SHORT TERM PRODUCTION SCHEDULING OF AN AUTOMATED MANUFACTURING
FACILITY

Stanley B. Gershwin, Ramakrishna Akella, Yong Choong, and Sanjoy
K. Mitter

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

77 Massachusetts Avenue

Cambridge, Massachusetts 02139

ABSTRACT

We describe extensions to the on-line hierarchical scheduling
scheme for flexible manufacturing systems of Kimemia and Ger-
shwin. Major improvements to all levels of the algorithm are re-
ported, including algorithm simplification, substantial reduc-
tions of off-line and on-line computation time, and improvement
of performance. Simulation results based on a detailed model of
an IBM printed circuit card assembly facility are presented.

1. INTRODUCTION

This paper describes extensions to the work reported by Ki-
memia (1982) and Kimemia and Gershwin (1983) on the on-line sche-
duling of flexible manufacturing systems. Major improvements to
all levels of the hierarchical algorithm are reported and simula-
tion results are presented. The results indicate that the ap-
proach is practical, well-behaved, and robust. A full descrip-
tion of the results appears in Gershwin, Akella, and Choong
(1984) and Akella, Choong, and Gershwin (1984).

A flexible manufacturing system (FMS) is one in which a fa-
mily of related parts can be made simultaneously. It consists of
a set of computer-controlled machines and transportation ele-
ments. The changeover time between different operations at a ma-
chine is small compared with operation times.

Processing a mix of parts makes it possible to utilize the
machines more fully than otherwise. This is because different
parts spend different amounts of time at the machines. Each part
type may use some machines heavily and others very little or not
at all. If complementary part types are selected for simul-
taneous production, the machines that are lightly used by some
parts can be loaded with others that do require them.

In principle, therefore, line balancing can keep several
machines busy at the same time. However, scheduling such a

616

system is difficult because there are several machines, several

part types, and many parts. In addition, like all manufacturing
systems, a FMS is subject to random disturbances in the form of
machine failures and repairs, material unavailability, ™hot™

items or batches, and other phenomena. These effects further
complicate an already difficult optimization problem.

Gershwin, Akella, and Choong present a hierarchical
description of the manufacturing scheduling problem. At the top
of the hierarchy are the long term decisions, such as what
capital equipment to acquire. At the bottom is the decision of
which part to load into an existing FMS, and when to load it.
This is an extension to Kimemia and Gershwin’s short term
hierarchy (Figure 1).

sysTEM REQUIREMENTS MACHINE PARAMETERS

CONFIGURATION {OPERATION TIMES,

MTBF, MTTR)
GENERATE
DECISION TOP
PARAMETERS LEVEL -
OFF-LINE .
MACHINE
PARAMETER
CALCULATE UPDATES
SHORT TERM [MACHINE STATUS
PRODUCTION
STATUS OF
RATES REQUIREMENTS MIDDLE
LEVEL
4 ON-LINE
SCHEDULE TIMES| paat
AT WHICH TO
DISPATCH PARTS | LOCATIONS LOWER
LEVEL
- 1 _ || ON-LINE
MACHINES AND
TRANSPORT SYSTEM STATUS
SYSTEM

Figure 1. Hierarchical Production Algorithm.

617

2.CONTINUQUS FORMULATION

The purpose of the short-term FMS scheduling algorithm is to
solve the following problem: when should parts (whose operation
times at machines are on the order of seconds or minutes) be
dispatched into an FMS whose machines are unreliable (with mean
times between failures and mean times to repair on the order of
hours) to satisfy production requirements that are specified for
a week? Kimemia and Gershwin’s approach decomposed the problem
into two parts: a continuous dynamic programming problem to
determine the instantaneous production rates and a combinatorial
algorithm to determine the dispatch times.

The continuous part is further divided into the top and
middle levels. The top level calculates a value or cost-to-go
function and is executed off-line. The middle level uses the
cost-to-go function to determine instantaneous flow rates and
part mixes.

