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Although considerable progress has been made in various aspects
of control theory, there still appears to be no adequate theory for the
control of large-scale linear time-invariant multivariable systems. If
the engineering specifications required of the controlled system can
be effectively summarized in a quadratie performance measure, then
linear optimal control theory, in principle, provides a linear feed-
back controller which would perform the required task. Even under
these circumstances the computational problems may be insurmount-
able. In an effort to circumvent these difficulties Rosenbrock sug-
gested the use of modal control as a design aid. Modal control may be
defined as control which changes the modes (i.e., the eigenvalues
of the system matrix) to achieve the desired control objectives. This
paper presents a complete and rigorous theory of modal control as
well as recursive algorithms which permit modal control to be real-

ized.
LIST OF COMMON SYMBOLS

A, A, J, A System Matrix in various representations
c,C Actuating Matrix in various representations
F G Feedback Matrix in various representations
Ci #th Column of C
A 1th Eigenvalue of A
det{-] Determinant of [-]
-7 Cormaplex conjugate of [-]
[-1F Transpose of [-]
{a, b a’d

1. INTRODUCTION

Although considerable progress has been made in various aspects of
control theory, there still appears to be no adequate theory for the con-
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trol of large-scale linear time-invariant multi-variable systems. If the
engineering specifications required of the controlled system can be
effectively summarised in a quadratic performance measure, then linear
optimal control theory, in principle, provides a linear feedback control-
ler which would perform the required task. Even under these circum-
stanees the computational problem associated with the solution of the
Riceati equation to determine the feedback controller may be unsur-
mountable. For a realistic control problem, rarely can the engineering
specifications be summarised in a single quadratic performance cri-
terion, and even though the possibility exists of changing the weighting
matrices in the quadratic form to improve the system responses, no
systematic way of changing these matrices are known to date for multi-
input systems. For single-input systems some qualitative results in this
direction were obtained by Kalman (1964).

In an effort to circumvent these difficulties and in particular to ob-
fain some insight into the dynamic behaviour of the system, Rosenbrock
(1962) suggested the use of modal control as a design aid. Modal con-
trol may be defined as control which changes the modes (that is, the
eigenvalues of the system matrix) to achieve the desired control objec-
tives. It is our belief that Rosenbrock’s suggestion has not found wide
application primarily because no theory of modal control was available.
In this paper a complete and rigorous theory of modal control as well
as recursive algorithms which permit modal control to be realized are
presented. Some theoretical work in this direction has been done inde-
pendently by Wonham (1967), and Anderson and Luenberger (1967).

This paper may be divided into nine sections. In Section 2 we present
the mathematical description of the system.

Tn Section 3 some new results on state controllability which are useful
in the sequel are obtained. Section 4 discusses some canonical forms for
linear systems. In Section 5 we introduce the new concept of mode con-
trollability and discuss its relationship to state controllability.

In Section 6 we present a spectral technique for modal control and
in Section 7 algorithms for the realization of modal controllers are pre-
gented. Sections 8 and 9 are devoted to the discussion of modal control
when the complete state veetor is not accessible for measurement.

Notation. Capital letters such as 4, B denote matrices. Lower case
letters z, ¥ - - - 2 denote vectors, ¢ denotes time. For functions of time
#(t), often the argument will be omitted. & denotes dz/dt- (u, vy = u’v.
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2. SYSTEM DESCRIPTION

We shall study the time-invariant linear dynamical system represented
by

de
(@) T (&) = Az(t) 4+ Cm(t)

y(t) = Hu(t)

where ¢ is the time, z(¢) is an n-vector, the state of the system; m(¢)
1s an r-vector, the input or eontrol; (&) is an e-vector, the cutput of the
system; 4 is a constantn X n matrix, the system matrix; ¢ = [C1Cy - -
(] is a constant n X r matrix, the actuating matrix; and H is a constant
e X n matrix, the measurement matrix. All quantities in the above
equations are real. For given ¢, the set of all 2(¢) is thus a real n-dimen-
sional Euclidean space X, called the state space of the system and the
set of all y(¢) is a real e-dimensional Euclidean space Y, called the out-
put space of the system.

The function ¢ — m(t) is assumed to be defined for all ¢ € (— =,
-+ o ), is bounded in every bounded sub-interval of (— e, +») and
considered to be a certain measurable function of ¢.

It is well known that given a control function m(-), to every initial
state ¢ and initial time £ there corresponds a flow

du(t;c, t) = &(2)
defined for all t € (— o, 4 « ) which satisfies the identity
onlts 50, f) = c.

In the existing theory of linear control, the concept of controllability
due to Kalman (1961) plays a very fundamental role. In the theory of
modal control to be developed in this paper, the new concept of modal
controllability plays an equally important role. The notion of eontrol-
lapility due to Kalman we shall refer to as state controllability (fo
distinguish from modal controllability). In the following section certain
known results on state controllability which are to be used later are
summarised. In order to relate the concepts of state and modal con-
trollability, we need some new results on state controllability. These
are also included in the following section.

3. STATE CONTROLLABILITY

DerinitioN 3.1 (Kalman). A state 2(0) is said to be controllable if
there exists control m(¢) defined over a compact interval [0, 7'} such
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that ¢.{T; (0)) = 0. If every state 2(0) is controllable the system is
said to be completely state controllable.

Prorosrrion 3.1. (&) is completely state controllable if and only if
there exisis no representation of (£) having &: = Az as one of its compo-
nent state equations.

Proor. (Necessity). The proof is obvious.

(Sufficiency). We shall prove the contrapositive, that is, if (£) is
not completely state controllable then a representation of (£) exists
which has as one of its component state equations

:ﬁg = NB; .

Trom Kalman's Canonical Structure Theorem (£) admits a repre-
sentation

(5&) [An A\ [Z. Cu
w0 )Ll
T O AZZ Ly, 0

and X admits a direct sum decomposition X = X, @ X, , where X,
is the controllable and X, the uncontrollable subspace of X. Let n,
be the dimension of X, . Since (£) is not completely state controllable,
A is an ny X 1, matrix with n, = 1.

Consider the nonsingular linear transformation given by z = 7%,

where
_(Tu O
= ( 0 Tzz)'

Here T4 is a nonsingular matrix of appropriate order and 7' is selected
such that 7% AT = J{Ax], the Jordan canonical form of Az .
The new system representation is now given by

(£4) @& = A"z + C'm, where
’ Tl—llA—ll T11 T1—11‘4_22 T22 ’ Tl—lléll
A = _ and € = .
0 J[Ax] 0

By inspecting the above representation it is clear that it has at least
one component state equation of the form #; = Az, .

Remark. A is actually an eigenvalue of A.
It is eonvenient to write the generic control term m(f) as m(f) =
n(t) + my(z, t) where ms(z, t) is an explicitly defined feedback law.
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Derintrion 3.2. Let m(f) = n(t) -+ ms(x, t), where the feedback
law m;(z, t) has the form ms(x, ) = Fz(t), where F is an r X n con-
stant matrix. my(x, ) = Fz(t) is then defined to be a constant linear
feedback law.

