan blocks 
containing the eigenvalue X~. Thus the minimum number of inputs re- 
quired for complete s~ate controllability is equal to max~ gx,. 

CO~OLLAI~Y 3.7. I f  the eigenvalues of A are distinct then (~3j) i8 com- 
pletely state controUable i f  and only i f  each row of P~ is nonzero. 

4. CANONICAL FORMS FOl% ~3 

If (~) is completely state controllable and r = 1, then a unique non- 
singular transformation of the state x = T~ exists, such that  (£)  admits 
a companion matrix form representation 

(~c.) 

where 

o 1 o . . . . .  o lo)  
o o 1.......o. 

-~ = T - I A T  = : • • • O =  
o 6 " ' i  

- -a ,  --(Zn--1 . . . . . . . . .  a l j  

For the subsequent development of the theory of modal control an 
appropriate generalisation of the companion matrix form for completeIy 
state controllable multi-input systems is necessary. We use tile canoni- 
cal form as generalised by Anderson and Luenberger (1967). Unfor- 
tunately the canonical form is not unique if r > 1; nevertheless a useful 
general structure is obtaiaed for each derived nonsingular transforma- 
tion of state x = T2. The general form is 

(s~.) 

where 

[ A ~  

~ < r  

} = X~ + d m  

; d = T - I C  = [ d , . . .  dr  ~ 

i zero matrix if i > lc 
fi~ik = companion matrix if i = ]~ 

matrix of zero except possibly for the first column if i < 
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and 

no special form if i -- ~ > 0 
Oi = la  zero vector except for uni ty in the row 

[corresponding to the last row of A ,  if i - ~ ~ 0. 

If r -- 1 the familiar companion matrix form is obtained. 

5. MODE CONTROLLABILITY 

In the subsequent sections we shall often use the term eigenvalues of 
the system when we mean eigenvalues of the corresponding system ma- 
trix. 

D~FI~ITIO~ 5.1. A set of complex numbers A is said to be 

(1) 'real' if k~ C A implies ki is real 
(2) 'distinct' if k~, ~ C A implies ~ ~ Xk if i ~ k 
(3) 'self conjugate' if all complex quantities occur iu complex 

conjugate pairs. 

DEFINITION 5.2. Let A~ = {~,:k is an eigenvalue of A}. Let  As C A~ 
be a self-conjugate set of p, p -<_ n complex numbers. Let  Y = /~'l " '"  
~,~} be an arbitrary set of self-conjugate complex numbers. (2)  is said 
to be mode controllable with respect to As if there exists an n X n 
constant matrix F such tha t  the eigenvalues of (A -k CF) are Y U 
(A~ ~ Az). Such a matrix F is termed the modal controller. 

DEFINITION 5.3. If p = n and (£)  is mode controllable with respect 
to A~ then (~) is said to be completely mode controllable. 

PaOPOSITmN 5.1. I f  there exists a representation of (2)  which is not 
completely mode controllable then (£)  is not completely mode controllable. 

Proof. The proof is by contradiction. 
Let (£(~)) : 2 = Alx -k C~m be a representation of (£)  which is not 

completely mode controllable. Assume there exists another represen- 
tation (~(~): y = Qy d- Rm which is completely mode controllable. 
Since these are representations of the same system the state vectors x 
and y are related by a nonsingular linear transformation y = Tx. 
Therefore, 

AI = T-1QT 

C1 = T-1R, 

which shows tha t  A and Q are similar. Since (£(2)) is completely mode 
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controllable, there exists a modal controller m = Fy such that the 
eigerLvalues of (Q + RK) are T, where T is any arbitrary se~ of self- 
conjugate complex numbers. We then have 

= (A1 3- CIKT)x 

= T - ~ ( Q  + [tK)Tx 

which shows that (Q + RK) is similar to AI + C1KT and hence (£(1)) 
must be completely mode controllable. This is a contradiction and 
hence the proposition is proved. 

Before proceeding to the general result relating state and mode con- 
trollability the case when r = 1 is worth considering. Assume that (£)  
is completely state controllable. Then (2) has the companion matrix 
representation (2¢). Let s be a complex variable. The eigenvalues of ,~ 
are the roots of 

s" + a~s '~-~ + . . .  + a,~ = 0 ( 5 . 1 )  

To create a system-matrix whose eigenv~lues are the roots of 

s ~ + al°s ~-1 + . . .  + a~ ° = 0 (5.2) 

it i~s known that the required unique feedback law is given by 

r e ( t )  = [a~ - a~ °, . . .  , a l  - a l ° ] T - ~ z ( t ) .  

We may then state 

PgOPOSITION 5.2. I f  r = 1, a system which is completely state control- 
lable is also completely mode controllable and the required modal control 
law is unique. 

The main theorem of this paper may now be stated. 

TR~OREM 5.3. (2) is completely state controllable if and only if it is 
completely mode controllable. 

Proof. (Sufficiency). Assume that the system is completely mode 
controllable but not completely state controllable. Then from Proposi- 
tion 3.1 there exists a representation of (2) which contains a component 
state equation of the form 2~ --- ),x~, where k is an eigenvalue of A. 
Since this eigenvalue is uncoupled from the control it cannot be altered. 
Hence from Proposition 5.1 (~) is not completely mode controllnble 
which contradicts the initial assumption. 

(Necessity). The proof of this part of the theorem is constructive in 
the sense that a modal controller is derived assuming that (2) is corn- 
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pletely state controllable. There are two distinct steps in the proof. 
Feedback is applied to transform (2) into a system with distinct eigen- 
values and then the required additional feedback to move the distinct 
eigenvalues to the desired locations is determined. 

Step 1. Since (2)  is completely state controllable (~) admits the 
generalised companion matrix representation (2~). The eigenvalues 
of X are the roots of the equation 

I I  det (SI - X , )  = 0. (5.3) 
i = 1  

Therefore the eigenvalues of the system can be changed by altering the 
elements of each X~ in a manner similar to the single input case. For 
example, suppose that it is required to change the eigenvalues asso- 
ciated with 

~I~k = 0 . ( 5 . 4 )  
- - a k , n  k - -ak ,nk - -1  . . . .  ak,1 

Let the new eigenvaIues derived to be associated with Ar0~ correspond 
to a matrix with elements 0 -ak.~, i = 1, 2, . . .  nk in the last row. Let 
the kth component of control be 

~k 

= - a ~ , ~ ) x ~ , ~ ( t ) ,  ( 5 . 5 )  

where the state vector & is partitioned to correspond to the blocks on 
the diagonal of fl~ as follows: 

2 r = [~,,,~, . . .  , 2~,~ ! . . .  i .~,~ "'" -~,~]. 