Assume that the production requirements are stated in the
form of a demand rate vector d(t). Let the instanteous produc-
tion rate vector be denoted u(t). Define x(t) to be production
surplus. It is the cumulative difference between production and
demand and satisfies

dx
—— = u(t) - d(t). m
dt

If x(t) is positive, more material has been produced than is
currently required. This surplus or safety stock is helpful to
insure that material is always available over the planning hori-
zon. However, it has a cost. Expensive floor space and materijal
handling systems must be devoted to storage. In addition, wor-
king capital has been expended in the acquisition and processing
of stored materials. This capital is not recovered until the
processing is complete and the inventory is sold.

If x(t) is negative, there is a backlog, which is also
costly. Backlog represents either starved machines downstream or
unsatisfied customers. In the former case, valuable capital is
underutilized; in the latter, sales and good will may be lost.

The production rate vector u is limited by the capabilities
of the machines. Let part type j require time 7,;, on machine
i for all of its operations. (Note that the order in which parts
go to machines is not relevant for this calculation. Nor is the
number of times a part visits a machine. For simplicity, we
assume here that there is only one path for each part.) Then

Z Ty

uJ[t) < o (t) (2a)
J

J

where «,;(t) is 1 if machine i is operational and O if it is

618

down. More generally, if there is a set of identical type i

machines, o;(t) is the number of these that are operational at
time t. Note also that

u; = 0. (2b)

Inequalities (2a) and (2b) can also be written as

u{t) ¢ Qlax(t)). (2)
3.TOP-LEVEL COMPUTATION (GENERATE DECISION TABLES)

Costs are incurred when x i{s far from zero. Kimemia and
Gershwin describe the following dynamic optimization problem:

minimize E S g(x(t))} dt

subject to (1), (2}, (3}
and initial conditions x(0) and «(0).

The optimal value of the cost of this problem i{s called
J{x{0), x(0]).

Kimemia and Gershwin suggest a decomposition by which the
n‘th order Bellman partial differential equation for J(x,«) is
replaced by n first order Bellman ordinary differential equations
{where n is the number of part types, ie, the dimensionality of
X, u, and d}.

Kimemia further suggests approximating the solution to each
one-dimensional dynamic programming problem with a quadratic cost
function. Not only does this reduce data requirements, but it
also simplifies the middle-level computation. As a result, the
cost function is then written

I(x,a) = § xTA(x) x + bladT x + cla) (5)

where A{x) is a diagonal matrix, b(ax) is a vector, and c(«x) is
a scalar whose value is not important. In this section, we

propose an alternate technique for obtaining approximate values
of the coefficients of (5).

The function J(x(t),x) {s a decreasing function of t when
« remains constant. The hedging point, given by

Hi(x) = -b,(a)/A () (6)

is the minimum value of J(x,x) for o fixed. It is the value
that x reaches if o stays constant for a long time and if d is
feasible, le {f d ¢ Qlx).

In order to calculate the hedging point, consider Figure 2
which demonstrates a typlcal trajectory of x,(t). Assume x
has reached H,{x), the hedging point corresponding to the
machine state before the fallure. Then u;, {s chosen to be d

619

and Xy remains constant.

A failure occurs at time t that forces u, to be 0. This
causes X; to decrease at rate _di' In fact, if the failure
lasts for a length of time Tr' then the minimum value of X is

Hy - d; T.. (7)

Just after the repair (at time tO + T) u; is assigned
the value Ui' Assuming that this value is greater than demand
d., x. increases at rate U1 d until it reaches the hedging
point H, (at time t3). At that txme, u; resumes its old value
of d; and x; stays constant until the next failure, at time t,

+ T+ Tg.

To simplify the analysis, we make several assumptions:

1. u; is constant between the repair (t5 + T.) and when x,
reaches H,; (tg).

2. and T¢ can be replaced by their expected values, the MTTR
o HTBE.

3. The cost function g() in (3) penalizes positive areas in
Figure 2 with weight a and negative areas with weight b, where a
and b are positive scalars.