ProprosimioN 3.2. The dimenston of the controllable subspace X. re-
mains wmvariant with respect to the application of constant linear feedback
control to (£).

Proof. The proof follows easily using Kalman’s Cancniecal Structure
Theorem.

CoroLLARY 3.3. If system (£) characterized by the pair (A, C) s
completely state controllable and F is any v X n mairiz, then the system
characterized by (A + CF, C) 1s completely state controllable.

For the next proposition it is convenient to consider the Jordan canon-
ical form of £) given by

) i=Jz+ P'm
where
J1 M1
J2 R‘L 1
(] =l y J‘z =
s N 1

Each block J; is of dimensionn; (¢ = 1,2, -+ ») and ¥ /= n; = n.
Usually P” is simply partitioned by rows of the form

However to prove the next proposition it is convenient to number the
rows of P” to correspond to the blocks of J in the following manner:
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T
pv,l

L pz:”v -
We then have,

Prorosrrion 3.4. (£,) is complelely state controllable if and only if all
rows of P” corresponding to the last row of Jordan blocks containing the
some-valued eigenvalue are linearly independent.

Proof. (Necessity). It will be shown that the existence of a set of
dependent rows in P”, corresponding to the last row of Jordan blocks
containing the same-valued eigenvalue, implies that the system is not
completely state controllable. For notational simplicity only, assume
that My =N (=1, 2,---, & £ ») and that the dependent rows in
question correspond to Jordan blocks containing A; . Then there exists s,
nontrivial set of scalars, & (¢ = 1, 2, --- , k), such that

k
; BJ),,M = 0.

Perform a nonsingular transformation of state # = Nz such that one
of the new state variables, say z: , is defined by the relation

k
Ty = Z 0:%; .
£=1

This new state variable satisfies the equation &, = Az.. As a conse-
quence of Proposition 3.1 it follows that the system is not completely
state controllable.
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(Sufficiency). It is sufficient to show that a system which is not eom-
pletely state controllable must have a set of p;,.; corresponding to the
same mode which are linearly dependent. Assume that the system is
not completely state controllable. From Proposition 3.1 it follows that a
representation of the gystem exists having &, = Axs as one of its com-
ponent state equations, where A is an eigenvalue of the system. For
simplicity of notation let N = X;, where the first £ Jordan blocks are
the only blocks containing the eigenvalue A; . Then z; must be a non-
trivial linear combination of the states corresponding to the first &
Jordan blocks, i.e.,

1 ) i
Ty = Z; 51,i21,i(t> e —21 57,,42],;,,‘ .

The state equation for . is

n1—1 ng—l

&y = ey + 2:1 81,i21,641 + 000 F Z O, %, i-+1
= 2=1

ni ng
+ [Zl SuPrit - ; Bk pii] m.

This implies that
61,1':07 i=1727"':n1_1;

5]0,5=0, 1:=1,2,"',1’I/k—'1.
Hence
k

.Z ai,nipg:ni = 0.

Some obvious corollaries of Proposition 3.4 are listed below.

CororLary 3.5. If v = 1, thal is in the single-input case, o necessary
condition for the system (L) to be completely state conirollable is that no
two Jordan blocks contuin the same eigenvalue.

CoROLLARY 3.6. The minimum number of inputs for complete state con-
trollability of (£s) s equal to the largest number of Jordan blocks con-
taining the same eigenvalue.

Remark. The geometrie multiplicity of an eigenvalue X; is denoted
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by gr; , where g, = nullity of [4 — AJ] = number of Jordan blocks
containing the eigenvalue A; . Thus the minimum number of inputs re-
quired for complete state controllability is equal to max; g, .

CororLARY 3.7. If the eigenvalues of A are distinct then (L) is com-
pletely state controllable if and only if each row of P* is nonzero.
4. CANONICAL FORMS FOR £

If (£) is completely state controllable and r = 1, then a unique non-
singular transformation of the state z = T4# exists, such that (£) admits
a companion matrix form representation

where
f 0 1 Qevvns 0 \é 0‘[
0 0 Tovan o | ) 0
A= T7AT = | : 0=
0 0 0 1
._..an —an'—l -------- _al 1

For the subsequent development of the theory of modal control an
appropriate generalisation of the companion matrix form for completely
state controllable multi-input systems is necessary. We use the canoni-
cal form as generalised by Anderson and Luenberger (1967). Unfor-
tunately the canonical form is not unique if » > 1; nevertheless a useful
general structure is obtained for each derived nonsingular transforma-
tion of state = T%. The general form is

where
_ !/fizz Ay i ) )
A = TTAT = : ) C=T7C =100 )
\Als An
E=

8 zero matrix if ¢ > k&
A = {a companion matrix if ¢ = %
a matrix of zero except possibly for the first columnif 7 < &
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and

X no special formif ¢ — § > 0
C; = <{a zero vector except for unity in the row
corresponding to the last row of 4;;if ¢ — £ £ 0.

If r = 1 the familiar companion matrix form is obtained.

5. MODE CONTROLLABILITY

In the subsequent sections we shall often use the term eigenvalues of
the system when we mean eigenvalues of the corresponding system ma-
trix.

Dernmion 5.1. A set of complex numbers A is said to be

(1) ‘real’ if \; € A implies \; is real

(2) ‘distinet’ if A;, A € A implies Ny # N if £ = &

(3) ‘self conjugate’ if all ecomplex quantities occur in complex
conjugate pairs.

DerFinrrion 5.2, Let Ag = {\:\ is an eigenvalue of A}. Let As © Ag
be a self-conjugate set of p, p = 7 complex numbers. Let T' = {y; +--
vp} be an arbitrary set of self-conjugate complex numbers. (£) is said
to be mode controllable with respect to Ag if there exists an n X n
constant matrix # such that the eigenvalues of (A + CF) are T' U
(Ag ~ Ag). Such a matrix ¥ is termed the modal controller.

DrrinrrioN 5.3. If p = n and (£) is mode controllable with respect
to Ae then (£) is said to be completely mode controllable.

ProrostTioN 5.1. If there exists a representation of (£) which is not
completely mode controllable then (£) 1s not completely mode conirollable.

Proof. The proof is by contradiction.

Let (£%): & = Ay + Cym be a representation of (£) which is not
completely mode controllable. Assume there exists another represen-
tation (£®): ¢ = Qy 4+ Rm which is eompletely mode controliable.
Since these are representations of the same system the state vectors
and y are related by a nonsingular linear transformation y = Tz.
Therefore,

Ay = T7QT
¢, = TR,

which shows that A and @ are similar. Since (£%) is completely mode
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controllable, there exists a modal controller m = Fy such that the
eigenvalues of (Q 4 RK) are T, where T is any arbitrary set of self-
conjugate complex numbers. We then have

(A + CKT)x
T7(Q + RK)Tx

which shows that (@ + RK) is similar to 4; + C3KT and hence (£°)
must be completely mode controllable. This is a contradiction and
hence the proposition is proved.

z

If

il

Before proceeding to the general result relating state and mode con-
trollability the case when r = 1 is worth considering. Assume that (£)
is completely state controllable. Then (£) has the companion matrix
representation (£¢). Let s be a complex variable. The eigenvalues of A
are the roots of

s " 0, =0 (5.1)
To create a system-matrix whose eigenvalues are the roots of
s als" T 4 o+ a =0 (5.2)

it is known that the required unique feedback law is given by
m(t) = [a, — ano, 0 alo]Tﬁlx(tf
We may then state

PropositioN 5.2. If r = 1, a system which is completely state control-
lable is also completely mode controllable and the required modal conitrol
law s unique.