Then the only part of ~i changed is ~ k  and the revised fI~k is given by 
0 (i 1, 2, n~). In this way each (5.2) with ak,~ replaced by a~, i  . . . .  

fi~ of fi~ could be changed. This construction is not completely general. 
The eigenvalues associated with each fi~ cannot be moved to a com- 
pletely arbitrary position. To preserve the realness of the closed loop 
system, it is required that each ~ ,  of odd order of the closed loop 
system contain at least one real eigenvalue. Since Step 1 involves trans~ 
forming (~) to a system with distinct eigenvalues the above restriction 
is satisfied. 

Step 2. Let the transformed system with distinct eigenvalues be 

( ~ )  2 = ~ + 0~ .  
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Since (4)  is completely state controllable ( 2 r )  is also completely 
state controllable. Fix the ratio of the components of re( t ) ,  tha t  is, 
let re(t)  = gO(t) where g is an r X 1 vector and O(t) is a scalar. Then  
if the pseudo single input system characterized by  the pair (A, Og) is 
completely state controllable, then from Proposition 5.1 tile required 
feedback law for O(t) can be obtained. I t  remains to show tha t  a vector 
g exists such that  ( £ r )  can be transformed into a eompletdy state con- 
trollable pseudo single-input system. This result, is now stated in the 
form of a lemma. 

Lm~M~_ 5.3. I f  (2~T) is completely state controllable and has distinct 
eigenvalues, then there exists an r X 1 vector g such that 

( £ s )  x = A2. + dO, where d = Cg 

is also completely state controllable. 

Proof. Consider the Jordan canonical form of (£~) .  

i = Az + PTgO 

I t  follows from Corollary 3.7 that  each p~ ¢ 0. 
The existence of a vector g such that  P~'g does not have a zero element 

is shown by the following construction. As an initial guess for g, let 
go be the r-dimensional vector defined by  g0 = (1, 1 , . . - 1 )  r. Let  
ako = pk~go, lc = 1, 2, • • • n. Let  II be the set of all p~ such that  ak0 = 
(pk, go} = 0. If 1I is empty, then the initial go is acceptable, otherwise 
proceed as follows. Let  pa be an element of II. Since p~ ¢ 0 it has a 
nonzero element, call it  p~a. Increment the i th element of go by e > 0 
to form (" ( 1 )  go • Then ~a0 = (P~, g~)) = ep~ ~ 0. Choose the value of e 
so that  the nonzero values of a~0 remain nonzero. This can always be 
done. First t ry  an arbitrary e > 0, if this fails t ry  2e, and so on. Since 
the number of vectors is finite an acceptable increment must be found 
before (n -- 1) steps. Once an acceptable e is selected the number of 
elements in lI is decreased by  at least one to form lI~ c II. Continue 
the process in the same manner by  selecting an element of 111. Since 
lI~ has a finite number of elements a go is eventually found. 

Finally fl'om Corollary 3.7 it follows that  (~s)  is completely state 
controllable. 

6. A SPECTRAL T E C H N I Q U E  FOR MODAL CONTROL 

In this section we discuss constructive methods for achieving modal 
control, tha t  is, the specification of a feedback controller such that  some 
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or all of the eigenvalues of A may be moved to certain desired locations. 
The proof of Theorem 5.2, based on the generalised companion matrix 
canonical form ( ~ ) ,  is constructive in nature. However determination 
of a modal controller based on (2.~) has certain drawbacks. These are 
discussed below. 

(1) A necessary condition for achieving the representation ( ~ )  is 
that (~) be completely state controllable. Therefore before proceeding 
with the determination of the modal controller (£) must be decomposed 
to isolate its controllable part. 

(2) In general, the complete canonical form must be determined 
even if only a small set of controllable modes are to be moved. Since no 
distinction is made between the modes that have to be moved and those 
not, it is possible for a "nearly uncontrollable" part of the system, which 
may be of no interest, to create computational difficulties in deriving the 
modal controller. 

(3) A component of the control vector is only employed to alter the 
eigenvalues of the associated companion matrix. 

The contents of the companion matrix depend on the ordering of the 
columns in C. If the first column of C can influence every mode, i.e., 
the pair [A, C1] is completely state controllable then the canonical form 
in effect reduces to the companion matrix form (20) with the first 
component of control as re(t). The method delegates the control of 
an eigenvalue to the first column of C that can influence it. This rules 
out many designs in which a combination of control elements share the 
effort in shifting the eigenvalues. It  also may create poor designs by 
having eigenvalues shifted by components of control with little influence 
over them. 

The canonical coordinate system obtained is not well suited for study- 
ing the effect of shifting the eigenvalues on the feedback gains required 
on the original state measurements. Even if only one eigenvalue is 
shifted the use of T -I makes it difficult to predict the resulting gains. 

To alleviate some of the difficulties associated with that method a 
different eigenvalue shifting algorithm is now presented. The usefulness 
of these techniques can be better explained by first classifying linear 
stationary dynamical systems in the following way. 

Controllable Uncontrollable 

Distinct EigenvMues I II  

Repeated EigenvMues III  IV 
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Recall t ha t  the technique of Section 5 can immediately be applied 
only to systems I and I I I .  The  uncontrollable pa r t  existing in systems 
I I  and IV mus t  be discarded before the canonical t ransformation can 
be obtained. 

The spectral  technique presented below is best suited to systems of 
class I and I I .  By  using Theorem 5.2 an insignificant amount  of control 
can always be found which wilt t ransform s system of class I I I  into one 
of class I.  However,  to eliminate the effect of uncontrollable repeated 
eigenvalues in a system of class IV it  is necessary to perform a decom- 
position as required in the other technique. 

For  ease of discussion it  is assumed tha t  the system has distinct 
eigenvalues ~ and is described in pa r t  by  

where 

2 = A x  + Cm (6.1) 

~ =  Uz 

U = [u~ u2 - . .  u~] eigenvec~ors of A 

V ~ = U -I = i reciprocal basis vectors of A 

\v~ I 

A = V T A U  = diagonal [~1, k2, " "  , ~ ]  

P~ = V~C = i 

\ P ,  / 

Note. The eigenvectors are selected such tha t  if ki = X~* then  ui = 

uk*. Hence v~ = v~* and pl  -- pk*. 
Consider a feedback law 

= = Z :  ( 6 . 2 )  
i~l i= l  

which is more generally writ ten as m = Gz = F X ,  ( F  = G V r ) .  The 
closed-loop system may  then  be represented as 

i = Az (A = A 4- P r G )  (6.3) 

1 For the case of multiple eigenvalues see Simon (1967). 
To insure that m is real it is assumed that the set {X1, X~, ...  , XZ} is self- 

conjugate and that the r-dimensional vectors g~ = gk* if Xl = X~*. 
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where 

o 1 x= 

Xl + ~11 

0/21 

O~nml 

~12 

X2 + ~22 

~nm2 

• " "  ~ 2 ~  m 

Olnm-I-1,1 O~nm+l,2 " " " O~nm+l,n  m 

: : : 

~nm+l 

0 

0 

0 

X~ ( X n l  ~n2 • • " OZn,n m 

and ~ = (p~, gk) = p~Zgk. 