The positive area between t, and tg + is the area
between tO and t1 plus the area between t2 and { r+ Tf,
where

ty = tg <+ Hy / dy,

t2 = to + Tr - (HI - dl Tr] / (Ui - di)
and

t3 = to + '1‘r + di Tr/ [Ul - dl)

The positive area is

2
H, Ui d; T.
PA = % ______________ + Hl Tf = e e
di (Ul - di] Ul - dl
The absolute value of the negative area is
(H, - d;T.2% U,
NA = N .
d (U, - d;)

Both terms are always positive.

The cost function, according to assumption 3, is then

620

0

—‘
— "+ —————_—7J
-

Figure 2. Typical x Trajectory During a Repair-Failure Cycie.

\N./

P Hedging point

A
////\

/!

Figure 3. Regions of x-Space, and a Trajectory.

Tro;ectory

621

a PA + b NA

This quantity is the cost incurred per average repair and
failure cycle of a machine. To find H we must minimize it.
This is not difficult because the cost 1s quadratic in H.

The minimizing Hi is

T. d. (b U, - a d.}) - T ad-(U--dl)
r i i i f i (8)

(a + b) U,

For machine states in which the demand is not feasible, this
approach does not apply. The hedging point for such states must
be larger than (8]}.

This calculation does not consider the fact that the failure
may occur before the state reaches the hedging point or that the
repair may occur before the state becomes negative. It assumes a
specific form of g. These considerations and others should be
the subject of future research, but it is important to observe
that this method produced very satisfactory results.

;(at) must be positive in order for J to be convex.
Its vafie reflects the relative priority of part type i. Parts
that have great value, or that would cause great difficulty if
backlogged, or that pass through relatively unreliable machines
should have large values of Aj;.

4 .MIDDLE LEVEL (CALCULATE SHORT TERM PRODUCTION RATES)

Chattering

The optimal production rate vector u(t) satisfies the fol-
lowing linear programming problem.

minimize 3J(x, a)
-_————— u (9

subject to (2).

This is a feedback law since the problem is only specified

when x and o are determined. The numerical solution of (9) is
implemented on-line at the middle level of the hierarchical

algorithm.

For ever , x-space is divided into a set of regions
(open, connec ed sets) and the boundaries between them. Each

region {s associated with a corner of Q{x). When x is in the
interior of region R, the value of u that satisfies (9) is the

corresponding corner Pl

622

Kimemia and Gershwin implemented (9) in a simulation by
solving it every time step (one minute). This worked well while
x was in the interior of a region R.. However, when x crossed
certain boundaries between regions, {his approach worked poorly.
After x(t) crossed such an attractive boundary, the value of u
corresponding to the new region R, was such that the derivative
(1) pointed toward R;. When x{t) crossed the boundary back into
Ry, the derivative pointed again to RJ.. Thus, u(t) jumped

between adjacent corners I-"i and Pj of Qo).

This chattering behavior is undesirable. It allows the flow
rate to change more frequently than parts are loaded into the
system. The flow rates are such that, very often, at least one
of the machines is fully utilized or totally unutilized (since
u(t) is at an extreme point of Q(«x(t)). When u jumps frequent-

ly from one corner of Q{a) to another, the algortithm is trying
to switch rapidiy from keeping one set of machines fully loaded

or unloaded to keeping another fully loaded or unloaded.

It cannot do this successfully: neither set of machines is
fully loaded or unloaded. As a result, {f the demands on the
system are near {ts capacity, it will fail to meet the demands.
This behavior was observed by Kimemia (1982}.

Planar Boundaries

Kimemia shows that the optimal J{x,«x]) {s convex {n x for
each «. He also shows that J decreases when u satisfies [(9) and
d is feasible. The minimal value of J {s achieved when x is at
the hedging point. When J is given by (5), its minimum fis
reached at (6). Gershwlin, Akella, and Choong show that when J is
quadratic, the regions of x-space (in which the solution u of

(?) is constant at a corner of Q{«x])) are cones.

Linear program (?) can now be written

minimize c(x)T u
subject to Du-=e (10}
u 3 0

where u has been expanded with slack variables so that inequality
constraint (2a) can be written as an equality, and

c(x) = A x + b.