The main theorem of this paper may now be stated.

TreoreM 5.3. (£) @ completely state controllable if and only if it is
completely mode controllable.

Proof. (Sufficiency). Assume that the system is completely mode
controllable but not completely state controllable. Then from Proposi-
tion 3.1 there exists a representation of (£) which containg a ecomponent
state equation of the form #; = Az, , where )\ is an eigenvalue of A.
Since this eigenvalue is uncoupled from the control it cannct be altered.
Hence from Proposition 5.1 (£) is not completely mode controllable
which contradicts the initial assumption.

(Necessity). The proof of this part of the theorem is constructive in
the sense that a modal controller is derived assuming that (£) is com-
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pletely state controllable. There are two distinct steps in the proof.
Feedback is applied to transform (£) into a system with distinet eigen-
values and then the required additional feedback to move the distinet
eigenvalues to the desired locations is determined.

Step 1. Since (£) is completely state controllable (£) admits the
generalised companion matrix representation (£¢). The eigenvalues
of A are the roots of the equation

£
1_11 det (8T — A5) = 0. (5.3)

Therefore the eigenvalues of the system can be changed by altering the
elements of each 4,; in a manner similar to the single input case. For
example, suppose that it is required to change the eigenvalues asso-
ciated with

G 1 . 0
Au = 0 . 1. (54)
~Ckny, T Okmp~1 tee — Og,1

Let the new eigenvalues derived to be associated with A, correspond
to a matrix with elements —ap.;, ¢ = 1, 2, -+ 1, in the last row. Let
the kth component of control be

malt) = 32 (ons ~ a0, (5.5)

where the state vector £ is partitioned to correspond to the blocks on
the diagonal of A as follows:

@

AT A . . N
vo= [xéang""axéyll "'lxl,n"'$1,1]-

Then the only part of A changed is Ay and the revised A is given by
(5.2) with az,. replaced by ai; (¢ = 1, 2, --+ m). In this way each
A;; of A could be changed. This construction is not completely general.
The eigenvalues associated with each 4. cannot be moved to a com-
pletely arbitrary position. To preserve the realness of the closed loop
system, it is required that each A, of odd order of the closed loop
system contain at least one real eigenvalue. Since Step 1 involves trans-
forming (£) to a system with distinct eigenvalues the above restriction
is satisfied.
Step 2. Let the transformed system with distinet eigenvalues be

(&) z = Az + Cm.
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Since (£) is completely state controllable (£r) is also completely
state controllable. Fix the ratio of the components of m(t), that is,
let m(t) = gb(t) where g isanr X 1 vector and 6(¢) is a scalar. Then
if the pseudo single input system characterized by the pair (4, Cg) is
completely state controllable, then from Proposition 5.1 the required
feedback law for 6(1) can be obtained. It remains to show that a veector
g exists sueh that (£7) can be transformed into a completely state con-
trollable pseudo single-input system. This result is now stated in the
form of a lemma.

Luevma 5.3. If (£4) 1s completely state controllable and has distinct
eigenvalues, then there exists an v X 1 vector g such thot

(£q) &= Az 4+ do, where d = Cy
1s also completely state controllable.

Proof. Consider the Jordan canonical form of (£r).
¢ = Az + PTg0

It follows from Corollary 3.7 that each p; # 0.

The existence of a vector g such that P'g does not have a zero element
is shown by the following construction. As an initial guess for g, let
go be the r-dimensional vector defined by ¢ = (1, 1, -+- 1)%. Let
o = Pr go, k = 1,2, --+ n. Let I be the set of all p; such that ax =
{pr, g0y = 0. If 11 is empty, then the initial g, is acceptable, otherwise
proceed as follows. Let pg be an element of II. Since pg # 0 it has a
nonzero element, call it .5 . Increment the th element of go by ¢ > 0
to form g¢”. Then afy = (ps, ¢¢°) = epis # 0. Choose the value of ¢
so that the nonzero values of au remain nonzero. This can always be
done. First try an arbitrary e > 0, if this fails try 2¢, and so on. Since
the number of vectors is finite an acceptable increment must be found
before (n — 1) steps. Once an acceptable e is selected the number of
elements in IT is decreased by at least one to form II; < II. Continue
the process in the same manner by selecting an element of 1T . Since
1I; bas a finite number of elements a g, is eventually found.

Finally from Corollary 3.7 it follows that (£5) is completely state
controllable.

6. A SPECTRAL TECHNIQUE FOR MODAL CONTROL

In this section we discuss constructive methods for achieving modal
control, that is, the specification of a feedback controller such that some
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or all of the eigenvalues of 4 may be moved to certain desired locations.
The proof of Theorem 5.2, based on the generalised companion matrix
canonical form (£¢), is constructive in nature. However determination
of a modal controller based on (£¢) has certain drawbacks. These are
discussed below.

(1) A necessary condition for achieving the representation (£¢) is
that (£) be completely state controllable. Therefore before proceeding
with the determination of the modal eontroller (£) must be decomposed
to isolate its controllable part.

(2) In general, the complete canonical form must be determined
even if only a small set of controllable modes are to be moved. Since no
distinetion is made between the modes that have to be moved and those
not, it is possible for a “nearly uncontrollable’ part of the system, which
may be of no interest, to create computational difficulties in deriving the
modal controller.

(3) A component of the control vector is only employed to alter the
eigenvalues of the associated companion matrix.

The contents of the companion matrix depend on the ordering of the
columns in C. If the first column of € can influence every mode, ie.,
the pair [4, (1] is completely state controllable then the canonical form
in effect reduces to the companion matrix form (£¢) with the first
component of control as m(f). The method delegates the control of
an eigenvalue to the first column of C that can influence it. This rules
out many designs in which a combination of control elements share the
effort in shifting the eigenvalues. It also may create poor designs by
having eigenvalues shifted by components of control with little influence
over them.

The canonical eoordinate system obtained is not well suited for study-
ing the effect of shifting the eigenvalues on the feedback gains required
on the original state measurements. Even if only one eigenvalue is
shifted the use of 7' makes it difficult to predict the resulting gains.

To alleviate some of the difficulties associated with that method a
different eigenvalue shifting algorithm is now presented. The usefulness
of these techniques can be better explained by first classifying linear
stationary dynamical systems in the following way.

Controllable Uncontrollable
Distinct Eigenvalues ' I I

Repeated Eigenvalues 111 v
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Recall that the technique of Section 5 can immediately be applied
only to systems I and III. The uncontrollable part existing in systems
II and IV must be discarded before the canonical transformation can
be obtained.