To determine the eigenvalues of the closed-loop system it is helpful 
to explore some properties of the characteristic equation 

det [sI - A] = 0 (6.4) 

In this particular case the characteristic equation factors or "decom- 
poses" into 

det [sI - An] f l  (s - ~)  = 0. (6.5) 
i=~+1 

It  is readily evident that only the first ~ eigenvalues could change. Thus 
it is only necessary to examine the ~ X g matrix AlI to investigate the 
effects of the feedback on the eigenvalue locations. 

The features of what may be termed a "modal decomposition prop- 
erty" can easily be extrapolated from the example above. For the case 
in which # _< n canonical state variables are employed in feedback it is 
found that the characteristic equation of the closed-loop system factors 
into (n - g) linear terms and the determinant of an eth order system 
where 

(1) The linear terms, (s - X~), contain the dgenvalues unchanged 
by the feedback because their corresponding canonical state 
variables are not fed back. 

(2) The gth order determinant is the determinant of the sub- 
matrix formed by crossing out the rows and columns in [sI - A] 
corresponding to the canonical state variables omitted in the 
feedback law. 
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Note that  if any of the canonical state variables used in the feedback 
law correspond to uncontrollable modes, then a further simplification is 
possible. The resulting characteristic equation is formed in the manner 
described above with these state variables treated as if they were omitted 
in the feedback law. 

Since the ordering of the eigenvalues ir~ the canonical form is immate- 
rim the feedback law given by (6.2) is a valid starting point for deriving 
the modal control law for (the first) g eigenvalues. A set of r-dimensional 
vectors g¢, (i = 1, 2, . . .  , f) ,  causing the matrL,~ Au of (6.3) to have 
the desired distribution of eigenvalues must now be determined. If 
the eigenvalues are Controllable (and r > 1) many such sets exist. A 
general procedure for obtaining the g¢ is to first find the characteristic 
equation of All 

det [sI - -  A l l ] =  s ~ + f~s ~-1 + " '"  ÷ f~ - l s  + f~ = 0 (6.6) 

where the f l ,  (i = 1, 2, . . .  , g), are nonlinear (linear if r = 1) func- 
tions of the components of the g¢, and then compare it to the character- 
istic equation whose roots are the desired modes 

(s - ~l)(s -- 7~) " '"  (s - ~e) (6.7) 
= s ~ ÷ dis ~-~ + " "  -t- d~_~s + d~ = O. 

The condition that  equations (6.6) and (6.7) have identical roots is 
that  coefficients of like powers of s be equal, i.e., 

f~ = d~,  i = 1, 2, . - . ,  ~. (6 .S )  

The simplicity of the expression (6.8) is deceiving because for ~" > 1 it 
represents a set of g nonlinear equations in the ~. r unknown components 
of the g~. To algorithmize the procedure for deriving a modal control 
law a restriction is placed on the control which in effect reduces the sys- 
tem to a scalar-input system. 

Let the vectors g~ in (6.2) be replaced by ~¢g0, i.e., let 
~ n  gN~ 

m = go ~ ~z~ = go ~ (a~v¢, x) (6.9) 
i ~ l  i ~ l  

where the elements of the r-dimensional real vector g~, (g~o, g~o, " "  , 
g,.0), fix the ratio of control elements, and the scalar weights ~ are de- 
termined to achieve the desired changes in the first g eigenvalues. 
Recall tha t  controllability of the modes in the original system (6.1) 

To insure that m is real let Z~ = ~* if X~ - X~*. 
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does not  imply controllability in the reduced system. Therefore go must 
be chosen so tha t  a~0 = (pl,  g0} ~ 0 (i = 1, 2, . . .  , ~). 

I t  may be shown (see Appendix 1) tha t  for a feedback control law 
in the form of (6.9) the f~ in (6.8) are given by 

f ,  = (--1)'[P~(~) q- ~ a~a~oP¢_ffX I x3] , 
~=1 (6.10) 

i =  1 , 2 , ' " , ~  

where the P functions are defined as follows: 
P~(Xl, M, • • • , M) is the sum of the products, taken i at a time, of 

the elements from the set {Xl, M, . . .  , M}. 
PdX) is a shortened notation which is used when the set of X's 

under discussion is clear. 
P~(X 1 M) denotes P~(X) with X~ = 0 .  
P~(X I Xk, M) denotes PdX) with M = M = 0. 
P0(X) - 1. 
P~(X) - O, when i exceeds the number of elements in the set de- 

fined by X. 
The characteristic polynomial of the desired roots is 

s -- P~(y)8 ~-~ + . . .  + ( - -1) 'P~(v) .  

Equating the corresponding fl and d~ as in (6.8) yields 

1 1 . . .  1 "I (~ 
P,(X IX) P~(X}X=) . . .  P,(),IXe) / (~2 

: : • / 
a t o )  

'P,(~,) - P,(X) 
P2(~/) - P2(X) 

P , (y )  - P,(X) 

(6.n)  

which is symbolically written as R D  = Q. 

P~oPomwIo~ 6.1. A un ique  solution exists for  the ~ , ( i = 1, 2, • • • , g),  

i f  and  only i f  the modes Xl ,  X 2 , . . . ,  Xt are distinct and  alo ~ O, 

( i = 1, 2, . . .  , 0 .  
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P r o o f .  See Appendix 2. 

Since only real systems are considered all complex quantities must 
occur in complex conjugate pairs. I t  follows that P~(X) and Pi(7) are 
always real, but  Pi(Xl Xk) is real if and only if ~ is real. Thus the 
matrix R in (6.11) is real if and only if all of ~he eigenvalues to be changed 
are real. I t  turns out, however, that the matrix equation (6.11) can 
always be transformed to an equation in real quantities. For example, if 
three eigenvalues are to be shifted and the first two are complex conju- 
gates then the equivalent of equation (6.11) can be written as 

i 1 0 ReP,(XlX~) ImP~(XlX~) 

Re P2(X I Xt) !mP2(XlX,)  P2(X I x )J 
;PI(~)  - Pl(X)" 

= P 2 ( ~ )  - P ~ ( X )  

P8(7) - P~(X) 

(6.12) 

The P i ' s  may be defined recursively as follows 
P,(X Ix~) = P,(X) -- XkP,-I(X Ix~) i = 1, 2, . . -  , ~ -- 1, 

k = 1,2, . . . , g  

P0(Xl x~) = 1 
As a check on the numerical accuracy of the recursive procedure the 
following relation may be used 

P,(X) - X~Pt_I(X I X~) = 0 k = 1, 2, . . .  , g. 