(Note that arguments « and t are suppressed.) The standard
solution of (10) (Luenberger, 1977) breaks u into basic [udB] and

non-basic (uNJ parts, with c(x) and D broken up correspondingly.
The basic part of D is a square, invertible matrix. By using the
equality in (10), ug can be eliminated, and the problem becomes

623

minimize cR(x)T uy (11
subject to uy » 0
where the constraint on ug has been suppressed, and where

cR[x)T = cN(x)T - cB(x)T DB'1 Dy
is the reduced cost. If all components of c, are positive, then
there is a solution to (11): uy = 0. This and the correspon-
ding up form an optimal solution to (10). Otherwise, (11) does
not have a bounded optimal solution and (11} is not equivalent to
(10).

It is important to note that since ¢ is a function of x, the
basic/non-basic breakup of this problem depends on x. That is,
the set of components of u that are treated as basic varies as a
function of x.

At every x in region R,, corner P, is the optimal vaiue of
u for (10). In each region, then, there must be a basic/non-
basic break-up of (10} which is constant. Consequently, cp(x)
must be positive everywhere in its own region and it must have
some negative components elsewhere. The boundaries of the re-

gions are determined by some components of cpl(x) being equal to
zero.

The boundaries of the regions are therefore portions of
hyperplanes. This is because c(x) is linear in x. Consequently

cN(x)T and cB-(x)T and therefore cR(x) are also linear in x.

Qualitative Behavior of Trajectories

Since u {s constant throughout a region, dx/dt is also con-
stant. The buffer state x travels along a straight line in the
interior of each region. As indicated in Figure 3, such lines
may intersect with one or more boundaries of the region. When x
reaches a boundary, u and therefore dx/dt changes.

Some boundaries are such that when they are reached, the
trajectory continues, after changing direction, into the adjacent
region. Others, that we call attractive boundaries, are dif-
ferent. The trajectories on both sides of such boundaries point
toward them. Consequently, the trajectories tend to move along
the boundaries.

We can now qualitatively describe the trajectory. After a
machine state change, x(t) is almost always in the Interior of a
region. It moves in the characteristic direction of that region
{which corresponds to a corner of the Q(ux(t}) polyhedron) until
it reaches a boundary. If the boundary is not attractive, x(t)
moves in the interior of the next region until it reaches the
next boundary. The production rate vector u jumps to an adjacent
corner. This behavior continues until! x(t) encounters an attrac-

624

tive boundary. At this time, the trajectory begins to move along
the boundary and u(t) jumps to a point on the edge of Q(«x)
between the corners corresponding to the regions on either side
of the boundary.

The trajectory continues until it hits the next attractive
boundary. After that, x(t) moves along the lntersection of three
regions. The production rate vector is on the surface determined
by the three corners corresponding to these regions.

This behavior continues: x(t) moves to lower dimensional
boundaries and u(t) jumps to higher dimensional faces. It stops
when either the machine state changes (that is, a repair or
failure takes place) or u(t) becomes constant. If the demand is
feasible (that is, if d € Q(x)) then the constant value for u
is d. When that happens, x also becomes constant and its value
is the hedging point. If the demand is not feasible, x does not
become constant. Instead, some or all of its components decrease
without limit.

Consequently, for a constant machine state, the future beha-
vior of x(t) would be determined from its current value. We call
this the "conditional future trajectory” or the "projected traje-
ctory*.

4.2 Caiculation of the Conditional Future Trajectory

Assume that the conditional future trajectory is to be cal-
culated at time ty. This may be due to a machine state change.

As soon as the machine state change occurs, linear program
(10) is solved. Thus the basic/non-basic split is determined and
the cp(x) function is known. :

The production rate vector at t=t is denoted u,. The
production rate remains constant at this value until t=t1, which
is to be determined. In {tg. 441, x is given by

X(t} = x[to) + (uo - d) (t - to)

where x{t,) is on a boundary. Then t, is the smallest value of
t for which some component of c [x[i)) is zero. It is easy to
calculate this quantity since cp 1s linear in x and x is linear
in t. Once t1 is found, x(tlj is known. Define h(x(t)) to be
the component of cgp(x(t)} that reaches zero at t=t,;. Because h
is a linear scalar function of X, we can write

hix(t)) = £7F

U x(t) - x(ty)).