The spectral technique presented below is best suited to systems of
class I and II. By using Theorem 5.2 an insignificant amount of control
can always be found which will transform a system of class 111 into one
of class I. However, to eliminate the effect of uncontrollable repeated
eigenvalues in a system of class IV it is necessary to perform a decom-
position as required in the other technique.

For ease of discussion it is assumed that the system has distinet
eigenvalues' and is described in part by

&= Azx + Cm (6.1)
where
z = Uz
U = [ 4y -+ u,) eigenvectors of 4
i
(41
V' = U =1 1 ]reciprocal basis vectors of 4
T
Un

A = VPAU = diagonal A1, N\s, <+, Al

PLT
Pfr=VvVC=1{":

T
P

Note. The eigenvectors are selected such that if A, = N then u; =
w,. Hence v; = v and p; = p;°.
Consider a feedback law

l<n egn

m = 2, g& = ; 9:vi, @), (6.2)

1A

o
3
LY

which is more generally written as m = Gz = FX, (F = GV"). The
closed-loop system may then be represented as

2 =R (A =A+ PG (6.3)
t For the case of multiple eigenvalues see Simon (1967).
*To insure that m is real it is assumed that the set (\r, X, <+, Ng} is self-

conjugate and that the r-dimensional vectors g; = gx* if \i = A%
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where
iy i
- Au | O
A= ———‘{—-—*—
Aoy | Ag
- . -
M+ an o .. Oin,, !
(2% A2 + et 227/ 0
Xl (2779 ] et )\nm + (A2 3 .
Xp,,+1,1 Qg 11,2 b ST PHES, S e )\nm+1
0
0 .
i Oy Qng e O, n,y )\n_

and @ = (pi, ) = pi'ge -
To determine the eigenvalues of the closed-loop system it is helpful
to explore some properties of the charaeteristic equation

det [sI — A] =0 (6.4)

In this particular case the characteristic equation factors or “decom-
poses” into

det [SI - Kn] ii;IH-(S - >\1> = 0. (65)

It is readily evident that only the first £ eigenvalues could change. Thus
it is only necessary to examine the £ X ¢ matrix Ay to investigate the
effects of the feedback on the eigenvalue locations.

The features of what may be termed a “modal decomposition prop-
erty” can easily be extrapolated from the example above. For the case
in which £ £ n canonical state variables are employed in feedback it is
found that the characteristic equation of the closed-loop system factors
into (n ~— {) linear terms and the determinant of an fth order system
where

(1) The linear terms, (s — X;), contain the eigenvalues unchanged
by the feedback because their corresponding canonical state
variables are not fed back.

(2) The {th order determinant is the determinant of the sub-
matrix formed by crossing out the rows and colurnsin s/ — A]
corresponding to the canonical state variables omitted in the
feedback law.
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Note that if any of the canonical state variables used in the feedback
law eorrespond to uncontrollable modes, then a further simplification is
possible. The resulting characteristic equation is formed in the manner
described above with these state variables treated as if they were omitted
in the feedback law.

Since the ordering of the eigenvalues in the canonical form is immate-
rial the feedback law given by (6.2) is 2 valid starting point for deriving
the modal eontrol law for (the first) £ eigenvalues. A set of r-dimensional
vectors g;, (i = 1, 2, -+, £), causing the matrix Ay of (6.3) to have
the desired distribution of eigenvalues must now be determined. If
the eigenvalues are controllable (and » > 1) many such sets exist. A
general procedure for obtaining the g, is to first find the characteristic
equation of Ay

det [s] — Byl =" + /s 4+ o s+ fo=0  (6.6)

where the f;, (i = 1, 2, ---, £), are nonlinear (linear if » = 1) func-
tions of the components of the g, , and then compare it to the character-
istic equation whose roots are the desired modes

(s =y (s —v2) «++ (s — 7ve)

(6.7)
=& Fds 4+ -+ digs + dy = 0.

The condition that equations (6.6) and (6.7) have identical roots is
that coefficients of like powers of s be equal, i.e.,

fiZdi, 7,‘:1,2,"',5. (68)

The simplicity of the expression (6.8) is deceiving because for v > 1 it
represents a set of £ nonlinear equations in the £-r unknown components
of the ¢g,. To algorithmize the procedure for deriving a modal control
law a restriction is placed on the control which in effect reduces the sys-
tem to a scalar-input system.

Let the vectors g; in (6.2) be replaced by 8.0, Le., let

{<n f<n
m = g 2_:1 82 = go }_; (Bw:, z) (6.9)

where the elements of the r-dimensional real vector go, (g, gn, - -,
gro), fix the ratio of control elements, and the scalar weights 3 are de-
termined to achieve the desired changes in the first £ eigenvalues.
Recall that controllability of the modes in the original system (6.1)

3 To insure that m is real let §; = 8™ if A; = N>,
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does not imply controllability in the reduced system. Therefore g, must
be chosen so that ez = (pi, ) 0 (= 1,2, .-+, 4).

It may be shown (see Appendix 1) that for a feedback control law
in the form of (6.9) the f; in (6.8) are given by

fi = (=1 P.(\) + ;::151'01@'013{—10 | 2], (6.10)

i=1,2 -8

where the P funetions are defined as follows:

P:(M, M, +++, M) is the sum of the products, taken ¢ at a time, of
the elements from the set {A:, A2, -+, A}

P;()\) is a shortened notation which is used when the set of N's

under discussion is clear.

P.(\| N) denotes P,(\) with A, = 0.

PiO\ ‘ )\k s )\4) denotes P'L()\.) Wlth )\k = 7\4 = {.

Py(n) = 1.

P;(\) = 0, when 7 exceeds the number of elements in the set de-

fined by A.
The characteristic polynomial of the desired roots is

s — Puy)s"™ + o+ (=D'Pi().
Equating the corresponding f; and d; as in (6.8) yields

1 1 e ]. ) 51 (25 1i]
P1()§ 1N Pl()\-l Ne) e P1()\.l Ne) | |62 o
P4~1(}\ [ A0 Pe—1(5\ Phe) - P4—1().\ I[N L8 .am

(6.11)
Pi(y) = PA()
Pi(y) = P,(M)

Py(y) — P(N)
which is symbolically written as BD = Q.

Prorosirion 6.1. A unique solution exists for the d; , (1 = 1,2, -+ , {),
if and only if the modes Ny, N, +++, N are distinct and a, # 0,
(= 1,2,-.. 75)
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Proof. See Appendix 2.

Since only real systems are considered all complex quantities must
oceur in complex conjugate pairs. It follows that P:(A\) and Pi(v) are
always real, but P;(\| M) is real if and only if A is real. Thus the
matrix R in (6.11) is realif and only if all of the eigenvalues to be changed
are real. It turns out, however, that the matrix equation (6.11) can
always be transformed to an equation in real quantities. For example, if
three eigenvalues are to be shifted and the first two are eomplex eonju-
gates then the equivalent of equation (6.11) can be written as

1 0 1 2 Re(d; oo
Re Pl()\ l )\1) Im P]_O\ ] )\1) P]_()\ i }\3) —“2 Im(51 O!]_o)
Re P. Im P, M) PN 8
e PN A) TIm Po(A A1) Pa(h|Ae) 3 030 / (6.12)
Py(y) - Pm]
= | Py(y) — P(\)
P3(‘Y) - PaO\)J
The P/s may be defined recursively as follows
Pi(N | N) = Pi(A) — MPia(N M) =12 -, £~ 1,

k=1,2---,4

As a check on the numerical accuracy of the recursive procedure the
following relation may be used

P{()\)—)\kpg_l()\l)\k>=0 k=1,2,'-',£.