Analogous results may also be obtained for reeursively defining 
Re P~(XlXk) and ImP~(XlXk) in terms of real quantities, Simon 
(1967). 

OUTLINE OF ALGORITHM 

(1) Determine the primary information X~ and v¢ (i = 1, 2, . . .  , 
g N n), i.e., the eigenvalues to be moved and their correspond- 
ing reciprocal basis vectors. Recall that r A v~ -- kirk.  

(2) Select the desired locations of the shifted eigenvalues ~i, 
i = 1 ,  2 ,  • • • , g,  and the ratio of the control elements g0 • 
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(3) Calculate the vaaues of the 

. . . .  ozio = (p'i , go) = vlrCgo (check a~0 ~ 0) and 

the Pi required in (6.11). 
(4) Solve (6.11) for the ~ ,  i = 1, 2, . - .  , g, which completes the 

specification of the control law as defined in (6.9). 
The only information required to define the control law is related to 

the eigenvalues which are to be shifted. I t  does not matter whether or not 
the other eigenvalues are controllable. A major portion of the solution 
effort is expended in inverting the matrix D in (6.11) which is only a 
function of the modes to be moved. Therefore the design parameters 
~ ,  i -- 1, 2, • .. , ~, and go can be changed relatively easily to investi- 
gate other systems. 

7. RECURSIVE DESIGN 

The previous section presents an eigenvalue shifting algorithm which 
can be employed to shift g (g < n) eigenvalues. A class of feedback con- 
trois is introduced which essentially reduces the problem to one of 
inverting an # X g matrix. In order to gain more insight into the effect 
of moving the eigenvalues in small groups and help alleviate the compu- 
tational burden a recursive technique is developed. The technique is 
recursive in the sense that it allows a small number of eigenvalues to be 
moved to their desired locations at each iteration. 

Consider again a system with distinct eigenvalues. For clarity it is 
necessary to use superscripts to distinguish between certain quantities 
at each stage of the design. Let the open-loop system be denoted by 

(£(0)) :~ = A(°)x + C m  (7.1) 
with the corresponding canonical representation 

= A(°)z + P(°)~'ra (7.2) 

where 

and 

A (°) = V(°)~'A(°)U(°)  = diagonal [Xl, X~, . . .  , M], 

p(O)T = V(o)TC. 

The first step in the recursive design procedure consists of finding a 
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linear state variable feedback law 

m (~) = G(1)z = F(1)x, ( F  (1) - G(~)V(0)r), 

which moves a selected number of eigenvalues to specified locations 
while keeping the others fixed. For illustrative purposes assume that  
m (~) is chosen to change X~ and X2 to ~,~ and ~,~. respectively. Incorporat- 
ing this feedback law into (£(0)) by  formally replacing m by  m + m ~) 
in (7.1) yields a new system, described by 

2 = A ( ~ ) x +  C m  where A (~) - A (°) + C F  (~), (7.3a) ( ~c (1)) 

or  

= X(°)z ÷ P(°)rm where 7t (°) "- h (°) + P(°)~G. (7.3b) 

If the eigenvalues of (£(2)) are distinct, then it may be represented in 
canonical form by 

(£(1'))  ~ = A(1)Z ~_ p(1)T m 

where 

and 

A a) = V(~)VA (~) U (~) = diagonal [~/1, "/2, ~3 • •., X~], 

p(1) T ~ V(1) TC, 

Note that  A (~) is the canonical form of A (~), and is thus a diagonal 
matrix having the eigenvalues of A (~) as its entries. Compare this with 
5- (°~ defined in (7.3b). 

The system denoted by (£(~) is nothing more than the closed-loop 
system obtained by employing the feedback law m (~) in system (£(0)). 
For the purpose of reeursive design it may also be viewed effectively as a 
new open-loop system with its system matrix given by A (1). If  (~3 C~)) is 
found to be satisfactory the design is complete. Otherwise an additional 
feedback controller 

m (~) = G(2)z = F(2)x, ( F  (2) - G(2)V(~)r), 

can be derived to change the eigenvalves of (£(~)). 
The recursive procenure can be continued indefinitely with any 

number of eigenvalues altered at each iteration. After ~ steps the system 
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m(]) 

m(2) 

Fq -q 
I s(O) 

, > 

I 

s(1) 
J 

s(°) ! 

FIG. 1. Recursive design (¢ stages) 

is described by 

Jc = A(°)x + C ( m  + m (~J + m (2j + . . .  + m (~')) 

= A(~)x + Cm, where A <~) = A (°) + C ~ F (i~. 
i : l  

If the eigenvalues of the resulting matrix A <*), are distinct, then its 
corresponding canonical representation is 

where 

p(~)T = V(.)~C. 

A pictorial interpretation of the recursive design procedure may be 
found in Figures 1 through 3. 
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FIG. 2. Effective system (¢ stages) 

337 

i=] 

FIe.. 3. Final design (a stages) 

Obviously if the recursive Mgorithm is to ~lleviate the overall compu- 
tational effort each step in the design must be easier to perform than 
the single step required for the simultaneous movement of all of the 
eigenvalues. A tremendous savings in effort is afforded by the modal de- 
composition property when only a small number of eigenvalues is moved 
at one time because the amount of effort reqtth'ed to determine a control 
increases exponentially with the number of eigenv~lues moved. It  is 
necessary in the recursive algorithm to compute the v~ ~) (reciprocal 
basis vectors) corresponding to the eigenva]ues moved in the kth step, 
but an efficient algorithm is developed to determine these quantities. 

It  is most convenient to work on one or two eigenvMues at a time. For 
real eigenvalue ~he one-eigenvMue-shift may be used while the two- 

eigenvMue-shift allows real and complex conjugate pairs to be created, 
changed or destroyed. The algorithm of the one-eigenvalue-shift is de- 
rived below. Higher order eigenvalue shifts are derived in an analogous 
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way. A detailed derivation covering the four cases may be found in 
Simon (1967). 