For t »> ty. there are two possibilities. The trajectory
may enter the neighboring region and travel in the interior until
it reaches the next boundary. Alternatively, it may move along
the boundary it has just reached. To determine whether or not
the boundary {s attractive, we must consider the behavior of

625

h(x(t)} in its neighborhood.

We know that h(x) is negative in the region across the
boundary since this is how the regions are defined. We must
determine whether h is increasing or decreasing on trajectories
inside that region. If h is decreasing, x moves away from the
boundary (where h is zero) into the interior. If h is increa-
sing, trajectories move toward the boundary which must therefore
be attractive.

One value of x which is just across the boundary is
X" = xltg) + ug - d) (4, + € - tg)
= x(ty) + (ug - d) e.

This is the value x would have if u were allowed to be ug until
t + €
1 .

Let u" be the solution to (10} in the adjacent region. That
is, (10) is solved with x given by x"™. (This can be performed

efficiently.) Let x* be the value of x at t1~(if u" were
used after tl. That is,

x* = x(ty) + (u" - d) e.

Then

nex*y = €7 (u* - d) e.

Therefore h is increasing and the boundary i{s attractive if
and only f|f

tT (ur - @) > 0.

If the boundary is not attractive, define u; = u". Then
the process is repeated to find 12, x[t2), ta, x(t4), and so
forth until an attractive boundary i$ encoiintered. (It should be
remembered that this is an on-line computation that is taking
place at time tgy- The future trajectory is being planned.)

If the boundary is attractive, a value of u must be deter-
mined which will keep the trajectory on it. Otherwise chattering
will occur. For the trajectory to stay on the boundary,

h(x(t)) = O
or, since h(x(t;)) = O,

d_ n(x(t) = flu - &) = 0. (12)
dt

Although u is an optimal solution to (10). it t{s no longer

626

determined by this linear program. In fact u,, u”", and any
convex combination of them are optimal. This is because one or
more of the reduced costs is zero while x is on a boundary.
Consequently, the new scalar condition (12) is required to deter-
mine the solution. The linear program is modified as follows:

minimize c(x).r u

subject to D u = e (13)

u » O

T u - ¢tT 4

By adding equation (12) to (13), we are requiring that the
solution keeps x(t) on the boundary. We are also replacing the
reduced cost which has become zero with a new equation, so that
the new problem has a unjque solution.

The solution to (13) is the value of u that keeps the tra-
jectory on the boundary. As before, this value is maintained
until a new boundary {s encountered.

New boundaries may still be attractive or unattractive. The
same tests are performed: x is allowed to move slightly into the
next region to determine the value of u. The time derivative of
the component of the reduced cost that first reaches zero (h) is
examined. If it is negative, the boundary is unattractive and
the trajectory enters the new region. If it is positive, a new
constraint {s added to linear program (13).

Constraints, when added to (13), are not deleted. As the
number of constraints increases, the surfaces that u is found on
in Q(x)) increase in dimension. That i{s, u is first on a cor-
ner. When the fist attractive boundary is encountered, u is on
the edge formed by the convex combination of the corners corres-
ponding to the regions adjacent to the boundary. When the next
attractive boundary is reached, u is a convex combination of
three corners, and so forth.

At the same time, x i{s found in regions of decreasing dimen-
sion. After a machine state change, x[tol is in the interior of
a region of full dimenslionality. The first attractive boundary
x(t) reaches is a hyperplane separating regions of full dimensio-
nality, so its dimensionality is one less than full. The next
boundary is the intersection of two such boundaries and thus has
dimensionality one smaller.