Analogous results may also be obtained for recursively defining
Re P;(N{ M) and Im Pi(N| M) in terms of real quantities, Simon
(1967).

OUTLINE OF ALGORITHM

(1) Determine the primary information N; and v; (¢ = 1,2, -« -,
£ =< n), ie., the eigenvalues to be moved and their correspond-
ing reciprocal basis vectors. Recall that A™v; = \w; .

(2) Select the desired locations of the shifted eigenvalues 7.,
= 1,2, .-+, {, and the ratio of the control elements g, .
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(3) Calculate the values of the
an = {Pi, go) = v’ Cqs (check ay 7% 0) and

the P; required in (6.11).
(4) Solve (6.11) for the §;,¢ = 1,2, -- -, £, which completes the
specification of the control law as defined in (6.9).

The only information required to define the control law is related to
the eigenvalues which are to be shifted. It does not matter whether or not
the other eigenvalues are controllable. A major portion of the solution
effort is expended in inverting the matrix D in (6.11) which is only a
funetion of the modes to be moved. Therefore the design parameters
yi,t=1,2,+--,¢, and g can be changed relatively easily to investi-
gate other systems.

7. RECURSIVE DESIGN

The previous section presents an eigenvalue shifting algorithm which
can be employed to shift £ (£ £ n) eigenvalues. A class of feedback con-
trols is introduced which essentially reduces the problem to one of
inverting an £ X ¢ matrix. In order to gain more insight into the effect
of moving the eigenvalues in small groups and help alleviate the compu-
tational burden a recursive technique is developed. The technique is
recursive in the sense that it allows a small number of eigenvalues to be
moved to their desired locations at each iteration.

Consider again a system with distinet eigenvalues. For clarity it is
necessary to use superscripts to distinguish between certain quantities
at each stage of the design. Let the open-loop system be denoted by

(£ i =A% + Om (7.1)
with the corresponding eanonical representation

(e i =AY+ PY"m (7.2)
where

AQ = VOTAOUD® = diagonal [\, N, -0, Nl
and
poOr _ O

The first step in the recursive design procedure consists of finding a
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linear state variable feedback law
m® = @V = V%, (FY = qUy©ry

which moves a selected number of eigenvalues to specified locations
while keeping the others fixed. For illustrative purposes assume that
m® is chosen to change \; and \; t0 v; and v, respectively. Incorporat-
ing this feedback law into (£©) by formally replacing m by m + m"
in (7.1) yields a new system, deseribed by

(£ i =A%z + Cm where AW = A® + P9, (7.3a)
or

¢ = K9 4 PPm where A9 = AY 4+ POTG. (7.3b)

If the eigenvalues of (£") are distinet, then it may be represented in
canonical form by

(e ¢ = A% + PYm
where
AP =VOTACTY = diagonal [y1, v2,75 ) Maly
and
P(l)T — V<1)TC.

Note that A® is the canonical form of A, and is thus a diagonal
matrix having the eigenvalues of A® as its entries. Compare this with
A defined in (7.3b).

The system denoted by (£"™) is nothing more than the closed-loop
system obtained by employing the feedback law m” in system (£©).
For the purpose of recursive design it may also be viewed effectively as a
new open-loop system with its system matrix given by 4. If (&%) is
found to be satisfactory the design is complete. Otherwise an additional
feedback controller

m(i) - G(Z)Z — F(Q)x’ (F(Z) = G(Z)V(DT),

can be derived to change the eigenvalves of (£©).
The recursive procenure can be continued indefinitely with any
number of eigenvalues altered at each iteration. After s steps the system
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——)@———h c | s Ho—
a0}
5(o)
M
m
(1)
—_—t -
(2)
(Jf z £(2)
0
T nto)
F(U)
slo)

F1a. 1. Recursive design (¢ stages)
is described by
& = A(O).'ZJ + C’(m + m(l) + m(ZJ 1 ... + m(«r))

=A% + Cm, where A =AY 4 ¢ > F®.

=1

If the eigenvalues of the resulting matrix A, are distinet, then its
corresponding canonical representation is

where
A(v) = V(W)TA(O') U(v)

P = Ve

A pictorial interpretation of the recursive design procedure may be
found in Figures 1 through 3.
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i o .
A(O)+C Z F(l)
i=1

Fig. 2. Effective system (o stages)

Fr16. 3. Final design (o stages)

Obviously if the recursive algorithm is to alleviate the overall eompu-
tational effort each step in the design must be easier to perform than
the single step required for the simultaneous movement of all of the
eigenvalues. A tremendous savings in effort is afforded by the modal de-
composition property when only a small number of eigenvalues is moved
at one time because the amount of effort required to determine a control
increases exponentially with the number of eigenvalues moved. It is
necessary in the recursive algorithm to compute the »{¥ (reciprocal
basis vectors) corresponding to the eigenvalues moved in the kth step,
but an efficient algorithm is developed to determine these quantities.

It is most convenient to work on one or two eigenvalues at a time. For
3 real eigenvalue the one-eigenvalue-shift may be used while the two-
eigenvalue-shift allows real and complex conjugate pairs to be ereated,
changed or destroyed. The algorithm of the one-eigenvalue-shift is de-
rived below. Higher order eigenvalue shifts are derived in an analogous
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way. A detailed derivation covering the four cases may be found in
Simon (1967).
ALGORITHMS FOR SINGLE KIGENVALUE SHIFT

1. Derivation of Control. For notational convenience it is assumed that
the first (real) eigenvalue, A; , is to be changed to the (real) eigenvalue,
71 . Only a real to real change is treated to preserve the realness of the
system at each stage in the design.

As a consequence of the modal decomposition property the form of

m® is chosen as

gu
m” = ga = 9:21 w0, z). (74)
g
Substitution of (7.4) into (7.2) yields

>\1+a‘°’ ! 0
e e e
(0) |
— asg i Az 0
RO = | .
]
|
|
|

©

Anl

. (i)

where oy = (ps, g1).

As expected m(” only effects the first eigenvalue. The characteristic
equation of the closed-loop system is

det[sI] — A% = (s — M — ai?)(s — M) --- (s — N) = 0.
Thus any ¢, satisfying
MA D 0 =n (7.5)

will achieve the desired shift. Note that the result (7.5) is in perfect
agreement with Corollary (3.7).

OBSERVATIONS

(i) For the case of scalar control gy and p® = (v}
Therefore, m'™ is uniquely determined by

0
¢ are also scalars.