ALGORITHMS FOR SINGLE EIGENVALUE SHIFT 

1. Derivat ion of  Control. For notational convenience it is assumed tha t  
the first (real) eigenvalue, Xl, is to be changed to the (real) eigenvahie, 
~/1 • 0n ly  a real to real change is treated to preserve the realness of the 
system at each stage in the design. 

As a consequence of the modal decomposition property the form of 
m a) is chosen as 

Lg, lJ 

Substitution of (TA) into (7.2) yields 

(o) 
~(o) = a21 X2 0 

L" oc(~°1 ) 0 X~ 
(o)_  (p~O), gl). 

where akl 
As expected m C1) only effects the first eigenvalue. The characteristic 

equation of the closed-loop system is 

de t [ s [  - 7~ (°'] = (s - Xl -- ~° ) ) ( s  - X~) . . .  (s - X~) = 0. 

Thus any gl satisfying 

xl + (p~0), gl) - ~1 (7.5) 

will achieve the desired shift. Note that  the result (7,5) is in perfect 
agreement with Corollary (3.7). 

OBSERVA.TIONS 

(i) For the case of scalar control gl and p~0) _ (@), c) are also scalars. 
Therefore, m (1) is uniquely determined by 

mc1) = (~'1 - X~) z~ = G'I - x~) (v~o), x ) .  
p~o, (4 °,, c) 



A THEORY OF MODAL CONTROL 339 

A measure of the controllability of the first eigenvalue is given by the 
absolute value of the normalized p~0). That is, 

_ _  <v~ °), ~) 

varies inversely with the absolute value of the gains required to yield a 
given displacement of the first mode. This agrees intuitively with the 
fact that when p~(01 =_ 0 the eigenvalue Xl is uncontrollable. 

(ii) In the multi-input case, the components of the control vector 
m (1) are proportional to the corresponding elements of the r-dimensional 
vector gl. A simple procedure for obtaining a unique solution to (7.5) 
is to specify a desired ratio for the components of m (~?. Such a ratio may 
be based on the reliability, sensitivity, cost of the corresponding control 
variables, or be chosen to reduce the absolute value of the required 
feedback gains. 

Assume that 

where ~ is a scalar to be determined, and the vector go specifies the ratio 
of control variables. Then 

m ~" = ~g0<v~ °), x> 

where ~ = ~'1 -- X~/(p~ °), go) is obtained from (7.5). 
Recall that this procedure reduces the given system with r inputs to 

an effective scalar input system and that the first eigenvalue of this 
effective system is controllable if and only if go is chosen such that 
<P~(%, g0) ~ 0. A measure of controllability for the first eigenvalue of the 
effective scalar input system may be defined as 

<p~°), ~0> ] I v~0~>,~ where tl g0 II - ma~ l g~0 I. 
i (~? ), I1 e0 II ' ~=~ ..... 

It  may be shown (see Appendix 3) that the selection of the elements of 
go by the rule 

g~0 = (sign p~°)), i = 1, 2, . . .  , r (7.6) 

maximizes the measure of controllability. Hence the ratios defined by 
(7.6) require the least absolute value of feedback gains. 

2. Derivation of Updated Eigenvectors. After determining an appro- 
priate feedback law m (1), defined in (7.<~), the open-loop system (2(m) 
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is transformed into (2m) which is represented by 

= A(1)x + Cm. 

The new system matrix satisfies the relations 

A(" = Ao) + Cglv~ °~T 

A (°) -J- ~ c "  V (°)~" kykI 1 
k~l 

I t  is readily verified that  

u~ l) = u~ °), i =  2, 3 , - . . , n  

because 

A m u ~  °) = A(°)u~ °) = ~u~  °), i = 2, 3, . . . ,  n .  

The revised first eigenvector u~ 1) must satisfy 
#, 

v(O)~ (i) .yiul(1). (7.7) [A (°~ + ~ ckg~l 1 ]'~1 -~  
k'~=l 

Since the u~ °) from an n-dimensional basis ul (1) can be represented by 

= ( 7 . 8 )  

where the qi are scalars to be determined. Expanding (7.7) using (7.8) 
yields 

but  by definition c~ ~'~%1 (o) o) = pk~ u~ , therefore 

~ r  Or(0) (0) tqi ~i - q~(T1 -- Xi)]u~ = 0. 

The fact that  the u~ °) are linearly independent implies tha t  

ql ,~ ,  °) = q ~ ( ~  - × , )  ~ = i ,  2 ,  . . . ,  n .  

If  a resulting set of eigenvahies, {3'1, h2, "-" , h~}, remains distinct then 
q~ ~ 0, and may be set equal to unity.  Thus 

O~ ~0) 
q~ = ~/1 -- X~ i 2, 3, • , n with ql - 1. (7.9) 
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Note tha t  if 71 is set equal to another eigenvMue it is possible for 
u~ I) not to exist. This agrees with the well known fact tha t  if an nth  
order matrix has repeated eigenvalues then it may have less than n 
linearly independent eigenvectors. 

3. Deri~ation of Updated Reciprocal Basis. The updated set of eigen- 
vectors can be calculated as described above if desired. By definition 
V (l~ = U (I)-~, however, it is more convenient to compute the reciprocal 
basis vectors using the relations (u~ 1), vk (~)} = ~ik. :~Iaking use of the 
fact that  (u~ °~, vk(°)) = ~i~ it is found that  

v2 )=v~ °~-q~v~ °), ~=2,3 , . . . ,n .  
Note that  it is not necessary to determine the eigenvectors. The q- 

coefficients are determined directly from Equation (7.9). As in the tech- 
nique considered in the previous section the only primary i~ormat ion  
required is the location of the eigenvalues to be moved and their cor- 
responding reciprocal basis vectors. 

8. MIN]I\~UM NUMBER OF STATE MEASUREMENTS REQUIRED 
FOR MODAL CONTROL 

If the system (2) is completely controllable 4 we have shown tha t  it is 
possible to synthesize the modal controller. Thus the minimum state 
measurement problem reduces to the algebraic problem of finding a 
feedback matrix F having the greatest number of zero columns such 
tha t  the closed-loop system matrix [A + CF] has the desired distribu- 
tion of modes. 

The characteristic equation of the closed-loop system matrix is 

det [sI - ( A  + CF)] = s "~ + dls ~-~ + . . .  + d~ = O, 

where the d~ coefficients are multinomia]s of the elements of F. To 
achieve the desired specification of the d~ and hence the eigenvalues 
it is necessary to have at least n independent parameters available in F. 
Therefore a lower bound on the number of state measurements required 
for modal control is equal to the smallest integer greater than or equal 
to n/r .  5 

4 It is no longer necessary to distinguish between completely state controllable 
and completely mode controllable systems. 