Since this is a finite dimensional system, this process must
terminate. There are two cases. If the demand is feasible, le
{f d is a feasible solution of (10), then d is a feasible solu-
tion of (13). This is because d satisfies (12) for all f. As
new constaints of the form (12) are added to (13), d remains fea-
sible. Finally, if enough linearly independent constraints are
added, there is only a single feasible solution to (13) and that

627
is u=d.

Since the dynamics of x are given by (1}, x remains constant
when u=d. The value of this constant is the hedging point, dis-
cussed above, which is the minimum of J(x, «) for the current
value of «.

If the demand is not feasible, u cannot be equal to d and
thus x cannot become constant. Instead, the process described
above terminates with u satisfying linear program (13) including
one or more constraints of the form (12). The vector x(t) is
eventually of the form

x(t) = x[tJ-) + (u - d) t.

Since d is not feasible, some or all of the components of
u - d are negative. The corresponding components of x decrease
without limit.

4.3 COMPUTATIONAL CONSIDERATIONS

The conditional future trajectory is calculated whenever the
machine state changes, either due to a failure or a repair. It
may alsc be calculated under other conditions: periodically, to
ensure that the actual trajectory is close to the projected
trajectory; or after unanticipated events such as parts not being
loaded into the system in the prescribed manner.

To begin the computation, a linear programming problem (10)
must be solved. The number of variables (production rates and
slack variables) is the number of part types plus the number of
distinct machtines.

As each boundary is reached, one (i{f unattractive) or two
(If attractive) additional programs are solved. The numerical
effort is very small, however, since each starting basic feasible
solution is the solution of the previous problem. We expect that
no more than a few pivots of the simplex method will be required
to find each new solution.

S.LOWER LEVEL
Lower Level (SCHEDULE TIMES AT WHICH TO DISPATCH PARTS)

The new part loading scheme is based on the conditional
future trajectory (x(s), s»t). Define the actual surplus of
part type { at time t to be

xAi(t) ~ [number of parts of type i loaded during [0, t]]

- d; ot

Note that xAi(t) is an irregular sawtooth function of
time. It jumps by 1 each time a part is loaded. At other times,

628
it decreases at rate dl'

The loading strategy insures that xA(t) is near x{t). The
strategy is: at each time step t, load a part of type i if

XAt < o0, (14)

Do not load a part of type i otherwise. A rule is required to
resolve conflicts; it probably does not matter what that rule is
since conflicts will not arise very often.

Behavior of the New Strategy

Figure 4 demonstrates the behaviors of projected and actual
trajectortes. It shows a portion of a projected trajectory and
of an actual trajectory that was determined by this method.

The actual! trajectory remains as close as possible to the
projected trajectory. (There are five other such trajectories
because six part types are being produced in the simulated sys-
tem). No difficulty is experienced at the time (about 9740) when
the loading rate changes.

6.SIMULATION RESULTS

A detailed simulation of an IBM flexible manufacturing sys-
tem was written to test the hierarchical scheduling policy and to
compare it with other reasonable ploicies. The simulation is
described in Akella, Bevans, and Choong (1984). A full descrip-
tion of the results appears in Akella, Choong, and Gershwin
(1984).

Six part types are being made simultaneously. Failures and
repairs of machines take place at random times. Each MTBF is 10
hours and each MTTR is 1 hour, so that the efficiencies are all
@1%Z. Demands are chosen so that the machines are utilized 98%,
9174, 96%Z, and 97% of the expected available time.

A variety of alternative policies was formulated to compare
with the hierarchical policy. Policy X was: If more than N
parts are in the system, do not load a part. If N or fewer parts
are in the system, load the part that is furthest behind or least
ahead of demand. Do not allow any part type to get more than K
parts ahead of demand.

Parameter N must be chosen. Little’s law (Little, 1961)
gives some guidance, but simulation experience indicates that
behavior can depend critically on its value.