(y1 — A (y1 — M)
m(l) - N > 1) L = ’Yl(o) 1 <v(o) >‘
P {1
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A measure of the controllability of the first eigenvalue iz given by the
absolute value of the normalized p;”. That is,

<U(0)
<’U§0), [()] >1/2

p{® =

varies inversely with the absolute value of the gains required to yield a
given displacement of the first mode. This agrees intuitively with the
fact that when p{® = 0 the eigenvalue ); is uncontrollable.

(ii) In the multi-input case, the components of the control vector
m' are proportional to the corresponding elements of the r-dimensional
vector ¢; . A simple procedure for obtaining a unigue solution to (7.5)
is to specily a desired ratio for the components of m'”. Such a ratio may
be based on the reliability, sensitivity, cost of the corresponding control
variables, or be chosen to reduce the absolute value of the required
feedback gains.

Assume that

gy = 3¢

where § is a sealar to be determined, and the vector gy specifies the ratio
of control variables. Then

— 590<’D(0) >
where § = v1 — M/ (P®, go) is obtained from (7.5).

Recall that this procedure reduces the given system with r inputs to
an effective sealar input system and that the firgt eigenvalue of this
effective system is controllable if and only if ¢y is chosen such that
P, go) # 0. A measure of controllability for the first elgenvalue of the
effective scalar input system may be defined as

) (pl 3 gﬂ)
ol oY o |

It may be shown (see Appendix 3) that the selection of the elements of
go by the rule ‘

where || o || = max | gio |-

gio = (sign pﬁg)), 1=1,2,---,r (7.8)

maximizes the measure of controllability. Hence the ratios defined by
(7.6) require the least absolute value of feedback gains.

2. Derivation of Updated Eigenvectors. After determining an appro-
priate feedback law m™, defined in (7.4), the open-loop system (£©)
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is transformed into (£®) which is represented by
& = A%V 4 Cm.
The new system matrix satisfies the relations
A(l) = A(O) + Cgﬂ){mT

T
) o
= A" 4 k§: i
=1

It is readily verified that
u® = u®,  i=23 -,
because
A(l)usm — A(o)uso) —_ )\iuz(_O), i = 2’ 3’ oo,

The revised first eigenvector 4{" must satisty

r
AT+ 3 oguoi”Tus” = yi. (7.7)

Since the 4" from an n-dimensional basis u{” can be represented by

u = Zl gau® (7.8)

where the g; are scalars to be determined. Expanding (7.7) using (7.8)
yields

> Qi M ul® 4+ ;) > o g = "1 Z gi uf®
=1 =t =1
but by definition cx = oy pivus”, therefore
n
; g — gilys — M)l = 0.

The fact that the ui” are linearly independent implies that
qlaf-(l’) = gi{ys — M) 1=1,2,-++,n,

If a resulting set of eigenvalues, {71, X2, -+, A}, remains distinet then
¢ # 0, and may be set equal to unity. Thus

0)

(4254

i=238--,n with g =1 (79)

q'-=71'_7\i
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Note that if v, is set equal to another eigenvalue it is possible for
us® not to exist. This agrees with the well known fact that if an nth
order matrix has repeated eigenvalues then it may have less than n
linearly independent eigenvectors.

3. Derivation of Updated Reciprocal Basis. The updated set of eigen-
vectors can be calculated as deseribed above if desired. By definition
VT = W™ however, it is more convenient to compute the reciprocal
basis vectors using the relations (uﬁl), oy = du Making use of the
fact that (u”, vi¥) = 84, it is found that

1) 0)
o = of

u =0 — g, k=23, e,

Note that it is not necessary to determine the eigenvectors. The g-
coefficients are defermined directly from Equation (7.9). As in the tech-
nique considered in the previous section the only primary information
required is the location of the eigenvalues to be moved and their cor-
responding reciprocal basis vectors.

8. MINIMUM NUMBER OF STATE MEASUREMENTS REQUIRED
FOR MODAL CONTROL

If the system (£) is completely controllablet we have shown that it is
possible to synthesize the modal controller. Thus the minimum state
measurement problem reduces to the algebraic problem of finding a
feedback matrix F having the greatest number of zero columns such
that the closed-loop system matrix [A + CF] has the desired distribu-
tion of modes.

The characteristic equation of the closed-loop system matrix is

det [s] — (A+CP)]=s"4+ds" " 4+ o+ +d, =0,

where the d; coefficients are multinomials of the elements of #. To
achieve the desired specification of the d; and hence the eigenvalues
it is necessary to have at least n independent parameters available in F.
Therefore a lower bound on the number of state measurements required
for modal control is equal to the smallest integer greater than or equal
to n/r.’

4 Tt is no longer necessary to distinguish between completely state controllable
and completely mode controllable systems.

3 A more realistic lower bound is obtained by replacing the number of inputs »
with the rank of C when they are not equal.
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The direct “brute force” approach for determining the elements of F
proves to be very difficult. A set of nonlinear equations must be solved
which increases in complexity with the number of nonzero columns of 7.
In the sequel another approach is taken for systems with distinet
eigenvalues which involves only linear operations. The price paid for
this simplicity is that only up to r — 1 state measurements can be elimi-
nated.

Consider a system with distinet eigenvalues and let the control law
be of the form

{<r

m = gq ;1512, = (v, ) (8.1)

where
iZr

v = Zl 5{?),: .

Obviously for each zero component of the n-dimensional vector » the
corresponding component of the state does not have to be measured.
Instead of specifying the r-dimensional vector g initially as in (6.9)
it now is made a function of the &;. The ¢ ({ £ r) scalar weights 8,
are chosen to make m real and independent of a set of states. The solu-
tion for the unknown parameters can be described by the following two
step procedure.

Step 1. Determination of the §;,7 = 1,2, .-+ ,f £ 7.

Since the eigenvalues are assumed to be distinet the vectors o,
1 =1,2,---, 4 are linearly independent. To insure that m is real let
;= o if N = N'. A set of §; may thus always be found to create a
real control law m independent of £ — 1 components of state.

Step 2. Determination of the gro, & = 1,2, ---, 7.

When control law (8.1) is substituted into (6.1) it is found that the
elements of go must satisfy (6.11). The vector D defined in (6.11) may
now be expressed as

D = ng (82}
where
dipu - Hipw
MW = 32?21 52292r

Bepa v Bepu
and the p’s are as defined in (6.10).
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Prorosition 8.1, If the eigenvalues are distinct and the rank of M 1s £,
then a vector go can be found such that the modal control law (8.1) 4s inde-
pendent of £ — 1 components of state.

Proof. In the proof of Proposition 6.1, it was shown that the distinet-
ness of the eigenvalues implies that the matrix R defined in (6.11) has
an inverse. The fact that 3 is of full rank means that by an appropriate
interchange of the elements of M and g, the right hand side of (8.2)
can be written as

Mgo = (M1 M) (ZZ)

where the ¢ X ¢ submatrix M is nonsingular. Then the components of
go which satisfy the required conditions are found from the relation

go = M RTQ — Mg
where the components of go in g2 can be arbitrarily specified.