5 A more realistic lower bound is obtained by replacing the number of inputs r 
with the rank of C when they are not equal. 
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The direct "brute  force" approach for deterndning the elements of F 
proves to be very difficult. A set of nonlinear equations must be solved 
which increases in complexity with the number of nonzero columns of F. 
In the sequel another approach is taken for systems with distinct 
eigenvalues which involves only linear operations. The price paid for 
this simplicity is tha t  only up to r - 1 state measurements can be elimi- 
nated. 

Consider a system with distinct eigenvalues and let the control law 
be of the form 

$_<r 

m = go ~ ~z~ = go(V, x) (8.I) 
i=1  

where 

V = E 8~Vl. 

Obviously for each zero component of the n-dimensional vector v the 
corresponding component of the state does not have to be measured. 
Instead of specifying the r-dimensional vector g0 initially as in (6.9) 
it  now is made a function of the ~ .  The  ~ (~ <= r) scalar weights ~ 
are chosen to make m real and independent of a set of states. The solu- 
tion for the unknown parameters can be described by  the following two 
step procedure. 

Step 1. Determination of the ~ ,  i = 1, 2, . . .  , f =< r. 
Since the eigenvalues are assumed to be distinct the vectors v~, 

i = 1, 2, . - .  , ~, are linearly independent. To insure that  m is real let 
~ = ~k* if },~ = h~*. A set of 8~ may thus always be found to create a 
real control law m independent of ~ -- 1 components of state. 

Step 2. Determination of the gk0, k = 1, 2, • • • , r. 
When control law (8.1) is substi tuted into (6.1) it is found that  the 

dements  of go must  satisfy (6.11). The vector D defined in (6.11) may 
now be expressed as 

D = Mgo (8.2) 
where 

I(~l pll "'" (~I pl,] 
' 

and the p's are as defined in (6.10). 
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PROPOSlTIO~ 8.1. I f  the eigenvalues arc distinct and the rank of M is e, 
then a vector go can be found such that the modal control law (8.[)  /s inde- 
pendent of ~ -- 1 components of state. 

Proof. In  the proof of Proposition 6.1, it was shown that  the distinct- 
ness of the eigenvalues implies tha t  the matrix R defined in (6.11) has 
an inverse. The fact tha t  M is of full rank means that  by  an appropriate 
interchange of the elements of M and go the right hand side of (8.2) 
can be writ ten as 

Mgo = (Ml  i M2) g2 

where the 3 × ~ submatrix MI is nonsingular. Then the components of 
go which satisfy the required conditions are found from the relation 

go = M-~I[R-1Q -- M292] 

where the components of go in g2 can be arbitrarily specified. 

If more than ~ (C ~ r) eigenvalues are to be moved a recursive design 
procedure must be employed. After the first stage of the design is com- 
pleted a feedback control law is obtained which moves ~ eigenvalues 
to desired locations while the others remain unchanged. The form of 
this feedback control is given by 

m (1) =. F ( 1 ) x  

where F ~' has up to (~ - 1) zero columns corresponding to components 
of state tha t  do not have to be measured. If the final design takes ¢ 
stages then 

my = ~ F(i) x. 

In this case it is olfly necessary that 

F = ~ F (¢) 
i=l 

contains a zero column corresponding to each component of state that  is 
not to be measured. 

9. MODAL CONTROL USING AN OBSERVER 

In the previous development we have generally assumed that  all the 
components of the state vector are available for measurement. One of 
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the few design procedures that explicitly a c c o u n t s  for the fact that some 
components of ~he state vector may not be accessible is presented in the 
previous section. In some applications however, it will be necessary to 
obtain estimates of the inaccessible components of the state vector to 
realise the modal controller. Luenberger (1964) showed how the avail- 
able inputs and outputs may be used to obtain an asymptotic estimate 
of the state vector. The device which reconstructs the state vector is 
called an 'observer' or an 'asymptotic state estimator'. The observer 
itself is a time-invariant linear system, with arbitrary eigenvalues, 
driven by the inputs and outputs of the system it observes. 

Following Luenberger, we shall show that the composite system, that 
is, the controlled system and the observer, are essentially two time- 
invariant linear differential systems in cascade. The shifting of the eigen- 
values of the composite system can thus be carried out independently. 
We shall also demonstrate that the problem of constructing an ob- 
server with arbitrary dynamics is the dual of the modal control problem. 
The combination of these two facts allows us to employ the techniques 
for realising a modal controller to design the overM1 system. 

In order to illustrate the design method consider the linear system 
(£) and assume that the feedback control Iaw is given by m = F x .  

If the complete state vector is accessible, the closed-loop plant is de- 
scribed 2 = ( A  + C F ) x ,  so that the dgenvalues of the closed loop 
system are the eigenvalues of  A + CF.  Assume now that the complete 
state vector is not accessible. Let the observer be represented by 

(0 )  ~ = B ~  ~- D y  -t- C m  

where B is an n X n matrix and D is an n )< e matrix. 
Since the state x is to be replaced by its estimate 2 in the feedback 

law m = F x ,  (£) and (0) have the representations 

( ~ )  ~ = A x  + c F ~  (9 .1 )  

(0 )  S: = ( B  -t- C F ) ~  -]- D H x .  (9.2) 

Subtracting (9.1) from (9.2), we obtain 

- 2 = B ~  - -  ( A  - D H ) x .  (9.3) 

Let us now choose B = A - D H .  Therefore (9.3) becomes 

- ~ = B ( ~  - x)  
which has a solution 

2 ( t )  = x ( t )  q- eZt(2(O) - -  x(0)).  (9.4) 
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If B is now designed to be a stability matrix, the estimate 2 ( t )  ap- 
proaches x ( t )  as t --~ ~ .  

To display the dynamics of the overall system explicitly, consider the 
nonsingular transformation of the state vector defined by 

(:)= (:  o)(;) 
identity matrix. The new representation of the composite system is 

0)(:) 
The above representation clearly shows that the eigenvalues of the over- 
all system are composed of the eigenvalues of the observer B and the 
eigenvalues of the closed-loop system matrix A + C F .  Moreover the 
eigenvalues of the closed-loop system matrix are identical to those 
obtained when the complete state vector is accessible for use in the feed- 
baek law. Thus the only effeet of the observer is the addition of more 
eigenvalues to the original system. 

The eigenvalues of the observer matrix are essentially arbitrary. In 
addition to effecting the dynamics of the overall system these eigen- 
values determine the accuracy of the estimator as shown in (9.4). 
Since A and H are given as part of the plant the specification of D 
uniquely determines the observer through the relation B = A - D H .  