Figure 5 displays the results of four runs of the hierarchi-
cal policy and four runs of Policy X. All runs were performed
with the same seed for the random number generator. That is,
each had the same sequence of repairs and failures. The horizon-
tal axis displays the average number of parts in the system. The

629

101

olo]

*JOjABUS3Yg [9ADT JOaMOT P 2InBy g

SANOD3S OOI NI 3WIL
66

86 L6 96 g6

T

| O«

AY0103rvdl VNIV ==--
Ad0103rvdl d3103rodd ——

g

9l

2l
W'x

8I

6l

07

PERCENT PRODUCTION

MIN PERCENT PRODUCTION
MAX PERCENT PRODUCTION

% BALANCE

100

80

0’10

100

90

80

70

-
"Jl

630

¢ HIERARCHICAL
x POLICY x

PR T S NN NN SR SN SR NN S MY | >

12 14 16 18 20 22 24
IN-PROCESS INVENTORY

Figure 5. Production and Inventory Comparisons.

b
|+ HIERARCHICAL

x POLICY x

X

o X
| X
r X

l 1 1 1 1 1 1 1 I ———
80 90 100

TOTAL PERCENT PRODUCED

Figure 6. Balance Comparisons.

631

vertical axis shows the percentage of the total requirements that
was actually produced.

The four hierarchical runs had different values of A and b.
The Policy X runs had different values of N. Figure 5 indicates
that the hierarchical strategy produced superior results. The
in-process inventory was lower and the production percentage was
greater: in fact, over 98Z. In addition, although the values of
the A and b parameters differed considerably, the four hierarchi-
cal points are clustered quite close together. This indicates
that the policy is not sensitive to these parameters.

Figure 6 demonstrates how the policies satisfy balance re-
quirements. The horizontal axis is the same as the vertical axis
of Figure 5. To define balance, let ’

number of type i parts produced during the run
Z. = -
number of type i parts required during the run

Then balance is defined as

It is important that balance be near 100% to ensure that only
what is required is produced.

Akella, Choong, and Gershwin (1984) present a fuller compa-
rison of these and other policies. The more sophisticated poli-
cies performed better than Policy X, but not as well as the
hierarchical policy.

7.SUMMARY AND CONCLUSIONS

The hierarchical scheduling policy devised by Kimemia and
Gershwin for flexible manufacturing systems has been further
developed and tested. This policy is designed to respond to
random disruptions of the production process. In its current
formulation, it treats unpredictable changes in the operational
states of the machines: repairs and failures. All levels of the
policy have been improved, and the policy shows great promise for
practical application.

REFERENCES

R. Akella, J. P. Bevans, and Y. Choong (1984), “Simulation of a
Flexible Electronic Assembly System," Massachusetts Institute of
Technology Laboratory for Information and Decision Systems Report
to appear.

632

R. Akella, Y. Choong, and S. B. Gershwin (1984), "Performance of
Hierarchical Production Scheduling Policy,"™ Massachusetts Insti-
tute of Technology Laboratory for Information and Decision Sys-
tems Report LIDS-FR-1357.

S. B. Gershwin, R. Akella, and Y. C. Choong, "Short Term Produc-
tion Scheduling of an Automated Manufacturing Facility," Massa-
chusetts Institute of Technology laboratory for Information and
Decision Systems Report LIDS-FR-1356.

J. G. Kimemia (1982), "Hierarchical Control of Production in
Flexible Manufacturing Systems, Massachusetts Institute of Tech-
nology lLaboratory for Information and Decision Systems Report
LIDS-TH-1215.

J. G. Kimemia and S. B. Gershwin (1983), “An Algorithm for the
Computer Control of Production in Flexible Manufacturing Systems,
IEE Transactions, Volume 15, No. 4, December, 1983, pp. 353-362.

D. Luenberger (1977) Introduction to Linear and Nonlinear Pro-
gramming, Addison-Wesley.

J. D. C. Little (1961) "A Proof for the Queuing Formula:
L = X W," Operations Research, Volume 9, Number 3, pp. 383-387.

ACKNOWLEDGMENTS

Research support has been provided by the Manufacturing Research
Center of the Thomas J. Watson Research Center of the Internatio-
nal Business Machines Corporation; and by the U. S. Army Human
Engineering Laboratory under Contract DAAK11-82-K-0018.