If more than £ (£ = r) eigenvalues are to be moved a recursive design
procedure must be employed. After the first stage of the design is com-
pleted a feedback control law is obtained which moves £ eigenvalues
to desired locations while the others remain unchanged. The form of
this feedback control is given by

m® = W,

where F™ has up to (£ — 1) zero columns corresponding to components
of state that do not have to be measured. If the final design takes «
stages then

a

my = . F%.

=1

In this case it is only necessary that

a

F= 3 FY
=1
contains a zero column corresponding to each component of state that is
not to be measured.
9. MODAL CONTROL USING AN OBSERVER

In the previous development we have generally assumed that all the
components of the state vector are available for measurement. One of
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the few design procedures that explicitly accounts for the fact that some
components of the state vector may not be accessible is presented in the
previous section. In some applications however, it will be necessary to
obtain estimates of the inaccessible components of the state veetor to
realise the modal controller. Luenberger (1964) showed how the avail-
able inputs and outputs may be used to obtain an asymptotic estimate
of the state vector. The device which reconstructs the state vector is
called an ‘observer’ or an ‘asymptotic state estimator’. The observer
itself is a time-invariant linear system, with arbitrary eigenvalues,
driven by the inputs and outputs of the system it observes.

Following Luenberger, we shall show that the composite system, that
ig, the controlled system and the observer, are essentially two time-
invariant linear differential systems in cascade. The shifting of the eigen-
values of the composite system can thus be carried out independently.
We shall also demonstrate that the problem of constructing an ob-
server with arbitrary dynamics is the dual of the modal control problem.
The combination of these two facts allows us to employ the fechniques
for realising a modal controller to design the overall system.

In order to illustrate the design method consider the linear system
(£) and assume that the feedback control law is given by m = Fz.
If the complete state vector is accessible, the closed-loop plant is de-
scribed & = (4 + CF)z, so that the eigenvalues of the closed loop
system are the eigenvalues of A + CF. Assume now that the complete
state veetor is not accessible. Let the observer be represented by

(0) i = Bt 4+ Dy + Cm
where B is an n X 7 matrix and D is an n X e matrix.

Since the state x is to be replaced by its estimate £ in the feedback
law m = Fz, (£) and (0) have the representations

«®) . & = Az + CF% (9.1)
(0) 4 = (B + CF)t + DHz. (9.2)
Subtracting (9.1) from (9.2), we obtain

2 —~% =Bt~ (4 — DH)z. (9.3)

Let us now choose B = A — DH. Therefore (9.3) becomes
4 —3 =B —2)
which has a solution
2(t) = z(t) + & (£(0) — z(0)). (9.4)
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If B is now designed to be a stability maftrix, the estimate £(¢) ap-
proaches z(¢) ast — .

To display the dynamics of the overall system explicitly, consider the
nonsingular transformation of the state vector defined by

x I 0\[z .
(e)*(—l I)(rﬁ)’ where I isan n Xn

identity matrix. The new representation of the composite system is

<i> B <C§F A 18 OF) (i) '

The above representation clearly shows that the eigenvalues of the over-
all system are composed of the eigenvalues of the observer B and the
eigenvalues of the closed-loop system matrix A + CF. Moreover the
eigenvalues of the closed-loop system matrix are identical to those
obtained when the complete state vector is aceessible for use in the feed-
back law. Thus the only effect of the observer is the addition of more
eigenvalues to the original system.

The eigenvalues of the observer matrix are essentially arbitrary. In
addition to effecting the dynamies of the overall system these eigen-
values determine the accuracy of the estimator as shown in (9.4).
Since A and H are given as part of the plant the specification of D
uniquely determines the observer through the relation B = A — DH.
Therefore it is important to select a matrix D which gives desirable prop-
erties to B. Presumably D would be chosen to insure the stability of the
system, and make transients die out quickly.

The procedure for determining a matrix D to create arbitrary dy-
namies in B has already been treated. In some sense this is the dual of
the control problem. Consider the system

¢ = A" — H'm. (9.5)

If the pair (A, H) of the given plant is completely observable, then
the system (9.5) is completely controllable. Assuming this to be true a
feedback law m = D¢ may be determined to create arbitrary dynamies
in the closed-loop system

¢ = (A" — H'D") e = Be.

The system matrix of this system is the transpose of the system matrix
of the required observer, and thus has the same matrix. Therefore the



346 SIMON AND MITTER

& A

Fia. 4. Controlled plant and observer

required matrix D has been found. An illustration of the overall system
is given in Figure 4.

Remark. As shown above the eigenvalues of the overall system con-
sist of those of B (the open loop observer) and A 4+ CF (the controlled
plant). The procedure of constructing the observer described in this
section always enables these eigenvalues to be placed where desired.
However, in certain cases, the design may not be physically satisfactory
because the isolated closed loop observer (9.2) is not acceptable, e.g.,
the eigenvalues of B 4+ CF may be positive. In such a case the system
design will have to be altered. It may be possible to remedy this by ex-
ploiting the freedom available in designing the observer and controller.

10. CONCLUSIONS

In this paper we have attempted to present a complete theory of modal
control. Questions of existence and uniqueness of modal controllers as
well as recursive algorithms for the realization of modal controllers have
been investigated. For this purpose the new concept of modal control-
lability has been introduced. The existence question has also been dis-
cussed by Wonham (1967) using somewhat different methods.

In general, to achieve complete modal controllability it is necessary
to employ state variable feedback and hence knowledge of the complete
state vector is necessary.
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In Section 8 we have presented some results pertaining to the mini-
mum number of state vector component measurements necessary.
Section 9 deals with the design of an observer or asymptotic estimator for
the inaccessible components of the state vector. The design of the asymp-
totic estimator is in a certain sense the dual of the modal controller
design problem.

Our result on the existence of a modal controller utilises a constructive
method of proof. However the method used is not particularly suitable
for use as a design technigue. One of the main contributions of this
paper has been the development of recursive algorithms for the realiza-
tion of modal controllers. The algorithms are simple, require no com-
plicated operations such as matrix inversion and may be easily pro-
grammed on a digital computer. Moreover to implement the algorithms
complete knowledge of the eigenvalues and eigenvectors of the system
matrix is not necessary if it is only desired to move a few eigenvalues
to certain desired locations. No systematic development of algorithms
for the design of modal controllers has previously been reported in
the literature. ,

Assuming that a direct access computer is available to the designer,
the techniques could perhaps best be utilised by developing a conversa-
tional mode program to perform the necessary calculations. In this way
several designs could quickly be generated and a compromise design
based on various engineering considerations arrived at.

APPENDIX 1
Denote the characteristic equation of the matrix
{)\1—{-51041 62&1 3na1
81 A2+ 82 2 On O (1.1)
i_ 01 &y D) .Oén An +6n (273
by
s+ fis" T s A s 4 = 0. (1.2)

Note that the matrix (1.1) corresponds to the matrix used to define the
fi coefficients in (6.10) except for a slight simplification in notation.