Therefore it is important to select a matrix D which gives desirable prop- 
erties to B. Presumably D would be chosen to insure the stability of the 
system, and make transie~its die out quickly. 

The procedure for determining a matrix D to create arbitrary dy- 
namics in B has already been treated. In some sense this is the dual of 
the control problem. Consider the system 

= A r e  - / / % .  (9.5) 

If the pair (A, H)  of the given plant is completely observable, then 
the system (9.5) is completely controllable. Assuming this to be true a 
feedback law m --- D %  may be determined to create arbitrary dynamics 
in the closed-loop system 

= ( A *  - H r D  ~') e - B'%. 

The system matrix of this system is the transpose of the system matrix 
of the required observer, and thus has the same matrix. Therefore the 
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FIG. 4. Controlled plant and observer 

required matrix D has been found. An illustration of the overall system 
is given in Figure 4. 

RemarL As shown above the eigenvalues of the overall system con- 
sist of those of B (the open loop observer) and A -P CF (the controlled 
plant). The procedure of constructing the observer described in this 
section always enables these eigenvMues to be placed where desired. 
However, in certain cases, the design may not be physically satisfactory 
because the isolated closed loop observer (9.2) is not acceptable, e.g., 
the eigenvMues of B + CF may be positive. In such a case the system 
design will have to be altered. It  may be possible to remedy this by ex- 
ploiting the freedom available in designing the observer and controller. 

10. CONCLUSIONS 

In this paper we have attempted to present a complete theory of modal 
control. Questions of existence and uniqueness of modal controllers as 
well as recursive algorithms for the realization of modal controllers have 
been investigated. For this purpose the new concept of modal control- 
lability has been introduced. The existence questiott has also been dis- 
cussed by Wonham (1967) using somewhat different methods. 

In general, to achieve complete modal controllability it is necessary 
to employ state variable feedback and hence knowledge of the complete 
state vector is necessary. 
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In Section 8 we have presented some results pertaining to the mini- 
mum number of state vector component measurements necessary. 
Section 9 deals with the design of an observer or asymptotic estimator for 
the inaccessible eomponents of the state vector. The design of the asymp- 
totic estimator is in a certain sense the dual of the modal controller 
design problem. 

Our result on the existence of a modal controller utilises a constructive 
method of proof. However the method used is not particularly suitable 
for use as a design technique. One of the main contributions of this 
paper has been the development of reeursive algorithms for the realiza- 
tion of modal controllers. The algorithms are simple, require no com- 
plicated operations such as matrix inversion and may be easily pro- 
trammed on a digital computer. Moreover to implement the algorithms 
complete knowledge of the eigenvMues and eigenveetors of the system 
matrix is not necessary if it is only desired to move a few eigenvalues 
to certain desired locations. No systematic development of algorithms 
for the design of modal controllers has previously been reported in 
the literature. 

Assuming that a direct access computer is available to the designer, 
the techniques could perhaps best be utilised by developing a conversa- 
tional mode program to perform the necessary caleulalbions. In this way 
several designs could quickly be generated and a compromise design 
based on various engineering eonsiderations arrived at. 

A P P E N D I X  1 

Denote the characteristic equation of the matrix 

~1 ce X~ + ~2 as ~n a2 

J l : : : (1.!) 

by 
8 '~ + f ls  ~-I + f~s n-~ + . . -  + fn - -  0 .  (1 .2 )  

Note that the matrix (1.1) corresponds to the matrix used to define the 
f~ eoeflSeients in (6.10) except for a slight simplification in notation. 

In the derivation of (1.2) it is convenient to assume that a~ ~ 0. 
The finM result is independent of this assumption. Recall that a neees- 
sary condition for the mode X~ not to be an eigenvalue of (1.1) is that 
5nan # O. 
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Define 

I 
s-- X l - -  61a~ 

D,~ = det  - -61 62 

- - 6 1  Oln 

D~ m a y  be wr i t t en  as 

I 
s -- Xl-- ~iaI 

D~ = det  - 6 1  o~2 

--61 O~n 

I 
s -- ~i -- 6i ai 

-- 61 ~2 

+ det  i 
-- ~1 (Xn--1 

0 

--65 61 . . . .  6,~ 61 
s - -  X 2  - -  6262 " - "  6 , ~ 6 2  

: (1.3) 

--~2 6 1  . . . .  6 ~  6 1 7  

J 
s - -  X2 -- 6262 . . . .  6,~a~ 

: 

-- 62 v~n . . . .  6 n  o~,~ 

--6261 . . . .  6~-1~1 - - a~1  ] (1.4) 
s -- X~ -- 6262 . . . .  6,~-162 --6~62 

J - -  6~. o~,~-1 . . .  s - -  X , ~ - I  - 6 , ~ - 1 6 , ~ - 1  - 6 , ~ o , ~ _ ~  

0 0 s - X~ 

The  first de te rminan t  on the  r ight  hand  side of (1.4) can be t rans-  
formed into 

I S  -- Xl 0 "-" 0 0 J 0 s - X2 0 0 1 
/ : : : : 

0 0 s - X~_~ 
--61 ,x,~ --62 a,~ - - 6 ,~ - i  o~,~ --6,~ a,~ 

( 1 . 5 )  

by  mul t ip ly ing the  n t h  row by  ai /a ,~ ,  and subt rac t ing  it  f rom the  i t h  
row for i = 1, 2, . . -  , n - 1. Inspect ion of (1.4) and (1.5) then  yields 
the  recursive relat ion 

D~ = (s -- X~)(s - X2) . . .  (s -- X~-i)(--~na,~) 
(1 .6)  

+ ( s -  X,~)D,~_I. 

T h e  expression for D~_I in terms of D~_2 can be ob ta ined  by  replacing n 
wi th  n - 1 in (1.6) .  Subs t i tu t ion  of this expression back into (1.6) 
yields 

D ~  = ( s  - x l ) ( ~  - x~)  . . -  ( s  - x ~ _ l ) ( - a ~ , ~ )  

+ ( s  - h )  . . .  (s - x ~ _ ~ ) ( - a ~ _ l ~ , , _ l ) ( s  - x~) (1 .7)  

+ (s  - x~ ) ( s  - X~_,)D~_~. 
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Cont inued  reeursion on (1.6) wi th  the  t e rmina l  condi t ion 

D1 = s - Xl - ~1at (1.8) 

finally yields 

D~ = (s --  Xl) . . .  (s --  X~_ l ) ( - -~a~)  

+ ( s  - x l )  . . .  ( s  - x ~ _ 2 ) ( - ~ . _ ~ . _ ~ ) ( s  - x ~ )  

+ . - .  + ( - ~ l ) ( s  - x2) . . .  ( s  - x , )  ( 1 . 9 )  

+ ( s  - x l )  . . -  (~  - x,~). 

E x p a n d i n g  (1.9) and  collecting like t e rms  gives the  desired po lynomia l  

where  

= - -1 )  [P~(X) + 8kakPk_~(X I X~)], i = 1, 2, . - .  , n. 
k=I 

The  P funct ions  are defined by  

P~(Xl,  X:, • • • , X,) is the  sum of the  products ,  t aken  i a t  a 
(1.11a) 

t ime,  of the  e lements  f rom the set  {X~, X:, . - .  , X~}. 

P~(X) is a shor tened  no ta t ion  which is used when  the  set  of 
(1.11b) 

X's under  discussion is dea r .  

P~(Xl Xk) denotes  P~(X) wi th  X~ = 0. (1.11c) 

P~(X I Xk, Xt) denotes  P~(X) wi th  Xk = Xe = 0. ( 1 A i d )  

Po(X) "--- 1. (1.11e) 

P~(X) - 0, when  i exceeds the  n u m b e r  of e lements  in the  set  
(1.11f) 

defined b y  X. 
A P P E N D I X  2 

I t  is sufficient to p rove  t h a t  the  ma t r ix  

1 1 ...  1 

R =  P t (XlXt )  P ~ ( X I X 2 ) - . .  PI(XIX~) (2.1) 
[ : : : 

P,~-~(Ix1) P,~-I(xlx2)... P,~-~(xlx,~) 
has  an  inverse  if and  only if the  modes  Xl, X2, . - .  , X~ are distinct.  
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The proof is accomplished by performing a set of rank preserving 
operations on R which take it to a matrix (Vandermonde) that  is known 
to be nonsingular if and only if the modes are distinct. The transforma- 
tion takes place in (n - 1) steps. At each step a row of R, starting with 
the second, is made to match its counterpart  in the Vandermonde 
matrix. 

Step 1. Multiply the first row of R by  P~(X) and subtract it from the 
(k 4- 1) th  row for k = 1, 2, . . .  , n - 1. After utilizing the recursion 
relation 

P~(Xl M) = P~(X) -- X~P,_~(X I x~) i = 1, 2, . . .  , n - 1, k = 

P0(Xl M) = 1 

and changing the sign of rows 2 through n the resulting matrix is 

i1 . . .  1 
ha • • • M 
X~PI(X I Xl) " '"  MP~(X [ x~) 

x,P=_2(xlx , )  . . .  x~P~_2(xlx~) 

(2.2) 

Note tha t  except for the first row each dement  of the matrix (2.2) is 
the product  of the eigenvalue corresponding to tha t  column and the 
element tha t  was previously in the row above it. 

Step 2. Mult iply the second row of (2.2) by Pk(X) and subtract  it  
from the (k 4- 2) th  row for k = 1, 2, . . -  , n - 2. After utilizing the 
reeursion relation and changing the sign of rows 3 through n the resulting 
matrix is 

, ° °  

~ 1  " ° "  

X 2 
1 ° " " 

X12P1 (X l M ) 

1 
X~ 

~kn ~ 
2 X~P1 (X IX~) 

2p 

(2.3) 

Continuing in this manne r  after the i th  step the resulting matrix is 
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given by  

( i  + 1) row --+ 

- ° " 1 

Xl "'" X~ 

Xl 2 . . . X~ ~ 

: 

: 
X i X~ 

1 " ° " 

. . .  i F xjP~ (xix~) x~ ~ (xlx~) 
: 

" i F  Xit n-( i+l)  ( X i X l )  "" x ~ i P n - ( i - k l ) ( X l X n )  

(2A) 

Step (i + 1). Multiply the (i + 1)th row of (2.4) by  P~(X) and 
subtrac~ it from the (k + i + 1)th row of (2.4) for k = 1, 2, . . .  , 
(n -- i -- 1). After utilizing the recursion relation and changing the 
sign of rows (i  + 2) through n the resulting matrix is 

( i  + 2) row --~ 

- 1  . . -  1 

),1 X. 
Xl  2 . . .  X ,  2 

h~+I h~+l 
X~+lp 

-,¢+1 D ~ ~ + l p  

(2.5) 

Finally ~fter (n - 1) steps the resulting matrix is given by the Van- 
dermonde matrix 

I 1 1 . . .  1 

] X l  2 X2 2 . - .  X,~ 2 ( 2 . 6 )  Va 
! 

[ i :  X - i  X~-I . . .  X~-I 

The determinant of the Vandermonde matrix v~ is 

det[v.] = I I  (hi - xk) (2.7) 
i >k  
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so tha t  v~ is nonsinguiar if and only if the ~,~ are all distinct. 
As a result of properties of determinants it  follows that  det[R] ~ 0. 

Actually it  can be shown tha t  

det JR] = ( - t )  ~(~-~)12 det Ivy] (2.8) 

APPENDIX 3 

A typical element of the control vector m (1) = ~go(v~ °), x) where 

is 

m~l) _ g,0 [ (~ i  - x l ) ( ~  °), x)] ,  i = 2, 2, . . .  r. (3 .1)  (p~O), go) 

Note that  (p~O), g0) = ~-~=1 g~o~vl" (o), c). Therefore v~ °) can be multiplied 
by any arbitrary scalar without changing the feedback control law. 
Let v~ °) be normalized so that  (v~ °), v~ °)) = 1. Furthermore assume tha t  
t] go I] = ] gl0 ], i.e., the first element of go has the largest absolute value. 
The measure of controllability is then given by 

(p~o), g0) 
- - ~ - - ~ 0  " (3.2) 

I t  can be seen that  this quant i ty  is the absolute value of the inverse of 
the gain multiplying the fixed part of the first component of the control 
vector. 

Obviously to maximize the measure of controllability, and hence 
minimize the absolute value of the required feedback gain it must be 
true tha t  

g~o Ink I(sign (o)~ (3.3) = pk~/, k = 1 ,  2 ,  . . .  , r .  

I t  is to be shown that  a~o 1, k 2, 2, , r. With gk0 sign (0) = = " " " = p k l ,  

k = 1, 2, • • - , r, the expression in (3.2) reduces to 

I p~ I. (3.4) 

Since I a~ I => Iak I, by assumption, it follows readily tha t  

O~ ~ (O)  

k ~ l  I O~1 I k ~ l  
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Hence the rule for obtaining the ratios given in (7.6) does indeed 
maximize the measure of controllability of the first mode. 

RECEIVED: February  14, 1968; revised April 25, 1968 
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