In the derivation of (1.2) it is convenient to assume that a, # 0.
The final result is independent of this assumption. Recall that a neces-
sary condition for the mode X, not to be an eigenvalue of (1.1) is that
Oncn #= 0.
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Define
r8—>\1‘—310£1 —‘52011 ——Bnal
D, = det 0 oz ST h by oo 8 22 (1.3)
“510!1, '_520[?2 e 3_)\n~5nan
D, may be written as
-8—>\1—'51a1 —620’.1 s —5,,0[1
Dn - det '—51 27 S — Xz.—— 52 (22 M -—-Bn.ag
L —61 ot —8y oy e —0p
S — )\1 - 51 ay ——52 (25] tee —Bn_lal —“6n(¥1 (14:)
—010 §—Ay—0Ogag * " —Op_1as ~dnety
+ det : : :
—810m_1 —Boctn1  v.. §— A1 —O0n 101 —Ontn—y
0 0 0 $—An

The first determinant on the right hand side of (1.4) can be trans-
formed into

s — A 0 cee 0 0
0 8§ — N 0 0
: : : : (1.5)
0 0 8 — A J

—51 [27°) "“52 (2773 —“6n—1 Ay —0n Oy,

by multiplying the nth row by a;/a. , and subtracting it from the sth
row for ¢ = 1,2, --- ,n — 1. Inspection of (1.4) and (1.5) then yields
the recursive relation

Dn = (-S‘ - )\1)(8 - )\2) ree (S e )\n_l)(—énan)
+ (s = M)Dna

The expression for D, in terms of D,_s can be obtained by replacing n
with n — 1 in (1.6). Substitution of this expression back into (1.6)
yields

(1.6)

D, = (S - )\1)(8 - 7\2) te (8 - >Vn——l)(""5n0‘n)
+ (8 - )\1) e (S - )\n—-2)<"’6n—lan—1)(s - }\n) (17)
+ (s = M)(s = Mc1)Dra .
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Continued recursion on (1.6) with the terminal condition
Di=s— N — b (1.8)
finally yields
Dyp=(s—=N) (s = Mt)(—Bnan)
+ (s = N) o0 (8 = M) (—Bagrta1) (8 — No)
+ o () (s = M) e (s = ) (1.9)
+ (5= M) - (s — M)
Expanding (1.9) and collecting like terms gives the desired polynomial
s" 4 fis" T A ST e fuss S (1.10)

where

fi = (—=1)P:(A) + ; GonPra(M )], =12, -4, n.

The P functions are defined by
P:(M, he, oo, ) is the sum of the products, taken 7 at a

time, of the elements from the set {\y, N, -+, M. (1-118)
P;()\) is a shortened notation which is used when the set of
N's under discussion is clear. (1.11b)
PN Ax) denotes P;(\) with A, = 0. (1.11¢)
PN\, Ne) denotes P,(2) with N, = A, = 0. (1.11d)
P(n) = 1. (1.11e)
P;(\) = 0, when 7 exceeds the number of elements in the set
defined by . (L116)
APPENDIX 2
It 1s sufficient to prove that the matrix
l‘ 1 1 1
B = P1(>\.l7\1) P1(7\.P\2) Pl()\.bw) (2.1)

PoalN)  Paah]h) e Pas(h]nn)

has an inverse if and only if the modes A1, X2, -+, A\, are distinct.
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The proof is accomplished by performing a set of rank preserving
operations on B which take it to a matrix (Vandermonde) that is known
to be nonsingular if and only if the modes are distinet. The transforma-
tion takes place in (n — 1) steps. At each step a row of R, starting with
the second, is made to match its counterpart in the Vandermonde
matrix.

Step 1. Multiply the first row of B by Px(\) and subtract it from the
(k+ Dthrow for k = 1,2, ---, n — 1. After utilizing the recursion
relation

Pz()\})\k) =P¢()\) ——7\sz_1()\|7\1¢) i=1, 2,"',%— 1, k=

1,2 -,n
Po(M M) =1
and changing the sign of rows 2 through n the resulting matrix is
1. 1
Y VIR An
)\1P.1()\ (A e )\n-'Pl(X | Aa) (2.2)
MPra(MM) 0 MPaa(A[N)

Note that exeept for the first row each element of the matrix (2.2) is
the product of the eigenvalue corresponding to that colummn and the
element that was previously in the row above it.

Step 2. Multiply the second row of (2.2) by Pi(A) and subtract it
from the (k + 2)th row for k = 1, 2, --- , n — 2. After utilizing the
recursion relation and changing the sign of rows 3 through n the resulting
matrix is

1 ... 1
)\1 Aﬂ

)\12 - )\n2

AP (A e AP (M) (23)
MPs (MM -0 AP (W)

Continuing in this manner after the 4th step the resulting matrix is
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given by
-

1 -
A -
A -
(4 4+ 1) row —|

) VA
AP (M)

_K;iPn_(iﬂ) M)

. >\'niPn—(i+1) ()\ { )\n> -

P

A
NPy ()

351

(24)

Step (i + 1). Multiply the (¢ 4 1)th row of (2.4) by P(N) and
subtract it from the (k -+ ¢ -+ 1)th row of (24) for k =1, 2, ---,
(n — i — 1). After utilizing the recursion relation and changing the
sign of rows (¢ 4+ 2) through n the resulting matrix is

1 ...
N -
AN
(i+2)row—|

YVILII

MNPP (MM

| M Py (V[N

1

(2

2

(3

)\’:H‘l
)\72.+1P1 ()\ ‘ >‘n>

NPt (NN

(2.5)

Finally after (n — 1) steps the resulting matrix is given by the Van-

dermonde matrix

M1 1

A1 A2

Vg = )\12 )\22
AT N

1
An
}\2

~1
An

The determinant of the Vandermonde matrix v, is

det[v.] = IIk N — M)

(2.6)

(2.7)
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so that v, is nonsingular if and only if the ; are all distinet.
As a result of properties of determinants it follows that det[R] # 0
Actually it can be shown that

det [R] = (—1)""" det, ] (2.8)
APPENDIX 3
A typical element of the control vector m? = Bgo(v§°), z) where
oM
p1", go)
is
m® = Iy — W) 2], i=1,2 -, (31

(pi”, go)

Note that (pi”, go) = D=1 giolos”, ¢). Therefore v{” can be multiplied

by any arbitrary sealar without changing the feedback control law.

Let v be normalized so that ¢, »{”) = 1. Furthermore assume that

g0l = |gwl, ie., the first element of g, has the largest absolute value.
The measure of controllability is then given by
©

It can be seen that this quantity is the absolute value of the inverse of
the gain multiplying the fixed part of the first component of the control
vector.

Obviously to maximize the measure of controllability, and hence
minimize the absolute value of the required feedback gain it must be
true that

gro = g |(signpit), kB =1,2,--+,7 (3.3)

It is to be shown that e, = 1,k = 1,2, ---, r. With gx = sign pit,
k=1,2, ---,r the expression in (3.2) reduces to

]; | o2 |. (3.4)

Since | a1 | = | oz |, by assumption, it follows readily that

Z | Pw) 1 Z | o pkl l. (8.5)
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Hence the rule for obtaining the ratios given in (7.6) does indeed
maximize the measure of controllability of the first mode.

Recervep: February 14, 1968; revised April 25, 1963
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